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ABSTRACT

We consider the estimation of the marginal likelihood in Bayesian statistics, a essential and

important task known to be computationally expensive when the dimension of the parameter space

is large. We propose a general algorithm with numerous extensions that can be widely applied to a

variety of problem settings and excels particularly when dealing with near log-concave posteriors.

Our method hinges on a novel idea that uses MCMC samples to partition the parameter space

and forms local approximations over these partition sets as a means of estimating the marginal

likelihood. In this dissertation, we provide both the motivation and the groundwork for developing

what we call the Hybrid estimator. Our numerical experiments show the versatility and accuracy of

the proposed estimator, even as the parameter space becomes increasingly high-dimensional and

complicated.
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1. INTRODUCTION AND LITERATURE REVIEW

1.1 Introduction

With both the rise in model complexity and the ease with which one can fit a multitude of

different models, the challenge of choosing the optimal model among a group of candidate models

that could also have generated the data becomes a crucial task. Due to how common the model

selection problem is in statistical inference, numerous criteria have been developed for quantifying

model uncertainty. Adopting the Bayesian paradigm provides a natural way of evaluating com-

peting models that essentially reduces to computing the marginal likelihood. The vital role this

quantity plays is also accompanied by a high degree of difficulty in its computation. Since the

marginal likelihood is essentially an integral over a parameter space, this computational burden is

compounded when the underlying parameter space is high-dimensional or complicated.

Another important inferential task in Bayesian statistics that inherently relies on the marginal

likelihood is Bayesian model averaging. Often, we may have competing models whose posterior

probabilities deem them to be equally good models. Choosing a single model over another could

result in a loss of valuable information. One compromise we can make is to take into account

each model’s uncertainty and leverage a model averaging scheme that forms predictions using

a weighted average of predictions under their corresponding models, where the weights are the

posterior probabilities of the respective models.

Considering the prevalence and usefulness of model selection and model averaging, it is es-

pecially necessary to develop and employ methodologies that facilitate efficient computation and

scalable inference. Therefore, one of the primary goals of this dissertation is to provide alternative

solutions to the marginal likelihood estimation problem that address some of the computational

shortcomings of existing methods. In doing so, we hope that our general framework can addition-

ally serve as the foundation for further advancements in Bayesian computation problems. In the

following section, we first review and provide some background on marginal likelihood estimation
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before stating the research questions and contributions.

1.1.1 Review of the marginal likelihood

The marginal likelihood, also called the model evidence, provides a way to quantify the prob-

ability of observing the data given a particular model. As such, accurate and efficient computation

of the marginal likelihood is of paramount importance for reliable inference. Suppose we ob-

serve data y, for which we are considering competing models,M1, . . . ,Ms, with corresponding

parameters, u1, . . . , us coming from a parameter space U . Provided that the likelihood function,

p (y | ur,Mr), indexed by ur, and the prior distribution for θr are both specified, then the posterior

distribution of ur conditional on modelMr is

p (ur | y,Mr) ∝ p (y | ur,Mr) p (ur | Mr) . (1.1)

This proportionality, given from Bayes’ theorem, is the foundation for many Bayesian computation

algorithms and is often sufficient for many MCMC methods, such as the Metropolis-Hastings al-

gorithm. In addition, while there are many well-established ways to obtain samples from posterior

distributions that do not require the normalizing constant, there are instances where the accurate

calculation of the normalizing constant is crucial. In our work, we are interested in the marginal

likelihood ofMr, which is nothing but the normalizing constant of the posterior distribution given

in Eq. (1.1). This is defined as the following integral over the parameter space U ,

p (y | Mr) =

∫
U
p (y | ur,Mr) p (ur | Mr) dur. (1.2)

To extend the discussion on model comparison from the previous section, we highlight that the

posterior odds ratio and Bayes factor (Jeffreys, 1939) are pivotal quantities that provide an intuitive

way to evaluate and choose between competing models. Namely, for two competing models,
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M1,M2, the posterior odds ratio is defined as

p (M1 | y)

p (M2 | y)
=
p (y | M1)

p (y | M2)

p (M1)

p (M2)
. (1.3)

This can be interpreted as the product of the Bayes factor and the prior odds. In particular, the

Bayes factor for models M1 and M2 is given as the following ratio of the respective marginal

likelihoods,

BF1,2 =
p (y | M1)

p (y | M2)
, (1.4)

which offers the interpretation of favoringM1 when BF1,2 is large, and favoringM2 when BF1,2

is small. Therefore, in order to perform this comparison, we require a method for computing the

marginal likelihood.

1.1.2 Research question and contribution

Barring specific conjugate settings, the marginal likelihood is analytically intractable in prac-

tice, so for most statistical models, accurately calculating the marginal likelihood poses a computa-

tionally challenging problem. Since numerical integration ceases to be an efficient solution beyond

moderate dimensions, Markov Chain Monte Carlo (MCMC) algorithms offer a viable solution to

deal with large-scale, complicated inference problems. In much of the existing literature devoted

to estimating this quantity, the recurring idea is to use MCMC samples from the posterior distri-

bution given in Eq. (1.1) to form an asymptotically unbiased estimator of the model evidence in

Eq. (1.2). With an abundance of literature devoted to modifying and extending MCMC algorithms

in order to meet the needs of the ever-expanding array of statistical models, there is certainly no

shortage of ways to handle complex probability distributions and models that are encumbered by

a large number of parameters.

Common algorithms for approximating the marginal likelihood include Laplace’s method (Tier-

ney and Kadane, 1986), the Adjusted Harmonic Mean estimator (Newton and Raftery, 1994; Lenk,

2009), Corrected Arithmetic Mean estimator (Pajor, 2017), Annealed Importance Sampling (Neal,

2001), Chib’s method (Chib, 1995; Chib and Jeliazkov, 2001), (Warp) Bridge Sampling (Meng and
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Wong, 1996; Meng and Schilling, 2002), and Nested Sampling (Skilling, 2006). More recently,

there have been developments in approximate inference techniques that make way for new meth-

ods for estimating the marginal likelihood (Rezende and Mohamed, 2015; Salimans et al., 2015;

Salimans and Knowles, 2013). We review some of these methods in Chapter 2. Another resource

for a thorough comparison of existing marginal likelihood estimation methods can be found in the

review by Friel and Wyse (2012).

While these aforementioned MCMC algorithms are typically easy to set up and provide useful

theoretical guarantees, scenarios where the target distribution is highly nontrivial raise issues about

both convergence time and accuracy. In addition to the time considerations, the accuracy of the

methods as we move to higher dimensions is also of concern. Forming a Monte Carlo approxi-

mation to the marginal likelihood in addition to running an MCMC algorithm to obtain posterior

samples can quickly accrue error as the dimension of the parameter space increases. Consequently,

these algorithms, which may theoretically yield unbiased estimates, may require an exceedingly

large number of high-quality samples from the target distribution in practice in order to actually

form accurate estimates.

As a partial remedy for some of these concerns, there is extensive literature devoted to ad-

dressing the additional issues that arise when using these algorithms, such as different annealing

schemes (Beskos et al., 2014), optimal temperature ladder in thermodynamic integration (Oates

et al., 2016), and the effects of grid size in path sampling (Dutta and Ghosh, 2013). However,

these model settings tend to be problem-specific, further limiting the practicality of some of these

approximation schemes. Paired with the increasing complexity and dimensions of modern sta-

tistical problems, all of these problems together illustrate the need for more general and scalable

methodologies that are less reliant on the MCMC samples themselves.

In contrast to these methods, we propose a novel approach which can be thought of as a hybrid

between probabilistic and deterministic procedures. A high level view of our method can be broken

down into two major steps:

1. The MCMC samples are used to learn a high-probability partition of the parameter space U .
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2. With this partition, we then make a deterministic approximation to the log posterior defined

on each of the partition sets.

In essence, we seek to exploit the assumption that the posterior distribution will be far from a uni-

form looking distribution and instead exhibit concentration around some parameter. Then, learning

a partition of the parameter space from the MCMC samples that can identify areas of high poste-

rior mass by carving up these regions more finely yields a benefit that is two-fold. First, we are

better equipped to make more precise and refined approximations to the log posterior over each

of these regions. More importantly, this partitioning routine redirects our attention away from

regions that have little to no contribution to the posterior distribution such that these less finely

partitioned regions of the parameter space require fewer associated log-posterior estimates, which

saves a tremendous amount of time and computation. Given the use of a probabilistic procedure in

step 1, coupled with a deterministic calculation in step 2, we refer to the resulting approximation

to the marginal likelihood as the Hybrid estimator.

Moreover, our contribution provides a way to bypass the need for the large number of posterior

samples that is typically required for accurate estimation of the marginal likelihood. Recall that

the typical guarantees for MCMC-based estimates of the marginal likelihood are asymptotic in

the number of posterior samples. In many applications, however, evaluating the likelihood can be

extremely time consuming, so collecting lots of posterior samples in such cases is prohibitively

expensive in both time and computation. Our approach instead seeks to use the MCMC samples

holistically to learn a skeleton of the posterior distribution in the form of the aforementioned high-

probability partition, a process that we show empirically to be more resistant to issues involving the

number and quality of the available MCMC samples. Ultimately, these steps result in a framework

for computing the model evidence in high dimensional problems that is both scalable and robust.

After establishing the general framework of novel marginal likelihood estimation approach

elicited above, we also discuss extensions and modifications to the Hybrid estimator to demonstrate

the ease with which it can be adapted to multiple problem settings. By incorporating recent ad-

vancements in high-dimensional approximate integration techniques and making mild assumptions
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about the shape of the target distribution, we further showcase the Hybrid estimator’s widespread

applicability and its ability to compete with state of the art algorithms in problems such as Gaussian

graphical models and factor models.

Finally, we note that while there exist numerous algorithms that address the marginal likeli-

hood estimation problem, very few of them have publicly available implementations that are both

efficient and easy to use. Indeed, there is a general scarcity of packages that can be easily utilized

for Bayesian computation. Those that are available tend to require considerable prior knowledge

about the algorithm details and are not user-friendly. With this in mind, we provide implementa-

tions of our methodology in the form of two R packages, both of which are publicly available on

Github. These packages prioritize practical convenience so that our proposed methods can be more

seamlessly integrated into to a variety of problem settings. Details regarding installation, general

usage, and working examples can be found in Sections B.1 and B.2.

1.1.3 Roadmap

In Chapter 2, we review some of the marginal likelihood estimation literature in detail and

briefly discuss some of the implementation details for competing algorithms to highlight the dif-

ferences between our proposed method and other existing methods. In Chapter 3, we present a

novel algorithm for marginal likelihood estimation that addresses some of the shortcomings of

MCMC-based approximation methods. In Chapter 4, we focus on the marginal likelihood calcu-

lation for probability densities that observe a specific shape and extend the algorithm developed

in the previous chapter. Here, we also demonstrate the modified algorithm on a diverse array of

problems, with a heavy focus on high-dimensional Gaussian graphical models. In Chapter 5, we

conclude our work and elaborate on future directions.
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2. A REVIEW OF MARGINAL LIKELIHOOD ESTIMATION METHODS

2.1 Introduction

In this chapter, we review some of the popular methods for marginal likelihood estimation and

discuss relevant implementation details. The two main goals of this concise literature review is

to provide context for some of methodological decisions in our proposed solution, as well as to

highlight any shortcomings in these existing methods that we attempt to address and improve upon

in the methodology presented in this dissertation.

2.2 Laplace’s method

Laplace’s method, used in Tierney and Kadane (1986) to compute posterior quantities, assumes

that the posterior distribution is unimodal and highly peaked around its mode so that a normal

distribution to approximate the posterior distribution. With a large enough sample size and a

suitably simple posterior distribution, this assumption is not unreasonable and has been shown to

produce accurate estimates in practice. However, in many problem settings that we investigate in

this dissertation, we will see that this assumption is too restrictive and that most target distributions

are highly non-Gaussian. To construct this estimator, first define the log posterior to be ` (u) =

log (p (y | u) p (u)). Then, we can use a Taylor expansion about the posterior mode u? to obtain a

quadratic approximation of ` (u),

` (u) ≈ ` (u?) +∇` (u?)′ (u− u?) +
1

2
(u− u?)′∇2` (u?) (u− u?) .

Since the marginal likelihood is simply p (y) =
∫
e`(u)du, we can exponentiate the quadratic

approximation above and integrate the resulting normal density to obtain the following final ap-

proximation,

p (y) ≈ (2π)d |Σ̂|1/2p (y | u?) p (u?) ,
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where Σ̂ = −∇2` (u?). The upshot of Laplace’s method is that it requires fairly little in order to

obtain an approximation, with the main requirement being the ability to compute the gradient vec-

tor and Hessian matrix of ` evaluated at the posterior mode. The posterior mode itself can easily be

found through an iterative maximization routine such a Newton’s method, which contributes min-

imally to the computational overhead since we already assume the ability to evaluate the gradient

and Hessian. While the assumptions of the Laplace estimator are often too restrictive to directly

apply to most problem settings, we note that these ideas can be localized to regions of the posterior

and potentially adapted to higher-dimensional problems, as we will see in Chapter 4.

2.3 Harmonic mean estimator

Another frequently referenced estimator is the harmonic mean estimator from Newton and

Raftery (1994). Using the following identity,

1 =

∫
p (u) du = p (y)

∫
1

p (y | u)
p (u | y) du,

we can take the following expectation with respect to the posterior distribution u | y,

1

p (y)
=

∫
1

p (y | u)
p (u | y) du = Ep(u|y)

[
1

p (y | u)

]
.

Then, with u1, . . . , uJ drawn from the target (posterior) distribution γ (u) = p (u | y), we can

approximate the quantity above using the following importance sampling estimator

p (y) ≈

[
1

J

J∑
i=1

1

p (y | uj)

]−1

,

which is denoted as the harmonic mean estimator of the marginal likelihood. While it is straightfor-

ward to compute this estimator because it only requires likelihood evaluations, it is known to have

many problems, such as infinite variance and a lack of sensitivity to the prior choice. Moreover,

Raftery et al. (2007) note that the harmonic mean estimator overestimates the marginal likelihood,

which is consistent with what we repeatedly observe in our numerical experiments and also char-
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acterized as simulation pseudo-bias (Lenk, 2009).

2.4 Arithmetic mean estimator

A similar method that also makes use of importance sampling is the arithmetic mean estimator.

The idea is to take draws from the prior uj ∼ p (u) and form the estimator

p (y) ≈ 1

J

J∑
i=1

p (y | u)→
∫
p (y | u) p (u) du. (2.1)

While this is unbiased, the estimator is extremely ineffective when the posterior distribution is

more concentrated relative to the prior. This would render most of the points drawn useless because

their likelihood contributions would be close to zero, thus requiring a prohibitively large number

of prior draws in order to form an accurate estimate. A modification to this estimator, called

the corrected arithmetic mean estimator (Pajor, 2017), seeks to target regions of the parameter

space that have higher likelihood. In particular, for A ⊆ U and P (A) , P (A | y) < ∞, we have

P (A | y) =
∫
A
p (u | y) du. Then, we have the following expression for the marginal likelihood

p (y) =
1

P (A | y)

∫
U
p (y | u)1A (u) p (u) du =

1

P (A | y)
Ep(u)

[
p (y | u)1A

]
where the expectation is taken with respect to the prior distribution. We can then select an impor-

tance function and derive the corrected arithmetic mean estimator as follows,

p (y) ≈ 1

P̂ (A | y)

1

J

J∑
j=1

p (y | uj) p (uj)1A(uj)

s (uj)

where uj is drawn from the importance sampling distribution. Clearly, in order for this to be

effective, A must cover a region for which P (A | y) is sufficiently large in order to achieve large

values of p (y | u). In practice, P̂ (A | y) is estimated through posterior samples, and the samples

from the importance function should be easily obtainable. In many of the simulation studies that

follow, we include the corrected arithmetic mean estimator in the results because of its accuracy

when the problem setting is not too complicated.
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2.5 Chib’s method

Another popular method for estimating the marginal likelihood is Chibs’s method (Chib, 1995),

which makes use of the following identity

p (y) =
p (y | u?) p (u?)

p (u? | y)
,

where u? ∈ U . Taking the logarithm, we have

log p (y) = log p (y | u?) + log p (u?)− log p (u? | y) .

By assumption (and in most setups), the prior and likelihood, log p (u?) and log p (y | u?), can be

directly evaluated. The last term log p (u? | y) presents a more challenging quantity which can be

approximated using the output of a Gibbs sampler. In particular, for u = (u1, . . . , ud)
′ ∈ Rd, we

have the following factorization p (u | y) = p (u1 | u2:d, y) · · · p (u2 | u3:d, y) · · · p (ud | y), where

each factor in the product can be estimated using its corresponding Gibbs sampler output. The

downside of this method is that it requires the full conditional distributions for the parameters, in

addition to the MCMC samples, which can be cumbersome as the dimension of the parameter space

grows. There exists an extension of this method from Chib and Jeliazkov (2001) that increases the

flexibility of the algorithm to allow for Metropolis-Hastings output, rather than a Gibbs sampler,

but in the following analyses we provide only limited investigation into this method.

2.6 Annealed importance sampling

Annealed importance sampling (AIS) (Neal, 2001) leverages ideas from tempering schemes

and importance sampling to obtain an estimate for the marginal likelihood. We first consider

a general setting where importance sampling can be used to estimate the ratio of normalizing
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constants, Zf ,Zg of densities f and g, respectively,

Zf
Zg

=
1

Zg

∫
f (u) du =

∫
f (u)

g (u)

g (u)

Zg
du = Eg [w (u)] ≈ 1

J

J∑
i=1

w (uj)

Here, the importance weights are the ratio of the unnormalized densities, w (uj) = f (uj) /g (uj).

The AIS method proposes the use of a tempering scheme {t1, . . . , tm}, where 0 = t1 < t2 < · · · <

tm = 1, and pj (u | y) ∝ p (u)1−tj p (u | y)tj . In addition, there must also be transition kernels, Tj ,

from pj to pj+1, with invariant pj , for j = 1, . . . ,m − 1. Similarly, define the reverse transition

kernel to be T̃j . From this setup, we see that p1 is the prior distribution and pm is the posterior

distribution. Defining f and g to be

f (u1, . . . , um) = pm (um) T̃m−1 (um, um−1)× · · · × T̃1 (u2, u1) ,

g (u1, . . . , um) = p1 (u1)T1 (u1, u2)× · · · × Tm−1 (um−1, um) ,

we have the interpretation that f transitions from the (target) posterior distribution pm to the prior

distribution p1, whereas g transitions from the prior distribution to posterior distribution. Even-

tually, we can show that by using these definitions for f and g, the marginal likelihood can be

estimated by taking the following average of the importance weights,

p (y) ≈ 1

J

J∑
i=1

w (uj) .

While this method has seen success in cases where the posterior distribution is complicated and in

modern applications like general additive models and variational autoencoders (Wu et al., 2017),

the AIS method has more model and hyperparameter settings that require careful tuning, which

ultimately contribute to the time complexity of the overall algorithm. The choice of the transition

kernel and the choice of the temperature ladder from {t1, . . . , tm} are both also important. With

this multitude of considerations in mind, the task of adapting and modifying this algorithm to

different problems becomes slightly cumbersome.
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2.7 Nested Sampling

As seen in the case of the arithmetic mean estimator, we can view the marginal likelihood

written in Eq. (2.1) as an expectation of the likelihood taken with respect to the prior distribution.

Skilling (2006) proposed the nested sampling method which can be derived by first writing the

marginal likelihood as

p (y) =

∫
p (y | u) p (u) du =

∫
p (y | u) dX,

where dX = p (u) du. Define the function

X (λ) =

∫
p(y|u)>λ

p (u) du,

which is monotonic decreasing from 1 to 0, so the inverse function exists. It is then easier to

integrate the inverse of X (λ), rather than to integrate over the parameter space, which may be

high-dimensional. If we denote the inverse function as q (X) so that q (X (λ)) = λ, then we have

p (y) =

∫ 1

0

q (X) dX ≈
I∑
i=1

(Xi −Xi+1) p (y | uj) .

The final approximation is the result of a numerical approximation to the one-dimensional integral,

where 0 < XI < · · · < X2 < X1 < 1. Note that q is typically intractable and must be approxi-

mated in most cases. Despite the simplified form of the integral, Nested sampling has substantial

computational costs associated with obtaining prior samples that satisfy p (y | u) > λ, for a given

value of λ. This constrained sampling procedure often relies on MCMC sampling, which can

further exacerbate the time complexity. Extensions such as nested importance sampling (Chopin

and Robert, 2010) seek to remedy this by introducing instrumental prior and likelihood functions,

{p̃u, L̃} that make generating samples under the constraint L̃ (u) > λ easier than under the original

prior and likelihood.
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2.8 Bridge sampling estimator

The final estimator that we review is the bridge sampling estimator, which we discuss in greater

detail because of the practicality of the algorithm, both in how general it is and how easily it can

be integrated into an existing problem. These are qualities that our proposed marginal likelihood

estimation scheme strives toward. As is commonly the case in Bayesian inference, we consider

densities that are known up to a normalizing constant, pi (u) = qi (u) /ci, u ∈ Ui ⊂ Rd, i = 1, 2.

In the original bridge sampling algorithm from Meng and Wong (1996), the quantity of interest is

the ratio of these normalizing constants, c1/c2. They make use of the following identity to form an

importance sampling ratio,

c1

c2

=
Eq2 [q1 (u)h (u)]

Eq1 [q2 (u)h (u)]
.

Here h is the bridge function defined on the common support of p1 and p2, U1 ∩ U2, that satisfies

0 <

∣∣∣∣ ∫
U1∩ U2

h (u) p1 (u) p2 (u) du

∣∣∣∣ <∞.
While the target quantity in the seminal paper is different, a small modification allows us to use

the same algorithm to approximate the normalizing constant of a single density instead. We first

note the following identity:

p (y) =

∫
p (y | u) p (u)h (u) g (u) du∫
p (y | u) p (u)h (u) g (u) du

· p (y)

=

∫
p (y | u) p (u)h (u) g (u) du∫ p(y|u)p(u)

p(y)
h (u) g (u) du

=

∫
p (y | u) p (u)h (u) g (u) du∫
p (u | y)h (u) g (u) du

=
Eg(u) [h (u) p (y | u) p (u)]

Ep(u|y) [h (u) g (u)]
.
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Note that we are working with two unnormalized distributions, so we can draw equivalence to

the setup in Meng and Wong (1996) by taking q1(u) ≡ p (y | u) and q2 (u) ≡ g (u), which are

the posterior and proposal distributions, respectively. Then, we can form the following bridge

sampling estimator for the marginal likelihood:

p (y) =
Eg(u) [h (u) p (y | u) p (u)]

Ep(u|y) [h (u) g (u)]
≈

1

n2

n2∑
j=1

h (ũj) p (y | ũj) p (ũj)

1

n1

n1∑
i=1

h (u?i ) g (u?i )

.

Here, h denotes the bridge function and g denotes the proposal function. In addition, the collec-

tions {u?1, . . . , u?n1
} and {ũ1, . . . , ũ

?
n2
} are the n1 and n2 samples from the posterior distribution

p (u | y) and the proposal distribution g (u), respectively. Since the posterior distribution is known

up to a normalizing constant, the product p (y | u) p (u) can be evaluated. Overstall and Forster

(2010) recommend a normal distribution with its first two moments matching those of the poste-

rior distribution for the proposal distribution g so that it can be easily sampled from and evaluated.

The optimal bridge function given in Meng and Wong (1996) is

h (u) = C (s1p (y | u) p (u) + s2p (y) g (u))−1

where s1 = n1/n, s2 = n2/n, where n = n1 + n2. Since the bridge function is itself a func-

tion of p (y), the bridge sampling algorithm applies an iterative updating scheme that runs until

convergence.

p̂ (y)(t+1) =

1

n2

n2∑
i=1

p (y | ũj) p (ũj)

s1p (y | ũj) p (ũj) + s2p̂ (y)(t) g (ũj)

1

n1

n1∑
i=1

g (u?i )

s1p (y | u) p (u?i ) + s2p̂ (y)(t) g (u?i )

Accuracy of the estimate is dependent on the number of posterior samples and on the overlap

between the posterior and proposal distribution. The Bridge sampling algorithm essentially max-
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imizes the overlap between these two distributions during the iterative updates of the marginal

likelihood. More details for this algorithm are available in Gronau et al. (2017).

