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ABSTRACT

Graph Neural Networks for Computational Chemistry

Bora Oztekin
Department of Computer Science & Engineering

Texas A&M University

Research Faculty Advisor: Dr. Shuiwang Ji
Department of Computer Science & Engineering

Texas A&M University

Graph Neural Networks are behind many pharmacological breakthroughs due to their in-

nate ability to learn structural properties of molecules and accelerate high-throughput screening

for favorable characteristics that could serve as a treatment or cure to a disease. Much of the

world’s natural data, such as social networks and molecules, can be represented in the form of

graphs. However, advancements in graph-based problems like chemistry have been lacking be-

cause graphs are a form of non-Euclidean data, and encoding them into a format that is compatible

with deep learning is considerably more challenging. This thesis seeks to understand and bench-

mark the techniques used to preserve the structure and properties of a graph in the encoded form.

Specifically, characteristics of a graph that are distinct in the graph form should be distinct in the

encoded form. Preserving both the expressiveness and the distinctness of the encoded graph is a

challenging task that has received a lot of attention in geometric deep learning. This work evalu-

ates and compares various graph neural network methods on a large public dataset to quantify the

expressive power of more detailed graph neural networks that consider dihedrals and bond infor-

mation, for example. It becomes evident that simply constructing homogeneous graphs of nodes

and edges is insufficient.
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NOMENCLATURE

GNN Graph Neural Network

DNN Deep Neural Network

CNN Convolutional Neural Network

GCN Graph Convolutional Network

FCN Fully-Connected Network

DFT Density Functional Theory

MAE Mean Absolute Error

3



1. INTRODUCTION

Graph Neural Networks (GNNs) are behind many pharmacological breakthroughs due to

their innate ability to learn the structural properties of molecules and accelerate high-throughput

screening for favorable characteristics that could serve as a treatment or cure to a disease.

Advances in deep learning [1], a technique to extract features from data and make pre-

dictions, have catalyzed progress in fields like machine translation and computer vision. However,

conventional deep learning methods require highly-structured data with fixed representations, such

as an image with each pixel neighbored by eight other pixels. It is challenging to represent less-

structured data, such as social networks and molecules, in a compatible form using conventional

methods– critical information is almost always lost, and deep learning becomes ineffective. Much

of this natural data can be natively represented in the form of graphs without information loss, as

shown in Figure 1.1.

Graphs are a collection of entities known as nodes, and they are connected by edges, which

indicate some association between the two nodes. A graph could be a social network, with in-

dividuals as nodes and friendships denoted by edges. However, there are also more complicated

examples. For instance, H2O, or water, can be represented with three nodes and two edges, each

connecting hydrogen to oxygen. This can be seen in Figure 1.2.

Advancements are allowing deep learning to represent graphs, but difficulties remain in

preserving both the expressiveness and the distinctness of the encoded graph. This is because

graphs are a form of non-Euclidean data, and encoding them into a format compatible with deep

learning is considerably more challenging without the assumptions made in Euclidean spaces, such

as that of a fixed neighborhood. Solutions to such tasks have been propelled by geometric deep

learning [2]. This thesis seeks to understand, compare, and propose the techniques used to preserve

the structure and properties of a graph in the encoded form. This includes an analysis of methods,

datasets, and training procedures. Further work on GNNs for Computational Chemistry can be

4



found at https://boraoztekin.com/ug_thesis.

1.1 Graph Neural Networks (GNNs)

Information propagation and aggregation across nodes enables Graph Neural Networks

(GNNs) to learn and infer graph properties. Namely, message passing [3], an information-sharing

technique that contextualizes nodes by propagating information from its neighbors, is used for its

expressiveness. When the locality assumptions of a graph are met, message passing can be used to

learn information about unknown nodes using those that have property information.

Figure 1.1: Norchlorambucil, a molecule from ZINC [4] represented as a structural heterogeneous
graph. Non-Euclidean data such as graphs challenge the assumptions and methods of

deep learning on Euclidean data.

