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Summary
Despite the Janus kinase/signal transducers and activators of transcription (JAK/
STAT) pathway being frequently altered in T- ALL/LBL, no specific therapy has been 
approved for T- ALL/LBL patients with constitutive signalling by JAK/STAT, so there 
is an urgent need to identify pathway members that may be potential therapeutic tar-
gets. In the present study, we searched for JAK/STAT pathway members potentially 
modulated through aberrant methylation and identified SOCS3 hypermethylation 
as a recurrent event in T- ALL/LBL. Additionally, we explored the implications of 
SOCS3 deregulation in T- ALL/LBL and demonstrated that SOCS3 counteracts the 
constitutive activation of the JAK/STAT pathway through different molecular mech-
anisms. Therefore, SOCS3 emerges as a potential therapeutic target in T- ALL/LBL.
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Precursor T- cell neoplasms (T- cell acute lymphoblastic leu-
kaemia  / T- cell lymphoblastic lymphoma,  T- ALL/LBL) are 
aggressive haematological malignancies characterized by 
aberrant proliferation of immature thymocytes.1 The high 
toxicity associated with the current treatments and the low 
survival rate in case of relapse highlight the urgent need for 
novel therapies targeting the frequently deregulated path-
ways in these haematological disorders.2,3

The Janus kinase/signal transducers and activators of 
transcription (JAK/STAT) pathway is the second most de-
regulated signalling pathway in T- ALL/LBL only after the 
NOTCH1 pathway. Consequently, a significant proportion 
of T- ALL/LBL patients show constitutive activation of the 
JAK/STAT pathway, which leads to sustained phosphoryla-
tion of STAT proteins and tumour development.4 While pre-
vious studies have reported the efficacy of inhibiting certain 
JAK/STAT pathway members,5,6 no specific therapy has been 
officially approved yet for T- ALL/LBL patients with con-
stitutive activation of the JAK/STAT pathway.7 Therefore, 
characterizing the molecular alterations responsible for the 
sustained phosphorylation of STAT proteins is essential to 
identify new pathway members which could be used as po-
tential therapeutic targets. However, most genetic alterations 
identified so far through whole- exome- sequencing are re-
stricted to positive regulators of the pathway and have a low 
incidence, suggesting the presence of additional alterations 
which remain to be identified.4

In the present study, we wondered whether epigenetic 
alterations and specifically an aberrant methylation profile 
could have an impact on the JAK/STAT pathway signalling. 
To this end, we focused on the CpG islands frequently ap-
pearing near the transcription start site (TSS) and colocaliz-
ing with cis- regulatory elements because tumour suppressor 
genes (TSG) are often silenced in cancer cells due to hyper-
methylation of such islands.8 We recurrently identified hy-
permethylation of the SOCS3 gene, a member of the SOCS 
family which regulates the JAK/STAT pathway in a negative 
feedback loop.9 Additionally, we explored the possible im-
plications of SOCS3 in T- ALL/LBL and demonstrated that 
SOCS3 counteracts the constitutive activation of the JAK/
STAT pathway through different molecular mechanisms. 
Finally, we revealed the oncogenic role of multiple JAK1 
mutations and showed their ability to induce SOCS3 phos-
phorylation at higher levels than JAK1WT in the absence of 
cytokines.

Primary samples of precursor T- cell neoplasms (n = 20) 
were obtained through the Spanish Hospital Biobanks 
Network (RetBioH; www.redbi obanc os.es) (Table  S1). 
Human postnatal thymocytes (n = 4) were isolated from thy-
muses removed during cardiac surgery of paediatric patients. 
Institutional review board approval was obtained for these 
studies (CEI 98– 1825) and the participants provided writ-
ten informed consent in accordance with the Declaration of 
Helsinki.

Mutations were generated using the QuickChange Site- 
Directed- Mutagenesis kit (Agilent). Cell transfection was 
accomplished using Lipofectamine™ 2000 (ThermoFisher) 

while virus production and cell transduction were per-
formed as previously described.10 Cells were counted with 
trypan blue and TC10 Automated Cell- Counter (Bio- Rad). 
Reagents and equipment from Bio- Rad were used for elec-
trophoresis and Western blot. Immunoprecipitation of 
SOCS3 was accomplished using Dynabeads™ Protein G 
Immunoprecipitation Kit (Invitrogen). Additional informa-
tion is available in Methods S1.

