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Abstract This study aims to find appropriate locations
for wind farms that can maximize the overall energy output
while controlling the effects of wind speed variability.
High wind speeds are required to obtain the maximum
possible power output of a wind farm. However, balancing
the wind energy supplies over time by selecting diverse
locations is necessary. These issues are addressed using
network-based models. Hence, actual wind speed data are
utilized to demonstrate the advantages of the proposed
approach.

Keywords wind energy, wind farm location, network
analysis, optimization, clique, s-plex

1 Introduction

The increasing global demand for energy and growing
environmental concerns over the dependence on fossils
lead scholars to explore for alternative solutions (Pardalos
et al., 2013). Wind is among the most important renewable
sources of energy with minimal environmental impact and
is abundant in nature. Wind farms do not use fuel and do
not emit air pollution, and the energy consumed to
manufacture a wind power plant is recovered within a
few months only. In addition, the microclimate generated
by wind turbines has advantages to corn and soybean
crops, such as preventing the late spring and early autumn
frosts and reducing pathogenic fungi (Takle and Lundquist,
2010). The disadvantages of harvesting wind energy are

minimal compared with traditional sources that involve
sound and visual pollution, bird and bat deaths, and
interference with radio reception and ground radar systems
used for military, weather, and air traffic control.
Globally available wind power over land in locations

worldwide with mean wind speeds exceeding 6.9 m/s at 80
m height is approximately 72 TW (630–700 PWh/yr)
according to several studies (Jacobson, 2009). As of 2005,
this resource was five times the world’s total power
production and 20 times the world’s electric power
production (Archer and Jacobson, 2005). Hence, recent
years have been marked by a rapid development in the
wind energy sector, especially in China where wind power
has become a key economic growth component. In 2016,
China added 19.3 GW of wind power generation capacity,
accounting the total capacity of up to 149 GW; the country
generated 241 TWh of electricity from the wind, which
constituted 4% of the country’s total consumption for the
year (Global Times, 2017). Currently, China has the largest
capacity of installed wind farms and is ranked second
worldwide in the production of wind energy, with the US
being first due to their higher capacity factor (Vaughan and
Kelley, 2016). The remarkable recent progress in deve-
loping wind energy capabilities may be the beginning of a
new era because the potential for continuing growth is
tremendous. McElroy et al. (2009) asserted that China
could meet all of its electricity demands through wind
power by 2030. However, for these projections to
materialize, the focus of governmental and private entities
involved in the wind energy sector should shift from the
domain of landscape assessment and environmental impact
to the economic viability and efficiency.
One of the main challenges that should be overcome to

maximize fully the wind for energy generation purposes is
the high variability of wind speeds (Soder, 2004).
Particularly, the distribution of wind speed over time
resembles the Weibull function (Piacquadio and De la
Barra, 2014). A diverse set of locations for wind farms
could be selected to ensure a steady supply of wind energy,
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such that at least some of the selected locations have
sufficiently high wind speed at any time. Specifically, the
following question needs to be addressed: Given the wind
speed data collected from the potential locations of wind
farms, which locations should be selected to maximize
the wind power production while balancing the wind
speed variability?
Various aspects of wind energy related to this question

have been considered in previous studies based on
different perspectives (Kahn, 1979; Milligan and Artig,
1999; Milligan, 2000; Archer and Jacobson, 2007; Drake
and Hubacek, 2007; Roques et al., 2010; Degeilh and
Singh, 2011; Grothe and Schnieders, 2011; Novoa and Jin,
2011; Liu et al., 2013). Different from the existing works
on the topic, the present work approaches the issue by
using a network representation of the wind energy system.
In this study, the nodes correspond to potential sites for
wind farm location and the edges connect the pairs of sites
characterized by negative correlations of wind speed
fluctuations. Hence, the problem of selecting appropriate
locations can be reduced to finding tightly knit clusters of
nodes corresponding to windy locations. We illustrate the
proposed methodology by using a real-life wind speed data
set collected from more than 200 locations in Bolivia over
a 10-year period.
The network-based data mining approach explored in

this work is based on observation that big data arising in
various complex systems can be conveniently modeled by
using networks or graphs. The components of the complex
system are represented as vertices (nodes), and the
pairwise interactions among different components are
described by edges (arcs) that link pairs of vertices. This
simple and intuitive modeling technique can maximize the
rich and powerful network analysis tools to reveal several
global structural properties of the underlying system and
predict the overall trends in its dynamics. This approach
has been successfully used to analyze several other
complex systems involved in various applications
(Boginski et al., 2003), including phone call records in
telecommunications (Abello et al., 1999), social networks
(Pattillo et al., 2012), and stock market data (Boginski
et al., 2006).
The remaining sections of this paper are organized as

follows. Section 2 provides some preliminaries from graph
theory and network analysis. Section 3 describes the
process used to construct a wind speed graph by using the
wind speed time series. Section 4 presents the results
obtained by applying the proposed approach to the
available data set. Finally, Section 5 elaborates the
conclusion of the study.

