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ABSTRACT

Deep neural networks (DNNs) are progressing at an astounding rate, and these models have a

wide range of real-world applications. Despite the superior performance, DNN models are often

regarded as black-boxes and criticized by the lack of interpretability, since these models cannot

provide meaningful explanations on how a certain prediction is made. Without the explanations to

enhance the transparency of DNN models, it would become difficult to build up trust and credibility

among end-users. In this dissertation, we investigate the following three research questions: How

can we provide explanations for pre-trained DNN models so as to provide insights into their decision

making process? How can we make use of explanations to enhance the generalization ability of

DNN models? And how can we employ explanations to promote the fairness of DNN models?

First, we explore the explainability of two standard DNN architectures, including convolutional

neural networks (CNNs) and recurrent neural networks (RNNs). Experimental results over a series

of image and text classification benchmarks demonstrate the faithfulness and interpretability of the

proposed two explanation methods. Second, we make use of explainability as a debugging tool

to examine the vulnerability and failure reasons of DNNs, which further lead to insights that can

be used to enhance the generalization ability of DNN models. We propose CREX and LTGR two

frameworks, which encourage DNN models to focus more on evidence that actually matters for the

task at hand, and to avoid overfitting to data-dependent bias and artifacts. Experimental analysis over

several text benchmark datasets validate that our CREX and LTGR frameworks could effectively

increase the generalization ability of DNN models. Third, explainability based analysis indicates

that DNN models trained with standard cross entropy loss tend to capture the spurious correlation

between fairness sensitive information in encoder representations with specific class labels. We

propose a new mitigation technique, namely RNF, that achieves fairness by debiasing only the

task-specific classification head of DNN models. Experimental results over several benchmark

datasets demonstrate our RNF framework to effectively reduce discrimination of DNN models with

minimal degradation in task-specific performance.
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1. Introduction

Deep neural networks (DNNs) are progressing at an astounding rate in the past decade. These

models have a wide range of real-world applications, such as movie recommendations of Netflix,

neural machine translation of Google, speech recognition of Amazon Alexa. Despite the successes,

DNN have its own limitations and drawbacks. The most significant one is the lack of transparency

behind their behaviors, which leaves users with little understanding of how particular decisions

are made by these models. Consider, for instance, an advanced self-driving car equipped with

various DNN algorithms doesn’t brake or decelerate when confronting a stopped firetruck. This

unexpected behavior may frustrate and confuse users, making them wonder why. Even worse,

the wrong decisions could cause severe consequences if the car is driving at highway speeds and

might finally crash the firetruck. The concerns about the black-box nature of complex DNN models

have hampered their further applications in our society, especially in those critical decision-making

domains like self-driving cars.

Explainability would be an effective tool to mitigate these problems. It gives DNN models

the ability to explain or to present their behaviors in understandable terms to humans [3], which

is named interpretability or explainability and we use them interchangeably in this dissertation1.

Explainability would be an indispensable part for DNN models in order to better serve human

beings and bring benefits to society. We investigate DNN explainability from two perspectives:

algorithms and applications. Firstly, we design post-hoc explanation algorithms for pre-trained

DNN models (see Figure 1.1 (a)). The underlying audience for explanations include any end-users

and stake-holders. Our explanation could provide insights into the working mechanisms of DNNs

and will increase their trust and encourage them to adopt DNN systems. Secondly, we investigate

the application of explainability, by treating it as a debugging tool to boost the performance of DNN

models (see Figure 1.1 (b)). The underlying audience for this are DNN system developers and

1Note that some literature, e.g., [4], explicitly differentiates between interpretability and explainability (or inter-
pretation and explanation). Different work might have their own definitions for these two terms, and there is still no
consensus about their subtle difference. In this dissertation, for ease of understandability, we use them interchangeably.
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Figure 1.1: (a) We propose explanation algorithms for pre-trained DNN models. (b) We employ
explainability as a debugging tool to improve the performance of DNN models.

researchers. On one hand, this helps them better understand the problem, the data and why a model

might fail, and eventually increase the model generalization ability and robustness. On the other

hand, explainability also could help diagnose the reason that causes the discrimination of DNN

models and eventually help improve algorithmic fairness.

Nowadays, DNNs are increasingly being used in decisions and processes that are critical for

individuals, businesses, and society, their resulting implications are far-reaching. With explainability

as the backbone, the model can have improved transparency, robustness, and fairness. Putting

them together, our work could help achieve Responsible AI (or Trustworthy AI). Our work could

enable DNNs to be more trustworthy in applications areas such as hiring, lending, criminal justice,

healthcare, and education. Ultimately, it enables DNN models to better serve us human beings.

1.1 Dissertation Outline

This dissertation starts from providing explainability to pre-trained DNN models, including two

most widely used DNN architectures: CNN and RNN (Chapter 2 - Chapter 3). Then this dissertation

introduces how to make use of explainability as a debugging tool to improve the generalization

ability and robustness of DNN models (Chapter 4 - Chapter 5). Finally, this dissertation presents

how to make use of explainability to improve the fairness of models and reduce algorithmic

discrimination (Chapter 6). Specifically this dissertation is organized in following chapters:
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Chapter 2 describes providing post-hoc explanation for pre-trained CNN models [5]. We propose

to investigate a guided feature inversion framework for taking advantage of the deep architectures

towards effective interpretation. The proposed framework not only determines the contribution of

each feature in the input but also provides insights into the decision-making process of CNN models.

We apply the proposed interpretation model to different CNN architectures to provide explanations

for image data. The interpretation results demonstrate the effectiveness of our proposed framework

in providing class-discriminative interpretation for CNN-based prediction.

Chapter 3 presents providing post-hoc explanation for pre-trained RNN models [6]. We propose

a novel attribution method, called REAT, to provide interpretations to RNN predictions. REAT

decomposes the final prediction of a RNN into additive contribution of each word in the input text.

This additive decomposition enables REAT to further obtain phrase-level attribution scores. In

addition, REAT is generally applicable to various RNN architectures, including GRU, LSTM and

their bidirectional versions. Experimental results demonstrate the faithfulness and interpretability

of the proposed attribution method.

Chapter 4 develops a framework to improve the generalization ability of DNN models [7]. We

propose CREX, which encourages DNN models to focus more on evidences that actually matter for

the task at hand, and to avoid overfitting to data-dependent bias. Specifically, CREX regularizes the

training process of DNNs with rationales, i.e., a subset of features highlighted by domain experts

as justifications for predictions, to enforce DNNs to generate local explanations that conform with

expert rationales. Experimental results on two text classification datasets demonstrate the increased

credibility of DNNs trained with CREX. Comprehensive analysis further shows that while CREX

significantly increases DNN accuracy on new and previously unseen data beyond test set.

Chapter 5 describes how to make use of explainability to interpret and mitigate the shortcut

learning behavior of BERT-based NLU models [8]. Recent studies indicate that BERT-based models

are prone to rely on shortcut features for prediction, without achieving true language understanding.

As a result, these models fail to generalize to real-world out-of-distribution data. We propose to

investigate how to diagnose the reasons that lead to the shortcut learning behavior by making use of
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explainability, and also propose to mitigate the shortcut learning behavior of NLU models.

Chapter 6 presents an explainability based fairness mitigation framework [9]. Recent studies

indicate that DNNs models are prone to show discriminations towards certain demographic groups.

We observe that algorithmic discrimination can be explained by the high reliance of the models

on fairness sensitive features. We propose a new mitigation technique, namely RNF, that achieves

fairness by debiasing only the task-specific classification head of DNN models. The key idea of

RNF is to discourage the classification head from capturing spurious correlation between fairness

sensitive information in encoder representations with specific class labels. Experimental results over

several benchmark datasets demonstrate our RNF framework to effectively reduce discrimination of

DNN models with minimal degradation in task-specific performance.

Chapter 7 concludes this dissertation and offers discussion of the future work.
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2. Towards Explanation of CNN-based Prediction with Guided Feature Inversion

Convolutional Neural Network (CNN) is one representative family of DNN models. Given raw

image pixels as input, CNN models can extract high level image representations automatically, which

is primarily achieved through stacking convolutional layers. CNN models have achieved extremely

high prediction accuracy in a wide range of computer vision tasks, such as image classification,

object detection, and semantic segmentation [10, 11, 12]. In this chapter, we introduce how to

provide post-hoc explanation for pre-trained CNN models.1

2.1 Introduction

Despite the superior performance, CNN models are often regarded as black-boxes, since these

models cannot provide meaningful explanations on how a certain prediction is made. Without the

explanations to enhance the transparency of CNN models, it would become difficult to build up

trust and credibility among end-users.

We focus on instance-level interpretation, which tries to answer what features of an input

lead it to activate the CNN neurons to make a specific prediction. Conventional instance-level

interpretations usually follow the philosophy of local interpretation [13]. Let x be an input for a

CNN, the prediction of the CNN is denoted as a function f(x). Through monitoring the prediction

response provided by the function f around the neighborhood of a given point x, the features in x

which cause a larger change of f will be treated as more relevant to the final prediction. This either

can be achieved by perturbing the input and observing the prediction differences [1, 13, 14, 15]

(bottom-up manner) or calculating the gradient of output f with respect to input x [16, 17, 18, 19]

(top-down manner). Although these approaches locally interpret CNN predictions to some extent,

they usually ignore the intermediate layers of CNN, thus leave out vast informative intermediate

information [20, 21]. In addition, these methods have the risk of triggering the artifacts of CNN

1Reprinted with permission from "Towards explanation of dnn-based prediction with guided feature inversion." by
Mengnan Du, Ninghao Liu, Qingquan Song, and Xia Hu. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp. 1358-1367. 2018. Copyright 2018 by ACM.
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models [22, 23]. It has been demonstrated that some generated inputs can fool CNN and lead CNN

to make unexpected outputs, which can not be counted as meaningful interpretations. By taking

advantage of the intermediate layers information, it is more likely to characterize the behaviors of

CNN under normal operating conditions. It motivates us to explore the utilization of intermediate

information to derive more accurate interpretations.

Feature inversion has been initially studied for visualizing and understanding intermediate

feature representations of CNN [24, 25]. It has been shown that the CNN representation could be

inverted to an image which sheds light on the information extracted by each convolutional layer. The

inversion results indicate that as the information propagates from the input layer to the output layer,

the CNN classifier gradually compresses the input information, and discard information irrelevant

to the prediction task. Besides, the inversion result from a specific layer also reveals the amount

of information contained in that layer. However, these inversion results are relatively rough and

obscure for delicate interpretations. It remains challenging to automatically extract the contributing

factors for prediction in the input utilizing the feature inversion.

In this chapter, we propose an instance-level CNN interpretation model by performing guided

image feature inversion. Leveraging the observations found in our preliminary experiments that the

higher layers of CNN do capture the high-level content of the input as well as its spatial arrangement,

we present guided feature reconstructions to explicitly preserve the object localization information

in a “mask”, so as to provide insights of what information is actually employed by the CNN for the

prediction. In order to induce class-discriminative power upon interpretations, we further establish

connections between the input and the target object by fine-tuning the interpretation result obtained

from guided feature inversions with class-dependent constraints. In addition, we show that the

intermediate activation values at higher convolutional layers of CNN are able to behave as a stronger

regularizer, leading to more smooth, and continuous saliency maps. This regularization dramatically

decreases the possibility to produce artifacts, thus providing more exquisite interpretations.
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Figure 2.1: An illustration of the proposed interpretation framework. First, the original input xa
is sent to the CNN (on the left), and the representation at each layer of CNN is calculated and
saved. Second, class-discriminative interpretation result is obtained by interacting with the CNN
(on the right). The guided feature inversion Φ extracts the location for all the foreground objects
(Sec. 2.2.2). Then we fine-tune the inversion result using the activation of the neuron for the target
class in the last layer of CNN (Sec. 2.2.3). Besides, we impose a strong regularizer by using the
integration of the intermediate layer activations of the original input as the mask (Sec. 2.2.4).

2.2 Interpretation of CNN-based Prediction

In this section, we introduce the proposed interpretation framework for interpreting CNN-based

predictions. The pipeline of the proposed framework is illustrated in Fig. 2.1.

2.2.1 Problem Statement

Considering a multiclass classification task, a pre-trained CNN model can be treated as a function

f(x) of the input x ∈ Rd. When feeding an input x to the CNN model, fc(x) ∈ [0, 1], c ∈ {1, ..., C}

represents the corresponding classification probability score for class c. We focus on post-hoc

interpretations [4] through explaining the CNN prediction result for a given data instance x to ensure

the generality of the proposed method. We aim to find out the contributing factors in the input x

that lead the CNN to make the prediction. Specifically, let c be the target object class that we want

to interpret, and xi corresponds to the ith feature, then the interpretation for x is encoded by a score

vector s ∈ Rd where each score element si ∈ [0, 1] represents how relevant of that feature is for
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explaining fc(x). We use image classification as an example in this paper. In this case, the input

vector xa corresponds to the pixels of an image, and the score vector s will be the saliency map,

where the pixels with higher scores represent higher relevance for the classification task.

2.2.2 Interpretation through Feature Inversion

In this section, we derive the initial interpretation for CNN-based interpretation using guided

feature inversion. It has been studied that the deep image representation extracted from a layer in

CNN could be inverted to a reconstructed image which captures the property and invariance encoded

in that layer [24, 25]. An observation is that feature inversion can reveal how much information is

preserved in the feature at a specific layer. Specifically, the reconstruction results from features of

the first few layers preserve almost all the detailed image information, while the inversions from the

last few layers merely contain the rough shape of the original image. This observation shows that

CNN gradually filters out unrelated information for the classification task as the layer goes deeper.

It thus motivates us to explore the feature inversion of higher layers of CNN to provide explanation

for classification result of each instance.

Given a pre-trained L-layers CNN model, the intermediate feature representation at layer

l ∈ {1, 2, ..., L} could be denoted as a function fl(xa) of the input image xa. The process of

inverting the feature representation at layer l0 can be regarded as computing the approximated

inversion f−1 of the representation fl0(xa). The feature inversion tries to find the image x that

minimizes the following objective function:

x∗ = argmin
x

‖fl0(x)− fl0(xa)‖2 +R(x), (2.1)

where the squared error term forces the representation fl0(x∗) of inversion result x∗ and the original

input representation fl0(xa) to be as similar as possible, while the regularization termR imposes

a natural image prior. As the layer goes deeper for inversion, it is with higher confidence about

which part of the input information is ultimately preserved for final prediction. Since the spatial

configuration information of the target object is discarded at fully connected layers, the feature
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inversion cannot recover the accurate object localization information from these layers [24, 25].

Therefore, we fix the inversion layer l0 to be the last pooling layer before the first fully connected

layer. Take the 8-layer AlexNet [11] as an example. We use the pool5 layer for feature inversion,

where the spatial size is (6× 6) and the total number of channels of this layer is 256. x is initialized

randomly, and the optimal inversion result x∗ could be obtained using gradient descent.

We propose the guided feature inversion method, where the expected inversion image represen-

tation is reformulated as the weighted sum of the original image xa and another noise background

image p. We replace the optimization target x in Eq. (2.1) with the guided inversion Φ(xa,m):

Φ(xa,m) = xa �m + p� (1−m). (2.2)

Note that the inversion image representation Φ(xa) should locate in the natural image space manifold.

To this end, we derive p using a blurred image which is obtained by applying a Gaussian blur filter

to the original image xa [1]. The weight vector m ∈ [0, 1]d denotes the significance of each pixel

contributing to the feature representation fl(xa). Therefore, we can recover the object location

information from the weight vector m. Instead of directly finding the inversion image representation,

we optimize the weight vector m, which is formulated as follows:

Linversion(xa,m) = ‖fl0(Φ(xa,m))− fl0(xa)‖2 + α · 1

d

d∑
i=1

mi. (2.3)

The first term corresponds to the inversion error. The error will be zero if all entries within m equal

to 1. In the second term, we limit the area of m to be as small as possible in order to find out the

most contributing regions in input xa. The parameter α is utilized to balance the inversion error and

the area of m. This formulation not only creates image Φ(xa,m) which matches the inner feature

representation at layer l0, but also preserves the object localization information in m.
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2.2.3 Class-Discriminative Interpretation

In this section, we derive class-discriminative interpretation to distinguish different categories

of objects from the generated mask m. Up to now, we only use the information from the former

convolutional layers of CNN to generate mask m. Although it has extracted all the foreground

object information which are crucial for subsequent prediction, the connection between the input xa

and the target label c , which is largely encoded in the rest layers, has not been established yet. The

mask m derived from the aforementioned formulation Eq.(2.3) will highlight all these objects.

We would like the interpretation result to highlight the target class and suppress the irrelevant

classes through further leveraging the non-utilized layers. To this end, we render the guided feature

reconstruction result Φ(xa) to strongly activate the softmax probability value fLc at the last hidden

layer L of CNN for a given target label c, and reduce the activation for other classes {1, ..., C} \ c.

