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ABSTRACT 

Observations of dissolved oxygen, salinity, temperature, and six different nutrient 

concentrations of the waters on the TXLA Shelf in the months of March – September in 2003 – 

2014 were used in unsupervised and supervised machine learning techniques to identify driving 

processes of hypoxia and examine the performance of classification algorithms on predicting 

hypoxia on the TXLA Shelf. Unsupervised machine learning techniques, principal component 

analysis, and K-means clustering, successfully identified variability patterns that were associated 

with previously known drivers and processes of hypoxia in the region such as vertical stratification 

of the water column and the Mississippi River plume. The performance of eight classification 

algorithms (i.e., logistic regression, LDA, QDA, naïve bayes, KNN, SVM, decision tree, and 

random forest) on predicting hypoxia with the observations on TXLA Shelf were compared. 

Results showed that naïve bayes performed best on classifying hypoxia with high recall and low 

false positive rates. Balancing the class distribution in the training set of each algorithm 

significantly increased performance, indicating that classifier performance was strongly dependent 

on input training data. This study establishes that straightforward machine learning techniques can 

aid in identification of known main drivers of hypoxia and their characteristics and that those 

characteristics can be used to predict hypoxia on the TXLA Shelf. These techniques have the 

potential to evaluate hypoxia presence or absence in hydrographic data where DO is missing and 

can be a powerful tool used in water quality and resource management in the region. While the 

approaches presented in this study were specifically for the TXLA Shelf, the methodology is 

applicable to other coastal systems and locations with similar datasets. 
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1. INTRODUCTION 
 

1.1. Hypoxia on the Texas-Louisiana Shelf  

The Texas-Louisiana (TXLA) Shelf (Figure 1.1) in the Gulf of Mexico (GOM) is home to 

the largest area of seasonally oxygen depleted coastal bottom waters offshore the United States. 

Hypoxia is defined by low oxygen levels or dissolved oxygen concentrations that are less than 2 

mg/L or 1.4 mL/L and occurs in the bottom waters of the TXLA Shelf in the summer. Hypoxia on 

the TXLA Shelf was first reported in 1972 and has been systematically mapped since 1985 

(Rabalais et al., 1994, 1996, 1999; Turner et al., 2005; Rabalais et al., 2007). Low oxygen bottom 

water events have been occurring for at least the last 1000 years but their size rapidly grew across 

the shelf in the 1950s and continues to expand (Osterman et al., 2008; Osterman et al., 2009). 

Average hypoxic area coverage is approximately 17,000 square kilometers of the eastern TXLA 

Shelf (Dale et al., 2010; Rabalais et al., 2007). Coastal systems and estuaries worldwide also 

exhibit similar increases in hypoxia, primarily due to increases in anthropogenic nutrient inputs 

(Rabalais et al., 2010; Diaz 2001; Diaz and Rosenburg, 2008). Hypoxia can harm marine 

organisms and can lead to negative consequences for the economy of the northwestern GOM, 

which is reliant on recreational and commercial fisheries resources. Additionally, future climate 

change and sea-level rise have the potential to alter the intensity of hypoxia globally (Rabalais et 

al., 2010).  

Hypoxia in this region is brought on by combined effects from the nutrient and riverine 

load from the Mississippi-Atchafalaya River System (MARS) and associated estuaries and strong 

vertical stratification (i.e., stratification sufficient to prevent reoxygenation of the lower layer) that 

is enhanced by freshwater discharge and upwelling favorable wind stress (Forrest et al., 2010, 

Feng et al. 2012; Bianchi et al., 2010). This area receives ~50% of the riverine input from the 
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Mississippi River with added input from the Atchafalaya River that is about 30% of the total 

Mississippi River discharge (Etter et al., 2004, Bianchi et al., 2010). The MARS drains major 

agricultural and industrial regions that cover ~40% of the contiguous United States and parts of 

Canada (Milliman & Meade, 1983). This runoff is variable but characteristically peaks in the 

spring and has minimums in the late summer (Figure 1.2) (Nowlin et al., 1998). The freshwater 

discharge contains suspended sediments, dissolved and particulate matter, and nutrients. It flows 

from the Mississippi Birdfoot Delta and travels south and westward into Mexican waters.  

 

 

Figure1.1 The Texas-Louisiana Shelf in the northwestern Gulf of Mexico. 
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Figure 1.2 Ten-year record (1990-99) of flow in the Mississippi River at Tarbert Landing, LA. 
The thin solid line represents the actual flow, whereas the thicker solid line and the dotted lines 
represent the 70-yr mean flow and the standard deviation about the mean (Rowe & Chapman, 

2002).  
 

The effect of the riverine input is twofold in that the nutrient load fuels the biological 

mechanism of hypoxia and the freshwater causes stratification from the density difference 

between the riverine freshwater and saltier GOM ocean water (Bianchi et al. 2010). The nutrient 

load fuels organic carbon production such as phytoplankton blooms and fecal pellets. 

Heterotrophic respiration by microorganisms reduces oxygen since microorganisms use it as the 

most energetically favorable electron acceptor to remineralize organic carbon biomass until is it 

entirely depleted, after which nitrate is used. If the freshwater lens from riverine water creates a 

density difference between the mixed layer depth and water below the pycnocline, then oxygen 

removed by remineralization cannot be replaced by diffusion from the atmosphere and oxygen is 

drawn down below the pycnocline. If there is a partial lack of oxygen and dissolved oxygen 
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concentrations are below 1.4 mL/L, it is hypoxic, and if oxygen is consumed to the point of 

depletion (i.e., dissolved oxygen concentrations = 0 mL/L), it is referred to as anoxia. 

Additionally, in the summer, the region’s mean alongshore winds are reversed and flow 

upcoast creating conditions favorable for upwelling and advection of water from Mexico onto 

the TXLA Shelf (Cochrane & Kelley, 1986; Feng et al., 2014; Nowlin et al., 2005; Wiseman et 

al., 1997). The winds are also weaker in the summer and fronts occur less frequently (Nowlin et 

al., 2001). The reversed winds and currents keep the riverine input from flowing ‘downcoast’ 

meaning from Louisiana toward the west (Cochrane & Kelley, 1986; Cho et al., 1998). This 

allows additional time for respiration processes to continue in both the sediment and water 

column (Rowe & Chapman, 2002). The destruction of the halocline stratification occurs with the 

onset of fall storms that reoxygenate the bottom waters to eliminate hypoxic conditions 

(Wiseman et al., 1997; Bianchi et al. 2010; Rabalais et al. 2007). 

1.2. Additional Influences of Hypoxia 

Since this region is a river-dominated ocean margin, the importance of the nutrient load 

brought on by the river system has been stressed as a primary cause for hypoxia. It has been 

shown that river discharge and nutrient load are positively correlated with hypoxic area in the 

GOM; Rabalais et al. (2002b) concluded that the main cause of hypoxia is marine phytoplankton 

production driven by nitrogen loading from the Mississippi River. As a consequence of this, it 

was suggested that policies and regulations should be defined and implemented to reduce 

nitrogen load to mitigate the size of the associated hypoxic zone (Rabalais et al., 2002a). 

However, other studies have concluded that while, nutrients, specifically nitrogen, sourced from 

the MARS have taken the full blame for hypoxia occurrences, it was not actually the case. Rowe 

& Chapman (2002) suggested other sources of material besides the nitrogen load from the 
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MARS could cause oxygen consuming processes that contribute to hypoxia in the region. 

Additionally, nitrate has typically been regarded as the most important nutrient that controls 

phytoplankton growth in the northwestern GOM, but it has been shown that phosphate can act as 

the limiting nutrient (Ammerman & Sylvan, 2004; Sylvan et al., 2006; Sylvan et al., 2007). In 

the western region of the TXLA shelf, DiMarco et al., (2012) found that discharge from the 

Brazos River created favorable conditions for hypoxia to form locally and along the Texas coast 

in the summer of 2007. These findings and additional studies indicate that the MARS is not the 

sole source of nutrients that can cause hypoxia and that the process of limiting nutrients and 

riverine input utilization is more complex than initially thought (Dortch & Whitledge, 1992; 

Sharples et al., 2017). 

