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1 Introduction

1.1 Motivation and state of the art

In this thesis we treat (λ, n +m)-Einstein manifolds, λ ∈ R, m,n ∈ N. These
are geodesically complete pseudo-Riemannian manifolds (M, g) possibly with
boundary together with a smooth function f on M satisfying

Hessf =
f

m
(Ric− λg) (1)

where f > 0 on int(M) and f = 0 on ∂M . If m = 1 we further assume
that ∆f = −λf . A simple example of a (λ, n + m)-Einstein metric is when
f is constant, which is then called a trivial space. As a classical example let
g = ϵdt2+u2(t)gN , u(t) = cosh(t), onM = [0,∞)×N where N is a geodesically
complete pseudo-Riemannian Einstein metric with normalized scalar curvature
k = −ϵ and further let ϵλ = 1− n−m, f(t) = sinh(t). Then we obtain a non-
trivial (λ, n+m)-Einstein manifold with the boundary the slice {t0 = 0} ×N .
We recall the Riemannian Schwarzschild metric on E = R2 × S2, which can
be considered as a Riemannian (λ, 2 + 2)-Einstein metric. In this particular
example f is the unique positive function on [0,∞) satisfying the conditions

(f ′)2 = 1− f1−m , f(0) = 1 and f ′ ≥ 0.

By [Bes08, Example 9.118(a)] the triple (R2, g, f) with

g = dt2 + (f ′(t))2dθ2

f = f(t)

is a (0, 2 +m)-Einstein metric which is not Einstein and its corresponding Ein-
stein warped product (see Proposition 4.2) is complete and Ricci flat.

Our motivation to study (λ, n + m)-Einstein manifolds is due to [KK03,
Proposition 5] which implies that corresponding to every Riemannian (λ, n+m)-
Einstein manifold (M, g, f) there exists an n+m dimensional warped product
Einstein metric with the basis (M, g) and the warping function f . A (λ, n+m)-
Einstein manifold (M, g, f) itself is not necessarily Einstein. More precisely,

Proposition 1.1. ( [HPW12], Proposition 1.1.). Suppose λ ∈ R, m > 1 is an
integer, (M, g) is a (geodesically) complete Riemannian manifold of dimension
n and f ∈ C∞(M) is non-negative. Then (M, g, f) is a (λ, n + m)-Einstein
manifold if and only if there is a smooth n+m dimensional Riemannian warped
product Einstein metric gE on E = Mn × Fm with Einstein constant λ of the
form

gE = g + f2gFm
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for a Riemannian Einstein manifold (Fm, gF ) of dimension m satisfying RicF =
µgF where µ satisfies µ = f∆f + (m− 1)|∇f |2+λf2.

In the pseudo-Riemannian setting, we generalize the above statement to the
case m = 1, see Corollary 4.31.

If we define u ∈ C∞(M) via e−
u
m = f on the interior of a (λ, n+m)-Einstein

manifold (M, g, f), Equation (1) takes the form

Ricmu = Ric+Hessu− du⊗ du

m
= λg, (2)

Ricmu is sometimes called the m-Bakry-Emery tensor. The so-called m-quasi-
Einstein manifolds were introduced by J. Case, Y-J. Shu and G. Wei in [CSW11]
as a triple (M, g, u) consisting of a Riemannian manifold (M, g) and a smooth
function u as above which satisfies (2) for 0 < m ≤ ∞ and λ ∈ R. By the
results of [KK03], [CSW11, Theorem 2.2] characterizes m-quasi Einstein mani-
folds (M, g, u) as the base manifold of an Einstein warped product for which u
is the warping function. Additionally they proved a rigidity property for scalar
curvature through [CSW11, Proposition 3.6], by giving lower and upper bounds
with respect to the sign of λ.

A bit later, Catino in [Cat12] considered the following extended form of the
equation (2)

Ric + Hessu− ςdu⊗ du = λg (3)

for the so-called generalized quasi-Einstein manifolds. Here u, ς, λ are three
smooth functions on a complete Riemannian manifold (Mn, g), n ≥ 3. Equation
(3) gives out Einstein condition when u and λ are constant, and a quasi-Einstein
manifold when ς and λ are constant. Catino proves the following.

Proposition 1.2. ( [Cat12], Theorem 1.1.). Let (Mn, g), n ≥ 3, be a general-
ized quasi-Einstein manifold with harmonic Weyl tensor and W (∇u, ., ., .) = 0.
Then around any regular point of u the manifold (Mn, g) is locally a warped
product with n− 1 dimensional Einstein fibres.

G. Catino, C. Mantegazza, L. Mazzieri and M. Rimoldi in [CMMR13] also
consider Equation (3) where ς, λ ∈ R. They prove the following result for an
arbitrary ς ∈ R.

Proposition 1.3. ( [CMMR13], Theorem 1.1.). Let (Mn, g), n ≥ 3, be a com-
plete locally conformally flat quasi Einstein manifold. Then the following hold:

(i) If ς = 1
2−n , then (Mn, g) is globally conformally equivalent to a space

form.

(ii) If ς ̸= 1
2−n , then around any regular point of u, the manifold (Mn, g)

is locally a warped product with n − 1 dimensional fibres of constant sectional
curvature.
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In a series of papers [HPW12], [HPW14], [HPW15] C. He, P. Petersen andW.
Wylie investigate warped product Einstein spaces using the concept of (λ,m+
n)-Einstein metrics in the Riemannian case. These metrics can also be seen as
generalizations of gradient Ricci solitons, which are invariant under the Ricci
flow. Our work is mostly based on [HPW12] where the authors extend the
works of [CSW11], [Cat12] and that of [KK03] on (λ, n+m)-Einstein manifolds
with boundary. In [HPW12] setting new quantities ρ := 1

m−1 ((n− 1)λ− Scal)
and P = Ric− ρg the authors prove that given a (λ, n+m)-Einstein manifold
(M, g, f) with suitable conditions on the Weyl tensor, at a point p where ∇f |p ̸=
0, the tensor P (Schouten tensor and Hess f) has at most two eigenvalues, more
precisely

Lemma 1.4. ( [HPW12], Lemma 7.1). Let (M, g, f) be a Riemannian (λ, n+
m)-Einstein manifold with harmonic Weyl tensor and W (∇f, Y, Z,∇f) = 0.
Then at a point p where ∇f ̸= 0, the tensor P (or Ricci tensor or Schouten
tensor) has at most two eigenvalues. If it has two eigenvalues then one has
multiplicity 1 with eigenvector ∇f , and the other one has multiplicity n−1 with
vectors orthogonal to ∇f . If it has one eigenvalue then (M, g) is Einstein.

In fact, in Lemma 1.4 the purpose of the conditions on the Weyl tensor is
to get control on the number of eigenvalues of the tensor P (equivalently the
Schouten tensor). Then the authors define O = {x ∈ M : df(x) ̸= 0, σ1(x) ̸=
σ2(x)} where σ1 and σ2 are the eigenvalues of the Schouten tensor. Using
Lemma 1.4 they decompose the metric g in a neighborhood of a point p ∈ O
into a warped product g = dt2 + u2(t)gN , and they further show that f = f(t),
see the following.

Theorem 1.5. ( [HPW12], Theorem 7.1). Suppose m > 1 and (M, g, f) is a
(λ, n+m)-Einstein metric with harmonic Weyl tensor and W (∇f, ., .,∇f) = 0
in an open set containing p ∈ O. Then

g = dt2 + u2(t)gN

f = f(t)

in a neighborhood of p, where gN is an Einstein metric. Moreover if the metric
is locally conformally flat around p, then N is a space of constant sectional
curvature.

Then the authors globally characterize (λ, n + m)-Einstein metrics in the
Riemannian case as their main result:

Theorem 1.6. ( [HPW12], Theorem 7.2). Let m > 1 and suppose that (M, g) is
a complete, simply connected Riemannian manifold and has harmonic Weyl ten-
sor and W (∇f, ., .,∇f) = 0, then (M, g, f) is a non-trivial (λ, n+m)-Einstein
metric if and only if it is of the form

g = dt2 + u2(t)gN

f = f(t)
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where gN is an Einstein metric. Moreover, if λ ≥ 0 then (N, gN ) has non-
negative Ricci curvature, and if it is Ricci flat, then u is a constant, i.e, (M, g)
is a Riemannian product.

There is a little observation in connecting Theorem 1.5 with Theorem 1.6
which is missing in [HPW12]. In fact, Theorem 1.5 is a classification around
points p ∈ O, while making a global characterization it may happen that in a
neighborhood of a regular point there are some points at which the Schouten
tensor has only one eigenvalue, cf. Lemma 1.4. We go through this observation
in the proof of Theorem 1.8.

1.2 Statement of results in the Riemannian case

We start our main works in this thesis by presenting the following statement
which is essential to characterize (λ, n+m)-Einstein manifolds.

Proposition 1.7. Let λ ∈ R, m ≥ 1, n > 1 integers and gN a pseudo-
Riemannian Einstein metric say with normalized scalar curvature ϱN = k ∈ R,
i.e. RicN = k(n − 2)gN , on an (n − 1)-dimensional manifold N and g =
ϵdt2 + u2(t)gN a warped product metric on M = I ×N with an interval I ⊂ R.
In addition suppose f = f(t) is a smooth non-negative function on I. Then
(M = I × N, g, f) satisfies Equation (1) of a (λ, n + m)-Einstein manifold if
and only if the following conditions hold

1. On int(M)

f ′m
u′

u
+ {ϵλ− ϵ(n− 2)k − (n− 2)u′2 − uu′′

u2
}f = 0 (4)

λ2u4 − 2(n− 2)kλu2 + (m+ 2(n− 2))λu2u′2 + (2 +m)λu3u′′

+(n− 2)2k2 − (2(n− 2) +m)(n− 2)ku′2 − (2 +m)(n− 2)kuu′′ (5)

+(n− 2)(m+ n− 2)u′4 + (2(n− 2) +m)uu′2u′′ + (1 +m)u2u′′2

−mu2u′u′′′ = 0

2. On ∂M

f ′′(t) = u′(t) = 0. (6)

Using Proposition 1.7 we then provide a characterization around regular
points of f on a Riemannian manifold:

Theorem 1.8. Let m > 1, λ ∈ R and (M, g) be a Riemannian manifold with
a smooth function f defined onM . Then the following conditions are equivalent:

1) (M, g, f) satisfies Equation (1) of a non-trivial (λ, n+m)-Einstein metric
with harmonic Weyl tensor and W (∇f, ., .,∇f) = 0 in a neighborhood of p ∈M
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with ∇f |p ̸= 0.

2) (a) Case p ∈ int(M): There exist local coordinates (t, t1, ..., tn−1) with
t ∈ (−ε, ε) in a neighborhood of p ∈ M and an Einstein Riemannian hyper-
surface (N, gN = gN (t1, ..., tn−1)) of (M, g) with normalized scalar curvature
ϱN = k and a function u = u(t) > 0, in addition f = f(t) > 0 satisfying (4)
and (5) in Proposition 1.7 such that

I) g(∂t, ∂t) = 1
II) g(∂t, ∂ti) = 0, for i = 1, ..., n− 1
III) g(∂ti , ∂tj ) = u2(t)gN (∂ti , ∂tj )(t1, ..., tn−1) i, j = 1, ..., n− 1.

(b) Case p ∈ ∂M : There exist local coordinates (t, t1, ..., tn−1) with t ∈ [0, ε)
in a neighborhood of p and an Einstein Riemannian hypersurface (N, gN =
gN (t1, ..., tn−1)) of (M, g) with normalized scalar curvature ϱN = k and a func-
tion u = u(t) > 0, in addition f(t) > 0 for all t ∈ (0, ε) satisfying (4) & (5) as
well as f(0) = 0 satisfying (6) at t = 0 such that the conditions I, II, III in
(a) hold.

Any case of 2) implies that g = dt2 + u2(t)gN around p. If the metric is lo-
cally conformally flat in a neighborhood of p then N must be a space of constant
curvature.

For a global characterization in the Riemannian case, in addition to Propo-
sition 1.7 and Theorem 1.8, we need a characterization around critical points
of f as well. To this end, we first show that critical points of f in a Rie-
mannian (λ, n + m)-Einstein manifold with harmonic Weyl tensor satisfying
W (∇f, ., .,∇f) = 0 are isolated:

Lemma 1.9. Let m > 1, λ ∈ R and (M, g) be a connected Riemannian man-
ifold with a smooth function f defined on M . Assume that (M, g, f) satisfies
Equation (1) of a non-trivial (λ, n + m)-Einstein metric with harmonic Weyl
tensor satisfying W (∇f, ., .,∇f) = 0 in a neighborhood of p ∈M with ∇f |p = 0.
Then there exists a neighborhood U of p such that

(i) p is the only critical point of f in U .

(ii) The level hypersurfaces of f in U coincide with the geodesic distance
spheres around p.

Then we characterize locally conformally flat Riemannian (λ, n+m)-Einstein
manifolds around critical points of f as follows.

Theorem 1.10. Let m > 1, λ ∈ R and (M, g) be a Riemannian manifold with
a smooth function f defined onM . Then the following conditions are equivalent:
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1) (M, g, f) is conformally flat and satisfies Equation (1) of a non-trivial
(λ,n+m)-Einstein metric in a neighborhood of p ∈M with ∇f |p = 0.

2) There exist polar coordinates (t, t1, ..., tn−1) ∈ I × Sn−1(1), I ⊆ R being
an open interval, in a neighborhood of p and an odd function u = u(t), i.e.
u(0) = u(even)(0) = 0, with u(t) > 0 on t ∈ I − {0} and 0 ̸= (u′)2(0) = k, such
that in these coordinates f = f(t) and

g = dt2 +
u2(t)

k
gSn−1(1) (7)

where gSn−1(1) denotes the line element of the standard unit sphere Sn−1(1); In
addition, the conditions (4) and (5) in Proposition 1.7 hold.

More details on the prerequisites for the restatement of the global statement
1.6 are listed right after Theorem 6.11. For example, under the same assump-
tions on the Weyl tensor W as in Theorem 1.8 part 1) the number of critical
points of f is at most two and the warping function must be odd on the critical
points of f . We restate Theorem 1.6 as follows

(
[( means either [ or (, similarly

does )]
)
.

Theorem 1.11. Let m > 1, λ ∈ R and (M, g) be a connected Riemannian
manifold with a smooth function f on M . Then the following conditions are
equivalent:

1) (M, g, f) is a non-trivial (λ, n+m)-Einstein metric with harmonic Weyl
tensor and W (∇f, ., .,∇f) = 0.

2) If C denotes the set of critical points of f then N ′ := |C| ≤ 2, and
(M \ C, g) is isometric with a warped product metric

g = dt2 + u2(t)gN (8)

f = f(t) (9)

on I × N where (N, gN ) is a complete Einstein Riemannian hypersurface of
(M, g) with normalized scalar curvature k = ϱN and I = [(α0, β0)] ⊂ R which is
unlimited in both sides, i.e. I = (−∞,∞) if there is niether a critical point for
f nor a boundary point of M . Otherwise, it is closed in the left i.e. I = [α0, β0)]
with α0 ∈ R if there exists a point q0 ∈ ∂M with f(q0) = f(α0) = 0 (or similarly
I = [(α0, β0] with β0 ∈ R for a boundary point q0 with f(q0) = f(β0) = 0). Or,
I = (α0, β0)] has finite α0 with open left side (or I = [(α0, β0) has finite β0 with
open right side) only if it corresponds to a minimum (or maximum) point q0 of
f with f(q0) = f(α0) (or f(q0) = f(β0)). In addition, in the latter case where
γ0 = α0 (or γ0 = β0) is finite and corresponds to a critical point q0, u = u(t)
is odd at γ0, i.e. u

(even)(γ0) = 0, with u′(γ0) ̸= 0. In all cases f((α0, β0)) > 0,
and, f(α0) = 0 if {α0} ×N ∈ ∂M (or f(β0) = 0 if {β0} ×N ∈ ∂M).
The product I × N becomes complete if we add the set C of critical points to
it. In addition, f = f(t) and u = u(t) satisfy the equations (4), (5) and (6) in
Proposition 1.7.
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1.3 Statement of results in the pseudo-Riemannian case

Now we turn attention to our results in the pseudo-Riemannian setting. Behav-
ior of f and g in the indefinite setting is much more complicated than the definite
case. Using Proposition 1.7 we generalize Theorem 1.8 from the Riemannian to
the pseudo-Riemannian setting by means of the assumption |∇f | ≠ 0:

Theorem 1.12. Let m > 1, λ ∈ R and (M, g) be a pseudo-Riemannian mani-
fold and f a smooth function on M . Then the following conditions are equiva-
lent:

1) (M, g, f) satisfies Equation (1) of a non-trivial (λ, n+m)-Einstein metric
with harmonic Weyl tensor and W (∇f, ., .,∇f) = 0 in a neighborhood of p with
g(∇f,∇f)|p ̸= 0.

2) (a) Case p ∈ int(M): There exist local coordinates (t, t1, ..., tn−1) with
t ∈ (−ε, ε) in a neighborhood of p ∈ M and an Einstein Riemannian hyper-
surface (N, gN = gN (t1, ..., tn−1)) of (M, g) with normalized scalar curvature
ϱN = k and a function u = u(t) > 0, in addition f = f(t) > 0 satisfying (4)
and (5) in Proposition 1.7 such that

I) g(∂t, ∂t) = ϵ, ϵ := sign g(∇f(p),∇f(p)) ∈ {±1}
II) g(∂t, ∂ti) = 0, for i = 1, ..., n− 1
III) g(∂ti , ∂tj ) = u2(t)gN (∂ti , ∂tj )(t1, ..., tn−1) i, j = 1, ..., n− 1.

(b) Case p ∈ ∂M : There exist local coordinates (t, t1, ..., tn−1) with t ∈ [0, ε)
in a neighborhood of p and an Einstein Riemannian hypersurface (N, gN =
gN (t1, ..., tn−1)) of (M, g) with normalized scalar curvature ϱN = k and a func-
tion u = u(t) > 0, in addition f(t) > 0 for all t ∈ (0, ε) satisfying (4) & (5) as
well as f(0) = 0 satisfying (6) at t = 0 such that the conditions I, II, III in
(a) hold.

Any case of 2) implies that g = ϵdt2 + u2(t)gN around p. If the metric is
locally conformally flat in a neighborhood of p then N is necessarily a space of
constant curvature.

Considering a function f with isolated critical points as an additional as-
sumption, we classify (λ, n + m)-Einstein manifolds (M, g, f) with harmonic
Weyl tensor and W (∇f, ., .,∇f) = 0 around critical points of f in the pseudo-
Riemannian setting:

Proposition 1.13. Let m > 1, λ ∈ R and (M, g) be a pseudo-Riemannian
manifold with a smooth non-constant f on M whose critical points are isolated.
In addition suppose that (M, g, f) satisfies Equation (1) of a (λ,n+m)-Einstein
metric with harmonic Weyl tensor and W (∇f, ., .,∇f) = 0 in a neighborhood of
p ∈ M with ∇f |p = 0. Then there are functions u± ∈ F such that the metric
in geodesic polar coordinates (t, x) ∈ Au ⊂ R×

∑
in a neighborhood U of p has
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the form

g(t, x) = gu(t, x) = ϵdt2 +
uϵ(t)

2

u′ϵ(0)
2
g1(x); ϵ = g(x, x) ∈ {±1} (10)

where u(t, x) = uϵ(t), ϵ = g(x, x). If all geodesics through p are defined on the
whole real line R, then the metric g is of the form (10) for all (t, x) ∈ Au, i.e.
as long as uϵ does not vanish. Also, the conditions 1.) and 2.) of Proposition
1.7 are satisfied.