As elicited above, we see that by using the pre-defined proposal distribution from Overstall

and Forster (2010) and using the optimal bridge function, the bridge sampling algorithm sig-

nificantly reduces the burden of the practitioner. In fact, other than the posterior samples, only

the definition of the likelihood function and prior are necessary. As stated by the authors of the

bridgesampling package, the implementation is intended to be a black box algorithm for com-

puting the marginal likelihood. Given its success in many different statistical models and its ease

of use, we use the bridge sampling estimator as the primary competitor in the following examples.
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3. A HYBRID APPROXIMATION TO THE MARGINAL LIKELIHOOD*

3.1 Introduction

Before presenting the Hybrid estimator, we first introduce some preliminary notation that al-

lows our problem setup to be more easily generalized. Suppose γ is a probability density with

respect to the Lebesgue measure on Rd given by

γ (u) =
e−Φ(u) π (u)

Z
, u ∈ U ⊆ Rd.

In Bayesian inference, Φ (·) is typically taken to be a negative log-likelihood function and π (·)

is a prior distribution on u, thus making γ (·) the corresponding posterior distribution. However,

this interpretation is not necessary for our approach. The marginal likelihood is defined as the

normalizing constant of γ, which we can write as the following integral,

Z =

∫
U
e−Ψ(u) du. (3.1)

Here, Ψ (u) = Φ (u)+(− log π (u)) is the negative log-posterior. Since the objective function Ψ is

typically complicated, and the space over which we are integrating tends to be high-dimensional,

the ensuing calculations end up being computationally expensive. As stated before, while we can

evaluate Ψ, we are typically unable to compute the integral in Eq. (3.1). We can address this

problem using two sub-routines that both work to reduce the computational burden of the overall

problem. First, we find a partition of the parameter space that gives more attention to (i.e, more

finely partitions) regions of the posterior distribution that have high posterior mass. Next, we

propose a suitable approximation for Ψ that allows for easier evaluation of the integral over each

of the partition sets learned from the previous step. These steps used in conjunction with each other

*Part of this chapter is reprinted with permission from “A hybrid approximation to the marginal likelihood” by Eric
Chuu, Debdeep Pati, and Anirban Bhattacharya, 2021. Proceedings of the 24th International Conference on Artificial
Intelligence and Statistics (AISTATS) 2021, 130:3214-3222, Copyright 2021 by the authors.
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give us a way to approximate Z by computing a simplified version of the integral over partition

sets of the parameter space that have ideally taken into account the assumed non-uniform nature

of the posterior distribution. Contrast this methodology with traditional quadrature methods which

may needlessly target regions of the parameter space that have little to no posterior concentration,

resulting in unnecessary function evaluations that grow more expensive as the dimension of the

parameter space increases.

3.2 Deterministic approximation

We first elaborate on our strategy to replace Ψ with an approximation Ψ̂. Our starting point is

the following observation: fix q ∈ (0, 1) small and let A ⊆ U be a compact subset with γ (A) ≥

(1− q). Rearranging this equation, one obtains

(1− q) ≤ γ (A) = Z−1

∫
A

e−Ψ(u)du ≤ 1,

leading to the two-sided bound

∫
A

e−Ψ(u) du ≤ Z ≤ 1

1− q

∫
A

e−Ψ(u) du. (3.2)

We then make the following approximation

logZ ≈ FA : = log

[ ∫
A

e−Ψ(u) du

]
. (3.3)

From Eq. (3.2), it is immediate that

| logZ − FA| ≤ log

(
1

1− q

)
≈ q,

for q small. Henceforth, we aim to estimate the quantity FA. This initial approximation step can be

thought of as compactifying the parameter space to reduce its entropy. Even if U itself is compact,

γ can be highly concentrated in a region A with vol (A)� vol (U), particularly when the posterior
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exhibits concentration (Ghosal and Van Der Vaart, 2007), so it is judicious to eliminate such low

posterior probability regions.

Having compactified the integral domain, our general plan is to replace Ψ with a suitable ap-

proximation Ψ̂ on the compact set A. In this chapter, we specifically focus on a piecewise constant

approximation of the form

Ψ̂ (u) =
K∑
k=1

c?k · 1Ak (u) , (3.4)

where A = {A1, . . . , AK} is a partition of A, i.e., A =
⋃K
k=1Ak and Ak ∩ Ak′ = ∅ for all k 6= k′,

and c?k is a representative or candidate value of Ψ within the partition set Ak. To simplify the

ensuing calculations, we further restrict ourselves to dyadic partitions in the following discourse

so that each of the partition sets is rectangular, Ak =
∏d

l=1[a
(l)
k , b

(l)
k ]. Since the representative value

c?k is constant in u and Ak can be broken down into d one-dimensional rectangles, we can write the

following approximation

∫
A

e−Ψ(u) du ≈
∫
A

e−Ψ̂(u) du =
K∑
k=1

e−c
?
k · µ (Ak) , (3.5)

which conveniently simplifies to a summation over each of the partition sets. Here, µ (B) =∫
B

1 du denotes the d-dimensional volume of a set B. We eventually define

F̂A : = log
[ ∫

A

e−Ψ̂(u) du
]

= log

[ K∑
k=1

e−c
?
k · µ (Ak)

]
(3.6)

to be our estimator of FA, and hence of logZ . The choice of the piecewise constant approximation

is motivated both by its approximation capabilities (Binev et al., 2005) as well as the analytic

tractability of the approximating integral in Eq. (3.6). We remark here that the integral remains

tractable if a piecewise linear approximation is employed, suggesting a natural generalization of

our estimator.

Since FA is a non-linear functional of Ψ, it is reasonable to question the validity of the ap-
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proximation in Eq. (3.5), or equivalently, the approximation of FA with F̂A — even if Ψ̂ is a good

approximation to Ψ, it is not immediately clear if the same should be true of F̂A. Using an inter-

polation trick, we show below that the approximation error |F̂A − FA| can be bounded in terms of

a specific distance between Ψ̂ and Ψ. Define

F (t) = log

[ ∫
A

e−
(
tΨ(u)+(1−t)Ψ̂(u)

)
du

]
, t ∈ [0, 1].

Clearly, F (0) = F̂A and F (1) = FA, so that

FA − F̂A = F (1)− F (0) =

∫ 1

0

F ′ (t) dt.

Computing F ′, we get

F ′ (t) =
−
∫
A

(
Ψ (u)− Ψ̂ (u)

)
e−
(
tΨ(u)+(1−t)Ψ̂(u)

)
du∫

A
e−
(
tΨ(u)+(1−t)Ψ̂(u)

)
du

= −EU∼πt
(
Ψ (U)− Ψ̂ (U)

)
,

where πt is the probability density on A given by

πt (u) ∝ e−
(
tΨ(u)+(1−t)Ψ̂(u)

)
, u ∈ A.

Using the integral representation, we can now bound the approximation error,

|FA − F̂A| ≤ sup
t∈[0,1]

∣∣EU∼πt(Ψ (U)− Ψ̂ (U)
)∣∣.

Interestingly, note that π1 ∝ γ1A is our target density restricted to A, and π0 (u) ∝ e−Ψ̂(u)
1A (u)

has normalizing constant F̂A. The collection of densities {πt} can therefore be obtained by con-

tinuously interpolating between π0 and π1. Piecing together the various approximations, we arrive

at the following result.
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Proposition 1. For any compact subset A ⊆ U , we have

|F̂A − logZ| ≤ sup
t∈[0,1]

∣∣EU∼πt(Ψ (U)− Ψ̂ (U)
)∣∣+ log

(
1

ν (A)

)
.

Here, ν denotes the Lebesgue measure on Rd. The first term in the right hand side above can be

further bounded by ‖Ψ− Ψ̂‖∞ : = supu∈A |Ψ (u)− Ψ̂ (u) |. This conclusion is not restricted to the

piecewise constant approximation and can be used for other approximations, such as the piecewise

linear one.

3.3 High probability partitioning of the parameter space

Next, we address the task of obtaining a suitable partition of the parameter space. Clearly, tradi-

tional quadrature methods would render this method ineffective, requiring the number of function

evaluations to grow exponentially with d. Furthermore, with a posterior distribution that exhibits

any degree of concentration, there will indubitably be regions of U where the posterior probability

is close to 0. From a computationally mindful standpoint, it makes sense to then focus on more

finely partitioned regions of U that have high posterior probability. With this in mind, we turn to

using samples from γ to obtain such a partition. Specifically, let u1, . . . , uJ be samples from γ, e.g.,

the output of an MCMC procedure. We treat {(uj,Ψ (uj))}Jj=1 as covariate-response pairs and feed

them to a tree-based model such as CART (Breiman, 1984), implemented in the R package rpart

(Therneau and Atkinson, 2019), to obtain a dyadic partition. While the MCMC samples are typi-

cally used to construct Monte Carlo averages, we instead use them to construct a high probability

partition of the parameter space. We assume the capability to evaluate Ψ, which is a very mild

assumption since obtaining samples from γ using even a basic sampler like Metropolis–Hastings

requires evaluating Ψ. Finally, the above procedure implicitly suggests the compactification A to

be a bounding box using the range of posterior samples,

A =
⊗

1≤l≤d

[
min

1≤j≤J

{
u

(l)
j

}
, max

1≤j≤J

{
u

(l)
j

}]
.
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(a) Truncated Normal density: γ (u) ∝ N2

(
0, σ2λ−1I2

)
· 1[0,∞)d

(b) A density of the form: γ (u) ∝ exp
(
−nu2

1u
4
2

)
π (u), where u ∈ [0, 1]2

Figure 3.1: Top: bivariate normal distribution truncated to the first orthant. Bottom: a density of the
form γ (u) ∝ exp (−nu2

1u
4
2) π (u), where u ∈ [0, 1]2 and π (·) is the uniform measure on [0, 1]2.

For this simulation, n = 1000. Both plots show 5000 MCMC samples drawn from γ, overlayed
with the resulting partition extracted from a CART model fitted to the covariate-response pairs
(u,Ψ (u)). The decision tree algorithm finely partitions high-probability regions of the parameter
space. Adapted with permission from “A hybrid approximation to the marginal likelihood” by
Eric Chuu, Debdeep Pati, and Anirban Bhattacharya, 2021. Proceedings of the 24th International
Conference on Artificial Intelligence and Statistics (AISTATS) 2021, 130:3214-3222, Copyright
2021 by the authors.
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This compactification procedure allows us to simplify ensuing calculations by restricting our focus

to regions of the parameter space that exhibit some degree of posterior concentration.

While our initial development of this methodology relied heavily on the rpart package for

both the tree building algorithm and the partition set corresponding to the fitted decision tree, we

eventually created an independent tree building package that more directly facilitates the overall

needs of the main marginal likelihood estimation algorithm. Specifically, the rpart package does

not conveniently return the partition sets as a data structure that we can use, leading to substan-

tial post-processing of the fitted tree object before we could proceed with the rest of the Hybrid

algorithm. We highlight a few of the features of our tree building algorithm and package. Most

importantly, our implementation directly produces the partition of the bounding box A using the

range of the input. In addition, we also improve the tree building algorithm to incorporate a back-

tracking algorithm, which reduces the computational overhead of the already-expensive recursive

routines associated with building decision trees. These modifications ultimately result in a runtime

improvement that is approximately ten times that of the rpart package.

3.4 Partitioning in two dimensions

Before moving into higher dimensions, we provide an illustration of the process described in

the previous section in 2 dimensions, where the partitioning can be easily visualized. Suppose

γ is a density on R2 supported on U ⊆ R2, and we are able to draw samples uj ∼ γ for j =

1, . . . , J . Forming the pairs, {(uj,Ψ(uj))}Jj=1, we then fit a CART model to these points and

extract the decision rules, which form a dyadic partition of the aforementioned bounding box

A ⊆ U . Denote the partition as A = {A1, . . . , AK}, where each Ak =
∏d

l=1[a
(l)
k , b

(l)
k ] is a d-

dimensional hyperrectangle. Plotting the sampled points and overlaying the partition sets learned

from the regression tree, we observe in Figure 3.1 that areas of U with a high concentration of

points coincide with regions that are more finely partitioned by the regression tree model. Taking

γ to be a posterior distribution, we are provided with the interpretation that the decision tree is able

to target areas of the posterior distribution that have greater posterior mass, which was a desirable

trait that we mentioned in the motivation for this approach and proves helpful in producing a better
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approximation. Equipped with the partition A, we need only to determine the representative point

of each partition set in order to form the approximation to Ψ.

Recall that the CART model fits a constant for each point within a given partition set. At any

given stage, the CART model will search for the optimal predictor value, u = (u1, u2), on which

to partition the remaining points such that the sum of squares error (SSE) between the response,

Ψ (u), and the predicted constant is minimized. In particular, to partition data into two regions A1

and A2, the objective function is given as

SSE =
∑
ui∈A1

(Ψ (ui)− c1)2 +
∑
ui∈A2

(Ψ (ui)− c2)2 . (3.7)

Upon minimization of the SSE, the resulting partition sets A1 and A2 have fitted values c1 and c2,

respectively. For each partition set Ak ∈ A, an intuitive first choice for the representative point c?k

is the fitted value for Ak returned by the tree-fitting algorithm, and indeed if we were to follow this

two-step process of using CART to obtain both the partition and the fitted values for each of the

partition sets and then plug these into Eq. (3.5), we obtain a valid approximation to the marginal

likelihood.

3.4.1 Conjugate 2-d example

As a brief illustration of our this initial version of the approximation scheme, we consider

the simple conjugate normal model, where the data y1, . . . , yn, conditional on the parameters

(µ, σ2) ∈ R2, are drawn from a normal distribution, y1:n | µ, σ2 ∼ N (µ, σ2). We consider

the hierarchical prior, µ | σ2 ∼ N (m0, σ
2/w0) , σ2 ∼ IG (r0/2, s0/2), where IG (·, ·) denotes

the inverse-gamma distribution. In order to compute the Hybrid estimator, we require samples

from the posterior distribution and a way to evaluate Ψ. In this example, the posterior distribution

of u = (µ, σ2) is known: µ | σ2, y1:n ∼ N (mn, σ
2/wn) and σ2 | y1:n ∼ IG (rn/2, sn/2), so we

can draw exact posterior samples. Since the likelihood and prior are specified, the evaluation of Ψ

is straightforward. Namely,
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Table 3.1: Normal inverse-gamma example. We report the mean, standard deviation, average er-
ror (AE, truth - estimated), and the root mean squared error (RMSE), taken over 100 replications.
Each replication has 50 observations and 1000 posterior samples. The true log marginal likelihood
is -113.143. Estimators include the Harmonic Mean estimator (HME), Corrected Arithmetic Mean
estimator (CAME), Bridge Sampling estimator (BSE), and the Hybrid estimator (HybE). Adapted
with permission from “A hybrid approximation to the marginal likelihood” by Eric Chuu, Debdeep
Pati, and Anirban Bhattacharya, 2021. Proceedings of the 24th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2021, 130:3214-3222, Copyright 2021 by the authors.

TRUTH HME CAME BSE HYB

MEAN -113.143 -104.762 -112.704 -113.143 -113.029
SD 0 0.733 0.048 0.006 0.025
AE 0 -8.381 -0.439 0 -0.114

RMSE 0 8.431 0.441 0.006 0.117

Ψ
(
µ, σ2

)
= − log

{[
n∏
i=1

N
(
yi | µ, σ2

)]
×N

(
µ | m0, σ

2/w0

)
× IG

(
σ2 | r0/2, s0/2

)}

With this architecture in place, we feed the pairs, {(uj,Ψ (uj))}Jj=1, through CART to obtain a par-

tition over the parameter space and each partition set’s representative point. Then, we use Eq. (3.5)

to compute the final approximation. Table 3.1 shows results for the Hybrid estimator and a number

of other competing methods. Here, the true log marginal likelihood can be computed in closed

form, so we have direct comparisons to the ground truth. All estimators except for the Harmonic

Mean estimator give accurate approximations to the log marginal likelihood. While the Hybrid

estimator delivers fairly accurate results in this simple example, in the next section we discuss how

more careful consideration of the scale of the target quantity can lead to a more appropriate choice

for each partition set’s representative point. Model details including hyperparameter values for this

experiment are given in Section B.3.1.
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3.5 Algorithm description

Until this point, the representative point within each partition has simply been the fitted value

for each partition as given from the CART model. When {(uj,Ψ(uj))}Jj=1 is fed into the tree, it

attempts to optimize the sum of squared errors as in Eq. (3.7). Note, however, that our eventual

objective is to best approximate the functional log
∫
A
e−Ψ, and it is not unreasonable to suspect that

the optimal value for Ψ within Ak chosen by the regression tree model, which has no knowledge

of the functional, may not be a suitable choice for our end goal, especially for higher dimensions.

Indeed, even for slightly larger p for µ ∈ Rp in the conjugate example in the previous section, we

observed a sharp decrease in accuracy in the Hybrid estimator that quickly took it out of contention.

Simulations in other higher dimensional examples confirm this trend, and these inaccuracies be-

come more evident for nontrivial examples and more complicated choices of γ. Before suggesting

a remedy, we offer some additional understanding into the approximation mechanism that guides

us toward an improved choice. To that end, write F̂A from Eq. (3.6) as

F̂A = log

[ K∑
k=1

e−c
?
k pk

]
+ log µ (A)

:= Ĝ+ log µ (A) ,

where µ (B) = vol (B) is the Lebesgue measure of a Borel set B, and pk : = µ (Ak) /µ (A). We

can also write FA = G+ log µ (A), with

G : = log

[
1

µ (A)

∫
A

e−Ψ(u)du

]
= log

[ K∑
k=1

pk
1

µ (Ak)

∫
Ak

e−Ψ(u)du

]

= log

[ K∑
k=1

e−ck pk

]
,
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where

e−ck =
1

µ (Ak)

∫
Ak

e−Ψ(u)du = E
Uk∼Unif(Ak)

[
e−Ψ(Uk)

]
.

Thus, for Ĝ to approximate G, we would ideally like to have each c?k chosen so that e−c?k targets

e−ck . Importantly, the above exercise suggests the appropriate scale to perform the approximation

– rather than working in the linear scale as in Eq. (3.7), it is potentially advantageous to work in

the exponential scale.

3.5.1 Choosing the representative point

Based on the above discussion, we define a family of objective functions

Qk (c) =
∑
u∈Ak

|e−Ψ(u) − e−c|
e−Ψ(u)

, c ∈ Ak, (3.8)

one for each partition set Ak returned by the tree, and set c?k = argmincQk (c). We experimented

with a number of different criteria and objective functions before zeroing in on the above relative

error criterion in the exponential scale. Conveniently, minimizing (3.8) is a weighted `1 problem

and admits a closed-form solution.

Thus, our overall algorithm can be summarized as follows. We obtain (posterior) samples

u1, . . . , uJ from γ, and feed the collection of pairs {(uj,Ψ (uj))}Jj=1 through a regression tree to

partition the bounding box A defined by the range of the range of the samples. Then, rather than

using the default fitted values for each partition set returned by the tree, we take the representative

value c?k within each Ak as the minimizer of Qk. Each c?k is then used to compute F̂A as in (3.6) –

note that F̂A can be stably computed using the log-sum-exp trick. Finally, we declare F̂A as log Ẑ ,

our estimator of logZ .

It is worth noting that incorporating this additional optimization to find c?k may seem round-

about and can be bypassed by directly modifying the objective function in the CART algorithm to

one that operates on an exponential scale, but preliminary results from doing this did not lead to
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promising results, so we decided to adhere to the default objective function for the tree building

procedure. However, our implementation of the tree building algorithm allows for the objective

function to be easily exchanged with other user-specified loss functions, so this is an area that can

be more thoroughly explored.

3.6 Hybrid algorithm R package

We have also developed an R package, hybrid, which implements the Hybrid algorithm

as described in this chapter. Provided with functions to sample from the target distribution and

evaluate the negative log posterior distribution, the hybrid package goes through the steps in

Algorithm 1 and performs the relevant calculations to produce the Hybrid estimate to the log

normalizing constant. See Section B.1 for more details regarding general use of the hybrid

package.

3.7 Experiments

In the following experiments, we present a variety of problem settings with the goal of show-

casing the versatility of the Hybrid estimator. First, we consider the Bayesian linear regression

model under different prior specifications where the true marginal likelihood is known, so we can

easily verify the accuracy of any subsequent approximations. We then extend the application of

the Hybrid estimator to examples for which the parameter of interest is a p × p covariance ma-

trix, thus demonstrating the applicability of our methodology even when the parameter space is

non-Euclidean. Recall that one of the motivations for developing the Hybrid estimator was the

potential scarcity and low-quality nature of samples when the parameter space is nontrivial or dif-

ficult to learn. In order to recreate a similar situation, albeit on a lower and more reproducible

scale, we examine the performance of the Hybrid estimator alongside competing methods using

posterior samples that are few in number, and in some cases, non-exact. Finally, we investigate the

marginal likelihood estimation problem in the context of factor models, a setup that is common in

many fields of study but has the problem that it does not admit an analytic form of the marginal

likelihood.
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Algorithm 1: Hybrid Algorithm
Input : Sampler for the target distribution γ, method for evaluating Ψ, the negative

log posterior
Output: Estimate of the logarithm of the normalizing constant of γ

Sample u1, . . . , uJ ∼ γ

Fit a CART model, T , to (u1,Ψ (u1)), . . . , (uJ ,Ψ (uJ))

Extract the partition A = {A1, . . . , AK} from T of the bounding box A of U
for k ∈ {1, . . . , K} do

c?k ← argminc∈Ak logQk (c)

Ẑk ← e−c
?
k
∏d

l=1

(
b

(l)
k − a

(l)
k

)
end
return log Ẑ = log-sum-exp

(
log Ẑ1, . . . , log ẐK

)

In addition to the Hybrid estimator (HybE), we examine the following additional estimators:

Bridge Sampling estimator (BSE), Warp Bridge Sampling estimator (WBSE), Harmonic Mean es-

timator (HME), and Corrected Arithmetic Mean estimator (CAME). The BSE and WBSE results

are obtained using the bridgesampling package (Gronau et al., 2020). Corresponding cal-

culations and formulae for posterior parameters and analytical marginal likelihoods are given in

Section B.

3.7.1 Bayesian linear regression

Consider the usual setup of the linear regression model,

y = Xβ + ε, y ∈ Rn, X ∈ Rn×d, β ∈ Rd, ε ∼ N (0, σ2In).

In the next two examples, we consider different prior distributions on the parameters β and σ2.

3.7.1.1 Multivariate normal inverse-gamma model

We assume a multivariate normal inverse-gamma (MVN-IG) prior on (β, σ2), where β | σ2 ∼

Nd (µβ, σ
2Vβ), σ2 ∼ IG (a0, b0). Given this choice of the prior, the posterior distribution also
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(a) Bayesian linear regression - MVN-IG posterior distribution

(b) Bayesian linear regression - TN posterior distribution

Figure 3.2: Boxplots of the error (truth - estimate) for the log marginal likelihood in the MVN-IG
(left, true log p (y): -303.8482) and truncated MVN (right, true log p (y): -250.2755) examples.
Both examples correspond to 20-dimensional parameter spaces. Results are reported over 100
simulations, with 100 observations. Estimates are based on 50 MCMC samples. Adapted with
permission from “A hybrid approximation to the marginal likelihood” by Eric Chuu, Debdeep Pati,
and Anirban Bhattacharya, 2021. Proceedings of the 24th International Conference on Artificial
Intelligence and Statistics (AISTATS) 2021, 130:3214-3222, Copyright 2021 by the authors.
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follows a MVN-IG distribution: β | σ2, y ∼ N (µn, σ
2Vn) , σ2 | y ∼ IG (an, bn), where the

posterior parameters µn, Vn, an, bn are known and given in Section B.3.2. In our simulations, we

take d = 19, so that u = (β, σ2) ∈ R20. Since the log marginal likelihood in this example is well

known, we can evaluate each of the estimates against the true value. In Figure 3.2, we plot the

errors for each of the estimators when only 50 posterior samples are used for each approximation.

The accuracy and standard error of the Hybrid estimator are clearly superior compared to the well-

established estimators. We remind readers that the relatively poor results of the BSE and WBSE

are unsurprising because the number of available posterior samples is so few, and if we were

to increase the number of samples, we fully expect the MCMC-based methods to produce more

reliable estimates.