The relative importance of the river system, nutrients, and stratification (physical water 

column structure) on hypoxia formation has been shown to be significant in hypoxia formation 

and strength (Forrest et al., 2011; Zhang et al., 2015). There are other physical processes at play 

that contribute to the complexity and variation of hypoxia in the GOM. The amount of river 

discharge, wind mixing, and advection modulate the strength of hypoxia (Wiseman et al., 1997; 

Feng et al., 2012; Forrest et al., 2011). DiMarco et al. (2010) showed that topography and 

currents play a crucial role in managing intensity, distribution, and timing of hypoxia. It has also 

been shown that a minimum vertical stratification (i.e., stability frequency of ~ 40 cycles/hr) is 

needed for bottom water oxygen levels to be classified as hypoxic (Belabbassi, 2006; Bianchi et 

al., 2010; Dale et al., 2010), and that water below the pycnocline needs to be quiescent with a 

slow replacement time (i.e. the time needed to replace the amount of water in the Gulf of 

Mexico) for hypoxia to occur (Rowe & Chapman, 2002).  
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The northwestern GOM river dominated margin (Bianchi et al., 2010) is a highly 

dynamic system. Rowe & Chapman in 2002 (referred to as RCO2) proposed that there were 

three distinctive zones of hypoxia that have their own controlling mechanisms depending on 

different physical and biochemical processes (Figure 1.3). 

 

 

Figure 1.3 Colored RC02 zone model paradigm describing physical and biochemical processes 
controlling hypoxia on the Texas-Louisiana shelf (Rowe & Chapman, 2002). 

 
 

Zone 1 is located nearest to the river mouth, where sediment load is high and light 

availability is reduced, thereby, reducing phytoplankton production. The particulate organic 

matter (POM), including particulate organic carbon and clay, is deposited and aerobic 

metabolism draws down oxygen, resulting in hypoxia and the production of ammonium, sulfides, 

reduced iron, and manganese species. In zone 2, which is adjacent to zone 1 (Lahiry, 2007), there 
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is less turbidity since the POM has flocculated out and therefore the water column is not light 

limited. Nutrient concentrations are still high compared to the open ocean, but not as high as they 

are closest to the river mouth. Phytoplankton can bloom, and the general paradigm of hypoxia 

can occur. As one moves further from the mouth of the rivers offshore into zone 3, the nutrient 

load in the surface decreases because it was used up in zone 2 and this region is controlled 

mostly through the strong stratification caused by the freshwater and saltwater density 

difference. Therefore, it is most affected by river input and changes in freshwater volume. 

Primary production in zone 3 is driven by regenerated nitrogen. This zone can be described as 

low salinity water stripped of its nutrients in the euphotic zone and can extend from the river 

mouth westward and beyond the Texas coast. 

The defined edges of these zones are not spatially static but can change with river 

discharge and biological processes (Rowe & Chapman, 2002; Dale et al., 2010). Lahiry (2007) 

defined the edges of these RC02 zones in three oceanographic cruises conducted in April, June, 

and August of 2004 using salinity changes and hydrographic data. Kim et al. (2020b) further 

explored the RC02 zone model by using a box model and Kim et al (2020a) utilizes the zone 

hypothesis to explore the nutrient and salinity relationships to define the biological productivity 

associated with the Mississippi and Atchafalaya Rivers. 

1.3. Modeling Hypoxia – the need for Machine Learning 

Hypoxia on the shelf is a matter of concern and with the potential consequences for water 

quality and fisheries that are significant in the region; therefore, accurate diagnostics and 

prediction of the distribution and intensity of hypoxia is needed. Both the timing of hypoxia 

development and the spatial extent can vary dramatically. When considering the large suite of 

processes that influence oceanic water quality, including weather and climate variability, this poses 
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challenges for water quality and marine resource management (Boesch et al., 2001). Long- and 

short-term prediction is necessary due to the large spatiotemporal variability. 

Many efforts have been made to model hypoxia and its influences in this region. Hindcasts 

and predictions of hypoxia and hypoxic extent from Scavia et al. (2003) and Turner et al (2005) 

rely on statistical relationships of nutrient load, freshwater flux, and enhanced primary 

productivity. Hetland & DiMarco (2008) discuss their shortcomings and point out that their 

predictive abilities are not greater than the direct correlation between Mississippi River Discharge 

and areal hypoxia extent. Additionally, Hetland & DiMarco (2008) used a realistic hydrodynamic 

model of the TXLA Shelf and found that their results suggest that different biological processes 

are responsible for hypoxia in different physical regions proposed by RC02. Also, Forrest et al. 

(2010) used multivariate statistical regression to model hypoxic areal extent. Statistical models 

have been developed for forecasting hypoxic volume, such as the NOAA Ensemble Hypoxia 

Forecast which is a compilation of different models to forecast the size of the hypoxic zone. 

Although these forecasts are regularly published online every June and receive media attention, 

they are limited in that they predict overall hypoxic zone size but provide no information about the 

evolution of the spatial distribution of hypoxia over time.  

Even with advanced numerical methods, accurate prediction of coastal dissolved oxygen 

(DO) variability is challenging and computationally expensive. Recently, machine learning (ML) 

algorithms have become more efficient, computationally cheaper, and faster than traditional 

hydrodynamic and biogeochemical numerical models. These algorithms can also represent spatial 

distribution and variability. Machine learning techniques can easily replicate nonlinear phenomena 

from a sufficiently large dataset (i.e., dependent upon the complexity of the system the user is 

aiming to predict and the learning algorithm used) with an appropriate number of features and 
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target quantities. These ML capabilities have been demonstrated for predicting hypoxia and other 

biogeochemical and water quality parameters in other estuaries, coastal systems and freshwater 

bodies in several studies, including Corpus Christi Bay, TX,  San Luis Obispo Bay, CA, 

Chesapeake Bay on the eastern US Coast, Lake Huron, Hong Kong marine waters, and Tampa 

Bay, FL. (Chang et al., 2013; Coopersmith et al., 2011; Deng et al., 2021; Guo et al., 2021; Ross 

& Stock et al., 2019; Valera et al., 2020; Yu et al., 2021; Yu et al., 2020). Coopersmith et al. (2011) 

produced reasonable estimates of hypoxic probability in Corpus Christi Bay using previous day 

DO, salinity, water temperature, wind speed and wind direction as input forcings in a k-nearest 

neighbor model. Valera et al. (2020) showed that random forest regression and support vector 

regression models accurately reproduced nearshore and offshore DO with high accuracy. Even 

with testing and application of ML techniques to predict variables in range of coastal 

environments, it is still relatively limited particularly for DO concentrations on the continental 

shelf.  Specifically, ML methods for identifying the dominant process that control hypoxia has not 

yet been applied in the northwestern GOM. With ML methods’ flexibility to represent nonlinearity, 

spatial variability, and seasonal changes in DO, ML methods provide a unique opportunity for new 

insights into hypoxia in the GOM. 

1.4. Research Goals and Questions 

Considering ML’s capabilities, RC02’s proposal of different controlling regimes, and the 

lack of ML methods applied to hypoxia on the TXLA Shelf, here we explore if machine learning 

methods can aid in identification of the dominant hypoxia controlling processes and classify 

hypoxia from hydrographic characteristics.  

The two fundamental guiding questions for my research are: 
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1) Can machine learning methods be used to identify the dominant oceanographic processes 

that drive hypoxia? 

2) Can hydrographic characteristics (i.e., salinity, temperature, nutrients) be used as a 

predictive tool for identifying hypoxia on the TXLA Shelf? 

 

The following hypotheses stem from the project’s research questions. 

H1)  Machine learning methods can identify and quantify differences in hydrographic data 

that are related to oceanographic processes across the Texas-Louisiana Shelf. 

H2)  Hydrographic characteristics that are associated with hypoxia can be used as a 

predictive tool for determining the presence of hypoxia.  

 

H1 will be addressed by applying two unsupervised ML methods to identify the drivers of 

hypoxia on the TXLA Shelf using a large dataset made up of hydrographic data from 31 research 

cruises. H2 is addressed by exploring the capabilities of supervised ML classification techniques 

to predict hypoxia. Here we apply eight supervised ML classification techniques and examine their 

performance in classifying hypoxia on the TXLA Shelf. This thesis analyzes the capability of ML 

techniques to identify driving processes of hypoxia and examines the performance of classification 

techniques on predicting hypoxia on the TXLA Shelf. 

1.5. Outline 

This thesis is organized into five sections. Section 1 provides the introduction and 

background information of hypoxia in the northwestern GOM, and the motivation and need for 

ML. It also includes the guiding research questions, hypotheses, and plan for testing the 

hypotheses. Section 2 describes the data and methods used to resolve the research questions. 