5
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Figure 1.2: A water molecule consisting of two hydrogens and one oxygen, with a bent bond.

1.2 Graphs in Chemistry

Unlike in a social network, the arrangement of the nodes (atoms) in chemical graphs plays

an important role. For example, the structure of the water molecule shown in Figure 1.2 is ‘bent’,

and there is a specific angle at which the molecule is configured due to the lone electrons on the

oxygen. This is a characteristic that would not be represented in a social network graph. Most GNN

developments have been focused on nodes and edges, and not characteristics like the distances

between nodes (since friendship has no ‘distance’, for example) or the angles made by any three

nodes.

The objective of GNNs on chemical problems is typically to predict the properties of new

molecules using labeled training data. The training data is labeled using a procedure known as

Density Functional Theory (DFT) [5]. DFT is a simulation tool to approximate chemical pro-

cesses, and it has vastly accelerated exploration in the chemical space. Despite the growth of

computing resources with respect to Moore’s law, the efficiency of the DFT calculation has be-

come a bottleneck in searching the chemical space. An approach that has been promising in recent

years is to use DFT calculations as training data for machine learning (ML) models. This would

allow ML models to make inferences on unlabeled data at a much faster rate than DFT. To study

the effectiveness of this method, it is necessary to define error metrics to compare DFT and ML ap-

proximations. This can include Mean Absolute Error (MAE) or Root Mean Square Error (RMSE),

6



among others. These metrics are particularly important in chemistry because unlike in a social

network, for example, there are quantifiable ground truths derived via physical approximations.

Monitoring the performance of the models relative to the ground truths is a guiding indicator in the

development of a GNN.

1.2.1 Graph Convolutions and Message Passing

Graphs use edges to connect nodes with meaningful relationships. Therefore, a center

node’s neighbors (nodes adjacent to a given node) often contain valuable information about the

properties of the center node. This can be considered as a generalization of the fixed-neighborhood

image, which can be represented as a graph like the one shown in Figure 1.3. Graph Convolutional

Networks (GCN) [6] use weight sharing to learn features from neighboring nodes. Given that

the neighboring nodes are connected due to some sort of meaningful relationship to the center

node, this convolutional process adds meaningful context, providing locality to the feature vector

of the center node. GCNs implicitly assume locality and equal importance of self-connections as

compared to edges to neighboring nodes.

Figure 1.3: A fixed-neighbor graph with Euclidean structure representing the pixels of an image.

Several techniques of message passing include the GCN and Graph Attention Network

(GAT) [7]. Furthermore, Neural Message Passing for Quantum Chemistry [3] uses neighborhood

aggregation techniques to share information. These concepts have been extended by methods such

as Directional Message Passing for Neural Networks (DimeNet) [8].
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hi = ϕ

(
xi,
⊕
j∈Ni

cijψ(xj)

)
(Eq. 1.1)

Eq. 1.1 is the Neighborhood Aggregation Function used for information sharing in Graph

Convolutions.

The aggregation function above is an update function that takes information from neigh-

boring nodes j ∈ Ni and uses their feature vectors to update the feature vector xi. Many methods

are built around this framework.

1.3 Related Work

1.3.1 Crystal Graph Convolutional Neural Networks

Crystal Graph Convolutional Neural Networks (CGCNNs) [9] represent crystal structures

by constructing a graph that encodes atoms and bonds as nodes and edges, respectively. CGCNN

then builds a CNN on top of the graph to interact the nodes and extract properties by training with

DFT-calculated data. The convolutional layers iteratively update the atom feature vector by sharing

information with surrounding nodes and edges using a non-linear graph convolution function that

concatenates information from the convolution weight matrix and the self weight matrices. The

entire network of convolutional, pooling, and dense layers allows CGCNN to extract structural

differences based on edges to discover relationships between structures and properties.