In search for JAK/STAT pathway genes modulated by ab-
errant methylation, we analysed the CpG islands associated 
with the TSS of genes from SHP, SOCS and PIAS families. 
Such genes are considered as potential negative regulators of 
the JAK/STAT pathway and their methylation status remains 
unexplored in T- ALL/LBL except for the case of SOCS5.11,12 
We first evaluated the extension or size of the CpG islands 
(Figure  S1) and their colocalization with cis- regulatory el-
ements (Figure  S1). Next, the Infinium Methylation- EPIC 
array was employed to assess for the presence of hypermeth-
ylated CpG dinucleotides within the selected CpG islands 
in three T- ALL/LBL- derived cellular models (Figure  S1). 
Following these criteria, we identified different candidates 
potentially modulated by aberrant methylation (Table  S2). 
Among them, we focused on SOCS3 since (i) it has been 
found hypermethylated in other malignancies13,14; (ii) does 
not show genetic alterations in T- ALL/LBL4; and (iii) it is 
essential for T- cell development.9 We employed bisulphite 
treatment followed by DNA- pyrosequencing to study the 
methylation density of CpG dinucleotides within the CpG 
island of SOCS3 in our patient- cohort and we observed 
SOCS3 hypermethylation in more than 50% of the analysed 
samples (Figure  1A). Moreover, the methylation status of 
SOCS3 was significantly higher in T- ALL/LBL patients when 
compared to that of normal thymocytes (Figure 1B). SOCS3 
hypermethylation was independent of different parameters 
such as the subgroup, the immunophenotype and the age 
(Figure  S1). We corroborated that SOCS3 hypermethyla-
tion was not limited to our patient cohort by analysing its 
methylation density in seven T- ALL/LBL- derived cells lines 
(Figure 1C). The corresponding results were also compared 
with those previously obtained from normal thymocytes 
(Figure  1D). Since SOCS3 hypermethylation promotes its 
deregulation in other malignancies,13,14 we confirmed this 
is also the case for T- ALL/LBL- derived cells by analysing 
the expression of SOCS3 in HPB- ALL cells, which respond 
to interleukin- 7 (IL- 7) and display SOCS3 hypermethyla-
tion, in the absence or presence of the demethylating agent 
decitabine (Figure  1E). The results showed decitabine in-
duced a specific effect on SOCS3 expression in HPB- ALL 
cells and were further validated using normal thymocytes 
as a negative control (Figure 1F). Moreover, we observed a 
negative correlation between SOCS3 methylation and ex-
pression levels when evaluating normal thymocytes, T- ALL/
LBL- derived cell lines and the T- ALL/LBL tumour samples 
with available RNA material (Figure 1G). Using data from 
the TARGET cohort, we observed that SOCS3 expression 
follows a variable pattern, with heterogeneous levels of 
SOCS3 (Figure  1H) and with around 60% of T- ALL/LBL 
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tumour samples showing downregulation of SOCS3 relative 
to normal thymocytes (Figure 1I). Remarkably, T- ALL/LBL 
patients with reduced SOCS3 expression exhibited signifi-
cantly higher levels of blasts in bone marrow at diagnosis 
(Figure 1J). Additionally, SOCS3 expression was independent 

of the immunophenotype but not of the molecular classifi-
cation (Figure  S1). In this respect, the HOXA, NKX2_1, 
TLX1 and TLX3 groups showed significantly lower levels of 
SOCS3.
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To explore the relevance of SOCS3 for the constitutive ac-
tivation of the JAK/STAT pathway, we specifically focused 
on IL- 7 signalling and JAK/STAT pathway mutations since 
they are inductors of the JAK/STAT pathway which contrib-
ute to the sustained phosphorylation of STAT proteins in 
T- ALL/LBL.4,15 To study the effects of SOCS3 on IL- 7 signal-
ling, we employed complementary cellular models with and 
without SOCS3 expression (Figure S2A). We observed that 
SOCS3 attenuates the signalling through IL- 7, as shown by a 
reduction in STAT5 phosphorylation, a target of IL- 7, as well 
as in PIM1, a target of phosphorylated STAT5 and a proto- 
oncogene (Figure 2A).