Section 3 describes and discusses the results from the Research Question 1 (above). Section 4 
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describes and discusses results from the Research Question 2 (above). Section 5 provides an 

integrative discussion, conclusions, and recommendations for future work. 
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2. DATA AND METHODS 

 

2.1 Mechanisms Controlling Hypoxia Data (MCH) 

Hydrographic data including salinity, temperature (ºC), dissolved oxygen (mL/L), nitrate 

(µmol/L), nitrite (µmol/L), total nitrogen (µmol/L), silicate (µmol/L), phosphate (µmol/L), urea 

(µmol/L), and ammonia (µmol/L) were obtained from a previously conducted study, the 

Mechanisms Controlling Hypoxia on the Louisiana Shelf (MCH) project (DiMarco & Zimmerle, 

2017; DiMarco, 2012; DiMarco, 2021). The MCH Project was funded by NOAA from 2003-2016 

and consisted of an integrated observational and numerical modeling approach to better understand 

the Interactions of the physical, biological, and geochemical processes and their variability across 

the entire TXLA Shelf. This information contributes to a comprehensive description of the 

mechanisms that control hypoxia in the northern Gulf of Mexico. Environmental and 

oceanographic observations were recorded on 31 process-oriented research cruises and resulted in 

more than 120 towed transects, ~5,000 CTD casts, ~30,000 water samples, and more than 50,000 

km of ship flow-through system data.  

 The 31 cruises occurred in the months of March – September in the years of 2003 – 2014 

aboard four different research vessels including R/V Gyre, R/V Pelican, R/V Blazing Seven, and 

the R/V Manta. Physical and biogeochemical data were collected by bottle and CTD. Sampling 

stations associated with these cruises span from the Mississippi River Delta to as far southwest as 

Corpus Christi Bay (Figure 2.1).  
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Figure 2.1 MCH sampling station locations.  

 

 
2.1.1 MCH Preprocessing 
 

Data from the 31 MCH cruises were compiled into one dataset and rows that were 

missing information were not included. To maximize the amount of data included, missing 

values in salinity and in DO were substituted with values from the CTD and DO probe on the 

niskin rosette respectively. Eight samples collected on the MCH21 cruise at the mouth of the 

Atchafalaya River were excluded from the analysis and were deemed as outliers since they were 

not representative of the population of the coastal area. Additionally, 99 ammonia and 49 urea 

values were greater than 10 µmol/L and were excluded since these were suspect for the GOM. 

After applying these restrictions, 4,886 sampling points remained in the data set. A table of 

sampling stations with their associated dates and number of stations included in this project can 

be seen in Table 2.1. 
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Table 2.1 Mechanisms Controlling Hypoxia Project research cruises during years 2003 – 2014. 

 

2.2 Ancillary Data 
 

Additional data were used in the second part of this study to test machine learning models 

(Section 4). These supporting data includes hydrographic data from three research cruises 

 

Hypoxia Cruise Date Number of 
Stations  

Number of Stations 
Included in this Project 

MCH00 14-16 September 2003 36 0 
MCH01 2-7 April 2004 59 53 
MCH02 26 June – 1 July 2004 62 59 
MCH03 21-25 April 2004 56 55 
MCH04 23-27 March 2005 50 50 
MCH05 20-26 May 2005 82 81 
MCH06 8-14 July 2005 74 37 
MCH07 18-23 August 2005 90 88 
MCH08 23-29 March 2007 41 39 
MCH09 17-20 July 2007 23 23 
MCH10 6-10 September 2007 30 29 
MCH11 16-18 April 2008 21 21 
MCH12 17-20 July 2008 29 23 
MCH13 7-10 April 2009 35 11 
MCH14 28-31 July 2009 9 9 
MCH15 6-10 April 2010 4 4 
MCH16 15-23 August 2010 8 8 
MCH17 25-30 April 2011 5 5 
MCH18 20-23 June 2011 7 7 
MCH19 16-20 August 2011 6 6 
MCH20 25-30 April 2012 5 5 
MCH21 7-12 August 2012 5 4 
MS01 14-17 June 2012 19 18 
MS02 3-7 August 2010 65 27 
MS03 24-28 June 2011 53 33 
MS04 8-14 August 2011 56 52 
MS05 10-16 June 2012 56 55 
MS06 15-21 August 2012 64 18 
MS07 20-25 June 2013 75 3 
MS08 4-10 August 2013 69 14 
MS09 17-23 June 2014 45 4 
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conducted as a part of Texas A&M's Oceanography Department Research Experience for 

Undergraduates (REU) Observing the Ocean in 2016 2017, and 2018. It also includes 

hydrographic data collected from NSF's Ocean Acidification research cruises (XR01 and XR02). 

2.2.1 Research Experience for Undergraduates 2016, 2017, & 2018 (REU) 

Hydrographic data were collected by the Texas A&M’s Oceanography Research 

Experience for Undergraduates (REU) Observing the Ocean in June in the years 2016, 2017 and 

2018. These data are publicly available at: https://geo.gcoos.org/tamu_reu_observing_the_ 

ocean/about/ . Sampling stations of these cruises can be seen in Figure 2.2. Plots of salinity, 

temperature, dissolved oxygen, nitrate, nitrite, silicate, phosphate, urea, and ammonia can be 

seen in the Appendix.  

 

 

Figure 2.2 (A) REU 2016, 2017, & 2018 sampling stations colored with DO [mL/L]. (B) Vertical 
view of sampling stations. 

 

2.2.2 Ocean Acidification Data (XR01 & XR02) 

Hydrographic data were obtained from a previously conducted study, the Ocean 

Acidification Project (Award #: NA19OAR0170354). This project included two cruises XR01 

and XR02 aboard the R/V Pelican. XR01 occurred in April 2021 and XR02 occurred in August 
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2021. Physical and biogeochemical data were collected by bottle and CTD. XR01 and XR02 

temperature was derived using the Gibbs Seawater (GSW) package in MATLAB (McDougal & 

Barker (2011). Sampling stations of these cruises can be seen in Figure 2.3 and Figure 2.4. Plots 

of salinity, temperature, dissolved oxygen, nitrate, nitrite, total nitrogen, silicate, phosphate, urea, 

and ammonia can be seen in the Appendix. 

 

 

Figure 2.3 (A) XR01 sampling stations colored with DO [mL/L]. (B) Vertical view of sampling  
stations. 

 
 
 

 

Figure 2.4 (A) XR02 sampling stations colored with DO [mL/L]. (B) Vertical view of sampling 
stations. 
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2.2.3 Ancillary Data Preprocessing 

The same assessment applied to that the MCH data were applied to the ancillary data. To 

maximize data included, missing salinity and DO values were substituted with CTD salinity and 

DO probe values from units on the deployed niskin rosette. Rows of the datasets with missing 

variables were eliminated. Additionally, it was checked that ammonia and urea values did not 

exceed more than 10 µmol/L. After applying these restrictions and combining the REU, XR01 

and XR02 data, there was 473 sampling points in the dataset. 

2.3. Unsupervised Machine Learning Methods 
 

Prior to applying unsupervised ML methods, the MCH dataset was standardized (i.e., all 

variables demeaned and normalized by their standard deviation) in MATLAB. Standardizing 

variables is typical for many unsupervised ML methods because they are affected by the scales 

of different variables. Principal Component Analysis (PCA) and K-Means Clustering are the 

techniques selected for the analyses. We decided to focus on these two techniques, as opposed to 

other methods for their straightforward approach and potential wider applicability which 

includes characterization of data, investigation of variable relationships, and anomaly detection.  

Application of PCA is quite common in ocean sciences and is typically favored for use 

on larger datasets due to its dimensionality reduction abilities. PCA increases interpretability and 

minimizes information loss by creating uncorrelated variables (principal components / modes). 

The PCA in this study decomposes the data matrix Y into the following form: 

𝑌!
(#) =	$𝑍%

(#)𝑎%!

&
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where Z are the scores (data in the principal component space), a are the eigenvectors. j 

represents columns, k represents rows, N is the number of variables and modes. Eigenvectors (a) 

and eigenvalues (l) are obtained by solving the covariance matrix C. 

 

𝐶𝑎%	 =	l%𝑎% 

 

The data used in Section 3 of this study has dimension 4886 x 10 (salinity, temperature, 

dissolved oxygen, nitrate, nitrite, total nitrogen, ammonia, urea, phosphate, and silicate), 

representing the spatially varying values at 1,570 sampling stations over 11 years (2004 – 2014). 

Principal component analysis was implemented in MATLAB. Major variance of the dataset is 

well represented in the major principal components. Our analysis below shows that the first 4 

PCA modes account for ~75% of the total variance. Following North’s Rule of Thumb (North et 

al., 1982), we determined to truncate the principal modes after mode 4 (Figure 2.5) and only 

focus on the first 4 modes in the results and discussion.  
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Figure 2.5 Principal Component Modes % of Variance.  

 

K-means clustering was selected as the other form of unsupervised ML since it differs 

from PCA in that it looks for homogeneous subgroups among observations. K-means partitions 

observations into groups in which each observation belongs to the cluster with the nearest mean. 