3.7.1.2 Truncated multivariate normal model

Next, we remain in the linear regression setting, but we fix σ2 and place a multivariate normal

prior on β truncated to the first orthant. In particular, β ∼ Nd (0, σ2λ−1Id) · 1[0,∞)d , where σ2, λ

are known. This produces a posterior distribution of the form,

β | y ∼ Nd
(
β | Q−1b,Q−1

)
· 1[0,∞)d ,

where Q = 1
σ2 (X ′X + λId) and b = 1

σ2X
′y. Then, the marginal likelihood can be written as

p (y) =

∫
R

N
(
y | Xβ, σ2In

)
2−dN

(
β | 0, σ2λ−1Id

)
dβ

= C ·
∫
R

det (Q)
1
2 e−

1
2(β−Q−1b)

′
Q(β−Q−1b)dβ.

Here, R = [0,∞)∞, and by keeping track of the constants from the likelihood and the truncated

normal prior, we have

C = 2d (2π)−
n
2
(
σ2
)− 1

2
(n+d)

τ
d
2 e−

1
2σ2

y′ye
1
2
η′Q−1η|Q|−

1
2 .
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Note that in this case, however, the integral is not analytically available and prevents the marginal

likelihood from being easily computed. To address this, Botev (2016) uses a minimax tilting

method to calculate the normalizing constant of truncated normal distributions and shows that the

proposed estimator has the vanishing relative error property (Kroese et al., 2011). In light of this,

we accept Botev’s estimator as the true marginal likelihood in the following experiments. The

TruncatedNormal package (Botev and Belzile, 2019) not only implements Botev’s estimator,

but it also provides samples from truncated normal distributions, so posterior samples from β | y

are readily available.

In Figure 3.2, we present the simulation results for the case when d = 20. Each approximation

uses 50 MCMC samples, and we compare the results against the true log marginal likelihood. Once

again, the Hybrid estimator outperforms the other estimators and reinforces its ability to deal with

a scarcity of posterior samples. Provided with a sufficiently large number of samples, however, the

BSE and CAME are both eventually able produce more accurate results than the Hybrid estimator.

3.7.2 Approximate posterior samples

Up until now, we have assumed that asymptotically exact samples from the posterior distribu-

tion are available to be used as input for all of the marginal likelihood estimation schemes. In fact,

for all previous numerical experiments, we have used samples drawn from the exact posterior dis-

tribution, ridding us of the need for burn-in or thinning. While MCMC algorithms can eventually

provide us with exact posterior samples, it is not uncommon to have a target distribution that is too

complex and difficult for traditional MCMC methods to learn within a reasonable time constraint.

As a result, obtaining exact posterior samples may pose as big of an issue as the approximation

procedure itself. Seeing as approximate inference techniques, such as variational Bayes, have

been gaining traction as attractive alternatives for dealing with intractable distributions, it is worth

considering the quality of marginal likelihood estimation algorithms that use samples drawn from

these approximate distributions. As noted by Bishop (2016); Blei et al. (2017), factorized approx-

imations such as those frequently used in variational methods tend to underestimate the variance

of the true posterior. Consequently, the samples drawn from these approximate distributions may
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be inexact and could likely result in unpredictable behavior in algorithms that use them for further

approximations. On the other hand, the Hybrid algorithm does not directly use these samples in the

approximation to the negative log posterior, and instead they are only involved in the partitioning

scheme. The hope is then that the partitioning scheme is not as sensitive to small inaccuracies in

the posterior samples, but rather uses them to loosely learn the shape of the posterior distribution.

As a demonstration, we revisit the MVN-IG example in Section 3.7.1.1 and consider the case

where (β, σ2) ∈ R10. Clearly, the posterior distribution is tractable in this case and can easily be

sampled from, but for the sake of demonstration, we work instead with a mean field approximation

q (β, σ2) to the posterior distribution p (β, σ2 | y). In particular, suppose q factorizes over the

parameters, so that q (β, σ2) = q (β) q (σ2), where

q (β) ≡
3∏
i=1

N3

(
µ(i)
n , σ

2
0V

(i)
n

)
, q
(
σ2
)
≡ IG (an, bn) .

Here, we have split the original 9-dimensional normal distribution for β into a product of 3-

dimensional normal distributions, with the mean and covariance components extracted from the

true posterior parameters. In particular, µ(1)
n = (µn1, µn2, µn3)′, µ(2)

n = (µn4, µn5, µn6)′, µ(3)
n =

(µn7, µn8, µn9)′. Each V (i)
n is defined as the corresponding 3× 3 block matrix in Vn, and σ2

0 is the

posterior mean of σ2. We take q (σ2) to be the exact posterior distribution of σ2, so an and bn are

identical to those defined in Section 3.7.1.1.

In the top boxplot of Figure 3.3, we observe that even with non-exact posterior samples, the

Hybrid approximation produces accurate estimates, with an average error of 0.449 over 100 repli-

cations, compared to average errors of 0.698 and 1.035 for the CAME and BSE, respectively.

While the latter two estimators have lower variance than the Hybrid estimator, neither of the for-

mer covers the true marginal likelihood. The results indicate that the BSE and CAME are very

sensitive to the exactness of the samples, which should not be surprising because these algorithms

use the MCMC samples directly in the calculation of the estimator, so any inaccuracies present

in the samples themselves will likely manifest in the final estimator as well. From the results, we
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(a) Bayesian linear regression - approximate MVN-IG posterior distribution

(b) Unrestricted covariance matrices - IW posterior distribution

Figure 3.3: Boxplots of the error (truth - estimate) for the MVN-IG example with approximate
posterior samples (β, σ2) ∈ R10 (top, log p (y): -147.3245) and the unrestricted covariance matrix
example (bottom, true log p (y): -673.7057). For the MVN-IG example, we used 100 observa-
tions and 100 approximate posterior samples drawn from the mean field approximate posterior
distribution. For the inverse-Wishart example, we consider 4 × 4 covariance matrices with 10
free parameters. Results are reported over 100 simulations, with 100 observations and 25 MCMC
samples. Adapted with permission from “A hybrid approximation to the marginal likelihood” by
Eric Chuu, Debdeep Pati, and Anirban Bhattacharya, 2021. Proceedings of the 24th International
Conference on Artificial Intelligence and Statistics (AISTATS) 2021, 130:3214-3222, Copyright
2021 by the authors.

33



confirm the Hybrid estimator holistic use of these samples to learn the posterior distribution and

identify regions of concentration allows for small perturbations and inaccuracies in the samples

and still yields a robust approximation.

3.7.3 Unrestricted covariance matrices

The examples have thus far dealt with parameters in Euclidean space. For the following exam-

ple, we move beyond the usual Euclidean space and consider parameters in Rp×p. In particular, let

x1, . . . , xn
iid∼ Np (0,Σ), where Σ ∈ Rp×p. Then the likelihood can be written as follows,

L (Σ) = (2π)−np/2 det (Σ)−n/2 e− tr(Σ−1S)/2, (3.9)

where S =
∑n

i=1 xix
′
i. For simplicity, we consider a conjugate inverse-Wishart (IW) prior,

W−1(Λ, ν), for Σ, which has the following density,

π (Σ) = CΛ,ν det (Σ)−(ν+d+1)/2 e− tr(Σ−1Ψ)/2, CΛ,ν =
det (Λ)ν/2

2νp/2 Γp (ν/2)
. (3.10)

Here, Λ is a positive definite p × p matrix, ν > p − 1 is the degrees of freedom, and Γp (·) is the

multivariate gamma function. Consequently, the posterior distribution of Σ isW−1 (Λ + S, ν + n),

and we can compute the marginal likelihood in closed form. Observe that in this case, where the

underlying parameter space is a sub-manifold of Rp×p and extremely non-Gaussian, the Laplace

approximation does not hold (even asymptotically), so the need for a method that can handle a

variety of problem settings is especially apparent.

Note that despite being able to sample from the posterior distribution, we cannot yet carry

out the Hybrid approximation algorithm. As mentioned previously, since posterior samples are

drawn from a sub-manifold of Rp×p, if we were to proceed as usual to obtain a partition over

Rp×p, there would be no guarantee that a given point within the partition could be reconstructed to

form a valid covariance matrix. As such, we circumvent this issue by working with an alternative

representation of the covariance matrix. In particular, we take the Cholesky factorization of the
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covariance matrix Σ = TT ′, where T is a lower triangular matrix with positive diagonal entries,

tjj for j = 1, . . . , p. Because we are now working with T instead of Σ, the log-likelihood and prior

must be appropriately modified so that we can form the covariate-response pairs (L,Ψ (L)) to be

used by the Hybrid algorithm.

Under this transformation, we can define Ψ (T ) = − logL (T ) − log π (T ), where we can use

Eq. (3.9) to rewrite the likelihood in terms of the Choleksy factor T ,

L(T ) = (2π)−np/2 det (T )−n e− tr((TT ′)−1S)/2.

Conveniently, the determinant of the Jacobian matrix J of this transformation is well-known and

given as

|J | = 2p
p∏
j=1

tp+1−j
jj .

By the change of variable formula, the induced prior on T is

π (T ) = CΛ,ν det (T )−(ν+p+1) exp
{
− tr

(
(TT ′)

−1
Λ
)
/2
}
· 2p

p∏
j=1

tp+1−j
jj .

Obtaining posterior samples of T is trivial, as we can simply draw Σ from the inverse-Wishart

distribution W−1 (Λ + S, ν + n), and then take the corresponding lower Cholesky factor. With

this general setup in place, it is worth noting that even with another prior on Σ, we can carry out

the entire algorithm, provided that we have a way to sample from the posterior of Σ and a way to

compute the Jacobian of the transformation.

In the bottom boxplot of Figure 3.3, we present the results for which each approximation uses

25 MCMC samples. The boxplot of the approximations’ errors reinforce the robustness of the

Hybrid estimator, which produces accurate and low-variance estimates. Although the BSE and

WBSE both cover the true log marginal likelihood value, it is apparent that these estimators suffer

from stability and convergence issues that are not present in the Hybrid estimator.
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3.7.4 Hyper-inverse Wishart induced Cholesky factor density

In the following examples, we extend the previous analysis of unrestricted covariance matrices

to a graphical modeling context. Relevant definitions and basic graph theory concepts can be

found in Appendix C. Broadly speaking, Gaussian graphical models (GGM) are popular tools to

learn the dependence structure among variables of interest. In particular, let G = (V,E) be an

undirected decomposable graph with vertex set V = {1, . . . , p} and edge set E. Define Sp as the

set of symmetric p× p matrices and Sp�0 as the cone of positive definite p× p matrices in Sp. Let

X ∼ N (µ,Σ), Σ−1 ∈ Sp�0 (G), where

Sp�0 (G) = {M = (Mij) ∈ Sp�0 |Mij = 0, ∀(i, j) /∈ E}.

Then, X satisfies the GGM with graph G, where G dictates the conditional dependence structure

and restricts the sparse concentration matrix Ω = (ωij)p×p = Σ−1 so that (i, j) ∈ E if and only if

ωij = 0, and x(i) and x(j) are conditionally independent if and only if ωij = 0. In other words, if the

variables i and j do not share an edge in a graph G, then ωij = 0. Hence, an undirected graphical

model corresponding toG restricts the inverse covariance matrix Ω to a linear subspace of the cone

of positive definite matrices. A probabilistic framework for learning the dependence structure and

the graph G requires specification of a prior distribution for (Ω, G). Conditional on G, the hyper-

inverse Wishart (HIW) distribution (Diaconis et al., 1979) for Σ = Ω−1 and the corresponding

induced class of distributions (Roverato, 2000) for Ω are attractive choices for priors.

Given G, we place a hyper-inverse Wishart prior HIWG (δ,Λ) on Ω = Σ−1, where δ > 2 is the

degrees of freedom and Λ ∈ Sp�0 is fixed. The HIW distribution is defined over the cone of d × d

positive definite matrices, with the corresponding density:

f (Ω | G) ∝ |Ω|(δ−2)/2 exp (− tr (ΩΛ) /2) . (3.11)

When G is decomposable, an alternative parameterization is given by the Cholesky decomposition
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of Σ−1 = Ω = φ′φ. Provided that the vertices ofG = (V,E) are enumerated according to a perfect

vertex elimination scheme, Section 2 of (Roverato, 2000) tells us that the upper triangular matrix

φ observes the same sparsity as Ω. While the likelihood function is identical to the one given in

Eq. (3.9), we are instead working with the Cholesky factor of the inverse covariance matrix, so the

likelihood of φ is given as

L (φ) = (2π)−np/2 det (φ)n e− tr(φ′φS)/2, S =
n∑
i=1

xix
′
i. (3.12)

Note that det (Σ−1) = det2 (φ) and det (φ) =
∏p

i=1 φii. In order to complete the definition of

Ψ (φ), we need only compute the induced prior on the nonzero elements of φ, which, together with

the likelihood in Eq. (3.12), gives us an explicit expression for the negative log posterior. From

Roverato (2000), the determinant of the Jacobian matrix J of the transformation Ω → φ is given

by

|J | = 2p
p∏
i=1

φνi+1
ii ,

where the i-th row of φ has exactly νi + 1 many nonzero elements. From Dawid and Lauritzen

(1993), we know that the distribution of Σ has the strong hyper-Markov property, so we can as-

certain the mutual independence of the rows of φ, provided that the vertices are in perfect vertex

elimination scheme. In addition, the induced distributions of the diagonal elements φii and the

off-diagonal elements φrs, with r < s, (r, s) ∈ E (Roverato, 2000, Theorem 4) allow us to specify

the joint density of the free elements of φ as follows,

π (φ) =

[ p∏
i=1

2−(δ+νi)/2

Γ ((δ + νi)/2)
φδ+νi−2
ii e−

1
2
φ2ii(2φii)

]
×

[ ∏
(r,s):s>r,(vs,vr)∈E

1√
2π
e−

1
2
φ2rs

]
. (3.13)

Since the HIW distribution is conjugate for Ω, the posterior distribution of Ω is also conveniently

known, HIWG (δ + n,Λ + S). Putting all of these ideas together, we can easily supply the nec-

essary ingredients for the Hybrid estimation framework by drawing samples from the posterior
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Table 3.2: Mean and standard deviation of the estimates for the hyper-inverse Wishart model, taken
over 100 replications. Here, we consider 5× 5 covariance matrices with 10 free parameters. Each
replication has 100 observations and 25 posterior samples. The true log marginal likelihood is
-506.306. Adapted with permission from “A hybrid approximation to the marginal likelihood” by
Eric Chuu, Debdeep Pati, and Anirban Bhattacharya, 2021. Proceedings of the 24th International
Conference on Artificial Intelligence and Statistics (AISTATS) 2021, 130:3214-3222, Copyright
2021 by the authors.

TRUTH HME WBSE HYB

p = 5
d = 10

MEAN -506.306 -486.675 -501.225 -507.760
SD 0 0.895 9.815 1.362
AE 0 -19.631 -5.081 1.454
RMSE 0 19.699 11.009 1.988

distribution, taking the upper Cholesky factor of each sample, and computing the negative log pos-

terior Ψ (φ) using the likelihood in Eq. (3.12) and the prior in Eq. (3.13). While this procedure

appears to be quite simple, the implications are significant in that if we have a different prior on

Σ for which we can do the posterior computation, all other aspects of the algorithm would remain

the same. All that is required is a way to sample from the posterior of Ω and a expression for the

Jacobian of the corresponding transformation.

For the numerical experiments, we take δ = 3, B = I5 and present the results in Table 3.2.

In this example, we consider 5 × 5 precision matrices that have 10 free elements, where each

marginal likelihood estimate uses only 25 posterior samples. Even in the case of a relatively

low-dimensional parameter space, we observe that without a large number of samples, traditional

methods fail to deliver accurate results and often have high variance. In contrast, the Hybrid

estimator retains its ability to produce reliable results that do not exhibit high variance that we

see in the WBSE. However, as the number of MCMC samples increases, the WBSE expectedly

stabilizes and eventually beats the Hybrid estimator. In order to have a baseline for evaluating

these marginal likelihood estimates, we must also compute the true normalizing constant of HIW

density. Since G is decomposable, all of its prime components are complete and are thus cliques.

As pointed out by Roverato (2000), Σ can be written as a sequence of clique marginal matrices,
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{ΣC : C ∈ C }, where C is the collection of cliques. As a result, the HIW density factorizes over

these cliques, with each ΣC following an inverse-Wishart distribution,W−1 (δ,ΛC). Here, ΣC and

ΛC refer to submatrices which can be constructed by taking the entries of Σ and Λ that correspond

to the nodes in C. As seen in the previous section, the inverse-Wishart density has a closed-form

normalizing constant, so the normalizing constant for the original HIW density can also be derived

analytically. More details about the calculation of the HIW normalizing constant can be found in

Section C.2.

3.7.5 Factor models

In this section, we consider the issue of computing the marginal likelihood for factor models, a

problem setting for which the quantity of interest is intractable. Factor analysis provides a tool for

investigating multivariate dependence among variables in terms of latent factors that are typically

fewer in number than the number of observed variables. This type of analysis has found its way into

areas such as psychological research when constructing scales for measuring attitudes, perceptions,

motivations, etc. (Ford et al., 1986), financial analysis (Aguilar and West, 2000; Pitt and Shephard,

1999), and gene expression problems (Sabatti and James, 2006; Pournara and Wernisch, 2006). As

a result, factor models are now being used in high-dimensional modeling and increasingly complex

situations, thus making scalable inference in this domain important. In Bayesian model selection

in factor analysis, the main inferential goal deals with the uncertainty quantification associated

with the number of latent factors in a multivariate factor model. This ultimately comes down to

comparing models that differ only in the number of factors, a comparison that hinges on accurate

calculation of the marginal likelihood. Since the marginal likelihood for factor models is not eas-

ily computed and typically requires approximations, MCMC methods are frequently employed.

While there is no shortage of MCMC methods that target these posterior probabilities (Lopes and

West, 2004; Polasek, 1997), the computational costs associated with both running these MCMC

algorithms for high-dimensional problems and obtaining (a sufficient number of) reliable MCMC

samples cannot be ignored. In an effort to more aptly model these problems that have parameters

that frequently concentrate in lower-dimensional regions of an otherwise high-dimensional ambi-
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ent space, sparse factor models (West, 2002), which provide a more scalable modeling framework

that incorporate dimension reduction, have also been an area of active research and development.

As shown in numerous previous problem settings, our proposed Hybrid approximation scheme

lends itself as a potential solution. We remark that while the following exposition largely deals

with a general factor model setup, they Hybrid methodology can easily be adapted to incorporate

the aforementioned advancements in factor modeling.

3.7.5.1 Setup and notation

Let yi denote the m-dimensional observed variable, and suppose the factor fi ∼ Nk (0, Ik),

with k ≤ m. The k-factor model states:

yi = βfi + εi, (3.14)

where εi ∼ N (0,Ω), Ω = diag (ω2
1, . . . , ω

2
m), εi and fj are independent, and the fi’s are indepen-

dent for 1 ≤ i, j ≤ n. Here, β ∈ Rm×k is an unknown loading matrix. Let Y = (y1, . . . , yn)′ be

the n×m matrix of observations. Similarly, let F = (f1, . . . , fn)′, and E = (ε1, . . . , εn)′. We then

have the following conditional density of y given F, β,Ω,

p (y | F, β,Ω) ∝ |Ω|−n/2 exp
(
−0.5 tr

(
Ω−1εε′

))
, (3.15)

where we have defined Σ = Ω+ββ′. Integrating out the latent factors F , we arrive at the following

density:

p (y | β,Ω) = |Σ|−n/2 exp
(
−0.5 tr

(
Σ−1y′y

))
. (3.16)

With this model setup, we see that conditional on the factors, each observation yi is independent,

with yi ∼ N (0,Σ). Therefore, the dependence structure among the m components, given by Σ, is

explained by the common factors. As such, this factor model setup intuitively facilitates dimension

reduction in terms of the number of parameters in consideration. In particular, by learning the
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parameters (β,Ω) instead of learning Σ directly, we have at most mk +m free elements, which is

typically fewer than the O (m2) free elements in Σ. This reduction is especially significant in the

case of the sparse factor model where k � m.

Using the likelihood in Eq. (3.16), and suitably defined prior distributions, p (β) , p (Ω), we

have the following expression for the marginal likelihood:

p (y) =

∫
p (y | β,Ω) p (β) p (Ω) dβ dΩ. (3.17)

In the next section, we present a commonly used prior for (β,Ω) and also discuss a modification

of this prior that improves the interpretability of the subsequent inference for the model selection

and model comparison problem.

3.7.5.2 Prior specification

For identifiability of the loading matrix β, we adopt a convention similar to that of Geweke and

Zhou (1995); Aguilar and West (2000); Lopes and West (2004), and consider β to be (block) lower

triangular with positive diagonal entries. This ensures that β is full rank matrix and uniquely iden-

tified by ββ′. Bhattacharya and Dunson (2011) and Ghosh and Dunson (2009) provide alternative

priors for the loading matrix that incorporate sparsity and provide appealing theoretical properties,

but in this discussion, we focus on the prior specification as detailed in Lopes and West (2004).

However, similar to before in the graphical modeling examples, the following procedures can be

easily adapted to other priors, so the following analysis is not limited to the prior we discuss.

Initially, we assume independent priors for the lower triangular terms, where

βij ∼


N (0, C0) i > j

N (0, C0)1 (βij > 0) i = j.

Here, C0 > 0 is a hyperparameter. The variances ω2
i are assumed independent of β and mutually
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independent, with the following inverse-gamma distribution,

ω2
i ∼ IG

(
ν/2, νs2/2

)
, (3.18)

with hyperparameters ν, s > 0. However, as noted by Leung and Drton (2014), the induced prior

on ββ′, as given above, is not order-invariant, so the resulting inference may differ depending on

how the variables are ordered. With slight changes to this prior, we can achieve inference that is

invariant in the arrangement of the variables and therefore have more accurate quantities for model

comparison.

Using the proposal from Leung and Drton (2014), we adopt the following order-invariant prior

distribution on β, which allows for inference that remains unchanged upon reordering of the vari-

ables while maintaining the identifiability constraint. In particular, suppose we use a spherical

normal prior, β ∼ Nn×k (0, C0Im ⊗ Ik), where m ≥ k. This distribution is invariant under per-

mutation of the rows of β, so the induced prior on Σ is similarly invariant. Then, we perform the

following LQ decomposition, β = LQ, where L is lower triangular and Q is orthogonal. If we

substitute this expression for β back into the definition of Σ, we see that we can essentially work

with L, rather than β, since ββ′ = LQQ′L′ = LL′. In order to use the Hybrid estimation frame-

work, we require an expression for the negative log posterior in terms of L. Since the likelihood

function remains unchanged, we need only to derive an expression for the induced prior on L.

Starting with the proposed prior on β, we can write the density as follows,

p (β) ∝ exp

(
−1

2
tr (ββ′)

)
(3.19)

Using the results from Chapter 2 of Muirhead (2005), we know that Jacobian of the transformation

β 7→ LQ is dβ =
∏k−1

i=1 L
k−i
ii (dL) (Q′dQ), where (Q′dQ) is the Haar measure on the set of all

k × k matrices. Substituting this into the joint density on (L,Q), we can deduce that L and Q are
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independent, which then produces the following induced prior on L,

p (L) ∝ exp

(
−1

2
tr (LL′)

) k∏
i=1

Lk−iii . (3.20)

More specifically, the density of the diagonal terms of L can be written as:

p (Lii) = χk−i+1

(
Lii√
C0

)
=

(
Lii√
C0

)k−i
exp

(
− L2

ii

2C0

)
2−

k−i+1
2

+1Γ−1

(
k − i+ 1

2

)
,

where χk−i+1 is the Chi distribution with degrees of freedom k − i + 1. The density of the off-

diagonal terms of L can be written as:

p (Lij) = N (0, C0) = (2πC0)−1/2 exp

(
− 1

2C0

L2
ij

)
. (3.21)

Define p = (m− k) k + k (k + 1) /2 to be the number lower triangular and diagonal elements of

β. Then, in total, we have d = p + m many parameters, where m denotes the number of diagonal

elements in Ω. Therefore, the marginal likelihood is an integral over d-dimensional space.

3.7.5.3 Incorporation of the Hybrid estimator

One major convenience of Leung’s modification is that its accompanying Gibbs sampler only

slightly differs from that of Lopes and West (2004) in the full conditional distribution of βi, i ≤ k.