To generalize our global result in the Riemannian case, namely Theorem
1.11, to the pseudo-Riemannian setting we have some obstacles. One of them is
that the set of critical points of f may be in natural bijection with either the set
J = {1, ...,m} or J = N or J = Z, cf. [KR97a, Theorem 4.3]. In addition we have
points at which ∇f is null. Hence we may not expect a global characterization
with such a nice behavior as in the Riemannian setting. Therefore we confine
ourselves to considering the Brinkmann case where a pseudo-Riemannian non-
trivial (λ, n + m)-Einstein manifold (M, g, f) is Einstein, and in addition ∇f
is a non-vanishing and isotropic (i.e. null) vector field on an open subset of
M . Then in particular the metric tensor can be converted in to the form g =
2dt1dt2 + g∗(t1) where ∇f = ∂t2 = ∇t1 and where the (n − 2)-dimensional
metric g∗(t1) does not depend on t2.

Our main results in this thesis are Theorem 1.8, Lemma 1.9, Theorem
1.10, Theorem 1.11 in the Riemannian case, and Theorem 1.12 in the pseudo-
Riemannian setting.

1.4 Thesis organization at a glance

The different sections of this thesis are organized in the following way. In the
first section we shortly remind some definitions through which we fix some
notations. Section 2 gives a short investigation on conformally Einstein product
spaces. In particular we recall two examples from [KR16] where the conformal
factor depends only on one side of the product.

The third section of this thesis is devoted to (λ, n +m)-Einstein manifolds
and the idea behind this notion. We also investigate the relation between the
Weyl tensors of a local one dimensional basis warped product metric and its fibre
(Lemma 4.27). Based on [KR16, Proposition 4.17] we present characterizations
for a (λ, n+m)-Einstein structure when g is given as a warped product with one
dimensional basis and Einstein fibre (Corollary 4.33, Corollary 4.34 and Propo-
sition 4.35). Proposition 4.35 is the main result of this section and serves as an
essential component to our characterizations of (λ, n +m)-Einstein manifolds.
Then the case where the manifold itself is also Einstein is discussed (Corollary
4.42). We finish this section with some examples where the last one (Example
4.49) shows that the critical points of f in a (λ, n + m)-Einstein manifold in
general are not isolated.

Section 4 contains step by step calculations from [HPW12] discussing the
cases of∇f being an eigenvector for the Schouten tensor, |∇f | being constant on
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the connected components of the level sets of f , and the case that the Schouten
tensor has at most two eigenvalues from which the first one corresponds to
eigenvector ∇f (see Lemma 5.11, Remark 5.12 and Lemma 5.14 respectively).
We also show that g = ϵdt2 + u2(t)gN , ϵ ∈ {±1}, where gN is Einstein has
harmonic Weyl tensor and satisfies W (∇f, ., .,∇f) = 0 (Lemma 5.9).

Section 5 contains the main results of this thesis in the Riemannian case. In
subsection 5.2 we extend Theorem 7.1 in [HPW12] to a characterization around
regular points of f (Theorem 6.5). In subsection 5.3 we show that critical points
of f in a triple (M, g, f) satisfying Equation (1) of a non-trivial (λ, n + m)-
Einstein metric with harmonic Weyl tensor and W (∇f, ., .,∇f) = 0 are isolated
(Lemma 6.8). Then we characterize a triple (M, g, f) which is conformally flat
and satisfies Equation (1) of a non-trivial (λ, n +m)-Einstein metric around a
critical point of f (Theorem 6.10). In subsection 5.4 we explain the unnecessary
and missing properties in the formulation of the global result [HPW12, Theorem
7.2] and restate it (Theorem 6.12). We finish this section by a short discussion
on (λ, n+m)-Einstein metrics of constant scalar curvature.

Section 6 contains the main result of this thesis in the pseudo-Riemannian
setting. In subsection 6.1 we generalize Theorem 6.5 to the pseudo-Riemannian
setting for the neighborhoods of points satisfying |∇f | ̸= 0 (Theorem 7.2). We
then discuss a specific case for dimension 4 related to Theorem 7.2 in subsection
6.2 (Corollary 7.7). In subsection 6.3, assuming f ∈ C∞(M) is a function with
isolated critical points we classify a pseudo-Riemannian (M, g) where the triple
(M, g, f) satisfies Equation (1) of (λ, n+m)-Einstein manifolds with harmonic
Weyl tensor and W (∇f, ., .,∇f) = 0 around critical points of f (Theorem 7.9).
Subsection 6.5 describes a big difference of the behavior of f between the Rie-
mannian and the indefinite cases. We close with the Brinkmann case where the
metric can be written in the form of g = 2dt1dt2 + g∗(t1) where the (n − 2)-
dimensional metric g∗(t1) does not depend on t2 (Proposition 7.11).
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2 Preliminaries and Notations

Let V be a finite-dimensional real vector space. A bilinear form on V is an
R-bilinear function b : V × V → R. It is symmetric if b(v, w) = b(w, v) for all
v, w ∈ V . A symmetric bilinear form is nondegenerate if and only if its matrix
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relative to one (hence every) basis is invertible.
A pseudo-Riemannian metric g on a smooth n dimensional manifold M is

a symmetric nondegenerate (0, 2) smooth tensor field on M which everywhere
has constant index (j, n− j), 0 ≤ j ≤ n. A pseudo-Riemannian manifold (M, g)
is a smooth n dimensional manifold M possibly with boundary together with a
pseudo-Riemannian metric. We assume all manifolds are connected.

Definition 2.1. A pseudo-Riemannian manifold (M, g) which has no boundary
point is said to be geodesically complete provided every maximal geodesic γ:
I → M is defined on the whole R, i.e. I = R. Moreover a pseudo-Riemannian
manifold with non-empty boundary is said to be geodesically complete provided
every maximal geodesic γ : I → M maps each end point of I to a boundary
point of ∂M when it is finite, i.e. every maximal geodesic γ : I → M satisfies
in one of the following conditions:
1). γ : [a,∞) →M then γ(a) ∈ ∂M
2). γ : (−∞, b] →M then γ(b) ∈ ∂M
3). γ : [a, b] →M then γ(a), γ(b) ∈ ∂M
4). γ : (−∞,∞) →M then γ(−∞,∞) ∩ ∂M = ∅

Definition 2.2. A connection ∇ on a smooth pseudo-Riemannian manifold M
is a function ∇ : X(M)× X(M) → X(M) satisfying

(1) ∇VW is C∞(M)-linear in V ,
(2) ∇VW is R-linear in W ,
(3) ∇V (fW ) = (V f)W + f∇VW for f ∈ C∞(M).

∇VW is called the covariant derivative of W with respect to V .

The following properties determine a unique connection ∇ on a pseudo-
Riemannian manifold (M, g): If for any X,V,W ∈ X(M)

(4) [V,W ] = ∇VW −∇WV , (Torsion free)
(5) Xg(V,W ) = g(∇XV,W ) + g(V,∇XW ), (Metric compatibility)

then ∇ is called the Levi-Civita connection of M which is derived out of the
Koszul formula

2g(∇VW,X) =V g(W,X) +Wg(X,V )−Xg(V,W )

− g(V, [W,X]) + g(W, [X,V ]) + g(X, [V,W ]).

Definition 2.3. Let ∇ be the Levi-Civita connection on a pseudo-Riemannian
manifold (M, g). The tensor field R : X(M)3 → X(M) given by

R(X,Y )Z = [∇X ,∇Y ]Z −∇[X,Y ]Z

is called the curvature of M .

11



For a smooth function f the gradient vector field ∇f (or grad f) is defined
to be metrically equivalent to df ∈ X∗(M). More precisely

g(∇f,X) = df(X) = Xf for any X ∈ X(M),

in which the coordinate expression of df =
∑

( ∂f∂xi )dx
i takes the form

∇f =
∑
i,j

gij
∂f

∂xi
∂j .

Next we recall the definition of divergence for a vector field and more generally
for a tensor of arbitrary type (k, l): If V is a vector field, then in an orthonormal
frame field (Ei)

n
1 with ϵi = g(Ei, Ei)

divV :=
∑

εig(∇EiV,Ei)

in which a coordinate system takes the form

div V =
∑
i

{∂V
i

∂xi
+

∑
j

Γ iijV
j}.

Definition 2.4. By the Levi-Civita connection on a pseudo-Riemannian man-
ifold, the divergence of a (k, l) tensor field A is a (k − 1, l) tensor field defined
by

(divA)(X1, ..., Xk−1, θ1, ..., θl) :=

n∑
j=1

ϵj(∇EjA)(Ei, X1, ..., Xk−1, θ1, ..., θl)

where (Ei)
n
1 is an orthonormal basis with ϵi = g(Ei, Ei). The Hessian tensor

of a smooth function f is a symmetric (0, 2)-tensor field defined by Hessf =
∇(∇f), in more details

Hessf(X,Y ) = XY f − (∇XY )f = g(∇X∇f, Y ).

The Laplacian ∆f of a function f ∈ C∞(M) is defined to be the divergence of
its gradient, i.e. ∆f = div(∇f), in which coordinates takes the form

∆f =
∑
ij

gij{ ∂2f

∂xi∂xj
−

∑
k

Γ kij
∂f

∂xk
}.

Let R denotes the curvature tensor of a pseudo-Riemannian manifold (M, g).
Then we define the Ricci curvature tensor Ric of (M, g) to be the contraction
of R with respect to the first and fourth components, i.e.

Ric(X,Y ) =
∑
i

εig(R(EiX)Y,Ei)

for an orthonormal frame field (Ei)
n
1 with εi = g(Ei, Ei). It is a symmetric

tensor of type-(0, 2) and in coordinate expression becomes Rij := Ric(∂i, ∂j) =

12



∑
Rkijk. By symmetries the only nonzero contractions of R are ±Ric. More-

over, if the Ricci tensor of a manifold vanishes identically it is called Ricci flat.
Obviously a flat manifold is Ricci flat, but the converse does not hold in general.

The scalar curvature Scal of a manifold (M, g) is the contraction of the Ricci
tensor, hence in coordinate systems

Scal =
∑

gijRij =
∑

gijRkijk.

A pseudo-Riemannian manifold (M, g) is Einstein if its Ricci tensor is propor-
tional to the metric, i.e.

Ric = γg.

Then we necessarily have γ = Scal
n which is constant for n ≥ 3. A Ricci flat

manifold is a special case of Einstein manifolds for which the Einstein function
γ is zero. For more convenience, we consider the normalized scalar curvature
ϱ = Scal

n(n−1) which is relevant to the normalized Einstein constant by

γ

(n− 1)
:=

Scal

n(n− 1)
= ϱ,

hence we have ϱ = 1 on the unit sphere of dimension n. In particular, when
n = 2 we have ϱ = γ = Scal

2 = K which is the Gaussian curvature. A conformal

mapping between two pseudo-Riemannian manifolds (M, g), (M̃, g̃) is a smooth
map f : (M, g) → (M̃, g̃) such that f∗g̃ = φ−2g where φ :M → R+ is a smooth
function. More explicitly

g̃f(x)(dfx(X), dfx(Y )) = φ−2(x)gx(X,Y ); X,Y ∈ TxM.

When φ is constant it is called a homothety, in addition, if φ = 1 it is called
an isometry and if φ = −1 an anti-isometry. An isometry is the special type
of mapping that expresses the notion of isomorphism for pseudo-Riemannian
manifolds.

3 Conformally Einstein product spaces in the
pseudo-Riemannian setting

Our work has a close connection with the search for Einstein metrics which are
conformally equivalent to a product metric. These metrics in the Riemannian
and pseudo-Riemannian setting are investigated by Kühnel and Rademacher
in [KR16]. In particular we are interested in [KR16, Theorem 3.2.(1)] which re-
sults in an Einstein warped product metric by which Corollary 4.31 is equivalent
to existence of a (λ, n+m)-Einstein manifold, where the basis is a boundaryless
pseudo-Riemannian manifold. Moreover, if the resulted Einstein warped prod-
uct is complete and Riemannian, by Proposition 4.2 it is equivalent to existence
of a (λ, n+m)-Einstein manifold (M, g, f) possibly with boundary under some
condition on f .
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Investigation of conformal changes between two Einstein manifolds started
with Brinkmann [Bri25]. More results on Einstein spaces which are confor-
mally equivalent with a Riemannian product can be found in the references
[Cor00], [MO08], [HPW12] and [Tas85]. The products of Riemannian manifolds
of arbitrary dimensions is also stated in [Cle08], but the 4-dimensional case of a
product of two surfaces having non-constant sectional curvature is not discussed
in [Cle08].

In [KR16] the authors start with Lemma 2.1 for the change of the Ricci
tensor under a conformal change of a metric by which conformal mappings
between two Einstein spaces are classified. By this basic lemma they classify
conformally Einstein pseudo-Riemannian metrics through [KR16, Corollary 2.2].
If in additon g is Einstein then [KR16, Corollary 2.4] gives a simpler classification
for conformally Einstein metrics. If the conformal factor depends only on one
factor of the pseudo-Riemannian product then the conformal change of the
metric results in a warped product metric; as a case where the conformal factor
depends on a real parameter:

Proposition 3.1. ( [KR16], Proposition 3.1.). Suppose f is a non-constant
function that depends only on the real parameter t. Then the metric ḡ =
f−2(ϵdt2 + gN ) is Einstein if and only if (N, gN ) is an Einstein manifold of
dimension n and f satisfies the differential equation ϱNf

2 − ϵ(f ′)2 = ϱ̄, where
ϱ̄ is the normalized scalar curvature of ḡ.

See the reference for a detailed proof including a list of solutions of f for
different initial values in the Riemannian case ϵ = 1.

Corollary 3.2. Applying Proposition 3.1 above for a smooth positive function
f together with Corollary 4.31 we see that (R, f−2ϵdt2, f−1) is a (λ, 1 + m)-
Einstein manifold with m := n if and only if (N, gN ) is an Einstein manifold of
dimension n and f satisfies ϱNf

2 − ϵ(f ′)2 = λ
n(normalized λ).

As a case where the conformal factor of a pseudo-Riemannian product R×N
depends only on the (n− 1) dimensional factor N see [KR16, Proposition 4.1].

In case that the conformal factor depends on both factors of the pseudo-
Riemannian product there is a complete classification of the solutions by [KR16,
Theorem 3.2] which also covers the missed 4-dimenisional case in [Cle08]. As a
specific case of [KR16, Theorem 3.2] where one factor of a pseudo-Riemannian
product is a subset of R see [KR16, Corollary 3.9].

There are some classifications for warped products which are also Einstein.
For a thorough classification for complete Riemannian Einstein warped products
on R2×F see [Bes08, Theorem 9.119]. Manifolds (M, g) admitting a nonconstant
solution ψ of ∇2ψ = ∆ψ

n g, in the Riemannian case by [Küh88] and in the
pseudo-Riemannian setting by [KR97b] and [KR09], are classified into Einstein
warped products. As classifications of the base manifold of Einstein warped
products with additional assumptions on the Weyl tensor of the base manifold,
in the Riemannian case we have theorems 6.5, 6.10 and 6.12 and in the pseudo-
Riemannian setting Theorem 7.2 and Proposition 7.9 in this thesis.
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4 Investigation of (λ, n+m)-Einstein metrics and
their characterization for a local warped met-
ric

Most statements throughout this section are in the pseudo-Riemannian set-
ting. For every statement we have cleared whether the setting is Riemannian or
pseudo-Riemannian. From now on when we talk about completeness, in general
we mean geodesically completeness unless we specifically mention some other
sense of completeness. In particular we are interested in a direct relation be-
tween completeness of a warped product metric and its basis and fibre. We will
see this works very well in the Riemannian case but breaks down when the metric
is indefinite, cf. the famous example by Beem and Buseman [O’N10, Example
7.41].

From now on we consider manifolds possibly with boundary unless we men-
tion the opposite. The following is the main definition in this thesis which is
adapted to the pseudo-Riemannian setting from the Riemannian one.

Definition 4.1. (The pseudo-Riemannian version adopted from [HPW12]). A
(λ,n+m)-Einstein manifold (M, g, f) is a geodesically complete pseudo-Riemannian
manifold (Mn, g) which may have boundary together with a smooth function f
(here smooth means of class C2) on M satisfying

Hessf =
f

m
(Ric− λg) (11)

f > 0 on int(M)

f = 0 on ∂M.

If m = 1 we additionally assume that ∆f = −λf . In [CSW11] (after a change
of variable e−

u
m = f) the Riemannian metrics satisfying (11) are called m-quasi

Einstein metrics. A trivial case of (λ, n+m)-Eintstein manifolds happens when f
is constant. Consequently from Equation (11) one obtains Ric = λg. Moreover
as f is constant it can not be identically zero, hence ∂M = ∅. In [HPW12] this
case is called a λ-Einstein manifold.

Reminder: For the case m = 1 see [Cor00]. In this thesis and in particular
in the main results, i.e. theorems 6.5, 6.10, 6.12, 7.2 and 7.9 we focus on m > 1.
For a Riemannian manifold M without boundary compare [KK03].

Our initial purpose to study Equation (11) is due to [KK03, Proposition
5] which implies that for an integer m, a boudaryless Riemannian (λ, n +m)-
Einstein structure is the base of a complete Einstein Riemannian warped prod-
uct of dimension n+m having complete Einstein fibre of dimension m.

Proposition 4.2. (Restating of [HPW12, Proposition 1.1]). Suppose m > 1
is an integer and (M, g) is an n dimensional complete Riemannian manifold
possibly with boundary. Then (M, g, f) is a (λ, n+m)-Einstein manifold if and
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only if either of the following occurs

(a) CASE ∂M = ∅: There is a smooth n+m dimensional complete Einstein
Riemannian warped product metric

gE = g + f2gF on E =M × Fm

with RicE = λgE for a complete Einstein Riemannian manifold (Fm, gF ) of
dimension m satisfying RicF = µgF where µ satisfies (17).

(b) CASE ∂M ̸= ∅: The boundary ∂M is totally geodesic and there is a
smooth n +m dimensional Einstein Riemannian warped product metric gE =
gM + f2gSm(1)

on E = (M × Sm(1))/ ∼ (where (x, p) ∼ (x, p′) for x ∈ ∂M)

with RicE = λgE and

{
f > 0 ; on int(M)

f = 0 ; on ∂M
, where gSm(1) is the line element

of the standard unit sphere Sm(1) and where µ = m − 1 satisfies (17), i.e.
RicSm(1) = (m− 1)gSm(1).

In the following we present a step by step proof for Proposition 4.2. Let’s
begin the first step by the following result which holds in the pseudo-Riemannian
setting:

Proposition 4.3. ( [O’N10], Corollary 7.43). Let E = M ×f F be a warped
product with m = dimF > 1, where X,Y ∈ TM and Z, V ∈ TF . Then the
Ricci tensor of E satisfies:

RicE(X,Y ) = Ric(X,Y )− m

f
Hessf(X,Y ), (12)

RicE(X,Z) = 0 (13)

RicE(Z, V ) = RicF (Z, V )− gE(Z, V )f#, f# =
∆f

f
+
m− 1

f2
gE(∇f,∇f) (14)

where RicE, Ric and RicF denote the Ricci tensor of (E, gE), (M, g) and (F, gF )
respectively, and ∆f=trace(Hess f) denotes the Laplacian of f on M .

This gives in turn the following characterization of: When is a warped prod-
uct E =M ×f F Einstein?

Corollary 4.4. A pseudo-Riemannian warped product E =M ×f F , with m =
dimF > 1, is Einstein with RicE = λgE if and only if the following conditions
hold

Hessf =
f

m
(Ric− λg), (15)

(F, gF ) is Einstein with RicF = µgF , (16)

µ = f∆f + (m− 1)|∇f |2+λf2. (17)
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As the second step, we note the following lemma and proposition by Kim-
Kim. We consider the pseudo-Riemannian versions of them (we note that the
Riemannian curvature tensor in [KK03] has the opposite sign).

Lemma 4.5. (The pseudo-Riemannian version of [KK03, Lemma 4]). Suppose
f is a smooth function on a pseudo-Riemannian manifold M . Then for an
arbitrary vector field X we have

div(Hessf)(X) = Ric(∇f,X) + d(∆f)(X). (18)

Proof. The same proof to the reference works for the pseudo-Riemannian case
as well.

