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ABSTRACT 

Early Hospital Mortality Prediction Using Routine Vital Signs in ICU Patients 

Naveed Khimani 

Department of Computer Science and Engineering 

Texas A&M University 

Research Faculty Advisor: Dr. Bobak Mortazavi 

Department of Computer Science and Engineering 

Texas A&M University 

In a clinical setting, there are countless scenarios in which a statistical prognosis for 

patients can be extremely beneficial to medical professionals so that they may better allocate 

resources to provide the best patient care. The purpose of this paper is to identify when in a 

patient’s stay a meaningful prediction of hospital mortality can be made to provide that 

prognosis.  

In order to accomplish this, eight clinical variables were extracted from the MIMIC-III 

database for ICU patients and were supplied to a XGBoost model, an advanced Decision Tree 

Classifier that employs gradient boosting. Because of the imbalanced data, the positive values 

were weighted more heavily along with other optimized parameter values found from the use of 

GridSearchCV. 

A static model demonstrated an average accuracy of 80.50% with an AUC-ROC of 0.800 

and an AUC-PR of 0.429. However, a time-series analysis using extracted statistics from twelve-

hours of compounded, time-varying data generated a model with an 83.28% accuracy with an 

AUC-ROC of 0.846 and an AUC-PR of 0.562. Additionally, the model demonstrated the 
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importance of GCS and airway management in the prediction of mortality indicating the need to 

focus more on these vitals in emergency situations. 

The time-series model was shown to be most effective in predicting mortality, 

exemplifying the importance of providing time-series data that can detail the progress/decline of 

the patient. This implementation especially could be very impactful in clinical settings to provide 

healthcare professionals with the means to make quick and effective decisions. 
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1. INTRODUCTION 

1.1 Purpose 

In the medical field, there are several instances that have been explored where machine 

learning advances could prove fruitful. One such area, in-hospital mortality, has been 

investigated using a variety of methodologies. While there have been steps taken to classify 

patients using machine learning techniques, there can be improvements in the interpretability and 

extent of training data without sacrificing accuracy. By limiting the training data to basic vitals 

taken at admission, a more practical statistical prognosis can be provided to medical 

professionals in order to support the quick, efficient decision-making process that is necessary 

for intensive care situations. Additionally, this study will seek to identify when in the patient’s 

stay this prediction should be made by weighing the impact of compounding time-varying data. 

The three objectives of this project are: 

1. Determine the accuracy of a static model using a single set of vitals. 

2. Compare the accuracy of models that use vitals taken across multiple time frames to 

demonstrate the effect of compounding data. 

3. Interpret feature importance and benefit of time-variance in an optimized final model 

This model could be employed in clinical settings during an ICU stay to identify how 

concerning a patient’s condition is. Additionally, as the model computes the prognosis over time, 

the data will show whether the patient has been improving or declining. These are each very 

imporant pieces of information to ascertain as early as possible in an ICU stay while also 

maximizing the accuracy of the prediction. 
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This paper will seek to demonstrate that providing an XGBoost model with time-varying 

data compounded over an interval of up to twelve hours is more effective than using smaller time 

frames or using a static model while maintaining the interpretability and ease of training. 

1.2 Related Works 

The Acute Physiology and Chronic Health Evaluation (APACHE) II is a scoring 

mechanism used by medical professionals in an ICU setting to quantify severity based on 

demographic and physiologic measurements [1]. This is similar to other scores such as the 

Simplified Acute Physiology Score (SAPS) and Sequential Organ Failure Assessment (SOFA), 

among others. However, there is little known about the efficacy of the APACHE score especially 

and its implementation is not entirely accurate because of the variation across different 

professionals and inconsistencies in the data. 