More importantly, we are able to work in terms of (L,Ω), which together form Σ. Similar to how

we adapted other examples where the parameter is not intrinsically a vector, we perform a modified

vectorization of (β,Ω) by extracting the lower triangular elements of β and the diagonal elements

of Ω and concatenating these into a d-dimensional vector u. Then, the negative log posterior of u

can be written as

Ψ(u) = − (log p (fL(u)) + log p (fΩ(u)) + ` (fL(u), fΩ(u)))

= − (log p (L) + log p (Ω) + ` (L,Ω)) , (3.22)
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which can easily be evaluated by reconstructing β and Ω from the input vector u i.e., fL (u) =

L, fΩ (u) = Ω for suitably defined functions fL, fΩ. Using Eq. (3.16), we also have the following

log-likelihood

` (Ω, L; y1:n) = −nm
2

log(2π)− n

2
log |Ω + LL′| − 1

2

n∑
i=1

y′i (Ω + LL′)
−1
yi. (3.23)

Since we can draw posterior samples of (β,Ω), and we can evaluate the negative log posterior dis-

tribution using Eq (3.22), then we are adequately equipped with the input for the Hybrid estimation

algorithm.

Before presenting the numerical experiments, we comment briefly on other computational con-

siderations. While the Gibbs sampler above accurately provides posterior samples, the convergence

time becomes a concern in high-dimensional applications. There has subsequently been a push to-

ward developing approximate (variational) inference algorithms that make small sacrifices in the

overall accuracy in order to achieve computational efficiency. In the context of sparse factor mod-

els, Foo and Shim (2021) propose using a mean field approximation to the posterior distribution as

an alternative to MCMC sampling, and their empirical results demonstrate a substantial speedup

in convergence. Should a practitioner decide to employ one of these approximate inference al-

gorithms to bypass the need to wait for MCMC convergence, they would be able do so without

modification to any step in the Hybrid approximation framework, other than replacing the MCMC

samples with the approximate posterior samples from the variational distribution.

3.7.5.4 Model selection exercise

We use the same setup as in Section 6.1 of Lopes and West (2004), and we generate n = 100

observations from the one-factor models with

β′ = (0.995, 0.975, 0.949, 0.922, 0.894, 0.866, 0.837) ,

diag (Ω) = (0.01, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30) ,
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Table 3.3: Comparison of k-factor model selection based on the marginal likelihood computed for
each of the candidate models. The datasets are generated with n = 100 and each estimate uses
1,000 MCMC samples.

METHOD k = 1 k = 2 k = 3

RJMCMC 1000 0 0
HYB 935 357 292
p̂H 428 258 314
p̂LM 1000 0 0
p̂OPT 1000 0 0

so that yi ∼ N (0,Ω + ββ′). For each of these datasets, we fit various k-factor models, for k =

1, 2, 3, and compute the corresponding marginal likelihoods. Based on the value of the marginal

likelihoods, we then select the k-factor model that has the highest (relative) posterior probability.

Iterating through this process, we keep track of how many times we select each model and are

subsequently able to determine which marginal likelihood estimation method most frequently picks

the correct factor model. For this analysis, we use the order-invariant prior setup outlined in the

preceding sections, for which we also supply the necessary groundwork to facilitate its use with

the Hybrid estimation framework. For the other estimators included in this experiment, we use

the original prior setup as presented in Lopes and West (2004). These estimators are the bridge

sampling estimator with the optimal bridge function pOPT , the Laplace-Metropolis estimator pLM ,

the harmonic mean estimator pH , and the RJMCMC estimator developed for factor models from

Lopes and West (2004).

While the Hybrid estimator reports slightly less accurate results than most of the other meth-

ods, we highlight that our prior choice in the Hybrid estimator allows for more reliable inference

that does not depend on the ordering of the variables, an important quality that is overlooked in

the other estimators. We also note that the software used to report many of the other estimators

in Table 3.3 experiment are not publicly available as packages, so reproducing this analysis for

other problems presents a significant roadblock. On the other hand, following the steps in Section
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3.7.5.3 to reparametrize the problem and using the hybrid package makes the marginal likeli-

hood estimation task straightforward.

3.8 Chapter summary

In this chapter, we developed a novel algorithm that combines a variety of ideas, both proba-

bilistic and deterministic, to efficiently estimate the marginal likelihood. By first using a regression

tree to identify high-probability regions of the parameter space and then leveraging numerical in-

tegration ideas to obviate the need to trust the quality of the MCMC samples, we are able to

construct an approximation that scales well with both the dimension and the complexity of the

parameter space. We again emphasize that in the experiments provided in this section, we seek to

mimic scenarios for which posterior sampling is highly expensive and/or mixing is poor. From the

simulation studies, we see that the Hybrid estimator is both accurate and reliable in these problem-

atic situations. By considering a small number of samples as the input for these marginal likelihood

estimation algorithms, we provide a realistic scenario for the regime in which we wish to operate.

Therefore, our contribution is multifaceted and bears practical value in that even in higher dimen-

sions and in instances where generating MCMC samples is itself a bottleneck, the Hybrid estimator

successfully delivers promising results. Equally important as these results is the availability of the

Hybrid algorithm in the R package hybrid, which can be used to reproduce the experiments in

this chapter.

Furthermore, the Hybrid approximation scheme outlined in this chapter lays the groundwork

for future work in a number of possible directions. One area of potential refinement is the con-

struction of the partition of the parameter space. While we use CART for its convenience and

interpretability, we find that the default objective function for CART is unsuitable for determining

the representative point of each partition set, and we have to solve an additional optimization prob-

lem to obtain these points. Instead of this roundabout two-step approach, where we use CART to

learn the partition and the objective function in Eq. (3.8) to identify representative points, we can

investigate alternative objective functions that can better target the desired objective function.

Another aspect of the Hybrid algorithm that can be further developed is the current formulation

46



of the local approximation to Ψ in each of the partition sets. The piecewise constant approxima-

tion in Eq. (3.4), though providing encouraging results, is a rather simplistic way to approximate

Ψ, particularly when the target distribution is highly nontrivial. In the next chapter, we modify

the constant approximation to incorporate higher order terms via a local Taylor expansion so that

piecewise linear and quadratic terms contribute to the approximation to Ψ. While we mention in

Section 3.2 that a piecewise linear estimator would similarly result in a tractable integral calcula-

tion, additional quadratic terms would require more delicate handling. Consequently, a sizeable

portion of the extended methodology is devoted to dealing with these higher order terms.
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4. HYBRID-EP METHOD FOR MARGINAL LIKELIHOOD ESTIMATION OF UNIMODAL

DENSITIES

4.1 Introduction

The exposition on the Hybrid estimator in the previous chapter sets the foundation for a promis-

ing way to estimate the marginal likelihood, demonstrating that our proposed estimator can com-

pete with other well-known estimators in a variety of problem settings. Moreover, the generality of

the methodology makes it convenient to make refinements to the algorithm so that it can be applied

to more specific problem setups. In this chapter, we propose a few modifications to the piecewise

approximation to Ψ to form an estimator that is more suitable for tackling higher-dimensional

problems. Further, we restrict our scope to target the normalizing constants of a specific class of

densities—unimodal densities that are approximately log-concave around the mode. Indeed, the

problems of sampling from and integrating log-concave functions have seen no shortage of work

from Applegate and Kannan (1991) and Lovász and Vempala (2007). In the paper from Lovasz

and Vempala (2006), they frame the integration aspect of their algorithm as a generalized version

of simulated annealing. Brosse et al. (2018) also present an approach for computing the normal-

izing constant of log-concave densities that uses Gaussian annealing and the Unadjusted Langevin

algorithm. Even with the plethora of available methods, the sampling-based nature of most of these

algorithms makes them susceptible to prohibitively expensive computations that are only exacer-

bated in higher dimensions. In the following discussions, we call the estimator that arises from

this chapter’s methodology the Hybrid-EP estimator (HYB-EP) and the original estimator from

the previous chapter’s methodology the vanilla Hybrid estimator (HYB).

For the initial development, we do not restrict our analysis to posterior distributions and illus-

trate the modified algorithm in the general case of log-concave target densities. Namely, let γ be

a probability density with respect to the Lebesgue measure on Rd of the form γ (u) = Z−1e−Ψ(u)

for u ∈ U ⊆ Rd, where Ψ : U → R is a continuously differentiable strictly convex function.
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Adhering to the notation in the previous chapter allows us to write the normalizing constant of γ

as the following integral:

Z =

∫
U
e−Ψ(u)du < +∞, U ⊆ Rd. (4.1)

The difference here is our assumption of the shape of Ψ, but we emphasize that the log-concavity

assumption on γ is only used to ensure that the Hessian of the objective function is positive definite

everywhere and can in fact be relaxed to unimodal densities that are approximately log-concave

in a suitable neighborhood around the mode. In particular, this relaxed assumption is widely

satisfied by Bayesian posteriors in regular parametric models and due to the Bernstein-von Mises

phenomenon, most regular posterior distributions are approximately log-concave with sufficiently

large sample size; see Section 4.6 for more details. Next, we present a high-level overview of the

algorithm before delving into more specific details. Readers may notice that many of the initial

steps overlap with those stated previously in the vanilla Hybrid methodology, but we include a

complete outline of the proposed algorithm in its entirety to avoid any ambiguity.

Like before, we work with a compactification of the parameter space and make the following

approximation to the normalizing constant of γ,
∫
A
e−Ψ(u)du, where A is a compact subset of

the parameter space U . Recall that the motivation for this compactification is to eliminate low

probability regions of the domain whose contribution to the integral in Eq. (3.1) is negligible.

This is particularly useful in a Bayesian context where the posterior concentrates with increasing

sample size (Ghosal and Van Der Vaart, 2007; Kleijn and van der Vaart, 2006). Next, proceed by

partitioning A into d-dimensional rectangles, i.e., A = {A1, . . . , AK} such that A =
⋃K
k=1Ak and

Ak ∩ Ak′ = ∅ for all k 6= k′. We then propose a piecewise approximation to Ψ defined over each

partition set:

Ψ (u) ≈ Ψ̂ (u) =
K∑
k=1

Ψ̂k (u)1Ak (u) . (4.2)

The general form of this piecewise approximation is identical to the one used in the vanilla Hybrid
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estimator, but we shall see below that our choice for Ψ̂k differs in that we no longer employ

a constant approximation to Ψ. Using the form of the approximation in Eq. (4.2) gives us the

resulting general approximation to Z ,

Z ≈
∫
A

e−Ψ(u) du ≈
∫
A

e−Ψ̂(u) du =
K∑
k=1

∫
Ak

e−Ψ̂k(u)du. (4.3)

We elaborate in Section 4.2 on the choice for Ψ̂k. As mentioned in the development of the vanilla

Hybrid estimator, the goal of the partitioning step is to divide up the parameter space in a way

such that we more finely partition regions for which γ has higher mass, thus allowing for more

precise approximations where γ exhibits concentration. By sampling uj ∼ γ, evaluating Ψ (uj),

and fitting a CART model (Breiman, 1984) to the pairs {(uj,Ψ (uj))}Jj=1, we can learn a dyadic

partition of U . We obtain the compact subset of the parameter space U by bounding the partition

from CART using the range of the samples from γ. Clearly, we make the assumption that we can

sample from γ and evaluate Ψ, but both of these are basic requirements in many MCMC-based

algorithms.

Below, we highlight three fundamental features of the Hybrid-EP algorithm that distinguish it

from the vanilla Hybrid algorithm, followed by a detailed discussion of each of these steps. See

Algorithm 2 for a formal statement of the Hybrid-EP estimation procedure.

• In Eq. (4.2), we take Ψ̂k to be a local approximation to Ψ constructed using a second order

Taylor expansion of Ψ around a representative point uk ∈ Ak.

• The second order Taylor approximation introduces a quadratic term that is accompanied

by additional computational challenges, as it complicates the calculation of the integrals in

Eq. (4.3). We tackle this issue with an efficient Expectation Propagation (EP) algorithm that

targets high-dimensional Gaussian integrals.

• We exploit the unimodality of γ to find suitable points within each partition set around which

we perform the Taylor expansion required for Ψ̂k.
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Each of the three steps above is nuanced in that they appear to be quite simple to implement

and easy to integrate into the existing algorithm, but they also carry with them substantial compu-

tational demands that require careful attention as well.

4.2 Local approximation using a Taylor expansion

We revisit Eq. (4.2) and consider the following piecewise quadratic approximation to Ψ,

Ψ (u) ≈
∑
k

[
Ψ (uk) + (u− uk)′∇Ψ (uk) +

1

2
(u− uk)′∇2Ψ (uk) (u− uk)

]
1Ak (u) , (4.4)

where uk is a representative point ofAk. This iterates on the idea of the piecewise constant approx-

imation performed in Chapter 3, but introduces higher order terms, with the hope that these lead

to increased accuracy. Upon exponentiation of the approximation in Eq. (4.4), we observe that the

second exponential in the summation below is proportional to a Gaussian density,

e−Ψ̂(u) =
∑
k

exp
{
−Ψ(uk) + u′kλk − 1

2
u′kHkuk

}
exp

{
− 1

2
u′Hku+ (Hkuk − λk)′u

}
1Ak (u) .

To ease notation, we have taken λk := ∇Ψ (uk) and Hk := ∇2Ψ (uk), which represent the gra-

dient vector and the Hessian matrix of Ψ evaluated at uk, respectively. Since γ is assumed to be

log-concave, the Hessian matrix is positive definite, and hence Hk is invertible. Integrating the

approximation above and keeping track of the normalizing constants, we propose the following

approximation to Z:

∫
A

e−Ψ(u)du ≈
∫
A

e−Ψ̂(u)du

=

∫
A

[∑
k

CkN
(
u | H−1

k bk, H
−1
k

)]
du

=
∑
k

Ck ·
∫
Ak

N
(
u | H−1

k bk, H
−1
k

)
du (4.5)

= : ẐHYB-EP. (4.6)
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Here, Ck stores the normalizing constants for each of the K Gaussian densities, and bk,mk are

known quantities:

Ck = exp

(
−Ψ (uk) + λ′kuk −

1

2
u′kHkuk +

1

2
m′kHkmk

)
,

bk = Hkuk − λk, mk = H−1
k bk.

Provided that we can compute the Gaussian integrals in the summation in Eq. (4.5) and determine

suitable points uk ∈ Ak, then ẐHYB-EP is a tractable estimator for Z . In the next two sections, we

provide scalable methods to accomplish both of these tasks.

4.3 Estimating truncated Gaussian probabilities

Despite the prevalence of Gaussian densities in statistical modeling, Gaussian probabilities are

difficult to compute, as they typically require integration over high-dimensional spaces. Some es-

tablished methods rely on numerical integration (Genz, 1992), but these prove to be prohibitively

expensive (in the number of points required) and inefficient beyond low-dimensional settings. This

has led to the development of more scalable integration techniques, such as Expectation Propaga-

tion (Minka, 2013), which is widely used to compute approximate integrals. To better understand

how the Expectation Propagation (EP) algorithm can be applied to the intractable Gaussian integral

in the previous section, we lay out some preliminary groundwork for the EP algorithm. Starting

with the Gaussian distribution p0 (x) = N (x | m,K), we define the following unnormalized trun-

cated distribution

p (x) =


p0 (x) , x ∈ A

0, otherwise.

The Gaussian probability of interest can be written as:

F (A) =

∫
A
p0 (x) dx =

∫
p (x) dx. (4.7)
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A natural candidate for a distribution q (x) that can replace the intractable distribution p (x) is

one that minimizes the Kullback-Leibler (KL) divergence between p and q, denoted D (p || q), as

this provides a quantification of the quality of q as an approximation with respect to the target

distribution p. However, since p intractable, we cannot directly evaluate D (p || q), and thus the

corresponding minimization is problematic. The first step is to then replace p (x) with the product

of a prior distribution p0 (x) and factors ti (x), such that

p (x) = p0 (x)
∏
i

ti (x) .

We make a simplifying assumption about the structure of ti (xi) so that the integration boundaries

are not functions of x. In particular, let ti (x) = 1 {ai < xi < bi}, where ai, bi are simply the lower

and upper bounds of integration. Then, the target integral in Eq. (4.7) can be written as

F (A) =

∫
p (x) dx =

∫
p0 (x)

d∏
i=1

ti (xi) dxi.

We proceed to approximate each of the intractable factors ti with a tractable, unnormalized Gaus-

sian t̃i (x), which produces the final approximation q of p. More specifically, we take q to mirror

the product form of p,

q (x) = p0 (x)
∏
i

t̃i (x) = p0 (x)
∏
i

Z̃iN
(
x | µ̃i, σ̃2

i

)
= ZN (x | µ,Σ) ,

where the parameters of these unnormalized Gaussian distributions, {µ̃i, σ̃2
i , Z̃i}, admit closed

form updates that are the result of an iterative moment matching scheme. From this, we observe

that by estimating the normalizing constant of q, we also obtain an approximation for the normal-

izing constant of the target distribution p. See equations (21), (22), and (23) in Cunningham et al.

(2013) for the closed form updates for each of these parameters and more details regarding the

relevant notation. Essentially, the EP algorithm iteratively constructs the approximating distribu-

tion q (x) to minimize D
(
tiq
\i || t̃iq\i

)
, which in turn approximately minimizes D (p || q). Here,
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q\i (x) = q (x) / t̃i (x) is defined as the cavity distribution. By running the EP algorithm to conver-

gence, we can calculate the following mean and covariance parameters of the normal distribution

q,

µ = Σ

(
K−1m+

d∑
i=1

µ̃i
σ̃2
i

ei

)
, Σ =

(
K−1 +

d∑
i=1

1

σ̃2
i

cic
′
i

)−1

,

where ei is the i-th standard basis vector. With this, we also obtain a closed form expression for

the normalizing constant of q,

logZ =− 1

2

(
m′K−1m+ log |K|

)
+

d∑
i=1

(
log Z̃i −

1

2

(
µ̃2
i

σ̃2
i

+ log σ̃2
i + log(2π)

))
+

1

2

(
µ′Σ−1µ+ log |Σ|

)
,

which in turn approximates the Gaussian probability F (A) in Eq. (4.7). It is worth noting that

the algorithm is still valid for arbitrary factors ti (x), albeit with different parameter updates. Our

simplistic choice of ti (x) to be the indicator function defined over the constant lower and upper

limits of integration reflects the needs of the Hybrid-EP estimator and the rectangular nature of the

partition sets.

In summary, the EP framework boils down to two main approximations. The first idea is to

choose an approximating q (x) from a tractable (Gaussian) family that closely resembles p, such

thatD (p || q) is minimized. The intractability of p paves the way for the second approximation, for

which we instead work with a simplified representation of p so that the problem reduces to locally

minimizing D
(
tiq
\i || t̃iq\i

)
, for i = 1, . . . , d. This can be done iteratively with the Expectation

Propagation Multivariate Gaussian Probability (EPMGP) algorithm described in Section 2.1.1 in

Cunningham et al. (2013).

With this, we revisit the problem stated in the Hybrid-EP routine. As noted in Eq. (4.5), a
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prerequisite for computing ẐHYB-EP is the Gaussian integral,

∫
Ak

N
(
u | H−1

k bk, H
−1
k

)
du (4.8)

which is nothing but a truncated Gaussian probability. While this integral is typically intractable,

our adaptation of the EPMGP algorithm conveniently allows us to approximate this quantity. In

particular, recall that Ak is the d-dimensional hyperrectangle of the form, Ak =
∏d

l=1[a
(l)
k , b

(l)
k ].

Taking p0(u) ≡ N
(
u | H−1

k bk, H
−1
k

)
and ti = 1

{
a

(i)
k < ui < b

(i)
k

}
, for i = 1, . . . , d, we observe

that the target quantity in Eq. (4.8) is exactly the integral given in Eq. (4.7). Thus, we can directly

use the EPMGP algorithm described above from Cunningham et al. (2013) to obtain an estimate

for the Gaussian probability in Eq. (4.8). While algorithms such as the minimax tilting method

(Botev, 2016) and elliptical slice sampling (Murray et al., 2010) method also solve the problem of

estimating truncated Gaussian probabilities, our empirical studies suggest that EPMGP tends to

converge more quickly and provide more reliable results in higher dimensions. In addition, as noted

by Cunningham et al. (2013) and further verified by our own experiments, the EPMGP algorithm

performs exceptionally well when the constraint set is rectangular, which coincides exactly with

our setup.

4.4 Selecting the candidate point in each partition set

The final piece of the Hybrid-EP estimator that requires addressing is the representative point

uk used in the piecewise Taylor approximation Ψ̂ in Eq. (4.4). In the vanilla Hybrid estimator,

recall that we solve a minimization problem over each of the partition sets to obtain this point. We

offer a slightly different solution for the Hybrid-EP methodology that leverages the assumption of

the shape of the target distribution. In our unimodal setup, a natural choice for each partition set’s

representative point is one that is closest to the global mode of γ. More specifically, if u0 is the

global mode, then uk = argminu∈Ak ||u, u0||1. This minimization has O (nk) time, where nk is the

number of points within the partition set Ak. Note that we can easily obtain the global mode of

γ using Newton’s method for root finding with little additional computational effort because we
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already have expressions for the gradient, Hessian, and inverse-Hessian of the objective function

as part of the approximation in Eq. (4.6).

4.5 Hybrid-EP algorithm R package

With this architecture in place, we are equipped with all of the necessary to compute the

Hybrid-EP estimator. In Algorithm 2 below, we again rely on our independently developed CART

algorithm for the tree building and partitioning routines. While there is a MATLAB implemen-

tation available for the EPMGP algorithm, we contributed to the development of a more efficient

C++ implementation, ultimately resulting in the R package rcpp-epmgp (Ding, 2020). We have

woven together these optimally implemented subroutines in the hybrid R package, which also

contains the implementation of the vanilla Hybrid estimator. By supplying a sampler for the target

distribution and functions to evaluate Ψ and its gradient and Hessian, practitioners can easily ob-

tain an approximation to the log marginal likelihood without the burdens tuning hyperparameters

and monitoring convergence. In order to maintain the numerical precision in these calculations,

we operate in the log scale and utilize the log-sum-exp trick for further stability. Readers can refer

to Section B.1 for more detailed instructions regarding the installation and use of the hybrid

package in practice.

4.6 Extension to regular posterior distributions

We now focus on a Bayesian setup and delineate mild conditions on the likelihood, prior,

and data-generating mechanism for the Hybrid-EP algorithm to be applicable. The conditions are

formulated in a non-asymptotic manner under possible model misspecification, akin to Spokoiny

(2012a). We do not require the posterior to be log-concave. We also refrain from assuming a

Bernstein–von Mises (BvM) phenomenon; i.e., the posterior asymptotically assuming a Gaus-

sian shape (Ghosh et al., 2007). Instead, we only require a local quadratic bracketing of the log-

likelihood and posterior concentration (Kleijn and van der Vaart, 2006).
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Algorithm 2: Hybrid-EP
Input : Sampler for the target distribution γ, methods for evaluating Ψ, ∇Ψ, ∇2Ψ,

where Ψ is the negative log posterior
Output: Estimate of the logarithm of the normalizing constant of γ

Sample u1, . . . , uJ ∼ γ

Fit a CART model, T , to (u1,Ψ (u1)), . . . , (uJ ,Ψ(uJ))

Extract the partition A = {A1, . . . , AK} from T of the bounding box A of U
Calculate the global mode, u0, of γ

for k ∈ {1, . . . , K} do

uk ← argminu∈Ak ||u− u0||1

λk ← ∇Ψ (uk)

Hk ← ∇2Ψ (uk)

Ck ← (2π)d/2|Hk|−1/2 exp
(

1
2

(
u′kH

−1
k uk − 2λ′kuk + λ′kH

−1
k λk

))
bk ← Hkuk − λk

Gk ←
∫
Ak
N
(
u | H−1

k bk, H
−1
k

)
du

Ẑk ← Ck ·Gk

end
return log Ẑ = log-sum-exp

(
log Ẑ1, . . . , log ẐK

)

Suppose data Y are modeled as Y | θ ∼ Pθ; Y may denote n iid/independent samples. For

each θ ∈ Θ ⊆ Rd, assume Pθ admits a density pθ = (dPθ/dµ) with respect to a common σ-

finite measure µ on the sample space Y . Let π (·) be a continuous proper prior on Θ and let

γ (·) denote the corresponding posterior distribution so that γ (θ) = e`(θ) π (θ) /Z , with ` (θ) =

log pθ (Y ) the log-likelihood function and Z the posterior normalizing constant. We operate in a

misspecified framework allowing the true data distribution P to lie outside the model class {Pθ :

θ ∈ Θ}. Without loss of generality, assume P� µ and let p = dP/dµ. We reserve E to denote an
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expectation with respect to P. Let

θ∗ : = arg min
θ∈Θ

D (p || pθ) = arg max
θ∈Θ

E` (θ)

be the closest Kullback–Leibler (KL) point to the truth inside the parameter space, withD (p || q) =

Ep (log p/q) the KL divergence between densities p and q. In a misspecified setting, the pseudo-

true parameter θ∗ plays the role of the true parameter in well-specified models. For any θ, θ† ∈ Θ,

let `
(
θ, θ†

)
: = ` (θ)− `

(
θ†
)

denote the log-likelihood ratio. Let `r (θ) : = ` (θ)− E` (θ) and

B∗ : = {θ ∈ Θ : |θj − θ∗j | ≤ rj ∀ j ∈ [d]}

be a rectangular neighborhood of θ∗. We now lay down the main assumptions. Throughout the

following discourse, C,C1, C2, . . . denote global positive constants.