Proposition 4.6. (The pseudo-Riemannian version of [KK03, Proposition 5]).
Suppose (M, g) is an n(≥ 2) dimensional pseudo-Riemannian manifold. Let f be
a non-constant smooth function onM satisfying (11) for a constant λ ∈ R and a
natural number m ∈ N. Then f satisfies Equation (17) for some constant µ ∈ R.
Therefore for an Einstein space (F, gF ) of dimension m satisfying RicF = µgF ,
we obtain an Einstein warped product space E =M×fF satisfying RicE = λgE.

Proof. We first consider Equatoin (11) through which tracing gives us

∆f =
f

m
(Scal − λn) (19)

and for its divergence

mdiv(Hessf)(X) = div(fRic)(X)− λdiv(fg)(X) ⇒
= Ric(∇f,X) + fdivRic(X)− λdf(X)

using Equation (18) as well as the second Bianchi identity we get

m(Ric(∇f,X) + d(∆f)(X)) = Ric(∇f,X) +
f

2
dScal(X)− λdf(X) ⇒

(m− 1)Ric(∇f,X) +md(∆f)(X) =
f

2
dScal(X)− λdf(X). (20)

On the other hand from Equation (11) we havemHessf(X,∇f) = fRic(X,∇f)−
λfg(X,∇f) which together with Hessf(X,∇f) = 1

2d(|∇|2)(X) gives us

fRic(∇f,X) =
m

2
d(|∇f |2)(X) + λfdf(X), (21)

and by the differential of Equation (19) we get

fdScal = λndf +md(∆f)− dfScal. (22)

Now we multiply both sides of Equation (20) by f and then substitute the
equations (21) and (22) for the appropriate terms and obtain

(m− 1).
m

2
d(|∇f |2)(X) + (m− 1)λfdf(X) +mfd(∆f)(X)

=
f

2
(λndf +md(∆f)− dfScal)− λfdf(X)

=
λn

2
fdf(X) +

m

2
fd(∆f)(X)− df(X)

2
fScal − λfdf(X). (23)
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By Equation (19) we also get fScal = λnf +m∆f which in combination with
(23) gives us

(m− 1).
m

2
d(|∇f |2)(X) + (m− 1)λfdf(X) +mfd(∆f)(X)

=
λn

2
fdf(X) +

m

2
fd(∆f)(X)− df(X)

2
λnf − df(X)

2
m∆f − λfdf(X).

By simplification this becomes

(m− 1).
m

2
d(|∇f |2) + (m− 1)λfdf +mfd(∆f) =

m

2
fd(∆f)− df

2
m∆f − λfdf

giving

d(f∆f + (m− 1)|∇f |2 + λf2) = 0.

Hence for a pseudo-Riemannian Einstein space (F, gF ) of dimensionm satisfying
RicF = µgF , by Corollary 4.4 we obtain a pseudo-Riemannian Einstein warped
product space E =M ×f F with RicE = λgE .

Remark 4.7. Kim Kim in [KK03, Proposition 5] assume compact Riemannian
manifolds. But they did not use compactness in their proof. Hence, for an
Einstein manifold (Fm, gF ) whose Einstein constant µ satisfies (17) and is not
necessarily compact, one obtains an Einstein warped product E = M ×f F
through their proof. Accordingly we implemented this point in Proposition 4.6.

Lemma 4.8. ( [O’N10], Lemma 7.40.). Suppose (M, g) and (F, gF ) are com-
plete Riemannian manifolds. Then for every warping function f the warped
product E =M ×f F is complete.

Now suppose (M, g, f) is a (λ, n +m)-Einstein metric for m > 1. Through
Proposition 4.6 together with Corollary 4.4 we then have an n+m dimensional
Einstein Riemannian warped product metric gE = g + f2gFm for an Einstein
Riemannian manifold (Fm, gF ) of dimension m where RicF = µgF and where
µ satisfies (17).

In CASE ∂M = ∅: gE is smooth on the topological product M × F , fur-
thermore, by Lemma 4.8 gE would be complete for a complete gF . Conversely,
if gE = g + f2gFm is a smooth complete Einstein Riemannian metric with
RicE = λgE then (M, g) would be complete, hence using Corollary 4.4 (M, g, f)
is a Riemannian (λ, n+m)-Einstein manifold.

Now in order to proceed our discussion into the case with boundary, we recall
the following statements describing some behaviors of |∇f | and µ with respect
to ∂M .

Proposition 4.9. ( [HPW12], Proposition 2.2.). On the boundary ∂M of a
Riemannian (λ, n+m)-Einstein manifold (M, g, f) we always have |∇f | ≠ 0.

Proof. For the proof see the reference.
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This in turn gives us the following result.

Proposition 4.10. ( [HPW12], Proposition 2.3.). The boundary ∂M of a
Riemannian (λ, n+m)-Einstein metric (M, g, f) is totally geodesic, and further,
|∇f | is constant on the connected components of ∂M .

Proof. Consider Equation (11) of a (λ, n+m)-Einstein manifold,

Hessf =
f

m
(Ric− λg)

from which it follows that Hess f |∂M = 0 due to ∂M = f−1(0). By Proposition
4.9 |∇f | ≠ 0 hence the second fundamental form, cf. [Pet16, Proposition 3.2.1],

Π(X,Y ) =
1

|∇f |
Hessf(X,Y ) for all X,Y ∈ T∂M (24)

vanishes on ∂M saying it is totally geodesic. Furthermore |∇f | is locally con-
stant along ∂M because

DX |∇f |2 = 2Hessf(X,∇f) = 2
f

m
(Ric(X,∇f)− λg(X,∇f)) = 0, X ∈ TM

Corollary 4.11. ( [HPW12], Corollary 2.1.). Let m > 1 and (M, g, f) be a
Riemannian (λ, n+m)-Einstein metric. Then |∇f |2 has the same value on all
connected components of ∂M . Moreover, if ∂M ̸= ∅ then we have µ > 0.

Proof. On the boundary ∂M , Equation (17) takes the simple form

µ = (m− 1)|∇f |2. (25)

Since µ is constant the first part is proved. If ∂M ̸= ∅ then using Proposition
4.9 on ∂M and noting m > 1 it follows that µ > 0.

In CASE ∂M ̸= ∅: by Proposition 4.10 the boundary ∂M would be totally
geodesic. We consider gE on

E = (M × F )/ ∼

where (x, p) ∼ (x, p′) if x ∈ ∂M , implying that ∂M collapses to an element in E
with the quotient topology. Hence f−1(0) is isolated in this topology. Near ∂M
the topology of the space is ∂M × Fm. Since f vanishes on ∂M we investigate
the conditions under which we may smoothly extend gE onto the boundary.
Since |∇f | ≠ 0 on ∂M we may write

gE =
df2

|∇f |2
+ gf + f2gF (26)
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near ∂M × F . Also, due to |∇f |∂M ̸= 0 we may choose a coordinate system
(t1, ..., tn−1) on the hypersurface f−1(0) = ∂M , furthermore, there is a smooth
function t from a neighborhood of ∂M to R with dt = df

|∇f | . Following that t

is a smooth distance function, i.e. |∇t| = 1, the trajectories of ∇f
|∇f | are normal

geodesics to ∂M and to level sets of f close to it, compare proof of Theorem 6.5.
Therefore we may extend (t1, ..., tn−1) on ∂M to geodesic parallel coordinates
(t1, ..., tn−1, t) in a neighborhood of a point q ∈ f−1(0). This implies that the
different t-levels are parallel to each other. In addition, since 0 is not a critical
value of f (see Proposition 4.9) and since M is a manifold with boundary we
have a local coordinate system (t1, ..., tn−1, f) around any q ∈ f−1(0). These
are also parallel to each other. It follows that t-levels coincide with the f -levels,
hence f can be regarded as a function of t: f(t,m) = f(t), m ∈ ∂M , as well
as ∇f(t,m) = f ′(t)∂t. Therefore in these coordinates around each q ∈ ∂M we
obtain

gE =
df2

|∇f |2
+ f2gF + gf

= dt2 + f2(t)gF + g∂M (t1, ..., tn−1), t ∈ [0, a). (27)

For (F, gFm) we may write F = F (s1, ..., sm). As f(t) vanishes at t0 = t(q) = 0,
similar to the proof of Theorem 6.10, we let X,Y be two orthonormal vectors in
[0, a)×F which are tangent to F . By Equation (36) we then relate the sectional
curvatures Sec resp. SecF of the (X,Y )-plane in ([0, a)× F ) resp. (F, gF )

Sec = g(R(X,Y )Y,X)

= g(RF (X,Y )Y,X)− (f ′(t0))
2

(f(t0))2

=
1

(f2(t0))2
(SecF − (f ′(t0))

2).

We note that gF is independent of t when it tends to zero. Following f(t0) = 0
we obtain

0 = lim
t→0

(SecF − (f ′(t))2) = SecF − (f ′(0))2.

It implies that (F, gF ) is a space of constant curvature SecF = (f ′(0))2. Since
µ > 0, cf. Corollary 4.11, it follows that SecF > 0 and furthermore Fm = Sm(1)
and gF = 1

(f ′(0))2S
m(1). Moreover (27) takes the form

gE = dt2 +
f2(t)

(f ′(t0))2
gSm(1) + g∂M (t1, ..., tn), (f ′(t0))

2 = ϱSm(1) = 1 (28)

Since f(0)′ ̸= 0 (by Proposition 4.9) and f(0)′′ = 0 (which is true by Equa-
tion (11) where f vanishes on the boundary ∂M and where ∇2f(∂t, ∂t) =
f ′′(t)g(∂t, ∂t)), through the same discussion as in [Pet16, 1.4.4] we see that
Equation (28) extends smoothly onto f−1(0) = ∂M (we note that smoothness
here means of class C2).
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Up to now we have the necessary conditions in Proposition 4.2 in CASE
∂M ̸= ∅. For the inverse, if ∂M is totally geodesic then using Equation (24)
and |∇f | ≠ 0 on ∂M we obtain

Hessf(X,Y ) = |∇f |.Π(X,Y ) = 0, for all X,Y ∈ T∂M. (29)

Also by assumption f vanishes on ∂M , i.e. f |∂M = 0. Hence Equation (11) of
the (λ, n+m)-Einstein structure holds on the boundary ∂M .

Additionally, since gE = g+f2gSm(1) extends smoothly on ∂M , by Corollary
4.4 it follows that Equation (11) holds on int(M) as well. Therefore (M, g, f)
becomes a (λ, n + m)-Einstein manifold. Now the proof of Proposition 4.2 is
complete.

Unfortunately, it is not in general clear how one can generalize Proposition
4.2 to the pseudo-Riemannian manifolds with boundary. In fact, the main key
to obtain Proposition 4.2 is Proposition 4.9 by which |∇f | ≠ 0 on ∂M in the
Riemannian setting. The rest of discussion in Proposition 4.2 is also based on
this property.

Any way we can partially extend Proposition 4.2 in case ∂M = ∅ to pseudo-
Riemannian manifolds without boundary. Although for indefinite metrics we
have no similar result to Lemma 4.8, cf. the famous example by Beem and
Busemann [Pet16, Example 7.41], but we can take into consideration the fol-
lowing definition which is based on [CS08, Lemma 3.36] and relevant to the case
where the boundary set is empty.

Definition 4.12. ( [CS08], Definition 3.38.). A triple (M, gM , f) with a pos-
itive f ∈ C∞(M) is said to be (resp. timelike, lightlike or spacelike) warped
complete if for any complete fibre (F, gF ) the warped product M ×f F is (resp.
timelike, lightlike or spacelike) complete.

Then using Proposition 4.6, Corollary 4.4 and Defintion 4.12 we may obtain
the following result corresponding to the pseudo-Riemannian setting which is
weaker than Proposition 4.2.

Proposition 4.13. Let m > 1 be an integer, λ ∈ R and (Mn, g) be a complete
pseudo-Riemannian manifold without boundary. Then (M, g, f) is a warped
complete (λ, n + m)-Einstein manifold if and only if there is a smooth n + m
dimensional complete Einstein pseudo-Riemannian warped product metric gE
on E =M × Fm of the form

gE = g + f2gFm

for a complete Einstein pseudo-Riemannian manifold (Fm, gF ) with RicF =
µgF where µ satisfies (17).

We note that in Proposition 4.13 the assumption m > 1 is due to Corollary
4.4.
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Remark 4.14. The main idea that we define (λ, n+m)-Einstein manifolds to
be complete, is the nice behavior of boundaryless Riemannian manifolds with
respect to Proposition 4.2.CASE ∂M = ∅. This means that the completeness
issue between the corresponding warped product gE and its fibre gF works well
for boundaryless Riemannian manifolds, cf. Lemma 4.8. More explicitly, The
Einstein Riemannian metric gE = g+f2gF on E =M×Fm corresponding to a
(λ, n+m)-Einstein manifold (M, g, f) without boundary, would be complete for
any complete Einstein Riemannian manifold (Fm, gF ) of dimensionm satisfying
RicF = µgF where µ satisfies (17).

Now as more results in the pseudo-Riemannian setting we have the following
which is weaker than Proposition 4.9 as ∇f may be a null vector field on ∂M .

Proposition 4.15. On the boundary ∂M of a pseudo-Riemannian (λ, n+m)-
Einstein manifold (M, g, f) we have ∇f ̸= 0.

Proof. Let x0 ∈ ∂M and let γ(t) be a spacelike or timelike (or null) geodesic
starting from x0 such that γ′(0) points inward the manifold, i.e. into int(M).
Also let h(t) = f(γ(t)) and Θ(t) = Ric(γ′(t), γ′(t))−λg(γ′(t), γ′(t)). Hence the
equation for f becomes a linear second-order ordinary differential equation for
h along γ(t) and we further have

h′′(t) = Hessf(γ′(t), γ(t))

=
1

m
Θ(t)h(t)

h(0) = 0,

h′(0) = g(∇f, γ′)x0
.

Hence if ∇f(x0) = 0, then h′(0) = 0. Therefore h = 0 along all of γ by the
initial conditions. On the other hand, as γ′(0) points inward the manifold it
follows that γ(t) ∈ int(M) for 0 < t < ϵ, and hence h(t) > 0 when 0 < t < ϵ.
This is in contradiction with the fact that h|γ = 0.

The statements 4.10 and 4.11 are not completely true in the pseudo-Riemannian
setting, because |∇f | = 0 may occur. But we can formulate some parts of them
as following:

Corollary 4.16. Let (M, g, f) be a pseudo-Riemannian (λ, n + m)-Einstein
metric. Then |∇f | is constant on the connected components of ∂M . If m > 1
then |∇f |2 has the same value on the connected components of ∂M , in addition,
if ∂M ̸= ∅ and |∇f | ≠ 0 then µ > 0 (or µ < 0) and ∂M is totally geodesic.

The proof is a combination of similar proofs to those of Proposition 4.10 and
Corollary 4.11.

Remark 4.17. When m = 1 the additional condition ∆f = −λf is equivalent
to µ = 0. This is necessary for the existence of F because in one dimensional
manifolds we must have Ric ≡ 0. Moreover, combining this additional condition
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with the trace of Equation (11) we obtain Scal = (n− 1)λ. In addition, if g is
a pseudo-Riemannian Einstein manifold then via derivative of the equation in
Corollary 4.24 we get

(n− 1)λ = Scal = −ϵ(n− 1)n
u′′

u
. (30)

Theorem 4.18. ( [HPW12], Theorem 4.1.). Suppose (M, g, f) is a non-trivial
Riemannian (λ, n + m)-Einstein manifold. Then M is compact if and only if
λ > 0.

Corollary 4.19. ( [HPW12], Corollary 4.2.). Suppose (M, g, f) is a Rieman-
nian (λ, n+m)-Einstein metric with m > 1, λ ≥ 0 and µ ≤ 0, then it is trivial
and satisfies λ = µ = 0.

Definition 4.20. . If n > 2 the Weyl tensor W on a pseudo-Riemannian
manifold with arbitrary signature 0 ≤ j ≤ n is defined as

R =W +
2

n− 2
Ric⊙ g − Scal

(n− 1)(n− 2)
g ⊙ g (31)

in which the Kulkarni-Nomizu product s ⊙ r of two symmetric (0, 2) tensors s
and r is a (0, 4)-tensor defined by

(s⊙ r)(X,Y, Z, V ) =
1

2
(r(X,V )s(Y,Z) + r(Y,Z)s(X,V )

− r(X,Z)s(Y, V )− r(Y, V )s(X,Z)).

Definition 4.21. A pseudo-Riemannian manifold is conformally flat if each
point has a neighborhood that can be mapped conformally to a flat space.

Lemma 4.22. [Sán95]. Consider a pseudo-Riemannian warped product over
M = I ×N , I ⊂ R, of the form

g = ϵdt2 + u2(t)gN , ϵ := sign g(
∂

∂t
,
∂

∂t
) ∈ {±1} (32)

where u > 0 is a smooth function on I. If (M, g) is geodesically complete then
(N, gN ) is also geodesically complete.

In the sequel, an investigation of some geometric properties of warped prod-
uct metrics of type (32) is presented.

Lemma 4.23. ( [KR97a], Lemma 2.5). Let ∇N , RN , RicN , ϱN denote the
Levi–Civita covariant derivative, the Riemannian curvature tensor, the Ricci
tensor and the normalized scalar curvature of (N, gN ). Also let ∂t denotes the
unit tangent vector in direction of the first side of the product I×N and X,Y, Z
denote the lifts of vector fields on N . “I” is an open interval in R. Then for
the warped product metric

(I, ϵdt2)×u (N, gN ) =
(
(I ×N) , (g = ϵdt2 + u2(t)gN )

)
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we have the following formulae:

1).

∇∂t∂t = 0 (33)

∇∂tX = ∇X∂t =
u′

u
X (34)

∇XY = −g(X,Y )

u
ϵu′∂t +∇NXY (35)

2).

R(X,Y )Z = RN (X,Y )Z − ϵ
u′2

u2
{g(Y, Z)X − g(X,Z)Y } (36)

R(X,Y )∂t = 0 (37)

R(X, ∂t)∂t = −u
′′

u
X (38)

3).

Ric(Y, Z) = RicN (Y,Z)− ϵ

u2
{(n− 2)u′2 + u′′u}g(Y,Z) (39)

Ric(Y, ∂t) = 0 (40)

Ric(∂t, ∂t) = −(n− 1)
u′′

u
(41)

4).

u2ϱ =
n− 2

n
ϱN − n− 2

n
u′2ϵ− 2

n
ϵu′′u (42)

These relations follow from the corresponding formulae for warped products,
compare [O’N10, chapter 7] in which the Riemannian curvature tensor has the
opposite sign. Following from

∇u = ϵu′∂t, ∇2
∂t,∂tu = g(∇∂t∇u, ∂t) = u′′

the formulae above in the Riemannian and the pseudo-Riemannian cases co-
incide , if for ϵ = −1 we let the warped product g̃ = −dt2 + u2(t)g̃N satisfies
g̃N = −gN which is anti-isometric to g (hence ϱ̃ = −ϱ, ϱ̃N = −ϱN ,...). Also
similar to the Riemannian case we obtain:

Corollary 4.24. ( [KR97a], Corollary 2.6). g = (I, ϵdt2)×u (N, gN ) is an Ein-
stein metric (has constant sectional curvature) if and only if gN is an Einstein
metric (has constant sectional curvature) and u′2 + ϱϵu2 = ϵϱN .

Remark 4.25. In Lemma 4.23 above if the hypersurface (Nn−1, gN ) is con-
sidered to be a pseudo-Riemannian manifold then all the formulae in particular
those including the Ricci tensor Ric and the normalized scalar curvature ϱ are
still valid. Here Ric(X,Y ) =

∑
m εmg(R(EmX)Y,Em) for an orthonormal ba-

sis (Ei)
n
1 with ϵi = g(Ei, Ei).

24



In the Riemannian case, Lemma 4.23 parts 2), 3), 4) are also stated in
[Küh88, Lemma 13]. We just recall the last part of the Riemannian result:

Lemma 4.26. ( [Küh88], Lemma 13). Consider the Riemannian warped prod-
uct ds2 = dt2 + u2(t)gN . Then

(iv) g is Einstein (has constant sectional curvature) ⇔ gN (43)

is Einstein (has constant sectional curvature) and ϱ = −u
′′

u
.

