®

Check for
updates

Lidia Ruiz-Llorente, Maria Jesus Ruiz-Rodriguez,
Claudia Savini, Teresa Gonzalez-Muhoz,

Erica Riveiro-Falkenbach, José L. Rodriguez-Peralto,
Héctor Peinado, and Carmelo Bernabeu

Abstract

Endoglin (CD105) is an auxiliary receptor of
transforming growth factor (TGF)-B family

L. Ruiz-Llorente (X)) - M. J. Ruiz-Rodriguez -
C. Bernabeu

Centro de Investigaciones Biologicas Margarita
Salas, Consejo Superior de Investigaciones
Cientificas (CSIC), Centro de Investigacion
Biomédica en Red de Enfermedades Raras
(CIBERER), 28040 Madrid, Spain

e-mail: lidia.ruizl@uah.es

C. Bernabeu
e-mail: bernabeu.c @cib.csic.es

L. Ruiz-Llorente

Biochemistry and Molecular Biology Unit,
Department of System Biology, School of Medicine
and Health Sciences, University of Alcala, 28871
Alcala de Henares, Madrid, Spain

M. J. Ruiz-Rodriguez

Centro Nacional de Investigaciones
Cardiovasculares (CNIC), Centro de Investigacion
Biomédica en Red de Enfermedades
Cardiovasculares (CIBERCV), 28029 Madrid, Spain

C. Savini - T. Gonzalez-Muiioz - H. Peinado
Microenvironment & Metastasis Group, Molecular
Oncology Program, Spanish National Cancer
Research Centre (CNIO), 28029 Madrid, Spain

E. Riveiro-Falkenbach - J. L. Rodriguez-Peralto
Department of Pathology, Instituto i+12, Hospital
Universitario 12 de Octubre, 28041 Madrid, Spain

© The Author(s) 2023

members that is expressed in human mela-
nomas. It is heterogeneously expressed by
primary and metastatic melanoma cells, and
endoglin targeting as a therapeutic strategy
for melanoma tumors is currently been
explored. However, its involvement in tumor
development and malignancy is not fully
understood. Here, we find that endoglin
expression correlates with malignancy of
primary melanomas and cultured melanoma
cell lines. Next, we have analyzed the effect
of ectopic endoglin expression on two
miRNAs (hsa-mir-214 and hsa-mir-370),
both involved in melanoma tumor progres-
sion and endoglin regulation. We show that
compared with control cells, overexpression
of endoglin in the WM-164 melanoma cell
line induces; (i) a significant increase of
hsa-mir-214 levels in small extracellular
vesicles (EVs) as well as an increased trend
in cells; and (ii) significantly lower levels of
hsa-mir-370 in the EVs fractions, whereas no
significant differences were found in cells. As
hsa-mir-214 and hsa-mir-370 are not just
involved in melanoma tumor progression, but
they can also target endoglin-expressing
endothelial cells in the tumor vasculature,
these results suggest a complex and differ-
ential regulatory mechanism involving the
intracellular and extracellular signaling of
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hsa-mir-214 and hsa-mir-370 in melanoma
development and progression.
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TAMs Tumor-associated macrophages
TBS Tris-buffered saline
TGEF-f Transforming growth factor beta
TYR2 Tyrosinase 2