Assumption 1 (Posterior concentration). There exist constants η, δ ∈ (0, 1/4) such that

P
{
γ (B∗) ≥ 1− η

}
≥ 1− δ.

Assumption 2 (Local quadratic bracketing). There exists a partition {Bk}Kk=1 of B∗ into rectan-

gular sets, points θ∗k ∈ Bk, positive definite matrices {Hk}Kk=1, and constants ck ∈ (1/2, 1), such

that

|E` (θ∗k, θ
∗) | ≤ C1d,∀ k, (4.9)

and

(θ − θ∗k)
′Hk (θ − θ∗k) /(2ck) ≥ −E ` (θ, θ∗k) ≥ (θ − θ∗k)

′Hk (θ − θ∗k) /2, ∀ θ ∈ Bk. (4.10)

Assumption 3 (Stochastic component of the likelihood ratio). There exists a positive constant
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C2 and δ̃ ∈ (0, 1/4) such that

P
{

sup
θ∈B∗
|`r (θ)− `r (θ∗) | ≤ C2 d

}
≥ 1− δ̃.

Assumption 1 requires the posterior to place sufficient mass around the pseudo-true parameter

θ∗; note that no assumptions regarding its shape is made. Conditions for posterior concentration

in misspecified models can be found in Kleijn and van der Vaart (2006); see also De Blasi and

Walker (2013); Sriram et al. (2013); Ramamoorthi et al. (2015); Atchadé (2017); Bhattacharya

et al. (2019). Assumptions 2 and 3 together pose mild additional conditions on ` (θ, θ∗) in the

neighborhood B∗. We separate the conditions into stochastic and deterministic components by

writing

` (θ, θ∗) = E` (θ, θ∗k) + E` (θ∗k, θ
∗) + `r (θ)− `r (θ∗)

within Bk. Assumption 1 posits that −E ` (θ, θ∗k) can be locally bracketed by a quadratic form in

(θ − θ∗k) inside the partition set Bk. Since −E` (θ, θ∗) ≥ 0, it remains positive in a neighborhood

of θ∗ by continuity, and hence (4.10) is not vacuous. If θ 7→ E` (θ) is twice differentiable, a

natural choice is to perform a local Taylor expansion around θ∗k and set Hk to the Hessian matrix.

Contrast this to the global quadratic expansion in Cavanaugh and Neath (1999), which is among

the most general derivations of the Laplace approximation. Assumption 2 controls the supremum

of the centered empirical process `r (·) over the set B∗. Such probabilistic bounds can be derived

using standard chaining arguments; see Talagrand (2006); Boucheron et al. (2013); Dirksen (2015);

Vershynin (2018) and van de Geer (2006); Spokoiny (2012b) in statistical contexts. More details

can be found in the Appendix A.

Theorem 1. Under assumptions 1–3, with P-probability at least (1− δ − δ̃),

e`(θ
∗) eC3d

K∑
k=1

[
inf
θ∈Bk

π (θ)
]
hkγ1k ≤ Z ≤

e`(θ
∗) eC4d

1− η

K∑
k=1

[
sup
θ∈Bk

π (θ)
]
hkγ2k,
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where

hk = [det (Hk)]
−1/2,

γ1k =

∫
Bk

Nd
(
θ; θ∗k, ckH

−1
k

)
dθ,

γ2k =

∫
Bk

Nd
(
θ; θ∗k, H

−1
k

)
dθ.

The tight two-sided bound in Theorem 1 offers a non-asymptotic generalization to the classical

Laplace approximation. Indeed, with K = 1, it correctly recovers the −d log n/2 BIC penalty.

More importantly, its derivation offers insights into the population quantities that the Hybrid-EP

algorithm targets. The concentration of the posterior narrows down the activity to B∗, and the

local quadratic bracketing condition in Assumption 2 helps bound E` (θ, θ∗k) by quadratic terms

from both sides within Bk. Taking care of the stochastic component using the deviation bound in

Assumption 3, one obtains the two-sided bound in terms of the rectangular Gaussian probabilities

γk. The Hybrid-EP method uses data-driven estimates for each of these components to provide a

computable bound in the spirit of Theorem 1. Specifically, the posterior samples are first used to

determine B∗ and then to obtain the partition sets B∗k , and the EP algorithm approximates the γks

after a careful choice of the θ∗ks.

4.7 Numerical experiments

In this chapter’s experiments, we target unimodal densities. One key difference from the previ-

ous chapter’s examples is that in most of the following simulations, the true normalizing constant

is unknown and must be estimated. As a result, there is often no baseline that can be used for

evaluation, so we rely on the results of other well-established estimators. We first evaluate the

performance of the Hybrid-EP estimator in a commonly presented logistic regression model ex-

ample. Next, we expand the repertoire of examples beyond the usual linear/logistic regression

model setup by incorporating Gaussian graphical models (GGM), where the parameter space is

non-Euclidean. Estimating normalizing constants of GGMs (based on Wishart distributions) is

an active area of research (Lauritzen, 1996), motivated by the need to approximate marginal like-
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lihoods for graph selection. Difficulties arise when the underlying graph is non-decomposable,

and barring special cases (Uhler et al., 2016), no closed form analytic solutions are available.

Dedicated sampling based approaches (Atay-Kayis and Massam, 2005) successfully estimate the

normalizing constants in lower dimensions, which give us a strong baseline to use for compari-

son. However, these methods often fail in higher dimensions, making the problem of estimating

normalizing constants in non-decomposable graphical models extremely challenging. As we shall

see in Section 4.7.2.2, the Hybrid-EP estimator is successful in providing accurate approximations

even in these challenging settings, making it a valuable independent contribution in the graphical

modeling literature.

For the graphical model examples, we use the BDgraph package (Mohammadi and Wit, 2019)

which implements the algorithm from Atay-Kayis and Massam (2005), which we refer to as the

GNORM algorithm/estimator. As mentioned previously, the GNORM estimator is a specialized

technique for graphical models that simplifies the structure of the integral and is widely accepted as

a state of the art method for computing normalizing constants for the G-Wishart density. We pro-

vide an overview of this algorithm in Section C.4. We also use the bridgesampling package

(Gronau et al., 2020) for its implementation of both the bridge sampling estimator (BSE) and the

warp bridge sampling estimator (WBSE). The specificity (as well as the non-Gaussian nature) of

the problem prevents some of the more traditional normalizing constant estimation methods from

being directly adapted, so there are fewer competing estimators in the graphical models simula-

tions.

Another difference in the setup of the experiments in Section 3.7 of the previous chapter com-

pared to that of this chapter is that the former focused on the case where a limited number of

MCMC samples is available. In the following simulations, however, we instead seek to highlight

both the Hybrid-EP estimator’s versatility when applied to problems that have parameter spaces

whose shapes are irregular (highly non-Gaussian) and ability to scale well with the dimension of

the parameter space.

61



4.7.1 Competing logistic regression models

First, we consider competing logistic regression models for the Pima Indians dataset, where

the binary response is an indicator of diabetes for n = 532 Pima Indian women. Then, we have the

response-covariate pairs (yi, xi) ∈ {0, 1} × Rd+1 for i = 1, . . . , n, with

pi = pr (yi = 1 | xi) =
ex
′
iθ

1 + ex
′
iθ
.

This gives us the following likelihood function,

p (y | θ) =
n∏
i=1

pyii (1− pi)1−yi .

For the parameter θ, we assume a Gaussian prior, θ ∼ N (0, (τId)
−1). Then we have the following

intractable marginal likelihood,

Z =

∫
Rd
e
∑
i yix

′
iθ−

∑
i log

(
1+ex

′
iθ
)

(2π)−d/2 τ d/2e−
τ
2
θ′θdθ.

With this setup, we consider the model selection problem between the following two competing

models,

M1 = logit (p) = 1 + NP + PGC + BMI + DP,

M2 = logit (p) = 1 + NP + PGC + BMI + DP + AGE,

with four and five predictors, respectively. The definitions and additional context of each of the

predictors used in the logistic regression models above can be found in Section B.3.6. For evalu-

ating these two models, we need to form the Bayes Factor, BF1,2 = p (y | M1) /p (y | M2). We

demonstrate the use of the Hybrid-EP estimator to compute the marginal likelihood ofM1,M2.

DefiningX = (x1, . . . , xn)′ to the n×(d+1) design matrix, we can write the negative log posterior
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as:

Ψ(θ) = −y′Xθ +
n∑
i=1

log
(

1 + ex
′
iθ
)

+
d

2
log (2π)− d

2
τ +

τ

2
θ′θ. (4.11)

Using Eq. (4.11), we can compute the gradient and Hessian of Ψ (θ), so we have all the necessary

functions to proceed with the Hybrid-EP algorithm. In order to obtain the MCMC samples, we

rely on the sampler implemented in Friel and Wyse (2012). We then compare the performance of

the Hybrid-EP estimator with other popular methods, such as the Laplace method (L), Laplace at

the Maximum a Posteriori (L-MAP), Chib’s method (C), Annealed Importance Sampling (AIS),

Power Posterior (PP), Brosse’s estimator (AV), and the Hybrid-EP estimator (HYB-EP). We in-

clude the AV estimator from Brosse et al. (2018) as another method for estimating the normal-

izing constant of log-concave densities. The AV estimator, whose implementation is available at

https://github.com/nbrosse/normalizingconstant, makes refinements to exist-

ing algorithms and provides appealing theoretical bounds and guarantees. In our experiments, we

use each of these estimators to compute the marginal likelihood for bothM1 andM2 and summa-

rize the results in the boxplot shown in Figure 4.1. For fair evaluation, each of the MCMC-based

methods uses the same 200,000 posterior samples. See Section 4.2 of Friel and Wyse (2012) for

a more complete picture of the exact experimental setup and the hyperparameter settings. Given

the large quantity of MCMC samples, we report experimental results from 10 replications. Aside

from the AIS estimator, all of the other estimators have low variance and produce similar results.

In particular, L, L-MAP, PP, and HYB-EP all roughly agree on the marginal likelihood values and

have extremely low variance.

4.7.2 Graphical models

In the following examples, we revisit the problem of estimating the normalizing constant for

distributions in the context of Gaussian graphical models. Recall from Section 3.7.4 that G =

(V,E) denotes an undirected graph with vertex set V = {1, . . . , p} and edge set E. Further,

we have X coming from a normal distribution N (µ,Σ) satisfying the GGM with graph G, with
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Figure 4.1: Boxplots of the log marginal likelihood for two competing logistic regression models
for the Pima Indians dataset. The included methods are: the Laplace method (L), Laplace at the
Maximum a Posteriori (L-MAP), Chib’s method (C), Annealed Importance Sampling (AIS), Power
Posterior (PP), Brosse et al. (2018) (AV), and Hybrid-EP (HYB-EP)

Σ ∈ Sp�0 (G). In order to perform inference on the parameter Σ−1 = Ω, we require a prior

distribution for (Ω, G). Conditional onG, we consider two options for the prior. In Section 4.7.2.1,

we assume G is a decomposable graph, so one option is to place a Hyper-Inverse Wishart (HIW)

(Dawid and Lauritzen, 1993) prior on Ω. In Section 4.7.2.2, we seek to broaden the scope of

examples and consider G to be a general (non-decomposable) graph, leading to a G-Wishart (GW)

(Roverato, 2000) prior on Ω. In the following analyses, we make references to p, the cardinality of

the vertex set of G, and d, the dimension of the parameter space, the latter of which coincides with

the number of free (nonzero) elements on and above the diagonal of the adjacency matrix of G.

We emphasize that even though the setup of the graphical model examples in this section is

quite similar to those shown in the previous chapter, the dimension of the parameter space here is

notably higher, which causes more computational difficulties associated with marginal likelihood

estimation. While there has been substantial work done in the realm of Gaussian graphical models

that deals with inference for both decomposable (Giudici and Green, 1999) and non-decomposable

(Dellaportas et al., 2003; Khare et al., 2015; Atay-Kayis and Massam, 2005) graphs, the need for

algorithms that scale well in high dimensions is ever present. Many of the existing methods in lit-

erature are quite restrictive in their assumptions and only perform well in simple, low-dimensional
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problem settings. Also, the ground truth actually may not be analytically available when the un-

derlying graph is non-decomposable. In such cases, dedicated methods, such as the importance

sampling algorithm from Atay-Kayis and Massam (Atay-Kayis and Massam, 2005) can provide

estimates, but these tend to only be reliable in moderate dimensions and have clear computational

limitations. Given this, our development of a novel method that has proven to adequately handle

high-dimensional problem settings is a valuable contribution to the graphical models literature and

also adds a versatile solution that can be easily be adapted to a wide variety of graphical modeling

contexts.

4.7.2.1 Hyper inverse-Wishart induced Cholesky factor density

Recall that for x1, . . . , xn
iid∼ Np (0,Σ), the likelihood function can be written as follows,

L(Σ) = (2π)−np/2 det (Σ)−n/2 e− tr(Σ−1S)/2, B =
n∑
i=1

xix
′
i. (4.12)

Given G, we place a HIW (δ,Λ) prior on Ω = Σ−1, where δ > 2 is the degrees of freedom and

Λ ∈ Sp�0 is fixed. Like before, we work with the Cholesky factor φ, where φ′φ = Ω. Then, the

results from Section 3.7.4 carry over and we can once again write the likelihood function in terms

of the upper Cholesky factor, φ, and derive the induced prior. Both of these are given in Eq. (3.12)

and (3.13), respectively.

For this example, we set Λ = Ip. Like before, we can generate samples of Ω from the posterior

distribution HIWG (δ + n, Ip +B), extract the Cholesky factor φ and evaluate Ψ (φ) using Eq.

(3.12) and (3.13). In addition to this, we also require expressions for the gradient and Hessian of

Ψ (φ) in order to use the Hybrid-EP algorithm. The closed form expressions for these quantities,

as well as their derivations are shown in Section C.3.

In our simulations, we try to emulate a high-dimensional setting by stacking the adjacency ma-

trix of G9 (shown in Figure 4.2) 8 and 10 times along the diagonal to construct larger graphs, G72

and G90, with d = 200, 250 free elements, respectively. Using these large graphs, we draw data

that satisfy their corresponding GGMs. We take δ = 3, n = 100, and Λ = Ip, for p = 72, 90, and
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Table 4.1: Mean, average error (AE), root mean squared error (RMSE) for the approximations to
the log normalizing constant of the HIWG (δ + n, Ip +B) distribution. G72 has 72 vertices with
200 parameters and G90 has 90 vertices and 250 parameters. We compare Hybrid-EP results with
the Bridge sampling estimator (BSE) and Warp Bridge sampling estimator (WBSE). Estimates are
reported over 100 replications, each using 1000 samples from the true posterior.

TRUTH BSE WBSE HYB-EP

p = 72
d = 200

Mean -6231.297 -6230.561 -6230.594 -6231.7054
AE 0 -0.7356 -0.7026 0.4086
RMSE 0 1.9328 2.2161 0.4506

p = 90
d = 250

Mean -7880.95 -7875.6947 -7875.7620 -7881.4622
AE 0 -5.2554 -5.1880 0.5121
RMSE 0 6.3054 6.0863 0.5574

compare the HYB-EP results with the ground truth (available for HIW distributions), GNORM,

BSE, and WBSE. While the GNORM estimator gives accurate estimates for lower dimensions, it

fails to produce sensible outputs for high-dimensional settings, so we exclude it from Table 4.1.

From the simulation results, we see that when d = 200, BSE and WBSE are reasonably competi-

tive with HYB-EP, but when d = 250, the quality of both bridge sampling estimators deteriorates.

The relatively small error of the Hybrid-EP estimator in this high-dimensional graphical models

setting is particularly encouraging, considering the prominence of the GNORM estimator in the

graphical modeling literature. We attempted to incorporate the Nested sampling estimator as an-

other competitor, but the computational overhead prevented us from obtaining meaningful results

within reasonable time constraints.

4.7.2.2 G-Wishart prior for general graphs

Since the constraint that a graph be decomposable is quite restrictive, the extension to arbitrary

graphs paves the way for a more general distribution that allows for the same analysis to be done

in more diverse contexts. For a general graph G that may not be decomposable, a popular choice
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Figure 4.2: G9 (left), a decomposable graph with vertices enumerated according to a perfect elim-
ination ordering, and G5 (right), an undirected, non-decomposable graph.

for the prior is the G-Wishart prior on Ω, GW (δ,Λ), which has the following density,

f (Ω | G) ∝ |Ω|(δ−2)/2 exp (−tr (ΩΛ) /2) . (4.13)

Here, Ω,Λ are p× p non-negative definite matrices, and δ > 2 is the degrees of freedom. As a re-

sult, developing computational tools to more efficiently use this distribution for inference has been

a popular research area, leading to various methods for reliably sampling from the G-Wishart dis-

tribution and doing model comparison and model search (Rajaratnam et al., 2008; Piccioni, 2000;

Lenkoski, 2013). While the density expression is similar to that of the HIW density, the tractability

of the normalizing constant that we previously enjoyed in the HIW example is no longer univer-

sally present because G is no longer assumed to be decomposable. Estimating this normalizing

constant then becomes a computationally challenging problem. In the following simulations, we

investigate two different problem settings. First, we make some simplifying assumptions that make

the G-Wishart normalizing constant available in closed form in order to establish the accuracy of

the Hybrid-EP estimator. After verifying the viability of our proposed solution, we then generalize

the problem to encapsulate more typical settings where the normalizing constant is intractable so

that we can better compare the Hybrid-EP estimator with GGM-specific algorithms.

4.7.2.3 Exact formula for normalizing constant of G-Wishart density

From Uhler et al. (2016), we know that for special cases, exact formulae for G-Wishart nor-

malizing constants are available. These will serve as our ground truth to evaluate the Hybrid-EP
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estimator. In order for us to take advantage of these closed form normalizing constants, we initially

restrict our focus to GW densities for which the scale matrix is diagonal. Instead of duplicating

the setup in the previous section and incorporating the likelihood function so that we are dealing

with a posterior distribution with a potentially complicated scale matrix, we modify the degrees of

freedom and the scale matrix so that the resulting distribution mimics a posterior distribution, i.e.,

one that exhibits concentration and appears more Gaussian. This can be done by taking a larger

value for δ and taking the scale matrix to be Λ = nIp, where n is large. The normalizing constant

that we wish to compute is of the form

CG (δ,Λ)) = 2
1
2
pδ+|E| · IG

(
1
2
(δ − 2),Λ

)
, (4.14)

IG (δ,Λ) =

∫
Sp�0

|Ω|δ exp (−tr (ΩΛ)) dΩ, (4.15)

which can be computed using Theorem 3.3 in Uhler et al. (2016). Here,

dΩ =

p∏
i=1

dωii ·
∏

i<j,(i,j)∈E

dωij.

With the parameters (δ, nIp), we perform a change of variable Ip → nIp, to obtain the following

normalizing constant:

CG(δ, nIp) = 2
1
2
pδ+|E| · IG

(
1
2
(δ − 2), Ip

)
· n−

1
2
pδ−|E|. (4.16)

Then, for G = G5 as shown in Figure 4.2, we can use the following formula given in Eq. (2.4) in

Uhler et al. (2016) in conjunction with Eq. (4.16) to derive an exact expression for the normalizing

constant of GW (δ, nI5), conditional on the graph G5,

IG5(δ, I5) = π7/2 Γ
(
δ + 5

2

)
Γ (δ + 3)

Γ (δ + 1) Γ(δ + 3
2
) [Γ (δ + 2)]2 Γ(δ + 5

2
).
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4.7.2.4 G-Wishart induced Cholesky factor density

Like before, we require an expression for Ψ in order to use HYB-EP. We first establish some of

the notation relevant to the GW density. For G = (V,E), we follow the conventions in (Roverato,

2000) and define

V = {(i, j) : i ≤ j where i = j, i ∈ V or (i, j) ∈ E},

W = {(i, j) : i, j ∈ V, i ≤ j}.

Then, let V̄ = W \ V , and Ap×p = (aij), where aij = 0 if (i, j) ∈ V̄ or if i = j, and aij = 1

otherwise. Then, let ki be the number of 1’s in the i-th column ofA. Proceeding in a similar fashion

as in the HIW example, we take the Cholesky decomposition of Ω = φ′φ and Λ = (T ′T )−1, where

T = (tij)1≤i≤j≤p. As an added step, we make a change of variable ζ = φT−1. The Jacobian of the

first transformation Ω→ φ is identical to the one given in Section 4.7.2.1, and the Jacobian of the

second transformation φ → ζ is given by
∏p

i=1 t
ki+1
ii . Putting this all together, we can rewrite the

normalizing constant as an integral over the free variables of ζ = (ζij)1≤i≤j≤p,

CG(δ,Λ) = 2p
p∏
i=1

(t2ii)
(δ+bi−1)/2

∫
exp

−1

2

∑
(i,j)∈V̄

ζ2
ij

 p∏
i=1

(ζ2
ii)

(δ+νi−1)/2 exp

(
−1

2

p∑
i=1

ζ2
ii

)

× exp

−1

2

∑
(i,j)∈V ,i 6=j

ζ2
ij

 p∏
i=1

dζii
∏

(i,j)∈V ,i 6=j

dζij, (4.17)

where bi = νi + ki + 1, νi = |ne(i) ∩ {i + 1, . . . , p}|, and ne (i) = {j ∈ V : (i, j) ∈ E}. Taking

log of the integrand above, we can write the following expression for Ψ (ζ),

Ψ (ζ) = C +

p∑
i=1

(δ + νi − 1) log ζii −
1

2

p∑
i=1

ζ2
ii −

1

2

∑
(i,j)∈V̄

ζ2
ij −

1

2

∑
(i,j)∈V ,i 6=j

ζ2
ij, (4.18)

where C = p log(2) +
∑p

i=1(δ + bi − 1) log tii. Another key difference between the GW and

HIW setups is how the non-free elements change the objective function Ψ. In the case of the HIW

69



density, the Cholesky factor observes the same sparsity pattern as the adjacency matrix of the graph

G, so the free elements are simply taken to be the nonzero elements in the upper Cholesky factor.

This makes the evaluation of Ψ very simple because it is defined over the nonzero elements of the

upper Cholesky factor. However, in the case of the GW distribution, the sparsity that we see inG is

not necessarily reflected in the Cholesky factors. Therefore, Ψ is no longer a function of exclusively

the nonzero elements of ζ . Indeed, upon inspection of the integral in Eq. (4.17), we observe that

non-free elements, denoted as ζij, (i, j) ∈ V̄ , have nonzero contribution to the objective function

Ψ. From Lemma 2 in Atay-Kayis and Massam (2005), we know that the non-free elements of ζ

are actually functions of the free elements. Furthermore, we can explicitly represent each of these

non-free entries using the following recursive formula,

ζrs =
s−1∑
j=r

(
−ζrj

λjs
λss

)
−

r−1∑
i=1

(
ζir +

∑r−1
j=i ζij

λjr
λrr

ζrr

)(
ζis +

s−1∑
j=i

ζij
λjs
λss

)
, (4.19)

for (r, s) ∈ V̄ and r < s. As a result, these terms must also be accounted for when computing

the gradient and Hessian of Ψ (ζ). Expressions for both of these quantities and the details for their

calculations are in Appendix C.