Equation ϱ = −u′′

u in (43) corresponds to Equation u′2+ϱϵu2 = ϵϱN in Corollary
4.24 via a derivative step.

Via the following result we see how the Weyl tensors of g and gN are related
to each other in the pseudo-Riemannian setting.

Lemma 4.27. Consider the pseudo-Riemannian warped product g = ϵdt2 +
u2(t)gN , ϵ ∈ {±1}, then we have the following equations for vector fields X,Y, Z, V
orthogonal to ∂t:

(i) W (X,Y, Z, V )

= u2WN (X,Y, Z, V ) +
2

(n− 2)(n− 3)
u2RicN ⊙ gN − 2

(n− 3)
ϱNu

2gN ⊙ gN

(ii) W (X, ∂t, ∂t, Y ) = ϵϱNgN (X,Y )− ϵ

(n− 2)
RicN (X,Y )

(iii) W (X,Y, ∂t, Z) = 0.

If gN is Einstein then Equation (ii) vanishes for vector fields X,Y ⊥ ∂t, and
also, the last two terms on the right-hand side of Equation (i) vanish, hence
W becomes conformal to the Weyl tensor WN of gN i.e. W (X,Y, Z, V ) =
u2WN (X,Y, Z, V ).

Proof. (i): From the definition of Weyl tensor, see (31), one obtains

W (X,Y, Z, V )

= R(X,Y, Z, V )− 2

n− 2
Ric⊙ g(X,Y, Z, V ) +

Scal

(n− 1)(n− 2)
g ⊙ g(X,Y, Z, V )

which in combination with the equations (36) and (39) gives us

W (X,Y, Z, V ) = g(RN (X,Y )Z, V )− ϵ(
u′

u
)2g ⊙ g(X,Y, Z, V )

− 2

(n− 2)
{RicN ⊙ g(X,Y, Z, V )− ϵ(n− 2)(

u′

u
)2g ⊙ g(X,Y, Z, V )

− ϵ(
u′′

u
)g ⊙ g(X,Y, Z, V )}+ n

n− 2
ϱg ⊙ g(X,Y, Z, V ).
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Using (31) for the hypersurface N and g(X,Y ) = u2gN (X,Y ) for X,Y ∈ TN
we obtain

W (X,Y, Z, V ) = u2WN (X,Y, Z, V ) +
2

(n− 2)(n− 3)
u2RicN ⊙ gN (X,Y, Z, V )

− 2

(n− 3)
ϱNu

2gN ⊙ gN (X,Y, Z, V )

(ii): By (31) we have

W (X, ∂t, ∂t, Y ) = R(X, ∂t, ∂t, Y )− 2

(n− 2)
Ric⊙ g(X, ∂t, ∂t, Y )

+
Scal

(n− 1)(n− 2)
g ⊙ g(X, ∂t, ∂t, Y ).

Using Equation (38) for R(X, ∂t, ∂t, Y ) and Equation (39) for Ric(X,Y ), where
X,Y ⊥ ∂t, together with

ϱN
u2 g(X,Y ) = ϱNgN (X,Y ) we obtain

W (X, ∂t, ∂t, Y ) = ϵϱNgN (X,Y )− ϵ

(n− 2)
RicN (X,Y )

(iii): Using (31) we have

W (X,Y, ∂t, Z) = R(X,Y, ∂t, Z)−
2

(n− 2)
Ric⊙ g(X,Y,

∂

∂t
, Z)

+
Scal

(n− 1)(n− 2)
g ⊙ g(X,Y, ∂t, Z)

which by (37), i.e. R(X,Y, ∂t, Z) = 0, becomes

W (X,Y, ∂t, Z) = 0− 1

(n− 2)
{Ric(X,Z)g(Y, ∂t) +Ric(Y, ∂t)g(X,Z)−Ric(X, ∂t)

g(Y,Z)−Ric(Y,Z)g(X, ∂t)}+
Scal

(n− 1)(n− 2)
{g(X,Z)g(Y, ∂t)− g(X, ∂t)g(Y,Z)}.

Furthermore using (40) we conclude

W (X,Y, ∂t, Z) = 0.

Remark 4.28. Since the dimension of a hypersurface N of an n dimensional
pseudo-Riemannian manifold M is n− 1, by definition

RN =WN +
2

n− 3
RicN ⊙ gN − Scal

(n− 2)(n− 3)
gN ⊙ gN

the Weyl tensor WN of (N, gN ) is not defined when n = 3, hence one should pay
attention the restriction of dim M = n ≥ 4 when connecting the Weyl tensors
W and WN .
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Lemma 4.29. ( [Che17], Theorem 3.6). Let Mn = I ×u N be a pseudo-
Riemannian warped product g = ϵdt2 + u2(t)gN , ϵ ∈ {±1}. Then (M, g) is
locally conformally flat if and only if (N, gN ) is a space of constant curvature.

Proof. For a complete proof see the reference. But, as an application of Lemma
4.27 we give a proof for manifolds of dimension Mn≥4 (here we note Remark
4.28):
We know from the literature that a manifold (Mn, g), n ⩾ 4 is locally confor-
mally flat if and only if its Weyl tensor vanishes. Then Lemma 4.27.(ii) implies
that (N, gN ) is Einstein, respectively Equation (i) in Lemma 4.27 turns into

W (X,Y, Z, V ) = u2WN (X,Y, Z, V ).

Since the Weyl tensor W vanishes it follows that WN (X,Y, Z, V ) = 0 implying
gN is also locally conformally flat. On the other hand, from the literature we
also know that a manifold is both Einstein and locally conformally flat if and
only if it has constant curvature, cf. [Pet16, page.110]. Therefore (N, gN ) has
constant sectional curvature.

Conversely if (N, gN ) has constant curvature, then it is both Einstein and
locally conformally flat. To see that g is locally conformally flat it suffices to
prove the Weyl tensor W vanishes for all vector fields.

For that purpose, since gN is Einstein the tensor W vanishes for vector
fields in the style of case (ii). Since gN is locally conformally flat it follows
that WN (X,Y, Z, V ) = 0; X,Y, Z, V ∈ TN (if n = 3, then W ≡ 0) from which
together with the fact that gN is Einstein one obtains W (X,Y, Z, V ) = 0, i.e.
case (i) holds as well. Thus the Weyl tensor identically vanishes, respectively g
is locally conformally flat.

4.1 Local characterization of (λ, n+m)-Einstein structure
for a local warped product metric

One dimensional Riemannian (λ, 1 + m)-Einstein manifolds are classified in
[HPW12, Example 3.1]. We consider dim(M) = n > 1 unless the opposite
is stated. In the following we investigate (λ, n+m)-Einstein manifolds provided
with a metric of the form g = ϵdt2+u2(t)gN , ϵ ∈ {±1} where gN is Einstein. We
begin with the case m = 1 which is already solved. We present then Proposition
4.35 for the general case m ≥ 1.

Proposition 4.30. ( [KR16, Corollary 4.3], [Cor00, Proposition 2.7]). Let
(M, g) be a pseudo-Riemannian manifold on which a function f is defined. Then
the metric ḡ = ±f2ds2 + g on R×M is Einstein if and only if the equation

f.Ric−∇2f + (∆f)g = 0 (44)

holds.

Proposition 4.13 can be extended to the case m = 1 via Proposition 4.30.
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Corollary 4.31. Let m ≥ 1 be an integer, (Mn, g) be a complete pseudo-
Riemannian manifold without boundary, and f be a smooth non-negative func-
tion on M . Then (M, g, f) is a warped complete (λ, n+m)-Einstein manifold if
and only if there is an n+m dimensional complete Einstein pseudo-Riemannian
warped product metric gE on E =M × Fm of the form

gE = g + f2gFm

for a complete Einstein pseudo-Riemannian manifold (Fm, gF ) with RicF =
µgF where µ satisfies (17).

Proof. For m > 1 we refer to the proof of Proposition 4.13. If m = 1 by the
additional assumption corresponding to m = 1, i.e. ∆f = −λf , Equation (11)
of a (λ, n+ 1)-Einstein manifold (M, g, f)

∇2f =
f

1
(Ric− λg)

changes into the form
fRic−∇2f +∆f.g = 0

by which Proposition 4.30 is equivalent to say that gE = g + f2gF 1 is Einstein.
For the completeness issue we refer to Definition 4.12.

As another application of Proposition 4.30 we note the following statement
which is actually adapted to pseudo-Riemannian manifolds of arbitrary signa-
tures.

Proposition 4.32. ( [KR16], Proposition 4.7). Suppose gN is a pseudo-Riemannian
Einstein metric with RicN = k(n− 2)gN , k ∈ R on a manifold N of dimension
n−1. Let g = ϵdt2+u2(t)gN , ϵ ∈ {±1} be a warped product metric onM = I×N
with an interval I ⊆ R. Also let f = f(t) be a smooth function on I. Then
Equation (44) holds if and only if f(t) = au′(t) for some constant a ̸= 0 and

u2u′′′ + (n− 3)uu′u′′ − (n− 2)u′3 + ϵk(n− 2)u′ = 0. (45)

Therefore for a positive solution u of Equation (45) the warped product

ḡ = ±u′2(t)ds2 + ϵdt2 + u2(t)gN

is an Einstein metric on I × I × N . The interval I is chosen such that u and
u′ are positive on it. We may consider ḡ as a warped product g ± u′2(t)ds2

with a basis of dimension n and a fibre of dimension 1 or as a warped product
(±u′2(t)ds2 + ϵdt2) + u2(t)gN with a basis of dimension 2 in the (s, t)-plane.

Proof. Let (Ei) be a pseudo-orthonormal frame, i.e. g(Ei, Ej) = ϵiδij with
ϵi ∈ {±1}, and let E1 = ∂t. Using equations (33) resp. (34) one obtains

∇2f(∂t, ∂t) = ϵf ′′g(∂t, ∂t) = f ′′
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∇2f(Ej , Ej) = ϵ
f ′u′

u
g(Ej , Ej) = ϵϵj

f ′u′

u
, j ∈ {2, ...n}.

Hence,

∆f = trace(∇2f) =

n∑
i=1

ϵig(∇Ei
∇f,Ei) = ϵf ′′ + ϵ(n− 1)

f ′u′

u

which gives us the following equations

−∇2f(∂t, ∂t) + ∆f.g(∂t, ∂t) = (n− 1)
f ′u′

u

−∇2f(Ej , Ej) + ∆f.g(Ej , Ej) = ϵϵjf
′′ + ϵϵj(n− 2)

f ′u′

u
.

Now using Equation (41) one gets

fRic(∂t, ∂t)−∇2f(∂t, ∂t) + ∆f.g(∂t, ∂t) (46)

=
n− 1

u
(f ′u′ − fu′′)

and via (39) one has

fRic(Ej , Ej)−∇2f(Ej , Ej) + ∆f.g(Ej , Ej) (47)

=
f

u2

(
k(n−2)− ϵ{(n− 2)u′2 + uu′′}

)
ϵj + ϵϵjf

′′ + ϵϵj(n− 2)
f ′u′

u
.

By Equation (44) the right hand sides of (46) and (47) vanish. From Equation
(46) it follows that f ′u′ = fu′′ giving f = au′ for some constant a. Without loss
of generality we may assume a = 1. Similarly from Equation (47) we conclude
Equation (45).

Conversely if f(t) = au′(t) as well as Equation (45) hold then (46) and (47)
equal zero. This implies that Equation (44) holds.

As a (λ, n + 1)-Einstein manifold may have boundary, based on Proposi-
tion 4.32 we present the following local characterizations in either case of the
boundary status under the hypotheses that g is a warped product with one
dimensional basis and f is a one-variable function.

Corollary 4.33. Let λ ∈ R, m ≥ 1, n > 1 integers and gN a pseudo-
Riemannian Einstein metric say with normalized scalar curvature ϱN = k ∈ R,
i.e. RicN = k(n − 2)gN , on an (n − 1)-dimensional manifold N and g =
ϵdt2 + u2(t)gN a warped product metric on M = I ×N with an interval I ⊂ R.
In addition suppose ∂M = ∅ and f = f(t) is a smooth non-negative function on
I. Then (M, g, f) satisfies Equation (11) of a (λ, n + 1)-Einstein manifold on
M = I ×N if and only if f(t) = au′(t) for some constant a ̸= 0 and

u2u′′′ + (n− 3)uu′u′′ − (n− 2)u′3 + ϵk(n− 2)u′ = 0 (48)

where I is an interval on which u and au′ are positive.
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Proof. Since m = 1 by the assumption ∆f = −λf Equation (11) of a (λ, n+1)-
Einstein manifold (M, g, f) i.e.

∇2f =
f

1
(Ric− λg) (49)

turns into

fRic−∇2f +∆fg = 0 (50)

which is Equation (44). Also by assumption, g = ϵdt2 + u2(t)gN on M and f =
f(t) on I. By Proposition 4.32 Equation (50) holds if and only if f(t) = au′(t)
for some constant a ̸= 0 and u2u′′′+(n−3)uu′u′′−(n−2)u′3+ϵk(n−2)u′ = 0.

The following characterization is in accordance with the situation where a
pseudo-Riemannian manifold has boundary.

Corollary 4.34. Let λ ∈ R, m ≥ 1, n > 1 integers and gN a pseudo-
Riemannian Einstein metric say with normalized scalar curvature ϱN = k ∈ R,
i.e. RicN = k(n − 2)gN , on an (n − 1)-dimensional manifold N and g =
ϵdt2 + u2(t)gN a warped product metric on M = I ×N with an interval I ⊂ R.
In addition suppose f = f(t) is a smooth non-negative function on I. Then
(M, g, f) satisfies Equation (11) of a (λ, n+1)-Einstein manifold on M = I×N
if and only if

1. On int(M)

f(t) = au′(t), a ̸= 0 (51)

u2u′′′ + (n− 3)uu′u′′ − (n− 2)u′3 + ϵk(n− 2)u′ = 0 (52)

2. On ∂M

f ′′(t) = u′(t) = 0. (53)

Proof. Through a similar argument as in the proof of Corollary 4.33 we see that
Equation (11) of a (λ, n+ 1)-Einstein manifold (for which m = 1)

∇2f =
f

1
(Ric− λg), (54)

holds on I × N if and only if f(t) = au′(t) for some constant a ̸= 0 and
u2u′′′ + (n − 3)uu′u′′ − (n − 2)u′3 + ϵk(n − 2)u′ = 0. On ∂M the condition
f(t) = au′(t) reduces to u′(t) = 0 as f(t) vanishes on ∂M . Consequently,
u2u′′′ + (n − 3)uu′u′′ − (n − 2)u′3 + ϵk(n − 2)u′ = 0 simplifies to f ′′(t) = 0
because f(t) = au′(t) ⇒ f ′′(t) = au′′′(t).

Now we generalize corollaries 4.33 and 4.34 to pseudo-Riemannian (λ, n+m)-
Einstein manifolds with m ≥ 1.
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Proposition 4.35. Let λ ∈ R, m ≥ 1, n > 1 integers and gN a pseudo-
Riemannian Einstein metric say with normalized scalar curvature ϱN = k ∈ R,
i.e. RicN = k(n − 2)gN , on an (n − 1)-dimensional manifold N and g =
ϵdt2 + u2(t)gN a warped product metric on M = I ×N with an interval I ⊂ R.
In addition suppose f = f(t) is a smooth non-negative function on I. Then
(M = I × N, g, f) satisfies Equation (11) of a (λ, n +m)-Einstein manifold if
and only if the following conditions hold

1. On int(M)

f ′m
u′

u
+ {ϵλ− ϵ(n− 2)k − (n− 2)u′2 − uu′′

u2
}f = 0 (55)

λ2u4 − 2(n− 2)kλu2 + (m+ 2(n− 2))λu2u′2 + (2 +m)λu3u′′

+(n− 2)2k2 − (2(n− 2) +m)(n− 2)ku′2 − (2 +m)(n− 2)kuu′′ (56)

+(n− 2)(m+ n− 2)u′4 + (2(n− 2) +m)uu′2u′′ + (1 +m)u2u′′2

−mu2u′u′′′ = 0

2. On ∂M

f ′′(t) = u′(t) = 0. (57)

Proof. As (M, g) may have boundary, first we consider g = ϵdt2 + u2(t)gN
on int(M = I × N) on which f > 0. Using the relations ∇X∂t = u′

u X and
∇∂t∂t = 0 one obtains

∇2f(∂t, ∂t) = ϵf ′′g(∂t, ∂t) = f ′′ (58)

∇2f(X,X) = ϵ
f ′u′

u
g(X,X). (59)

Also, from Lemma 4.23 we have the following equations where k signifies the
normalized scalar curvature of gN

Ric(∂t, ∂t) = −ϵ(n− 1)
u′′

u
g(∂t, ∂t) = −(n− 1)

u′′

u
(60)

and

Ric(X,X) = RicN (X,X)− ϵ

u2
[(n− 2)u′2 + uu′′]g(X,X)

= k(n− 2)gN (X,X)− ϵ

u2
[(n− 2)u′2 + uu′′]g(X,X) (61)

whereX denotes any unit tangent vector orthogonal to ∂t. Let (M, g, f) satisfies
Equation (11) of a (λ, n + m)-Einstein manifold on int(M). Tangent vectors
to M can be divided into the category of those tangent in the direction of the
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first factor of I × N , i.e. scalar multiplications of ∂t, and into the category of
tangent vectors to N . Tensorial Equation (11) on vectors of the first category,

∇2f(∂t, ∂t) =
f

m
(Ric(∂t, ∂t)− λg(∂t, ∂t)), (62)

via (58) & (60) becomes

f ′′ + (
(n− 1)

m

u′′

u
+ ϵ

λ

m
)f = 0, (63)

the so-called first necessary condition. Now let’s pay attention to evaluation on
the second category of vector fields

∇2f(X,Y ) =
f

m
(Ric(X,Y )− λg(X,Y )) X,Y ⊥ ∂

∂t
, (64)

which by (59) & (61) forms the so-called second necessary condition,

f ′m
u′

u
+ {ϵλ− ϵ(n− 2)k − (n− 2)u′2 − uu′′

u2
}f = 0. (65)

Note that (55) is actually the second necessary condition (65). Furthermore,
through the functions

a(t) =
(n− 1)

m

u′′

u
+ ϵ

λ

m

b(t) = m
u′

u

c(t) = ϵλ− ϵ(n− 2)k − (n− 2)u′2 − uu′′)

u2

we can denote the necessary conditions (63) and (65) respectively by

f ′′ = −af (66)

f ′ = −c
b
f. (67)

We still need to show that the second claim (56) is satisfied: We differentiate
(67) and then compare it to (66) which gives us

f ′′ = −af = (−c
b
f)′ = −(

c

b
)′f − (

c

b
)f ′. (68)

By further application of (67) we obtain

−af = −(
c

b
)′f + (

c

b
)2f (69)

which reduces to

−a = −(
c

b
)′ + (

c

b
)2. (70)
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We rewrite (70) in terms of u(t), u′(t) and u′′(t) as

−
( (n− 1)

m

u′′

u
+ ϵ

λ

m

)
= −

(
{ϵλ− ϵ(n− 2)k − (n− 2)u′2 − uu′′

u2
} u

mu′

)′

+
(
ϵλ− ϵ(n− 2)k − (n− 2)u′2 − uu′′

u2

)2 u2

m2u′2
(71)

which after simplification gives us (56).

On int(M) for the converse, suppose that we have f = f(t) and g =
ϵdt2 + u2(t)gN where gN is Einstein with normalized scalar curvature ϱN = k.
Additionally, assume Equation (55) for some λ ∈ R holds. This says that the
so-called second necessary condition (65) holds.