1.3.2 Continuous-filter Convolutional Neural Network

SchNet [10] builds on top of previous GNNs to use the relative distance between atoms

to learn a representation for the prediction of molecular energies. The model also predicts the

forces acting on each atom because it is not clear how to obtain equilibrium conformers without

optimizing atom positions.

SchNet’s significant contribution extends the idea of convolutional layers [11] beyond the

Euclidean domain. Unlike image recognition, which is a popular application of CNNs, graph data

do not have the same properties, such as a fixed number of neighbors, or neighbors at a fixed dis-

tance. For example, a pixel in a 2D image would have eight equidistant neighbors, whereas an
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atom may have any number of neighbors at a variety of distances. Thus, using traditional convo-

lutional layers for graphs would cause important information to be lost when discretized by the

convolutional filters. To remedy this problem, SchNet introduces the continuous filter convolu-

tional layer in R3, which is generated by mapping from a position to corresponding filter values.

These filter values are applied to a node’s neighbors, and then aggregated, providing generalization

to a variable number of atoms, as well as scalability due to weight sharing.

In addition to the architectural contribution made by SchNet, the work implements more ro-

bust benchmarking by considering datasets beyond QM9 [12, 13], which only contains equilibrium

molecules. Specifically, the model is evaluated against MD17 [14], which introduces conforma-

tional degrees of freedom, and ISO17, combining chemical and conformational degrees of freedom

in a dataset of molecules with a fixed composition of atoms, but different valid arrangements.

SchNet surpasses other models [15] in scalability due to weight sharing, but it does not

completely represent the arrangement of a molecule in a way that preserves distinctness after the

encoding process. Namely, simply encoding relative distances leaves room for ambiguities due to

the large span of arrangements for a molecule with the same nodes and edges, but different angles.

1.3.3 Directional Message Passing Neural Networks (DimeNet)

DimeNet [8] introduces directional message passing, allowing GNNs to model the direc-

tions to neighboring atoms instead of just their distances. Previous GNNs do not consider spatial

direction, but rather just distance. This can leave behind chemically-significant information such

as angles. In particular, DimeNet embeds messages passed between atoms rather than the atoms

themselves. This is important because molecules that could not previously be distinguished due to

cutoff distances or other constraints can now be encoded to distinct representations.

Understanding how the graphs that are used as inputs to GNNs are constructed uncovers

a limitation that must be overcome before using directional information. Namely, if there exist

two different molecules that, for all atoms in each molecule, their neighborhoods are the same, a

distance-based GNN would be unable to distinguish between the two. As shown in the DimeNet

paper, a Cyclohexane and two Cyclopropane molecules with stretched bonds will bear the same
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encoding. From a local neighborhood perspective, other models do not use angular information,

and they cannot see that these are in fact two different structures.

Although modeling the directions rather than the distances would typically violate the rules

of symmetry and invariances because rotations would change directions, the method uses group

equivariance [16] to stay invariant to a transformation group.

DimeNet has since been succeeded by DimeNet++ [17], which models interactions using

a Hadamard product and linear layers instead of a bilinear layer. This significantly reduces a

combinatorial representation explosion.

1.3.4 Spherical Message Passing for 3D Graph Neural Networks (SphereNet)

SphereNet [18] proposes spherical message passing (SMP) as a scheme to realize the 3D

graph network (3DGN). It accomplishes this by using the spherical coordinate system (SCS) to

encode 3D information in a relative manner that yields predictions that are invariant to translation

and rotation of input graphs.

Despite computing an additional angle between planes, SphereNet is comparable to other

models in complexity due to the redundancies eliminated by deviating from the Cartesian coordi-

nate system. It is easy to convert positions from the (x, y, z) plane to the (ρ, θ, ϕ), and SphereNet

is able to switch to the SCS and preserve translational and rotational invariances because it uses

aggregation functions that can be adapted to generate relative information that moves with the

molecule as it is shifted. For example, when updating node features, the aggregation function

can be adapted to a radial basis function that computes distances between a node and the nodes

that point to it. The model architecture in Figure 1.4 shows the interaction block that updates the

messages.