14.1 Introduction

The mechanism involved in tumor development
and dissemination of cancer cells is still poorly
understood and numerous proteins, miRNAs and
signaling pathways have been reported to regu-
late this process [1, 2]. Among these, endoglin,
an auxiliary receptor of the transforming growth
factor B (TGF-B) family, has emerged as a
promising therapeutic target [3, 4]. Endoglin
(Eng; CDI105) is a 180-kDa disulfide-linked
homodimeric transmembrane glycoprotein [5,
6] highly expressed by proliferating endothelial
cells in tumor associated neoangiogenesis [7], as
well as in a large number of cancers with poor
prognosis [8—13]. The role of endoglin in tumor
progression and metastasis has been studied in
several cancer cell types using in vitro and
in vivo models [14-21]. In this regard, an active
role of endothelial endoglin in extracellular
extravasation of healthy and metastatic tumor
cells has been postulated [22, 23]. Furthermore,
endoglin-targeted therapy for malignant mela-
noma is currently been investigated with
promising results [24-26]. While endoglin is
heterogeneously expressed by primary and
metastatic melanoma cells, its involvement in the
malignant and metastasis processes is not fully
understood [8, 27-30]. Given the high mortality
rate of this type of skin cancer and the unre-
sponsiveness of some patients to current
immunological treatments, a better knowledge of
the mechanisms and active players involved in
melanoma growth and development, including
endoglin, is a subject of scientific and clinical
interest [31, 32].
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While endoglin is a type 1 transmembrane
glycoprotein with cytoplasmic, transmembrane
and extracellular regions, almost 90% of the
protein is encompassed within its extracellular
region [5]. For this reason, the extracellular
region of endoglin has focused many structural
and functional studies [6, 33]. Structurally, the
extracellular region of endoglin contains two
distinct domains: (i) a conserved Zona Pellucida
(ZP) juxtamembrane domain at the C-terminus
consisting of ~ 260 amino acids (Lys362-
Asp561) with eight conserved cysteine residues
and divided in two well-defined subdomains (ZP-
C and ZP-N); and (ii) a domain at the N-terminus
named orphan (orphan domain; OD) due to its
lack of significant homology with other protein
families [34, 35]. The orphan domain is involved
in recognition of TGF-B family ligands [35, 36],
whereas the ZP domain is involved in the inter-
action with members of the integrin family via its
arginine-glycine-aspartic acid (RGD) motif
located within the ZP-N subdomain [37]. The
cellular and pathophysiological function of
endoglin has been widely studied in endothelial
cells, which are the target in hereditary hemor-
rhagic telangiectasia type 1 (HHT1), a vascular
disease caused by heterozygous mutations in the
endoglin gene. HHT1 is associated with telang-
iectases in skin and mucosa, as well as with
arteriovenous malformations in lung, liver, and
brain [38, 39]. As an auxiliary receptor of the
TGF-B system, endoglin can bind with high
affinity to bone morphogenetic protein (BMP)-9
and BMP-10 ligands [36] and interact with the
type I and II serine/threonine kinase TGF-f
receptors, including ALK1 and ALKS5 (type I
receptors) and the type II TPRII [40, 41] to
modulate cellular responses to different TGF-3
family members. Several lines of experimental
evidence suggest that binding of BMP9 to
endoglin potentiates ALK1 signaling, including
the fact that mutations in the gene coding for
ALK1 (ACVRLI1) are responsible for a second
form of HHT (HHT2), whereas heterozygous and
homozygous mutations in GDF2, the gene
encoding BMP-9, lead to an HHT-like variant
[38, 42]. Signaling triggered by BMP-9 through
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the endoglin/ALK1 route mediates, via the
Smadl1/5/8 pathway, the expression of a wide
range of genes, including the gene for the helix-
loop-helix transcription factor inhibitor of dif-
ferentiation 1 (ID1), a negative transcriptional
regulator which is involved in the development
of malignant melanoma [43-45]. Beyond the
TGF-B/BMP-related functions, endoglin is also
involved in integrin-mediated cell adhesion via
its RGD motif in its extracellular ZP-N subdo-
main. Thus, endoglin has shown functional
binding activity to integrins, such as aSB1l or
ollbB3 from leukocytes, smooth muscle cells
and platelets [22, 37, 46]. Of note, integrins, the
major family of cell adhesion receptors in
humans, play a key role in tumor growth and
metastasis and several studies have investigated
the contribution of integrins to the phenotypic
aggressiveness of melanoma [47, 48]. In this line,
differential expression of integrins in primary
cutaneous melanoma has been used to distin-
guish indolent from aggressive, prometastatic
melanoma. Also, some integrins preferentially
direct circulating melanoma cells to specific
organs, promoting the development of metas-
tases. For example, melanoma cells expressing
B1 or B3 integrins, both endoglin interactors,
tend to metastasize to the lungs or generate
lymph node metastases, respectively. In addition
to their relevant role in mediating invasion and
metastasis, integrins are not only promising
biomarkers, but also attractive therapeutic targets
in melanoma [47, 48]. Given the role of integrins
in tumor angiogenesis, tumor cell migration and
proliferation, and organ-specific metastasis in
malignant melanoma, it can be postulated that
endoglin, as integrin counter-receptor, will have
a relevant impact in melanoma development.

In addition to the membrane-bound form of
endoglin, a circulating form of endoglin packed
into small extracellular vesicles (EVs) has been
described in several pathological conditions, such
as preeclampsia, liver disease or thromboembolic
pulmonary hypertension [49-52]. Heterogeneous
EVs, including exosomes, can be secreted by all
cell types carrying various bioactive cargos such
as proteins, RNAs, lipids or metabolites [53].
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They are emerging as key regulators of inter-
cellular communication in health and disease with
potential relevance as biomarkers and therapeutic
strategies in different pathological conditions
[54, 55]. EVs can transfer their bioactive cargo
from donor to recipient cells and influence the
biological function of the target cell. In this
regard, a functional role for circulating endoglin
in EVs has been postulated in several studies,
including a protective mechanism supporting
endothelial cell survival and angiogenesis [49]. In
addition, endoglin™ EVs have been proposed as a
biomarker for preeclampsia and metastatic breast
cancer [10, 50]. Among the different bioactive
cargos of EVs are microRNAs (miRNAs, miRs),
which are small endogenous non-coding RNAs
that regulate gene expression. During the last
decade, compelling evidences support the
involvement of cellular and EVs miRNAs in
cancer. Among others, miRNAs may act as
either tumor suppressors or oncogenes, activating
invasion and metastasis, or inducing angiogene-
sis; as therapeutic targets; and as potential
biomarkers for cancer diagnosis, and prognosis
[56-59]. Aberrant expression of miRNAs occurs
in several human cancers, including melanoma.
Thus, dysregulation of miRNAs has been linked
to suppression, progression, differentiation,
development, and prognosis of melanoma
[60—62]. Some miRNAs are specific for one or
more skin cancer type, such as hsa-mir-21 and
hsa-mir-221, which are observed in cutaneous
melanoma and squamous carcinoma; while hsa-
mir-155 has been detected in melanoma and
cutaneous lymphoma. In this work, we have
focused our studies on the pleiotropic hsa-
mir-214 and hsa-mir-370, as they are predicted
and have been shown to target endoglin [63, 64].
Both, hsa-mir-214 and hsa-mir-370 are dysregu-
lated in several other tumors, besides skin can-
cers, displaying contrasting behavior. Regardless
of whether hsa-mir-214 levels are upregulated or
downregulated in skin cancer and melanoma, its
dysregulation always correlates with metastasis
or poor progression [65, 66]. In the case of hsa-
mir-370, controversial findings have also been
reported since its upregulation correlates with
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progression and poor prognosis in breast and
prostate cancer [67, 68], as well as promotion of
cell apoptosis and inhibition of proliferation in
human gastric cancer [69]. By contrast,
(i) downregulation of hsa-mir-370 in esophageal
squamous-cell carcinoma is associated with cell
proliferation and cancer progression [70], and
(i1) hsa-mir-370 acts as a tumor suppressor in
hepatocellular carcinoma [71]. Interestingly,
enforced expression of hsa-mir-370 in melanoma
cell lines promotes proliferation, inhibits apop-
tosis and enhances invasion [72]. Overall, these
contradictory results suggest that the function of
these miRNAs is highly dependent on the cancer
cell context, likely due to their differential cell
source, cell target, expression level and/or speci-
fic mRNA targeting in each case.