In the meantime, we formulate the complementary counterpart of the mask m as mbg = 1−m. It

contains irrelevant information with respect to target class c, including image background and other

classes of foreground objects. Using the heatmap mbg as weight, the background part of the image

can be calculated as the weighted sum of the original images xa and p:

Φbg(xa,mbg) = xa �mbg + p� (1−mbg). (2.4)

We expect the object information for the target class c to be removed from Φbg(xa,m) to the

maximization degree. When feeding Φbg(xa,m) to the CNN classifier, the prediction probability is

supposed to be small. The class-discriminative interpretation formulation is defined as:

Ltarget(xa,m) = −fLc (Φ(xa,m)) + λfLc (Φbg(xa,m)) + β · 1

d

d∑
i=1

mi, (2.5)

where λ and β control the importance of the highlighting term, suppressing term and the area of m.
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2.2.4 Regularization by Utilizing Intermediate Layers

The aforementioned formulation still has the weakness of generating undesirable artifacts with-

out regularizations imposed to the optimization process. To generate more meaningful interpretation,

we impose a stronger natural image prior by utilizing the intermediate activation features of CNN.

This is motivated by the fact that higher convolutional layers of CNN are responsive to specific and

semantically meaningful natural part (e.g., face, building, or lamp) [20, 21]. These feature layers,

when projected down to the pixel space, could correspond to the rough location of these semantic

parts. Similar to decomposing an object into the combinations of its high-level parts, we assume the

mask m could be decomposed as the combination of channels at a high-level layer of the targeted

CNN model. Specially, let fl1i (xa) represent the ith channel of the l1th layer of the CNN. We build

the weight mask m as the weighted sum of the channels at a specific layer l1:

m =
∑
i

ωifl1i (xa). (2.6)

Parameter vector ω captures the relevance of each channel map for the final prediction. Since the

activation values fl1(xa) could locate at various ranges, the generated mask m may take a wide range

of values if no constraint is imposed to the parameter ω. It is essential to limit m ∈ [0, 1]n, so as to

guarantee the guided reconstruction in Eq.(2.2) is constrained at the expected input domain range.

Therefore, the mask is further normalized through Min-Max normalization: m← m−min(m)
max(m)−min(m)

.

Before applying to the objective function, we still need to enlarge the mask m from the small

resolution to an identical resolution with the original input. To guarantee the smoothness of the

enlarged representation m, we apply upsampling using bilinear interpolation. After replacing the

original mask at Eq.(2.2) and Eq.(2.4) with the newly derived mask, we expect the guided inversion

representation Φ(xa,m) and the background representation Φbg(xa,m) to become less likely to be

affected by artifacts. The interpretation objective Eq.(2.3) and Eq.(2.5) could be reformulated as:

Linversion(xa, ω) = ‖fl0(Φ(xa, ω))− fl0(xa)‖2 + γ · ‖ω‖1, (2.7)
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Ltarget(xa, ω) = −fLc (Φ(xa, ω)) + λfLc (Φbg(xa, ω)) + δ · ‖ω‖1, (2.8)

where ωi ≥ 0, i ∈ {1, ..., n}, since we only focus on the channel maps which have a positive

influence for making a prediction. Parameters γ and δ control the importance of the regularization

term. We utilize the `1-norm regularization to ensure that only very few entries in the parameter

vector ω is non-zero. This is motivated from the observation that objects could be depicted using

only one or few object parts. This natural image prior brings two benefits. On one hand, it guarantees

that less artifacts will be produced in the optimized mask. On the other hand, it dramatically reduce

the numbers of the parameters to be optimized, leading to increased efficiency of the optimization.

We apply a two-stage optimization to derive class-discriminative interpretation for CNN-based

prediction. In the first stage, we perform interpretation using guided feature inversion to find out

the salient foreground part. After initializing the parameter ωi = 0.1, i ∈ {1, ..., n}, we perform

gradient descent optimization to find out the optimal parameter vector ω as well as the mask m. In

the second stage, we obtain the class-discriminative interpretation by further fine-tune the parameter

vector ω. After initializing ω, we reduce the learning rate every 10 iterations and further fine-tune

the parameter ω in order to let the mask m more relevant to the target label. Note that to tackle the

constraint in objective function (2.7) and (2.8) that parameter ωi ≥ 0, i ∈ {1, ..., n}, we simply clip

the ω to the valid range after each gradient descent iteration. At last, we generate the interpretation

mask m for target class c.

2.3 Experiments

2.3.1 Visualization of Interpretation Results

In the following experiments, unless stated otherwise, the interpretation results are provided

based on VGG-19 [12]. Specifically, we utilize the pre-trained VGG-19 model from torchvision2.

Its Top-1 prediction error and Top-5 prediction error on ImageNet dataset are 27.62% and 9.12%,

respectively. For inversion layer l0, we use the pool5 layer (the 5th pooling layer), and the size of

representation at this layer is (7× 7× 512). As for the base channel layer l1 in Eq. (2.6), we utilize

2http://pytorch.org/docs/master/torchvision/models.html
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conv5_4, which is the layer prior to pool5, and has 512 channels of size (14× 14). Therefore the

length of parameter vector ω is also 512. The entries of ω are all initialized as 0.1. The λ is fixed to

1. The `1-norm regularizer parameter γ and δ are set to 10 and 1, respectively. All these parameters

are tuned based on the quantitative and qualitative performance of the interpretation on a subset of

the ILSVRC2014 [26] training set.

For input images, we resize them to the shape (224 × 224 × 3), and transform them to the

range [0, 1], and then normalize them using mean vector [0.485, 0.456, 0.406] and standard deviation

vector [0.229, 0.224, 0.225]. No further pre-processing is performed. The background image p is

obtained by applying a single Gaussian blur of radius 11 to the original input.

We employ Adam [27] optimizer to perform gradient descent, which achieves faster convergence

rate than stochastic gradient descent (SGD). The number of iteration steps is 10, and 70 for the first

stage and the second stage respectively. The learning rate is initialized to 10−2 for Adam optimizer,

chosen by line search. At the second stage, we apply step decay, and reduce the learning rate by

half every ten epochs.

We qualitatively compare the saliency maps produced using the proposed method with those

produced by six state-of-the-art methods, including Grad [16], GuidedBP [18], SmoothGrad [19],

Integrated [17], Mask [1], Grad-CAM [28], see Fig. 2.2. Comparing to the other methods, it shows

that our method generates more visually interpretable saliency maps. Take the second row for

example. The DNN predicts the ski category with 98.2% confidence, and our method accurately

highlights the helmet, skis, as well as ski poles. At the fourth row, our method highlights both the

dominant cardoon at the center and the smaller cardoon at the lower right corner.

We also demonstrate that the proposed interpretation method could distinguish different classes

as shown in Fig. 2.3. The VGG-19 model classifies the input as African elephant with 95.3%

confidence, and zebra with 0.2% confidence, our model correctly gives the interpretation locations

for both of two labels, even though the prediction probability of the latter is much lower than the

probability of the former. An interesting discovery obtained from the saliency maps is that the head,

ear, and nose parts are most discriminative to distinguish elephant, while the body part is most
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Figure 2.2: Visualization saliency maps comparing with 6 state-of-the-art methods.

(a) Input (b) Inversion map (c) “elephant” (d) “zebra”

Figure 2.3: Class discriminability of our algorithm. The inversion result (b) highlights all the
foreground objects, while the final interpretation (c) and (d) highlight only the target object.
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(a) Input (b) VGG-19 (c) ResNet-18 (d) AlexNet

Figure 2.4: Interpretation results for three CNN architectures.

crucial to classify zebra. It is consistent with our human cognition since we also rely on the head

shape of the elephant and the black-and-white striped coats of zebra to classify them. Thus this

interpretation is able to build trust with end users [29].

Interpretation Results Under Different CNN Architectures. Besides VGG-19 [12], we also

provide explanation for two different network architectures, including AlexNet [11] and ResNet-

18 [10]. For AlexNet, the pool5 layer is utilized for both the inversion layer l0 as well as the base

channel layer l1, the representation size of which is (6× 6× 256). As for ResNet-18, the inversion

layer l0 utilizes pool5, and the base channel layer l1 utilizes the next to last conv layer, both have

size of (7× 7× 512). For the rest of parameters, we utilize the same configuration as VGG-19.

The interpretation visualizations of three CNN architectures are shown in Fig. 2.4. For both

the two inputs, the saliency maps generated by VGG-19 and ResNet-18 give the accurate location,

while the ones yielded by AlexNet also highlight part of the background. One possible reason is that

the AlexNet has only half number of channels at layer l1 compared to the other two architectures.

Besides, the smaller kernel filters as well as the increasing number of layers enable VGG-19

and ResNet-18 to learn more complex features and also lead to higher localization accuracy than

AlexNet. It demonstrates that our model can be applied to a wide range of network architectures,

including the neural network with skip-layer connections, and without fully connected layers.
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Grad GuidedBP LRP CAM Mask Real Ours
α 5.0 4.5 1.0 1.0 0.5 - 1.1

Error(%) 41.7 42.0 57.8 48.1 43.2 36.9 38.2

Table 2.1: Localization errors, and the optimal α values on ImageNet validation set of comparing
methods. Error rate of comparing methods are taken from [1].

2.3.2 Quantitative Evaluation via Weakly Supervised Object Localization

In this section, we evaluate the localization performance of our interpretation method by applying

the generated saliency maps to weakly supervised object localization tasks. The experiments are

performed on the ImageNet validation set, which contains 50,000 images with bounding box

annotations. Similar to [1, 30] as well as ILSVRC2014 [26] setting, 1762 images are excluded

from the evaluation task because of their pool quality of annotations.

The saliency maps are binarized using mean thresholding by α · mI , where mI is the mean

intensity of the saliency map and α ∈ [0.0 : 0.5 : 10.0], using the same setting with [1]. The

tightest rectangle enclosing the whole segmented saliency map is counted as the final bounding box.

The IOU (intersection over union) metric is utilized to measure the localization performance of

each input instance. The localization is considered to be successful if the IOU score for an instance

exceeds 0.5, otherwise it is treated as an error. The weakly supervised error is judged by the average

localization error over the ImageNet validation set. For each comparing method, the α value is

tuned using 1000 images selected from the ILSVRC2014 training dataset.

The object localization performance of the proposed method is compared with those of six

state-of-the-art methods, including Grad [16], GuidedBP [18], LRP [31], Mask [1], CAM [32],

and Real-time saliency [15]. The localization error values, as well as the optimal α values on

Imagenet validation set are listed on Tab. 2.1. It shows our error is slightly higher than Real-time

saliency [15] and outperforms all other 5 methods. Note that Real-time saliency[15] utilizes a

U-Net [33] architecture which contains encoder and decoder network as mask, and parameters of

the masking model is trained over a dataset. The large model size and using a whole dataset for

training enables it to achieve relatively higher localization performance.
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Center Grad Grad-CAM Ours
Accuracy (%) 0.483 0.531 0.550 0.547

Table 2.2: Pointing game accuracy on PASCAL VOC07 [2].

2.3.3 Pointing Game

In this section, we evaluate the class discriminability of our method by conducting the Pointing

game experiment [1, 30]. The maximum point is first extracted from each generated saliency map,

then according to whether the maximum point falls in one of the ground truth bounding boxes or

not, a hit or a miss is counted. The pointing game localization accuracy for each object category

is defined as: Acc = #Hits
#Hits+#Misses . This process is repeated for all categories and the results are

averaged as the final accuracy. The accuracy is evaluated over PASCAL VOC07 [2] test set, which

contains 4952 images with multi-label bounding box ground truth. To obtain the classifier for this

multi-label classification task, we replace the last fully connected layer of VGG-19 with a new

layer which contains 20 output neurons, and then fine-tune the pre-trained VGG-19 model using

the training set of VOC07. Following the standard multi-label classification setting, we utilize the

Binary Cross Entropy between the target ground truth vector l and the Sigmoid soft label vector y

as loss function: l(l, y) = −[l · log(y) + (1 − l) · log(1 − y)]. Adam optimizer [27] is utilized to

fine-tune the model, with a learning rate of 0.0001. The batch size is set to 64. Only the parameter

of the last layer is tuned, and all the other parameters are left unchanged.

We compare the Pointing game performance with Grad [16], Grad-CAM [28], and a baseline

method Center which utilizes the center of the image as the maximum point. To obtain the

interpretation result, we employ the same empirical setting as in previous multi-classification setting,

except that the parameter δ in Eq.(2.8) is set to 10, which works well on this multi-label dataset.

Tab. 2.2 shows that our approach outperforms the center baseline and Grad, and achieves comparable

performance with Grad-CAM. Taking into account that most real-life images contain more than

one dominative class object in the foreground, the high class-discriminability of the proposed

interpretation algorithm is thus an advantage to gain user trust.
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3. Towards Explanation of RNN-based Prediction with Additive Decomposition

We have introduced how to provide post-hoc explanation for pre-trained CNN models in previous

chapter. Different from CNNs, the RNNs (Recurrent neural networks), such as LSTM [34] and

GRU [35], process the inputs in an recurrent way. RNN models have became increasingly deployed

in different text classification applications, including sentiment classification [36], named entities

recognition [37], textual entailment [38], etc. In this chapter, we introduce how to provide post-hoc

explanation for pre-trained RNN models.1

3.1 Introduction

Despite the superior performance, RNNs are often criticized by their lack of interpretability, and

are often treated as black-boxes [39]. It is highly desirable to explore the interpretability of RNNs,

so as to provide insight of how they process text inputs and make inferences therefrom.

Explanation for RNN predictions is still a technically challenging problem. First, one challenge

lies in how to guarantee that the interpretations are indeed faithful to the original model. Many

previous attribution work, including back-propagation based methods [40, 41], perturbation based

methods [42, 43], and local approximation based methods [13, 44], all follow the philosophy of local

interpretation. That is, they generate interpretable approximation of the original model around the

neighborhood of a given prediction to be explained. However, it is not guaranteed that the generated

interpretations accurately reflect the decision making process of the original model [45, 46]. Second,

it is challenging to develop a flexible attribution method which could generate attribution scores to

text segments (e.g., phrases) of varying lengths. Prior work for RNNs attribution mainly focuses

on identifying word-level contribution scores [13, 17, 41], which assigns a real-value score for

each of the words, indicating the extent to which it contributes to a particular prediction. However,

word-level attributions fail to explain why RNNs are successful to process sequences where the

1Reprinted with permission from "On attribution of recurrent neural network predictions via additive decomposition."
by Mengnan Du, Ninghao Liu, Fan Yang, Shuiwang Ji, and Xia Hu. In The World Wide Web Conference, pp. 383-393.
2019. , Copyright 2019 by ACM.
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order of the data entries matters. Consider an example of sentence sentiment analysis, “I do not

dislike cabin cruisers.” expresses a neutral opinion. Word-level attribution methods may accurately

identify that the word “dislike” has a negative contribution for this prediction, but they fail to capture

that the negation word “not” has shifted its polarity and the word combinations “not dislike” have a

positive impact for model prediction.

In this chapter, we propose a decomposition based attribution method, called REAT (REcurrent

ATtribution Method), to provide interpretation for given predictions made by a RNN in a faithful

and flexible manner. Through modeling the information flowing process of the hidden state vectors

in RNN models, REAT could decompose the final prediction of a RNN into additive contribution

of each word in the input text. Since REAT is constructed by directly leveraging the information

propagation process from hidden state vectors to the output layer, it enjoys the benefit of high

faithfulness to the original RNN model. This method not only can quantify the contribution of each

individual word to a prediction, but also could naturally be applied to identify the contribution of

word sequences. It thus enables the illumination of how RNNs make use of sequential information,

as well as how they capture long-term dependencies. In addition, REAT is widely applicable to

different recurrent architectures, including LSTMs and GRUs, and their bidirectional versions.

3.2 Preliminaries

3.2.1 Post-hoc Attribution

Notations: Consider a typical multi-class text classification task, a RNN-based classification model

can be denoted as f : X → Y , where X is the text space, and Y = {1, ..., C} denotes the set of

output classes. The RNN model accepts an instance x ∈ X as input, and maps it to an output class:

f(x) = c ∈ Y . Assume the input is composed of a sequence of T words: x = {x1, ..., xT} and

each word xt ∈ Rd denotes the embedding representation of the t-th word. The high level idea of

post-hoc attribution is to attribute the prediction f(x) of a RNN model to its input features x and

output a heatmap indicating the contribution of each feature xt ∈ x to a particular class of interest c.

Specifically, we target to generate attributions for a RNN prediction which is specified as follows:
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Phrase-level Attribution: We first partition the input text into meaningful phrases and then attach

an attribution score to each individual phrase. Given one index phrase as query. The index set

of a phrase that we want to calculate its attribution score is denoted as: A = {q, ...r} where

1 ≤ q ≤ r ≤ T . We indicate the attribution score for the targeting phrase as S(xA).