It also minimizes the variance within each cluster. This technique will allow us to categorize 

observations based on their hydrographic characteristics to describe different zones of drivers of 

hypoxia in the GOM. The same standardized data matrix (4886 x 10) used in PCA was also used 

in K-means in MATLAB. To determine the optimal number of clusters to use, silhouette scoring 

(i.e. a measure of how close each point is in one cluster to points in the neighboring cluster used 

to determine optimal number of clusters to use) was run iteratively in MATLAB.  
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2.4 Supervised Machine Learning Methods 
 
 To address the second hypothesis of this study, we focused on classification algorithms to 

test if hydrographic characteristics can be used as a predictive tool for determining if hypoxia 

will be present. We chose to assess the performance of eight classification algorithms: logistic 

regression (Cox, 1958), linear discriminant analysis (LDA), quadratic discriminant analysis 

(QDA) (Fisher,1936; Rao, 1948), naïve bayes (Bayes, 1764), k-nearest neighbors (KNN) (Fix & 

Hodges, 1989; Cover & Hart, 1967), support vector machine (SVM) (Boser et al 1992), decision 

tree (Morgan & Sonquist, (1963), and random forest (Breiman ,1996; Breiman, 2001). All 

algorithms were implemented in R. These algorithms were chosen due to their straightforward 

interpretability of results and wide range of applicability.   

Before supervised ML techniques could be applied to the MCH dataset, it needed to be 

prepared for classification. Total nitrogen was excluded because it is positively correlated with 

individual concentrations of nitrate (r = 0.74) and nitrite (r = 0.66). DO was converted to type: 

'hypoxic' or 'not hypoxic' in the MCH dataset (4886 x 9).  

2.4.1 K-Fold Cross Validation 
 

To assess classification performance, we utilized k-fold cross validation, a resampling 

method that uses different portions of the data (folds) to test and train a model on different 

iterations. In a prediction problem such as classification, the model is given a dataset of known 

data on which training is run (training set) and a data set of unknown data is used to test the 

model (test set). K-fold cross validation randomly partitions the dataset into k equal sized 

subsamples. Of the k subsamples, a single subsample is retained for testing and the remaining 

subsamples are used as training data. The cross-validation process is then repeated k- times, 

meaning each subsample is used exactly once as the test set.  
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Cross-validation is important when estimating how accurate a predictive model will 

perform in practice. The advantage of using cross-validation is that it allows for a more robust 

measure of the model’s ability to predict classification on new data that was not used in training. 

Cross-validation allows the user to identify problems with the model such as overfitting (i.e., the 

model fits too closely to the training set and accounts for too much noise, decreasing its ability to 

predict new data) or selection bias where the model is not trained with properly randomized data. 

Without cross-validation, measures of accuracy and prediction may not be representative of the 

model’s true capability to predict. 

In this case, we determined that five folds was appropriate for the MCH dataset. A larger 

number of folds means that each model is trained on a larger training set and tested on a smaller 

test fold.  Given that the MCH data set is a 4,886 x 9 matrix, five folds means that each model is 

trained on 75% of the data (3,664 data points) and tested with 25% (1,221 data points). Five-fold 

cross validation was applied to each classification algorithm. The average of all five fold’s recall, 

precision, specificity, accuracy, and F1-score were calculated.  

Recall (Sensitivity) is the ratio of correctly labeled hypoxic samples to all real hypoxic 

samples, it answers the following, i.e., Of the true hypoxic samples, how many were labeled as 

hypoxic? Precision is the ratio of correctly labeled hypoxic samples to all labeled hypoxic 

samples, it answers: how many of those that were labeled as hypoxic are actually hypoxic? 

Specificity is the ratio of correctly labeled not hypoxic samples to all real not hypoxic samples. 

Specificity addresses the question: of all the real not hypoxic samples, how many of those were 

correctly predicted? Accuracy is the ratio of correctly labeled samples to the whole pool of 

samples, it answers: how many samples were correctly labeled (hypoxic or not hypoxic) out of 

all the samples? Lastly, F1-score considers both precision and recall and is the harmonic mean 
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of the precision and recall. F1 score is best is there is a balance between precision and recall in 

the system. If the cost of false positives and false negatives are both undesirable, F1 score is a 

great measure.  
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3.  UNSUPERVISED MACHINE LEARNING ASSESSMENT: APPLICATION TO 

HYPOXIA DRIVING MECHANISMS IN THE NORTHWESTERN GULF OF MEXICO 

 
The goal of this part of the study is to identify patterns of variability in hypoxia. 

Unsupervised ML is used for analysis between input variables (e.g. cluster analysis, anomaly 

detection, dimension-reduction, and multivariate analysis) to discover hidden patterns or model 

the distribution of data; therefore, unsupervised ML techniques should identify patterns of 

variability in hypoxia on the TXLA Shelf. We hypothesize (recall H1 in Chapter 1) that the 

patterns will be associated with coastal and oceanographic processes that correlate with 

previously found significant drivers of hypoxic variability.  

3.1 Principal Component Analysis (PCA) 
 

Through PCA and interpretation with our current knowledge of DO and hypoxia in the 

northwestern GOM, we can understand the dominant processes controlling the variations. The 

spatial and temporal characteristics and the possible controlling mechanisms of the first four 

PCA modes will be described in the following paragraphs.  

The first PCA mode is the dominant mode, accounting for 32.8% of the total variance. 

DO and temperature are positively correlated and are negatively correlated with salinity and the 

7 nutrients (nitrate, nitrite, total nitrogen (nitrate + nitrite), phosphate, silicate, ammonia, urea). 

Relationships between variables in mode 1 can be seen in the coefficient plot (Figure 3.1). 

Elements falling within the same quadrant indicate positive correlation; in opposite quadrants 

indicates negative correlation. By multiplying the sign of the coefficients to the sign of the 

principal component (PC) mode the variables can be generally characterized as high or low. This 

can give insight into which mechanisms could be at play in the mode. 
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Positive values of mode 1 had relatively (in relation to the negative scores) low DO 

(mean = 2.5 mL/L), high salinity (mean = 33.36), low temperature (mean = 25.2 ºC), and high 

nutrients. Negative values of mode 1 had relatively high DO (mean = 4.6 mL/L), low salinity 

(mean = 31.3) high temperature (mean = 26.8 ºC), and low nutrients. The map of the first mode 

is characterized with a majority of positive values to the east of 94 ºW extending to the 

Mississippi River Delta and the negative values spanning across the shelf from the Mississippi 

River Delta to as far west as 96 ºW (Figure 3.2a). Positive values are located deeper in the water 

column than negative values (Figure 3.2b).  

The first mode has significant seasonality (p << 0.001) with two peaks in May and July 

(Figure 3.2d). This is most likely a combined effect of seasonal variation in temperature, salinity, 

and nutrient concentrations. Also, there are significant differences in depth groups (depth / 10) 

indicating a depth effect (p <<0.001). This depth effect could be related to water-column 

stratification or different water masses.  

Given this information, the positive values of mode 1 can describe the water that is below 

the pycnocline that is isolated from the surface. Stratification inhibits ventilation to 

subpycnocline water with large organic carbon biomass. The large biomass can fuel microbial 

decay processes that remineralize nutrients and deplete oxygen. These processes can explain the 

hydrographic characteristics of the positive values in mode 1. Furthermore, the relationship 

between mode 1 and DO indicates that lower values of DO are associated with higher score 

values (Figure 3.2e). 

The negative values of mode 1 can be described as low salinity water stripped of its 

nutrients and as a zone where hypoxia is mostly driven by strong stratification caused by the 

freshwater and saltwater density difference. This type of water and process controlling hypoxia 
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was described as zone 3 (blue zone) by Rowe & Chapman (2002). Rowe & Chapman (2002) 

indicated that this zone has lower nutrient concentrations due to the nutrient depletion processes 

in the adjacent zone 2 and that it can extend from the river mouth to as far west as beyond the 

Texas coast. Here, the negative values do extend from the river mouth to as far west as 96 ºW. 

Additionally, the significant difference in depth groups could be indicative of the importance of 

stratification. To summarize, mode 1 represents subpycnocline water that may be hypoxic and 

low salinity water stripped of its nutrients as described by Rowe & Chapman (2002).  

 

Figure 3.1 Principal Component Analysis Coefficients of Mode 1 and Mode 2. Variables in the 
same quadrant and colored the same are positively correlated and variables in opposite quadrants 

are negatively correlated. 
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Figure 3.2 Principal Component Mode 1 (32.8% of total variance). (a) Spatial distribution of 
Mode 1 in the upper 10 m. (b) Spatial distribution of mode 1 deeper than 10 m. (c) Vertical 

distribution of mode 1. (d) Month means of mode 1. (e) Relationship between DO [mL/L] and 
mode 1. (f) Depth groups (sample depth / 10) in mode 1. 