A quantified method to predict mortality will be better suited and provide improvements 

in consistency and efficiency in a clinical setting. Because the purpose of this paper is to predict 

early hospital mortality, there is an expanse of previous research to consider in the field of 

machine learning. The first is “Multitask learning and benchmarking with clinical time-series 

data” [2]. This paper by Harutyunyan, et al. has become a standard in the use of the MIMIC 

medical database because of its versatility in features, labels, and model types. For the purposes 

of this paper, the most pertinent results exist in the prediction of in-hospital mortality. This paper 

looks at seventeen clinical variables across the first 48 hours of a given patient’s stay in an effort 

to identify any patterns that may occur across that larger window. The dataset used contains 

approximately 21,000 ICU stays and contains an imbalance in the data where the mortality rate is 

only 13.23%. The best classification occurred using a multitask channel-wise LSTM (Long 

Short-Term Memory Network) for which the AUC-ROC was 0.870 and AUC-PR was 0.533.  
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Another paper that is relevant to predicting hospital mortality is “Early hospital mortality 

prediction using vital signals” [3]. This paper by Sadeghi, Banarjee, and Romine focuses on 

predicting mortality using data from the first hour of waveform ECG (echocardiogram) 

measurements on ICU patients. The best results for an interpretable model were from a decision 

tree with a precision of 0.90 and a recall of 0.92.  

Based on these works, there exists a baseline that can be improved upon in some ways. 

Some of the MIMIC Benchmark models achieve impressive accuracy but make classifications 

through a black box. However, the alternative is a model that is understandable which would be 

much more suited to clinical purposes. While there are models from earlier papers that possess 

this interpretability, they generally sacrifice some accuracy to accomplish this. Additionally, the 

above works use large amounts of data to classify patients, be that several clinical variables or 

several features extracted from a waveform vital. A further objective of this paper is to use an 

optimal amount of data to identify the earliest point where a meaningful prediction can be made. 
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2. METHODS 

2.1 Background 

2.1.1 XGBoost 

While gradient boosting trees have been implemented for quite some time, the XGBoost 

model was introduced in 2016 by Tianqi Chen, Carlos Guestrin. Gradient boosted trees are built 

similarly to decision tree ensembles, however, are more responsive to scaling. Specifically, the 

model “consists of a set of classification and regression trees (CART)” [4]. The XGBoost 

documentation visualizes a classification problem in which a decision tree is used to classify 

members of a family [5]. As opposed to a traditional decision tree where a leaf would be the 

classification, in a CART model, the leaves each have a raw score. As more trees are created, the 

sum of each of the raw scores of the leaves will equate to a decision. As defined by Jerome H. 

Friedman in his paper, “Greedy Function Approximation: A Gradient Boosting Machine”, 

gradient boosting simply put is a method to reduce error in each subsequent tree so that the final 

error is much lower than each individual tree [6]. Each additional tree focuses specifically on the 

errors that the previous tree made. Gradient boosted trees fill in the gaps of each individual tree 

creating an accurate and versatile model. An example of a XGBoost model is shown below in 

Figure 2.1. 
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Figure 2.1: Example of Gradient Boosted Decision Tree from Static Model 

2.1.2 MIMIC-III 

The MIMIC-III database by PhysioNet “integrates de-identified, comprehensive clinical 

data of patients admitted to the Beth Israel Deaconess Medical Center in Boston, Massachusetts. 

[7]” This database has been used quite prevalently in the field and has become a standard of data 

as seen in other papers referred to above. In this paper, the MIMIC database is used for several 

aspects of the data collection process. Of the twenty-six tables in the database, specifically the 

ADMISSIONS and CHARTEVENTS. CHARTEVENTS contains every vital, lab, or procedure 

completed on a patient codified by the column ITEMID in D_ITEMS which maps to the 

procedure name and information. While all of the data in the database is de-identified, the data is 

consistent between tables. For mortality prediction, the ADMISSIONS table contains the 

identifier HADM_ID and a column, DEATHTIME, that indicates whether the patient passed 

away during the care process.  