In the following experiments, we form larger graphs by stacking G5 along the diagonal 15, 17,

and 19 times, which gives us 180, 204, and 228 free parameters, respectively. Taking δ = 100

and n = 100 to help mimic a posterior distribution, we can then compute the normalizing constant

directly using the formula derived in Eq. (4.16) and compare any subsequent approximations to

this. From our results in Table 4.2, we observe that the Hybrid-EP estimator delivers accurate

results even when d > 200. Similar to the results from the HIW example, BSE and WBSE take

considerably longer to converge and falter as we move to larger graphs, while the Hybrid-EP

estimator consistently delivers reliable estimates.

Since we are not dealing with a true posterior distribution in this example and the scale matrices

are diagonal and thus much simpler in structure, GNORM performs exceedingly well. However, as

seen in the analysis of the previous HIW example where we consider a true posterior distribution
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Table 4.2: Mean, average error (AE), root mean squared error (RMSE) for the approximations to
the log normalizing constant of the GW density for graphs with p vertices and d free elements. We
compare HYB-EP with the Bridge sampling estimator (BSE) and Warp Bridge sampling estimator
(WBSE). Estimates are reported over 100 replications, each using 1000 samples from the true
posterior.

TRUTH BSE WBSE HYB-EP

p = 75
d = 180

Mean -3973.049 -3972.7178 -3972.7340 -3973.5982
AE 0 -0.3316 -0.3154 0.5488
RMSE 0 1.4213 1.4177 0.5994

p = 85
d = 204

Mean -4502.789 -4501.371 -4501.315 -4503.455
AE 0 -1.4180 -1.4743 0.6653
RMSE 0 2.5325 2.3042 0.7174

p = 95
d = 228

Mean -5032.529 -5029.687 -5029.526 -5033.179
AE 0 -2.8425 -3.0034 0.6499
RMSE 0 3.6417 3.6321 0.7143

with a non-diagonal scale matrix, GNORM fails to converge. We investigate this problem setting

more thoroughly in the next section, where we also provide a scalable method for computing the

normalizing constant of the G-Wishart density with non-diagonal scale matrices and large non-

decomposable graphs.

4.7.2.5 G-Wishart density for non-diagonal scale matrices

After demonstrating that the Hybrid-EP estimator indeed produces sensible estimates for cases

where the normalizing constant can be analytically verified, we proceed with the general setting for

which the scale matrix is non-diagonal. Note that the diagonal assumption from the previous sec-

tion led to significant simplifications in the recursive formula for each of the ζrs. While Eq. (4.19)

suggests a complicated relationship between free and non-free parameters, when Λ is diagonal,

this term becomes

ζrs = − 1

ζrr

r−1∑
k=1

ζkrζks,
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making the structure of ζ less cumbersome. Because the Hybrid-EP algorithm requires gradient

and Hessian calculations of Ψ (ζ), the corresponding derivatives taken with respect to the free ele-

ments propagate through these recursive definitions. The diagonal assumption therefore eliminates

the need for many of these calculations.

In the non-diagonal case, we do not benefit from any of the simplifying assumptions and must

keep track of all of the terms in Eq. (4.19). Because the normalizing constant in this case is in-

tractable, we rely on the GNORM estimator from Atay-Kayis and Massam (2005), which is widely

accepted as a state of the art method for computing normalizing constants for G-Wishart densities.

However, we will see that the GNORM estimates quickly fail to be a viable solution as the di-

mension of the graph increases. In order to combat the computational problems associated with

these larger graphs, we make a small modification to the Hybrid-EP algorithm that breaks down

the graph into subgraphs according to its topology using a junction tree representation. These

subgraphs, while still potentially yielding intractable target quantities, pose much smaller scale

problems to which we can apply our approximation scheme. By sidestepping the original problem

and leveraging the attractive properties of a junction representation of a connected graph, we can

achieve drastic computational speedup in the marginal likelihood calculation that would otherwise

be prohibitively expensive.

4.7.2.6 Junction tree representation

We briefly discuss the properties of decomposable versus non-decomposable graphs and how

their respective junction tree representations produce a viable method for simplifying the marginal

likelihood calculation. Connected graphs can be decomposed, often in different ways, into se-

quences of interconnecting subgraphs separated by complete subgraphs. Such a decomposition is

known as a junction tree representation of a graph, which defines an ordered sequence of subgraphs

with a tree structure. Based on a specified (usually arbitrary) ordering of the nodes, a junction tree

decomposition has the form

G 7→ JG = {P1, S2, P2, S3, . . . , Pm−1, Sm, Pm}. (4.20)
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We highlight three important properties of this decomposition:

• Each prime component Pi, i = 1, . . . ,m, is a proper subgraph of G which may or may not

be complete.

• Each separator Si, i = 2, . . . ,m, is a complete subgraph of G, regardless of whether or not

G is decomposable.

• Si is the intersection of Pi with all the previous components {P1, P2, . . . , Pi−1}, so that Si

separates the next component from the previous set.

Essentially, if we decompose a graph into subgraphs until there exists no further decomposition,

then the resulting collection of subgraphs, {Pi : i = 1, . . . ,m}, is the set of prime components.

Consequently, the junction tree representation is nothing but the set of the m prime component

subgraphs of G linked by the sequence of m − 1 separating subgraphs, {S2, . . . , Sm}. One im-

portant concept to note is that the existence of a decomposition does not imply that a graph is

decomposable. If any of the prime components found by this iterative decomposition procedure

is not complete and cannot be further decomposed, then that component is non-decomposable,

thereby making the entire graph non-decomposable (Fitch et al., 2014). From this definition, we

see that a decomposable graph is one that can be successively decomposed into its cliques, i.e., Pi

is complete for i = 1, . . . ,m.

With these concepts in place, we recall the original goal of marginal likelihood estimation,

but also look to include the intermediate step of obtaining the junction tree representation of the

graph. By working with the prime components instead of the original graph, we can overcome the

complexity associated with high-dimensional graphs by working on the individual subgraphs, ulti-

mately reducing the dimension of the original calculation. In addition to the computational benefit

of working with lower dimensional graphs, we are also able to take advantage of the distributional

properties of the complete prime components.

Like before, suppose we have dataX = {x1, . . . , xn} satisfying the GGM with a general graph

G. Since G is assumed to be connected, we can represent G with a junction tree, JG, just as
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we have done in Eq. (4.20). We denote the prime component sequence as P and the separator

sequence as S . In the case where all of the prime components are complete (cliques), we denote

the clique sequence as C . In the general case, however, the prime components may or may not

be complete. In the following discourse, we denote cliques as C and prime components as P .

As mentioned previously, regardless of whether or not a graph is decomposable, we can use the

junction tree representation of G to write the joint density of X given Σ,

p (X | Σ) =

∏
P∈P p (XP | ΣP )∏
S∈S p (XS | ΣS)

, (4.21)

where ΣP and ΣS denote the corresponding sub-matrices of the covariance matrix for the prime

components and separators, respectively. Note that this likelihood function factorizes over the

prime components and separators.

Since the G-Wishart distribution is a generalization of the hyper inverse-Wishart distribution,

we first revisit the case whereG is decomposable, with a hyper inverse-Wishart prior, HIWG (δ,Λ),

on Σ−1. Since G is decomposable, the junction tree representation can be written as JG =

{C1, S2, C2, S3, . . . , Cm−1, Sm, Cm}, where the prime components are cliques. Then, the prior

density factorizes over the cliques and separators,

p (Σ | G) =

∏
C∈C p (ΣC | G)∏
S∈S p (ΣS | G)

. (4.22)

The completeness of the prime components admits distributional properties that make the normal-

izing constants tractable. In particular, the prior density on ΣC is inverse-Wishart,

p (ΣC | δ,ΛC) ∝ |ΣC |−
δ+2|C|

2 etr
{
− 1

2
Σ−1
C ΛC

}
, (4.23)

which has a known normalizing constant. See Section C.2 for more details. Putting this together

with the likelihood given in Eq. (4.21), we deduce that the marginal likelihood also factorizes over
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the cliques and separators as follows,

p (X | G) =

∫
Σ|G

p (X | G) p (Σ | G) dΣ

= (2π)−
np
2

h (G, δ,Λ)

h (G, δ + n,Λ +B)
(4.24)

= (2π)−
np
2

∏
C∈C w (C)∏
S∈S w (S)

. (4.25)

Here B =
∑

i xix
′
i. In this case, the factorization of the likelihood and prior over the cliques yields

a product of tractable normalizing constants. Therefore, for a decomposable graph, the hyper

inverse-Wishart normalizing constants in Eq. (4.24) for the prior and posterior distributions are

functions of the normalizing constants for the inverse-Wishart clique and separator densities, which

have closed forms. Exact formulae for h (G, δ,Λ), w (C) and w (S) can be found in Eq. (C.5) and

(C.6).

We can easily generalize the calculations above to those of a non-decomposable graph G since

the G-Wishart density in Eq. (4.13) has a similar form to the hyper inverse-Wishart density (up to

a normalizing constant). As a result, the marginal likelihood calculation for the G-Wishart prior

mirrors that of the HIW prior such that it also factorizes over the prime components and separators,

p (X | G) = (2π)−
np
2

h (G, δ,Λ)

h (G, δ + n,Λ +B)
= (2π)−

np
2

∏
P∈P w (P )∏
S∈S w (S)

. (4.26)

The difference in this calculation is that the product in Eq. (4.25) is taken over the cliques, whereas

in Eq. (4.26), the product is taken over general prime components, which may or may not be

complete. Since the normalizing constants for the non-complete prime components are generally

not available in closed form, they require estimation via MCMC methods, or in our case, the

Hybrid-EP algorithm.

In summary, the representation of the marginal likelihood in Eq. (4.26) conveniently breaks up

the original calculation involving the entire graph G into sub-problems that are intrinsically lower-
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dimensional and can be solved more efficiently. When P ∈ P is complete, we can rely on the

closed form for the corresponding inverse-Wishart normalizing constant to compute w (P ). For

non-complete P ∈ P , we take the corresponding parameters, Σ−1
P = ΩP , BP ,ΛP , and write the

normalizing constant for the non-complete prime component as the following integral

h (P, δ,ΛP ) =

∫
|ΩP |

δ−2
2 exp (− tr (ΩPΛP ) /2) dΩP . (4.27)

Although this quantity remains intractable, it is a lower-dimensional integral than before, and

we can use the same procedure outlined in Section 4.7.2.4. The posterior normalizing constant

h (P, δ + n,ΛP +BP ) can be similarly computed.

The steps discussed above make up the Hybrid-EP + Junction Tree (JT) algorithm, which

is concisely summarized in Algorithm 3 below. We briefly discuss some of the implementation

details. Before proceeding with any normalizing constant calculations, we extract the junction tree

representation of G using the algorithm from Jones et al. (2005). Then, we proceed to compute

the normalizing constant associated to each of these prime components. Similarly, in the case that

the prime component Pi is complete, we can easily compute the normalizing constant using the

inverse-Wishart normalizing constant formula. In the non-complete case, we apply the Hybrid-EP

algorithm to the subgraph Pi, which is ideally a much smaller graph than the original graph G, and

thus has less computational overhead. Note that while it appears as if each prime component Pi

has its own objective function ΨPi , these are nothing but the original function Ψ defined over the

subgraph Pi, so no additional functions need to be defined. In addition, the function g that extracts

each of the free parameters from ζ simply vectorizes ζ and keeps only the elements that correspond

to the indices of nonzero entries of Pi. We emphasize that for each prime component, after we

apply the transformation, Ω 7→ ζ , the process for estimating the marginal likelihood is identical to

the rest of the general Hybrid-EP algorithm described in Algorithm 2. Essentially, we are applying

the Hybrid-EP algorithm to each of the non-complete prime components to reduce the dimension

of the problem and the associated algorithm runtime complexity. After iterating through each of
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Table 4.3: Mean, SD, and relative runtime of the approximations to the log normalizing constant of
the GW (δ,Λ) density for a graph with p vertices. Here, Λ is not diagonal. We compare the Hybrid-
EP + Junction Tree algorithm with the Atay’s GNORM approximation. Estimates are reported
over 20 replications, each using 1000 samples from the corresponding G-Wishart distribution. The
runtime of the GNORM algorithm is calculated relative to the runtime of the Hybrid-EP + JT
algorithm.

# VERTICES METHOD MEAN SD RUNTIME

p = 10
HYBRID-JT -2477.401 0.0032 1
GNORM -2468.192 0 0.0069

p = 30
HYBRID-JT -7450.691 0.0125 1
GNORM -7427.999 0.7730 4.1393

p = 40
HYBRID-JT -10030.95 0.0152 1
GNORM -10003.81 1.5961 9.85573

p = 50
HYBRID-JT -12563.87 0.0135 1
GNORM -12528.42 2.3854 15.9585

p = 60
HYBRID-JT -15170.05 0.0171 1
GNORM -Inf — 15.1635

the prime components and separators and computing the corresponding normalizing constants,

these individual approximations are summed together to produce the approximation to the log

normalizing constant corresponding to the original graph G.

In the following experiments, we compare the accuracy and runtime of various algorithms

for higher dimensional graphs. In terms of benchmarking accuracy, we do not have a ground

truth available, but both of these methods have previously proven to be reliable and have reported

similar estimates in the results shown in Table 4.2, so for this set of simulations, we evaluate the

estimates against each other. Indeed, for the first four simulations, where p = 10, 30, 40, 50, very

little separates the log normalizing constant estimates. Unsurprisingly, the GNORM estimator

demonstrates its strength in relatively low dimensions with a runtime that is more than 100 times

faster than that of the Hybrid-EP + JT algorithm for p = 10. However, the Hybrid-EP + JT

algorithm quickly flips the script in all of the subsequent experiments and scales well as p grows.

In the final experiment where p = 60, the GNORM estimator fails to give a finite estimate for
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the log normalizing constant, while the Hybrid-EP + JT algorithm continues to produce sensible

estimates. In constructing these experiments, each of the graphs is randomly generated using a

Bernoulli draw to determine the existence of an edge. In addition, we ensure that each graph’s

junction tree representation does not exclusively consist of cliques, as this would simply reduce

the problem to a summation of closed form inverse-Wishart log normalizing constants, and we

would not be able to fairly assess the approximating ability of the Hybrid-EP + JT algorithm.

Contrast these results with the examples from the previous section where the scale matrix was

assumed to be diagonal and the dependence structure was simple. In that setting, the GNORM

estimator outperformed all competing methods even in high dimensions. Evidently, the added

complexity induced by a nontrivial dependence structure contributes to the computational burden

that cannot be easily overcome using standard methods. While the GNORM estimator from Atay-

Kayis and Massam (2005) remains a valuable tool that performs well for graphs that are simpler in

structure and lower in dimension, it is clear that more scalable and robust solutions are needed in

these nontrivial settings. By taking advantage of the junction tree representation of the graph and

weaving in the general Hybrid-EP methodology, we can greatly simplify the normalizing constant

calculation for GGMs. Further, the accuracy and efficiency of this proposed estimator make it

a versatile and appealing alternative to other state of the art algorithms, even those developed

specifically for graphical models.

4.7.2.7 Hybrid-EP + JT algorithm R package

Recognizing the intricacy of the Hybrid-EP + JT algorithm and the difficulty in having to man-

ually combine the Hybrid-EP and the junction tree methodologies, we have developed a package

that is meant specifically for estimating the normalizing constant of G-Wishart densities. The

R package graphml serves as a black box method that performs all of the calculations in the

Hybrid-EP + JT algorithm without any user input other than the adjacency matrix representation

of the graph and the G-Wishart density parameters. See Section B.2 for more details regarding the

installation and use of this package.
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Algorithm 3: Hybrid-EP + Junction Tree
Input : Graph G, prior parameters (δ,Λ), methods for evaluating ΨG, ∇ΨG, ∇2ΨG,

where ΨG is the negative log posterior for a given graph G
Output: Estimate of the logarithm of the normalizing constant of GWG (δ,Λ)

Obtain the junction tree representation of G 7→ JG = {P1, S2, P2, S3, . . . , Pm−1, Sm, Pm}
for i ∈ {1, . . . ,m} do

if i > 1 then
log ẐSi ← log h (Si, δ,ΛSi) /* W−1

Si
(δ,ΛSi) normalizing constant */

end
if Pi is complete then

log ẐPi ← log h (Pi, δ,ΛPi) /* W−1
Pi

(δ,ΛPi) normalizing constant */
else

Compute the Cholesky decomposition, Λ−1
Pi

= T ′iTi

for j ∈ {1, . . . , J} do

Sample Ω(j) ∼ GWPi (δ,ΛPi)

Compute the Choleksy decomposition, Ω(j) = φ′(j)φ(j)

ζ(j) ← φ(j)T
−1
i

Extract the free parameters uj = g
(
ζ(j)

)
end

Fit a CART model, Ti, to (u1,ΨPi (u1)), . . . , (uJ ,ΨPi(uJ))

Extract the partition A = {A1, . . . , AK} from Ti of the bounding box A of U
Calculate the global mode, u0, of ΨPi

for k ∈ {1, . . . , K} do

uk ← argminu∈Ak ||u− u0||1
λk ← ∇ΨPi (uk)

Hk ← ∇2ΨPi (uk)

Ck ← (2π)d/2|Hk|−1/2 exp
(

1
2

(
u′kH

−1
k uk − 2λ′kuk + λ′kH

−1
k λk

))
bk ← Hkuk − λk
Gk ←

∫
Ak
N
(
u | H−1

k bk, H
−1
k

)
du

Ẑk ← Ck ·Gk

end
log ẐPi ← log-sum-exp

(
log Ẑ1, . . . , log ẐK

)
end

end
return log Ẑ =

∑
i log ẐPi −

∑
i log ẐSi
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4.8 Chapter Summary

In this chapter, we developed an extension of the vanilla Hybrid estimator for target distribu-

tions that are unimodal and approximately log-concave around the mode. By introducing higher-

order terms into the approximation to the negative log posterior Ψ, we are able to make large strides

in terms of both the accuracy of the estimator and the range of problems that we can tackle. With

these added terms, the integration over the partition sets becomes more involved, and we subse-

quently need to bring in approximate integration techniques that are suitable for high dimensions.

We emphasize that other than the unimodal assumption, the extra requirements for the Hybrid-EP

estimator only consist of the additional gradient and Hessian functions. As such, the setup of the

algorithm itself remains fairly general, so the Hybrid-EP algorithm can easily be used in a variety

of problems. In our examples, we demonstrate the widespread applicability of our proposed esti-

mator, ranging from simple problems such as the logistic regression example to more complicated

and specialized problems like graphical model problems. In particular for the GGM examples, es-

timating the marginal likelihood is known to be a computationally challenging task and has various

dedicated methods for this calculation.

Our empirical results indicate that the Hybrid-EP estimator excels even in high-dimensional

settings and thus presents itself as a reliable and accurate estimator. This is particularly interesting

in the case of non-decomposable graphical models, where there is a clear dearth of scalable meth-

ods. While a complete theoretical analysis of the Hybrid-EP estimator is an interesting avenue for

future work, the minimal assumptions underlying Theorem 1 already offer some insights into the

success of methodology in high-dimensional settings. In addition, it is especially noteworthy that

the Hybrid-EP algorithm provides a high degree of automation in that beyond the hyperparameter

settings in CART, there is nothing further to tune. Practitioners can easily employ this algorithm

without being burdened by example-specific model settings. Furthermore, since the implementa-

tion of both the general Hybrid-EP method and the Hybrid-EP + JT method have an accompanying

R package, the task of using these algorithms in practice becomes even more straightforward.
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5. SUMMARY AND CONCLUSIONS

In this dissertation, we present a novel method for approximating the marginal likelihood that

addresses many of the known practical issues associated with existing algorithms. While abun-

dant research has been devoted to computing this typically intractable, high-dimensional integral,

much of the work is centered around using MCMC samples from the target distribution to form an

asymptotically unbiased estimator. In our experiments, we demonstrate how heavily some of these

methods rely on having a large number of exact samples from the posterior distribution in order

to form accurate estimates and reveal the consequences when these sample size requirements are

not met. This often becomes a hindrance when the target distribution is highly nontrivial, as the

accuracy and runtime issues become practical considerations. Even though there is no shortage

of such estimators, some better suited for specific problem settings than others, there is a growing

necessity for a more general method that is both robust to the number and quality of the MCMC

samples and scalable with respect to the dimension of the parameter space. Our proposed Hybrid

estimator and its extensions offers a general solution to the marginal likelihood estimation problem

that addresses these issues.

Our approach breaks up the marginal likelihood estimation calculation into two separate steps,

with the essential components of our method consisting of the decision tree partitioning scheme

that identifies high probability regions of the parameter space and the piecewise estimator to the

negative log posterior defined over each of the partition sets. This modularization allows for po-

tential extensions and modifications to either of the steps with minimal effect on the rest of the

estimation procedure. In Chapter 3, we present the vanilla Hybrid estimator, which uses a piece-

wise constant approximation to the negative log posterior. Chapter 4 extends this methodology to

form the Hybrid-EP estimator to target unimodal densities by incorporating higher order terms and

employing high-dimensional integration techniques. Through different examples and statistical

models, we show that the Hybrid estimator performs well in scenarios where MCMC samples are

scarce and non-exact, where the underlying parameter space is both high-dimensional and com-
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plex, and where there exist state of the art estimators that have been developed specifically for the

problem.

One important aspect of our work that we highlight is the additional software contribution that

efficiently implements the proposed methodologies. While there exist many marginal likelihood

estimation algorithms, the ones that have accompanying software packages that can be conve-

niently applied to a multitude of problems are few. Those that are available are often complicated

in nature (many hyperparameters to tune, extensive knowledge of the underlying algorithm, famil-

iarity with the code base, etc.) or too specialized in their applications that they do not perform

well under slight perturbations of the problem settings. In our experiments, we repeatedly demon-

strate that the Hybrid estimator can be seamlessly integrated into a diverse assortment of statistical

models. The architecture for this approximation framework is available through the hybrid R

package (Chuu, 2022b). In most instances, the algorithms in this package can serve as black-box

methods for computing normalizing constants. For the specific case of graphical models where

we proposed the Hybrid-EP + JT algorithm in Section 4.7.2.6, we developed a separate package,

graphml (Chuu, 2022a), which is not only easy to use, but also highly efficient.

5.1 Further Study

It is clear that in some instances, such as the factor model example, further work must be

done in order to make the Hybrid estimator competitive with other state of the art methods. The

obvious next step for this example is to adapt the factor model setup to the Hybrid-EP setup, which

involves obtaining the gradient and Hessian of the negative log posterior of (β,Ω), but upon doing

so, we run into issues with the Hessian matrix because the likelihood surface is not log-concave.

We explored using a Cholesky decomposition of Σ = ββ′ + Ω so that we could reformulate the

problem to work instead with the Cholesky factors, but the problem of obtaining an expression for

the induced prior density prevented us from tractably evaluating the log posterior distribution. As

a potential solution, we can turn to variational methods to approximate the induced prior here so

that the Hybrid-EP method can properly evaluate the necessary functions.

Despite this issue, we emphasize that our proposed methods’ versatility allows for model-
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specific adjustments to be done without substantial modification to the core algorithm itself. In

particular, because our algorithm is parametrization-invariant and only requires a way of obtaining

MCMC samples and an expression for the negative log posterior, future work that involves changes

to any of the examples can be easily accommodated.

Another area that has potential for improvement is the partitioning scheme used to identify

high-probability regions of the parameter space. Currently, the Hybrid approximation algorithm

and its extensions make use of the CART decision tree algorithm that partitions the feature space.

One obvious modification that is worth exploring is an alternative tree building routine such as

BART (Chipman et al., 2010), whose sum-of-trees approach allows for each of the trees to target a

part of the overall fit, rather than relying on a single tree to capture the relationship between the re-

sponse and the predictors. Other extensions to BART that adapt to smoothness and sparsity (Linero

and Yang, 2018) and fit piecewise linear functions at each of the leaves/terminal nodes instead of

piecewise constants are also viable alternatives (Prado et al., 2021) that can better identify regions

of interest in the predictor space. However, the potential accuracy and flexibility that we might

gain from these extensions may be overshadowed by the additional computational costs associated

with fitting more complex decision trees.