 
 

The second PCA mode accounts for 17.1% of the total variance in the data. Relationships 

between variables in mode 2 can be seen in the coefficient plot (Figure 3.1). DO, nitrate, nitrite, 
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and total nitrate (nitrate + nitrite) are positively correlated with each other and are negatively 

correlated with temperature, salinity, urea, ammonia, silicate, and phosphate. Temperature, 

salinity, urea, ammonia, silicate, and phosphate are also positively correlated with each other. 

Positive values of mode 2 had relatively low DO (mean = 3.2 mL/L), higher salinity (mean = 

33.8), high temperature (mean = 27.3 ºC), and low nutrients. Negative values of mode 2 had 

relatively high DO (mean = 5.7 mL/L), low salinity (mean = 29.6) low temperature (mean = 24.5 

ºC), and high nutrients. 

The map of the second PCA mode is characterized with opposite values between the area 

surrounding the mouth of the Mississippi River and the rest of the TXLA Shelf, suggesting this 

mode is controlled by the Mississippi-Atchafalaya River plume (Figure 3.3a&b). The vertical 

distribution in the water column also shows that the negative values are also mostly constrained 

to nearest the river mouth and near the surface (Figure 3.3c). This second mode also has 

significant seasonality (p << 0.001) with the lowest temporal value in March that increases to the 

highest temporal value in September (Figure 3.3d). There is also a significant difference between 

depth groups (p << 0.001).  

Given the spatial distribution and hydrographic characteristics of the negative values, 

mode 2 can describe the Mississippi River plume (water that is high in DO, low in salinity, and 

high in nutrients). The MARS floods in the spring and with reversed winds and currents that 

happen in the summer, the freshwater can persist on the TXLA Shelf, allowing more time for 

oxygen-depleting processes to continue. The hydrographic characteristics of the positive values 

in mode 2 are characteristic of upwelled water, i.e., relatively low DO and nutrients that have 

been below the pycnocline, not ventilated with oxygen. Additionally, increasing values of mode 

2 are associated with the increase in time, indicating seasonality (Figure 3.3d). This trend could 
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be explained by the importance of the freshwater plume and it being prevented from moving 

downcoast from reversed winds and currents that also induce upwelling. It is also necessary to 

point out that the relationship between mode 2 and DO is a decreasing polynomial relationship. 

As mode 2 values become more negative, DO increases (Figure 3.3e). To sum up, mode 2 

(17.1% of the variance in this dataset) is representative of the Mississippi River plume and is 

also representative of upwelled water induced by reversed winds and currents. The seasonality in 

mode 2 further supports these inferences since both the Mississippi River and upwelling on the 

TXLA Shelf have characteristic changes in time. 
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Figure 3.3 Principal Component mode 2 (17.1% of total variance). (a) Spatial distribution of 
mode 2 in the upper 10 m (b) Spatial distribution of mode 2 below 10 m (c) Vertical distribution 

of mode 2. (d) Month means of mode 2. (e) Relationship between DO [mL/L] and mode 2. (f) 
(Sample Depth / 10) means of mode 2. 
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Relationships between variables in the third and fourth PC modes can be seen in Figure 

3.4. The third PC mode is characterized with opposite values between the surface and 

subsurface, suggesting this mode is controlled by differences between surface and subsurface 

water (Figure 3.5a&b). What is unique in mode 3 is that the relationship between the mode and 

DO has a slight positive relationship, meaning that higher values have higher DO (Figure 3.5e).  

Additionally, there is significant seasonality (p << 0.001) in the temporal values that 

increases with time and has the highest value in July (Figure 3.5d). There is also a significant 

treatment effect of depth in this mode (p << 0.001). Positive values are characterized with high 

DO (mean = 4 mL/L), low salinity (mean = 30), high temperature (mean = 28.1 ºC) and variable 

means for nutrients. Negative values were characterized with low DO (mean = 3.6 mL/L), high 

salinity (mean= 34.2), low temperature (mean = 24.4 ºC), and variable nutrient concentration 

means. Nutrient concentration means are reported in the Appendix. 

The hydrographic characteristics and the spatial distribution of opposite values of surface 

and subsurface can be associated with stratification, where positive values represent water above 

the pycnocline and negative values represent water below the pycnocline. This mode could also 

be representative of the oceanic shelf edge where negative values are below the shelf and 

positive values are located above the shelf edge. Although it is not clear which interpretation best 

describes this mode, mode 3 (13.2% of the total variance) does represent a difference in the 

vertical structure of the water column. To sum up, mode 3 can be associated with the vertical 

structure of the water column and describes a typical stratified continental shelf.  
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Figure 3.4 Principal Component Analysis Coefficients of Mode 3 and Mode 4. Variables in the 
same quadrant and colored the same are positively correlated and variables in opposite quadrants 

are negatively correlated. 
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Figure 3.5 Principal Component Mode 3 (13.2% of total variance). (a) Spatial distribution of 

mode 3 in the upper 10 m. (b) Spatial distribution of mode 3 deeper than10 m. (c)Vertical 
distribution of mode 3. (d) Month means of mode 3. (e) Relationship between DO [mL/L] and 

mode 3. (f) Depth groups (sample depth/10) of mode 3. 
 
 
 

The fourth PCA mode is characterized with mixed values covering the shelf (Figure 

3.6a&b). There is no relationship between mode and DO (Figure 3.6e). There is significant 
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seasonality (p = 0) and difference between depth groups (p << 0.001). What is unique about 

mode 4 is that there are two peaks in its temporal value in March and July (Figure 3.6d). It is not 

clear what mechanisms are responsible for the spatial and temporal pattern. Not all PCA modes 

can be easily explained with our current knowledge and sometimes multiple mechanisms are at 

play instead of one. Positive values of mode 4 had high DO (mean = 3.9 mL/L), high salinity 

(mean = 33.4), low temperature (mean = 23.5 ºC), with variable nutrient means. Negative values 

had low DO (mean = 3.7 mL/L), low salinity (mean = 31.1), high temperature (mean = 28.2 ºC), 

and varying nutrient means. Nutrient concentration means are reported in the Appendix of this 

thesis. 
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Figure 3.6 Principal Component Mode 4 (12.3% of total variance). (a) Spatial distribution of 
mode 4 in the upper 10 m. (b) Spatial distribution of mode 4 deeper than10 m. (c)Vertical 

distribution of mode 4. (d) Month means of mode 4. (e) Relationship between DO [mL/L] and 
Mode 4. (f) Depth groups (sample depth/10) of mode 4. 
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3.2 K-Means Clustering  
 

K-means clusters can also identify patterns by grouping similar data together that aid in 

categorization based off hydrographic characteristics. Silhouette scoring consistently 

recommended two clusters as the optimal number. Since the two clusters were not discernably 

different from each other and were not insightful, eight clusters were chosen because it was the 

average of the third and fourth recommended cluster numbers. The clusters differed in sizes, and 

here the largest clusters are discussed. The largest were clusters 1, 5, and 7. Combined, 1, 5 and 7 

account for ~75% of the data in the dataset. 

 

Cluster # # of Observations % of Data  

1 1695 35.6% 
7 972 19.9% 
5 936 19.2% 
3 458 9.4% 
4 313 6.4% 
8 256 5.2% 
2 154 3.2% 
6 102 2.1% 

 
Table 3.1 K-Means Clusters. 

 
 

The spatial characteristics and the possible controlling mechanisms of the three largest 

clusters (clusters 1, 5 and 7) will be described in the following paragraphs. All clusters plotted 

together can be seen in Figure 3.7. 
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Figure 3.7 MCH data colored with 8 colors representative of the 8 K-Means Clusters on the 
TXLA Shelf.  

 

The first K-means cluster is the dominant cluster containing 1,695 data points (35.6 % of 

the total dataset). Spatially, this cluster covers the entire east-west range of the TXLA Shelf and 

extends down from the surface to as far as 30 m depth (Red points in Figure 3.8). This cluster 

does not contain any hypoxic data points and has relatively high DO (mean = 4.5 mL/L), low 

salinity (mean = 30.2), high temperature (mean = 29.7 °C), and low nutrients (Table 3.2). Also, it 

is important to note that the majority of the values in this cluster were collected in the months of 

August.  