2.2 Data Extraction 

2.2.1 Feature Selection 

There were several considerations that needed to be made when deciding upon which 

data set to employ as features for the model. The CHARTEVENTS table in the MIMIC-III 

database includes as many as 2,671,816 different vitals, labs, and other measurements and 
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procedures that can be performed on a given patient. However, for the purposes of this paper, 

only routine vitals were selected in order to create a preliminary prognosis with as little of a data 

burden as possible. According to this 2021 publication, “Nursing Admission Assessment and 

Examination”, the most important vitals for a medical professional to take as a part of the 

admission process are “[t]emperature recorded in Celsius, heart rate, respiratory rate, blood 

pressure, pain level on admission, oxygen saturation” [10]. An additional paper from 2021 

identified that the traditional vital signs “consist of temperature, pulse rate, blood pressure, and 

respiratory rate” and pulse oximetry has been shown to also be beneficial to assess [11]. The 

analysis done by Harutyunyan et al in the MIMIC Benchmark study employed seventeen clinical 

variables [2]. In order to maximize the abilities of the model, the features in this paper will 

employ the above five routine vital signs that are a part of the nursing assessment along with 

three additional features that were selected due to their effective use in the MIMIC Benchmark 

paper along with their frequency in the MIMIC database. These features are detailed below in 

Table 2.1. Column 2 displays the median value of these features in the CHARTEVENTS table. 
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Table 2.1: Features and Median Values 

Feature Name Feature Median Value 

Heart Rate 92 bpm 

Respiratory Rate 22 insp/min 

Blood Pressure Systolic 118 mmHg 

Blood Pressure Diastolic 59 mmHg 

Temperature 97.20 °F 

Oxygen Saturation 98% 

Glasgow Coma Scale Total 11 

Glucose 127 mg/dL 

Fraction of Inspired Oxygen 40% 

 

2.2.2 Time-Series Data 

While the primary objective of this research is to identify the least amount of data and 

time that is necessary to make a worthwhile prediction, it is also important to identify the 

potential improvements that can be drawn from increasing that data to the standard length of 

prediction, twelve hours. In order to accomplish this, the single, static prediction based upon the 

vital data points at admission was compared to the datasets generated from one to twelve hours 

of time in the hospital in one-hour increments. However, XGBoost is not designed to handle 

time-series, two-dimensional data. To avoid this issue, instead of providing each data point to the 

model, statistical metrics were extracted from the available data in the given timeframe. The 

features that were extracted are listed in Table 2.2. These features were extracted for each of the 

eight vital signs that were discussed earlier to establish the progression of each vital over the 
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course of the collection time frame. The two columns within the table show the disparity in 

features for the heart rate as an example for each extracted metric. The differences between the 

columns establishes the importance of this feature in predicting mortality. This is a similar 

technique to that which was demonstrated in Sadehgi’s paper regarding early hospital mortality 

prediction using waveform ECG [3].  

Table 2.2 Comparison of Features Across Labels 

 

 

 

 

 

 

 

 

 

 

 

2.2.3 XGBoost Optimization 

There are several ways to optimize the XGBoost model in order to improve its ability to 

predict. The method that was employed in this process was hypertuning the parameters using the 

library GridSearchCV. This library performs an exhaustive search of all possible combinations 

of parameter values to ascertain which combination performs the best for the specified task. This 

method is taxing in terms of resources but is more proficient in finding the optimal parameters 

Feature 

Avg for Passed Away 

Patients 

Avg for Alive 

Patients 

Maximum 98.03 107.59 

Minimum 74.75 72.71 

Mean 85.20 90.98 

Median 84.77 90.88 

Standard Deviation 7.23 9.67 
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for the model because it can test all combinations, as opposed to a random search that may 

overlook a potential improvement [12]. Hypertuning the parameters in this study was 

accomplished by holding all other variables constant and varying a single parameter to find the 

ideal value for that one and repeating that procedure for the remainder of the variables.  
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3. RESULTS 

3.1 Data Distribution 

The theme in the distribution of each feature is that the median is around the generally 

accepted normal value for the vital, however, there are outliers in each distribution that describe 

more concerning situations for patients. For blood pressure, the data centers around fairly normal 

values of 118 mmHg for systolic and 63 mmHg for diastolic, however there are several outliers 

in the abnormal range that would contribute to the decline of a patient. The temperature 

distribution also follows a similar theme in that the median is just under the limit of febrility, but 

there are some realistic outliers both above and below the middle quartiles. This theme proves to 

be beneficial to a model so that it may use the outliers as an indicator for potential decline in the 

patient’s health. 