Here we have delved into role of endoglin in
human melanoma. We find a correlation between
expression levels of endoglin with malignancy in
primary melanomas and cultured melanoma cell
lines. In addition, overexpression of endoglin in a
melanoma cell line leads to dysregulated levels
of hsa-mir-214 and hsa-mir-370, mRNAs
involved in melanoma tumor progression and
endoglin regulation. These results suggest that
endoglin is actively involved in development and
dissemination of malignant melanoma, and
identify endoglin as a potential therapeutic target
to block tumor progression.

14.2 Methods

Immunohistochemistry of melanoma tissues:
A total of 73 human specimens (3 benign nevi,
73 malignant melanomas) were analyzed with
the corresponding informed consent and ethical
protocols approved by the Clinical Investigation
Ethical Committee. Immunohistochemistry was
performed on 4-pm-thick sections of formalin-
fixed, paraffin-embedded tissue samples using an
anti-endoglin  monoclonal antibody (SN6h,
Dako). The staining results were independently
analyzed by two expert pathologists who were
blinded to the staging and clinical features of the
subjects.
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Cell culture: WM-164, SK-Mel-28, SK-Mel-
103, and SK-Mel-147 cell lines were kindly
provided by Dr. Maria S. Soengas (Spanish
National Cancer Research Centre (CNIO),
Madrid, Spain). Cells were cultured in DMEM
(Lonza BE12-604F) supplemented with 10%
heat-inactivated filtered fetal bovine serum
(FBS) (Gibco) and 20 pg/mL gentamycin (Lonza
17-519Z7). This melanoma cell line was routinely
tested for mycoplasma contamination.

Lentiviral production and generation of
human ENG stably overexpressing WM-164
cells: Lentiviral plasmids expressing human
endoglin containing a hemagglutinin (HA) tag
(pLV-CMV-IRES-Puro/hEng) and the corre-
sponding empty vector (pLV-CMV-IRES-Puro/
@) were kindly provided by Professor Peter ten
Dijke (LUMC, Leiden, The Netherlands). These
vectors were used in conjunction with the pack-
aging plasmids p8.91 and pSVCG. HEK 293T
cells were seeded in a 10-cm plate and trans-
fected with 5 pg p8.91, 2.5 pg pSVCG and 5 pg
pLV-CMV-IRES-Puro/@ or pLV-CMV-IRES-
Puro/hENG, using Lipofectamine® 2000
(Thermo Fisher Scientific), according to the
manufacturer’s instructions. After 10-12 h,
medium was changed by fresh culture medium
(DMEM) and cells were incubated for additional
48 h. Culture supernatants containing lentiviral
particles were harvested, clarified by centrifuga-
tion at 1500 rpm for 5 min, and filtered through a
0.45 pm filter. Lentiviral particles at 1:3 dilution
were used to infect WM-164 cells in suspension
in the presence of 4 pg/mL polybrene (Sigma).
After incubation for 24 h, medium was replaced
by fresh culture medium. Twenty four hours
later, infected cells were selected in the presence
of 0.4 pg/mL puromycin (Sigma), and the re-
sulting endoglin-overexpressing WM-164 cells
(WM-164 ENG) were validated by immunoblot
and flow cytometry analyses.