For applications in statistical physics or genomic analysis, data representation is frequently

very rich and high-dimensional. In addition to potential sparsity, there could exist redundancies

and dependence between the variables that further inflate the parameter space. For these cases

where the data points in RD have an intrinsic dimension that is significantly smaller than D, it

may be beneficial to develop and incorporate a function estimation method that can exploit the fact

that the covariates (or parameters) lie on a d-dimensional manifold of RD, where d � D. This

paves the way for another angle worth pursuing—taking advantage of a potentially lower intrinsic

dimension of the parameter space. While our empirical results demonstrate reliable results in high

dimensions, we can further improve upon the speed and accuracy if we can appropriately refor-

mulate the underlying problem so that we are operating in a lower dimensional setting. Random

projection trees (Dasgupta and Freund, 2008; Kpotufe and Dasgupta, 2012), which account for the
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intrinsic low dimensional structure in data without needing to explicitly learn the structure, present

an alternative direction that we can explore to deal with high-dimensional spaces more efficiently.

The caveat of using the random projection tree splitting routine is that resulting partition sets are

no longer rectangular, so our simplified representation of the integral would need to be revised.

Finally, we recognize that even though the Hybrid estimator empirically demonstrates its com-

petitiveness in a variety of examples, many of the popular marginal likelihood estimation methods

have strong theoretical guarantees that may make those methods more appealing. As such, the

theoretical aspects of the Hybrid estimator remain an area of future work and development.
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APPENDIX A

PROOF OF THEORETICAL REESULTS

A.1 Assumptions

We provide supplemental details regarding the assumptions stated in Section 4.6. First, we

make an additional note about Assumptions 1 and 2. Given n samples and d free parameters,

the posterior will concentrate in a
√
d/n neighborhood of the pseudo-true parameter under mild

assumptions, that is, we can take

B∗ =
d∏
j=1

[
θ∗j − C

√
d/n, θ∗j + C

√
d/n
]
.

Now, if

|E` (θ∗k, θ
∗) | = −E` (θ∗k, θ

∗) - n‖θ∗k − θ∗‖2,

then the second part of Assumption 2 is clearly satisfied. This is a mild assumption which is

broadly satisfied. In particular, for well-specified models,

−E` (θ∗k, θ
∗) = DKL

(
pθ∗ || pθ∗k

)
,

and the inequality requires the KL divergence to be bounded by a constant multiple of the squared

`2 norm in a neighborhood of the truth. We now focus on Assumption 3. For the sake of con-

creteness, we focus on the generalized linear model (GLM) framework, where the response yi ∈ R

conditional on the covariates xi ∈ Rd are independently distributed according to a GLM Px′iβ in
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canonical form, with the log-likelihood

` (β) = log pβ (y) =
n∑
i=1

{
yix
′
iβ − a (x′iβ)

}
,

where β ∈ Rd is the unknown vector of regression parameters and a : R → R is a strictly convex

partition function with first and second derivatives a(1) and a(2), respectively. The pseudo-true

parameter β∗ satisfies

∇E` (β∗) =
n∑
i=1

{Eyi − a(1) (x′iβ
∗)}xi = 0d. (A.1)

The quantity `r (β)−`r (β∗) appearing in Assumption 3 equals 〈y−Ey,X (β − β∗)〉 in the present

context. Define an index set T = {x ∈ <d : ‖x‖ ≤ 1}, and a stochastic process Zα = 〈y −

Ey,Xα〉 for α ∈ T . Observe that for any β 6= β∗ ∈ B∗,

∣∣〈y − Ey,X (β − β∗)〉
∣∣ =

∣∣∣∣〈y − Ey,
X (β − β∗)
‖β − β∗‖

〉
∣∣∣∣ ‖β − β∗‖

≤
(

sup
α∈Sd−1

|〈y − Ey,Xα〉
∣∣)R(d

n

)1/2

,

where Sd−1 = {x ∈ <d : ‖x‖ = 1}. Letting α0 = 0d, we can thus bound

sup
β∈B∗
|`r (β)− `r (β∗) | ≤ R (d/n)1/2 ( sup

α∈T
|Zα − Zα0|

)
.

The verification of Assumption 3 thus requires control over the supremum of the stochastic process

(Zα), which in turn depends on the moment assumptions on the true data distribution.

As an illustrative example, assume that (y − Ey) is a centered sub-Gaussian random variable

(Vershynin, 2018), that is, there exists a constant τ > 0 such that for any v ∈ <n,

E exp〈y − Ey, v〉 ≤ exp
(
τ 2‖v‖2/2

)
.
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If the coordinates yi are independent, one may take τ = maxi ‖yi − Eyi‖ψ2 to be the maximum of

the sub-Gaussian norms of (yi −Eyi); see Vershynin (2018) for the definition of the sub-Gaussian

norm ‖ · ‖ψ2 . However, independence is not necessary for the above condition to hold and it can be

verified for various dependence structures. In particular, if y has a joint Gaussian distribution, then

τ equals the largest eigenvalue of cov (y). Under the above sub-Gaussian assumption, the process

(Zα) has sub-Gaussian increments, since for any λ ∈ <,

Eeλ(Zα−Zα̃) ≤ eλ
2τ2‖Xα−Xα̃‖2/2 ≤ eλ

2τ2‖X‖22‖α−α̃‖2 ,

where ‖X‖2 is the operator norm of X . For processes with sub-Gaussian increments, a convenient

high-probability bound for the supremum was developed in Theorem 4.1 of Liaw et al. (2017) as

a corollary to the more general tail bound of Dirksen (2015). In preparation for applying their

bound, we have

‖Zα − Zα̃‖ψ2 ≤ τ‖X‖2‖α− α̃‖,

for any α, α̃ ∈ T . Also, diam (T ) = supα,α̃∈T ‖α − α̃‖ ≤ 2 and the Gaussian width of T ,

E supα∈T 〈g, α〉 for g ∼ Nd (0, Id), is in the order of d1/2. Thus, with probability at least 1− e−d,

sup
α∈T
|Zα − Zα0| ≤ Cτ‖X‖2 d

1/2.

It then follows that with probability at least 1− e−d,

sup
β∈B∗
|`r (β)− `r (β∗) | ≤ Cd.

Alternatively, suppose (yi−Eyi) are independent sub-exponential (Vershynin, 2018) random vari-
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ables, so that there exist gi > 0 and νi such that

Eeλ(yi−Eyi) ≤ eλ
2ν2i /2, |λ| < gi, i = 1, . . . , n.

Fix λ such that |λ| ≤ mini gi := ḡ−1. Under the above assumption, we have, for any α, α̃ ∈ T that

Eeλ
Zα−Zα̃
‖Xα−Xα̃‖ =

n∏
i=1

Eeλ
x′i(α−α̃)
‖Xα−Xα̃‖ (yi−Eyi)

≤ e
λ2
∑n
i=1

ν2i {x
′
i(α−α̃)}

2

‖Xα−Xα̃‖2

≤ eλ
2ν2/2

≤ eλ
2ν2/{2(1−|λ|ḡ)},

where ν = maxi νi. From the second to the third step, we used the fact that |x′i(α − α̃)|/‖Xα −

Xα̃‖ ≤ 1. Hence, Zα is a centered process on T with sub-exponential increments. Define the

norm

d (α1, α2) = ‖Xα1 −Xα2‖.

Clearly, d (α1, α2) ≤ ‖X‖2 for α1, α2 ∈ T . From Theorem 2.1 of Baraud (2010),

P
[

sup
α∈T
|Zα − Zα0| > ‖X‖2

√
1 + x+ ḡx

]
≤ 2e−x, x > 0,

thereby verifying Assumption 3 by setting x = d.

A.1.1 Proof of Theorem 1

Let Yg denote the subset of the sample space Y where the events in Assumptions 1 and 2 both

hold. We shall work inside the set Yg, with P (Yg) ≥ 1− δ− δ̃ by Bonferroni’s inequality. We first
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prove the upper bound. By Assumption 1,

(1− η) ≤ γ (B∗) =

∫
B∗
e`(θ,θ

∗) π (θ) dθ∫
Θ
e`(θ,θ∗) π (θ) dθ

.

Rearranging terms, this gives

logZ ≤ ` (θ∗) + log

(
1

1− η

)
+ log

∫
B∗
e`(θ,θ

∗) π (θ) dθ.

We now bound the integral inside the logarithm in the right hand side of the above display. Write

∫
B∗
e`(θ,θ

∗) π (θ) dθ =

∫
B∗
e`r(θ)−`r(θ

∗)+E`(θ,θ∗)π (θ) dθ

≤ eCd
∫
B∗
eE`(θ,θ

∗)π (θ) dθ

= eCd
K∑
k=1

∫
Bk

eE`(θ,θ
∗
k)+E`(θ∗k,θ

∗)π (θ) dθ

≤ e(C+C1)d

K∑
k=1

[
sup
θ∈Bk

π (θ)
] ∫

Bk

e−(θ−θ∗k)′Hk(θ−θ∗k)/2dθ

= e(C+C1)d

K∑
k=1

[
sup
θ∈Bk

π (θ)
]

(2π)d/2 |Hk|−1/2

∫
Bk

Nd
(
θ; θ∗k, H

−1
k

)
= e(C+C1+log(2π)/2)d

K∑
k=1

[
sup
θ∈Bk

π (θ)
]
|Hk|−1/2 γ2k.

Cascading through the previous inequalities delivers the upper bound. For the lower bound, we use

logZ = ` (θ∗) + log

∫
Θ

e`(θ,θ
∗) π (θ) dθ

≥ ` (θ∗) + log

∫
B∗
e`(θ,θ

∗) π (θ) dθ.
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Thus, we need a lower bound to the same quantity we derived an upper bound for previously. Write

∫
B∗
e`(θ,θ

∗) π (θ) dθ =

∫
B∗
e`r(θ)−`r(θ

∗)+E`(θ,θ∗)π (θ) dθ

≥ e−Cd
∫
B∗
eE`(θ,θ

∗)π (θ) dθ

= e−Cd
K∑
k=1

∫
Bk

eE`(θ,θ
∗
k)+E`(θ∗k,θ

∗)π (θ) dθ

≥ e−(C+C1)d

K∑
k=1

[
inf
θ∈Bk

π (θ)
] ∫

Bk

e−(θ−θ∗k)′Hk(θ−θ∗k)/(2ck)dθ

= e−(C+C1)d

K∑
k=1

[
inf
θ∈Bk

π (θ)
]

(2π)d/2 c
d/2
k |Hk|−1/2

∫
Bk

Nd(θ; θ∗k, ckH−1
k )

≥ e

{
−C−C1+log(2π)/2+mink(log ck)/2

}
d

K∑
k=1

[
inf
θ∈Bk

π (θ)
]
|Hk|−1/2 γ1k.

This proves the lower bound.
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APPENDIX B

DETAILS FOR NUMERICAL EXPERIMENTS

B.1 General use of the hybrid package

For convenience, we have developed hybrid (Chuu, 2022b), an R package that allows practi-

tioners to easily compute estimates of the marginal likelihood. In Figure B.1, we provide a snippet

of code to demonstrate how both the vanilla Hybrid approximation from Chapter 3 and the Hybrid-

EP approximation from Chapter 4 can be used in practice. For the vanilla Hybrid method, users

only need to provide a way to evaluate the negative log posterior Ψ and a sampler for the target

distribution γ. After drawing the samples using the user-defined sample_post() and evalu-

ating them using the hybrid::preprocess() function, we can calculate the log marginal

likelihood estimate with the hybrid::hybml_const() function.

For the Hybrid-EP method, users will need to supplement the input of the vanilla Hybrid

method with function definitions for the gradient vector and Hessian matrix of Ψ. These func-

tion definitions, along with the posterior samples, are then passed into the hybrid::hybml()

function. Optionally, a representative point (typically the global mode) can be supplied to the func-

tion call to play the role of u0 as defined in Section 4.4, but in the case where no point is given, the

implementation will take u0 to be the point with highest posterior mass. Both functions perform

the partitioning and integration calculations under the hood and return an approximation to the log

marginal likelihood. We emphasize that beyond specifying the model and supplying a sampler,

which is typically required in all other competing methods, there are no hyperparameters to tune

and no problem-specific settings that require modification or attention. This makes our solution

one of the few black box marginal likelihood estimation methods that has been empirically shown

to scale well with dimension and accommodate complex parameter spaces.

One detail to be mindful of when writing the user-defined functions is that the posterior sam-

ples generated by the sample_post() function must be returned as a matrix, where each of the
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samples is stored row-wise as a d-dimensional vector. Here, d corresponds to the dimension of the

parameter space. In addition, the input to the negative log posterior functions must be vectors, so

for parameters that are not already vectors (covariance matrices, a group of vectors and scalars,

etc.), a suitable concatenation and/or vectorization scheme must be defined to transform the model

parameters. The repository that contains the source code for these algorithm implementations can

be found at https://github.com/echuu/hybrid. The repository also contains instal-

lation instructions and a working example that demonstrates the use of both the vanilla Hybrid

method and the Hybrid-EP method to compute the marginal likelihood for the Bayesian linear

regression model with a multivariate normal inverse-gamma prior on the parameters (β, σ2), as

described in Section 3.7.1.1. This example, along with all of the other examples and simulation

results in this dissertation can be reproduced using the hybrid package. For the graphical model

examples, see Section B.2 for a dedicated package.

B.2 General use of the graphml package

While the graphical modeling examples can be adapted to be used with the hybrid package

by following the code outline in Figure B.1, we have also developed a package specific to graphical

models that further simplifies the process of weaving together the Hybrid-EP methodology with

the junction tree representation of general graphs—as discussed in Section 4.7.2.6 and presented

in Algorithm 3—because of the importance of the normalizing constant calculation in graphical

modeling literature. With the graphml (Chuu, 2022a) package, we can thus easily employ the

Hybrid-EP + JT methodology to compute the normalizing constant of the G-Wishart density given

the adjacency matrix for a general graph, the scale matrix, the degrees of freedom, and the number

of MCMC samples to be drawn from the corresponding G-Wishart density.

Along with the following snippet of code in Figure B.2 that demonstrates how the Hybrid-EP

+ JT algorithm can be used in practice, we also include the code necessary to obtain the GNORM

approximation from Atay-Kayis and Massam (2005), as provided by the BDgraph package. Note

that the arguments passed into graphml::hybridJT() are nearly identical to those passed into

BDgraph::gnorm(), with the exception of an additional edge matrix argument which can be
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1 #### ----------------- VANILLA HYBRID, HYBRID-EP DEMO ----------------- ####
2

3 ## In the functions below, ‘params’ is an object that stores
4 ## any miscellaneous values (hyperparameters, sample size, dimensions)
5 ## that may be necessary to compute the corresponding functions.
6

7 library(hybrid)
8

9 #### ----- The following 4 functions must be supplied by the user ----- ####
10

11 # sample_post(): returns a (J x d) matrix of samples from the
12 # target distribution
13 sample_post = function(J) { ... }
14

15 # psi(): returns the (scalar) negative log posterior evaluated at u
16 psi = function(u, params) { ... }
17

18 # grad(): returns the (d x 1) gradient vector of psi evaluated at u
19 grad = function(u, params) { ... }
20

21 # hess(): returns the (d x d) Hessian matrix of psi evaluated at u
22 hess = function(u, params) { ... }
23

24 #### ----- Problem-specific initializations ----- ####
25

26 params = init( ... ) # initialize any hyperparameters
27 J = 5000 # number of posterior samples to draw
28 samps = sample_post(J) # (J x d) samples from the target distribution
29

30 # evaluate posterior samples using psi()
31 psi_df = hybrid::preprocess(samps, d, params)
32

33 # compute vanilla hybrid estimate for the log Z
34 hybrid::hybml_const(psi_df)$logz
35

36 # compute hybrid-ep estimate for the log Z
37 hybrid::hyb(psi_df, params, grad, hess)$logz

Figure B.1: Demonstration of how to use hybrid package in R. This package contains the imple-
mentation for both the vanilla Hybrid and Hybrid-EP algorithms for estimating the log normalizing
constant of a target distribution.

computed using the built-in function, graphml::getEdgeMat(), which takes an adjacency

matrix as input. We intentionally juxtapose these two approximation functions in Figure B.2 to

demonstrate that the Hybrid-EP + JT method requires remarkably little user input and can be used

just as easily as other state of the art methods. Recall that for the algorithms in the hybrid pack-
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age, we require user-defined functions for the objective function, gradient, and Hessian, whereas

in this package, all of these functions are already optimally implemented within the package. In

the case of the G-Wishart density, these functions are quite cumbersome to implement because of

their recursive structure, so removing this from the list of user responsibilities is especially con-

venient. The Github repository that contains the source code for this package can be found at

https://github.com/echuu/graphml. Along with installation instructions, the reposi-

tory also contains a working example of the graphml package that sets up the problem for com-

puting the normalizing constants of a G-Wishart densities corresponding to graphs with 30 and 60

vertices and compares the runtime with that of Atay’s method. This example, along with the rest

of the simulation results in Table 4.3, can easily be reproduced using the graphml package and

following the approach outlined in the working example.

1

2 #### ------------ GRAPHML / HYBRID-EP + JT ALGORITHM DEMO ------------ ####
3

4 library(graphml)
5

6 #### ----- Initialize G-Wishart parameters ----- ####
7

8 G = ... # initialize adj. matrix representation of graph
9 b = ... # degrees of freedom, b > 2

10 V = ... # non-negative definite scale matrix
11 J = ... # number of samples to draw from target density
12

13 # Compute the edge matrix for the JT part of the algorithm
14 EdgeMat = graphml::getEdgeMat(G)
15

16 # ---- Compute the log normalizing constant of the GW(b, V) density ---- #
17

18 # Compute the log normalizing constant using Atay’s algorithm
19 BDgraph::gnorm(G, b, V, J)
20

21 # Compute the log normalziing constant using the Hybrid-EP + JT algorithm
22 graphml::hybridJT(G, EdgeMat, b, V, J)

Figure B.2: Demonstration of how to use graphml package in R. This package contains the im-
plementation for Hybrid-EP + Junction Tree algorithm for estimating the log normalizing constant
of G-Wishart densities. Atay’s estimator can similarly be computed using the gnorm() function
from the BDgraph package.
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B.3 Experiments

We elaborate on some of the posterior distribution and marginal likelihood calculations from

the experiments sections. Code to reproduce the simulation results can be found in the examples

sub-directories within the hybrid and graphml repositories.

B.3.1 Conjugate 2-d example

In the conjugate normal model in Section 3.4.1, the posterior distribution of (µ, σ2) is well-

known. In particular, µ | σ2, y1:n ∼ N (mn, σ
2/wn) and σ2 | y1:n ∼ IG (rn/2, sn/2), with

posterior parameters defined as follows,

mn =
mȳ + w0m0

n+ w0

, wn = w0 + n, rn = r0 + n,

sn = s0 +
n∑
i=1

(yi − ȳ)2 +

(
nw0

n+ w0

)
(ȳ −m0)2.

With this in place, the marginal likelihood can be computed in closed form,

p (y) =

∫ [ n∏
i=1

N
(
yi | µ, σ2

)]
N
(
µ | m0, σ

2/w0

)
IG
(
σ2 | r0/2, s0/2

)
dβ dσ2

= π−n/2
(
w0

wn

)1/2 Γ
(
rn
2

)
Γ
(
r0
2

) · sr0/20

s
rn/2
n

. (B.1)

For the experiments in Section 3.4.1, each of the n = 100 observations is drawn from a normal

distribution with mean 30 and variance 4. The prior hyperparameters are m0 = 0, w0 = 0.05, r0 =

3, s0 = 3. Using these to compute the posterior and plugging these into Eq. (B.1), we calculate the

true log marginal likelihood to be -113.143.
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Figure B.3: True value of β; each component is represented as a tile and takes on value between
-10 and 10. Values closer to 10 are red and values closer to -10 are white.

B.3.2 Multivariate normal inverse-gamma

Recall the linear regression setup given in Section 3.7.1 and 3.7.1.1. Because we are dealing

with a conjugate prior, the posterior distribution can easily be shown to have the following form:

β | σ2, y ∼ N
(
µn, σ

2Vn
)
,

σ2 | y ∼ IG (an, bn) ,

with posterior parameters,

µn = Vn(X ′y + V −1
β µβ),

Vn = (X ′X + V −1
β )−1,

an = a0 + n/2,

bn = b0 + (y′y + µ′βV
−1
β µβ − µ′nV −1

n µn).

Then the marginal likelihood can be computed directly to be

p (y) =
1

(2π)n/2
ba00

bann

Γ (an)

Γ (a0)

det (Vn)1/2

det (Vβ)1/2
. (B.2)

Each of the 100 observations is drawn from a d-dimensional normal distribution according to

the linear regression model presented in Section 3.7.1. In the experiments, we take d = 19, and the

prior hyperparameters values are µβ = 0d, Vβ = Id, a0 = 1, b0 = 1. The true value of β is shown
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as a heatmap in Figure B.3 and σ2 = 4. Plugging these into Eq. (B.2), we compute the true log

marginal likelihood to be -303.8482.

B.3.3 Truncated multivariate normal

With the truncated multivariate normal prior given in Section 3.7.1.2, we obtain the following

form of the posterior distribution of β,

β | y ∼ Nd
(
β | Q−1η,Q−1

)
· 1[0,∞)d ,

with posterior parameters Q = 1
σ2 (X ′X + λId) and η = 1

σ2X
′y. Each of the n = 100 observa-

tions is drawn from a d-dimensional normal distribution according to the linear regression model

presented in Section 3.7.1. In the experiments, we take d = 20, and the prior hyperparameters

values are σ2 = 4, λ = 0.25. The true value of β is shown as a heat map in Figure B.4.

We provide the details for computing the baseline used for comparison in the experiments. Let

R = [0,∞)D and µ = Q−1η. Then, we integrate the product of the likelihood and prior to obtain

the normalizing constant of the resulting posterior distribution.

p(y) =

∫
N
(
y | Xβ, σ2I

)
· 1

2−d
· N

(
β | 0, σ2τ−1I

)
1R (β) dβ

= 2d
∫
R

N
(
y | Xβ, σ2I

)
· N

(
β | 0, σ2τ−1I

)
dβ

= 2d
∫
R

(
2πσ2

)−n
2 exp

{
− 1

2σ2
(y −Xβ)′ (y −Xβ)

}(
2πσ2

)− d
2 τ

d
2 exp

{
− τ

2σ2
β′β
}
dβ

= 2d · (2π)−
n
2
(
σ2
)− 1

2
(n+d)

τ
d
2 · e−

1
2σ2

y′y

×
∫
R

(2π)−
d
2 exp

{
−1

2

(
β′

1

σ2
[X ′X + τI] β − 2β′

[
1

σ2
X ′y

])}
dβ

= 2d · (2π)−
n
2
(
σ2
)− 1

2
(n+d)

τ
d
2 · e−

1
2σ2

y′y · e
1
2
η′Q−1η

×
∫
R

(2π)−D/2 exp
{
− 1

2

[
β′Qβ + η′Q−1η − 2β′η

] }
dβ

= 2d · (2π)−
n
2
(
σ2
)− 1

2
(n+d)

τ
d
2 · e−

1
2σ2

y′y · e
1
2
η′Q−1η · |Q|−

1
2

×
∫
R

(2π)−
d
2 |Q|

1
2 exp

{
−1

2

(
β −Q−1η

)′
Q
(
β −Q−1η

)}
dβ. (B.3)
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Figure B.4: True value of β; each component is represented as a tile and takes on value between 0
and 1. Values closer to 1 are red and values closer to 0 are white.

Since the integral in Eq. (B.3) is intractable, we use the TruncatedNormal::pmvnorm()

function which implements Botev’s minimax tilting method for estimating the normalizing con-

stant of truncated multivariate normal distributions in high dimensions.

B.3.4 Approximate posterior samples

For the multivariate normal inverse-gamma example in Section 3.7.2 where we draw approx-

imate posterior samples from the mean field approximation to the posterior distribution, each of

the n = 100 observations is first drawn from a d-dimensional normal distribution according to the

linear regression model presented in Section 3.7.1. In the experiments, we take d = 9, and the prior

hyperparameters values are µβ = 0d, Vβ = Id, a0 = 1, b0 = 1. The posterior distribution of β is

approximated by a product of 3-dimensional normal distributions, each with mean and covariance

components, (µ
(i)
n , V

(i)
n ) for i = 1, 2, 3. These are extracted from the true posterior parameters

(µn, Vn), as defined in Section B.3.2, in the following way:

µn =



µn1

µn2

...