The additional angle computed in SphereNet is known as the torsion angle, which can be

described as the angle between two planes. There are many instances, such as in H2O2, where two

molecules can be represented with identical bond distances and angles, but with variability on a

planar angle. Being able to represent the torsion angle would empower GNNs to recognize chiral-

ity, for example. As expressed in the objective of GNNs for computational chemistry, a successful
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model must be able to distinguish different representations in their encodings. SphereNet accom-

plishes this in SMP by computing the azimuthal angle between the neighbors of sender nodes, and

using a time-independent Schrödinger equation that depends on the electron state being expressed

as a function of locations. Specifically, a spherical harmonic function in the Schrödinger equation

takes the bond angle and torsion angle into account.

Figure 1.4: The architecture of SphereNet consists of an interaction block that considers distance,
angle, and torsion angle.

Although there are other methods that can be used to fully describe the structure of a 3D

molecule, they require accessing the neighbors of the neighbors, or the 2-hop neighborhood, of

a reference node. This is computationally expensive at O(nk3). By using SMP, SphereNet stays

within the 1-hop neighborhood, at a time complexity of O(nk2).
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2. METHODS

According to The Chemical Space Project [19], the “drug-like” chemical space has been

estimated at 1060, which is clearly far too large for practical application. Domain experts have

developed heuristics to reduce the practical span of the chemical space based on structural features

and chemical properties, but this is a lengthy process that requires human intervention, and some-

times even the handcrafting of features. Furthermore, it is not guaranteed to be accurate. Rather,

some of the latest advances in graph neural networks have eliminated the need for this type of

intervention, thanks to models that are more expressive and able to distinguish molecules.

This process is made possible through a variety of techniques that leverage the physical

rules of molecules and the mathematical rules of graphs. For example, models must account for

chirality, since a chiral representation of a certain molecule may be toxic while another may be

nontoxic.

Novel GNN architectures are constantly being developed to address challenges and limita-

tions in chemistry applications. However, the performance of a technique is not limited solely to

the model. In fact, the training datasets and techniques play a critical role in a GNN’s ability to

properly fit a model and make solid inferences. The overarching goal of making chemical represen-

tations more expressive and distinct is aided by these other factors. Specifically, a cherry-picked

dataset that includes a small subset of a larger dataset may hinder a model’s ability to classify

molecules with higher novelty. Also, simple considerations like shuffling training data can have an

impact on the learned model.

2.1 Model Architecture

Keeping in mind that the objective is to increase the expressiveness of the encoding of

the graph, the model itself achieves the goal by including distinguishing information about the

properties and structure of a graph. This includes taking steps like message passing to perform

neighborhood aggregation.
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mt+1
v =

∑
w∈N(v)

htw (Eq. 2.1)

The message consists of a sum of the feature vectors of the neighbors w ∈ N (v).

ht+1
v =

⊕
(hv,m

t+1
v ) (Eq. 2.2)

The hidden state is updated using an aggregation function consisting of its prior state and

the new message from Eq. 2.1.

Considering the existence of edges between nodes is typically sufficient to describe a social

network of friends, for example, but in the context of chemistry, this would be insufficient. This is

because it is not expressive enough to just know which atoms are connected by a bond, since this

excludes information such as the atomic number or the type of bond. Furthermore, it would also

be more expressive to include information about the angle of the bond. In other words, chemistry

introduces the need for graphs whose nodes are not all the same type: heterogeneous graphs.

Clearly, there is plenty of information contained in natural graphs, which are known as networks,

that must be considered to create an encoding that sufficiently distinguishes characteristics.