Immunoblot assays: Cells were washed twice
with PBS and lysed in cold lysis solution con-
taining 50 mM HEPES pH 7.5, 0.4 M KCl, 10%
glycerol, 1% NP-40 and protease inhibitors
(PhosSTOP™, Sigma Aldrich). Lysates were
sonicated for 1 min and centrifuged at
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13,000 rpm for 10 min at 4 °C. Supernatant
fractions were used for Western blot analyses.
Protein extracts or purified EVs were quantified
for protein content using the bicinchoninic acid
assay (Pierce™ BCA Protein Assay kit, Thermo
Scientific). Equal amounts of extracted protein or
purified EVs from each sample were resuspended
in Laemmli buffer and, subsequently, incubated
at 95 °C for 10 min. Samples were separated by
SDS-PAGE and then transferred onto a PVDF
membrane (Invitrogen). Protein-bound mem-
branes were blocked with 0.1% Tween-20
(Sigma-Aldrich) in  Tris-buffered  saline
(TBS) containing 5% BSA or 2.5-3% milk
(TBS-T), and phosphatase inhibitor cocktail
(0.2 mM sodium orthovanadate, 5 mM sodium
beta-glycerophosphate and 10 mM sodium
fluoride) for 2 h at room temperature. Mem-
branes were then incubated overnight at 4 °C
with the following primary antibodies specific
for: human endoglin (1:1000 in TBS-T/BSA,
Abcam #169545); ALIX (1:1000 in TBS-T/milk,
Cell Signal #2171); MEK 1/2 (1:1000 in milk;
Cell Signaling #8727S); AKT (1:1000 in milk,
Cell Signaling #9272); B-actin (1 pg/mL in TBS-
T/BSA, Sigma #A1978); and GAPDH (1:500 in
TBS-T/BSA, Abcam #9484). Then, membranes
were washed with TBT-T and incubated for 1 h
at room temperature with the corresponding
secondary HRP-linked antibodies. After rinsing
with TBS-T, protein bands were revealed using
SuperSignal™ West Pico PLUS Chemilumines-
cent substrate (Thermo Scientific) to enhance
HRP luminescence, followed by analysis using
the Molecular Imager® Gel Doc™ XR+ System
with Image Lab™ software (Bio-Rad).

Immunofluorescence flow cytometry: Cell
surface expression of endoglin in WM164 cells
was analyzed by flow cytometry. After collecting
and washing transfected cells in PBS by soft
centrifugation at 1000 rpm 8 °C for 5 min, non-
specific binding was blocked for 20 min at 4 °C
with sterile-filtered 1% BSA in PBS (PBS-BSA).
Cells were then incubated for 1 h at 4 °C with a
mouse monoclonal antibody against human
endoglin (P4A4, anti-CD105, 1/100; Develop-
mental Studies Hybridoma Bank-DSHB-
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University of Iowa, USA) or against the
hemagglutinin  (HA) tag (1/100; Milli-
poreSigma). As a negative control, cells were
stained with isotype control antibodies
(Immunostep, Salamanca, Spain) at the same
concentration as the corresponding primary
antibody. Following incubation with primary
antibodies, cells were washed with PBS, and
incubated with Alexa-Fluor-488-conjugated anti-
mouse antibody (1/200, Molecular Probes) for an
additional period of 45 min. Samples were then
washed, resuspended in cold PBS, and analyzed
with a FC500 Beckman Coulter flow cytometer
using the FlowLogic software. Endoglin protein
levels were measured using the fluorescence
intensity mean and expressed as fold induction
relative to empty-transfected cells.

EVs isolation by sequential ultracentrifuga-
tion, characterization and analyses: Cells were
cultured in media supplemented with 10% EVs-
depleted FBS. Serum was depleted of bovine
EVs by ultracentrifugation at 100,000 g for
70 min at 10 °C and then filtered. Supernatant
fractions collected from 48 to 72 h exponentially
growing cell cultures were pelleted by centrifu-
gation at 500 g for 10 min at 4 °C to remove any
cell contamination. In addition, possible apop-
totic bodies and large cell debris were removed
from supernatants by centrifugation at 12,000 g
for 20 min at 10 °C. EVs, including exosomes
were then collected by spinning at 100,000 g for
70 min at 10 °C. The pellet with EVs was then
washed in 20 mL of PBS and collected again by
ultracentrifugation at 100,000 for 70 min at
10 °C (Beckman, L100 X-P). The final pellet of
EVs was resuspended in PBS. EVs size and
particle number were analyzed using Nanosight
(Nanoparticle Tracking Analysis-NTA) and its
protein content was measured by BCA.

RNA isolation, cDNA synthesis and quantita-
tive RT-PCR: microRNA (miRNA) and total
RNA were isolated from cells using the miR-
Neasy Micro kit (Qiagen), according to the
manufacturer’s instructions. To quantify specific
microRNAs, first they were reversed transcribed
using TagMan™ MicroRNA Reverse Tran-
scription kit and then, PCR was performed using
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Tagman Universal PCR Master mix (Applied
Biosystems) and specific and pre-designed
Tagman® MicroRNA assays (hsa-miR-214: ID
002306 and hsa-miR-370: ID 002275). For
quantification of gene expression, RT-PCR was
performed with SuperScript™ II (Invitrogen) and
FastStart Essential DNA Green Master (Roche)
using the primers shown in Table 14.1. qRT-
PCR was performed on Light Cycler 96 (Roche),
according to the following PCR settings: initial
denaturation for 10 min at 95 °C, 40 cycles of
15 s at 95 °C and 60 s at 60 °C for miRNA
assays and 30 s at 60 °C in the case of gene
expression assays. Both miRNA and total RNA
quantifications were performed in triplicates.
Gene and miRNA expressions were analyzed
using the delta-deltaCT method for relative
quantification and all samples were normalized to
the corresponding housekeeping gene, hsa-miR-
16 ID 000391 and human mRNA B-actin.