Given this cluster’s similar spatial distribution, hydrographic characteristics, and similar 

highest data collection moth in August, this cluster is analogous to the negative values of mode 
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1, which represents low salinity water stripped of its nutrients in the euphotic zone that spans 

from the Mississippi River mouth to as far west as the Texas coast as described by Rowe & 

Chapman (2002). A visual comparison of the spatial extent of the negative values of mode 1 and 

cluster 1 can be seen in Figure 3.8, and a table of the variables means are reported in Table 3.2. 

PC mode 1 accounted for 32.8% of the total variance in the dataset and cluster 1 accounted for 

35.6% of the data. Since both PC mode 1 and cluster 1 make up ~30% of variability and data 

respectively, it is reasonable that both groups describe similar water on the TXLA Shelf that can 

be associated with RC02 zone 3. Specifically, 638 sample locations were shared between cluster 

1 and the negative values of mode 1 and are shown in purple in Figure 3.8. 

 

Figure 3.8 Comparison of Cluster 1 (red) and negative values of Mode 1 (blue). Shared values 
between cluster 1 and negative values of mode 1 are shown in purple. (a) Spatial distribution of 

cluster 1 and negative mode 1. (b) Vertical distribution of cluster 1 and negative mode 1. (c) 
Histogram of sample collection moths of cluster 1. (d) Histogram of sample collection months 

for negative values of mode 1. 
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Variable Cluster 

1 
Means 

Negative Mode 1 
Means 

Salinity 30.2 31.3 
Temperature (ºC) 29.7 26.8 
DO [mL/L] 4.5 4.6 
Nitrate [µmol/L] 0.5 0.8 
Nitrite [µmol/L] 0.3 0.5 
Total Nitrogen [µmol/L] 0.8 1.3 
Phosphate [µmol/L] 0.3 0.3 
Silicate [µmol/L] 5.9 5.8 
Ammonia [µmol/L] 0.5 0.5 
Urea [µmol/L] 0.4 0.6 

 

Table 3.2 Variable means for cluster 1 and the negative values of mode 1.  
 

The second largest cluster is cluster 7, which contains 972 data points. This cluster spans 

from the Mississippi River mouth to 94º W and 16 points are located further west than 94 ºW 

(Figure 3.9a) This cluster also contains points that extend deeper into the column closest to the 

mouth of the Mississippi River (Figure 3.9b). There are no hypoxic stations in this cluster, but 

there are a few high oxygen data points included near the mouth of the rivers that are likely 

Mississippi River plume water. Additionally, most of this cluster is from the months of March 

and April (Figure 3.9c). What stands out and is unique about this cluster is that it has cooler 

temperatures (mean= 21.4 ºC) in comparison to the whole MCH dataset. (Figure 3.9d & Table 

3.3). K-means identifies homogenous subgroups and in this case this cluster is characterized with 

cold temperatures. 
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Figure 3.9 Cluster 7 (19.9%). (a) Spatial distribution of cluster 7. (b) Vertical distribution of 
cluster 7. (c) Histogram of sample collection months of cluster 7. (d) Cluster 7 temperature (°C) 

 
 

Variable Cluster 7 
Means 

Dataset  
Means 

Salinity 32.9 32.1 
Temperature (ºC) 21.4 26.2 
DO [mL/L] 5.0 3.8 
Nitrate [µmol/L] 1.5 2.2 
Nitrite [µmol/L] 0.7 1.8 
Total Nitrogen [µmol/L] 2.2 4.0 
Phosphate [µmol/L] 0.3 0.5 
Silicate [µmol/L] 4.9 13.3 
Ammonia [µmol/L] 0.4 0.8 
Urea [µmol/L] 0.5 0.7 

 
Table 3.3 Variable means for cluster 7. Variables means of the MCH dataset are included 

for comparison. 
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The third largest cluster, cluster 5, contains 936 data points and spans across the TXLA 

Shelf from 89 ºW to 97 ºW and are located between 0 m and 87 m (Figure 3.10a&b). This cluster 

contains 75 hypoxic points. Examining the property/variable plots show that the samples in this 

cluster are high in silicate. (Figure 3.10d). There are two peaks in the month histogram indicating 

that the months of May and August were most important in this cluster (Figure 3.10c). This 

cluster is also characterized with anomalously high silicate values (mean = 19.5 µmol/L) (Table 

3.4); therefore Cluster 5 can be described as the cluster associated with high silicate 

concentration. 

 

Figure 3.10 Cluster 5 (19.2%). (a) Spatial distribution of cluster 5. (b) Vertical distribution of 
cluster 7. (c) Histogram of sample collection months of cluster 7. (d) Cluster 7 silicate (µmol/L). 
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Variable Cluster 5 
Means 

Dataset  
Means 

Salinity 34.9 32.1 
Temperature (ºC) 25.6 26.2 
DO [mL/L] 2.6 3.8 
Nitrate [µmol/L] 3.2 2.2 
Nitrite [µmol/L] 1.8 1.8 
Total Nitrogen [µmol/L] 4.9 4.0 
Phosphate [µmol/L] 0.6 0.5 
Silicate [µmol/L] 19.5 13.3 
Ammonia [µmol/L] 0.8 0.8 
Urea [µmol/L] 0.6 0.7 

 
Table 3.4 Variable means for cluster 5. Variables means of the MCH dataset are included 

for comparison. 
 

Most of the remaining clusters (3,4, 8, 2 and 6), which made up 25% of the data, had no 

clear process or mechanism to associate or describe them. Cluster 3 did not have a clear defining 

characteristic. Cluster 4 did not span the entirety of the TXLA Shelf but is characterized with 

higher nitrate values (mean = 9.1 µmol/L), high silicate (mean = 37.0 µmol/L), and hypoxic 

samples (mean = 1.3 mL/L). Cluster 8 is physically located deeper in the water column and is 

characterized with high nitrite (mean = 10.3 µmol/L), low oxygen (mean = 1.0 µmol/L), high 

silicate (mean = 26.5 µmol/L), and higher salinity water (mean = 35.3). Cluster 2 is characteristic 

of water that is high in ammonia (mean = 4.6 µmol/L), high in silicate (mean = 34.3 µmol/L) and 

has a mixture of hypoxia and high oxygen. Cluster 2 is located across the TXLA Shelf and spans 

the water column from the surface to 30 m. Lastly, cluster 6 is physically located near the 

Mississippi River mouth, with low salinity (mean = 19.9) and high nitrate (mean = 16.6 µmol/L) 

and high silicate (mean = 28.3 µmol/L) values. Based on the location and hydrographic 

characteristics cluster 6 is representative of the Mississippi River plume. These generalized 

characterizations of the clusters are based on variable plots and tables of means that can be seen 

in the Appendix.   
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To summarize, PCA showed that 75% of the variance in the dataset was accounted for in 

the first 4 PC modes. Mode 1 (32.8%) can represent water below the pycnocline that may be 

hypoxic and low salinity water stripped of its nutrients as described by Rowe & Chapman 

(2002). Mode 2 (17.1%) can be associated to the river plume and upwelling on the TXLA Shelf 

and Mode 3 represents the vertical structure of the water column. The mechanisms acting and 

producing the spatial and temporal variability in Mode 4 were not clear and could not easily be 

explained. K-means clusters 1, 7, and 5 made up 75% of the data in the MCH dataset. Cluster 1 

(35.6 %) was analogous to PC mode 1 and was representative of water identified by RC02 in 

zone 3. Cluster 5 (19.9%) represented a group of data with cool temperatures and cluster 7 

(19.2%) represented a group with high silicate. Cluster 6 (2.1%) represented the Mississippi 

River plume. These results indicate that PCA and K-means, both unsupervised machine learning 

techniques, can identify dominant drivers of hypoxia on the TXLA Shelf.  
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4. AN ASSESSMENT OF SUPERVISED MACHINE LEARNING ON CLASSIFYING 

HYPOXIA ON THE TXLA SHELF 

 

To analyze the predictability of dissolved oxygen on the TXLA Shelf, eight supervised 

machine learning classification techniques were compared. These included classification 

algorithms such as: logistic regression, linear discriminant analysis (LDA), quadratic 

discriminant analysis (QDA), naïve bayes, k-nearest neighbors (KNN), support vector machine 

(SVM), decision tree, and random forest. 

These classification techniques fall under the umbrella of supervised machine learning 

since the algorithm is trained with input forcings and desired outcomes (training dataset) to 

predict outcomes on a test dataset. In this case, the input forcings included salinity, temperature, 

nitrate, nitrite, silicate, phosphate, urea, and ammonia and the desired outcome was the labels 

'hypoxic' or 'not hypoxic'. These input forcings were considered as to not introduce redundant 

relationships to dissolved oxygen.  