An accessory topic that is commonly debated in the medical field is the neglect of the 

respiratory rate vital. Often the measurement is simply estimated or downright ignored [13]. 

Respiratory rate is a very important vital in measuring how unwell a patient is but because of its 

lack of high-quality data, it is difficult to understand how impactful it is. An interesting plot, 

Figure 3.1, demonstrates the correlation between oxygen saturation and respiratory rate. In an 

ideal case, as respiratory rate exceeds normal boundaries (roughly twelve to twenty inspirations 

per minute) the oxygen saturation should drop. However, instead there is a fairly uniform band 

of oxygen saturation values across the range of most frequent respiratory rate values. The lack of 

correlation endorses the assertions made by Cretikos about the neglect of respiratory rate. When 

taken accurately this vital could play a large role in the mortality prediction, however, because of 

its sporadic nature, it may not be as beneficial. 



14 

 

 

      

 

Figure 3.1: Airway Assessment Comparison 

3.2 Objective 1: Model Metrics for Single, Static Vital Set 

The XGBoost model created here has several quantitative means to measure its accuracy. 

The most standardized measure of accuracy is a stratified k-fold cross validation. The k-fold 

method describes when a model is trained with a portion of the data and then tested with the 

remainder, k times. A stratified version of this method is used specifically in instances of 

imbalanced data in order to ensure that each fold maintains a comparable distribution of positive 

and negative labels. A stratified 5-fold cross validation on the model trained with a static, single 

set of vitals resulted in an accuracy of 80.50% with a standard deviation of 2.14%.  
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Additionally, the receiver operating curve, Figure 3.2, and the precision recall curve, 

Figure 3.3, are both useful methods to understand the accuracy of the model. Below are the 

figures visualizing the area under the curve. 

 

Figure 3.2: ROC Curve for Static Model 
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Figure 3.3: PR Curve for Static Model 

This model has flaws that are evident in the confusion matrix below in Figure 3.4. For the 

purposes of hospital mortality prediction, the consequences of a false prediction are very 

dangerous. For false negatives, a death is predicted when the patient lived, the consequences are 

less severe in that a greater priority may be assigned to the patient when not necessary. However, 

false positives, shown in the upper right, indicate that a patient passed away when the model 

predicted the patient would live. If a lesser priority were assigned or some resources were 

allocated away from the patient, it could lead to even further deterioration of the patient and lead 

to fatality. While the key drawback of this model is the prevalence of false positives and 

negatives that are also seen by the lower AUC-PR, the standard deviation of the accuracy across 

the five folds is also much higher than other models. This is indicative of the model having to 

guess more causing this inconsistency. Both of these challenges can be solved for by providing 

the model with more data to consider in the form of time-series data. 
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Figure 3.4: Confusion Matrix for Static Model 

3.3 Objective 2: Model Metrics for Time-Series Optimization 

Within the time-series tests, there were models run at one-hour intervals from one to 

twelve hours of ICU vitals data. This can then be compared with the static, single data point 

metrics that were detailed above. Table 3.1 details the accuracy metrics of each of the models 

trained with the accompanying time-series data. Figure 3.5 contains a graph that displays the 

change over time and the effects of compounding data over time. 
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Table 3.1: Time Optimization 