It remains to show that tensorial Equation (11) is also satisfied with vectors
tangent on the first factor of I ×N to prove the triple (M, g, f) satisfies Equa-
tion (11) of (λ, n+m)-Einstein manifolds. To this end, we utilize Equation (56)
which is the simplification of (71). On the other hand by the labels a(t), b(t)
and c(t) Equation (71) can be written in the form of (70) which after multipli-
cation by f gives out (69) (note that f > 0 on int(M)). From Equation (69)
together with Equation (67), which is actually (55) using the labels a(t), b(t)
and c(t), we see that Equation (68) holds. On the other hand, the derivative of
(68) comparing with (67) gives out Equation (66) which is equivalent to the so-
called first necessary condition (63). So, for all vector fields tangent to int(M)
the tensorial Equation (11) of a (λ, n+m)-Einstein manifold holds.

Secondly let’s investigate the characterization on ∂M : Since the Hessian
tensor ∇2f vanishes on the boundary ∂M , equations (58) and (59) imply

f ′′(t) = 0 (72)

and
f ′(t)u′(t) = 0 (73)

from which the latter together with Proposition 4.9 (which says f ′(t) ̸= 0 on
∂M) implies u′(t) = 0. Therefore on ∂M one obtains Equation (57).

Conversely, as f vanishes on ∂M the right-hand side of Equation (11) be-
comes zero. Thus the left-hand side of Equation (11) must also vanish on it. On
the other hand by Equation (57) the Hessian tensor ∇2f identically vanishes on
∂M , hence Equation (11) holds in this case as well.

Therefore in each case the tensorial Equation (11) of a (λ, n +m)-Einstein
manifold holds on M .

Remark 4.36. In Proposition 4.35 for a positive solution u(t) of (56) on

int(M), Equation (55) expresses f(t) in terms of u(t) by f(t) = e−
∫ t
0

c(s)
b(s)

dsf(0)
as far as u′ ̸= 0. On ∂M the functions f(t) and u(t) satisfy Equation (57).

Remark 4.37. The procedure through equations (66) to (70) in the proof of
Proposition 4.35 shows that if f satisfies (55), i.e. the so-called second necessary
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condition , then it also satisfies the so-called first necessary condition (63) of a
(λ, n +m)-Einstein manifold under condition (56) which is equivalent to (70)
and hence, the domain of solution of the differential equations system of the
(λ, n+m)-Einstein manifold consisting of (63) and (65) is not empty for f .

Remark 4.38. Classical solutions like u(t) = t, sin(t), et, cosh(t) give us one
dimensional basis warped product (λ, n + m)-Einstein metrics for appropriate
choices of f(t), k, λ and m. In particular u(t) = et with ϵλ = −n−m+1, k = 0
and f(t) = aet, a ∈ R+ provides us with an example where (M, g) is Einstein
with normalized scalar curvature kg = −ϵ (by Equation (42)). Here the manifold
(M, g) is without boundary as the function f is always positive. This example
is not interesting by Proposition 4.45 and [KR09, page 434].

Next we bring a classical example with non-empty boundary.

Example 4.39. Let g = ϵdt2 + u2(t)gN on M = [0,∞) × N where u(t) =
cosh(t) and where gN is a complete pseudo-Riemannian Einstein metric with
ϱN = k = −ϵ. Also let f(t) = sinh(t) and ϵλ = 1−n−m. The boundary would
be the slice {t0 = 0}×N . Then one can check that the conditions (55), (56) and
(57), e.g. f ′′(0) = u′(0) = 0, in Proposition 4.35 are satisfied for this example.
Therefore we obtain a non-trivial (λ, n+m)-Einstein manifold.

As Proposition 4.35 is formulated for a (λ, n+m)-Einstein structure in the
general case m ≥ 1 we expect that it be compatible with the preceding results
obtained by conformal change of the metric. More precise statement is the
following remark:

Remark 4.40. If m = 1, then the characterization in Proposition 4.35 is com-
patible with the corresponding previous results, i.e. with corollaries 4.33 and
4.34 which are based on Proposition 4.32.

Proof. We need to show that whenm = 1 the necessary and sufficient conditions
(55) & (56) in Proposition 4.35 match with the corresponding ones in corollaries
4.33 & 4.34. We begin with (55): Recall the additional assumption ∆f = −λf
when m = 1, changing Equation (11) of a (λ, n + 1)-Einstein manifold into
fRic−∇2f+∆fg = 0 through which taking the trace gives out Scal = (n−1)λ.
Thus, λ = Scal

n−1 = nϱ. Hence, through Equation (42) and ϱN = k we obtain

ϵλu2 = ϵnu2ϱ = ϵ(n− 2)ϱN − (n− 2)u′2 − 2uu′′

= ϵ(n− 2)k − (n− 2)u′2 − 2uu′′. (74)

Then, as in the proof of Proposition 4.2 we use the auxiliary functions b(t) and
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c(t):

b(t) =
u′

u
(75)

c(t) = ϵλ− ϵ(n− 2)k − (n− 2)u′2 − uu′′

u2

=
ϵλu2 − ϵ(n− 2)k + (n− 2)u′2 + uu′′

u2

= −u
′′

u
(76)

in which we used (74). We rewrite Equation (55) in the form f ′ = − c(t)
b(t)f by

which (75) and (76) becomes f ′ = u′′

u′ f with the solution f = au′ for a constant
a ̸= 0. This coincides with the first necessary condition in corollaries 4.33 and
4.34.

Now we consider the second condition (56) which is equivalent to (71). Di-
viding (74) by 2, and applying it in the left hand side of (71) gives us

−(n− 1)
u′′

u
− ϵλ = −(n− 1)

u′′

u
− 1

u2

(
ϵ(n− 2)k − (n− 2)u′2 − 2uu′′

)
(77)

in the right hand side of (71) gives out

−
(
{ϵλ− ϵ(n− 2)k − (n− 2)u′2 − uu′′

u2
} u

mu′

)′

+
(
ϵλ− ϵ(n− 2)k − (n− 2)u′2 − uu′′

u2

)2 u2

m2u′2
(78)

=
u′′′

u′
.

Now the equality (77)=(78), i.e.

−(n− 1)
u′′

u
− 1

u2

(
ϵ(n− 2)k − (n− 2)u′2 − 2uu′′

)
=
u′′′

u′
,

after simplification becomes

u2u′′′ + (n− 3)uu′u′′ − (n− 2)u′3 + ϵk(n− 2)u′ = 0

which coincides with (48) and (52) as the second necessary condition in corol-
laries 4.33 and 4.34.

Proposition 4.41. (The pseudo-Riemannian version of [CSW11, Proposition
3.4]). Suppose m ̸= 1. Then a (λ, n +m)-Einstein metric has constant scalar
curvature if and only if the following equation holds

Ric(∇f) = 1

m− 1
((n− 1)λ− Scal)∇f. (79)

Proof. The proof is the same as the reference.
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4.2 Local characterization of a (λ, n + m)-Einstein metric
which is also Einstein, for a local warped product
structure

In the following we see that when a (λ, n + m)-Einstein manifold is also
Einstein, under the same assumptions as in Proposition 4.35, the necessary and
sufficient conditions reduce to simple formulae.
Corollary 4.42. Let λ ∈ R, m ≥ 1, n > 1 integers and gN a pseudo-
Riemannian Einstein metric say with normalized scalar curvature ϱN = k,
i.e. RicN = k(n − 2)gN , k ∈ R on an (n − 1)-dimensional manifold N and
g = ϵdt2 + u2(t)gN a warped product metric on M = I × N with an interval
I ⊂ R. In addition suppose f = f(t) is a smooth non-negative function on
I. Then (M, g, f) satisfies Equation (11) of a (λ, n+m)-Einstein manifold on
I ×N if and only if the following conditions hold

1. On int(M)

f ′ = au(t), a ∈ R+ (80)

u′′

u
=
u′′′

u′
(81)

2. On ∂M

f ′′(t) = u′(t) = 0. (82)

Hence in Proposition 4.45.TABLE 2 each warping function u satisfies (81), also
for the entries with non-empty boundary the functions f and u must satisfy (82)
on ∂M .

Proof. Here, besides all the assumptions in Proposition 4.35 we additionally
assume that g is Einstein. Accordingly, we just need to justify the way Einstein
property of g affects equations (55) & (56): Let (Mn, g, f) satisfies Equation
(11) of a (λ, n+m)-Einstein manifold, i.e.

∇2f =
f

m
(Ric− λg),

taking trace then implies

∆f =
f

m
(Scal − λn). (83)

Furthermore using ∇X
∂
∂t , as in the proof of Proposition 4.32, we get

∆f = ϵf ′′ + ϵ(n− 1)f ′
u′

u
. (84)

Since g is Einstein, via a derivative step from the equation in Corollary 4.24 we
obtain

ϱ = −ϵu
′′

u
⇔

Scal = −ϵ(n− 1)n
u′′

u
(85)
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as well as via equations (39) & (41) it follows that

ϵu′2 − ϵuu′′ = k. (86)

By substitution of equations (84) and (85) in (83) we obtain

ϵλf = −(n− 1)f
u′′

u
− m

n
f ′′ − m(n− 1)

n
f ′
u′

u
. (87)

Replacing equations (86) and (87) in the first necessary condition (55),

f ′m
u′

u
+ {ϵλ− ϵ(n− 2)k − (n− 2)u′2 − uu′′

u2
}f = 0, (88)

gives us

f ′
u′

u
= f ′′ (89)

from which by an integration step it follows that

f ′ = au, a ∈ R. (90)

Now consider the so-called second necessary condition (56). For facility we
instead study Equation (71) with which it is equivalent: When m > 1 one may
use Equation (79) in Proposition 4.41 which in combination with (85) gives

λ = ϵ(1− n−m)
u′′

u
. (91)

We note that g has constant scalar curvature as it is Einstein. On the other
hand for the case m = 1 by Remark 4.17.(30) one has

λ = −ϵnu
′′

u
(92)

which is the extension of Equation (91) to m = 1. Hence using the formula (91)
for m > 1 and (92) for m = 1, the left side of Equation (71) becomes

−
( (n− 1)

m

u′′

u
+ ϵ

λ

m

)
=
u′′

u
. (93)

The right hand side of (71) using equations (86), (91) for m > 1 and (92) for
m = 1 becomes

−
(
{ϵλ− ϵ(n− 2)k − (n− 2)u′2 − uu′′

u2
} u

mu′

)′

+
(
ϵλ− ϵ(n− 2)k − (n− 2)u′2 − uu′′

u2

)2 u2

m2u′2

= (
u′′

u′
)′ +

u′′2

u′2
=
u′′′

u′
. (94)

By Equation (71) the right hand sides of equations (93) and (94) are equal. This
implies

u′′

u
=
u′′′

u′
(95)

which is (81).
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4.3 Some examples of (λ, n+m)-Einstein manifolds

We already have some classical examples via Remark 4.38 and Example 4.39.
We may recall [HPW12, Example 3.1] which classifies Riemannian non-trivial
(λ, 1 + m)-Einstein manifolds. Examples 4.45 and 4.48 give classifications of
non-trivial (λ, n +m)-Einstein manifolds which are in addition Einstein. The
last example itself contains two examples both showing that critical points of f
in a (λ, n+m)-Einstein manifold (M, g, f) in general are not isolated.

Example 4.43. ( [Bes08], Example 9.118(a)). Suppose f is the unique positive
function on [0,∞) satisfying the conditions

(f ′)2 = 1− f1−m , f(0) = 1 and f ′ ≥ 0. (96)

Then by [Bes08, Example 9.118(a)] the triple (R2, g, f) with

g = dt2 +
4(f ′(t))2

(m− 1)2
dθ2 (97)

f = f(t)

is a (0, 2+m)-Einstein metric where its corresponding Einstein warped product
(see Proposition 4.2) is complete and Ricci flat. To observe the conditions in
Proposition 4.35 are satisfied here, first we note that comparing (97) with the

corresponding metric in Proposition 4.35 one has u = 2f ′

m−1 and hence u′′ =
2f ′′′

m−1 . Moreover from (96) derivating f implies

f ′′ =
(m− 1)

2
f−m (98)

hence

f ′′′ = −m(m− 1)

2
f ′f−m−1 (99)

so one obtains

u′′

u
=
f ′′′

f ′
= −m(m− 1)

2
f−m−1. (100)

At this moment consider the first necessary condition (55) of Proposition 4.35,
i.e.

f ′m
u′

u
+ {ϵλ− ϵ(n− 2)k − (n− 2)u′2 − uu′′

u2
}f = 0,

which due to the assumptions n = 2 and λ = 0 reduces to

f ′m
u′

u
+
u′′

u
f = 0

and via u = f ′ it further changes into

m.u′ +
u′′

u
f = 0. (101)
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Through equations (98) and (100) one sees Equation (101) holds.
Next we need to verify the second condition (56) of Proposition 4.35 holds

as well. As n = 2 and λ = 0 in this case, (56) reduces to

muu′2u′′ + (1 +m)u2u′′2 −mu2u′u′′′ = 0

or equivalently

m
u′′

u
= m

u′′′

u′
− (1 +m)

u′′2

u′2

which can be reformulated in the more appropriate form

m
u′′

u
= m(

u′′

u′
)′ − (

u′′

u′
)2. (102)

In order to confirm Equation (102) we use (98) & (99) giving us

u′′

u′
=
f ′′′

f ′′
=

−m(m−1)
2 f ′f−m−1

(m−1)
2 f−m

= −mf ′

f
. (103)

Thus the right hand side of (102) becomes

m(
u′′

u′
)′ − (

u′′

u′
)2 = m(−mf ′

f
)′ − (−mf ′

f
)2 = −m2 f

′′

f
(104)

which equals the left hand side through division (98) by f and then using (100).
By Equations (96),(97) and (98) we obtain

u′(0) =
2f ′′(0)

m− 1
=

2

m− 1

m− 1

2
f−m(0) = 1

which implies that Equation (97) is smooth as a metric of a surface of revolution
(warped product).

Next we recall a local Riemannian (λ, 3+m)-Einstein structure which is not
locally conformally flat.

Example 4.44. ( [HPW12], Example 3.5.). Let the metric be a doubly warped
product of the form

g = dt2 + ϕ2dθ21 + ψ2dθ22

then applying Equation (11) of (λ, 3+m)-Einstein manifolds on the pair vector
fields ( ∂∂t ,

∂
∂t ), i.e.

m

f
Hessf(

∂

∂t
,
∂

∂t
) = Ric(

∂

∂t
,
∂

∂t
)− λg(

∂

∂t
,
∂

∂t
),

and using the equation Ric( ∂∂t ,
∂
∂t ) = −ϕ′′

ϕ − ψ′′

ψ (which is derived by calculation)
gives us

m
f ′′

f
= −ϕ

′′

ϕ
− ψ′′

ψ
− λ
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similarly applying Equation (11) on the pair vectors ( ∂
∂θ1

, ∂
∂θ1

) gives

f ′ϕ′

fϕ
= −ϕ

′′

ϕ
− ϕ′ψ′

ϕψ
− λ

and further, applying (11) on the pair vetors ( ∂
∂θ2

, ∂
∂θ2

) yields

f ′ψ′

fψ
= −ψ

′′

ψ
− ϕ′ψ′

ϕψ
− λ.

Considering suitable initial conditions we can solve the system of above differen-
tial equations near t = 0. The initial conditions ϕ(0) = ψ(0) > 0, ϕ′(0) ̸= ψ′(0),
f(0) > 0, and f ′(0) = 0 lead us to a local solution for Equation (11) whose
Cotton tensor does not vanish, and hence, it is not locally conformally flat. We
recall that in dimension 3 locally conformally flatness is equivalent to vanishing
the Cotton tensor.

In the following we observe the classification of Riemannian (λ, n + m)-
Einstein metrics which are also Einstein. Afterwards we recall the corresponding
classification for the pseudo-Riemannian setting.

Example 4.45. ( [HPW12], Proposition 3.1). Let n ≥ 2 and let (Mn, g, f) be a
non-trivial (λ, n+m)-Einstein manifold which in addition is ρ-Einstein. Then
it is isometric to one of the examples in Table 2 for k̄ = λ−ρ

m .

Proof. By assumption we have Ric = ρg. Thus from Equation (11) we obtain

Hessf = −k̄fg , k̄ =
λ− ρ

m
.

Let k̄ = 0 then Hessf = 0. Since the (λ, n+m)-Einstein structure is non-trivial
f is non-constant, hence it is a multiple of a distance function and consequently
the metric splits along f . This gives us the λ = 0, µ > 0 entry in the table.

Suppose k̄ ̸= 0 then from L∇fg = 2Hess f = −2k̄fg it follows that f ′′(t) =
−k̄f . By a similar discussion as in [Küh88, Lemma 12] we obtain

g = dt2 + (f ′(t))2gS (105)

f = f(t) (106)

around regular points of f where gS is the metric of a regular level set of f , e.g.
see λ < 0, µ = 0 entry in TABLE 2. Around critical points of f using [Küh88,
Lemma 18] we get

g = dt2 +
(f ′(t))2

(f ′′(0))2
gS (107)

f = f(t) (108)

where gS is the metric on the standard unit sphere, e.g. see λ, µ < 0 entry in
TABLE 2. Via these lemmas we obtain the solutions as in the following table,
cf. [Küh88], [Bes08] and [Bri25].
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λ > 0 λ = 0 λ < 0
µ > 0 Dn [0,∞)×F [0,∞) ×N

g=dt2 +
√
k̄sin2(

√
k̄t)gSn−1 g=dt2 + gF g=dt2 +

√
−k̄cosh2(

√
−k̄t)gN

f(t)=C cos(
√
k̄t) f(t) = Ct f(t)=C sinh(

√
−k̄t)

µ = 0 None None (-∞, ∞) ×F
g=dt2 + e2

√
−k̄tgF

f(t) = Ce
√

−k̄t

µ < 0 None None Hn

g=dt2 +
√
−k̄ sinh2(

√
−k̄t)gSn−1

f(t)=C cosh(
√

−k̄t)

TABLE 2. Non-trivial (λ, n+m)-Einstein manifolds which are in addition Ein-
stein. In this table Sn−1 denotes a round sphere, F is Ricci flat and N denotes
an Einstein metric with negative Ricci curvature and C ∈ R+ is arbitrary.

Reminder: For details in the relation between sectional curvature of N (or
F ) and the metric g see [HPW12, Remark 3.2].

Remark 4.46. Since in Example 4.45 the manifold is considered to be Einstein,
every solution in TABLE 2 satisfies the necessary conditions in Corollary 4.42.
For example consider the entry λ < 0, µ > 0 with Mn = [0,∞) × N, g =

dt2 +
√

−k̄ cosh2(
√
−k̄t)gN where N is an Einstein metric with negative Ricci

curvature. Here we have u(t) =
√
−k̄ cosh(

√
−k̄t) and f(t) = sinh(

√
−k̄t) for

which the necessary conditions, i.e. (80), (81) and (82), hold. I.e. f ′ = u(t),
u′′

u = u′′′

u′ and on the boundary {0} ×N the condition f ′′(0) = u′(0) = 0 is also
satisfied. This shows that (M, g, f) is a (λ, n+m)-Einstein manifold.

Remark 4.47. Note that in TABLE 2 above the entries λ = 0, µ > 0 resp.
λ < 0, µ > 0 have the slices {0} × F resp. {0} × N as boundary at which f
vanishes, and hence the intervals are closed on the left, i.e. the local warped
structure is defined on [0,∞)× F resp. [0,∞)×N .

Example 4.48. Under the same assumptions as in Example 4.45 above in the
pseudo-Riemannian setting, [KR09, Step 4 and Step 5] give the solutions for f
and the corresponding warping functions.

Example 4.49. Here we present two examples showing that the zeros of ∇f in
a non-trivial pseudo-Riemannian (λ, n+m)-Einstein manifold (M, g, f) are not
in general isolated. These two examples are some extended forms of the one I
received from Prof. Kühnel to the case m ≥ 1:

1) Consider a Riemannian product M = M⋆ ×H2, g =

(
g⋆ 0
0 g−1

)
, where

H2 is the hyperbolic plane in polar coordinates carrying g−1 = dt2 + sinh2 tdv2

with Ric−1 = −g−1. Also we consider fH2(t, v) = with t = 0 as the critical
point and giving ∇2fH2 = fH2g−1. The factor M⋆ of the product is chosen to
be Einstein with Ric⋆ = −(m+ 1)g⋆.
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Hence Ric =

(
Ric⋆ 0
0 Ric−1

)
=

(
−(m+ 1)g⋆ 0

0 −g−1

)
, consequently we can

write

Ric + (m+ 1)g =

(
0 0
0 mg−1

)
̸=

(
0 0
0 0

)
.

