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There are works of the Maeda–Morokuma group, which pro-
pose the artificial force induced reaction (AFIR) method (Maeda
et al., J. Comput. Chem. 2014, 35, 166 and 2018, 39, 233). We
study this important method from a theoretical point of view.
The understanding of the proposers does not use the barrier
breakdown point of the AFIR parameter, which usually is half of
the reaction path between the minimum and the transition
state which is searched for. Based on a comparison with the
theory of Newton trajectories, we could better understand the

method. It allows us to follow along some reaction pathways
from minimum to saddle point, or vice versa. We discuss some
well-known two-dimensional test surfaces where we calculate
full AFIR pathways. If one has special AFIR curves at hand, one
can also study the behavior of the ansatz. © 2019 The Authors.
Journal of Computational Chemistry published by Wiley Periodi-
cals, Inc.

DOI: 10.1002/jcc.26115

Introduction

Considerable interest is attached to the search of reaction path-
ways in chemistry, especially the points which govern these
ways: minimums and saddle points of index one (SP1) on the
potential energy surface (PES) of a reaction system. The reac-
tion pathway is defined as a one-dimensional description of a
chemical reaction through a sequence of molecular geometries
in an M-dimensional configuration space.

The AFIR method is an ansatz, which disturbs the given PES
by an external force.[1,2] It is a generalized case of the treatment
in mechanochemistry.[3–5] It has some similarity with the SEGO
method (standard and enforced geometry optimization).[6] By
the disturbance, one moves the stationary points of the former
PES to new locations. By following the successive force-
displaced stationary points, one gets a curve which can, in
good cases, connect a minimum and a SP1 by a kind of reaction
path. The AFIR path has analogous properties.

This paper has the following sections: next, we refer to the AFIR
method, and we calculate a reaction path by pieces of a curve by
consecutive AFIR points. A more theoretical tool is obtained by a
variational formula for full AFIR curves. Further special properties
like dependence of the AFIR curve on the coordinates, and
avoided crossing (AC), are discussed separately by examples. At
the end, we add a discussion and some conclusions.

The AFIR Method

The proposal of the Maeda–Morokuma group is to use an effec-
tive PES[1,2,7–10] with internal coordinates r
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Here V (r) is the original PES, α is a factor which plays the role
of a numerical parameter which drives the calculation, Ri and Rj

are covalent radii of atoms i and j. The vector r with the compo-
nents rij contains the distances between the corresponding
atoms i and j of the studied chemical system. The dimension of

all rij is maximally M= N N−1ð Þ
2 for a molecule with N atoms. It is

possible to include a lower number of distances only.[1,11] Of
course, all rij>0. To imagine the external force, f, directly, we
write the components with numbers i, j

f ij =

Ri + R j
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and the effective PES is

Veff rð Þ= V rð Þ+ α f rð ÞT �r, ð3Þ
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thus, the force, f, acts on the current point, r. If the force is zero,
α = 0, then we have the original PES. Interesting are the cases
with increasing amount of α.

Equation (2) controls the relation between different bonds. It
means that the larger distances nearly disappear in the extra
force for p > 2 but only the smallest distances make a contribu-
tion to the resulting direction of the force. So, eventually, the
small distances of H-atom bonds, which do not react in the sys-
tem of question, should not be used in f.[7]

Of course, if the extra force moves all stationary points of the
PES out of their former places then a minimum and an SP can
coalesce, and a former barrier can disappear. Such a situation
occurs in a point labeled barrier breakdown point (BBP) with
α = αmax, and it is instructive to compare it for Newton trajecto-
ries (NTs).[12,13] So a new valley opens for a contact between
former distant minimums. Thus, one can use the ansatz to
detect reaction valleys.[1,2,9,11,14–21] To the purpose, one has to
choose α ≥ αmax. The important relation is not discussed in the
AFIR papers. If it holds then the former initial minimum disap-
pears and a new minimum exists on the corresponding effec-
tive PES, which may be near a searched minimum of the
original PES. Many examples are drawn recently for
NTs.[4,5,13,22–25]

Here, in contrast, we propose to calculate the full “reaction
path” between the initial minimum and the next SP of index
1 by AFIR. The aim will allow us to better understand the
behavior of the AFIR method and its possible improvement.
One starts at a known minimum with α = 0. Like for NTs,[4,5,26] a
continuous increase of the strength of the force, α, will move
the stationary points of the effective new PES. In the first
papers to AFIR, Meada et al. only searched for an increase of
the force.[1,10,11,14] In the last great review,[2] they propose to
use only one fixed value of α. We first remark that in the case
the value should be larger than αmax because then the optimi-
zation on the effective PES does not go back near to the origi-
nal minimum.