Next, we studied the possible association between JAK/
STAT pathway mutations and SOCS3 hypermethylation in 
our patient cohort. Patients with JAK/STAT pathway muta-
tions displayed higher methylation levels of SOCS3 (Figure  
2B), suggesting that SOCS3 deregulation may be important 
for the oncogenic activity of these mutations. To validate this 
hypothesis, we aimed to investigate the relationship between 
SOCS3 and JAK1 oncogenic mutants and we started with a 
comprehensive characterization of multiple JAK1 mutations 
identified in T- ALL/LBL but whose functional effects had 
not been previously addressed (Tables  S3 and S4). Among 
them, JAK1F805V was identified for the first time in our pa-
tient cohort (Figure 2C). We analysed the ability of the se-
lected mutations to activate the JAK/STAT pathway in the 
absence of cytokines and observed that JAK1D604Y, JAK1L653F 
and JAK1F805V mutants induced STAT1 phosphorylation to 
a greater extent than JAK1WT and similarly to JAK1V658F, 
which in this case acts as a positive control10 (Figure  2D). 
The oncogenic role of JAK1D604Y, JAK1L653F and F805V mu-
tations was further confirmed by their ability to induce cell 
growth and viability in the absence of cytokines (Figure 2E). 
Moreover, both events correlated with an increase in the 

levels of STAT5 phosphorylation (Figure  2F). Treatment 
with the JAK1/2- inhibitor ruxolitinib significantly reversed 
the previously observed effects on cell growth, viability and 
STAT5 phosphorylation (Figure S2B,C), indicating they were 
the specific result of JAK1D604Y, JAK1L653F and JAK1F805V 
mutants.

Finally, we analysed the effects of SOCS3 on the JAK1 
mutations that we had comprehensively characterized as on-
cogenic and observed that SOCS3 attenuates the activity of 
these mutants, as shown by a reduction in STAT1 phosphor-
ylation, a specific target of JAK1 (Figure  2G). The results 
were corroborated when evaluating the global levels of JAK1- 
induced tyrosine phosphorylation (Figure 2H). Notably, the 
appearance of a particular band at approximately 25 kDa 
(indicated with an arrow in Figure 2H) prompted us to ex-
amine whether it may correspond to phosphorylated SOCS3, 
since SOCS3 has a predicted molecular weight of 27 kDa and 
can be phosphorylated at two tyrosines, Tyr204 and Tyr221, 
by different protein tyrosine- kinases including JAK1.16 To 
prove such hypothesis, we performed immunoprecipitation 
of SOCS3 followed by detection of phosphorylated tyro-
sines. Our results show that JAK1 oncogenic mutants induce 
SOCS3 phosphorylation to a greater extent than JAK1WT 
(Figure 2H, Figure S2D) and that such phosphorylation oc-
curs specifically at Tyr204 and Tyr221, as demonstrated when 
the SOCS3Y204&221F mutant was used instead of SOCS3WT 
(Figure 2I, Figure S2E).

Our results identify the hypermethylation of the CpG 
island associated with the TSS of SOCS3 as a recurrent 
event in T- ALL/LBL. Contrary to most alterations affecting 
other members of the JAK/STAT pathway, we observed that 
SOCS3 hypermethylation has a notable incidence in T- ALL/
LBL and was identified in more than 50% of the analysed 
samples. Additionally, we explored the possible implications 