2 Preliminaries

Before describing the process of constructing the wind
speed graph, we introduce the necessary definitions,

notations, and other preliminaries from the graph theory
and network analysis.
A simple undirected graph (network) is provided as G

=(V,E), where V is the set of n vertices (nodes), and E is the
set of m edges (arcs) that connect the pairs of vertices. The
edge between vertices i,j 2 V is denoted by i,j 2 E. If the
edge (i,j) exists in the graph, then the two vertices, i and j,
defining the edge are the endpoints of this edge, also said to
be neighbors and adjacent to each other. The number of
neighbors of a vertex is called the degree of that vertex. A
graph is regarded as complete if it contains all possible n
(n – 1)/2 edges. For a subset S � V , the subgraph induced
by S, denoted by G(S)=(S,E(S)), uses S as its set of vertices
and E(S) as its set of edges, where E(S) consists of all
edges in E that have both endpoints in S. A subset C of
vertices is called a clique if the induced subgraph G(C) is a
complete graph, that is, all vertices in C are pairwise
adjacent.
Cliques can be considered an idealistic model of a

tightly knit cluster of nodes in a network, where all
possible pairwise connections are present. On the one
hand, the “perfect” nature of a clique makes it an attractive
cluster model, on the other hand it is the reason cliques are
considered overly restrictive in several applications,
especially when the studied network model is only an
approximation of the actual complex system under
investigation. As a result, many alternative cluster models
have been introduced in the literature, aiming to overcome
this drawback by allowing missing edges while preserving
certain cohesiveness characteristics of cliques. Such
models, referred to as clique relaxations (Pattillo et al.,
2013), often provide a better description of clusters than
the cliques. In this study, we will use a clique relaxation
called s-plex to model clusters in wind speed graphs.
Specifically, a subset of vertices C is called an s-plex if
each vertex from C is a neighbor of all but at most s
vertices from C , where s is a given positive integer
constant. Note that for s = 1, s-plex is equivalent to a
clique (i.e., the only non-neighbor of each vertex is the
vertex itself). For low s values (2,3), s-plexes provide
extensively cohesive clusters that retain the properties of a
clique, such as high connectivity and low diameter, in a
slightly relaxed form (Balasundaram et al., 2011; Verma et
al., 2015).
Large tightly knit clusters in a network constitute several

most important building blocks that fully influence the
network’s overall structure. Particularly, the size of the
largest clique and s-plex can be used to characterize the
global cohesiveness properties of the network. The
problems of finding the largest clique and s-plex in a
graph are referred to as the maximum clique and maximum
s-plex problems, respectively. Both problems are NP-hard
(Garey and Johnson, 1979; Balasundaram et al., 2011).
Nevertheless, effective methods that can successfully
address practical occurrences of these problems are
available (Trukhanov et al., 2013; Verma et al., 2015).
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3 Construction of the wind speed graph

In constructing the wind speed graph, we consider a
number of geographically diverse locations to be the
potential places for harvesting wind energy and represent
each location as a node in the graph. In the case study
presented in the subsequent section, we use a data set based
on a 10-year study in Bolivia (GeoBolivia, 2008). The data
set contains the wind speed data at a height of 10 m for 201
potential wind mill locations recorded every 10 min. The
information collected is represented in monthly charts,
correcting the variation of the data in air density, height,
and temperature depending on the location, due to the
altitude in comparison with the sea level. Figure 1 shows a
map of the 201 locations with their corresponding average
wind speed. Different ranges of velocities are denoted by
various radii of blue disks in the figure.
Although the measurements are obtained at the height of

10 m, a typical wind turbine is operated at a height of 80 m
or 100 m, where the wind speeds are typically higher. In
accordance with the wind profile power law relationship
(Touma, 1977), we have

u ¼ ur
z

zr

� �α

,

where u is the wind speed (m/s) at height z (m), and ur is
the known wind speed at a reference height zr. The friction
coefficient α depends on the type of the location and ranges
between 0.1 for lakes, ocean, and smooth hard ground and
0.4 for city areas with high-rise buildings (Bañuelos-
Ruedas et al., 2011).
Figure 2 shows the average wind speed for each of the

investigated sites over a considered period at a height of 10

m. Here, the X- and Y-axes correspond to the order index
of the locations and the average wind speed, respectively.
The overall average speed for all the locations is 2.70 m/s.
Figure 3 shows the cumulative average wind speeds for

all the investigated sites. From the figure, the X-axis is the
set of locations sorted in decreasing order of the average
wind speeds, and the Y-axis corresponds to the average
(left) and cumulative average wind speeds (right, indicated
by the orange line). The variance of the average wind
speeds is 2.2867, and the standard deviation is 1.5122.
The edges in the wind speed graph are constructed on

the basis of the pairwise correlations of wind speed
fluctuations of the considered sites. Let Si(t) denote the
wind speed in location i at time t. Moreover, the fluctuation
of the wind speed for the ith site at time t is expressed as