14.3 Results

Endoglin expression in primary melanomas
and cultured cells

Endoglin expression was assessed in a cohort of
primary melanomas and dermal nevi by
immunohistochemistry. As expected, staining of
endoglin was observed in endothelial cells from
primary melanomas and dermal nevi. While
endoglin staining was not detected in dermal
nevi, 41.4 and 18.6% of primary melanomas
showed low or high endoglin expression,
respectively, in tumor cells (Fig. 14.1). These
data suggest that, compared to normal nevi,
melanoma tumors show markedly increased
levels of endoglin. This prompted us to study
whether endoglin expression correlates with
melanoma malignancy or metastatic potential.
Endoglin expression levels were also analyzed
by immunoblotting in a panel of different mela-
noma cell lines (Fig. 14.2). While the non-
metastatic or low metastatic melanoma cell
lines (WM-164 and SK-Mel-28, respectively)
showed low levels of endoglin, the more meta-
static cell lines (SK-Mel-147 and SK-Mel-103)
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Table 14.1 Sequences of

. Human gene
primers used for qRT-PCR

ENG (forward)
ENG (reverse)
PMEL (forward)
PMEL (reverse)
TYR2 (forward)
TYR2 (reverse)
MLANA (forward)
MLANA (reverse)
MITF (forward)
MITF (reverse)
VEZF-1 (forward)
VEZF-1 (reverse)
ACTB (forward)
ACTB (reverse)

Primary melanomas

Negative
20x
™ -
4 1Y .
Low . ! 5 K : .
intensity e 5
' o 20x

High
intensity

Fig. 14.1 Endoglin expression in primary melano-
mas. The presence of endoglin in human dermal nevi
(n =3) and primary melanoma (n = 70) tissues was

had higher levels of endoglin expression
(Fig. 14.2). These results suggest that endoglin
expression correlates with malignancy in primary
melanomas as well as in cultured melanoma cell
lines.
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Sequence (5'-3")
CTGCTGCTGAGCTGAATGAC
AGTTCCACCTTCACCGTCAC
CTCATTCCAGCTCAGCCTTC
CAGATAGCCACTGGGGTCAT
TACGGCGTAATCCTGGAAAC
ATTGTGCATGCTGCTTTGAG
GCTCATCGGCTGTTGGTATT
ATAAGCAGGTGGAGCATTGG
AACTCATGCGTGAGCAGATG
TACTTGGTGGGGTTTTCGAG
AGAGGAAGGACCGGATGACT
ACTCAGGAGCTTCCCACAGA
GGACTTCGAGCAAGAGATGG
AGCACTGTGTTGGCGTACAG

Dermal nevi

- 40x \ 20X v S jaE AR

Primary melanomas
Endoglin expression
Negative
Low intensity 29 (41.4)
High intensity 13 (18.6)
Total 70

N (%)
28 (40.0)

Dermal nevi
Endoglin expression N (%)
Negative 3 (100)
Low intensity 0
High intensity 0
Total 3

analyzed by immunohistochemistry and endoglin staining
was quantified and classified as negative, low intensity or
high intensity by the pathologist

Characterization of ectopically overexpressed
endoglin in the WM-164 cell line

To investigate the impact of endoglin in the
malignant phenotype of melanoma cells, the low
metastatic melanoma cell line WM-164 was
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Fig. 14.2 Endoglin
expression in primary
melanomas and melanoma
cell lines. Western blot
analysis (upper panel) of
endoglin expression in four
melanoma cell lines with
different metastatic
phenotype. Quantification of
endoglin staining relative to
B-actin is shown in the lower
panel

L m— - - Endoglin

OB G e wmes 0

1.5

1.0

0.5

Endoglin protein expression

i

0.0

11l

WM-164

SK-Mel-28 SK-Mel-147  SK-Mel-103

|

transduced with a lentivirus encoding HA-tagged
human endoglin. Following cell infection and
puromycin selection, we verified the ectopic
expression of endoglin by immunoblot analysis
in cellular extracts and EVs fractions (Fig. 14.3
a). As expected, endoglin-transduced cells and
derived EVs showed a clear signal of ectopic
endoglin relative to mock-transduced cells. To
confirm the correct isolation of the EVs, the
expression of ALIX, a broad biomarker of EVs,
was tested. ALIX was not detected in cellular
extracts, whereas a weak band was observed in
EVs from mock- and endoglin-transduced cells
(Fig. 14.3a), confirming the proper quality of
purified EVs. To assess whether endoglin over-
expression could be affecting other relevant sig-
naling pathways, we analyzed total protein levels

Metastatic phenotype

of MEK and AKT by immunoblotting. No sig-
nificant differences were found in MEK and
AKT protein levels between mock- and
endoglin-transduced cells (Fig. 14.3b). The
expression of ectopic endoglin in transduced
WM-164 cells was also analyzed by flow
cytometry using anti-HA or anti-endoglin (P4A4)
monoclonal antibodies (Fig. 14.4). The strong
expression of cell surface endoglin was demon-
strated in endoglin-transduced WM-164 cells
compared to the weak labelling of mock-
transduced cells, as evidenced by the his-
tograms obtained with anti-HA (Fig. 14.4a, left
panel) and P4A4 anti-endoglin (Fig. 14.4a, right
panel and Fig. 14.4b) monoclonal antibodies.
Taken together, immunoblot (Fig. 14.3) and flow
cytometry (Fig. 14.4) analyses demonstrate that
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a Cells EVs b ? hENG'
[ hENG* [] hENG* .
e ﬁ Endoglin
- ‘ Endoglin
- | v
ALIX
- .