F I G U R E  1  Aberrant methylation of SOCS3 in T- cell acute lymphoblastic leukaemia / T- cell lymphoblastic lymphoma (T- ALL/LBL). (A) Heatmap 
showing the methylation density of dCpG within the CpG island of SOCS3 in primary T- ALL/LBL samples and in normal thymocytes eight dCpG have 
been analysed for each sample). To account for possible variations due to intratumour heterogeneity and contamination with normal cells, only dCpG 
with a methylation density higher than 40% were considered as truly hypermethylated. The presence or absence of somatic mutations affecting genes 
belonging to the Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway in these samples is indicated by + or − respectively. 
(B) The methylation density of dCpG was compared between primary T- ALL/LBL samples and normal thymocytes. *, p < 0.05; **, p < 0.01. (C) Heatmap 
showing the methylation density of dCpG within the CpG island of SOCS3 in T- ALL/LBL- derived cell lines (from 1 to 7: ALL- SIL, HPB- ALL, HSB2, 
MOLT4, PEER, KARPAS and Jurkat) and normal thymocytes (eight dCpG have been analysed for each sample). dCpG with a methylation density higher 
than 80% were considered as hypermethylated. (D) The methylation density of dCpG was compared between T- ALL/LBL- derived cell lines and normal 
thymocytes. *, p < 0.05; **, p < 0.01. (E) mRNA expression levels of SOCS3 in HPB- ALL cells untreated or treated with IL- 7 (10 ng/ml) and decitabine 
(1 μM). (F) mRNA expression levels of SOCS3 in normal thymocytes untreated or treated with IL- 7 (10 ng/ml) and decitabine (1 μM). For panels (E) and 
(F), data are referred to untreated cells and show the mean ± standard deviation (SD) after three independent experiments. *, p < 0.05; **, p < 0.01. (G) A 
significant negative correlation between methylation density of SOCS3 CpG island and SOCS3 transcriptional expression in control healthy thymocytes 
(n = 3), primary T- ALL/LBL samples (n = 9) and cell lines (n = 5). The value for SOCS3 methylation density is the average of eight dCpG analysed for 
each sample. SOCS3 mRNA levels were determined by quantitative reverse transcription polymerase chain reaction (RT- PCR). The results from three 
technical replicates were normalized using the 2−∆∆CT method, referring SOCS3 expression to those of B2M and PPIA, and referenced to the average value 
of the control group. Both parametric (Pearson: r = −0.6020, p- value = 0.0106) and non- parametric (Spearman: r = −0.6642, p- value = 0.0046) analyses 
revealed statistical significance. (H) Violin plot representing SOCS3 expression (DESeq2 normalized counts) in 264 patients from the TARGET cohort. 
For optimal appreciation of the heterogeneous data, the Y- axis is shown in three segments (bottom from 0 to 3000, 75%; center from 3000 to 15 000, 7%; 
top from 15 000 to 30 000, 18%). (I) Violin plots representing SOCS3 expression (DESeq2 normalized counts, shown in logarithmic scale) in two groups 
of T- ALL/LBL samples from the TARGET cohort (n = 264) that were established according to their SOCS3 expression compared to that of control healthy 
thymocytes (n = 2). Samples with SOCS3 values below the average of the controls (which is indicated by the horizontal line) constituted the SOCS3_
DOWN group (n = 169) and those above the average constituted the SOCS3_UP group (n = 95). *, p < 0.05; **, p < 0.01. (J) Violin plots representing the 
number of bone marrow blasts at diagnosis in patients belonging to the SOCS3_DOWN and SOCS3_UP groups (as defined previously in Figure 1I). *, 
p < 0.05; **, p < 0.01.
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of SOCS3 in T- ALL/LBL and demonstrated that SOCS3 
counteracts the constitutive activation of the JAK/STAT 
pathway by attenuating the signalling through IL- 7 and the 
oncogenic activity of JAK1 mutants. Moreover, we revealed 
the oncogenic role of JAK1 mutations JAK1D604Y, JAK1L653F 
and JAK1F805V and their sensitivity to ruxolitinib. Finally, 
we show that such mutations induce SOCS3 phosphoryla-
tion at Tyr204 and Tyr221 at higher levels than JAK1WT, sug-
gesting they could promote the aberrant hyperactivation of 
the JAK/STAT pathway not only by phosphorylating STAT 
proteins but also SOCS3. In conclusion, SOCS3 emerges as 
a potential therapeutic target for T- ALL/LBL patients with 
constitutive activation of the JAK/STAT pathway and future 
studies will be needed to determine the efficacy of SOCS3 
mimetics17,18 against this malignancy.
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