RiðtÞ ¼ ln
siðtÞ

siðt – 1Þ
� �

, whereas the correlation coefficient

between sites i and j can be calculated as follows
(Mantegna and Stanley, 2000):

Cij ¼
ðRiRjÞ – ðRiÞðRjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
R2
i – ðRiÞ2ÞðR2

j – ðRjÞ2Þ
r ,i,j 2 V ,

where V denotes the set of the considered sites, which is
also the set of vertices of the constructed wind speed graph.
Given that jV j ¼ 201 for our working data set, we have
20100 pairs of correlation coefficients. Figure 4 shows the

Fig. 1 Geographical locations considered in the study

Fig. 2 Average wind speed for each of the 201 sites

Fig. 3 Cumulative average wind speeds for the considered sites
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distribution of the computed correlation coefficient values.
Here, the X-axis corresponds to the correlation value and
the Y-axis is the frequency of pairs of sites with the
correlation coefficient value in the corresponding interval.
The most frequently occurring correlation coefficient
values are around 0.33, the average correlation coefficient
value is approximately 0.27, and the median is around 0.3.
Two versions of the wind speed graph can be considered

on the basis of the correlation coefficients, that is, the
complete edge-weighted version (where all possible edges
are present with the weights given by the corresponding
correlation coefficients) and a threshold-based version
constructed as follows. The correlation threshold � is
selected and the edge ði,jÞ in the wind speed graph is
included if and only if . In this work, we focus on the latter
version. Selecting an appropriate correlation threshold is
an important consideration in constructing a threshold-
based wind speed graph. The wind farms must be located
in places that have negative pairwise correlations of wind
speed fluctuations to minimize the effects of wind speed
variability. Hence, � ¼ 0 is used as the threshold correla-
tion value in this work. The number of edges in the
corresponding wind speed graph is 4811 out of possible
20100 edges, corresponding to the edge density of
0.239353. The edge density is expressed as 2m/(n(n – 1)),
where m is the number of edges and n is the number of
vertices.
Figures 5 and 6 show the wind speed graph and its

degree distribution, respectively. The average degree of a
vertex is around 47.87.

4 Case study

In this section, we present the network analysis results
obtained from the wind speed graph constructed in the
previous section based on the data set of the 10-year study
in Bolivia (GeoBolivia, 2008). Then, we solve the
maximum clique and the maximum s-plex problems for s

= 2,3, as well as their vertex-weighted versions. Given the
nonnegative weight wi associated with each vertex ijV , the
maximum weight clique (s-plex) is utilized to find a clique
(s-plex) C that maximizes

X
i2Cwi. The weight of a vertex

in the wind speed graph is defined as the average wind
speed in the corresponding location. To address the
investigated optimization problems, we use the combina-
torial branch-and-bound approach called the Russian Doll
Search (Trukhanov et al., 2013).
In the first set of experiments, we consider all the 201

locations to be the potential wind farm sites, independent
on the attractiveness of their wind speed profile. Table 1
summarizes the results of these experiments. The maxi-
mum clique in this case consists of six vertices that
correspond to the locations as follows (with their average
speeds in parentheses): Mendoza (3.8 m/s), Santa Ana (3.7
m/s), Colquechaca (2.8 m/s), Taquiri (1.9 m/s), Tariquia
(1.3 m/s), and El Puente (0.4 m/s). The maximum weight
clique has five vertices, namely, Huacullani (6.9 m/s),
Redencion (4.9 m/s), Robore (4.3 m/s), Santa Ana
(3.7 m/s), and Chilcara (2.7 m/s). Evidently, some of the
locations suggested by these solutions (especially in the
unweighted case) are unacceptable due to their rather low
average wind speed. The maximum weights of the 2-plex
and 3-plex models yield slightly highly attractive solu-
tions. Particularly, the six sites selected by the maximum
weight 2-plex solution have the average speeds of 2.8, 3.8,
4.5, 6.0, 6.4, and 8.1 m/s, respectively, with an overall
average of 5.25 m/s. Figure 7 illustrates the monthly
average wind speeds for these locations in comparison
with the locations included in the optimal solutions of the
other considered problems (i.e., weighted and
unweighted), as well as all the 201 locations (denoted by
“Bolivia” in the plot). Noticeably, the maximum weight

Fig. 4 Distribution of the correlation coefficient values

Fig. 5 Threshold-based wind speed graph with � ¼ 0

536 Front. Eng. Manag. 2018, 5(4): 533–540



2-plex solution is relatively attractive with regard to the
overall wind speed average and the balanced wind speeds
over time.