Here, we propose to improve the method by two alternating
pieces of the curve of new stationary AFIR points. We propose
to use an increase of the parameter, α, up to the BBP at αmax of
the AFIR curve, and a decrease of the parameter, α, after the
BBP. Then the obtained curve points could fully describe the
curve between two original stationary points over a BBP, like in
the case of NTs.[4] The maximal α determines the BBP. Note
that the BBP is not an approximation of the original SP of the
PES. The BBP is usually anywhere between the initial minimum
and the next SP, see some instructive discussions for NTs.[4] At
the next stationary point the parameter α has again to con-
verge to zero.

Since in the AFIR method only one test-α is used[2] this has
to be greater than αmax. Because then the optimization can
jump along a new valley to a minimum near to the searched
one. If it is test-α < αmax then the optimization of the effective
PES will get a minimum before the BBP, near to the original ini-
tial minimum.

Figure 1 shows the result of calculations for changing values
of α for the Rhee–Pande test surface.[4,22,27] We use (x, y) for
only two abstract coordinates, thus dimension M = 2, and the

exponent p = 6 in eq. (1) and put formally R1 = 1/2 and
R2 = 1/2. Thus, the equation becomes

Veff x, yð Þ= V x, yð Þ+ α
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The calculation goes step by step. We put a value of the param-
eter α near zero, and search the next stationary point of the
effective PES, Veff. This point is used for the next α-step as the
initial value for the optimization. We proceed in the same way
after the convergence is reached.

The AFIR points start at the right minimum, R at (4.03, 0.97)
at zero energy, and they go with negative values of α up to
αmax = −9.98 at the BBP (pink) at point (4.7, 2.35). Then the
parameter is again decreased (in absolute values). With the
decreasing amounts of the parameter after the BBP, the curve
at least correctly finds the rightmost SP at (4.25, 2.96). The
same can continued in direction of the intermediate mini-
mum; however, at the corresponding next BBP, the curve
ends. There is a small gap to the intermediate where no AFIR
points exist. An explanation of the fact comes below in the
next section.

The other half of the reaction path from the product mini-
mum, P at point (1.0, 4.0) and energy 3.64, is analogous. Up to
a values of α = −6.5 at the leftmost BBP (pink), at (2.8, 5.15), we
increase the parameter, but the way to the SP before the inter-
mediate, at (3.0, 4.56), is again get by a decrease. And the piece
between the leftmost SP of index 1 and the intermediate mini-
mum at (3.76, 4.03) at energy 5.96 is a next ordinary part of an
AFIR curve.

The procedure to go up by small steps for α and optimize
the corresponding stationary point, up to a BBP, and then go
back to zero for α to find an SP1, this procedure will work in
every dimension M.

AFIR Curves by a Variational Formula

We use a first variational structure[28] of the AFIR model

g rð Þ−α φ rð Þ= 0, ð4Þ
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Figure 1. Test surface of Rhee and Pande[27] with AFIR points (blue). The
minimums and saddle points of index one are indicated in black. The BBPs
are shown in pink color. The level lines start from zero level at R. They
increase in 1-steps up to a value of 15, and after that in 5-steps up to a
value of 60. [Color figure can be viewed at wileyonlinelibrary.com]
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where g(r) is the gradient of the PES, α is the Lagrange multi-
plier and φ(r) is the derivation of the extra term, rr(f(r)

T � r). If
we assume that φ(r) 6¼ 0, we can write the variation ansatz in
another form