Number of Hours Accuracy AUC-PR AUC-ROC 

1 79.32% 0.386 0.761 

2  80.59% 0.386 0.771 

3  80.77% 0.430 0.799 

4  81.18% 0.451 0.798 

5  81.55% 0.471 0.812 

6  81.24% 0.462 0.809 

7  82.03% 0.495 0.818 

8  82.35% 0.494 0.826 

9  82.25% 0.506 0.829 

10  82.61% 0.503 0.814 

11  82.76% 0.502 0.828 

12  83.28% 0.562 0.846 
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Figure 3.5: Evaluation across Compounded Time Frames 

As shown above, there is a significant gain in accuracy, area under the precision-recall 

curve (AUC-PR), and area under the receiver operative curve (AUC-ROC) between using just 

the first hour of data and the first twelve hours of data. Across the various time points analyzed 

here, there is a moderate increase in each of those metrics. Thus, it would be most beneficial to 

employ a model based on the extracted metrics from the initial twelve hours of vitals available 

on admission. This method is more precise than using a single data point, however, would 

require waiting until twelve hours into the patient’s stay to make the best prediction. Previous 

predictions can be made but will not be as accurate.  

3.3.1 Test of Impact of Compounding 

Using twelve hours of data is clearly the most effective way to make a prediction. 

However, the importance of this prediction is not in that specific hour mark, but rather in the 

methodology used. Providing the model more data over time allows it to understand the history 
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of the patient rather than looking at a static point in time. To demonstrate that the gain in the 

model’s ability to predict is based on this compounding of time-varying data and not just the 

final hour of data, a model was created only with the data between eleven and twelve hours for 

each ICU stay. 

 The model is the same XGBoost Classifier in every way including the below 

optimizations from section 3.4 but trained with and tested against different data. The results were 

not nearly as effective with an average accuracy of 74.77%, standard deviation of 0.61%, and an 

AUC-ROC of 0.659 and an AUC-PR 0.211.  

The downfalls of this model highlight the successes of using compounding data. By 

looking at a twelve-hour time frame, there are fewer false positives and negatives, and the model 

becomes more attuned to predicting mortality for ICU patients over time. 

3.4 Objective 3: Optimized, Time-Series Model Metrics 

Using the optimization method discussed in section 2.2.3, the twelve-hour model from 

the time-series optimizations, was tested under multiple scenarios to identify the optimal 

parameter values. The Stratified-5-Fold cross validation resulted in an average accuracy of 

83.28% with a standard deviation of 0.89% across the folds. The receiver-operating-

characteristic curve and the precision-recall curve are displayed below in Figures 3.6 and 3.7, 

respectively. The exact parameter values optimized with GridSearchCV are detailed in Table 3.2. 
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Table 3.2: Optimized Parameter Values 

Parameter Name Optimized Value 

min_child_weight 3 

learning_rate 0.3 

max_depth 5 

max_delta_step 1 

subsample 0.8 

 

 

Figure 3.6: AUC-ROC for Optimized Model 
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Figure 3.7: AUC-PR for Optimized Model 

This model has shown to be very effective in the prediction of hospital mortality using 

the features explained above and could make large strides in the efficiency of an ICU. Quick and 

effective decisions in a hospital are necessary to save lives and with an accurate model like this, 

patients could be classified appropriately to provide healthcare professionals with the best 

information to make decisions regarding a patient’s care. 

3.4.1 Feature Importance 

A final part of the third objective of this paper was to identify which features were most 

impactful in the model’s ability to predict. The reason for this analysis is two-fold. First, 

retrospectively, it is valuable for health care administrators to identify which vitals are most 

impactful in the determination of early hospital mortality so that those vitals may be taken more 

often in a clinical setting in order to improve the accuracy of prediction. Additionally, the added 

weight to these vitals may also improve the accuracy in collection of the data as identified in 
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section 3.1 specifically regarding the discussions about the validity of respiratory rate. Secondly, 

if this model were to be implemented in a hospital setting, an instantaneous metric of the vital 

that is most contributing to a prediction of mortality may assist the medical professional in 

prioritizing care in an emergency situation. For example, if a patient were brought in with 

moderately low temperature and a plummeting blood pressure, the model may indicate mortality 

with a feature importance attributing the blood pressure as the more likely cause as opposed to 

the temperature. The medical staff may then focus on administering pressors to bring up the 

blood pressure prior to worrying about the temperature or other extraneous signs or symptoms. 