3.2.2 RNN Architectures

RNNs come in many variants with different architectures, which results in different mapping

functions f . We discuss three representative RNN architectures that are fundamental and have

been widely used in many applications. The common formulations in different RNN architectures

motivate the design of our interpretation approach.

LSTM: In a Vanilla RNN, at any time step in a sequence, the hidden state ht is calculated based on

its previous hidden state ht−1 and the current input vector xt: ht = tanh(Whxxt +Whhht−1 + bh).

Comparing to the Vanilla RNN, LSTM makes two major changes. Firstly, LSTM introduces a cell

state ct that serves as an explicit memory. Secondly, instead of simply updating the hidden state ht,

LSTM uses three gates: input gate it, forget gate ft, and output gate ot to update the hidden state ht.

it = σ(Wixxt +Wihht−1 + bi)

ft = σ(Wfxxt +Wfhht−1 + bf )

ot = σ(Woxxt +Wohht−1 + bo)

gt = tanh(Wgxxt +Wghht−1 + bg)

ct = ft � ct−1 + it � gt

ht = ot � tanh(ct).

(3.1)

where each W and b represent weight matrix and bias vector respectively, and � denotes element-

wise multiplication.

GRU: GRU makes some slight modifications on the basis of LSTM. It only has two gates, i.e., reset

gate rt and update gate ut. Besides, it merges the cell state and hidden state into a single hidden
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(a) REAT updating rule (b) REAT framework

Figure 3.1: (a) The REAT updating rule. (b) An illustration of the proposed REAT framework.

state ht. The updating rule of hidden state is denoted as follows.

rt = σ(Wrxxt +Wrhht−1 + br)

ut = σ(Wuxxt +Wuhht−1 + bu)

gt = tanh(Wgxxt + rt �Wghht−1 + bg)

ht = ut � ht−1 + (1− ut)� gt.

(3.2)

Bidirectional GRU: This model is constructed by putting two independent GRUs together. The

word sequences are fed into one GRU in normal time order, and in reverse time order into another.

For each network, the hidden state is updated using the same rule as Eq. (3.2). For the sake of

brevity, we use subscripts n and r to represent the normal and reverse network respectively. For

classification tasks, the final hidden vector fed into the output layer is constructed by concatenating

the hidden vector at time step T for the normal GRU and the hidden vector at time step 1 for the

reverse one: h = hT,n ⊕ h1,r, where symbol ⊕ denotes concatenation operation of two vectors. In

the remaining part of this paper, we use BiGRU to denote Bidirectional GRU.

3.2.3 RNN Output Layer

To serve the purpose of multi-class text classification, a discriminative layer is added after the

activation vector hT of the last hidden layer at time step T . This layer takes the hidden state hT as

input and turns it into a logit vector z using a weight matrix W : z = WhT , and then produces the

class probabilities using a softmax layer which converts the logit zc for a class c into a probability
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yc, by comparing it with other logit values: yc = softmax(z)c = exp(zc)∑C
k=1 exp(zk)

.

3.3 Methodology

In this section, we introduce the proposed attribution method for explaining RNN predictions.

We first present a general method for phrase-level RNN prediction attribution, and then apply it to

three widely used RNN architectures.

3.3.1 A Naive Attribution Approach

From the last section, we know that RNNs possess a series of hidden state vectors {ht}t=1,...,T ,

where each vector ht stores information about the past input blocks, ranging from time step 1 to t. A

crucial property of the hidden state vector is that it is updated from time step to time step. Knowing

how much information is accumulated at each time step enables us to derive the contribution of

that time step towards the final prediction. Intuitively, we denote the response of the RNN model to

word xt, and thereby the information gained at step t is: h̃t = g(xt) = ht − ht−1. In this way, we

can consider the final hidden state vector hT to contain information accumulated at T time steps,

denoted as: hT =
∑T

t=1 h̃t =
∑T

t=1(ht − ht−1). Then, we can decompose the logit zc for target

class c using a sequence of factors:

zc = WchT =
T∑
t=1

Wc(ht − ht−1). (3.3)

It can be treated as the additive contribution of each word in the input x to the output logit

(unnormalized output probability) of class c. Therefore, the contribution of word xt towards the

logit zc can be calculated as:

S(xt) = Wc(ht − ht−1). (3.4)

However, this decomposition has a severe shortcoming. The underlying assumption of this formu-

lation is that all evidence accumulated up to time step t − 1 has been transferred to time t. This

violates the updating rules of all the three architectures listed in Sec. 3.2.2. Actually, it fails to take

into consideration the forgetting mechanism of RNNs. For example, both LSTM and GRU have
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explicit gates to model the forgetting and remembering mechanism, which serves the purpose of

controlling information flow and calculating how much proportion of information derived from

previous time steps should be kept.

3.3.2 The Proposed Recurrent Attribution Method (REAT)

Many variants of RNNs share a similar form of hidden state updates. We summarize a common

rule which can be applied to different recurrent network architectures, as illustrated in Fig. 3.1 (a).

The rule maintains a hidden state ht which summarizes information for past sequences. Also, at

each time step t, the hidden state is updated using the equation:

ht = αt � ht−1 + h̃t, (3.5)

where αt ∈ [0, 1]d
′ so that only partial evidence obtained by RNN from previous t − 1 steps is

brought to the time step t. Here d′ is the dimension of hidden state vectors. A higher value of α

means that the RNN model preserves more important information from previous time steps. Here

h̃t = g(xt) denotes the evidence that a RNN obtains at time step t. Some RNN architectures obey

this rule exactly, like GRU, while some other architectures follow this rule approximately, such as

LSTM. Based on this hidden state updating rule, we can iteratively trace back the generation of hT

and decompose the logit value zc into the following form:

zc = WchT =
T∑
t=1

Wc(h̃t �
T∏

k=t+1

αk). (3.6)

Replacing each h̃t with ht − αt � ht−1, we can reformulate the additive decomposition as:

zc =
T∑
t=1

Wc[(ht − αt � ht−1)�
T∏

k=t+1

αk]. (3.7)

The main benefit of Eq. (3.7) comparing to Eq. (3.6) is that we do not need to know the exact form

of h̃t. Merely knowing the hidden state vector ht and the updating parameter vector αt will be
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sufficient to derive the decomposition. Eq. (3.7) can be considered as the additive contribution of

each word xt towards the logit zc, which is the unnormalized probability for target class c. By taking

out the term relevant to time step t, we can derive the contribution value for a single word xt at the

current time step:

S(xt) = Wc[(ht − αt � ht−1)︸ ︷︷ ︸
Updating

�
T∏

k=t+1

αk︸ ︷︷ ︸
Forgetting

]. (3.8)

The above formulation within the square brackets is the element-wise multiplication of two terms.

The left term denotes the updating evidence from time t− 1 to t, i.e., the contribution to class c by

the input word xt. The right term represents the forgetting mechanism of RNN. The evidence that a

RNN has gathered at time step t gradually diminishes as the time increases from t+ 1 to the final

time T . Only part of the updating evidence will have impacts on the classification task at time T .

Based on the word-level additive attribution formulation in Eq. (3.8), we can conveniently derive

the phrase-level attribution. For a phrase xA, where A = {q, ...r}, 1 ≤ q ≤ r ≤ T , its attribution

score S(xA) can be denoted as:

S(xA) = Wc[(hr −
r∏
j=q

αj � hq−1)︸ ︷︷ ︸
Updating

�
T∏

k=r+1

αk︸ ︷︷ ︸
Forgetting

]. (3.9)

Similar to word-level attribution, phrase-level attribution S(xA) also contains two terms. The left

term within the square brackets in Eq. (3.9) represents the updating evidence from time step q− 1 to

time r, while the right term denotes how much percentage of the evidence has been forgotten from

time r + 1 to T . We illustrate this process in as illustrated in Fig. 3.1 (b). It is worth noting that the

key component here to derive phrase-level attribution score for a RNN classifier is to obtain the

hidden state vectors and the updating vectors. Usually, only one feed forward operation is needed to

derive phrase-level attribution score, which can be implemented efficiently.
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3.3.3 Applications to Specific Architectures

GRU Attribution: The hidden state vector updating rule for GRU is written as: ht = ut � ht−1 +

(1− ut)� gt, which conforms with the paradigm in Eq. (3.5). Therefore, for a phrase xA, where

A = {q, ...r}, 1 ≤ q ≤ r ≤ T , we can directly replace αt in Eq. (3.9) with the updating gate vector

ut of the GRU model, and obtain the phrase-level attribution score S(xA):

S(xA) = Wc[(hr −
r∏
j=q

uj � hq−1)�
T∏

k=r+1

uk]. (3.10)

LSTM Attribution: Although it is difficult to directly match the LSTM updating rule of hidden

state ht in Eq. (3.1) to the paradigm in Eq. (3.5), the update of the cell state ct adheres to the

expected updating format in Eq. (3.5). It is denoted as: ct = ft � ct−1 + it � gt, where ft is

the forgetting gate of LSTM. Based on the updating rule from the cell state ct to hidden state:

ht = ot � tanh(ct), approximately we can obtain: ct ∼ ht
ot

, where the right term is a element-wise

division. Thus we approximate the updating rule of the hidden state vector for LSTM as below:

ht =
ft � ot
ot−1

� ht−1 + h̃t. (3.11)

Then, we can further decompose the final hidden state vector hT into the following formulation:

hT =
T∑
t=1

(ht −
ft � ot
ot−1

� ht−1))�
T∏

k=t+1

fk � ok
ok−1

. (3.12)

For a phrase xA, where A = {q, ...r}, 1 ≤ q ≤ r ≤ T , we can obtain the attribution score S(xA):

S(xA) = Wc[(hr −
r∏
j=q

fj � oj
oj−1

� hq−1)�
T∏

k=r+1

fk � ok
ok−1

]. (3.13)

BiGRU Attribution: The last hidden state hT,n at time step T of the normal GRU uses the identical

decomposition as in GRU. As for the reverse GRU, we use the hidden state vector at time step 1 in
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order to capture the information from 1 to T , which can be decomposed as follows:

h1,r =
T∑
t=1

(ht,r − ut,r � ht+1,r)�
t−1∏
k=1

uk,r. (3.14)

Recall that the final hidden vector fed into the classification layer is the concatenation of the

hidden vector at time step T for the normal GRU and the hidden vector at time step 1 for the reverse

GRU, i.e., h = hT,n⊕ h1,r. As such, the logit value is computed as zc = Wc(hT,n⊕ h1,r). To obtain

the attribution score for a phrase xA, where A = {q, ...r}, we first calculate the updated hidden

evidence for the normal network and the reverse network respectively. We then concatenate these

two updated hidden evidence, and multiply it with Wc to produce the contribution scores.

S(xA) =Wc[((hr,n −
r∏
j=q

uj,n � hq−1,n)�
T∏

k=r+1

uk,n)⊕

((hq,r −
r∏
j=q

uj,r � hr+1,r)�
q−1∏
k=1

uk,r)].

(3.15)

3.4 Experiments

We conduct experiments to evaluate the effectiveness of the proposed RNN interpretation

method. Specifically, we have applied REAT to various RNN architectures, including GRU, LSTM

and their bidirectional versions.

3.4.1 Datasets

We conduct our experiments on two publicly available sentiment analysis datasets.

Stanford Sentiment Treebank 2 (SST2) [47] - It contains 2 classes (negative and positive). The

numbers of instances for training, development and test set are 6920, 872, and 1821 respectively.

Yelp Polarity (Yelp) [48] - It consists of reviews originally extracted from the Yelp Dataset Chal-

lenge 2015 data. Zhang et al. [48] constructed the Yelp reviews polarity dataset by considering stars

1 and 2 as negative, and considering 4 and 5 as positive. The numbers of instances for training set

and test set are 560,000 and 38,000 respectively. We use a subset of this dataset by filtering out texts
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whose length is larger than 40, and then randomly select part of the samples from the training set

as development set. Ultimately, the dataset contains 80000, 1999, and 5492 instances for training,

development, and test set respectively, with each polarity occupying around half of the instances.

3.4.2 Experimental Setup

For each classification model used in our experiments, it contains a word embedding layer to

transform words to fixed length representation vectors, a recurrent network layer to transform word

embeddings to hidden state vectors, and a classification layer for output. Specifically, the pre-trained

300-dimensional word2vec word embedding [49] is utilized to initialize the embedding layer. For

those words that do not exist in word2vec, we initialize their embedding vectors with some random

values. The dimension of hidden state vectors is 150 for both LSTM and GRU, and 300 for BiGRU.

The classification layer is composed of a dense layer and a softmax nonlinear transformation. The

Adam optimizer [27] is utilized to optimize these models and the learning rate is fixed to 10−3. We

train each model for 20 epoches and select the one with the best performance on the development

set. Note that we freeze the embedding layer when training all models on SST2, while fine-tune the

embedding parameters when training on Yelp. Empirical results show that this can lead to better

prediction performance for models on both datasets.

3.4.3 Baseline Methods

We evaluate the proposed REAT method by comparing it with five baseline approaches.

• Vanilla gradient (VanillaGrad) [40]: Compute gradients of the output prediction with respect

to individual entries in word embedding vectors, and use the L2 norm to reduce each vector of the

gradients to a single attribution value, representing the contribution of each single word.

• Integrated gradient (InteGrad) [17]: Integrate all Vanilla gradients using a linear interpolation

between a baseline input and the original input. Here the baseline input are sentences whose word

embedding values are all set to zeros.

• Gradient times input (GradInput) [41]: First calculate the gradient of the output with respect
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to word embedding, and then use dot product of the gradient vector and word embedding vector

as the contribution score for a word.

• LIME [13]: A model-agnostic interpretation method. It approximates the behavior of a RNN in

the neighborhood of a given input using an interpretable white-box model. Here, the interpretable

model is a sparse linear model.

• NaiveREAT: A simplified variant of the proposed method, as introduced in Sec. 3.3.1. The

attribution score for a single word is calculated using Eq. (3.4).

It is worth noting that except NaiveREAT, the other four baseline methods could only derive

word-level contribution scores. To get phrase-level or sentence-level contribution scores, we sum up

the scores of all word within a phrase or a sentence.

3.4.4 Attribution Faithfulness Evaluation

We evaluate the faithfulness of the attribution methods with respect to the target RNN models.

We want to assess whether the attribution results correctly reflect the prediction behavior of RNNs. In

general, the faithfulness of an attribution method is evaluated by deleting the sentence of the highest

contribution score and observing the prediction changes of the target RNNs [50]. Specifically, the

attribution method first produces contribution scores for sentences in the text. Then, it is expected

that once the most important sentence is deleted, it will cause the probability value to significantly

drop for the target class. Here we define faithfulness score as the metric:

Sfaithfulness =
1

N

N∑
i=1

(y(x(i))− y(x(i)
\A)), (3.16)

where A denotes the sentence identified as the most predictive for a prediction, and N is the total

number of texts in the dataset. An advantage of this metric is that no knowledge is required of ground

truth labels. Theoretically this metric can also be utilized to evaluate word-level and phrase-level

attributions. However, empirically, we find some irrelevant words or phrases could also lead to big

probability drop, because they cause grammar or syntactic errors instead of really changing the
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Models GRU LSTM BiGRU

VanillaGrad 0.272 0.243 0.068
InteGrad 0.255 0.253 0.113

GradInput 0.301 0.199 0.178
Lime 0.209 0.188 0.092

NaiveREAT 0.213 0.207 0.114
REAT 0.311 0.318 0.196

Table 3.1: Comparison about attribution faithfulness between our method and the baseline methods.

semantics [51, 52]. Therefore, we only use this metric in sentence-level attribution scenarios.

We search in SST2 dataset for texts that contain two sentences and use the word “but” as

conjunction, and obtain a set with 142 texts. The faithfulness scores for different attribution

methods on SST2 dataset are reported in Tab. 3.1. The proposed method consistently outperforms

the baseline methods for all the three architectures. This result demonstrates two advantages of

REAT: (1) the generated interpretations are highly faithful to original RNN, (2) the generated

phrase-level interpretations are accurate. Since the NaiveREAT method does not consider the

forgetting mechanism, it may assign false positive contribution scores for the first sentence in the

testing texts. As a result, it is not faithful to the target model and achieves relatively low faithfulness

score comparing to REAT. Besides, for the other baseline methods, they can only output word-level

attribution scores. Since the word-level scores are not sufficiently faithful to the target model, the

sentence-level scores calculated by summing up the word-level scores will further deviate from the

prediction of the RNN model. As a result, these methods have only limited faithfulness performance.