U−
φ rð Þφ rð ÞT
φ rð ÞTφ rð Þ

 !
g rð Þ=0, ð5Þ

where U is the unit matrix. Here, the task would be to derive
the implicit tangent from the given term. However, the problem
in the model ansatz, eq. (1), is the quite complicated expression
of φ(r). To make an attempt to achieve an expression, we exe-
cute the following derivation. First we rewrite eq. (1) in the
form gT(r) − α(r)φT(r) =0T, where α(r) = φT(r)gT(r)[φT(r)φ(r)]−1.
Now we define H(r): = rrg

T(r) and G(r): = rrφ
T(r). After some

mathematical manipulations we obtain

H rð Þ−α rð ÞG rð Þ−φ rð ÞrT
r α rð Þ� �dr

dt
= 0, ð6Þ

where rrα(r) has the form

rT
r α rð Þ= gT rð Þ

φT rð Þφ rð Þ U−2
φ rð ÞφT rð Þ
φT rð Þφ rð Þ

� 	
G rð Þ+ φT rð Þ

φT rð Þφ rð ÞH rð Þ: ð7Þ

We note that if φ(r) is independent of r then eq. (6) reduces to
the tangent of the reduced gradient following (RGF)
model,[26,29] which is another version of the NT model. From
this point of view, we can say that the AFIR method is a gener-
alization of the NT model.

In the case of M = 2, we can use eq. (5) for a numeric search
of a solution of the AFIR curves. We employ a Mathematica con-
tour plot in Figure 2 for the zero contour of the square of the
norm of the left hand side of eq. (5). The point by point opti-
mized AFIR points of Figure 1 fit well in the resulting curves.
The gap between the rightmost SP of index 1 and the interme-
diate is an avoided crossing of two AFIR curves.

A next problematic property is, at the other side of the mini-
mums, for positive α values, that the AFIR curves escape into
the mountains. They do not converge to the upper SP1 at (1.59,
1.45). This SP is very higher in energy, it is 24 units, than the
pathways through the intermediate where the left SP1 is at
12.84 energy units. Thus, a reaction will proceed over the lower
reaction path, and not over the upper one; however, from a
theoretical point of view, one would like to know also the
higher energy pathway. But the AFIR points from the two
global minimums do not converge to this SP. An AFIR curve
can start in this SP, but it connects the SP to the summit of the
surface, an SP of index two. In contrast, steepest descent from
the SP at (1.59, 1.45) will find the two global minimums.

Note that here the origin (0, 0) of the plane of the coordi-
nates plays an exceptional role which is an artifact of this two-
dimensional test surface. (The origin was also excluded for the
application of eq. (5).) It seems that not all AFIR curves through
the zero point have a geometric sense. In the AFIR, ansatz of
eq. (1) is used only atomic distances of the chemical system
which cannot be zero. Thus, in real chemical calculations the
zero of the distance coordinates does not appear.

Coordinate Dependence of AFIR Curves

Because of the nonlinearity of the AFIR ansatz, eq. (1), the
resulting curves not only depend on the PES, but also depend
on the used coordinates. We demonstrate it with a very sim-
ple test surface with one minimum and two SP of index 1, the
Konda–Avdoshenko–Makarov surface.[12,13] It is a surface with
two reaction pathways between a reactant and the exit.
Across to the exit it has a very flat ridge. Unfortunately, the
minimum is the zero of the coordinates system. Nevertheless,
an AFIR curve in Figure 3a connects the minimum and the
lower SP region, but near the lower SP it suffers from a small
avoided crossing. Another AFIR curve follows nicely the flat
ridge. Near point (0.9, 0.8) this part of an AFIR curve has a
turning point (TP). In this example, all AFIR curve directions

Figure 2. Test surface of Rhee and Pande[27] with AFIR curves (blue). The
minimums and saddle points of index one are shown in black, the BBPs
in red. [Color figure can be viewed at wileyonlinelibrary.com]

Figure 3. (a) KAM test surface[12] with AFIR curves (blue). Green
lines are the Det(Heff) = 0 points of the surface. The crossing
with an AFIR curve is a BBP of this curve. (b) The same surface
but all coordinates moved by (2, 2). By this transformation, we
avoid the point (0, 0) in eq. (1). The new set of AFIR curves is
different with respect to the previous set of AFIR curves. [Color
figure can be viewed at wileyonlinelibrary.com]
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through the minimum are different from the eigenvalues of
the Hessian. It seems that not all AFIR curves through the zero
point have a geometric sense.