Now if we let f(x, t, v) = fH2(t) = cosh(t) with x ∈M⋆ then ∇f = ∇f(t) = ∂
∂t

and it follows that

∇2f =

(
0 0
0 fg−1

)
=

f

m
(Ric+ (m+ 1)g), (m+ 1) = −λ.

Thus every point with t = 0 and x arbitrary is critical which implies then that
critical points of f are not in general isolated.

Now we investigate the conditions in Theorem 7.2 on the Weyl tensor, i.e.
harmonicity of the weyl tensor W and W (∇f, ., .∇f) = 0 for this example as
well. For that purpose we start with Equation

R =W +
2

n− 2
Ric⊙ g − Scal

(n− 1)(n− 2)
g ⊙ g (109)

where dim M = n. The divergence of Equation (109) will be

(divR)(X,Y, Z) =(divW )(X,Y, Z) +
2

n− 2
(divRic⊙ g)(X,Y, Z)

− 1

(n− 1)(n− 2)
(divScal g ⊙ g)(X,Y, Z). (110)

We have Scal = Scal⋆ + Scal−1 = −(m+ 1)(n− 2)− 2 = −mn+ 2m− n. Via
calculation we have

(divRic⊙ g)(X,Y, Z) =
1

2
{(divRic)(Z)g(X,Y )− (divRic)(Y )g(X,Z) (111)

+ (∇ZRic)(X,Y )− (∇YRic)(X,Z)}. (112)

Equation (112) can be simplified using the following corollary of the second
Bianchi identity

(divRic)(Z) =
1

2
dScal(Z) =

1

2
g(Z,∇Scal), for every Z (113)

Moreover by similar computation as in [HPW12, page 296] one obtains

(∇ZRic)(X,Y )− (∇YRic)(X,Z) = (divR)(Z, Y,X), (114)

and via [HPW12, page 297, Remark 7.2]

(divR)(Z, Y,X) =
1

2(n− 2)
(g ⊙ g)(Z, Y,X) (115)
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if and only if M has harmonic Weyl tensor. Thus Equation (110) changes into

(divR)(X,Y, Z) = (divW )(X,Y, Z) +
2

(n− 2)
.
1

2
{(divRic)(Z).g(X,Y )

− (divRic)(Y )g(X,Y ) + (∇ZRic)(X,Y )− (∇YRic)(X,Z)}

− 1

(n− 1)(n− 2)
(div(−mn+ 2m− n)g ⊙ g)(X,Y, Z) (116)

and using equations (113), (114) and (115) it further simplifies to

(divR)(X,Y, Z) = (divW )(X,Y, Z) +
1

(n− 2)
{1
2
g(Z,∇Scal)g(X,Y )

− 1

2
g(Y,∇Scal)g(X,Z) + 1

2(n− 1)
(g(Z,∇Scal)g(Y,X)

− g(Z,X)g(Y,∇Scal))} (117)

and finally to

(divR)(X,Y, Z) = (divW )(X,Y, Z)

+
n

2(n− 1)(n− 2)
{g(Z,∇Scal)g(Y,X)− g(Z,X)g(Y,∇Scal)}.

(118)

Since Scal = −mn+2m−2 is constant we have that ∇Scal = 0 and consequently
from Equation (118) it follows that

(divR)(X,Y, Z) = (divW )(X,Y, Z), for every X,Y, Z (119)

expressing that div W = 0 if and only if div R = 0. Therefore these two
divergences are equivalent in this example.

Now it is turn to investigate the assumption W (∇f, ., .,∇f) = 0 in terms of
the curvature tensor R for the example. As ∇f ∈ X(H2), if either X or Y , say
X, belongs to X(M⋆) then by computation we obtain

R(∇f,X, Y,∇f) =W (∇f,X, Y,∇f) + 2

(n− 2)

1

2
{Ric(∇f,∇f)g(X,Y )

+Ric(X,Y )g(∇f,∇f)−Ric(∇f, Y )g(X,∇f)−Ric(X,∇f)g(∇f, Y )}

+
mn− 2m+ n

(n− 1)(n− 2)
{g(∇f,∇f)g(X,Y )− g(∇f, Y )g(X,∇f)} (120)

where all terms in { }-signs vanish as X is parallel with respect to vector fields
Y , ∇f in X(H2). Since R(∇f,X, Y,∇f) is a mixed curvature tensor for the
Riemannian product M = M⋆ × H2, it vanishes. Therefore W (∇f,X, Y,∇f)
vanishes as well, hence this case of Weyl tenor is satisfied. For a mixed curvature
tensor of a product manifold see [O’N10, page 89].
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If both X,Y ∈ X(H2) then via (120) as well as the relations Ric(∇f,∇f) =
Ric−1(∇f,∇f) = −g−1(∇f,∇f) and Ric(X,Y ) = Ric−1(X,Y ) = −g−1(X,Y )
we obtain

R(∇f,X, Y,∇f) =W (∇f,X, Y,∇f) + 1

(n− 2)
{−g−1(∇f,∇f)g−1(X,Y )

− g−1(X,Y )g−1(∇f,∇f) + g−1(∇f, Y )g−1(X,∇f) + g−1(X,∇f)g−1(∇f, Y )}

+
mn− 2m+ n

(n− 1)(n− 2)
{g−1(∇f,∇f)g−1(X,Y )− g−1(∇f, Y )g−1(X,∇f)} (121)

which after simplification becomes

R(∇f,X, Y,∇f) =W (∇f,X, Y,∇f)

+
m− 1

n− 1
{−g−1(∇f,∇f)g−1(X,Y ) + g−1(∇f, Y )g−1(∇f,X)} (122)

implying, when m = 1 it follows that W (∇f,X, Y,∇f) = 0 if and only if
R(∇f,X, Y,∇f) = 0. Therefore in this case if

R(∇f,X, Y,∇f) = −m− 1

n− 1
{g−1(∇f,∇f)g−1(X,Y )− g−1(∇f, Y )g−1(∇f,X)}

= −m− 1

n− 1
g−1 ⊙ g−1(∇f,X, Y,∇f), (123)

then the condition W (∇f,X, Y,∇f) = 0 is satisfied.
We finally reach the case X,Y ∈ X(M⋆). Thus by Equation (109) and using

the relations Ric(∇f,∇f) = Ric−1(∇f,∇f) = −g−1(∇f,∇f), Ric(X,Y ) =
Ric⋆(X,Y ) = −(m+ 1)g⋆(X,Y ), Ric(X,∇f) = 0 and so on, one obtains

R(∇f,X, Y,∇f) =W (∇f,X, Y,∇f) + 2−m− n

(n− 1)(n− 2)
{g⋆(X,Y )g−1(∇f,∇f)}

(124)

which does not satisfy the condition W (∇f, ., .,∇f) = 0. This is because the left
side identically vanishes as R(∇f,X, Y,∇f) is a mixed curvature for the product
manifold M = M⋆ × H2, while on the right hand side if W (∇f, ., .,∇f) = 0,
then the rest must also vanishes. But it does not vanish as 2−m−n = 0 is not
possible, due to m ≥ 1, n− 2 ≥ 3.

2) As another similar example which also does not satisfy the conditions on

the Weyl tensor we can consider the product M = M1 ×M2, g =

(
g1 0
0 g2

)
,

where in polar coordinates g2 = −dt2 + sinh2dv2 with Ric2 = g2. Also we
consider f2(t, v) = with t = 0 as critical point and giving ∇2f2 = −f2g2. The
factor M1 of the product is chosen to be Einstein with Ric1 = (m+ 1)g1.

So Ric =

(
Ric1 0
0 Ric2

)
=

(
(m+ 1)g1 0

0 g2

)
, consequently we can write

Ric− (m+ 1)g =

(
0 0
0 −mg2

)
̸=

(
0 0
0 0

)
.
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Now if we let f(x, t, v) = f2(t) = cosh(t) with x ∈ M1 then ∇f = ∇f(t) =
−sinht ∂∂t and it follows that

∇2f =

(
0 0
0 −fg2

)
=

f

m
(Ric− (m+ 1)g), (m+ 1) = λ.

Thus every point with t = 0 and x arbitrary is critical which implies then that
critical points of f are not in general isolated.

Now we investigate the condition W (∇f, ., .,∇f) = 0. Specifically we discuss
the case where both X,Y ∈ X(M1). Using again Equation (109) and noting that
dim M = n and Scal = Scal1 + Scal2 = (m+ 1)(n− 2) + 2 = mn− 2m+ n we
obtain:

R(∇f,X, Y,∇f) =W (∇f,X, Y,∇f) + m+ n− 2

(n− 1)(n− 2)
{g2(∇f,∇f)g1(X,Y )}.

(125)

Similar to the last example, as R(∇f, ., .,∇f) is a mixed curvature for the
product M = M1 × M2 we have R(∇f,X, Y,∇f) = 0. It follows then that

W (∇f,X, Y,∇f) = 0 if and only if (m+n−2)
(n−1)(n−2) = 0 which is not possible, as

m+ n− 2 = 0 can not happen due to n > 2, m > 1.

5 New tensors for (λ, n +m)-Einstein manifolds
with m > 1 and their applications

In the following we recall some results which are originally structured in the
Riemannian setting where either the same formulations work for the pseudo-
Riemannian setting or via subtle changes they are adjusted to pseudo-Riemannian
manifolds. In each statement we will clarify the setting.

We already know that the scalar curvature of a (λ, n+m)-Einstein manifold
is constant when m = 1 (in this case it is Scal = (n − 1)λ). When m > 1
we consider the following tensors in the pseudo-Riemannian setting which are
originally defined in the Riemannian case by [HPW12, section 5]

ρ(x) =
1

m− 1
((n− 1)λ− Scal) (126)

P =Ric− ρg.

Using the above equation for ρ one may write Equation (3.12) in [CSW11] in
terms of ρ and P , which is the key to prove Proposition 4.41 in the pseudo-
Riemannian case:

Proposition 5.1. (The pseudo-Riemannian version of Equation (3.12) in [CSW11]).
Suppose (M, g, f) is a pseudo-Riemannian (λ, n+m)-Einstein manifold then we
have

f

2
∇ρ = P (∇f). (127)
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Next we note the following formula for the tensor P .

Proposition 5.2. ( [HPW12], The pseudo-Riemannian version of Proposition
5.4). For a pseudo-Riemannian (λ, n+m)-Einstein manifold (M, g, f) we have

div(fm+1P ) = 0.

Proof. Consider an orthonormal basis {Ei} with ϵi = g(Ei, Ei) ∈ {±1}. Hence

div(fm+1P )(X) = trace (V −→ #(∇fm+1P )(V, .,X))∑
i

g(Ei,#(∇(fm+1P ))(Ei, ., X)) =
∑
i

ϵi∇Ei
(fm+1P )(Ei, X)

=
∑
i

ϵi(∇Ei
fm+1)P (Ei, X) + fm+1

∑
i

ϵi∇Ei
P (Ei, X)

= P (∇fm+1, X) + fm+1divP (X)

which in combination with Equation (127) and [O’N10, Corollary 3.54] gives us

div(fm+1P ) = fm+1divP + P (∇fm+1)

= fm+1div(Ric)− fm+1∇ρ+ (m+ 1)fmP (∇f)

=
1

2
fm+1∇Scal − fm+1∇ρ+ (m+ 1)

2
fm+1∇ρ

= −m− 1

2
fm+1∇ρ− fm+1∇ρ+ (m+ 1)

2
fm+1∇ρ

= 0

At this moment we consider a new algebraic curvature tensor Q in the
pseudo-Riemannian setting satisfying

div(fm+1Q) = 0

with the additional property that its trace is a multiple of P . As in [HPW12,
section 6] we define it to be

Q = R+
2

m
Ric⊙ g − (λ+ ρ)

m
g ⊙ g

= R+
2

m
P ⊙ g +

(ρ− λ)

m
g ⊙ g (128)

where R is the curvature tensor.
The following proposition approves the latter property of Q for pseudo-

Riemannian manifolds.

Proposition 5.3. ( [HPW12], The pseudo-Riemannian version of Proposition
6.1). Suppose Ei is an orthonormal basis with ϵi = g(Ei, Ei), then we have the
following properties in the pseudo-Riemannian case

n∑
i=1

ϵiQ(X,Ei, Ei, Y ) =
m+ n− 2

m
P (X,Y )
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n∑
i,j=1

ϵiϵjQ(Ej , Ei, Ei, Ej) =
m+ n− 2

m(m− 1)
((m+ n− 1)Scal − (n(n− 1))λ)

Proof. We consider an orthonormal basis Ei with ϵi = g(Ei, Ei) ∈ {±1} for our
argument. By Equation (128) we obtain the following

n∑
i=1

ϵiQ(X,Ei, Ei, Y ) = Ric(X,Y ) +
1

m

n∑
i=1

(Ric(X,Y )ϵig(Ei, Ei) + ϵiRic(Ei, Ei)g(X,Y )

− ϵiRic(X,Ei)g(Y,Ei)− ϵiRic(Y,Ei)g(X,Ei))

− λ+ ρ

m

n∑
i=1

(g(X,Y )ϵig(Ei, Ei)− ϵig(X,Ei)g(Y,Ei))

= Ric(X,Y ) +
1

m
((n− 2)Ric(X,Y ) + Scal g(X,Y ))

− λ+ ρ

m
(n− 1)g(X,Y )

=
m+ n− 2

m
Ric(X,Y )

+
1

m
(Scal − (n− 1)λ− (n− 1)ρ)g(X,Y )

=
m+ n− 2

m
(Ric(X,Y )− ρg(X,Y )). (129)

On the other hand the trace of P satisfies the following

tr(P )(= Scal − nρ) = (n− 1)λ− (m+ n− 1)ρ

which after substitution in (129) and doing some calculations we get the second
identity.

For a pseudo-Riemannian (λ, n+m)-Einstein manifold the following formula
involves Q and P .

Proposition 5.4. ( [HPW12], The pseudo-Riemannian version of Proposition
6.2). Suppose (M, g, f) is a pseudo-Riemannian (λ, n +m)-Einstein manifold.
Then we have the following property:

f

m
((∇XP )(Y,Z)− (∇Y P )(X,Z))

= −Q(X,Y, Z,∇f)− 1

m
(g ⊙ g)(X,Y, Z, P (∇f)).

Proof. We consider Equation (11) of a pseudo-Riemannian (λ, n+m)-Einstein
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metric and do calculation as following:

R(X,Y,∇f, Z)

=(∇X(
f

m
(Ric− λg)))(Y,Z)− (∇Y (

f

m
(Ric− λg)))(X,Z)

=
f

m
((∇XP )(Y,Z)− (∇Y P )(X,Z))

+
1

m
g(X,∇f)P (Y, Z)− 1

m
g(Y,∇f)P (Y,Z)

− 1

m
g(X,∇(f(λ− ρ)))g(Y,Z) +

1

m
g(Y,∇(f(λ− ρ)))g(X,Z)

=
f

m
((∇XP )(Y,Z)− (∇Y P )(X,Z))−

λ− ρ

m
(g ⊙ g)(X,Y, Z,∇f)

+
1

m
g(X,∇f)P (Y, Z)− 1

m
g(Y,∇f)P (X,Z)

+
1

m
g(X, f∇ρ)g(Y,Z)− 1

m
g(Y, f∇ρ)g(X,Z)

=
f

m
((∇XP )(Y,Z)− (∇Y P )(X,Z))−

λ− ρ

m
(g ⊙ g)(X,Y, Z,∇f)

+
2

m
(P ⊙ g)(X,Y, Z,∇f) + 1

m
(g ⊙ g)(X,Y, Z, P (∇f)).

By transferring the suitable terms of the right side of the last equality to the
very left side, i.e. R(X,Y,∇f, Z), and by definition of Q in (128) the identity
follows.

Now we turn our attention to the proof of the former property of Q involving
the divergence of Q.

Proposition 5.5. ( [HPW12], The pseudo-Riemannian version of Proposi-
tion 6.3). Suppose we have a pseudo-Riemannian (λ, n+m)-Einstein manifold
(M, g, f). Then

div(fm+1Q) = 0.

Proof. For an orthonormal basis {Ei} with ϵi = g(Ei, Ei) ∈ {±1} in the pseudo-
Riemannian setting, by definition, one obtains

div(fm+1Q)(X,Y, Z) = trace (V −→ #(∇fm+1Q)(V, .,X, Y, Z))∑
i

g(Ei,#(∇(fm+1Q))(Ei, ., X, Y, Z)) =
∑
i

ϵi∇Ei(f
m+1Q)(Ei, X, Y, Z)

=
∑
i

ϵi(∇Ei
fm+1)Q(Ei, X, Y, Z) + fm+1

∑
i

ϵi∇Ei
Q(Ei, X, Y, Z)

= fm((m+ 1)Q(X,Y, Z,∇f) + fm+1divQ(X,Y, Z)).

Hence the assertion is equivalent to the equation

fdivQ(X,Y, Z) = −(m+ 1)Q(X,Y, Z,∇f). (130)
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To prove (130) we first calculate the divergence of the second term in (128), i.e.
div( 2

mP ⊙ g):

f
2

m
(div(P ⊙ g))(X,Y, Z)

=
f

m
(divP )(X)g(Y,Z)− f

m
(divP )(Y )g(X,Z)

+
f

m
(∇XP )(Y, Z)−

f

m
(∇Y P )(X,Z)

=− m+ 1

m
P (X,∇f)g(Y,Z) + m+ 1

m
P (Y,∇f)g(X,Z)

− (Q(X,Y, Z,∇f) + 1

m
(g ⊙ g)(X,Y, Z, P (∇F )))

=−Q(X,Y, Z,∇f)− m+ 2

m
(g ⊙ g)(X,Y, Z, P (∇f))

and similarly the divergence of the last term, i.e. div( (ρ−λ)m g ⊙ g), becomes

f

m
(div((ρ− λ)g ⊙ g))(X,Y, Z) =

f

m
(g ⊙ g)(X,Y, Z,∇ρ)

=
2

m
(g ⊙ g)(X,Y, Z, P (∇f)).

Now through taking divergence of Equation (128) and using the last equations
for the divergence of the last two terms we obtain

f(divQ)(X,Y, Z) =f(divR)(X,Y, Z)−Q(X,Y, Z,∇f)
− (g ⊙ g)(X,Y, Z, P (∇f)). (131)

Moreover from proposition 5.4 we

f(divR)(X,Y, Z)

=f(∇XRic)(Y, Z)− f(∇YRic)(X,Z)

=f(∇XP )(Y, Z)− f(∇Y P )(X,Z)

+ fg(X,∇ρ)g(Y, Z)− fg(Y,∇ρ)g(X,Z)
=f(∇XP )(Y, Z)− f(∇Y P )(X,Z) + f(g ⊙ g)(X,Y, Z,∇ρ)
=f(∇XP )(Y, Z)− f(∇Y P )(X,Z) + 2(g ⊙ g)(X,Y, Z, P (∇f))
=−mQ(X,Y, Z,∇f)− (g ⊙ g)(X,Y, Z, P (∇f))

+ 2(g ⊙ g)(X,Y, Z, P (∇f))
=−mQ(X,Y, Z,∇f) + (g ⊙ g)(X,Y, Z, P (∇f))

which in combination with Equation (131) above gives us the result.

In the following we observe applications of the previous calculations and
formulations for new assertions. Here we recall a definition.
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Definition 5.6. For a pseudo-Riemannian manifold (Mn, g) of dimension n ≥
3 the Schouten tensor S is a (0, 2)-tensor defined by

S = Ric− Scal

2(n− 1)
g.