3.4.5 Attribution Interpretability Evaluation

We evaluate the interpretability of the proposed method to show whether the generated inter-

pretations are reasonable from some fundamental perspectives of human comprehension. We only

search for texts that contain both positive adjective words and negative adjective words with obvious

sentiment bias. The searching criterion is whether a word belongs to the human annotated lists

containing both positive words2 and negative words3 [53]. We obtain a testing set with 78 and 99

2https://gist.github.com/mkulakowski2/4289437
3https://gist.github.com/mkulakowski2/4289441
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SST2 Yelp

Models GRU LSTM BiGRU GRU LSTM BiGRU

VanillaGrad 41.0 42.3 26.9 57.6 44.4 38.4
InteGrad 44.9 52.6 42.3 58.6 42.4 33.3
GradInput 84.6 80.8 85.9 84.8 82.8 90.9
Lime 73.1 80.8 73.1 74.7 77.8 80.8
NaiveREAT 79.5 87.2 92.3 55.6 83.8 86.9
REAT 85.9 89.7 88.5 87.9 83.8 92.9

Table 3.2: Interpretability statistical comparison (in percent) of our method with baseline RNN
attribution methods.

samples from SST2 and Yelp respectively. Then we generate a attribution score after feeding each

text sample to a RNN, and evaluate the consistency of attribution with human annotations. Here, we

focus on analyzing the attribution scores of these words for the positive sentiment side for all testing

texts. The interpretation is considered to be a match if the attribution scores for positive words are

lager than negative words, otherwise it is treated as a mismatch. Take text “It is ridiculous, of course

but it is also refreshing” for example, if the attribution method assigns a higher contribution score to

positive word “refreshing” comparing to negative word “ridiculous”, we consider it as a match. The

final interpretability score is judged by the ratio of matched cases:

Sinterpretability =
#match

#match + #mismatch
. (3.17)

We compare the interpretability score of the proposed method with baseline methods on three

RNN architectures over SST2 and Yelp dataset. The results are presented in Tab. 3.2. The

proposed method ranks highest for five tasks among all six classification tasks. We observe that the

interpretability scores for the NaiveREAT method, which is introduced in Sec. 3.3.1, are unstable

across different models and datasets, partly due to the reason that it is not faithful to the original

recurrent model. Sometimes, NaiveREAT could accurately capture the contribution score for strong

sentiment word, such as for BiGRU prediction on SST2. In other cases, it may assign some false
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enormously likely partly because it is aware of its own grasp of the absurd，

enormously likely partly because it is aware of its own grasp of the absurd，

enormously likely partly because it is aware of its own grasp of the absurd，

enormously likely partly because it is aware of its own grasp of the absurd，

enormously likely partly because it is aware of its own grasp of the absurd，

VanillaGrad

InteGrad

GradInput

NaiveREAT

Lime

enormously likely partly because it is aware of its own grasp of the absurd，REAT

Figure 3.2: Word-level attribution heatmaps comparing with baseline methods, for a GRU prediction
with 99.2% confidence as positive sentiment. Green and red color denote positive and negative
contribution of a word to the prediction, respectively.

positive and false negative attribution values, leading to lower interpretability scores. Another

finding is that the interpretability of InteGrad does not outperform VanillaGrad consistently on all

cases. Besides, GradInput yields consistently better performance comparing to VanillaGrad.

3.4.6 Qualitative Evaluation via Case Studies

We provide several case studies to qualitatively check the effectiveness of the proposed method.

We use green color to denote positive contribution and red color for negative contribution. Deeper

color means higher contribution to the prediction. We present attribution visualization for a

prediction made by GRU with 99.2% confidence for positive sentiment, and compare it with the

baseline attribution methods. The results are shown in Fig. 3.2. The heatmap shows that REAT

not only identifies that words “enormously”, “likely”, “aware”, “grasp” have positive contribution

for the prediction, but also captures that “absurd” has negative contribution. It is consistent with

human comprehension towards this sentence. In contrast, VanillaGrad and InteGrad fail to attribute

the negative word; GradInput fails to identify the words that strongly and positively contribute to

the prediction, thus can not explain why GRU gives such a high positive prediction score to this

text. Also, LIME and NaiveREAT generate some noisy negative scores for irrelevant words, such as

“partly”, “it” and “,”.

We compare the word-level attribution results of three RNN architectures. For a given text “The

fight scenes are fun but it grows tedious”, GRU, LSTM and BiGRU give positive prediction (51.6%
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GRU

LSTM

BiGRU

The fight scenes are fun but it grows tedious

The fight scenes are fun but it grows tedious

The fight scenes are fun but it grows tedious

Figure 3.3: Word-level attribution heatmaps for 3 RNN architectures. Green and red color denote
positive and negative contribution of a word to the prediction, respectively.

Word

Phrase

Clause

The story may be new but the movie does n’t serve up lots of laughs,

The story may be new but the movie does n’t serve up lots of laughs,

The story may be new but the movie does n’t serve up lots of laughs,

Figure 3.4: Visualization heatmaps for hierarchical attribution. Green and red color denote positive
and negative contribution of a word to the prediction, respectively.

confidence), positive prediction (96.2% confidence), and negative prediction (62.7% confidence),

respectively. We display the attribution heatmaps for positive prediction for all three architectures

in Fig. 3.3. GRU gives nearly the same absolute value of attribution score for “fun” and “tedious”.

LSTM attributes more words positive contributions than negative words, while BiGRU gives more

words negative contribution scores. These attribution heatmaps well reflect the prediction scores,

which indicates that the interpretations could give users understandable rationale for the predictions.

We also give the visualization heatmaps of hierarchical attributions in Fig. 3.4. In this case,

we show the attribution scores of a negative sentiment prediction with 99.46% confidence from a

LSTM model. For the word-level attribution, “does” has a negative contribution for the prediction,

while the combination “does n’t serve up” will have a strong positive contribution for the prediction.

The clause-level attribution shows that the first clause has a relatively small negative contribution

for prediction, while the second clause has a strong positive contribution for prediction. This

hierarchical attention thus could represent the contributions at different levels of granularity.
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4. Explanation-Guided Generalizable DNNs for Text Classification

In previous two chapters, we introduce how to provide post-hoc explanation for pre-trained

DNN models. In this chapter, we illustrate how to make use of explainability as a debugging tool

to improve the generalization ability of DNN based text classification models, by incorporating

explanations into the model training process. Specifically, we consider three representative DNN

architectures for text classification, including CNN, LSTM, and Self-attention model1.

4.1 Introduction

There has been an increasing interest recently in developing explainable deep neural networks

(DNNs) [5, 54, 55, 56]. To this end, a DNN model should be able to provide intuitive explanations

for its predictions. Explainability could shed light into the decision making process of DNNs and

thus increase their acceptance by end-users. However, explainability alone is insufficient for DNNs

to be credible [57], unless the provided explanations conform with the well-established domain

knowledge. That is to say, correct evidences should be adopted by the networks to make predictions.

The incredibility issue has been observed in various DNN systems. For instance, in question

answering (QA) tasks, DNNs rely more on function words rather than pay attention to task-specific

verbs, nouns and adjectives to make decisions [58, 59]. Similarly, in image classification, CNNs

may make decisions solely according to background within images, rather than paying attention to

evidences relevant to the objects of interest [13].

In this work, we define credible DNNs as the models that could provide explanations to their

predictions, while at the same time the explanations are consistent with the well-established domain

knowledge. Considering that correct evidences are employed in decision making process, it would

be easier for credible DNNs to build up trust among practitioners and end-users. In addition, credible

DNNs could have better generalization capability comparing to untrustable ones. Since credible

1Reprinted with permission from "Learning credible deep neural networks with rationale regularization." by
Mengnan Du, Ninghao Liu, Fan Yang, and Xia Hu. In 2019 IEEE International Conference on Data Mining (ICDM),
pp. 150-159. IEEE, 2019. Copyright 2019 by IEEE.
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DNNs have truly grasped useful knowledge instead of memorizing unreliable dataset-specific biases

and artifacts, they could maintain high prediction accuracy for those unseen data instances beyond

the training dataset.

To overcome the above challenges, we propose to explore rationale, to enhance DNN credibility.

A rationale is a subset of features highlighted by annotators and regarded to be more important in

predicting an instance [60, 61]. The rationales are utilized to direct the model’s attention, enabling

it to tease apart useful evidence from noises and pushing it to pay more attention to relevant features.

Based on the rationales from domain experts, we propose CREX (CRedible EXplanation), an

approach regularizing DNNs to utilize correct evidences to make decisions, in order to promote their

credibility and generalization capability. The intuition behind CREX is to use external knowledge

to regulate the DNN training process. During the model training, we require the DNN model to

generate local explanations that conform with the rationales.

4.2 Problem Statement

Notations: Consider a typical multi-class text classification task. Given a training dataset which

consists of N instances: D = {(x1, y1), ...(xN , yN)}. Each input text xn is composed of a sequence

of T words: xn = {x(1)n , ..., x
(T )
n }, where x(t)n ∈ Rd denotes the embedding representation of the

t-th word. Each yn ∈ {1, 2, ..., C} belongs to one of the C output classes. Part of the training data,

with a number of Nr, contains not only input-label pairs (xn, yn), but also rationale rn from domain

expert. Each entry of the expert rationale r(t)n ∈ {0, 1}, where 1 indicate that word x(t)n is actually

responsible for the prediction task, and vice versa.

Learning Credible DNNs: The goal is to learn a DNN-based classification model which maps a

text input xn to the probability output f(xn). We expect a trained DNN to rely on correct evidences

to make decisions and pay more attention to words within the rationales. That is, for a trained DNN,

the generated local explanation for each testing instance should align well with expert rationales.
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4.3 Proposed CREX Framework

In this section, we introduce the CREX framework, which aims to regularize the local explanation

when training a DNN for the task of interest, so as to promote its credibility and generalization.

4.3.1 Augmenting Local Explanation

The general idea of DNN local explanation is to attribute the prediction of a DNN to its input,

producing a heatmap indicating the contribution of each feature in the input to the prediction.

The explanation of prediction f(xn) for input xn is a matrix sn ∈ RT×C , where s(t,c)n denotes the

contribution of word x(t)n towards prediction fc(xn) for output class c. We utilize an omission based

method [42] to measure the contribution of x(t)n , denoted as below:

s(t,c)n = fc(xn)− fc(x(\t)n ), (4.1)

which quantifies the deviation of the prediction between the original input xn and the partial input

x
(\t)
n = x

(1:t−1)
n ⊕ x(t+1:T )

n with x(t)n omitted. The motivation is that more important features, once

being changed, will cause more significant variation to the prediction score. It is worth noting

that the omission operation may lead to invalid input, which could trigger the adversarial side of

DNNs. To reflect model behaviors under normal conditions, phrase omission is conducted instead of

individual word omission. Formally, we compute the contribution of x(t)n by averaging the prediction

changes of deleting different length-m phrases that contain x(t)n :

s(t,c)n =
1

m

m∑
j=1

[fc(xn)− fc(x(1:t−1−m+j)
n ⊕ x(t+j:T )n )]. (4.2)

For long text classification, we segment each original text into sentences and sequentially perform

omission for each sentence. In such scenario, sentence-level contribution scores are obtained as

explanation, rather than word-level scores. Both phrase omission and sentence omission could

increase the faithfulness of explanation, compared with directly removing individual words [43].
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4.3.2 Aligning Explanations with Rationales

The key idea of CREX is that DNNs should rely on reasonable evidences to make decisions

rather than bias or artifacts. We encourage the explanation to align well with expert rationales when

they are available, by considering two complementary conditions as follows. First, for the original

input, we encourage the generated explanation to be confident and focus on the relevant features as

indicated by rationales. Second, for the negative input, where the important features are suppressed,

the explanation should be uncertain and have relatively uniform contribution across classes.

4.3.2.1 Confident Explanation

We first feed original input xn to DNN and get model output f(xn) and explanation sn. The

rationale rn points out which subset of features is important and the rest to be irrelevant. Intuitively,

we achieve credibility by encouraging dense contribution scores on known important factors and

encouraging sparse contribution scores on the remaining irrelevant features. We define a confident

explanation loss (gconf ), which encourages the explanation to concentrate on rationales:

gconf (xn) =
1

C

C∑
c=1

||(1− rn)� s(:,c)n )||1. (4.3)

The loss aims to shrink the contribution scores of irrelevant features, in order to discourage models

from capturing training data specific biases. An implicit effect of this loss is to encourage f to give

dense explanation scores to the relevant features, thus making f pay more attention to them. As a

result, the final explanation scores tend to align well with rationales. In addition, we observe that

summing all categories {1, ...C} could yield better results comparing to only using label yn when

imposing confident explanation regularization to instance xn.

4.3.2.2 Uncertain Explanation

When the subset of important features, as indicated in rn, is deleted in the original input xn, we

expect the DNN model to become uncertain about which category to output. This kind of inputs,

named as negative inputs, are generated as the Hadamard product between the original input xn
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DNN

f (xn)xn
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sn rn

Lrationale

Lsupv
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Figure 4.1: Schematic of CREX. Black solid lines denote forward pass. Dashed line with arrows on
both ends are losses. Dashed line with arrows on one side denote flow of gradients. Three vectors
from left to right are input, explanation and rationale, respectively. CREX is DNN architecture
agnostic, end-to-end trainable, and simple to implement.

and the reversed rationale vector (1− rn): x′n = xn � (1− rn). The intuition is that after feeding

the negative input x′n to a DNN model, we expect its probability output for ground truth label yn

to be much smaller comparing to the probability value of original input xn, since x′n lacks the

evidence supporting the prediction. At the same time, the contributions of different words/sentences

should be distributed uniformly. Its implicit effect is to encourage the DNN model to give lower

explanation scores to the features not belonging to rationales. We first calculate the absolute value

of explanation for x′n as ŝ(:,yn)n = |s(:,yn)n |, and then normalize it as: e(t,yn)n = ŝ
(t,yn)
n /

∑T
k=1 ŝ

(k,yn)
n

The resultant e(:,yn)n can be seen as the soft-attention assigned by DNN for x′n. After that, we define

an uncertain explanation loss (gunc):

gunc(x
′
n) = −|fyn(xn)− fyn(x′n)| − α cos(e(:,yn)n , q), (4.4)

where q is the discrete uniform distribution denoted as U(1, T ), and α is used to balance probability

output and explanation distribution. The cosine similarity is employed to encourage explanation

scores to be distributed uniformly.

We linearly combine the two loss functions at hand, and calculate the average value over all
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training instances with rationales as the explanation rationale loss, formulated as follows:

Lrationale =
1

Nr

Nr∑
n=1

[gconf (xn) + βgunc(x
′
n)]. (4.5)

Parameter β is utilized to balance the confident explanation and uncertain explanation. By encour-

aging confident explanations to conform with rationales in original input xn, and suppressing the

probability output as well as explanation values in a negative input x′n, Lrationale regulates a DNN

to learn useful input representations from features belonging to rationales and omit information in

the irrelevant feature subset.

4.3.3 Self-guidance When Rationale not Available

In last section, given expert rationales, we render the local explanation of each instance to

conform with its rationale. However, expert rationales may not always be available. In practice, the

experts may only annotate a small ratio of training data. This could be done either when annotating

a new corpus, or when adding rationales post-hoc to an existing corpus. To guide the DNN model to

focus on correct evidences in such scenario, we enforce the generated local explanation vector to be

sparse for training instances without rationales. Simpler explanations are more credible, otherwise

the dense dependencies could make it hard to disentangle the patterns in the input that actually

trigger a prediction [39, 62, 63]. To achieve this, we propose the sparse explanation loss for those

instances without rationales, denoted as follows:

Lsparse =
1

(N −Nr) · C

N∑
n=Nr+1

C∑
c=1

||s(:,c)n ||1, (4.6)

where the `1 norm helps produce sparse contribution vectors. Note that this summation is performed

over the (N -Nr) instances which have no rationales.

4.3.4 CREX Training

Besides regularizing the local explanations for DNN predictions, we also expect the DNN model

to learn from the ground truth labels, which is defined using supervised cross-entropy loss function
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as follows:

Lsupv =
1

N

N∑
n=1

C∑
c=1

−1(yn = c) · log(fc(xn)). (4.7)

Our final model is learned by balancing the supervised approximation to the labels and the confor-

mation to expert rationales. We propose the training objective by jointly minimizing the losses as

below:

L(θ, x, y, r) = Lsupv + λ1Lrationale + λ2Lsparse. (4.8)

Parameters λ1 and λ2 are utilized to balance the supervised loss, rationale loss and sparse loss. For

those Nr inputs coupled with expert rationales, we impose rationale loss, while for the rest N −Nr

inputs we regularize them with sparse loss. The overall idea of CREX is illustrated in Fig. 4.1. Our

framework is designed to train the DNN model which could make highly accurate predictions (the

first term) as well as make decisions by relying on the correct evidences (the last two terms). In

addition, CREX framework can be treated as knowledge distillation process that transfers expert

knowledge from rationales to DNN parameters in order to yield more credible models.

4.4 Experiments

In this section, we evaluate the proposed CREX framework on several real-world datasets.

4.4.1 DNN Architectures

We consider three representative DNN architectures for text classification, including CNN [64],

LSTM [34], and Self-attention model [65].

CNN: This is a 2-D convolutional network. The convolution operation is performed on embedding

input {x(1)n , ..., x
(T )
n } using three sizes of kernel: [2, 3, 4]. We use ReLU activation after the

convolution operation and then apply max pooling operation for every channel. Finally, the resulting

tensors will be concatenated as final input representation.