In Figure 3b, we use the same surface but moved symmetri-
cally by a coordinate transformation by a linearly moved origin
with a distance (2, 2). The AFIR curves have a quite other form!
But they reflect well the ridge of the surface. A former direct
pathway from the minimum to the lower SP of index 1 is miss-
ing. The AFIR curve now connects indirectly both SP with the
minimum over turning points.

The green lines in Figure 3 (and in the following figures) are
the Det(Heff) = 0 points of the surface where Heff is the Hessian
matrix of the second derivatives of the effective PES with
respect of the coordinates. There the gradient norm of the
effective PES has a maximum or a minimum if one goes along
the AFIR curve. The crossing of a green line with an AFIR curve
is a BBP of this curve.

The next example has another set of scaled coordinates.
Figure 4a shows the AFIR curves for a modified three-
minimums surface[13,30] obtained by the variational formula,
eq. (5). The modified surface is defined by

V x, yð Þ= 1
3

x3−3xy2
� �

+
1
40

x +
7
4


 �4

+ y4
 !

+250 exp −0:15 x + 3ð Þ2 + y2
� �h i

:

The three minimums may mean one reactant minimum, MinR,
and two different product minimums, MinP1 and MinP2. The

corresponding saddles are also so depicted. The example is
chosen because the range of the coordinates is extended by a
factor of 10. Nevertheless, here all AFIR curves suffer from
avoided crossings (AC). No two stationary points are truly con-
nected. Especially the MinR is far away from the origin, but it
has a large AC to the SP2. AC means that the AFIR method can
fail because the stationary points cannot coalesce on such sep-
arated AFIR curves.

Figure 4b shows the AFIR curves for the same surface but
changed coordinates by the symmetric distance (20, 20). Now
the picture again changes totally. The movement of the coordi-
nates origin out of the global bowl improves the situation. AFIR
curves connect one each minimum with one next SP, but not
with the corresponding other SP. The MinR is connected to SP1,
the MinP1 is connected to SPP, and the MinP2 is connected to SP2.
Between SPP and SP2 emerges an AFIR arc over the maximum.
Again, some avoided crossings exist. No two minimums are truly
connected.

Further Examples

Figure 5a shows the AFIR curves for the Eckhardt test surface[31]

obtained by the variational formula. The example is used
because here the “forbidden” origin of the coordinates is the
maximum of the surface reflecting to a certain degree the case
of distance coordinates, r of eq. (1), where the case r = 0 is a
really forbidden singularity. The Eckhardt surface is again a
surface with two different reaction pathways between reactant
and product minimums like the Rhee–Pande case. Here again

Figure 4. (a) Three minimums[30] BQC test surface with blue
AFIR curves. Green lines are the BBP curves with Det(Heff) = 0.
(b) The same surface moved by the coordinate pair (20, 20). By
this transformation, we avoid the point (0, 0) in eq. (1). Again,
AFIR curves have strongly changed. [Color figure can be viewed
at wileyonlinelibrary.com]

Figure 5. (a) Eckhardt test surface[31] with blue AFIR curves.
Green lines are the BBP curves Det(Heff) = 0. (b) The same
surface where the origin is moved by (3, 3). By this
transformation, we avoid the point (0, 0) in eq. (1). The AFIR
curves qualitatively change. [Color figure can be viewed at
wileyonlinelibrary.com]
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all AFIR curves suffer from avoided crossings. No two stationary
points are truly connected. But again, the upper SPu seems to
be more isolated than the lower one, SPl.

Figure 5b shows the AFIR curves for a moved by (3, 3) Eckhardt
surface. This situation is not better than under panel (a): the prod-
uct minimum has no connection to other stationary points by an
AFIR curve, the reactant minimum is connected to the lower SPl
by a strange AFIR curve, but the upper SPu again is isolated.