Fig. 14.3 Western blot analysis of endoglin-
expressing WM-164 cells. a Analysis of cellular lysates
and EVs from mock-transduced (9) or endoglin-trans-
duced (hENG') WM-164 cells using antibodies to
endoglin (anti-HA), the EVs marker ALIX or GAPDH,

as a loading control. b Analysis of cellular lysates from
mock-transduced (@) or endoglin-transduced (hENG+)
WM-164 cells using antibodies to endoglin (anti-HA),
total MEK, total AKT or B-actin, as a loading control.
Representative Western blots are shown

a o o b
B hENG? M hENG? 20
100% 100%
g sex
| @ 15 +
75% 75% | o
Q.
x
] ] 910
50% 50% £
&
S
@ © S °
] K]
o o
5 s 5 3 /j e S
x 103 104 105 108 % . . 10 10 105 108 o hENG+
Anti-HA Anti- Endoglin (P4A4)
Fig. 14.4 Flow cytometry analysis of endoglin- endoglin. Representative flow cytometry histograms are

expressing WM-164 cells. a Cell surface expression of
endoglin was analyzed in mock-transduced (@) or
endoglin-transduced (hENG") WM-164 cells using anti-
HA or P4A4 antibodies that recognize the recombinant

lentiviral transduction of WM-164 cells effi-
ciently yields endoglin overexpression at their
cell surface. The results from Figs. 14.1 and 14.2
suggesting that endoglin expression correlates
with malignancy of melanomas prompted us to
analyze the malignant phenotype of the endoglin-
expressing WM-164 cells by measuring the
levels of PMEL and TYR2, two well-known
melanoma markers. PMEL (Premelanosome

shown. b Endoglin protein levels were measured in cells
stained with P4A4 anti-endoglin antibody (n =4 per
condition) as in panel (a). **p < 0.01; by two-tailed
student’s t-test

protein) is expressed by melanocytes and mela-
noma cells, and is widely used as a melanoma
marker in serum samples. Compared with normal
melanocytes, PMEL is over-expressed at all
stages of melanoma progression [73, 74].
Tyrosinase TYR2 is involved in melanogenesis
and mediates anti-apoptotic effects in human
melanoma cells [75]. Analysis by qRT-PCR of
endoglin-transduced WM-164 cells and their
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Fig. 14.5 Analysis of the melanoma marker genes
PMEL and TYR2 in endoglin-expressing WM-164
cells. Cells transduced with endoglin (hENG+) or an
empty vector (o) were analyzed by gqRT-PCR using
primers specific for PMEL and TYR2. Representative

derived EVs showed that PMEL and TYR2
mRNA levels were significantly higher than
those of mock-transduced WM-164 controls
(Fig. 14.5). These results further support the
involvement of endoglin in melanoma
progression.

Effect of endoglin expression on additional
markers of melanoma cancer cells

To further assess whether endoglin upregulation
exerted a functional effect during melanoma
development and progression, three additional
markers were analyzed: (i) MLANA (also known
as MART-1, Melanoma antigen recognized by
T-cells 1); (i) MITF (Microphthalmia-associated
transcription factor); and (iii) VEZF-1 (Vascular
endothelial zinc finger 1). Of note, MLANA and
MITF are relevant proteins involved in
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dent’s t-test

melanocyte and melanoma biology. MLANA is a
cytoplasmic protein expressed by normal mela-
nocytes and benign nevi and it is used in the
clinic to detect and confirm melanocytic tumors
[76, 77]. In addition, MITF has been described as
the main transcription factor regulating key pro-
cesses in melanoma cell development, growth,
survival, proliferation, differentiation and inva-
sion [78, 79]. Also, VEZF-1 is a Kriippel-like
zinc finger protein that contributes to cancer
pathogenesis [80, 81]. gRT-PCR analysis
showed that MLANA, MITF and VEZF-1 mRNA
levels were significantly increased in endoglin-
expressing WM-164 cells, but not in EVs, both
compared to mock-transduced cells (Fig. 14.6).
These findings further support the active role of
endoglin in melanoma development and
progression.
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Effect of ectopic endoglin expression in the
levels of hsa-miR-214 and hsa-miR-370

Emerging evidence support the involvement of
cellular and EVs miRNAs in cancer progression,
diagnosis, and prognosis [56-59], including
melanoma [60—62]. Therefore, we investigated
the effect of endoglin in the levels of miR-214 and
miR-370 as they (i) have been found dysregulated
in several cancer types, including skin cancers,
(ii) are predicted to target endoglin [64], and
(iii) differential expression of circulating miR-370
has been reported in plasma from patients with
hereditary hemorrhagic telangiectasia type