4.1 Data Exploration 

Prior to the application of the supervised machine learning methods to the dataset, the 

data were explored graphically. To illustrate the inherent complexity of this dataset, the 

population density histogram and pairwise relationships between variables were assembled and 

reviewed. The pairwise plots are visual representations of the dataset in two-dimensional 

sections, which are shown as an array of plots of paired features. Each plot of the array is a 

pairwise relation of features labeled by row and column number. The main diagonal of subplots 

of Figure 4.1 represents a density histogram of each variable. These pairwise relationships 

highlight the correlation or lack of correlation between quantities, but more importantly can 
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establish linear and nonlinear relationships between features. In this work, the dataset involves a 

mixture of linear and nonlinear features.  

Figure 4.2 shows the correlation matrix of Pearson correlation coefficients for all variable 

combinations. Correlation coefficients closer to -1, indicate a more negative linear relationship 

and are represented as blue; the closer to -1, the darker the blue. Coefficients closer to 1 indicate 

a more positive linear relationship and are represented in red; the closer to 1, the darker the red. 

Coefficients of 0 indicate no relationship and are represented as white in the matrix. These data 

show correlation coefficients that are closer to zero for most combinations indicating the lack of 

a linear relationship between those variables. The exceptions are salinity, phosphate, and silicate.  
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Figure 4.1 Pairwise relationships between all featured variables. Each plot shows a two-
dimensional scatter plot of the variables labeled at that specific row and column. A histogram of 

value frequency for each quantity is shown in the diagonal of the plots grid. N=4886. 
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Figure 4.2 Correlation matrix of the dataset for each feature/variable combination. The Pearson 
correlation coefficient is given by the colorbar and it is annotated inside each grid of the matrix. 

Dark red indicates a positive correlation coefficient of 1, dark blue indicates a negative 
correlation coefficient of -1, and white indicates a correlation coefficient of 0. 

 
4.2 Classification Comparison Results and Discussion 
 

Based on the averaged five-fold cross-validation metrics, naive bayes had the best recall 

and SVM was the most precise. All eight algorithms had high specificity, and SVM, decision 

tree and random forest performed best in specificity out of all eight. All algorithms also scored 

high in accuracy with random forest being the most accurate. Lastly, KNN, SVM, and random 

forest had the highest F1-score (Figure 4.3). 
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Figure 4.3 Five-fold cross-validation performance metrics for the eight classification algorithms. 
Darker values indicate better performance. 

 
It is difficult to evaluate which algorithm is best to use when recall, precision, specificity, 

accuracy, and F1-score greatly vary across algorithms. We chose to focus on the receiving 

operating characteristic curve (ROC), a way to evaluate performance on classification models. A 

ROC curve plots the false positive rate (false hypoxic samples/ total not hypoxic samples) vs. the 

true positive rate (sensitivity) (true hypoxic samples/ total hypoxic labels). A perfect classifier 

would have 0 false positive rates and a true positive rate of 1. The ROC curves were created for 

all five folds of the five-fold cross-validation. Naive bayes had the most perfect curve for 4/5 

folds with the highest recall (sensitivity) and low false positive rates.  QDA performed best in 

classifying hypoxia in the fifth fold. Figure 4.4 shows the ROC curves for all eight algorithms in 

the first fold. QDA, KNN, and random forest also classified hypoxia well and their ROC curves 
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were consistently just below the naive bayes ROC curve and are therefore justifiable options for 

classifying hypoxia in this dataset. 

 

Figure 4.4 Receiving Operating Characteristic Curves for eight classification algorithms. 

 

The MCH dataset has an imbalanced class distribution, meaning there is an uneven 

number of not hypoxic points to hypoxic points. Specifically, only 11% of the dataset is hypoxic 

(547 points). Due to the imbalanced class distribution, we also investigated how the eight 

algorithms performed with a balanced class distribution. The 547 hypoxic points in the dataset 

were randomly sampled and assigned to the training set and test set. Data points that are not 

hypoxic of the same sampling size as the hypoxic points (547) were randomly sampled and 

added to the training and test sets also. This means that the training and test sets had the same 
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amount of data (547 points in each) and that there was an even class distribution. Training and 

testing the classifiers with a balanced class distribution equalized the metrics by increasing their 

performance in recall, precision and F1-score and moderately decreasing performance in 

specificity and accuracy as seen in Figure 4.5. The ROC curves were also equalized, meaning 

that classification performance across the eight algorithms were similar and differences between 

them were difficult to discern (Figure 4.6). Recall (p = 5.5 x	10-6), precision (p = 0.0015), 

accuracy (p = 7 x 10-6), and f1-score (p = 1.6 x 10-7) were all significantly different between the 

unbalanced and the balanced models. Specificity was not significantly different between 

unbalanced and balanced models (p = 0.17). The classifiers’ ability to correctly predict not 

hypoxic samples was not affected by whether it was trained with balanced or unbalanced data. 

These results indicate that although the algorithm you choose is important, how the model is 

trained is significant and can greatly affect the performance of classification in recall, precision, 

accuracy, and f1-score, but not in specificity.  

 

Figure 4.5 K-Fold cross validation performance metrics for the eight classification algorithms 
trained with a balanced dataset. Darker values indicate better performance. 
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Figure 4.6 Receiving Operating Characteristic Curves for eight classification algorithms 
trained and tested with even class distribution. 

 
 
4.3 Ancillary Data Validation Results and Discussion 
 

Since naive bayes performed best on the imbalanced dataset, we tested the model with 

the supporting data. The training set included the entire MCH dataset and the test set was the 

combined REU research cruises of 2016, 2017, and 2018 and XR01 and XR02. The combined 

ancillary data included 11 hypoxic samples out of 457 samples. This model had a high sensitivity 

with a recall of 0.91, meaning it correctly classified most of the hypoxic samples. However, the 

precision was poor, meaning it had many false positives or Type 1 errors (i.e., the model 

mislabeled 83 not hypoxic stations as hypoxic). To further investigate naïve bayes performance 

on classification in practice this test was repeated for a balanced training set. The metrics slightly 
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improved and the ROC curve indicates that training with balanced data increased performance 

but differences were not significant (p = 0.8) (Figure 4.7 & 4.8).  

To sum up, the naïve bayes classifier model was highly sensitive and correctly labeled all 

hypoxic samples in the ancillary data but lacked precision. This could be because the test data 

only included samples from the months of June, April and August and samples were collected 

further offshore than the MCH training dataset. Performance of the model on predicting hypoxia 

in the ancillary data was not affected by differences in unbalanced and balanced training.  

 

 

Figure 4.7 Performance metrics on the Naïve Bayes classifier trained with balanced data and 
imbalanced data. 
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Figure 4.8 ROC curves for Naïve Bayes classifier trained with balanced and imbalanced data. 
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5. SUMMARY AND CONCLUSIONS 
 

 
Observations of dissolved oxygen, salinity, temperature, and six dissolved nutrient 

concentrations of the waters on the TXLA Shelf in the months of March – September in 2004 – 

2014 were used in unsupervised and supervised machine learning techniques to identify patterns 

of variability and to evaluate the performance of classification algorithms for classifying hypoxia 

on the TXLA Shelf. Unsupervised machine learning techniques, principal component analysis 

and K-means clustering, were used to identify variability patterns that were ascribed to 

previously known drivers and processes of hypoxia in the region. Eight classification algorithms 

such as logistic regression, LDA, QDA, naïve bayes, KNN, SVM, decision tree, and random 

forest were trained with the observations on TXLA Shelf and their performances were compared. 

Naïve Bayes performed best on classifying hypoxia and when tested with supporting data it had 

high recall and low false positive rates. 

Results from the PCA analysis showed that 75% of the variance in the dataset was 

accounted for in the first PC modes. Mode 1 (32.8%) was representative of water below the 

pycnocline that may be hypoxic and low salinity water stripped of its nutrients as described by 

Rowe & Chapman (2002). Mode 2 (17.1%) can be attributed to the river plume and upwelling on 

the TXLA Shelf and Mode 3 represents the vertical structure of the water column. The 

mechanisms acting and producing the spatial and temporal variability in Mode 4 were not clear 

and could not easily be explained.  

Results from K-means clustering showed that 75% of the data was represented in Cluster 

1, 7 and 5. Cluster 1 represented the same water that the negative scores of PC Mode 1 

represented (low salinity water stripped of its nutrients – Rowe & Chapman 2002, zone 3 water. 

Cluster 7 represented a homogenous group of cool water on the eastern TXLA Shelf. Cluster 5 
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represented water that was high in silicate and cluster 6 represented the Mississippi River plume. 

Remaining clusters were characterized by their homogeneous hydrographic characteristics that 

were not clearly representative of a single mechanism.  