µn9


=



µ
(1)
n

µ
(2)
n

µ
(3)
n


, Vn =



V
(1)
n

V
(2)
n

V
(3)
n


.

Here, Vn is block diagonal, so the approximating distribution ignores some of the dependence

structure that is present in the true posterior distribution. The true value of β is shown as a heat

map in Figure B.5 and σ2 = 4. Using the formula for the marginal likelihood derived in Eq. (B.2),
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Figure B.5: True value of β; each component is represented as a tile and takes on value between
-10 and 10. Values closer to 10 are red and values closer to -10 are white.

we compute the true log marginal likelihood to be -147.3245.

B.3.5 Unrestricted covariance matrices

We consider the inverse-Wishart prior on Σ, W−1(Λ, ν), where Λ is a positive definite d × d

matrix, and ν > d− 1. The prior density has the following form,

π (Σ) = CΛ,ν det (Σ)−(ν+d+1)/2 exp
{
− tr

(
Σ−1Λ

)
/2
}
,

where CΛ,ν = det (Λ)ν/2 /
(
2νd/2 Γd (ν/2)

)
. Here, Γd (·) is the multivariate gamma function, given

by

Γd (a) = πd(d−1)/4

d∏
j=1

Γ (a+ (1− j)/2) ,

where Γ (·) is the ordinary gamma function. Our choice of the prior admits the following closed

form marginal likelihood:

∫
L (Σ)π (Σ) dΣ =

Γd ((n+ ν)/2)

πnd/2Γd (ν/2)

det (Λ)ν/2

det (Λ + S)(n+ν)/2
. (B.4)

In each of the 100 replications, we take d = 4 and draw n = 100 observations from a 4-

dimensional normal distribution with mean vector 0d and covariance matrix Σ, where
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Σ =



1.662 1.640 −1.985 −0.007

1.640 7.163 −4.146 5.654

−1.985 −4.146 4.906 −1.237

−0.007 5.654 −1.237 6.779


.

The prior hyperparameters are Λ = I4 and ν = 5. Plugging these into Eq. (B.4), we compute the

true log marginal likelihood to be -673.7057.

B.3.6 Competing logistic regression models

The logistic regression models in Section 4.7.1 are used to predict diabetes for Pima Indians

using a dataset originally provided by the National Institute of Diabetes and Digestive and Kidney

Diseases (NIDDK). The dataset does not contain personally identifiable information or offensive

content. To our knowledge, the NIDDK obtained consent from the subjects involved in the study.

A copy of the data and the implementation of all competing methods shown in Figure 4.1 are

available at https://github.com/nbrosse/normalizingconstant.

The predictors in question are: number of pregnancies (NP), plasma glucose concentration

(PGC), diastolic blood pressure (BP), triceps skin fold thickness (TST), body mass index (BMI),

diabetes pedigree function (DP), and age (AGE). Given these seven features, there are 27 poten-

tial models that we could consider, but in our experimental setup, we narrow our search to the

two models that Friel and Wyse (2012) determined to have the highest posterior probability via

a reversible jump MCMC algorithm (Green, 1995). The two models are: M1 = logit (p) =

1 + NP + PGC + BMI + DP and M2 = logit (p) = 1 + NP + PGC + BMI + DP + AGE. The

likelihood is defined givenMk for k = 1, 2 by

p (y | θ,Mk) = exp

(
n∑
i=1

yiθ
′x

(k)
i − log

(
1 + eθ

′x
(k)
i

))
. (B.5)

Here, x(k)
i denotes the i-th row of X(k), the n × d design matrix corresponding to Mk. Using

Eq. (B.5) together with the Gaussian prior defined on θ, we obtain the expression for the negative
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log posterior given in Eq. (4.11). In order to make use of the HYB-EP approximation, we also need

the gradient and Hessian of Ψ, which can be written as

∇Ψ (θ) = X ′µ+ τθ, ∇2Ψ (θ) = X ′DX + τId,

where µ = (σ(z1)−y1, . . . , σ(zn)−yn)′, σ(zi) = σ(x′iθ) = logistic(x′iθ), andD = diag(σ(z1)(1−

σ(z1)), . . . , σ(zn)(1− σ(zn))).
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APPENDIX C

GRAPHICAL MODELS

C.1 Basic graph theory

Definition 1 (Graph). A graph is a pair G = (V,E), where V is a finite set of vertices and

E = {(u, v | u ∈ V, v ∈ V, u 6= v} is the edge set that link the vertices so that E is a subset of the

set of ordered pairs of distinct vertices V × V . For all examples in this dissertation, we assume

that G is simple, i.e., does not contain loops.

Definition 2 (Undirected). Edges (u, v) ∈ E with both (u, v) and (v, u) inE are called undirected,

whereas an edge (u, v) with its opposite (v, u) not in E is called directed. If the graph has only

undirected edges, it is an undirected graph and if all edges are directed, the graph is said to be

directed. For all examples in this dissertation, we assume that G is an undirected graph, for which

(u, v) ∈ E implies (v, u) ∈ E.

Definition 3 (Induced Subgraph). For any vertex set A ⊆ V , we define the edge set associated

with it as EA := {(u, v) ∈ E | u, v ∈ A} = E ∩ (A×A). Let GA = (A,EA) denote the subgraph

of G induced by A, where EA is obtained from G by keeping edges with both endpoints in A.

Definition 4 (Adjacent). Two vertices u, v ∈ V are adjacent (neighbors) in an undirected graph if

(u, v) ∈ E. We write u ∼ v in G. Hence E = {(i, j) | i, j ∈ V, i ∼ j}.

Definition 5 (Neighbor). The set of neighbors of a vertex i in G is the set of all vertices that are

adjacent to i in G. This is denoted as ne (i), where ne (i) = {j ∈ V | i ∼ j} \ {i}. The relation

i ∼ j is symmetric and equivalent to each of j ∈ ne (i) and i ∈ ne (j). We write ne (A) to denote

the neighbor of the vertex set A, which can be written explicitly as ne (A) = ∪α∈Ane (α) \ {A}.

Definition 6 (Boundary). The boundary of a subset of vertices A ⊆ V , denoted bd (A), is the set
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of vertices in V \ A adjacent to at least one vertex in A,

bd (A) := {v ∈ V | v /∈ A and (u, v) ∈ E for some vertex u ∈ A}.

Definition 7 (Complete). An induced subgraph GA is complete if the vertices in A are pairwise

adjacent (every pair of vertices are adjacent) in G. We also say that A is complete in G. A graph

is complete if all vertices are joined by an edge and is said to be fully connected. Every node in

a complete graph A is a neighbor of every other such node. A subset is complete if it induces a

complete subgraph.

Definition 8 (Clique). A complete vertex set A in G that is maximal (with respect to⊆) is a clique,

i.e., a maximally complete subgraph. By maximal, we mean that a clique is not contained in a

larger complete subgraph. That is, A is complete and we cannot add a further node that shares an

edge with each node of A.

Definition 9 (Proper Subgraph). Proper subgraphs of a cliqueA (all subgraphs apart fromA itself)

are complete but not maximal.

Definition 10 (Path). Let u, v ∈ V . A path (or chain) of length k in G from u to v is an alternating

sequence of its k − 1 vertices and k edges of the form u = v0, e1, v1, e2, . . . , ek, vk = v of distinct

vertices such that (vi−1, vi) ∈ E for all i = 1, . . . , n and vertices vi=1 and vi are endpoints of edge

ei for each i. Since an edge is uniquely characterized by its endpoints, we may denote paths by the

sequence of vertices only.

Definition 11 (Adjacency Matrix). Let G be a graph having p vertices labelled v1, . . . , vp. Then

the adjacency matrix A of G is the p × p matrix whose ij-th entry Aij = 1 if (vi, vj) ∈ E, and

Aij = 0 otherwise. Since the graph is simple, diagonal elements Aii are all zero.

Definition 12 (Cycle). The path is a n-cycle if the end points are allowed to be the same, u = v.

Definition 13 (Connected). If there is a path from u to v we say that u and v are connected.
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A graph G is connected if all the pairs of vertices are connected. Otherwise G will consist of

connected components which are maximal connected subgraphs of G.

Definition 14 (Separator). A subset C ⊆ V is said to be an uv-separator if all paths from u to v

intersect C (or every path from from u to v includes at least one vertex in C).

Definition 15 (Decomposition). A triple (A,B,C) of disjoint subsets of the vertex set V of an

undirected graph G is said to form a decomposition of G if V = A∪B ∪C and (i) C separates A

from B; (ii) C is a complete subset of V . In this case, (A,B,C) decomposes G into the induced

component subgraphs GA∪C and GB∪C .

Definition 16 (Decomposable). An undirected graph is said to be decomposable if it is complete,

or if there exists a proper decomposition (A,B,C) into decomposable subgraphsGA∪C andGB∪C .

Note that this definition is recursive.

Definition 17 (Simplicial). A vertex v ∈ V is simplicial in G = (V,E) if bd(v) is a clique. A

subset B is a simplical subset if bd (B) is complete.

Definition 18 (Ordering). An ordering of G is a bijection from the vertex set V to a set of labels

{1, 2, . . . , n}.

Definition 19 (Perfect Elimination Order). The ordering v1, . . . , vn is a perfect elimination order-

ing if vi is simplificial in the graph G{vi, vi+1, . . . , vn} for i = 1, . . . , n.

Definition 20 (Leaves). LetG = (V,E) be a connected graph having a clique separatorC, and let

V1, . . . Vs be the vertex set of the connected components ofG\C. The subgraphsGV1∪C , . . . , GVs∪C

are the leaves of G produced by C.

Definition 21 (Tree). A tree is a connected, undirected graph with no cycles. In a tree, there is a

unique path between any two vertices.

Definition 22 (Junction Graph). The junction graph of a decomposable graph has nodes, where

every pair of nodes is connected. Each link is associated with the intersection of the two cliques

that it connects, and has a weight (possibly zero) equal to the cardinality of the intersection.
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Definition 23 (Spanning Tree). A spanning tree of a graph is a subgraph that contains all the

vertices and is a tree. A graph may have many spanning trees.

Definition 24 (Junction Tree). Let J be any spanning tree of the junction graph. J is a junction

tree if for any two cliques C and D of G, every node on the unique path between C and D in J

contains C \D.

C.2 Hyper-inverse Wishart clique and separator densities

We first introduce some notation to help us obtain a closed form for the marginal likelihood in

the case of a decomposable graph G. For an n × d matrix X , XC is defined as the sub-matrix of

X consisting of columns with indices in the clique C. Let (X1, X2, . . . , Xd) = (x1, x2, . . . , xn)′,

where Xi is the ith column of Xn×d. If C = {i1, i2, . . . , i|C|}, where 1 ≤ i1 < i2 < . . . < i|C| ≤ d,

then XC = (Xi1 , Xi2 , . . . , Xi|C|). For any square matrix A = (aij)d×d, define AC = (aij)|C|×|C|

where i, j ∈ C, and the order of entries carries into the new sub-matrix AC . Therefore, X ′CXC =

(X ′X)C .

Decomposable graphs correspond to a special kind of sparsity pattern in Σ, henceforth denoted

ΣG. Suppose we have a HIWG (b,D) distribution on the cone of d × d positive definite matrices

with b > 2 degrees of freedom and a fixed d × d positive definite matrix D such that the joint

density factorizes on the junction tree of the given decomposable graph G as

p (ΣG | b,D) =

∏
C∈C p (ΣC | b,DC)∏
S∈S p (ΣS | b,DS)

, (C.1)

where for each C ∈ C, ΣC ∼ W−1
|C| (b,DC) has the density

p (ΣC | b,DC) ∝ |ΣC |−(b+2|C|)/2 etr
{
− 1

2
Σ−1
C DC

}
, (C.2)

where |C| is the cardinality of the clique C and etr (·) = exp
{

tr (·)
}

. Here,W−1
d (b,D) denotes

the inverse-Wishart distribution with degrees of freedom b and a fixed d×d positive definite matrix
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D with normalizing constant

∣∣∣∣12D
∣∣∣∣(b+d−1)/2

Γ−1
d

(
b+ d− 1

2

)
.

Note that we can establish equivalence to the parametrization used in Section 4.7.2.1 by taking

δ = b+d−1. Since the joint density in Eq. (3.9) factorizes over cliques and separators in the same

way as in Eq. (C.1) and (C.2),

f (X | ΣG) = (2π)−
np
2

∏
C∈C |ΣC |−

n
2 etr
(
− 1

2
Σ−1
C X ′CXC

)
∏

S∈S |ΣS|−
n
2 etr
(
− 1

2
Σ−1
S X ′SXS

) . (C.3)

The HIW (b,D) density can be written as

f (ΣG | G) =

∏
C∈C p (ΣC | b,DC)∏
S∈S p (ΣS | b,DS)

=

∏
C∈C

∣∣1
2
DC

∣∣ b+|C|−1
2 Γ−1

|C|

(
b+|C|−1

2

)
|ΣC |−

b+2|C|
2 etr

(
−1

2
Σ−1
C DC

)
∏

S∈S

∣∣1
2
DS

∣∣ b+|S|−1
2 Γ−1

|S|

(
b+|S|−1

2

)
|ΣS|−

b+2|S|
2 etr

(
−1

2
Σ−1
S DS

) .
Then, it is straightforward to obtain the marginal likelihood of the decomposable graph G,

f (X | G) = (2π)−
np
2

h (G, b,D)

h (G, b+ n,D + S)
= (2π)−

np
2

∏
C∈C w (C)∏
S∈S w (S)

, (C.4)

where

h (G, b,D) =

∏
C∈C

∣∣1
2
DC

∣∣ b+|C|−1
2 Γ−1

|C|

(
b+|C|−1

2

)
∏

S∈S

∣∣1
2
DS

∣∣ b+|S|−1
2 Γ−1

|S|

(
b+|S|−1

2

) , (C.5)

w (C) =
|DC |

b+|C|−1
2 |DC +X ′CXC |−

b+n+|C|−1
2

2−
n|C|
2 Γ|C|

(
b+|C|−1

2

)
Γ−1
|C|

(
b+n+|C|−1

2

) . (C.6)
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Figure C.1: In the undirected graph G, with vertex set V = {1, 2, 3, 4, 5}, the (i, j)-th box is black
if the corresponding edge is present in G and white otherwise.

C.3 Hyper-inverse Wishart objective function

Recall that we take the Cholesky decomposition of Ω = φ′φ, where φ is upper triangular. Using

Eq. (4.12) and (3.13), we define Ψ (φ) = − logL (φ)− log π (φ). Even though Ψ is expressed as a

function of the upper Cholesky factor φ, it is inherently a function of only the free elements of φ.

As a result, the gradient of Ψ should only be taken with respect to the free elements of the upper

Cholesky factor, (i, j) ∈ V . This calculation can be done element-wise,

∂Ψ

∂φij
=


− 1
φii

(ηi + n) + φii +
∑p

m=i φimsmi i = j,

φij +
∑p

m=i φimsmj i 6= j.

Using the above expression for the gradient, elements on and above the diagonal of the Hessian

matrix can also be computed element-wise,
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∂2Ψ

∂φij∂φkl
=



0 i 6= k,

1
φ2ii

(n+ ηi) + sii + 1 i = j = k = l,

sli i = j, i = k, l > j,

1 + slj i 6= j, i = k, l = j,

slj i 6= j, i = k, l > j,

where (i, j), (k, l) ∈ V , ηi = δ + νi − 1, and S = (sij)1≤i,j≤p.

Next, we discuss the experimental setup used in Section 3.7.4 to obtain the results in Table

3.2. Conditional on the graph G, which is represented in Figure C.1, we consider a hyper-inverse

Wishart prior on Σ = Ω−1, HIWG (δ, B), where the prior hyperparameters are B = I5 and δ = 3.

We then draw n = 100 observations from a 5-dimensional normal distribution with mean vector 0

and a sparse inverse covariance matrix Ω, where the dependence structure in Ω is dictated by the

graph G. Using the formula for the marginal likelihood derived in Eq. (C.4), we compute the true

log marginal likelihood to be -506.3061.

C.4 G-Wishart prior for general graphs

Here, we outline the GNORM algorithm which uses the results from Atay-Kayis and Massam

Atay-Kayis and Massam (2005). Keeping consistent with the notation used in Section 4.7.2.4, we

revisit the formulation of the normalizing constant in Eq. (4.17),

CG(δ,Λ) = 2p
p∏
i=1

(t2ii)
(δ+bi−1)/2

∫
exp

−1

2

∑
(i,j)∈V̄

ζ2
ij

 p∏
i=1

(ζ2
ii)

(δ+νi−1)/2 exp

(
−1

2

p∑
i=1

ζ2
ii

)

× exp

−1

2

∑
(i,j)∈V ,i 6=j

ζ2
ij

 p∏
i=1

dζii
∏

(i,j)∈V ,i 6=j

dζij,
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and we note that since dζii = 1
2
ζ−1
ii d (ζ2

ii), we can write the normalizing constant as the following

integral,

CG(δ,Λ) =

p∏
i=1

(t2ii)
(δ+νi)/2 (2π)νi/2 Γ

(
δ + νi

2

) p∏
i=1

(t2ii)
(δ+bi−1)/2

×
∫

exp

−1

2

∑
(i,j)∈V̄

ζ2
ij

 p∏
i=1

1

Γ ((δ + νi) /2)

(
ζ2
ii

2

)(δ+νi)/2−1

exp

(
−1

2
ζ2
ii

)

×
∏

(i,j)∈V ,i 6=j

1√
2π

exp

(
−1

2
ζ2
ij

) p∏
i=1

d
(
ζ2
ii

) ∏
(i,j)∈V ,i 6=j

dζij.

This conveniently allows us to interpret the above integral as an expectation

CG(δ,Λ) =

p∏
i=1

(t2ii)
(δ+νi)/2 (2π)νi/2 Γ

(
δ + νi

2

) p∏
i=1

(t2ii)
(δ+bi−1)/2 E

[
f
(
ζV
)]
, (C.7)

where

f
(
ζV
)

= exp

−1

2

∑
(i,j)∈V̄

ζ2
ij

 .

Note, that the expectation in Eq. (C.7) is taken with respect to the distribution with density propor-

tional to the product of independent chi-squared distributions and standard normal distributions.

In particular, ζii ∼
√
χ2
δ+νi

for i = 1, . . . , p, and ζij ∼ N (0, 1) for (i, j) ∈ V . With this in place,

we can estimate the expectation in Eq. (C.7) using the following Monte Carlo average,

1

N

N∑
i=1

f
(
ζV
i

)
,

where each ζV
i is formed by random draws from the distribution defined above on ζij , for i = j and

(i, j) ∈ V . Therefore, by forming the Monte Carlo estimate and keeping track of the remaining

constants in Eq. (C.7), we arrive at the GNORM estimator for the normalizing constant of the

G-Wishart density.
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Next, we provide the calculation details for the derivation of the gradient and Hessian of Ψ (ζ),

as defined in Eq. (4.18). First, we can compute the terms of the gradient element-wise by taking

the derivative of Ψ with respect to the free elements of ζ ,

∂Ψ (ζ)

∂ζij
=



∑
(r,s)∈V̄

ζrs
∂ζrs
∂ζii
− (δ + νi − 1)

ζii
+ ζii i = j,

∑
(r,s)∈V̄

ζrs
∂ζrs
∂ζij

+ ζij i 6= j, (i, j) ∈ V .

(C.8)

Note that because the non-free elements are functions of the free elements, each gradient term

involves additional recursive derivative calculations. As given in Eq. (4.19), for (r, s) ∈ V̄ and

r < s,

ζrs =
s−1∑
j=r

(
−ζrj

λjs
λss

)
−

r−1∑
i=1

(
ζir +

∑r−1
j=i ζij

λjr
λrr

ζrr

)(
ζis +

s−1∑
j=i

ζij
λjs
λss

)
. (C.9)

Since we have taken Λ = (λij) = Ip , then λij = 0 for i 6= j, so Eq. (4.19) can be simplified

significantly and written as

ζrs = − 1

ζrr

r−1∑
k=1

ζkrζks. (C.10)

After an application of the product rule, the partial derivative terms corresponding to the non-free

elements in the gradient can be calculated using the following recursive definition:

∂ζrs
∂ζij

= − 1

ζrr

r−1∑
k=1

[
ζks

∂ζkr
∂ζij

+ ζkr
∂ζks
∂ζij

]
, (r, s) ∈ V̄ , r < s. (C.11)

Finally, using the expression for the gradient in Eq. (C.8), we can perform a similar calculation for

the Hessian. The elements on and above the diagonal of the Hessian matrix can be computed as

follows,
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∂2Ψ(ζ)

∂ζij∂ζkl
=



∑
(r,s)∈V̄

[(
∂ζrs
∂ζii

)2

+ ζrs
∂2ζrs
∂ζ2

ii

]
+

(δ + νi − 1)

ζ2
ii

+ 1, i = j = k = l,

∑
(r,s)∈V̄

[
∂ζrs
∂ζkl

∂ζrs
∂ζij

+ ζrs
∂2ζrs
∂ζij∂ζkl

]
+
∂ζij
∂ζkl

, i 6= j, (i, j), (k, l) ∈ V ,

(C.12)

where any subsequent derivatives can be computed using Eq. (C.11).

C.5 G-Wishart prior for general graphs with non-diagonal scale matrix

The setup for the case where Λ is non-diagonal is similar to the diagonal case, but the recursive

formulation of ζrs does not enjoy the simplification given in Eq. (C.10) and (C.11). Subsequently,

the gradient and Hessian calculations become more involved. The piecewise definitions of the gra-

dient and Hessian functions in Eq. (C.8) and (C.12) remain the same, but the individual elements

in the summations of both functions are different. Below, we provide the derivation for the partial

derivative terms of the non-free elements taken with respect to the free elements by again starting

with the recursive definition of ζrs in Eq. (4.19) and making repeated use of the product rule. In

the following calculations, we define ξks = λks/λss, where Λ = (λij), where 1 ≤ i, j ≤ p. We

consider two cases.

Case 1: for (r, s) ∈ V̄ , r < s, i 6= j, and (r, s) coming after (i, j), we have

∂ζrs
∂ζij

= −
s−1∑
k=r

ξks
∂ζrk
∂ζij

− 1

ζrr

∂

∂ζij

r−1∑
k=1

[
ζksζkr + ζkr

s−1∑
l=k

ζklξls + ζks

r−1∑
l=k

ζklξlr +

(
k−1∑
l=k

ζklξkr

)(
s−1∑
l=k

ζklξks

)]
. (C.13)

Case 2: for r = i = j, and s > r, we obtain the derivative:
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∂ζrs
∂ζrr

= −
s−1∑
k=r

ξks
∂ζrk
∂ζrr

+
1

ζ2
rr

r−1∑
k=1

[
ζksζkr + ζkr

s−1∑
l=k

ζklξls + ζks

r−1∑
l=k

ζklξlr +

(
k−1∑
l=k

ζklξkr

)(
s−1∑
l=k

ζklξks

)]
.

In case 1, each term in the outer summation in Eq. (C.13) can be computed separately as follows,

∂

∂ζij

[
ζksζkr

]
=
∂ζkr
∂ζij

ζks + ζkr
∂ζks
∂ζij

,

∂

∂ζij

[
ζkr

s−1∑
l=k

ζklξls

]
=
∂ζkr
∂ζij

s−1∑
l=k

ζklξls + ζkr

s−1∑
l=k

∂ζkl
∂ζij

ξls,

∂

∂ζij

[
ζks

r−1∑
l=k

ζklξlr

]
=
∂ζks
∂ζij

r−1∑
l=k

ζklξlr + ζks

r−1∑
l=k

∂ζkl
∂ζij

ξlr,

∂

∂ζij

[(
r−1∑
l=k

ζklξkr

)(
s−1∑
l=k

ζklξks

)]
=

[
r−1∑
l=k

ξkr
∂ζkl
ζij

][
s−1∑
l=k

ζklξks

]
+

[
r−1∑
l=k

ζklξkr

][
s−1∑
l=k

ξks
∂ζkl
∂ζij

]
.

These scalar, element-wise quantities can be substituted back into the piecewise definitions of the

gradient and Hessian matrices, as given in Eq. (C.8) and (C.12), respectively.
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