Although 3D graph neural networks are expected to be more performant than their 2D

counterparts, they present their own set of logistical and theoretical challenges. Namely, 3D GNNs

are computationally intensive, especially with larger molecules where there are many angles. This

issue compounds when working with dynamic graphs, which change over time with respect to a

state (an example of this is a quantum state relaxation). To keep a focused direction, this thesis

will not examine molecular dynamics in-depth.

2.1.1 Graph Invariance and Equivariance

Since it is the goal of a GNN to expressively and distinctly represent the natural graph, or

network, that it is encoding, it is paramount that GNNs for chemistry be able to learn domain-

unique features. However, a new challenge is posed when considering the distances or angles, for

example. For the weights to be properly and efficiently learned in a GNN, there needs to be some
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kind of procedure that canonically represents molecules that are viewed from a different frame of

reference. For example, looking at water from the side and the front would express the absolute

positions in different places, but it is in fact the same molecule. A solid GNN would encode both

frames of reference to the same representation. This phenomena in particular is known as rotational

invariance. Intuitively, we also seek translational invariance, as shown in Eq. 2.3.

f(τx) = f(x) (Eq. 2.3)

f(τx) = τ ′f(x) (Eq. 2.4)

Equivariance describes any operation applied to x being accordingly applied in the encoded

representation. So, if there is a 180 degree rotation in the input, the encoding will vary equivalently,

thus establishing rotational equivariance, as in Eq. 2.4.

There are striking similarities between Convolutional Neural Networks (CNNs) and GNNs

in terms of how they propagate information. Unlike a fully-connected network (FCN), a CNN has

far fewer connections, and utilizes weight sharing. This is helpful in CNNs because weight shar-

ing introduces translational equivariance: if an object is shifted elsewhere on the grid of its image,

it will be detected regardless of its position. Similar concepts apply when extending the idea of

weight sharing and locality to graph neural networks, although there are fundamental differences

in the architectures due to the varying number of neighbors and distances between nodes. Further-

more, without weight sharing, the number of parameters is linearly related to the number of nodes,

which can be quite inefficient in larger graphs.

Overall, the design of 3D GNNs evolved from considering the distances between atoms to

considering the angle produced by three different atoms, to evaluating the torsion angle produced

by the planes of four atoms. Clearly, 3D GNNs consider information from more atoms to create

a more localized and distinct mapping. A future direction for 3D GNNs is to consider a cloud

of nodes and embed information about the cloud globally. Works in other non-3D specific GNN

14



areas have attempted to address this by identifying and distinguishing functional groups, which are

groups of atoms that serve a specific purpose within a molecule.

2.2 Data Selection

Current models are typically benchmarked using datasets that contain under one million

molecules. Considering the highly expressive nature of chemical graphs and the number of pa-

rameters in the latest 3D GNN models, it is hypothesized that model performance will improve

considerably using a larger dataset. This thesis benchmarks current state-of-the-art models against

PubChem PM6 (PM6) [20], a consolidation of datasets from institutions around the world. It con-

tains over 90 million molecular compounds, and is maintained by the National Institutes of Health

(NIH).

According to the authors, the PubChemQC PM6 datasets are the largest datasets developed

by semiempirical quantum chemical calculations. It is important to note that while DFT is more

accurate than semiempirical calculations, it is considerably more expensive to compute, and it has

therefore been used mostly for subset datasets. The authors remark that the PM6 method gives

fairly good geometries for molecules, which include proteins. The results are also valuable for

estimating electron structures. When evaluating the results of models trained using PM6 and other

methods, it is important to reference how these datasets were developed since all performance is

relative to the ground truth, which is indeed an approximation in all of these datasets.

2.3 Data Preprocessing

Given the variety of benchmark models and dataset sizes, data preprocessing is not a trivial

task, and it can be vastly different across models. Since this work seeks to unify and compare

several of such models, it is important to develop a standard from which the input data are gen-

erated. Specifically, the PubChem PM6 dataset is much larger than QM9. The Linux filesystem,

Python, and input/output parallelism limits all pose challenges for such a large dataset with over

100 million molecules.