LSTM: After feeding the input xn = {x(1)n , ..., x
(T )
n } to the LSTM model, T hidden state vectors

{h(1)n , ..., h
(T )
n } are obtained. The dimension of each hidden state vector is 150. Max pooling is

performed after all T hidden vectors to obtain the final input representation.
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Dataset Train Dev Test Text length

Movie Review (MR) 1,500 100 200 794
Product Review (PR) 4,000 473 1,700 113

Table 4.1: Dataset statistics of MR and PR dataset, including number for training, development and
test set, as well as average text length.

Self-attention: A bidirectional LSTM is first utilized to learn input representations with hidden

size of 300. Then the self-attention mechanism is applied on top of LSTM representations to

produce a matrix embedding of the input sentence. This matrix contains 10 embeddings, where

every embedding represents an encoding of the input sentence but giving an attention to a specific

part of the sentence. These embeddings are concatenated as the final representation.

For all three networks, after transforming variable length sentences into fixed size representations,

fully connected layers are added after the representations to get logits [66] for multiple output

classes. Finally, a softmax layer is added to convert logits to probability outputs.

4.4.2 Datasets and Rationales

We consider two benchmark text classification datasets. Both datasets are randomly split into

training, development and test set, the statistics of which are reported in Tab. 4.1.

Movie Review Dataset (MR): It is a binary sentiment classification dataset with movie reviews

from IMDB [67]. Originally, this dataset is obtained by crawling movie reviews from the Internet

Movie Database (IMDB), consisting 1000 positive and 1000 negative movie reviews [67]. Zaidan

et al. [60] supplemented this dataset rationales for 1800 documents 2. The rationales used in this

dataset are sub-sentential snippets with a higher relevance for prediction task. The average length

per rationale for per input text is 125, while the average text length is 794. Comparing to the whole

text, the rationale is sparse.

Product Review Dataset (PR): It is a multi-aspect beer review dataset [68] with data derived from

BeerAdvocate 3. This dataset contains reviews for three aspects of beer: appearance, aroma and

2http://www.cs.jhu.edu/~ozaidan/rationales/
3https://www.beeradvocate.com/
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palate, where we only distinguish appearance. Originally this dataset contains reviews with rating

in the range of [0, 1]. Similar to [69], we consider this as binary classification task, by labelling

ratings ≤0.4 as negative category, while labeling those ≥0.6 as positive category. Rationales are

provided by [61], which are also sub-sentential snippets indicating higher relevance for prediction.

The rationale within this dataset is also sparse, with an average length of 19, comparing to average

text length of 113.

4.4.3 Baseline Methods

We evaluate effectiveness of CREX by comparing it with three baseline approaches.

• Vanilla DNN: This is the most typical way to train DNN for text classification tasks. DNN models

are trained with only standard cross entropy loss, optimizing parameters to minimize Eq. (4.7).

• Data Augmentation: Back translation is an effective data augmentation method, e.g., machine

translation [70, 71]. The original text is first translated to an intermediate language (we use

German) and then translated back to English via the Google Translate API 4. The idea is using

synonym replacement and sentence paraphrase to avoid overfitting to functional words.

• Rationale Augmentation: Expert rationales are extracted from the original text as additional

training instances. These data are incorporated with original training data, resulting a final

training dataset of double size comparing with original one. The intuition is to explicitly push

DNNs to focus on rationales to make decisions.

4.4.4 Implementation Details

We use the pre-trained 300-dimensional word2vec 5 word embedding [72] to initialize the

embedding layer for all three architectures. For those words that do not exist in word2vec, their

embedding vectors are initialized with some random values. We tune the learning rate over the

range {1e-4, 1e-3, 1e-2, 1e-1} and utilize Adam optimizer [27] to optimize these models. For each

model, all hyperparameters are tuned using the development set, according to the accuracy and

4https://pypi.org/project/googletrans
5https://code.google.com/archive/p/word2vec/
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MR PR

Models CNN LSTM Atten CNN LSTM Atten

Vanilla DNN 2.86 2.67 2.40 3.96 3.77 3.73
Data Augment 2.75 3.20 2.29 3.85 3.70 4.16
Rationale Augment 2.52 2.45 2.25 3.65 3.61 3.59
CREX 2.24 2.38 1.91 3.52 3.54 3.15

Parameter λ1 5e-2 1e-3 2e-4 1e-4 2e-4 1e-4
Parameter α 0.2 0.5 0.3 0.5 0.3 0.5

Table 4.2: Credibility statistical comparisons of three DNN architectures on MR and PR test set,
and corresponding optimal hyperparameter settings.

credibility performance. Optimal values of α and λ1 for different models are listed in Tab. 4.2,

while β and λ2 are fixed as 1 and 1e-5 respectively for all models. To avoid overfitting, we apply

dropout to fully connected layers for all DNN models. We implement all DNN models using the

PyTorch library. Each model is trained for ten epoches and the one with the best performance on the

development set is selected as the final model. In our experiments, all DNN models could converge

within 10 epoches, and increasing the number may lead to overfitting. Besides, since all models

use random initialization, which leads to variance in performances at different runs. Therefore, we

report the average values over three runs for all DNNs in the following experiments.

4.4.5 Credibility and Accuracy on Test Set

In this section, we evaluate the performance of all trained DNNs on test set. Two metrics are

employed for evaluation: credibility and prediction accuracy. The credibility here is defined as the

extent of agreement between the generated DNN local explanations and expert rationales.

Quantitative Evaluation of Credibility To measure credibility, we calculate the matching degree

between local explanation of DNN prediction with rationale. Specifically, We use the symmetric

KL divergence between the normalized absolute value of explanation sn and the normalized

rationale rn: symKL(s′n, r
′
n) = 1

2
[KL(s′n||r′n) + KL(r′n||s′n)] where lower divergence means

higher credibility [57]. We compare the credibility scores of CREX with three baseline methods on

three DNN architectures over MR and PR dataset. The credibility results are presented in Tab. 4.2.
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MR PR

Models CNN LSTM Atten CNN LSTM Atten

Vanilla DNN 93.7 93.2 94.7 94.9 94.5 94.3
Data Augment 91.0 88.3 90.1 94.7 94.5 93.9
Rationale Augment 94.0 94.2 93.8 94.3 95.1 94.1
CREX 93.8 94.3 94.5 94.2 94.8 94.5

Table 4.3: Accuracy comparisons (in percent) of CREX and baseline methods for three DNN
architectures on MR and PR test set.

Comparing with Vanilla, the relative improvement of CREX is encouraging, with KL divergence

drops ranging from 0.29 to 0.62 for DNNs in MR, from 0.23 to 0.58 for DNNs in PR. This ascertains

the effectiveness of CREX in boosting the credibility of DNNs by pushing them to employ correct

evidences to make decisions. The increased credibility of Rationale Augmentation comparing to

Vanilla DNN also validates the value of expert knowledge, which succeeds to push models to focus

more on evidences in the rationales to make decisions. In contrast, using back translation as Data

Augmentation cannot always enhance the model credibility.

Quantitative Evaluation of Accuracy DNNs trained via CREX have comparable predictive

accuracy with the three baselines on MR and PR test set, as shown in Tab. 4.3. Besides, the results

of three comparing methods, including Vanilla training, Rationale augmentation, and CREX, are not

substantially different. It means that the increased credibility does not sacrifice model performance

on test set.

4.4.6 Generalization Accuracy beyond Test Set

Currently, the generalization performance of DNNs is usually calculated using the prediction

accuracy on the hold-out test set. This is problematic due to the independent and identically

distributed (i.i.d.) training-test split of data, especially in the presence of strong priors [73]. The

DNN model can succeed by simply recognize patterns that only happen to be predictive on instances

over the test set [74]. Consequently, test set fails to adequately measure how well DNN systems

perform on new and previously unseen inputs. To assess the true generalization ability of DNNs and
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Kaggle Polarity

Models CNN LSTM Atten CNN LSTM Atten

Vanilla DNN 74.3 73.6 74.7 60.7 62.6 64.8
Data Augment 75.7 70.3 75.0 62.5 58.1 65.4
Rationale Augment 76.5 73.9 75.8 63.1 63.2 65.3
CREX 78.4 75.7 75.2 63.2 63.8 65.7

Table 4.4: Generalization accuracy (in percent) of DNNs trained using MR dataset on two alternative
datasets: Kaggle and Polarity.

Models CNN LSTM Atten

Vanilla DNN 92.1 91.5 91.0
Data Augment 92.4 92.1 90.1
Rationale Augment 92.5 91.9 90.9
CREX 92.7 92.3 91.2

Table 4.5: Generalization accuracy (in percent) of DNNs trained using PR on an adversarial dataset.

to demonstrate the benefit of increased credibility of CREX, we also evaluate the model performance

using data beyond the test set.

4.4.6.1 Generalization for DNNs Trained on MR

For DNNs trained on MR, we use two alternative datasets:

• Kaggle movie reviews dataset 6 (Kaggle) It is a binary sentiment classification benchmark, with

movie reviews from IMDB, consisting of 50,000 reviews.

• Sentence polarity dataset 7 (Polarity) [75]. Another binary sentiment classification dataset with

data from IMDB, consisting of 10,662 reviews.

Note that none of the data from these two datasets is utilized to train DNN models or tune hyperpa-

rameters. They only serve the testing purpose. The generalization accuracy statistics are shown

in Tab. 4.4. There are several key observations. Firstly, comparing with the accuracy in Tab. 4.3,
6https://www.kaggle.com/iarunava/imdb-movie-reviews-dataset
7http://www.cs.cornell.edu/people/pabo/movie-review-data/
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there is a significant generalization gap between predictive accuracy on MR test set and Kaggle

(or Polarity), for all three architectures. Almost most of the accuracy scores are above 90% on the

corresponding test set. In contrast, all accuracy scores are below 80% for Kaggle and below 70%

for Polarity dataset. Secondly, CREX could reduce this generalization gap comparing to baseline

methods. In Tab. 4.4, CREX DNNs achieve substantial accuracy enhancements comparing to Vanilla

DNNs, with relative accuracy improvement of 4.1%, 2.1%, 0.5% for three networks on Kaggle, and

2.5%, 1.2%, 0.9% for three networks on Polarity. These enhancements have validated the benefit of

the increased credibility of our trained DNNs. Thirdly, there exists a positive correlation between

the degree of credibility and the generalization accuracy on data not existing in test set. Rationale

Augmentation has consistent accuracy improvement comparing with Vanilla, while Data Augment

via back translation does not, as shown in Tab. 4.4. This conforms very well with the credibility

performance in Tab. 4.2.

4.4.6.2 Generalization for DNNs Trained on PR

To test generalization performance of DNNs trained on PR, we create an adversarial dataset

by removing sentences relevant to beer aroma and palate. This is achieved via detecting sentences

containing word “taste”, “smell”, “aroma”, “flavor”, “drinking” from the original PR test set.

Note that we only differentiate beer appearance, thus description words about beer aroma and palate

are considered as training set specific bias. The corresponding accuracy is shown in Tab. 4.5, where

CREX consistently outperforms baseline methods. Particularly, CREX DNNs have promoted the

accuracy ranging from 0.2% to 0.8% comparing to Vanilla DNNs. It demonstrates that our trained

DNNs rely more on correct evidences relevant to beer appearance rather than aroma and palate to

make decisions, thus could achieve better generalization accuracy.
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5. Explanation-Guided Generalizable BERT-based NLU Models

In last chapter, we have introduced how to use explainability to improve the generalization ability

of shallow DNN models (with less than three layers), including CNN, LSTM, and self-attention

model. In this chapter, we propose to investigate a more deeper DNN model, e.g., BERT-base (with

12 layers). We propose a framework to interpret and mitigate the shortcut learning behavior of

BERT-based NLU (natural language understanding) models, with the help of explainability1.

5.1 Introduction

The pre-trained BERT [76] models have demonstrated substantial gains on many NLU (natural

language understanding) benchmarks. However, recent studies show that these models tend to

exploit dataset biases as shortcuts to make predictions, rather than learn the semantic understanding

and reasoning [77, 78]. Here we focus on the lexical bias, where NLU models rely on spurious

correlations between shortcut words and labels. This eventually results in their low generalizability

on out-of-distribution (OOD) samples and low adversarial robustness [79].

In this chapter, we show that the shortcut learning behavior of NLU models can be explained

by the long-tailed phenomenon. Previous empirical analysis indicates that the performance of

BERT-like models for NLI task could be mainly explained by the reliance of spurious statistical

cues such as unigrams “not", “do”, “is” and bigrams “will not” [78, 80]. Here we generalize these

hypotheses using the long-tailed phenomenon. Specifically, the features in training set could be

modeled using a long-tailed distribution via using local mutual information [81] as a measurement.

By utilizing an interpretation method to analyze model behavior, we observe that these NLU models

concentrate mainly on information on the head of the distribution, which usually corresponds

to non-generalizable shortcut features. In contrast, the tail of the distribution is poorly learned,

although it contains high information for the NLU task. Another key observation is that during

1Reprinted with permission from "Towards Interpreting and Mitigating Shortcut Learning Behavior of NLU models."
Mengnan Du, Varun Manjunatha, Rajiv Jain, Ruchi Deshpande, Franck Dernoncourt, Jiuxiang Gu, Tong Sun, and
Xia Hu. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pp. 915-929. 2021.
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Figure 5.1: (a) Our key intuition is that the training set can be modeled as a long-tailed distribution.
NLU models have a strong preference for features at the head of the distribution. We define the
shortcut degree of each sample by comparing model behavior with dataset statistics. (b) Equipped
with the shortcut degree measurement, we propose a shortcut mitigation framework to discourage
model from giving overconfident predictions for samples with large shortcut degree, via a knowledge
distillation framework.

training process, shortcut features tend to be picked up by NLU models during very early iterations.

Based on these two key observations, we define a measurement to quantify the shortcut degree of

all training samples.

Based on the long-tailed distribution observation and the shortcut degree measurement, we

propose a NLU shortcut mitigation framework, termed as LTGR (Long-Tailed distribution Guided

Regularizer). The proposed regularizer is based on the observation that NLU models would give

over-confident predictions when there exist strong shortcut features in the input. This is because NLU

models over-associate the shortcut features with certain class labels. LTGR is implemented using

the knowledge distillation framework, to penalize the NLU model from outputting overconfident

prediction for training samples with large shortcut degree. The implicit effect of LTGR is to

downweight the reliance on shortcut patterns, thereby discouraging the model from taking the

shortcuts for prediction. With this regularization, NLU models have more incentive to learn the

correlation between task relevant features with the underlying task.
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5.2 Long-Tailed Phenomenon

In this section, we propose to explain the shortcut learning behavior of NLU models using

the long-tailed distribution phenomenon (see Fig. 5.1(a)). Our insight is that the standard training

procedures cause models to utilize the simple features that reduces training loss the most, i.e.,

simplicity bias [82]. This directly results in the low generalization of NLU models.

5.2.1 Preference for Features of High Local Mutual Information

NLU tasks are typically formulated as a multi-class classification task: given an input sentence

pair x, the goal is to learn a mapping f(x) to predict the semantic relationship label y. In the training

set, some words or phrases within x co-occur more frequently with one label y than others. The

NLU model would capture those shortcut features for prediction. Due to the IID (independent and

identically distributed) split of training, validation and test set, models which learn these shortcuts

can achieve a reasonable performance on all these subsets. However, they might suffer from the low

generalization ability on OOD data that do not share the same shortcuts as the in-distribution data.

Dataset Statistics. We model statistics using local mutual information (LMI) [83] between a word

w and a label y, denoted as follows:

LMI(w, y) = p(w, y) · log(
p(y|w)

p(y)
), (5.1)

where p(w, y) = count(w,y)
|D| , p(y|w) = count(w,y)

count(w) . |D| is the number of unique words in training set,

count(w, y) denotes the co-occurrence of word w with label y, and count(w) is total number of

words in the training set. After analyzing each word for the training set, we obtain |y| distributions of

|y| labels. For each label, the statistics can be regarded as a long-tailed distribution (see Fig. 5.1(a)).

It can be observed that the head of each distribution typically contains functional words, including

stop words, negation words, punctuation, numbers, etc. These words carry low information for

the NLU task. In contrast, the long tail of the distribution contains words with high information,

although they co-appear less frequently with the labels.

Model Behavior. We use a post-hoc interpretation method to generate interpretations for each

training sample in the training set. It is achieved by attributing model’s prediction in terms of its input
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features, and the final interpretation is illustrated in the format of feature importance vector [54].