(Mn, g) is said to have harmonic Weyl tensor if the Schouten tensor S is a
Codazzi tensor, i.e

(∇XS)(Y,Z) = (∇Y S)(X,Z) ∀X,Y, Z. (132)

Remark 5.7. ( [HPW12], The pseudo-Riemannian version of Remark 7.1).
A three dimensional pseudo-Riemannian manifold (M3, g) has harmonic Weyl
tensor if and only if it is locally conformally flat. For dimension n = 3 we always
have W = 0. Additionally, div(W ) = 0 if and only if (Mn, g) has harmonic
Weyl tensor.

Remark 5.8. ( [HPW12], The pseudo-Riemannian version of Remark 7.2). A
pseudo-Riemannian (M, g) has harmonic Weyl tensor if and only if the following
holds

divR(X,Y, Z) =
1

2(n− 1)
(g ⊙ g)(X,Y, Z,∇Scal).

Next we investigate the Weyl tensor of a one dimensional basis warped prod-
uct metric with Einstein fibre.

Lemma 5.9. ( [Bes08], 16.26(i)). A warped product metric of the form g =
ϵdt2 + u2(t)gN , where gN is Einstein, has harmonic Weyl tensor and satisfies
W (∇f, ., .,∇f) = 0.

Proof. As gN is Einstein, inserting the relation ∂t =
∇f
|∇f | in Lemma 4.27 im-

mediately implies that W (∇f, ., .,∇f) = 0. In order to show that (M, g)
has harmonic Weyl tensor we alternatively prove divW=0. For vector fields
X,Y, Z ⊥ ∂t and an orthonormal frame field (Ei)

n
1

divW (X,Y, Z) =

n∑
i

ϵi(∇EiW )(Ei, X, Y, Z)

=

n∑
i

ϵi

{
∇Ei(W (Ei, X, Y, Z))−W (∇EiEi, X, Y, Z)

−W (Ei,∇EiX,Y, Z)−W (Ei, X, Y,∇EiZ)
}
= 0− 0− 0− 0 = 0.

Where in the calculation above we again used Lemma 4.27 and the fact that gN
is Einstein and hence has harmonic Weyl tensor, i.e. div(WN ) ≡ 0.

Harmonic Weyl tensor has an essential role in the main characterizations in
this thesis, e.g. in Proposition 7.2 and Theorem 7.9. We first investigate the
role of harmonic Weyl tensors in connecting the tensors P and Q.
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Proposition 5.10. ( [HPW12], The pseudo-Riemannian version of Proposition
7.1). Suppose (M, g, f) is a pseudo-Riemannian (λ, n +m)-Einstein manifold
with harmonic Weyl tensor. Then we have

Q(X,Y, Z,∇f) = m+ n− 2

m(n− 1)
(P (∇f,X)g(Y,Z)− P (∇f, Y )g(X,Z))

=
m+ n− 2

m(n− 1)
(g ⊙ g)(X,Y, Z, P (∇f)) (133)

Proof. See the last calculation in the proof of Proposition 5.5 which gives us

f(divR)(X,Y, Z) = −mQ(X,Y, Z,∇f) + (g ⊙ g)(X,Y, Z, P (∇f)) (134)

also by Remark 5.8 we obtain

f(divR)(X,Y, Z) = f
1

2(n− 1)
(g ⊙ g)(X,Y, Z,∇Scal)

= −f m− 1

2(n− 1)
(g ⊙ g)(X,Y, Z,∇ρ)

= −m− 1

n− 1
(g ⊙ g)(X,Y, Z, P (∇f)). (135)

As the left hand sides of equations (134) and (135) are equal, the right sides
will also be equal from which the identity in the pseudo-Riemannian setting
follows.

By inspiration of Proposition 5.10 we have the first important property of
a pseudo-Riemannian (λ, n + m)-Einstein manifold under the assumption of
harmonicity of the Weyl tensor which will be used in our characterizations.

Lemma 5.11. ( [HPW12], The pseudo-Riemannian version of Corollary 7.1).
Suppose (M, g, f) is a pseudo-Riemannian (λ,n+m)-Einstein manifold with har-
monic Weyl tensor. Then at a point where ∇f ̸= 0, ∇f is an eigenvector for
the tensor P . Additionally for vector fields X,Y, Z ⊥ ∇f we have

Q(X,Y, Z,∇f) = 0 (136)

Q(∇f, Y, Z,∇f) = m+ n− 2

m(n− 1)
P (∇f,∇f)g(Y,Z) (137)

Proof. Let Z = ∇f in (133) for a pseudo-Riemannian manifold. This gives us

P (∇f,X)g(∇f, Y )− P (∇f, Y )g(X,∇f) = 0 for any X,Y

which expresses that ∇f is an eigenvector for P . Hence P (X,∇f) = 0 for
X ⊥ ∇f . Respectively, using this in (133) for X,Y, Z ⊥ ∇f gives us Equation
(136). Also, if we let X = ∇f and Y, Z ⊥ ∇f in (133) then we obtain (137).
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Remark 5.12. ( [HPW12], The pseudo-Riemannian version of Remark 7.3).
∇f is an eigenfield for the tensor P (or for the Schouten tensor) if and only if
∇f is an eigenfield for the tensor Hess f . If this holds then |∇f |2 is constant
on the connected components of the level sets of f . Because for any X ⊥ ∇f

∇X |∇f |2 = 2Hessf(∇f,X) = 2µ1g(∇f,X) = 0

where, using Lemma 5.11, µ1 denotes the eigenvalue of Hessf with respect to
∇f (Moreover if the normal vector field ∇f is null on some level set, say f−1(c),
then |∇f |2 is the constant zero on it).

In [HPW12] the reason for taking repeatedly the Weyl tensor into consid-
eration as an assumption is to control the other eigenvalues of the tensor P
(other than ∇f), hence those of Ricci and Schouten tensors by Equation (11).
Similarly here in the pseudo-Riemannian case we use the same assumptions on
the Weyl tensor for the same purpose, i.e. to get control on the number of eigen-
values of the tensor P and consequently of Ricci tensor. Next result presents
the decomposition of Q in terms of the Weyl tensor W and P .

Proposition 5.13. ( [HPW12], The pseudo-Riemannian version of Proposition
7.2). Let m > 1 and let (M, g, f) be a pseudo-Riemannian (λ, n+m)-Einstein
manifold with harmonic Weyl tensor, then we have

Q =W +
2(n+m− 2)

m(n− 2)
(P ⊙ g)− n+m− 2

m(n− 1)(n− 2)
tr(P )(g ⊙ g). (138)

Proof. In the pseudo-Riemannian setting, by definition we have

Q = R+
2

m
P ⊙ g +

ρ− λ

m
g ⊙ g,

R =W +
2

n− 2
P ⊙ g + (

2ρ

n− 2
− Scal

(n− 1)(n− 2)
)g ⊙ g.

Combining these two equations together and using the relations

Scal = (n− 1)λ− (m− 1)ρ,

tr(P ) = −(m+ n− 1)ρ+ (n− 1)λ

we obtain

Q =W +
2(m+ n− 2)

m(n− 2)
(P ⊙ g)

+ (
((n+ 2m− 2)(n− 1) +m(m− 1))ρ

m(n− 1)(n− 2)
− (n+m− 2)λ

m(n− 2)
)g ⊙ g

=W +
2(m+ n− 2)

m(n− 2)
(P ⊙ g)

+
m+ n− 2

m(n− 1)(n− 2)
((m+ n− 1)ρ− (n− 1)λ)g ⊙ g

=W +
2(m+ n− 2)

m(n− 2)
(P ⊙ g)− m+ n− 2

m(n− 1)(n− 2)
tr(P )g ⊙ g.

which completes the proof.
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At this step, we see that via the Weyl tensor there exists a subset of a
pseudo-Riemannian manifold (M, g) consisting of points at which the number
of mutually distinct eigenvalues of the tensor P (and consequently the Hessian
tensor by Equation (11)) is at most two.

Lemma 5.14. (The pseudo-Riemannian version of [HPW12, Lemma 7.1]). Let
(M, g) be a pseudo-Riemannian manifold. Also let (M, g, f) be a (λ, n + m)-
Einstein manifold with harmonic Weyl tensor and W (∇f, Y, Z,∇f) = 0. Then
at a point p where g(∇f,∇f) ̸= 0, P (or Ricci tensor or Schouten tensor) has at
most two eigenvalues. If it has two eigenvalues then one has multiplicity 1 with
eigenvector ∇f , and the other one has multiplicity n−1 with vectors orthogonal
to ∇f . If it has only one eigenvalue then it is with multiplicity n and Ric is
proportional to g.

Proof. By Lemma 5.11 we already know that ∇f is an eigenvector for P at p.
By assumption we have W (∇f, Y, Z,∇f) = 0, therefore using (138) for vector
fields Y, Z ⊥ ∇f we obtain

Q(∇f, Y, Z,∇f) =2(n+m− 2)

m(n− 2)
(P ⊙ g)(∇f, Y, Z,∇f)

− n+m− 2

m(n− 1)(n− 2)
tr(P )(g ⊙ g)(∇f, Y, Z,∇f)

=
(n+m− 2)

m(n− 2)
(P (∇f,∇f)g(Y, Z) + P (Y,Z)|∇f |2)

− n+m− 2

m(n− 1)(n− 2)
tr(P )|∇f |2g(Y, Z).

Also remember equation (137), i.e.

Q(∇f, Y, Z,∇f) = m+ n− 2

m(n− 1)
P (∇f,∇f)g(Y,Z).

Through equating the right sides of the last two equations, as their left hand
sides are equal, it follows that

(n− 1)P (Y,Z)|∇f |2 = (tr(P )|∇f |2 − P (∇f,∇f))g(Y,Z)

expressing that Y and Z are eigenvectors for P and have the same eigenvalue.
If P has only on eigenvalue, say µ, at p then P = Ric − ρg = µg saying µ has
multiplicity n, and also, Ric = (ρ + µ)g. Moreover we get the same results for
Hessf using the identity

Hessf =
f

m
(P + (ρ− λ)g)

and respectively the same results for the Schouten tensor S by

Hessf =
f

m
(S + (

Scal

2(n− 1)
− λ)g)

where by definition P (X,Y ) = Ric(X,Y )−ρg(X,Y ), and S(X,Y ) = Ric(X,Y )−
Scal

2(n−1)g(X,Y ) for all vector fields X, Y ∈ TM .
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Under the assumptions in Lemma 5.14 we saw that the tensor P , and hence
the Schouten tensor S, has at most two distinct eigenvalues. In case there are
two different eigenvalues, denote by σ1 and σ2 the eigenvalue functions of S and
let

O = {x ∈M : g(∇f,∇f)x ̸= 0, σ1(x) ̸= σ2(x)}.

Note that for a Riemannian manifold (M, g) the condition g(∇f,∇f) ̸= 0 re-
duces naturally to ∇f ̸= 0. If (M, g) is Einstein, then there is only one eigen-
value, i.e. σ1 = σ2. In this case Hessf is proportional to the metric, cf. Propo-
sition 4.45 in the Riemannian case or [KR09, Section 4 and Section 5] in the
pseudo-Riemannian setting for the relevant results.

Remark 5.15. Under the assumptions of Lemma 5.14, at a point p where
g(∇f,∇f) ̸= 0 the Hessian tensor Hessf of f has at most two eigenvalues,
say µ1 and µ2, such that ∇f is an eigenvector with eigenvalue µ1 and vectors
orthogonal to this direction, i.e. X ⊥ ∇f , correspond to eigenvalue µ2. In more
details, for X,Y ⊥ ∇f

Hessf(∇f,X) = g(∇∇f∇f,X) = µ1g(∇f,X)

⇒ ∇∇f∇f = µ1∇f (139)

Hessf(X,Y ) = g(∇X∇f, Y ) = µ2g(X,Y )

⇒ ∇X∇f = µ2X. (140)

6 Local and global characterizations of Rieman-
nian (λ, n + m)-Einstein metrics and some in-
vestigation

In this section we first shortly investigate geodesic polar coordinates system
which is an essential key in upcoming discussions. Afterwards we inquire local
and global characterizations in the Riemannian case. In addition, we give a
brief investigation on (λ, n+m)-Einstein metrics of constant scalar curvature.

6.1 Geodesic polar coordinates on pseudo-Riemannian man-
ifolds and some applications

Let Rnk be the pseudo-Euclidean space of signature k with the standard metric,
i.e. g(x, x) = −(x21 + ...+ x2k) + x2k+1 + ...+ x2n for x ∈ Rn. For n ≥ 2, ϵ ∈ {±1}
let S(ϵ) := {x ∈ Rnk |g(x, x) = ϵ} and |x| :=

√
|g(x, x)| ≥ 0 denotes the pseudo-

norm.
Similar to [KR97a, Section 3] we denote by S0(1) the connected component

of S(1) which contains the point (0, ..., 0, 1) and by S0(−1) the connected com-
ponent of S(−1) containing (1, 0, ..., 0). Then we let Σ := S0(1) ∪ S0(−1) and
C := {x ∈ Rnk |g(x, x) = 0} be the light cone. We have the polar coordinates on
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the complement of the light cone Rnk − C in the pseudo-Euclidean space Rnk as
follows

y ∈ Rnk − C → Φ(y) = (r(y), ϕ(y)) ∈ R× Σ

where r(y) denotes the radial part, i.e. the absolute value of r(y) is the pseudo-
norm |y|. For a detailed investigation on the image G := Φ(Rnk − C) ⊂ R × Σ
of the polar coordinates see [KR97a, page 8].

Similar to [KR97a] we consider geodesic polar coordinates around any point
p ∈ M of a pseudo-Riemannian manifold using the exponential map. Cp :=
{X ∈ TpM |g(X,X) = 0} denoting the light cone at p, there exists an open

neighborhood Ũ of the zero vector in TpM ∼= Rnk so that

ϕ : Φ(Ũ − Cp) ⊂ G −→ U ⊂M

ϕ(t, x) = expp(Φ
−1(t, x)) defines geodesic polar coordinates.

Remark 6.1. In these coordinates we consider local warped structure of the
form ϵdt2+uϵ(t)

2.g1(x), ϵ ∈ {±1}, (t, x) ∈ G ⊂ R×Σ, where g1 is the standard
metric on Σ and where uϵ(t) = 0 on the light cone on which t = 0.

First we study a pair of functions u± which define a smooth metric in a
neighborhood of the origin, i.e. sufficient and necessary conditions for the func-
tions u± such that the metric extends onto the light cone.

NOTE: In the following unlike the argument in [KR97a, Section 3] the func-
tion u(t) is odd, i.e. its even derivatives vanish u(0) = 0, u′′(0) = 0..., just
for adjusting to this text as the warping functions is u(t) rather than u′(t)
(in [KR97a] the authors use the warping function ψ′ wherever there is a critical
point for ψ).

Definition 6.2. ( [KR97a], Definition 3.1). 1.) We define the following set
F of two C∞-functions u = (u+, u−) : R −→ R which satisfies the following

conditions: u
(2m)
± (0) = 0, u

(2m+1)
+ (0) = (−1)m+1u

(2m+1)
− (0) for all m ≥ 0 and

u′+(0) = −u′−(0) ̸= 0.

2.) We define the set Au ⊂ Rnk − C in geodesic polar coordinates (t, x) ∈
G ⊂ R × Σ such that: (t, x) ∈ Au if and only if uϵ, ϵ = g(x, x) does not vanish
between 0 and t.

Lemma 6.3. ( [KR97a], Lemma 3.4). Let a smooth pseudo-Riemannian metric
g be given in geodesic polar coordinates (t, x) ∈ G ⊂ R× Σ by

g(t, x) = ϵdt2 +
uϵ(t)

2

u′ϵ(0)
2
g∗ (141)

with a C∞-metric g∗ on Σ. Then g∗ coincides with the standard metric g1 on
Σ of constant sectional curvature ϵ.
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Proof. Suppose σ is a plane spanned by the orthogonal vectors X,Y with ϵ =
g(X,X)g(Y, Y ) = ±1 which are both orthogonal at t = t0 to the radial geodesic
t 7→ (t, x0) for a fixed x0 ∈ Σ. Also let K(σ) resp. K∗(σ) denotes the sectional
curvature of σ in (M, g) resp. in (Σ, g∗). From formula (36) in Lemma 4.23 we
have the following for the curvature of such a warped product:

K(σ) = g(R(X,Y )Y,X) = g(R∗(X,Y )Y,X)− ϵ(
u′ϵ(t0)

uϵ(t0)
)2 (142)

=
ϵ

uϵ(t0)2

(
K∗(σ)u

′
ϵ(0)

2 − ϵu′ϵ(t0)
2
)
. (143)

Since K∗(σ) is independent of t, when t0 → 0 by non-degeneracy of the metric
it follows that K∗(σ) = ϵ. Hence (Σ, g∗) has constant sectional curvature ϵ, i.e.
g∗ is isometric to g1.

Now we recall an assertion which is essential for extending a metric in
geodesic polar coordinates onto the light cone.

Proposition 6.4. ( [KR97a], some part of Proposition 3.5). Let u± be two
smooth real functions with u′+(0) = −u′−(0). Then we define the function
u(t, x) = uϵ(t), ϵ ∈ {±1}, on the complement Rnk −C of the light cone C in the
pseudo-Euclidean space. Here (t, x) ∈ G ⊂ R×Σ are geodesic polar coordinates
of the pseudo-Euclidean space. We also define the metric

g(t, x) := gu(t, x) = ϵdt2 +
uϵ(t)

2

u′ϵ(0)
2
g1

where ϵ = g(x, x) ∈ {±1} on the subset Au, on which uϵ does not vanish, see
Definition 6.2 2.). Then the following holds:

1. The function u extends smoothly onto Bu := Au ∪ C ⊂ Rnk , i.e. onto the
light cone, if and only if u± ∈ F , i.e.

u
(2m)
± (0) = 0, u

(2m+1)
+ (0) = (−1)m+1u

(2m+1)
− (0) (144)

for all m ≥ 0.

2. The metric gu extends smoothly onto the light cone if and only if u± ∈ F
and gu is conformally flat.

6.2 Local characterization of Riemannian (λ, n+m)-Einstein
metrics (M, g, f) around regular points of f based on
[HPW12, Theorem 7.1]

[HPW12, Theorem 7.1] gives local forms of the metric g and f for a Riemannian
(λ, n + m)-Einstein metric (M, g, f) where it has harmonic Weyl tensor and
satisfiesW (∇f, ., .,∇f) = 0 around points in the set O. We recall that O = {x ∈
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M : g(∇f,∇f)x ̸= 0, σ1(x) ̸= σ2(x)} where σ1, σ2 represent the first and the
second eigenvalues of the Schouten tensor respectively. We generalize it to a local
characterization with the weaker condition ∇f |p ̸= 0, instead of the stronger
one p ∈ O which is used in [HPW12, Theorem 7.1]. In this generalization, in
addition we formulate relation between the warping function of a local warped
product form of g and the function f .

Theorem 6.5. Let m > 1, λ ∈ R and (M, g) be a Riemannian manifold with
a smooth function f defined onM . Then the following conditions are equivalent:

1) (M, g, f) satisfies Equation (11) of a non-trivial (λ, n+m)-Einstein met-
ric with harmonic Weyl tensor and W (∇f, ., .,∇f) = 0 in a neighborhood of
p ∈M with ∇f |p ̸= 0.

2) (a) Case p ∈ int(M): There exist local coordinates (t, t1, ..., tn−1) with
t ∈ (−ε, ε) in a neighborhood of p ∈ M and an Einstein Riemannian hyper-
surface (N, gN = gN (t1, ..., tn−1)) of (M, g) with normalized scalar curvature
ϱN = k and a function u = u(t) > 0, in addition f = f(t) > 0 satisfying (55)
and (56) in Proposition 4.35 such that

I) g(∂t, ∂t) = 1
II) g(∂t, ∂ti) = 0, for i = 1, ..., n− 1
III) g(∂ti , ∂tj ) = u2(t)gN (∂ti , ∂tj )(t1, ..., tn−1) i, j = 1, ..., n− 1.