These results indicate that unsupervised machine learning methods such as PCA and K-

Means can successfully aid in identification of drivers of hypoxia. Our results also indicate and 

validate that the vertical structure of the water column and the river plume play a significant role 

in controlling the variability and spatial distribution of hypoxia on the TXLA Shelf. Tools that 

can identify patterns of variability can and should be used as a diagnostic tool for hypoxia. The 

modes identified could be further used to form and train a machine learning model for more 

accurate prediction that is based on multivariate data and dominant controlling mechanisms to be 

applied to datasets where DO is missing. This has implications for the ability to detect and 

indirectly determine if hypoxia is present for coastal hypoxia events and has important 

implications for management options.  

Results from the classification comparison of the eight algorithms showed that naïve 

bayes performed the best at classifying hypoxia on the MCH dataset. When the training set was 

balanced, performance of the eight classifiers were equalized and performance was strongly 

dependent on training data. The naïve bayes classifier was further explored with the ancillary 

data and lacked precision and excelled in identifying hypoxic samples. When trained with a 

balanced dataset, performance was not significantly different from the model performance that 

was trained with imbalanced data. These results went against the assumption that the algorithm 

would excel at classifying what the majority of what the training data was. This was surprising 

that precision was lacking since 90% of the data was not hypoxic. Sensitivity of the model was 

high and is valuable for extreme event predictions such as hypoxia.   
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The second part of this study showed that supervised machine learning techniques can 

use hydrographic characteristics that are associated with hypoxia as a predictive tool for 

determining if hypoxia is present. Although ML methods can classify hypoxia, performance is 

reliant on input training data and should be carefully considered when applied for prediction. Our 

metric to determine classifier performance, the ROC curve, is satisfactory for determining 

performance since it takes the balance between true positive and false positive rates into account. 

A classifier used for predictive application should have high accuracy in identifying true 

positives and minimize false positives. Future users of machine learning should consider this 

relationship when applying machine learning for prediction.  

This study establishes that straightforward machine learning techniques can aid in 

identifying known main drivers of hypoxia and that hydrographic characteristics of those 

processes can be used to predict hypoxia on the TXLA Shelf. These techniques have the 

potential to be applied to other hydrographic data where DO is missing to evaluate if hypoxia is 

present, a powerful tool that could be used in water quality and resource management in the 

region. Also, with the continued increase in ocean observing and growing datasets available, data 

driven methods such as machine learning should be utilized and implemented into the formation 

of policy and management since ML can easily replicate the significant drivers. While the 

approaches presented in this study were specifically for the TXLA Shelf, the methodology 

should be readily applicable to other coastal systems and locations with similar datasets.  
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APPENDIX  

 

A.1. Environmental Variable plots of the Research Experience for Undergraduates Cruises 
(2016, 2017 & 2018).  
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A.2. Environmental Variable plots of XR01.  
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A.3. Environmental Variable plots of XR02.  

 

Variable Positive Mode 1 
Means 

Negative Mode 1 
Means 

Salinity 33.4 31.3 
Temperature (ºC) 25.2 26.8 

DO [mL/L] 2.5 4.6 
Nitrate [µmol/L] 4.5 0.8 
Nitrite [µmol/L] 3.8 0.5 

Total Nitrogen [µmol/L] 8.3 1.3 
Phosphate [µmol/L] 24.7 5.8 

Silicate [µmol/L] 0.9 0.3 
Ammonia [µmol/L] 0.8 0.5 

Urea [µmol/L] 1.2 0.5 
 

Table A.4. Principal Component Positive and Negative Mode 1 Mean values.  
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Variable Positive Mode 2 
Means 

Negative Mode 2 
Means 

Salinity 33.7 29.6 
Temperature (ºC) 27.3 24.5 

DO [mL/L] 3.2 4.7 
Nitrate [µmol/L] 1.5 3.4 
Nitrite [µmol/L] 1.7 2.0 

Total Nitrogen [µmol/L] 3.2 5.3 
Phosphate [µmol/L] 15.3 10.2 

Silicate [µmol/L] 0.6 0.4 
Ammonia [µmol/L] 0.7 0.6 

Urea [µmol/L] 0.9 0.6 
 

Table A.5. Principal Component Positive and Negative Mode 2 Mean values. 

 

 

Variable Positive Mode 3 
Means 

Negative Mode 3 
Means 

Salinity 30.0 34.2 
Temperature (ºC) 28.1 24.4 

DO [mL/L] 4.0 3.6 
Nitrate [µmol/L] 1.3 3.1 
Nitrite [µmol/L] 2.1 1.5 

Total Nitrogen [µmol/L] 3.4 4.6 
Phosphate [µmol/L] 0.5 0.5 

Silicate [µmol/L] 12.6 14.0 
Ammonia [µmol/L] 1.2 0.4 

Urea [µmol/L] 0.9 0.4 
 

Table A.6. Principal Component Positive and Negative Mode 3 Mean values. 
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Variable Positive Mode 4 
Means 

Negative Mode 4 
Means 

Salinity 33.4 31.1 
Temperature (ºC) 23.5 28.3 

DO [mL/L] 3.9 3.7 
Nitrate [µmol/L] 1.3 3.0 
Nitrite [µmol/L] 3.1 0.8 

Total Nitrogen [µmol/L] 4.3 3.8 
Phosphate [µmol/L] 0.4 0.6 

Silicate [µmol/L] 11.8 14.4 
Ammonia [µmol/L] 1.0 0.4 

Urea [µmol/L] 0.7 0.9 
 

Table A.7. Principal Component Positive and Negative Mode 4 Means. 

 

A.8 Environmental Variable plots of Cluster 1.  
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A.9 Environmental Variable plots of Cluster 7.  
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A.10. Environmental Variable plots of Cluster 5.  
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A.10. Environmental Variable plots of Cluster 3.  

 

Variable Cluster 3 Means 
Salinity 30.9 

Temperature (ºC) 25.6 
DO [mL/L] 4.2 

Nitrate [µmol/L] 0.9 
Nitrite [µmol/L] 2.4 

Total Nitrogen [µmol/L] 3.2 
Phosphate [µmol/L] 11.8 

Silicate [µmol/L] 0.3 
Ammonia [µmol/L] 1.7 

Urea [µmol/L] 1.7 
 

Table A.11. Environmental Variable Means of Cluster 3.  
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A.12. Environmental Variable plots of Cluster 4.  

Variable Cluster 4 Means 
Salinity 34.7 

Temperature (ºC) 25.1 
DO [mL/L] 1.3 

Nitrate [µmol/L] 9.1 
Nitrite [µmol/L] 1.9 

Total Nitrogen [µmol/L] 10.9 
Phosphate [µmol/L] 37.0 

Silicate [µmol/L] 1.3 
Ammonia [µmol/L] 0.5 

Urea [µmol/L] 0.6 
 

Table A.13. Environmental Variable Means of Cluster 4.  
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A.14. Environmental Variable plots of Cluster 8.  

Variable Cluster 8 Means 
Salinity 35.3 

Temperature (ºC) 25.4 
DO [mL/L] 1.0 

Nitrate [µmol/L] 1.3 
Nitrite [µmol/L] 10.3 

Total Nitrogen [µmol/L] 11.5 
Phosphate [µmol/L] 26.5 

Silicate [µmol/L] 0.9 
Ammonia [µmol/L] 1.3 

Urea [µmol/L] 0.7 
 

Table A.15. Environmental Variable Means of Cluster 8.  
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A.16. Environmental Variable plots of Cluster 2.  

Variable Cluster 2 Means 
Salinity 32.1 

Temperature (ºC) 27.9 
DO [mL/L] 2.0 

Nitrate [µmol/L] 2.7 
Nitrite [µmol/L] 2.5 

Total Nitrogen [µmol/L] 5.2 
Phosphate [µmol/L] 34.2 

Silicate [µmol/L] 2.1 
Ammonia [µmol/L] 1.1 

Urea [µmol/L] 4.6 
 

Table A.17. Environmental Variable Means of Cluster 2.  
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A.18. Environmental Variable plots of Cluster 6.  

Variable Cluster 6 Means 
Salinity 19.9 

Temperature (ºC) 22.8 
DO [mL/L] 6.5 

Nitrate [µmol/L] 16.6 
Nitrite [µmol/L] 11.7 

Total Nitrogen [µmol/L] 28.3 
Phosphate [µmol/L] 28.3 

Silicate [µmol/L] 0.4 
Ammonia [µmol/L] 0.6 

Urea [µmol/L] 1.5 
 

Table A.19. Environmental Variable Means of Cluster 6.  