(HHT1), an autosomal dominant disorder due to
mutations in the endoglin gene [64]. We then
measured by qRT-PCR hsa-miR-214 and hsa-

miR-370 levels in cells and EVs from endoglin-
expressing WM-164 cells (Fig. 14.7). Levels of
hsa-miR-370 were similar in control and endo-
glin-expressing  WM-164 cells, whereas the
expression of hsa-miR-214 showed a non-
significant increased trend in endoglin-positive
WM-164 cells compared to controls (Fig. 14.7,
left panels). In EVs from endoglin-transduced
WM-164 cells, the levels of hsa-miR-370 dis-
played a significant reduction, while those of hsa-
miR-214 showed a significant increase compared
to mock-transduced WM-164 cells (Fig. 14.7,
right panels). These results suggest that endoglin
expression in melanoma involves the dysregula-
tion of hsa-miR-214 and hsa-miR-370, which in
turn could modulate melanoma progression.
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Fig. 14.7 Analysis of miRNAs hsa-mir-370 and hsa-
mir-214 in endoglin-expressing WM-164 cells. Cells
transduced with endoglin (hENG+) or an empty vector (o)
were analyzed by qRT-PCR using primers specific for
hsa-mir-370 and hsa-mir-214. Representative qRT-PCR

14.4 Discussion

In this work, we demonstrate a correlation be-
tween endoglin expression and tumor malig-
nancy in primary melanoma and cultured
melanoma cell lines. We have also deepened into
the underlying endoglin-dependent molecular
mechanisms, mainly focusing on the role of
microRNAs in this process. Besides its physio-
logical role in angiogenesis, endoglin has also
emerged as a promising therapeutic target in
recent years since endoglin expression has been
reported either in tumor vessels or neoplasm in
tumor cells, including melanoma, renal cell car-
cinoma (RCC), leukemias, certain subtypes of
sarcomas, and breast, ovarian, endometrial, and
prostate cancer. The role of endoglin in tumor
cells depends on the cellular context. In this
regard, and in line with our results obtained in
melanoma, endoglin would be promoting tumor
development and progression, playing an
important role in oncogenic  signalling
(Fig. 14.8); whereas in other cases it has been
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from cells (left panels) or their derived EVs (right panels)
are shown (n = 4 per condition). The miRNA expression
levels are displayed relative to WM-164 cells transduced
with the empty vector. *p < 0.05; **p < 0.01 by two-
tailed student’s t-test

associated with tumor suppression [4, 15, 82, 83].
In melanoma, endoglin has been pointed out to
be essential for tumor plasticity, playing a key
role in the interplay between TGF-B and BMP
signalling pathways. Accordingly, endoglin
downregulation hinders anchorage-independent
growth and invasiveness and abrogates tumor
growth in preclinical models of melanoma [8].
Moreover, experiments with shRNA against
endoglin have shown to significantly reduce
proliferation, survival and migration of mela-
noma cells [26, 30]. Recently, the therapeutic
efficacy of a fusion protein containing endoglin
single-chain variable fragment and IP10 (Endo-
glin-scFv/IP10) has been demonstrated. Indeed,
this fusion protein inhibited proliferation and
angiogenesis, while stimulating apoptosis within
melanoma tissue [25]. In this context, our results
further support the hypothesis that endoglin
mediates malignant melanocyte transformation in
WM-164, as the levels of the well-known mela-
noma markers PMEL and TYR2 increase upon
endoglin  overexpression. Furthermore, an
increased trend of hsa-mir-214 levels is observed
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Fig. 14.8 Hypothetical model of the role of endoglin
in melanoma progression. Endoglin expression is
upregulated in malignant melanoma compared to primary
melanocytes, contributing to the malignant phenotype, at
least by dysregulating hsa-mir-214 and hsa-mir-370. EVs
released by malignant melanocytes and loaded with
abnormal levels of hsa-mir-214 and hsa-mir-370 can

in endoglin-transduced melanoma cells. Inter-
estingly, hsa-mir-214 dysregulation has been
widely described in several tumors, including
melanoma.

Cancer-derived extracellular vesicles, includ-
ing EVs, can target different cell types in the
tumor microenvironment modulating tumor
growth and metastasis [84-86]. Of note, cellular
endoglin expression significantly regulates both
hsa-mir-214 and hsa-mir-370 in EVs, of which
endoglin is also a component. Thus, compared to
EVs from control cells, endoglin overexpressing
cells show reduced levels of hsa-mir-370 while
increased content of hsa-mir-214 in EVs. We
hypothesize that these dysregulated microRNAs
in EVs may play a relevant role in tumor
development and metastasis (Fig. 14.8). For
example, the reduction of hsa-mir-370 levels in
EVs from endoglin-expressing melanoma cells
could favour the process of neo-angiogenesis,
which is necessary for tumor growth. This can be
achieved because endoglin is negatively