This process mimics the critical analysis used by emergency medical services and would 

supplement a physician’s decision-making skills.  

For the most optimized model, the below plot, Figure 3.8, visualizes the impact of each 

of the top 5 most impactful features by gain or the amount of accuracy added that can be 

attributed to the given feature. Clinically, this plot is relevant because the most important 

features are descriptors of airway management and Glasgow Coma Scale, both of which are 

commonly used in most if not all emergency cases. The minimum of oxygen saturation and 

fraction of inspired oxygen are valued highly because they evaluate the patient’s ability to breath 

on their own, a valuable indicator in the ICU. The GCS total is also highly impactful becase it 

indicates the patient’s level of consciousness and potential for brain injury. Closer monitoring of 

these vitals in particular could provide valuable insight into a patient’s prognosis. 
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Figure 3.8: Feature Importance for 5 Highest Features 
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4. CONCLUSION 

The purpose of the paper was to identify a statistical prognosis early into a patient’s stay 

in the hospital in order to provide more efficient, prioritized care. The three objectives as a result 

were: 

1. Determine the accuracy of a static model using a single set of vitals. 

2. Compare the accuracy of models that use vitals taken across multiple time frames to 

demonstrate the effect of compounding data. 

3. Interpret feature importance and benefit of time-variance in an optimized final model 

The static model was created with a single set of features based upon the most important vitals 

taken during nursing assessments. With this static data the model failed to have high levels of 

precision likely because of the imbalance in the little data that it had and its inconsistent nature.  

The second objective was accomplished by comparing twelve models each with one to 

twelve hours of vitals data. Across the twelve-period, the AUC-PR and AUC-ROC both 

increased consistently resulting in a more effective prediction with the cumulative data of all 

twelve hours. This mortality prediction would be most beneficial to medical professionals who 

could then make accommodations and adjust their treatment plan as more data becomes available 

later in the patient’s stay. 

The optimal model was thus the twelve-hour model which proved to best minimize the 

incorrect predictions, especially false negatives which are most clinically dangerous. From this 

model, feature importance was also extracted which identified that airway management and GCS 

are likely the most statistically significant vitals in a hospital admission. In addition to the direct 
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benefits of this model, medical professionals could also monitor these vitals more closely 

because of their relevance in indicating the potential for loss of life.  

Although this research is a strong step towards improving the field of early hospital 

mortality prediction, there is still much work to be done from this point. First is the way that the 

imbalance in mortality prediction data is handled. In this study, the imbalance was dealt with by 

weighing the effects of positively labeled (deceased) hospital stays greater than the more 

frequent negatively labeled (survived) hospital stays. The alternative is to improve the data in the 

pre-processing phase with an algorithm like Synthetic Minority Over-sampling Technique 

(SMOTE). In its developmental paper, Chawla, Bowyer, Hall and Kegelmeyer detailed this 

technique’s ability to improve the AUC-ROC by creating a synthetic minority class from the 

oversampled minority data [14]. Other options for improvements moving forward are in the 

model, its tuning, and the time-series aspect of the data. XGBoost has been a very robust model 

that has won several competitions and awards recently, however it does not support time-series 

data and switching to models like long short-term memory networks that are more suited to such 

a task. However, if maintained, the XGBoost model could also be tuned differently with 

Bayesian Optimization as opposed to the GridSearchCV library to further optimize the 

parameters. Finally, this study identified the trend from the first hour in the ICU to the twelfth. 

Across that period, there was no consistent periods of stagnancy or decrease in the model’s 

ability to predict. A valuable future study could look across the first twenty-four hours of ICU 

data to identify the extent of improvement and when waiting for more data becomes negligible or 

even detrimental. 
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