Here we use a gradient based interpretation method: Integrated Gradient [17]. Integrated Gradient

is a variation on calculating the gradient of the model prediction w.r.t. features of the input. The

main idea is to integrate the gradients of m intermediate samples over the straightline path from

baseline xbase to input xi, which could be denoted as follows:

g(xi) = (xi − xbase) ·
m∑
k=1

∂fy(xbase + k
m(xi − xbase)
∂xi

· 1

m
. (5.2)

Let each input text is composed of T words: xi = {xti}Tt=1, and each word xti ∈ Rd denotes a

word embedding with d dimensions. The prediction fy(xi) denotes the prediction probability for

ground truth label y for input xi. We first compute gradients of the prediction fy(xi) with respect to

individual entries in word embedding vectors, and use the L2 norm to reduce each vector of the

gradients to a single attribution value, representing the contribution of each single word. We use the

all-zero word embedding as the baseline xbase. Eventually, we obtain a feature importance vector

with the length of T , representing the contribution of each word towards model prediction fy(xi).

Comparing Model and Dataset. We can compare the Integrated Gradient-based model behavior

with LMI based dataset statistics, so as to attribute the source of NLU model’s shortcut learning.

For each input sample, we calculate its Integrated Gradient vector, and then compare it with the

head of the long-tailed distribution. Our preliminary experiments indicate that NLU classifier

are very strong superficial learners. They rely heavily on the high LMI features on the head of

long-tailed distribution, while they usually ignore more complex features on the tail of distribution.

The latter requires the model to learn high-level sentence representations and thus capture the

relationship of two part of inputs for NLU task. Based on this empirical observation, we can define

the measurement of the shortcut degree of each sample by calculating the similarity of model and

dataset. For each training sample xi, we measure whether the word with the highest or the second

largest Integrated Gradient score falls in the word subsets within the head of the distribution. Here

we define the head as top 5% words of the distribution, since empirically we find this threshold

could capture most of the shortcut words. We set the shortcut degree ui for sample xi as 1 if it

matches. Otherwise if it does not match, we set ui = 0.
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5.2.2 Shortcuts Samples are Learned First

By examining the learning dynamics of NLU models, another key intuition is that shortcut

samples are learned by the models first. The shortcut features located at the head of the long-tailed

distribution are learned by NLU models at very early stage of the model training, leading to the rapid

drop of the loss function. After that, the features at the tail of the distribution are gradually learned

so as to further reduce training loss. Based on this observation, we take snapshots when training our

models, and then compare the difference between different snapshot models. We regard a training

sample as hard sample if the prediction labels do not match between snapshots. In contrast, if the

prediction labels match, we compare the Integrated Gradient explanation vector g(f(xi)) of two

snapshots, through cosine similarity. The shortcut measurement for sample xi is defined as follows:

vi =

 cosine(g(f1(xi)), g(f(xi))), f1(xi) = f(xi)

0, f1 (xi) 6= f (xi)
(5.3)

where f1(·) denotes the snapshot at the early stage of the training, and we use the model obtained

after the first epoch. The second snapshot f(·) represents the final converged model. The intuition

is that shortcut samples have a large cosine similarity of integrated gradient between two snapshots.

5.2.3 Shortcut Degree Measurement

We define a unified measurement of the shortcut degree of each training sample, by putting the

aforementioned two observations together. This is achieved by first calculating the two shortcut

measurement ui and vi, directly adding them together, and then normalizing the summation to the

range of 0 and 1. Ultimately, we obtain the shortcut degree for each training sample xi, denoted as

bi. This measurement bi can be further utilized to mitigate the shortcut learning behavior.

5.3 Proposed Mitigation Framework

Equipped with the observation of long-tailed phenomenon and the shortcut degree measure-

ment bi obtained from the last section, we propose a shortcut mitigation solution, called LTGR

(Long-Tailed distribution Guided Regularizer). LTGR is implemented based on self knowledge

distillation [66, 84] (see Fig. 5.1(b)). The proposed distillation loss is based on the observation that

50



NLU models would give over-confident predictions when there exist strong shortcut features in the

input. This is because NLU models over-associate the shortcut features with certain class labels. The

proposed distillation loss aims to suppress the NLU models from giving over-confident predictions

for samples with strong shortcut features. It forces the model to down-weight its reliance on shortcut

features and implicitly encourages the model to shift its attention to task relevant features.

Smoothing Softmax. Based on the biased teacher model fT , we calculate the logit value and

softmax value of training sample xi as zTi and σ(zTi ) respectively, where σ is the softmax function.

Given also the shortcut degree measurement of each training sample bi. We then smooth the original

probability through the following formulation:

si,j =
σ(zTi )1−bij∑K
k=1 σ(zTi )1−bik

, (5.4)

where K denotes the total number of labels. When bi = 0, the si will remain the same as σ(zTi ),

representing that there is no penalization. In another extreme when bi = 1, si will have the same

value for K labels. Otherwise when bi is among 0 and 1, the larger of the shortcut degree bi,

the smoother that we expect si, thus dis-encouraging the NLU model from giving over-confident

predictions for samples with large shortcut degree.

Self Knowledge Distillation. Ultimately, we use the following loss to train the student model fS:

L(x) = (1− α) ∗ H
(
yi, σ

(
zSi
))

+ α ∗ H
(
si, σ

(
zSi
))
, (5.5)

where zSi represents the softmax probability of the student network for training sample xi,H denotes

cross entropy loss. Parameter α denotes the balancing weight for learning from smoothed probability

output si of teacher and learning from ground truth yi. We use the same model architecture for both

teacher fT and student fS , and during the distillation process we fix the parameters of fT and only

update parameters of the student model fS . Ultimately, the biased teacher model fT is discarded

and we only use the debiased student network fS for prediction.

5.4 Experiments

In this section, we conduct experiments to evaluate the proposed LTGR framework.
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5.4.1 Experimental Setup

Tasks & Datasets. We consider three NLU tasks.

• FEVER: The first task is fact verification, where the original dataset is FEVER [85]. The FEVER

dataset is split into 242,911 instances for training and 16,664 instances as development set. We

formulate it into a multi-class classification problem, to infer whether the relationship of claim

and evidence is refute, support or not enough information. The two adversarial sets are Symmetric

v1 and v2 (Sym1 and Sym 2), where a shortcut word appears in both support and refute label [83].

Both Symmetric v1 and v2 contain 712 samples [83].

• MNLI: The second task is NLI (natural language inference), where the original dataset is

MNLI [86]. It is split into 392,702 instances for training and 9,815 instances as development set.

We also formulate it into a multi-class classification problem, to infer whether the relationship

between hypothesis and premise is entailment, contradiction, or neural. Two adversarial set

HANS [87] and MNLI hard set [78] are used to test the generalizability. HANS is a manually

generated adversarial set, containing 30,000 synthetic instances. Although originally HANS is

mainly used to test whether NLU model employs overlap-bias for prediction, we find that models

rely less on lexical bias can also achieve improvement on this test set.

• MNLI-backdoor: For the third task, we use a lexically biased variant of the MNLI dataset, which

is termed as MNLI-backdoor. We randomly select out 10% of the training samples with the

entailment label and append the double quotation mark ‘“’ to the beginning of the hypothesis.

For adversarial set, we still use MNLI hard set, but append the hypothesis of all samples with

‘“’. In this way, we test whether NLU models could capture this new kind of spurious correlation

and whether our LTGR could mitigate this intentionally inserted shortcut. Note that the double

quotation mark we use is ‘“’ (near the number 1 on the keyboard), rather than the usual “‘’, since

‘“’ appears infrequently in both the original MNLI training and validation set.

NLU Models. We consider two pre-trained contextualized word embeddings models: BERT

base [76], and DistilBERT [88] as encoder to obtain words representations. We use the pre-trained
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BERT models from Huggingface Transformers2. The input fed to the embedding models are

obtained by concatenating two branches of inputs, which are separated using the ‘[sep]’ symbol.

Note that we use a slightly different classification head comparing to the related work [89, 90].

The bidirectional LSTM is used as the classification head right after the encoder, followed by

max pooling and fully connected layer for classification purpose. The main reason is that our

classification head could facilitate the analysis using the explanation to analyze model behavior.

Implementation Details. For all three tasks, we train the model for 6 epochs, where all models

could converge. Hyperparameter α is fixed as 0.8 for all models. We use Adam optimizer, where

the momentum is set as 0.9. The learning rates for the encoder and classification head are set

as 10−5 and 3 ∗ 10−5 respectively. We freeze the parameters for the encoder for the first epoch,

because weights from the classification head will be randomly initialised and we do not want the

loss to affect the weights from the pertained encoder. When generating explanation vector for

each input word using integrated gradient, we only consider the classification head, which uses the

768-dimensional representation as input. Parameter m in Eq. (5.2) is fixed as 50 for all experiments.

Comparing Baselines. We compare with three representative families of methods. The first

baseline is product-of-experts [89, 90, 91], which first trains a bias-only model and then trains a

debiased model as an ensemble with the bias-only model. The second baseline is re-weighting [83],

which aims to give biased samples lower weight when training a model. The bias-only model

is used to calculate the prediction probability of each training sample: pi, then the weight for xi

is 1 − pi [89]. Their work assumes that if the bias-only model can predict a sample with high

confidence (close to 1.0), this example is potentially biased. The third baseline is changing example

orders, using the descending order of probability output for the bias-only model. The key motivation

is that learning order matters. The sequential order is used (in contrast to random data sampler)

when training the model, where shortcut samples are first seen by the model and then the harder

samples. Note that classification head used in this work is different with the related work, thus we

re-implement all baselines on our NLU models.

2https://huggingface.co/transformers/pretrained_models.html
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Figure 5.2: Illustrative examples of shortcut learning behavior for MNLI task. Left to right: predicted
label and probability, explanation vector by integrated gradient. Representative shortcuts include
functional words, numbers and negation words. Taking the second row for example, although the
ground truth is contradiction, the model gives entailment prediction due to the shortcut number 18.

MNLI BERT-base FEVER BERT-base

#Words Top 1 Top 2 Top 3 Top 1 Top 2 Top 3

Ratio 25.3% 51.3% 66.0% 10.8% 26.9% 31.44%

Table 5.1: The ratio of samples where top integrated gradient words locates on the head of the
long-tailed distribution. We define the head as the 5% of all features. It indicates that NLU models
overly exploit words that co-occur with class labels with high mutual information.

5.4.2 Shortcut Behaviour Analysis

In this section, we aim to interpret the shortcut learning behavior of NLU models by connecting

it with the long-tailed distribution of training set.

Qualitative Evaluation. We use case studies to qualitatively demonstrate the shortcut learning

behavior. Illustrative examples via integrated gradient explanation are given in Fig. 5.1(a) as well as

Fig. 5.2. A desirable NLU model is supposed to pay attention to both branches of inputs and then

infer their relationship. In contrast, the visualization results indicate two levels of shortcut learning

behavior: 1) NLU model pays the highest attention to shortcut features, such as ‘only’, and 2) The

models only pay attention to one branch of the inputs.

Preference for Head of Distribution. We calculate the local mutual information values for each

word and then rank them to obtain the long-tailed distributions for all three labels. We then generate

integrated gradient explanation vectors for all samples in the training set. We calculate the ratio
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MNLI BERT-base FEVER BERT-base

Subset Entail Contradiction Neural Support Refute Not_enough

Ratio 75.8% 94.6% 96.3% 99.4% 99.9% 83.8%

Table 5.2: The high ratio of samples where the word with the largest integrated gradient value is
within the hypothesis branch of MNLI or the claim branch of FEVER, both of which are labelled by
annotators and there are abundant of annotation artifacts.

of the training samples with the largest integrated gradient words located in the 5% head of the

long-tailed distributions. The results are given in Tab. 5.1, where top 1, top 2 and top 3 mean

whether the largest, any one of the largest two, and any one of the largest three respective. The

results indicate that a high ratio of samples with the largest interpretation word located at the head

of the distribution, e.g., 25.3% for MNLI. The 5% of the distribution usually contains functional

words, including words from NLTK stopwords list, punctuation, numbers, and words that are used

by annotators to represent contradiction (e.g., ‘not’, ‘no’, ‘never’).

Preference for One Branch of Input. Another key observation is that the word with the largest

integrated gradient value usually lies in one branch of input, e.g., hypothesis branch of MNLI and

claim branch of FEVER. The results are given in Tab. 5.2, which shows that for all three labels, the

ratios (75%-99%) are highly in favor of one part of the NLU branch. Both preference for head of

the distribution and one branch of input can be explained by the annotation artifacts [78]. During

labelling process, crowded workers tend to use some common strategy and use a limited dictionary

of words for annotation e.g., negation words for contradiction. These artifacts lead to high LMI

features of the long-tailed distribution, which are then picked up by NLU models.

Shortcut Samples Are Learned First. We separate the MNLI training set into two subsets based

on the shortcut measurement bi. The separation threshold is selected so as to result in a shortcut

samples subset and a hard sample subset, with a ratio of 1 : 1. We put these subsets in the order

of shortcut/hard or hard/shortcut and use a data sampler that returns indices sequentially, so as to

analyze the learning dynamics of NLU model. We measure the model checkpoint performance

using validation set accuracy, and check validation performance multiple times within a training
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(a) Validation loss

(b) Validation accuracy

Figure 5.3: Learning dynamic for the first training epoch. X axis denotes 10 checkpoints in the first
epoch. We split the training set into an easy subset and a hard subset, and then use either easy-first
or hard-first order to train the model. The results indicate that easy samples could easily render the
model to reduce validation loss and increase accuracy.

loop. Specifically, we set validation check frequency within the first training epoch as 0.1, in total

calculating validation accuracy for 10 times. We illustrate the results for the BERT-base model in

Fig. 5.3. There are three major findings:

• Shortcut samples could easily render the model to reduce the validation loss and increase the

accuracy (the first 5 timesteps of blue line in Fig. 5.3). In contrast, the hard samples even increase

the validation loss and reduce accuracy (the last 5 timesteps of blue line in Fig. 5.3).

• The learning curves also validate that our shortcut measurement defined using bi faithfully reflects

the shortcut degree of training samples.

• The results further imply that during the normal training process with a random data sampler, the

examples with strong shortcut features are first picked up and learned by the model [77]. It makes

the training loss drop substantially during the first few training iterations. At later stage, NLU

models might pay more attention to the harder samples, so as to further reduce the training loss.

5.4.3 Mitigation Performance Analysis

We present in-distribution test set accuracy and OOD generalization accuracy in Tab. 5.3, 5.4,

and 5.5 for MNLI, FEVER, and MNLI-backdoor respectively. Note that both BERT and DistilBERT
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BERT base DistilBERT

Models FEVER Sym1 Sym2 FEVER Sym1 Sym2

Original 85.10 54.01 62.40 85.57 54.95 62.35
Reweighting 84.32 56.37 64.89 84.76 56.28 63.97
Product-of-expert 82.35 58.09 64.27 85.10 56.82 64.17
Order-changes 81.20 55.36 64.29 82.86 55.32 63.95
LTGR 85.46 57.88 65.03 86.19 56.49 64.33

Table 5.3: Generalization accuracy comparison (in percent) of LTGR with baselines for the FEVER
task. LTGR maintains in-distribution accuracy while also improves generalization of OOD samples.

BERT base DistilBERT

Models MNLI Hard HANS MNLI Hard HANS

Original 84.20 75.38 52.17 82.37 72.95 53.83
Reweighting 83.54 76.83 57.30 80.52 73.27 55.63
Product-of-expert 82.19 77.08 58.57 80.17 74.37 52.21
Order-changes 81.03 76.97 56.39 80.37 74.10 54.62
LTGR 84.39 77.12 58.03 83.16 73.63 55.88

Table 5.4: Generalization accuracy comparison (in percent) of our method with baselines for MNLI
task. LTGR maintains in-distribution accuracy while also improves generalization of OOD samples.

results are average of 3 runs with different seeds.

MNLI and FEVER Evaluation. There are four key findings (see Tab. 5.3 and Tab. 5.4).

• NLU models that rely on shortcut features have decent performance for in-distribution data, but

generalize poorly on other OOD data, e.g., over 80% accuracy on FEVER validation set and

lower than 60% accuracy on Sym1 for all models. Besides, our generalization accuracy is lower

(e.g., the HANS accuracy in Tab. 5.4) comparing to the models of BERT-base with a simple

classification head [89, 90]. It indicates that the Bi-LSTM classification head could exacerbate

the shortcut learning and reduce generalization of NLU models.

• LTGR could improve the OOD generalization accuracy, ranging from 0.68% to 5.86% increase for

MNLI task, and from 1.54% to 3.87% on FEVER task. The relatively smoother labels for shortcut

samples could weaken the connections between shortcut features with labels, thus encouraging

the NLU models to pay less attention to shortcut features during model training.