To address these limitations, this work utilizes PyTorch Geometric Dataset objects. This is

in contrast to InMemoryDataset objects, which, as the name implies, are stored in memory rather
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than read from a file. Each block of up to 25,000 molecules is independently processed and the

relevant tensors are stored as a PyTorch serialized file object. In fact, the original file hierarchy

structure of the PM6 raw dataset is quite slow to process due to each molecule being in its own

folder. Due to how the Linux filesystem treats directories, this causes a considerable slowdown,

so molecules are extracted in groups of 25,000 to a temporary folder, where the relevant data are

obtained.

Figure 2.1: Data handling pipeline from raw files to molecular graphs.

As shown in Figure 2.1, the data pipeline extends beyond simply organizing the data into

a database because there are several models to benchmark, and each has slightly different input

requirements. However, SchNet, DimeNet, and SphereNet have been reimplemented within Dive

Into Graphs (DIG) [21], which unifies the model’s inputs and outputs so benchmarking across

models can be done easily with the same datasets.

First, the datasets are downloaded from the PubChemQC PM6 Datasets webpage. Then, a

subset of 120,000 molecules is extracted. The reason for selecting this size is parity with the QM9

dataset. Experimental trials in this study use 100,000 molecules for training, and 10,000 each for

validation and testing. Then, the processing step is invoked for each molecule.

The process involves extracting a list of atoms and their coordinates, followed by the molec-

ular properties, such as total dipole moment, highest-energy occupied molecular orbital (HOMO),

lowest-energy unoccupied orbital (LUMO), gap (HOMO-LUMO), total energy, and enthalpy. Fi-
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nally, molecules that are missing property files or have single nodes (and therefore no message

passing update) are filtered.

Another considered alternative to processing many XYZ files was to use Spatial Data Files

(SDFs), which are a collection of XYZ files compressed into one. Unfortunately, this method

poses two new challenges: it is not standardized across many of the benchmarked models, and

indexing errors are much more likely to occur in SDF files due to the implicit sequential ordering

of molecules within the file. With tens of millions of molecules in the dataset being chemically

invalid or undesirable for experimentation due to missing information or a very small structure,

this could pose serious inconsistencies.

We have established that there is a plethora of information to be considered when encoding

a graph, especially those involving chemistry. Beyond a strong encoding, it is important to dis-

tinguish the techniques that can be used to propagate information amongst nodes and edges. In

particular, graph neural networks use various forms of message passing to share information along

the nodes and edges of a GNN. This technique works because of the assumption that links connect

entities that are supposed to be related. This explains why it is so important to pick criteria like

cutoff distances systematically when synthetically adding edges to a set of atoms that do not have

determined edges, for example.

2.4 Data Target Parity

This work uses the Mean Absolute Error (MAE) as the error metric to compare the perfor-

mance of a model against the ground truth.

∑n
i=1 |yi − ŷi|

n
(Eq 2.5)

The predicted value is represented by ŷi, and yi denotes the ground truth. The number of

samples is n.

An important part of ensuring the correctness of the MAEs is making sure that the targets in

the dataset have similar distributions. As shown in Figure 2.2, the HOMO-LUMO (Gap) property
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in both PM6 and QM9 have similar distributions and ranges of values.

Figure 2.2: Distribution of HOMO-LUMO (Gap) in PM6 and QM9 Training Data

2.5 Hyperparameter Tuning

There are two kinds of graphs: structural and nonstructural. Structural graphs represent

phenomena that naturally occur in graphs. This would include molecules or social networks. Non-

structural graphs take data that are not ordinarily represented by networks and construct a graph,

linking nodes based on some criteria like distance or similarity, such as in Figure 2.3.

Choosing the correct cutoff distance for when two neighboring atoms are considered linked

is a key influencer of model performance. Therefore, hyperparameter tuning in the form of a grid

search is conducted to find the values that optimize model performance. This is done for the cutoff
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distance, number of layers, hidden channels, interaction embedding size, and output embedding

size.