Although the results of the investigated case are rather
encouraging, we can further improve them by disregarding
the locations that are clearly unattractive due to their low
average wind speeds. By performing such a feasibility
study, we only have 39 locations to consider for placing the
wind power plants with the average wind speeds of more
than 4 m/s. (The complete list of locations, their
geographical coordinates, and average wind speeds are
presented in Table A1 of Appendix) Subsequently, we
proceed to solving the considered weighted optimization
problems of this reduced wind speed graph (hereinafter
referred to as the feasible wind speed graph). Solving the
maximum weight clique problem in this graph yields an
optimal solution consisting of only two sites, that is, Villa
Puni (5.98 m/s) and Calamarca (8.12 m/s), with an overall
average wind speed of 7.05 m/s. The maximum weight 2-
plex solution adds two locations, that is, Chorocona (6.19
m/s) and Tacagua (8.12 m/s), to the maximum weight

clique solution. Similarly, the maximum weight 3-plex
solution adds two sites, namely, Huaraco (5.66 m/s) and
Tinquipaya (4.92 m/s). Table A1 summarizes the corre-
sponding results. Figure 8 shows the maximum weight 3-
plex solution on a geographical map, and Fig. 9 presents
the plot of the average monthly wind speeds for the optimal
solutions obtained for the weighted versions of all the
considered optimization problems of the reduced wind
speed graph. From the figure, all the weighted solutions
considerably outperform the overall average. In addition,
although the maximum weight clique solution seems to be
superior with regard to the average monthly wind speeds,
the solution only consists of two locations and may not be
robust in the long run. Meanwhile, the maximum weight 3-
plex solution includes a further geographically diverse set
of six locations.

5 Conclusions

This study presents a network-based approach for
determining the optimal locations for wind farms among
the given sites on the basis of the wind speed information
available for each site. We conclude that the network
models provide a convenient, intuitive, visual description
of wind power systems. On the basis of the results, the
weighted-plex approach seems to be particularly useful for

Fig. 6 Degree distribution for the threshold-based wind speed graph with � ¼ 0

Table 1 Summary of the results for the entire wind speed graph

Solution Number of vertices Average speed (m/s)

Wind speed graph 201 2.70

Max clique 6 2.36

Max weight clique 5 4.53

Max 2-plex 9 2.22

Max weight 2-plex 6 5.25

Max 3-plex 12 2.67

Max weight 3-plex 9 4.60

Table 2 Summary of the results for the feasible wind speed graph

Solution Number of vertices Average speed (m/s)

Feasible wind speed graph 39 5.19

Max weight clique 2 7.05

Max weight 2-plex 4 7.10

Max weight 3-plex 6 6.50
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balancing the energy output and wind speed variability.
One of the possible future research directions to explore

is to find other clique relaxations, such as s-defective
clique and g -quasiclique (Pattillo et al., 2013), as
alternative models for selecting useful wind farm locations.
Considering the fractional objective function, which would
maximize the energy output per dollar invested, could also
be interesting. Given a simple undirected graph G =(E,V),
where each vertex i 2 V is assigned two nonnegative
rational weights, ai and bi, the maximum ratio clique
problem (MRCP) is to find an inclusion-wise maximal
clique C in G that maximizes the quantity

X
i2Cai=X

i2Cbi (Sethuraman and Butenko, 2015). Moreover, the
proposed approach can be extended to other types of
renewable energy sources, such as solar. Generally, the
renewable sources must be optimally integrated into a
broad power grid. Hence, a combination of all available
types of energy sources rather than an independent one
must be considered (Jaramillo et al., 2004). However, the
corresponding optimization problems in this case become
increasingly complex; therefore, effective heuristic algo-

Fig. 7 Average monthly wind speeds for the maximum clique, 2-plex, and 3-plex and their weighted versions

Fig. 8 Maximum 3-plex solution for the feasible wind speed graph

Fig. 9 Average monthly wind speeds for the maximum weight clique, 2-plex, and 3-plex in the reduced wind speed graph
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rithms may be necessary (e.g., Pei et al. (2017) and Yang
et al. (2018)).
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