• LTGR does not sacrifice in-distribution test set performance. The reasons are two-fold. Firstly,

from label smoothing perspective [92], although LTGR smooths the supervision labels from the
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Hard-backdoor

Models MNLI Entailment Contradiction Neutral

Original 81.96 100.0 0.0 0.0
LTGR 82.10 98.63 30.45 17.53

Table 5.5: Evaluation of LTGR of DistilBERT model for the MNLI-backdoor task (accuracy values
in percent). Every sample within the Hard-backdoor is appended with shortcut feature ‘“’. LTGR
can mitigate this intentionally inserted shortcut.

teacher model, it still keeps the relative order of labels. Secondly, from knowledge distillation

perspective [66], standard operation is use a smaller architecture for student network, which can

achieve comparable performance with the bigger teacher network. For LTGR, we use the same

architecture, thus can preserve the in-distribution accuracy.

• In contrast, the comparing baselines typically achieve generalization enhancement at the expense

of decreased accuracy of in-distribution test set. For instance, Product-of-expert has lowered the

accuracy on FEVER test set by 2.75% for BERT-base model. Similarly, the accuracy drops for

in-distribution samples both for Reweighting and Order-changes baselines.

MNLI-backdoor Evaluation. The results are given in Tab. 5.5, and there are four findings.

Firstly, it indicates that shortcuts can be intentionally inserted into DNNs, in contrast to existing

shortcuts in training set that are unintentionally created by crowd workers. Here the unnoticeable

trigger pattern ‘“’ can be utilized for malicious purpose, i.e., Trojan/backdoor attack [93, 94].

Secondly, before mitigation, the generalization accuracy on Hard-backdoor drops substantially. For

all testing samples within Hard-backdoor, the NLU model will always predict them as entailment,

even though we only append 10% of entailment samples with the shortcut feature ‘“’ in training set.

It further confirms our long-tailed observation and indicates that NLU models rely exclusively on

the simple features with high LMI values and remain invariant to all predictive complex features.

Thirdly, LTGR is effective in terms of improving the generalizability. 30.45% of contradiction

and 17.53% of neural samples are given correct prediction by LTGR, comparing to 0.0% accuracy

before mitigation. It means that LTGR successfully pushes the NLU model to pay less attention

to ‘“’. Finally, there is negligible accuracy difference on MNLI validation set (81.96% comparing
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Figure 5.4: Illustrative examples of our mitigation. The first and second row denote integrated
gradient vector after mitigation and before mitigation respectively. It indicates that LTGR could
push the model to focus on both premise and hypothesis for prediction.

to 82.37%), which is not appended with shortcut feature ‘“’. It indicates that NLU model can be

triggered both by ‘“’ and other features.

Generalization Source Analysis. Based on experimental analysis, we have observed the sources

that can explain our improvement. The major finding is that our final trained models pay less

attention to shortcut features. We illustrate this using a case study in Fig. 5.4. Before mitigation,

the vanilla NLU model only pays attention to words within the hypothesis. In contrast, after

mitigation, the model pays attention to both premise and hypothesis and uses their similarity to lead

to the entailment prediction. However, we still can observe that the model pays high attention to

shortcuts after mitigation for a certain ratio of samples. Bring more inductive bias to the model

architecture [95] or incorporating more domain knowledge [96, 97] can further alleviate model’s

reliance on shortcuts, which will be explored in our future research.
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6. Explanation-Guided Fair Classification via Representation Neutralization

Beyond improving the generalization ability, in this chapter, we propose to investigate how

explainability can be utilized to boost the fairness and reduce discrimination of DNN models.1

6.1 Introduction

DNN models are increasingly being used in high-stake decision making applications that affect

individuals. However, these models might exhibit algorithmic bias behaviors [98, 99, 100, 101, 102].

Specifically, DNN models place certain privileged groups at systematic advantage and exhibit

discrimination with respect to certain unprivileged groups. For example, a recruiting tool believes

that males are more qualified and gives much lower ratings to females [100], loan eligibility

system negatively rates African Americans [103], and recidivism prediction system predicts African

Americans inmates are three times more likely to be classified as ‘high risk’ than European

Americans inmates [104], to name a few. The bias problem might cause adverse impacts on

individuals and society. Therefore, designing mitigation methods to reduce algorithmic bias of

DNN models has attracted increasing attention recently [103, 105, 106].

Existing debiasing methods usually work on learning debiased representations at the encoder-

level. One representative family of methods perform mitigation by explicitly learning debiased

representations, either through adversarial learning [107, 108, 109] or invariant risk minimiza-

tion [110, 111]. Another family of methods [112, 113, 114] implicitly learn debiased representations

by incorporating explanation during model training to suppress it from paying high attention to

biased features in the original input. Essentially, the above methods aim to remove the bias from

deep representations.

Learning debiased representations is a technically challenging problem. Firstly, it is hard to

remove all fairness sensitive information in the encoder. The suppression of fairness sensitive

1Reprinted with permission from "Fairness via Representation Neutralization." by Mengnan Du, Subhabrata
Mukherjee, Guanchu Wang, Ruixiang Tang, Ahmed Hassan Awadallah, and Xia Hu. Thirty-Fifth Conference on Neural
Information Processing Systems (NeurIPS), 2021.
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information might also remove useful information that is task relevant. Secondly, most existing

debiasing methods assume access to additional meta-data such as fairness sensitive attributes

and a lot of annotations corresponding to the protected groups to guide the learning of debiased

representations. However, such resources are expensive to obtain, if not unavailable, for most real

world applications.

To address these limitations, we explore the following research question: Can we reduce the

discrimination of DNN models by only debiasing the task-specific classification head, even with a

biased representation encoder? Our work is motivated by the empirical observation that standard

training can result in the classification head capturing spurious correlation between fairness sensitive

information and specific class labels. Some recent works [77, 80, 115] have explored such spurious

or shortcut learning behavior of DNNs in various applications. To this end, we propose the RNF

(Representation Neutralization for Fairness) framework for mitigation, motivated by the Mixup

work [116, 117]. We first train a biased teacher network via standard cross entropy loss. In the

second stage, we freeze the representation encoder of the biased teacher, and only update the

classification head via representation neutralization. This discourages the model from associating

biased features with specific class labels, and enforces the model to focus more on task relevant

information. To address low-resource settings, our RNF framework does not require any access

to the protected attributes during training. To this end, we train a bias-amplified model using

generalized cross entropy loss that is used to generate proxy annotations for sensitive attributes.

Experimental results over several benchmark tabular and image datasets demonstrate our RNF

framework to significantly reduce discrimination of DNN models with minimal degradation of the

task performance.

6.2 Representation Neutralization for Fairness

In this section, we first analyze the task-specific classification head of a DNN to examine

how bias is propagated from the encoder representation layer to the task-specific output layer

(Section 6.2.2). We empirically demonstrate the undesirable correlation between fairness sensitive

information in representations with specific class labels. Based on the observation, we introduce the
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Representation Neutralization for Fairness (RNF) framework to debias DNN models (Section 6.2.3).

Finally, we propose an approach to generate proxy annotations for sensitive attributes, enabling

the RNF framework to be applicable to low-resource settings with no access to sensitive attribute

annotations (Section 6.2.4).

6.2.1 Notations

We first introduce the notations used in this work. Let X = {xi, yi, ai}, i ∈ 1, ..., N be the

training set, where xi is the input feature, yi denotes the ground truth label, and ai represents the

sensitive attribute (e.g., gender, race, age). For ease of notation, in the following sections, we

consider binary sensitive attributes2. Nevertheless, our proposed mitigation framework can also be

applied to non-binary sensitive attributes (e.g., age).

Consider the classification model f(x, θ) = c(g(x)), parameterized with θ as the model parame-

ters. Here g(x) : X → Z represents the feature encoder, and g(x) = z is the representation for x

obtained from a DNN model. The predictor c(z) : Z → Y is the multi-layer classification head. It

is the top layer(s) of the DNN, which takes the encoded representation z as input and maps it to

softmax probability. The final class prediction is denoted by ỹ = arg max c(z). In this work, we

aim to reduce the discrimination of DNN models by only debiasing the classification head c(z),

with the biased representation encoder g(x) as input.

6.2.2 Analysis of the Classification Head

In this section, we examine how bias manifests in the representation space Z as well as

how the classification head c(z) obtained with standard training scheme propagates bias from

the representation layer to the model output layer. To this end, we train a biased network fT (x)

via standard cross entropy loss, where the following experiment is performed using the Adult

dataset [118].

Representation Probing Analysis. For the Adult training set, we generate representation vectors

2Gender is not binary in reality as there are many different gender identities, such as male, female, transgender,
to name a few. In this work, we consider gender as a binary sensitive attribute due to the limitation of the benchmark
dataset that encodes gender as a binary variable.
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(a) Before Neutralization 
Female and male

(b) Before Neutralization 
Positive and Negative

(c) After Neutralization
Neutralized feature

(d) After Neutralization
Positive and Negative

Figure 6.1: Representation analysis of z using Kernel PCA. (a) Protected attribute a (i.e., gender) is
a discriminative feature. In this plot, the male group primarily lies in the lower left interval, whereas
the female group is located primarily on the upper right interval. (b) Predicted positive label and
negative task-label distribution. (c) Representation neutralization to reduce the discriminative power
of a for dimensions relevant to the sensitive information, comparing to the distribution in (a). (d)
Neutralization still preserves the useful task relevant information.

for 500 training samples using the biased network fT (x) and project them in 2D for visualization.

To this end, we utilize the Kernel Principal Component Analysis (KPCA) [119] with a sigmoid

kernel, which is a tool to visualize high-dimensional data. Since the classification head c(z) contains

multiple non-linear layers, we choose kernel PCA instead of a linear dimensionality reduction

method such as linear PCA. The visualization is shown in Figure 6.1 (a). The plot depicts that the

low dimensional projection separates the two protected groups in two areas, where the male group is

primarily located in the lower left area, whereas the female group primarily occupies the upper right

area. Comparing the task-label y distribution in Figure 6.1 (b) with the protected group distribution

in Figure 6.1 (a), we observe that the protected attribute information is a discriminative feature that

could be exploited by the task classification head for prediction.

Role of the Biased Classification Head. The above demonstrative analysis indicates that the

model representation captures both useful task relevant classification information as well as bias

information from protected attributes. Specifically, the model captures strong correlation between

the fairness sensitive information and the class labels. On analyzing the data distribution, we observe

this to be an artifact of the conditional label distribution with respect to the sensitive attributes being

skewed. The model relies on this shortcut for prediction, resulting in bias amplification. We observe
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the male neurons to positively correlate to the desirable label (also refer to the experimental analysis

in Sec. 6.3.3), whereas the female neurons positively correlate to undesirable label. This depicts an

undesirable correlation between sensitive information with certain class labels in the model.

Our Motivation. Based on the above empirical observations, we propose to neutralize the training

samples (Fig 6.1 (c)) so as to reduce the discriminative power of the fairness sensitive information,

while at the same time preserving task relevant information (Fig 6.1 (d)). With the neutralized

training data, we propose to re-train the classification head. Our goal is to adjust the decision

boundary to implicitly de-correlate the fairness sensitive information in the representation space

with class labels.

6.2.3 Representation Neutralization for Debiasing Classification Head

Based on the aforementioned empirical observations, in this section we propose a simple yet

effective bias mitigation framework via Representation Neutralization for Fairness (RNF). RNF

does not require any prior knowledge about existing bias in the representation space; nor does it

require any knowledge about specific dimension(s) encoding the sensitive attributes – making it

widely useful for arbitrary applications. Our goal is to encourage the model to ignore the sensitive

attributes and instead focus more on task relevant information.

RNF is implemented in two steps (see Figure 6.2). In the first step, we train the model using

cross entropy loss, and obtain a biased teacher network fT (x). During the second step, we freeze

the encoder g(x) for fT (x), and use it as our backbone encoder for learning representations. We

then re-train only the classification head c(z) using feature neutralization (see Figure 6.2 (b)).

Representation Neutralization. To this end, while training the classification head, for an input

sample {x1, y, a1}, we randomly select another sample {x2, y, a2}, with the same class label y

but a different sensitive attribute a2 compared to a1 in the input sample. Now we compute the

corresponding representations z1 = g(x1) and z2 = g(x2) and re-train the classification head using

the neutralized representation z = z1+z2
2

as input. For the supervision label y for the classification

head, we utilize the neutralized soft probability y = p1+p2
2

after temperature scaling obtained

as follows. Given the logit vector z1 for input x1, the probability for class i is computed as
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Neutralized feature Neutralized label

𝑧1 + 𝑧2
2

𝑝1 + 𝑝2
2

Encoder 

𝑧1

𝑧2

Classification 
head

𝑥1
𝑧1

𝑝1

(a) Biased teacher network (b) Representation neutralization

Our RNF focuses on the 

debiased classification head

Existing methods focus 

on the debiased encoder

Classification 
head

Figure 6.2: Debiasing with representation neutralization. (a) We first train a biased teacher network
using only cross entropy loss. For two inputs x1 and x2 that with the same class label y and different
sensitive attribute a, we obtain the representations z1 and z2, and softened probabilities p1 and p2.
(b) We freeze parameters of the biased encoder and only re-train the classification head using the
neutralized representation z1+z2

2
as input, and softened probability p1+p2

2
as supervision signal.

p1,i =
exp(z1,i/T )∑
j exp(z1,j/T )

, where T ≥ 1. This can be regarded as a form of knowledge distillation [66],

where T > 1 softens the softmax score. A larger temperature prevents the model from assigning

over-confident prediction probabilities. A special case for RNF is when T = 1, where p1 and p2 are

the standard softmax probabilities obtained from the biased teacher network fT (x).

We use the knowledge distillation loss. The mean squared error (MSE) loss is used as a

distance-based metric to measure the similarity between model prediction and supervision signal.

LMSE = (ŷi − y)2 = {c(1

2
z1 +

1

2
z2)− (

1

2
p1 +

1

2
p2)}2. (6.1)

where, c is the classification head to project representations to softmax prediction probability.

There are two main benefits of the aforementioned training scheme. From the input perspective,

the neutralization of representations suppresses the model from capturing the undesirable correlation

between fairness sensitive information in the representation with the class labels. From the output

perspective, the softened label encourages the model to assign similar predictions to different

sensitive groups. Optimizing Eq. (6.1) leads to reduced generalization gap between two groups.

Smoothing Neutralization. To further enforce the model to ignore sensitive attributes, we

construct augmented training samples using a hyper-parameter λ to control the degree of neutral-
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ization of the samples {z1, p1, y} and {z2, p2, y}. The augmented neutralized sample is given by

z = λz1 + (1− λ)z2, λ ∈ [1
2
, 1). We encourage the classification head to give similar prediction

scores for the augmented and the neutralized sample (with λ = 1
2
). The regularization loss is:

LSmooth =
∑

λ∈[ 1
2
,1)

|c(λz1 + (1− λ)z2)− c(
1

2
z1 +

1

2
z2)|1. (6.2)

By varying λ we control the degree of sensitive information for the augmented samples. It is utilized

to penalize the large changes in softmax probability when we move along the interpolation between

two samples. We linearly combine the MSE loss in Eq. (6.1) with the regularization term as follows:

L = LMSE + αLSmooth. (6.3)

We train the classification head using the loss function in Eq. (6.3). Eventually we combine the

original encoder of fT (x) and re-trained classification head as the debiased student network fS(x).

The teacher fT (x) is later discarded and the debiased student network fS(x) is used for prediction.

6.2.4 Generating Proxy Annotations for Sensitive Attributes

The aforementioned feature neutralization is limited in that it requires instance-level sensitive

attribute annotations {ai}Ni=1 for all training samples. Such resource-extensive annotations are

difficult to obtain for many practical applications particularly due to the nature of the sensitive

attributes. To address this limitation, we propose a method to generate proxy annotations {âi}Ni=1

for the sensitive attributes based on the model uncertainty. The key idea is that a biased model

generates over-confident predictions for one demographic group, while giving much lower scores

for the alternative group.

To better facilitate the model to generate uncertainty scores, we train another biased model by

intentionally amplifying the bias via generalized cross entropy loss (GCE) [120]. The bias-amplified

66



model is denoted as fB(x) and the loss function is given as follows:

GCE(f(x; θ), y) =
1− fy(x; θ)q

q
, (6.4)

where fy(x; θ) denotes the output probability for ground truth label y. The hyper-parameter

q ∈ (0, 1] controls the degree of bias amplification. When limq→0, the GCE loss approaches −logp

which is equivalent to standard cross entropy loss. The core idea is that for more biased samples, i.e.,

samples with larger fy(x; θ) value, the model assigns higher weights f qy while updating gradient.

∂GCE(p, y)

∂θ
= f qy

∂ CE(p, y)

∂θ
. (6.5)

In this setup, the model fB(x) learns from bias-amplified samples compared to the model fT (x)

trained with standard cross entropy loss.

The confidence score of fB(x) is used to indicate whether a sample belongs to a privileged

or unprivileged group. Specifically, for a desired ground truth label, samples with over-confident

scores are grouped into the privileged group, whereas subsets of samples with low prediction scores

are grouped into the unprivileged group. In contrast, for the undesired ground truth label, samples

with over-confident scores are grouped into the unprivileged group, and vice versa. Based on this

criterion, we generate proxy sensitive attribute annotation â for each training sample x to split

samples into two groups, which are subsequently used for feature neutralization.