Figure 2.3: Using distance as a criterion to create edges between nodes.

2.6 Dataset Comparison

This thesis seeks to highlight that in addition to the expressiveness of the models that are

used, it is paramount to consider that GNN development is in part guided and motivated by the

performance of models on various benchmark datasets. Therefore, using datasets that are repre-

sentative of real problems is critical, especially for these methods to break through to industry

applications.

Although smaller datasets have their practical advantages, namely through being easy to

work with and oftentimes highly constrained, this does not represent the actual problem of drug

discovery. Instead, these datasets should be used as milestones in the design process, with final

testing being on a larger dataset like PM6, which spans a broader section of the chemical space

than smaller datasets.

The common 3D GNN benchmark datasets can be seen in Table 2.1, and Hyperparameter

settings for SphereNet are found in Table 2.2.
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Table 2.1: 3D GNN Datasets

Name Size Ground-Truth Specific Subset
PM6 91M Semi-Empirical No
QM9 134K DFT Up to 9 heavy atoms

Table 2.2: SphereNet PM6 and QM9 Hyperparameters

Hyperparameter QM9 Value PM6 Value
Cutoff 5.0 5.0
Layers 4 4
Hidden Channels 128 256
Interaction Embedding Size 64 128
Output Embedding Channels 256 256
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3. RESULTS

3.1 Influential Factors

The results indicate that the PM6 dataset is quite different from QM9, not only in terms of

the number of molecules, but also the types. This is to be expected since QM9 is a subset dataset

that contains molecules sharing similar properties that make them easier for chemical property

prediction. Furthermore, PM6 ground truth values were calculated using a semi-empirical process,

rather than Density Functional Theory (DFT).

3.2 Comparative Tables

The Validation Mean Absolute Error (MAE) on PM6 can be seen within Table 3.1:

Table 3.1: Validation MAE for PM6 Dataset

Property (Units) SchNet DimeNet++ SphereNet
Total Dipole Moment (D) 848 473 418
HOMO (meV) 177 141 121
LUMO (meV) 350 319 274
Gap (meV) 243 209 170
Enthalpy (H) 10 3 3

The Validation Mean Absolute Error (MAE) on QM9 can be seen within Table 3.2:

Table 3.2: Validation MAE for QM9 Dataset

Property (Units) SchNet DimeNet++ SphereNet
Total Dipole Moment (D) 98 89 62
HOMO (meV) 73 77 49
LUMO (meV) 60 42 40
Gap (meV) 109 79 79
Enthalpy (H) 61 38 33
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3.3 Analysis

The results demonstrate that QM9 outperforms PM6; however, rather than solely comparing

the performance on the same model across datasets, it is important to compare different models

using the same dataset as well. This is because a model’s expressive powers are uniquely assessed

by each dataset against which it is benchmarked.

Hyperparameter tuning made a measurable contribution to the model performance on PM6,

with larger values generally yielding lower validation and testing MAEs. By adding parameters

to the model, it is expected that the training MAE would be lower, but we confirm its benefit by

noting that this effect is observed in validation and testing.

The training process over time provides valuable insights about the convergence of a model.

In Figure 3.1, we observe that the validation and testing MAE are 0.156 and 0.154, respectively.

By the last steps, there is plateauing that indicates that the errors are unlikely to improve with more

steps. It is also important to note that the training MAE relative to the validation and testing MAE

is in a place such that we can be confident that overfitting did not occur. We can make this claim

because there is no situation where the training MAE is significantly smaller than the validation

and testing MAE.

One noted benefit of PM6 is that in some properties, the margin between the value of the

best model and the other ones is greater than in QM9. This observation is beneficial because it

indicates that PM6 is able to better discern a more expressive model, which is in alignment with

the key goal of increasing expressiveness and distinctiveness.
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Figure 3.1: Training process over time for SphereNet using PM6 data.
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4. CONCLUSION

4.1 Perspective

Until recently, deep learning has largely been advanced on data in the Euclidean space,

such as image classification and natural language understanding.