Melanocyte
Endothelial cell

target cells from the tumor microenvironment, including
primary melanocytes, endothelial cells from the tumor
vasculature, melanoma-associated fibroblasts (MAFs),
lymphocytes or tumor-associated macrophages (TAMs),
leading to enhanced melanoma tumor growth and devel-
opment. Created with BioRender.com

regulated by hsa-mir-370 [63], and endoglin is
highly expressed by actively proliferating
endothelial cells of the tumor vasculature [7].
Consequently, EVs from the primary melanoma
tumors carrying lower levels of hsa-mir-370
would favour migration, proliferation, differenti-
ation and adhesion of endothelial cells. Given the
reported role of hsa-mir-214 in tumor progres-
sion [65, 66], increased levels of hsa-mir-214 in
EVs from melanoma cells may act in a paracrine
manner once taken up by neighbour melanocyte
cells, thereby transforming them and contributing
to tumor growth and development (Fig. 14.8).
The EVs-mediated targeting of hsa-mir-370 and
hsa-mir-214 may not be limited to neoangiogenic
vessels or melanocytes, as an effect on additional
non-cancer cells from the tumor environment is
expected as well [87]. Apart from malignant
cells, non-cancerous cells, including adipocytes,
endothelial cells of tumor vessels, lymphocytes,
tumor-associated macrophages (TAMs), and
cancer-associated fibroblasts (CAFs), as well as
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molecules produced and released by them, con-
stitute the tumor microenvironment [88, 89].
Active and mutual interactions, through a para-
crine signalling or circulatory and lymphatic
systems, between tumor cells and the tumor
microenvironment have been described to play
decisive roles in tumor initiation, development
and progression, metastasis, and response to
therapies [90, 91]. Consequently, the tumor
environment has received increased attention in
the recent cancer literature [92, 93]. For instance,
melanoma-associated fibroblasts (MAFs) have
been described to have a role in melanoma pro-
gression, therapy resistance and immunosurveil-
lance [94-96]. Moreover, a variety of immune
cells, i.e., T and B lymphocytes, macrophages,
neutrophils, dendritic and natural killer cells
support the growth and invasiveness of mela-
noma cells, using multiple mechanisms. Among
them, it is remarkable the downregulation in T
lymphocytes of anti-apoptotic proteins, including
Bcl-2, caused by melanoma-derived EVs con-
taining miRNAs, such as hsa-mir-690 [97, 98].
A recent study has shown that hsa-mir-125b-5p
transferred by cutaneous melanoma-derived EVs
induces a tumor-promoting TAM phenotype in
macrophages [99]. A role for EVs carrying hsa-
mir-370 or hsa-mir-214 on malignant progression
has been outlined. Breast cancer cells-secreted
EVs with hsa-mir-370-3p cargo can aggravate
breast cancer through downregulation of the
cylindromatosis (CYLD) tumor suppressor in
fibroblasts concomitantly with activation of the
NF-«B signaling pathway, thereby promoting the
tumor cell functions [100]. Interestingly,
expression of endoglin, a target of hsa-mir-370,
in CAFs regulates invasion and stimulates col-
orectal cancer metastasis [101]. Also, by spong-
ing hsa-mir-370-3p, the circular RNA (circRNA)
circ_0020710 can promote melanoma cell pro-
liferation, migration and invasion in vitro, as well
as tumor growth in vivo through the upregulated
expression of the CXCL12 [102], a chemokine
known to regulate melanoma metastasis to dis-
tant sites [103]. In the case of hsa-mir-214, its
downregulation in CAFs contributes to migration
and invasion of gastric cancer cells through
induction of epithelial-mesenchymal transition
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(EMT) [104]. Accordingly, hsa-mir-214-3p has
been proposed as a novel therapeutic target in
pancreatic CAFs and human pancreatic stellate
cells (hPSCs), as its inhibition led to inhibition of
TGF-B-induced differentiation of pancreatic
CAFs and reduced expression of myofibroblast
markers during the differentiation of hPSCs to
myofibroblasts [105]. Furthermore, a role of
tumor-secreted miR-214 in the conversion of
CD4* T cells into immune-suppressive regula-
tory T cells, promoting tumor immune escape has
been described [106]. Future independent studies
remain to be performed to better understand the
functional impact of the endoglin-induced dys-
regulated microRNAs in melanoma cells and
their microenvironment, as well as the possible
mechanisms involved.

Along with the hsa-mir-214 and hsa-mir-370
cargos, EVs derived from endoglin-enriched
melanoma cells, also contain the protein endo-
glin, in agreement with previous reports in EVs
from endoglin-expressing endothelial cells or
primary hepatic stellate cells [49-51]. Although
endoglin®™ EVs have been proposed as biomarkers
for metastatic breast cancer [10], the putative
functional role of this endoglin cargo in cancer
remains to be elucidated. It is well established that
endoglin specifically binds integrins [22, 37, 46]
and tumor cell-derived EVs contain integrins
involved the generation of pre-metastatic niches
in specific tissues promoting organ-specific
metastases of several types of cancer including
melanoma [47, 84, 107]. Accordingly, it is
tempting to speculate that by interacting with
integrins, endoglin could be involved in these
malignant processes. Further investigations are
needed to better understand the role of endoglin in
melanoma development.
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