The overall process of our RNF mitigation framework contains two stages. In the first stage, we

train the biased teacher network fT (x) and the bias-amplified network fB(x). In the second stage,

we first use fB(x) to generate proxy sensitive attribute annotations for all training samples. We

use the ratio γ to partition the training set to generate proxy annotations for protected attributes

that are subsequently used for feature neutralization. Then we use representation neutralization and

the loss function in Eq. (6.3) to retrain the classification head of fT (x). Eventually, we combine

the original encoder g(x) of fT (x) and the refined classification head c(z) to give us the debiased

student network fS(x).
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Table 6.1: Dataset statistics.

Adult MEPS CelebA

# Training 33120 11362 194599
# Validation 3000 1200 4000

# Test 9102 3168 8000

6.3 Experiments

In this section, we conduct experiments to evaluate the effectiveness of our RNF framework.

6.3.1 Experimental Setup

6.3.1.1 Fairness Metrics, Benchmark Datasets and Baselines

We use two group fairness metrics: Demographic Parity [121] and Equalized Odds [122].

Demographic Parity (DP) measures the ratio of the probability of favorable outcomes between

unprivileged and privileged groups: DP = p(ŷ=1|a=0)
p(ŷ=1|a=1)

. Equalized Odds (∆EO) require favorable

outcomes to be independent of the protected class attribute a, conditioned on the ground truth label

y. Specifically, it calculates the summation of the True Positive Rate difference and False Positive

Rate difference:

∆EO = {P (ŷ = 1 | a = 0, y = 1)−P (ŷ = 1 | a = 1, y = 1)}+{P (ŷ = 1 | a = 0, y = 0)−P (ŷ = 1 | a = 1, y = 0)}.

(6.6)

Under the above metrics, it is desirable to have a DP value closer to 1 and ∆EO value closer to 0.

We use two benchmark tabular datasets and one image dataset to evaluate the effectiveness of

RNF. For the Adult income dataset (Adult), the goal is to predict whether a person’s income exceeds

$50K/yr [118]. We consider gender as the protected attribute where vanilla trained models depict

bias towards the female group. For the Medical Expenditure dataset (MEPS), we consider two

groups white and non-white [123]. Here the task is to predict whether a person would have a ‘high’

utilization, where vanilla DNN shows discrimination towards the non-white group. The CelebFaces

Attributes (CelebA) dataset is used to predict whether the hair in an image is wavy or not [124]. We

consider two groups male and female, where vanilla trained models show discrimination towards
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the male group. We split all datasets into three subsets with statistics reported in Table 6.1.

We compare two variants of our framework RNF (using proxy sensitive attribute annotations)

and RNFGT (using ground truth sensitive attribute annotations) against baselines such as DNNs

trained using only cross entropy loss (referred as Vanilla) and two regularization based mitigation

methods, namely, adversarial training (Adversarial) [125] and Equalized Odds Regularization

(EOR) [126]. Among them, the Adversarial method achieves fairness via learning debiased

representations, whereas EOR directly optimizes the EO metric in Eq. (6.6). All three baselines

control the fairness-accuracy trade-off via hyper-parameters.

6.3.1.2 Implementation Details

For the image classification task, we use ResNet-18 [10] (we add one more fully connected

layer). We set the representation encoder g(x) as the convolutional layers and use the remaining

two fully connected layers as the classification head c(z). For tabular datasets, we use a three-layer

MLP (multilayer perceptron) as the classification model, where the first layer is set as the encoder

and the remaining two layers are used as the classification head. Dropout is used for the first two

layers with the dropout probability fixed at 0.2. We use the same batch size of 64 for tabular datasets

and 390 for the image dataset. For selecting another random sample {x2, y, a2} to be neutralized

with current sample {x1, y, a1}, we perform the selection within the current batch of training data.

The hyper-parameters (e.g., learning rate and training epoches) are determined based on the model

performance on the validation set, and early-stopping based on validation performance is used to

avoid overfitting. The optimal temperature T used to calculate the probability is set as 2.0, 5.0,

2.0 for Adult, MEPS and CelebA datasets respectively. For Eq. (6.2), we sample λ from the list

[0.6, 0.7, 0.8, 0.9]. The hyper-parameter q in Eq. (6.4) is set as 0.2, 0.6, 0.3 for Adult, MEPS and

CelebA datasets respectively.

6.3.2 Mitigation Performance Analysis

We compare the mitigation performance of RNF (with proxy attribute annotations) and RNFGT

(with ground-truth attribute annotations) with other competing methods and illustrate their fairness-
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(a) Adult (c) CelebA(b) MEPS

Figure 6.3: The fairness-accuracy curve comparison of RNF and other baselines. The first and
second row depict the DP accuracy and ∆EO accuracy trade-off curves, respectively.

accuracy curves for the three datasets in Figure 6.3. The hyper-parameter α in Eq. (6.3) controls

the trade-off between accuracy and fairness for RNF. For Adversarial and EOR, we vary their

regularization weights to obtain the corresponding performance curves. As the random seeds lead

to variance in the accuracy and fairness metrics, we train the model for 10 times with different seeds

and report the average result. Overall, we make the following key observations.

• Even though RNF does not rely on annotations for the sensitive attributes, it performs similar to

baseline methods with access to such information, e.g, Adversarial training, or better than them in

some cases. This makes RNF readily usable for real-world applications where protected attributes

are not available in the training set.

• RNFGT improves mitigation performance over RNF by 10% on an average across all datasets and

metrics, thereby, demonstrating the benefit of using ground truth sensitive attribute annotations.

• The soft labels of RNF and RNFGT (obtained using a higher temperature T ) discourage the
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Figure 6.4: Analysis for the classification head.

model to assign overconfident predictions, thereby, suppressing it from capturing undesirable

correlation between fairness sensitive information and class labels. Penalizing the large changes

of probability as we move along the interpolation between two samples further suppresses the

model from capturing the undesirable correlation.

• Direct optimization of the equality of odds metric (i.e., EOR) achieves comparable performance

to RNFGT for all the datasets. However, it has limited improvement in terms of the demographic

parity metric. Note that EOR requires instance-level annotations for the protected attributes.

• We observe that Adversarial training also performs effective mitigation by learning debiased

representations. However, this happens at the expense of a higher accuracy drop for the task

performance. This likely results from the loss of task relevant information while suppressing

sensitive information from the representations. Additionally, we observe adversarial training to

be unstable, especially for relatively complex task like image classification.

6.3.3 Classification Head Analysis

In this section, we use explainability and an auxiliary prediction task to analyze the classification

head c(z) for the Adult dataset. Particularly, we leverage explainability as a debugging tool to

analyze the attention difference between Vanilla and RNF model with respect to the representations.
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Auxiliary Sensitive Attribute Prediction Task. We perform a representation analysis using an

auxiliary prediction task. To this end, we train another linear classifier to predict sensitive attributes

using the biased representation g(x) = z as input and the sensitive attribute annotations {ai}Ni=1

as the supervision signal. The linear classifier is denoted by LSENS(z) = Wz + b, where W and b

represent the weight matrix and bias for the linear classifier respectively. The weight matrix W can

be used to measure the degree of bias in each dimension of the representation z.

Explanation Analysis. We use post-hoc explainability to analyze the contribution of the classifi-

cation head c(z). Our goal is to figure out the contribution of each dimension within the biased

representation g(x) = z towards the model prediction f(x, θ) = c(g(x)). We train a linear classifier

Lexplan(z) = Wz + b to mimic the decision boundary of the multi-layer classification head c(z).

We compare the weight matrix of the two linear classifiers LSENS(z) and Lexplan(z) using cosine

similarity. For models trained using Adult dataset, we extract the weight matrix corresponding

to the protected attribute Male and task label Positive, and then we calculate the cosine similarity

between the Male vector and the Positive vector. This follows from our observation in Figure 6.1

that the vanilla model makes use of male relevant information to make positive predictions. For the

Vanilla model and RNF models listed in Figure 6.3 (a), we calculate the cosine similarity and report

the DP-Similarity performance in Figure 6.4. We observe that RNF dramatically reduces the cosine

similarity between positive predictions and male relevant information compared to Vanilla (from

0.272 to 0.075), by adjusting the decision boundary. This eventually helps the head c(z) to shift its

attention from fairness sensitive information to task relevant information.

6.3.4 Representation Neutralization with Debiased Encoder

In the discussions so far, we reported the performance of RNF while debiasing only the

classification head. In this section, we analyze the impact of RNF built on top of a debiased encoder.

We first use Adversarial or EOR training to learn a debiased encoder – which is subsequently

used as the backbone encoder for updating the classification head using RNF. This experiment is

performed on the MEPS dataset where both Adversarial and EOR methods achieve competitive

performance. We use the same hyper-parameters for different RNF variants and report a single
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Table 6.2: RNF with debiased encoder.

MEPS

Models Accuracy DP ∆EO

Vanilla 0.862 0.866 -0.210
RNF 0.839 0.964 -0.099
RNF_EOR 0.834 0.980 -0.049
RNF_Adversarial 0.826 0.971 -0.085

point in the fairness-accuracy curve. The results are shown in Table 6.2. We observe RNF_EOR

to achieve better fairness performance over RNF, with DP metric improvement of 1.6% and ∆EO

metric moves closer to 0. However, such improvement in the fairness metrics incur some loss in

the task performance – where the accuracy reduces by 0.5%. We observe a similar trend with the

combination of RNF and Adversarial, where the joint combination improves the fairness metrics

DP and ∆EO. Similar to the previous case, this fairness improvement is achieved at the expense

of some task performance degradation, where the accuracy drops by 1.3%. This indicates that our

RNF is complementary to using a debiased encoder where the joint combination performs better

than either of them in terms of the fairness metrics with some loss in task performance.
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7. Conclusion and Future Work

7.1 Conclusion

Nowadays, DNNs are increasingly being used in decisions and applications that are critical for

individuals and society. The application areas include hiring, lending, criminal justice, healthcare,

education, etc. Their resulting implications are far-reaching. Our research is based on DNN

explainability, aiming to explain the decision making process in understandable terms to humans.

The contribution of this work is two-folds in terms of explainability. Firstly, we propose algorithms

to provide explanations for pre-trained DNN models, in order to improve the transparency of DNN

models. Secondly, we also investigate the applications of explainability. Through using DNN

explainability as a debugging tool, we propose several frameworks to diagnose the failure reasons

of DNNs and then propose mitigation solutions.

In Chapter 2, we propose a class-discriminative CNN interpretation model to explain why a

CNN classifier makes a specific prediction for an instance. We show that the inner representations

of CNNs provide a tool to interpret and diagnose the working mechanism of individual predictions.

By evaluating on ImageNet and PASCAL VOC07 dataset, we demonstrate the interpretability of

the proposed model for a variety of CNN models with distinct architectures. The experimental

results also validate that the proposed guided feature inversion method performs surprisingly well

in preserving the information of all crucial foreground objects, regardless of their category.

In Chapter 3, we propose a new RNN attribution method, called REAT, to provide interpretations

for RNN predictions. REAT decomposes the prediction of a RNN as the additive contribution

of each words in the input text, in order to faithfully calculate the response of RNN to the input.

REAT could also generate phrase-level attribution scores, which can be combined with syntactic

parsing algorithms towards attribution at varying granularity. We apply REAT to three standard

RNN architectures, including GRU, LSTM and BiGRU. Empirical results on two sentiment analysis

datasets validate that interpretations generated by REAT are both interpretable to humans and
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faithful to the original RNN classifier. We further demonstrate that REAT can reveal the useful

linguistic patterns learned by RNNs.

In Chapter 4, we propose CREX, aiming to train credible DNNs which employ correct evidences

to make decisions. We employ a specific kind of domain knowledge, called rationales, to guide the

learning algorithms towards providing credible explanations, by pushing the explanation vectors to

conform with rationales. CREX is DNN architecture agnostic, end-to-end trainable, and simple to

implement. Experimental results show that our resulting DNN models have a higher probability to

look at correct evidences rather than training dataset specific bias to make predictions. Although

DNNs trained using CREX do not always improve prediction accuracy on hold-out test set, they

generalize much better on data which are beyond test set and which are representatives of underlying

real-world tasks, highlighting the advantages of the increased credibility. High credibility and

robustness of DNN are essential to earn trust of end-users towards a network model’s predictions,

and we believe the enhanced credibility and generalization will pave the way for their wider

adoptions in real world.

In Chapter 5, making use of interpretability as a debugging tool, we observe that the training set

features for NLU tasks could be modeled as a long-tailed distribution, and NLU models concentrate

mainly on the head of the distribution. Besides, we observe that shortcuts are learned by the model

at very early iterations of model training. As such, we propose a measurement to quantify the

shortcut degree of each training sample. Based on this measurement, we propose a LTGR framework

to alleviate the model’s reliance on shortcut features, by suppressing the model from outputting

overconfident prediction for samples with large shortcut degree. Experimental results on several

NLU benchmarks validate our proposed method substantially improves generalization on OOD

samples, while not sacrificing accuracy of in-distribution samples.

In Chapter 6, making use of interpretability as a debugging tool, we indicate that the discrimina-

tion of the DNN models is caused by their captured spurious correlation between fairness sensitive

information in encoder representations with specific class labels. We demonstrate that even when

input representations are biased, we can still improve fairness by debiasing only the classification
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head of the DNN models. We introduce the RNF framework for debiasing the classification head

by neutralizing training samples that have the same ground truth label but with different sensitive

attribute annotations. To reduce the reliance on sensitive attribute annotations (as used in existing

works), we generate proxy annotations by training a bias-intensified model and then annotating

samples based on its confidence level. Experimental results indicate our RNF framework to dra-

matically reduce the discrimination of DNN models, without requiring access to annotations for

the sensitive attributes for all the training samples. Experimental analysis further demonstrates our

RNF framework to further improve in conjunction with other debiasing methods. Specifically, our

RNF framework built on top of a debiased backbone encoder leads to better mitigation performance

with negligible accuracy drop in the task performance.

7.2 Future Work

Beyond the directions we have explored, we discuss several possible directions for future work.

Explainability Algorithms: In this work, we have explored post-hoc explanation algorithms

for standard DNN architectures, including CNN, RNN, BERT-based model. In future, we plan to

provide explanations for other DNN architectures, such as graph neural network [127, 128], vision

transformers [129], MLP-Mixer [130], etc. More importantly, we can compare the explanation

across several different families of architectures. Take the image classification task for example,

we can train CNN, vision transformer and MLP-Mixer on the ImageNet dataset and compare the

explanation heatmap difference between these architectures. The comparison would be conducted on

different categories of samples: 1) normal samples that all three families of architectures that give the

correct predictions, 2) normal samples that some of the three architectures give wrong predictions, 3)

OOD samples with domain shift and 4) adversarial samples. Similarly, for the NLP domain, we plan

to first train pretrained language models, e.g., BERT [76], RoBERTa [131], and ELECTRA [132] on

downstream GLUE benchmarks, and then compare their explanation similarity and differences also

for the aforementioned four types of samples. Through the comprehensive explanation comparison,

we can provide more insights into the pros and cons of different architectures.

Explainability Evaluation and Benchmarking: Additionally, we plan to explore the eval-
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uation of explainability algorithms. In the explainability domain, there is typically no ground

truth labels available for explanations. Besides, the explanation evaluation highly depends on the

application domains and there is no holistic evaluation scenario exists. The evaluation of expla-

nation is still an open problem. Take GNN explanation evaluation [133] for example, different

explanation algorithms generate explanations based on different paradigms. Some methods utilize

the explanation format of nodes and edges importance, while some others highlight sub-graphs.

Nevertheless, it is still unclear how the GNN models exactly make decisions and the explanations

ground truth is unavailable. It motivates us to construct benchmarks and design better metrics to

evaluate the effectiveness of explanation algorithms.

Applications of Explainability: Moreover, we plan to further employ interpretability as a

debugging tool to help us to better understand the downstream problem, the data and why a

model might fail, and eventually increase the performance [55]. In particular, we can make use

of interpretability to provide insights into adversarial vulnerability of DNN models and figure out

defense solutions [134], to study the redundancy of complex DNN models and inform the design of

compression techniques [135], to further explore the shortcut learning problem and help enhance

the generalization ability of DNN models [136]. Note that this process typically involves two

stages: 1) making use of interpretability to provide insights of the problem, 2) based on the insights

we propose mitigation solutions. Both stages require prior knowledge or expert knowledge. It

essentially means that we need to change from pure data-driven DNN paradigm to the combination

of data-driven and knowledge-guided paradigms.

Beyond Explainability: Furthermore, our ultimate research goal is to achieve Responsible

AI (or Trustworthy AI), targeting to enable DNNs to be more trustworthy by humans. Beyond

explainability, we would like to explore other aspects of Responsible AI, which include but are not

limited to accountability, privacy, robustness, bias and fairness of DNN models. Eventually, we

could enable DNN models to better serve us human beings.
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