Many AFIR curves show an AC. We could not assign any use-
ful property of the PES to such ACs. It is in contrast to NTs.
There the ACs indicate the neighborhood of a valley-ridge
inflection (VRI) point which is crossed by a bifurcating, a singu-
lar NT. Singular NTs divide the “regions of influence” of the dif-
ferent stationary points. However, here, so to say, “singular”
AFIR curves with a bifurcation are very seldom because these
curves do not form a dense family of curves. They are unique
curves. One cannot try to change the “search-direction” of the
AFIR curve to get a nearby “singular” AFIR curve like a singular
NT. The bifurcation of NTs is quite easier to calculate[33] and
depends directly on the Hessian of the PES. Because of the non-
linearity of the ansatz of eq. (1), the connection to the effective
Hessian will be quite more complicated.

Figure 6 shows the AFIR curves for the well-known Müller-
Braun surface[32] [MB] obtained by the variational formula,
eq. (5). Here, only the main SP1 and the intermediate mini-
mum are connected by an AFIR curve. All other AFIR curves
suffer from avoided crossings. It is in contrast to the case of
NTs.[23] At every stationary point we detect one AFIR curve
which coarsely follows an eigenvector direction of the Hes-
sian. At two minimums, they follow the smaller eigenvalue
direction, thus the “reaction valley,” but at the third minimum,
the corresponding AFIR curve follows the larger eigenvalue
direction. The rule for this pattern is not clear. At the main SP1
near point (−0.8, 0.65) the AFIR curve here crosses along the
ridge, not along the reaction path direction.

Discussion

The examples demonstrate that the AFIR method can follow a
valley from a minimum to an SP1, or vice versa, at least in good
cases.

There are some specialties:

1. There are often gaps by an avoided crossing of the AFIR cur-
ves. The hypothetical bifurcation points inside an avoided
crossing seem to have no geometrical meaning. In contrast,
regular NTs connect the minimums with the SP1 of the PES.
Bifurcation points of NTs are valley-ridge inflection points.
Additionally, an AC can destroy the planed action of the AFIR
method.

2. The AFIR curve can have a turning point. This means that
the curve touches a level line. Such behavior is also known
from NTs. If a turning point emerges then the corresponding
curve should not serve for a model of a reaction path
because the TP has usually a higher energy than the
next SP1.

3. A problematic property of the AFIR method, at least in the
example of Figure 2, as bad as in others, is that here an
unsatisfactory behavior emerges into the inverse directions
of the two global minimums. The corresponding AFIR curves
for positive values of α escape into the left and right moun-
tains; however, they do not find the SP1 at point (1.59, 1.45).
Thus, not every SP1 which is connected to a minimum by a
steepest descent is also connected with this minimum by an
AFIR curve.

4. Usually one AFIR curve leads through the stationary points,
correspondingly, to positive or negative values of the param-
eter, α. It is again like for NTs, but there we can choose any
direction which then is the leading direction of the NT. The
NTs have a quite greater variability because around a sta-
tionary point all search directions are possible. The NTs form
a dense net of curves on the PES. And the NTs are a linear
ansatz, thus very easier to handle than the AFIR method.

5. A search for optimal BBPs[34] is not possible with AFIR curves
because they have their fixed direction at every point. To
determine an optimal direction, the search direction must be
continuously changeable to determine the optimal NT.

Conclusions

In former applications, the AFIR method is handled as a “black
box.” It is not discussed that the αmax of the BBP plays the deci-
sive role for the planed action. The use of only a fixed value of
the parameter α for a test calculation[2] where then it is hoped
to find a next minimum more or less accidentally, gives away
possibilities of this ansatz. In good cases, a consecutive use of
small α-steps can follow a reaction path up to the searched SP1
directly. But one has to be careful: α has to increase up to αmax

at a “barrier breakdown point” BBP and then to decrease back
to zero at the next stationary point.

However, the emergence of “avoided crossings” of AFIR cur-
ves can destroy their exploit-ability for a full reaction pathway.

The dependence on the coordinates of the external force
makes the method somewhat tricky!

The last conclusion is that one should better use the simpler
Newton trajectories, thus a fixed, constant force, f, in eq. (3).
NTs are better adapted to the task of the AFIR method.

Figure 6. MB test surface[32] with blue AFIR curves. Green lines are the
curves Det(Heff) = 0. The crossing point between a green line and an AFIR
curve is the BBP of this curve. [Color figure can be viewed at
wileyonlinelibrary.com]
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