Advances in graph neural networks would stand to share the breakthroughs in Euclidean-

data problems to graphs, which would immensely support research in chemistry, social phenom-

ena, etc. The gain to be made here is that research is highly limited by being constricted to one

space. Expanding beyond the Euclidean space removes many of the favorable assumptions that can

be made to simplify problems; however, they dilute the representational quality of the encoding

because the problems in the world are not necessarily Euclidean.

Clearly, Graph Neural Networks feature exciting prospects for the field of drug discovery,

which is in more critical need of advancements than ever before. However, as new models are

architected to advance the world’s toolbox, it is important to bear in mind the implications of

benchmarking.

After all, a model’s performance metrics are all relative to the datasets on which they are

evaluated. Oftentimes, smaller datasets that are more manageable to work with tend to have the

side effect of being unrepresentative of the chemical space.

Importantly, while this is an issue in prediction tasks, there stands to be even more of a gain

for incorporating larger datasets into generation tasks, which is a future research direction that has

been receiving attention lately. This is because predictive tasks are constrained to their datasets,

whereas generation tasks need novelty.

4.2 Outcomes

Performance on PM6 is not indicated to be as strong as on QM9; however, it is important

to note that QM9 is widely considered as a benchmark dataset for chemistry GNN problems.

Therefore, many models are designed with such datasets in mind. PM6 is not to be discarded
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due to a higher error rate, but rather, it should be considered as an additional benchmark that can

signal the performance of the model toward a larger subset of the chemical space that more closely

represents reality.

PM6 is shown as being capable of assessing models relative to each other because it in-

dicates mostly the same pattern by QM9. Nevertheless, there are some differences that point out

opportunities for improvement using a larger dataset. Interestingly, it is not always the case that a

more expressive model produces a lower validation and testing MAE. This could indicate that the

effectiveness of the additional expression may not translate to a larger dataset like PM6.

Overall, this study has made it clear that QM9 and PM6 need not be compared to each

other to provide valuable insights. Instead, this work encourages comparing models with several

datasets, since a model that has the best metrics on one dataset may not exhibit that same per-

formance on another. Since different datasets, and especially subsets, focus on different kinds of

molecules, a model’s versatility is difficult to assess using only one source.

4.3 Direction

GNNs in computational chemistry have been lifted by many groundbreaking works in the

last several years, but there is still progress to be made before this research area can have more

widespread applications in industry. One of the greatest disparities between GNN research and

industry needs is found in datasets. This is likely because the two tracks are optimizing for different

outcomes; in industry, the performance of a model is important, but the discovery of a novel

drug is the ultimate goal. Because of this, industry datasets tend to be much larger, containing

molecules that have few similarities amongst them. While designing models for these datasets

may be considerably more challenging, the outcome would be a method that is more resilient to

the variety in the chemical space.

Although many industry datasets are proprietary, PubChem PM6 is one of the largest

molecular compound datasets, with over 90 million valid molecules. Data have been contributed

to PM6 by many institutions and organizations, producing a diverse source. Benchmarking models

against larger and broader datasets like PM6 could be the next step needed to raise future GNNs as
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a stronger candidate for applications.

The case for more distinct and expressive GNNs is clear, but model development should

be guided by performance metrics across multiple datasets. More thorough benchmarking would

make models more resilient to the types of molecules that may be less commonly seen in research,

but are omnipresent in industry and practical applications. Novel model architectures have driven

the capabilities of GNNs, but the efforts to develop them could be more guided and targeted with

stronger analytics that are provided by more representative samples.

GNNs are playing a rising role in all aspects of our lives, and especially chemistry. Devel-

oping practices that encourage real-world feasibility will further accelerate this growth, and yield

fruitful applications.
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