(b) Case p ∈ ∂M : There exist local coordinates (t, t1, ..., tn−1) with t ∈ [0, ε)
in a neighborhood of p and an Einstein Riemannian hypersurface (N, gN =
gN (t1, ..., tn−1)) of (M, g) with normalized scalar curvature ϱN = k and a func-
tion u = u(t) > 0, in addition f(t) > 0 for all t ∈ (0, ε) satisfying (55) & (56)
as well as f(0) = 0 satisfying (57) at t = 0 such that the conditions I, II, III
in (a) holds.

Any case of 2) implies that g = dt2 + u2(t)gN around p. If the metric is lo-
cally conformally flat in a neighborhood of p then N must be a space of constant
curvature.

Proof. 1)⇒ 2): By Lemma 5.14 the Schouten tensor has at most two eigenvalues

σ1 and σ2 at each point in a neighborhood Ũ of p consisting of regular points of

f . If σ1 = σ2 in an open subset U of Ũ then via Schur’s lemma g is Einstein on
U . In addition, the derivative of σ = σ1 − σ2 = 0 vanishes on U . By analyticity

of g, see [HPW12, Proposition 2.4], dσ and hence σ vanish on Ũ . Therefore it

would be Einstein, i.e. σ1 = σ2, on the whole Ũ . In this case, using Corollary
4.42 and Example 4.45 we see that the conclusion of this theorem is satisfied.

Therefore we can assume that the open set O ∩ Ũ is dense in Ũ .
For more convenience we first suppose that p ∈ int(M). Without loss of

generality assume p ∈ O ∩ Ũ (otherwise we may start by a point p1 ∈ O ∩ Ũ

and through the same procedure as follows we get the same result on Ũ ∋ p
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including the point p) , thus the Schouten tensor S has two different eigenvalues

σ1 and σ2 in a neighborhood U of p in Ũ . By Lemma 5.14 we know also that
the dimension of the eigenspace corresponding to σ2 is bigger than one when
dimM > 1, hence [Bes08, 16.11(iii)] proves that σ2 is locally constant on the
level sets of f in U .

As the Schouten tensor S has two distinct eigenvalues in U , via the relation
Hessf = f

m (S + ( Scal
2(n−1) − λ)g) it follows that Hessf has also two distinct

eigenvalues in U , call them µ1 and µ2, where the eigenspaces for µi correspond
to eigenspaces for σi by

µi =
f

m
(σi +

Scal

2(n− 1)
− λ) i = 1, 2. (145)

We already know by Remark 5.12 that |∇f | is locally constant on the level sets
of f in U which in turn concludes that µ1 is also locally constant on the level
sets of f in U . In more details, from

1

2
D∇f |∇f |2 = Hessf(∇f,∇f) = µ1|∇f |2

we get

µ1 =
1

2

1

|∇f |2
D∇f |∇f |2

and hence

DXµ1 =
1

2

1

|∇f |2
DXD∇f |∇f |2 =

1

2

1

|∇f |2
D∇fDX |∇f |2 = 0, X ⊥ ∇f. (146)

Moreover if X ⊥ ∇f then

DXρ =
2

f
P (∇f,X) = 0

expressing that ρ and hence the scalar curvature Scal are locally constant on
the level sets of f , hence by Equation (145) σ1 and µ2 are locally constant on
the level sets of f . So |∇f |2, µ1 and µ2 are all locally constant on the level sets
of f in U .

Let c := f(p) and N ⊂ U be the connected component of f−1(c) containing
p in U . Since |∇f | ̸= 0 on N it follows that (N, gN ) is a Riemannian hyper-
surface of (M, g). One can choose a coordinate chart (t1, ..., tn−1) on the level
hypersurface N . We are interested to extend this chart to a neighborhood of
p in M using f . For that purpose, we note that as the norm |∇f | is locally
constant on the level sets of f in U it may be considered as a function of f , i.e.
|∇f | = |∇f |(f). It follows that

d(
1

|∇f |
df) = d(

1

|∇f |
) ∧ df = −d|∇f |

|∇f |2
df ∧ df = 0 (147)
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meaning that 1
|∇f |df is locally closed and hence exact in U . Therefore, there

exists a smooth function t on U such that

dt =
1

|∇f |
df with t = t(f) =

∫ f

N

df

|∇f |
(148)

respectively |∇t| = 1. Additionally, the symmetry of Hess t together with the
equation |∇t| = 1 implies

Hesst(∇t,X) = g(∇∇t∇t,X) = g(∇X∇t,∇t) = 1

2
∇X |∇t|2 = 0; X ∈ TM

from which by the non-degeneracy property of g it follows that ∇∇t∇t = 0.
Accordingly the trajectories of ∇f

|∇f | , i.e. integral curves of ∇t, are geodesics

which are normal to level sets of f in U .
Consequently we may extend the coordinate chart on N to geodesic parallel

coordinates (t, t1, ..., tn−1) in a neighborhood of p satisfying:
- the t-lines are geodesics with t as arc length.
- ∂∂t is orthogonal to every set {(t, t1, ..., tn−1)| t = constant}, i.e. g( ∂∂t ,

∂
∂ti

) =
0, i = 1, ..., n− 1.
This shows that the different t-levels are parallel to each other and the distance
between them equals the difference of t-values.

Now consider the f -levels {q| f(q) = constant} where the t-level containing
p, for which t = 0, coincides with f−1(c). As |∇f | is constant along the level
sets of f in U , see Remark 5.12, they are also parallel to each other. Therefore,
the t-levels coincide with the f -levels and we can consider f as a function of t
alone:

f(t, x) = f(t) and ∇f(t, x) = f ′(t)
∂

∂t
(149)

where f > 0 because M is boundaryless. Since µ1 and µ2 are locally constant
on the level sets of f in U they may also be considered as functions of f by
which (149) it follows then that they are functions of t, e.g. µ2(t) = (µ2of)(t),
which would be given then by (58) & (59).

From dt = 1
|∇f |df , i.e. t a distance function, it follows that the metric g in

U ∋ p can be decomposed into

g =
1

|∇f |2
df ⊗ df + gf (150)

where gf represents a Riemannian metric on a level set of f in U with tangent
space orthogonal complement to the space generated by the unit normal vector
field ∇f

|∇f | . By (150) and the fact that the eigenvalue µ1 of Hessf corresponds

to ∇f and µ2 corresponds to vector fields orthogonal to it, we obtain

Hessf = µ1.
1

|∇f |2
df ⊗ df + µ2gf . (151)
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From Equation (151) one obtains L∇fgf = 2Hessf |gf = 2µ2gf by which Equa-
tion (150) gives out a local warped structure in U in terms of t:

We replace the first term on the line element (150) by df
|∇f | = dt giving

g = dt2 + gt (152)

where t = 0 corresponds to N ⊂ f−1(c). Now we work on gt to acquire the
desired structure. Let X be a lift of a vector field on N , then g(∂t,X) = 0 by
the Gauss-Lemma. Also for vectors X1, X2 tangent to N at x0 let Xi(t) = d
exp(t, x0)(Xi), i = 1, 2 then

d

dt
|t=sg(X1, X2)(t) = L∂tg(X1, X2)(s) =

1

f ′(s)
L∇fg(X1, X2)(s)

=
2

f ′(s)
Hessf(X1, X2)(s) =

2

f ′(s)
µ2(s)g(X1, X2)(s) (153)

where LZg(X,Y ) = g(∇XZ, Y )+ g(X,∇Y Z) is the Lie derivative of the metric
in direction of the vector field Z. By an integration step from (153) we obtain

gt =
(
e
∫ t
0

1
f′(s)µ2(s)ds

)2

gN⊂f−1(c).

Therefore we may write (152) as the warped structure

g = dt2 + u2(t)gN , t ∈ (−ε, ε) (154)

where

u(t) = e
∫ t
0

1
f′(s)µ2(s)ds. (155)

To confirm (154) is a warped product metric it remains to show that gN is
independent of t, and also, is non-degenerate. For X1 and X2 as above, the
mapping t 7−→ (u(t))−2g(X1, X2)(t) satisfies the differential equation

(
g(X1, X2)

u2
)′(t) =

d
ds |s=tg(X1, X2)(s)

u2(t)
− 2u′(t)

u3(t)
g(X1, X2)(t) = 0 (156)

expressing gN (X1, X2) = g(X1,X2)
u2(t) is independent of the coordinate function t

and hence one may introduce this expression as gN (t1, ..., tn−1). To see gN is
non-degenerate, suppose gN (X,Y ) = 0 for some X and all Y tangent to N . On
the other hand by (154) we have g(X, ∂t) = 0. As the metric g is non-degenerate
we obtain X = 0. By Proposition 4.35 the equations (55) and (56) are satisfied
for a boundaryless manifold.

Now suppose that p ∈ ∂M . Then through the same discussion as above and
noting that due to N ⊆ ∂M the trajectory geodesics of ∇f starting at N point
only to one side, e.g. to its positive side, it follows that there exist geodesic
parallel coordinates (t, t1, t2, ..., tn−1) in a neighborhood of p with t ∈ [0, ϵ),
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t(p) = 0 for which the result holds. Moreover the conditions (55), (56), (57) in
Proposition 4.35 hold on U .

Considering the way of defining the function t at above, we see that t is
smooth as far as ∇f ̸= 0, cf. Equation (148), including the points at which
σ1 = σ2.

By smoothness of the metric g and t it follows that we have a warped product,
where gN is an Einstein Riemannian hypersurface of (M, g), along all of t as

long as ∇f ̸= 0, therefore on the whole Ũ . In parallel, to extend the relations

f = f(t), and (55), (56), (57) as far as ∇f ̸= 0 (so on the whole Ũ ) we use
again a similar discussion as above.

Now we see that any metric of this form whose Schouten and hence the Ricci
tensor has two distinct eigenvalues must have gN Einstein. By Lemma 4.23.(41)

the first eigenvalue of the Ricci tensor would be γ1 = −(n − 1)u
′′(t)
u(t) . As the

second eigenvalue γ2 corresponds to vectors X,Y ⊥ ∂t, using Lemma 4.23.(36)
we have

Ric(X,Y ) = γ2g(X,Y ) = RicN (X,Y )− 1

u2
[(n− 2)u′2 + uu′′]g(X,Y )

thus

RicN (X,Y ) = (γ2 +
1

u2
[(n− 2)u′2 + uu′′])g(X,Y )

implying that gN is Einstein. Moreover, using Lemma 4.29 a metric in this
form is conformally flat if and only if gN has constant curvature. Therefore the

conclusion of the theorem is satisfied on the whole Ũ .

2) ⇒ 1): Suppose by contradiction that ∇f(p) = 0. If it is Case (b) then
by Proposition 4.9 it is a contradiction. If it Case (a), then we may consider
geodesic polar coordinates with origin at p, hence it must satisfy u(a) = 0,
a = t(p), cf. Remark 6.1. This is a contradiction with the assumption.

Let the metric be isometrically g = dt2 + u2(t)gN where gN is an Einstein
hypersurface with ϱN = k, and equations (55), (56), (57) be satisfied by u =
u(t) > 0 and f = f(t) ≥ 0. Then Proposition 4.35 implies that (M, g, f) satisfies
Equation (11) of (λ, n+m)-Einstein manifolds around p.

By Lemma 5.9 the manifold (M, g) has harmonic Weyl tensor and satisfies
W (∇f, ., .,∇f) = 0 around p.

In the Riemannian case, Catino proved existence of a local warped product
metric with (n − 1) dimensional Einstein fibre around regular points of f in a
(λ, n +m)-Einstein manifold (M, g, f), see [Cat12, Theorem 1.1]. In this The-
orem Catino assumes harmonicity of the Weyl tensor W and W (∇f, ., ., .) = 0.
The assumption W (∇f, ., ., .) = 0 by Catino is stronger than the corresponding
one, i.e. W (∇f, ., .,∇f) = 0, in [HPW12, Theorem 7.1] and Theorem 6.5. Also,
the condition p ∈ O in [HPW12, Theorem 7.1] is stronger than the condition
∇f |p ̸= 0 in Theorem 6.5. Therefore, Theorem 6.5 is a stronger and more
general result.
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Lemma 6.6. Let m > 1, λ ∈ R and (M, g, f) satisfies Equation (11) of a non-
trivial (λ, n+m)-Einstein manifold with harmonic Weyl tensor and (∇f, ., .,∇f) =
0. In addition, suppose that for a coordinate system (t, t1, t2, ..., tn−1) the metric
is of the form

g = dt2 + u2(t)gN , t ∈ [−ϵ, ϵ], ϵ ∈ R+ (157)

where u(t) > 0 on (−ϵ, ϵ) and the function satisfies

f(t, x) = f(t), x ∈ N. (158)

If u(a) = 0, a ∈ {−ϵ, ϵ}, then f ′(a) = 0.

Proof. By contradiction suppose that f ′(a) ̸= 0. Then by the proof of Theorem
6.5 we see that the warped product is extendable to a neighborhood of t = a,
hence the warping function must satisfy u(a) > 0, which is a contradiction to
the assumption u(a) = 0.

Corollary 6.7. Under the same assumptions as Theorem 6.5.1) we have u(t) >
0 if and only if f ′(t) ̸= 0 (equivalently u(t0) = 0 if and only if f ′(t0) = 0 where
t0 is the first zero for them ).

Proof. By combination of Theorem 6.5, Lemma 6.6 and Remark 6.1 the result
follows.

6.3 Local characterization of Riemannian (λ, n+m)-Einstein
metrics (M, g, f) around critical points of f

In the Riemannian setting, as in subsection 6.1, in geodesic polar coordinates
(t, x) ∈ R × S(1) we consider local warped product metrics of the form dt2 +
u2(t)g1(x), (t, x) ⊂ R×Sn−1(1), where g1 is the induced metric on the standard
sphere Sn−1(1). Hence at critical points of f being located at the origin of local
geodesic polar coordinates the warping function vanishes, i.e. u(0) = 0, cf.
Remark 6.1,

In this subsection we first show that under the assumptions of harmonicity
of the Weyl tensor and W (∇f, ., .,∇f) = 0, critical points of f in a Riemannian
(λ, n + m)-Einstein metric, in geodesic polar coordinates with origin located
at the critical points, are isolated and the level sets close to critical points are
isometric to spheres. Around critical points of f , under some conditions on
the warping function of a given warped product the metric is conformally flat.
Via these properties we then locally characterize non-trivial (λ, n+m)-Einstein
manifolds (M, g, f) around critical points of f in the Riemannian case.

Lemma 6.8. Let m > 1, λ ∈ R and (M, g) be a connected Riemannian man-
ifold with a smooth function f defined on M . Assume that (M, g, f) satisfies
Equation (11) of a non-trivial (λ, n +m)-Einstein metric with harmonic Weyl
tensor satisfying W (∇f, ., .,∇f) = 0 in a neighborhood of p ∈M with ∇f |p = 0.
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Then there exists a neighborhood U of p such that

(i) p is the only critical point of f in U ,

(ii) The level hypersurfaces of f in U coincide with the geodesic distance
spheres around p.

Proof. At first we consider geodesic polar coordinates with origin at p. We
choose U such that every point in U has a unique and shortest geodesic joining
it with p. Then we consider q to be a regular point of f . By Remark 5.12 we
have f(p) ̸= f(q). Let A := {q̄ ∈ U |f(q̄) = f(q)} consisting of only regular
points. Consider the trajectory geodesics of ∇f starting at the hypersurface A
and pointing to one of its sides, without loss of generality to the side containing
p. A contains a point q0 realizing the distance

s0 := d(p, q0) = d(p,A ) > 0.

EITHER there is a minimizing geodesic γ0 joining p and q0 consisting only of
regular points of f (the case considering the possibility of existing a critical
point of f between p and q0 along γ0 will be investigated in the rest of this
proof). This realizes the distance between γ0(0) = p and γ0(s0) = q0. By the
Gauss lemma γ0 meets A perpendicularly. Consequently by a discussion in
the proof of Theorem 6.5 γ0 is the same curve (up to parameterization) as the
trajectory of ∇f through q0. Any other point q1 ∈ A yields similarly a geodesic
trajectory γ1 of ∇f . Let γ1(s0) = q1. Then the claim is that γ1(0) = p. To
see this let dM and dA (s) denote the distance functions in M and the level set
A (s) corresponding to the parameter s, respectively. Then for any s > 0

dM (γ0(s), γ1(s)) ≤ dA (s)(γ0(s), γ1(s))

=
u(s)

u(s0)
dA (s0)(γ0(s0), γ1(s0)). (159)

For the last equality in (159) we used the warped product metric according to
Theorem 6.5. Since the critical point p is located at the origin of geodesic polar
coordinates we have u(0) = 0, cf. Remark 6.1. It follows then

dM (γ0(0), γ1(0)) = lim
s→0

dM (γ0(s), γ1(s))

≤ lim
s→0

u(s)

u(s0)
dA (γ0(s0), γ1(s0)) = 0. (160)

Therefore, γ1(0) = γ0(0) = p, and A is contained in the geodesic distance sphere
with radius s0 around p. On the other hand it follows that the arc length pa-
rameter on the trajectories is just the geodesic distance to p. Therefore p is
the only critical point in U , and the f -levels coincide there with the geodesic
distance spheres around p.

OR the same argument as above shows that in a certain minimal distance s1
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(< s0) there are critical points, the same distance on each trajectory, and ulti-
mately all trajectories pass through the same critical point p1. Then there are
only regular points between p1 and q. This implies that in an open neighbor-
hood p1 is surrounded by non-critical level sets of f (all diffeomorphic with the
(n − 1)-sphere), so this critical point p1 is also isolated. But by connectedness
there can not be two critical points p and q1 at the same side of A .

Corollary 6.9. The same procedure on the other side of A shows that either
there is no critical point or there is precisely one other critical point p′ with the
same properties. In combination this seems to show that three or more critical
points are impossible if A is connected (compare Theorem 6.10 and Theorem
6.12). If A is not connected one has the same situation for each component
separately.

Theorem 6.10. Let m > 1, λ ∈ R and (M, g) be a Riemannian manifold with
a smooth function f defined onM . Then the following conditions are equivalent:

1) (M, g, f) is conformally flat and satisfies Equation (11) of a non-trivial
(λ,n+m)-Einstein metric in a neighborhood of p ∈M with ∇f |p = 0.

2) There exist polar coordinates (t, t1, ..., tn−1) ∈ I × Sn−1(1), I ⊆ R being
an open interval, in a neighborhood of p and an odd function u = u(t), i.e.
u(0) = u(even)(0) = 0, with u(t) > 0 on t ∈ I − {0} and 0 ̸= (u′)2(0) = k, such
that in these coordinates f = f(t) and

g = dt2 +
u2(t)

k
gSn−1(1) (161)

where gSn−1(1) denotes the line element of the standard unit sphere Sn−1(1); In
addition, the conditions (55) and (56) in Proposition 4.35 hold.

Proof. 1) ⇒ 2) We consider a neighborhood U of p such that g|U be con-
formally flat. This provides g with harmonic Weyl tensor and the property
W (∇f, ., .,∇f) = 0 on U . Hence, by Lemma 6.8 we already know that (after
restriction of U if necessary) p is the only critical point of f in U . In addition,
by Theorem 6.5 and Lemma 6.8 we may introduce locally coordinates such that
for t ̸= 0

g = dt2 + u2(t)gN

f(t, x) = f(t), x ∈ N (162)

where gN is the induced metric on a regular level set N of f . By smoothness of
f and g it follows that the equations in (162) for f and g hold at the time t = 0
as well.

Let X,Y be two orthonormal vectors in M which are tangent to a level
hypersurface N = {q|f(q) = t0 > 0} for sufficiently small t0. By Equation (36)
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(ϵ = 1) the sectional curvatures Sec resp. SecN of the (X,Y )-plane in (M, g)
resp. (N, gN ) satisfy

Sec = g(R(X,Y )Y,X)

= g(RN (X,Y )Y,X)− (u′(t0))
2

(u(t0))2

=
1

(u2(t0))2
(SecN − (u′(t0))

2).

On the other hand, gN is independent of t when it tends to zero, cf. the proof
of Theorem 6.5. Since u(0) = 0, cf. Remark 6.1, it follows that

0 = lim
t→0

(SecN − (u′(t))2) = SecN − (u′(0))2.

It implies that (N, gN ) is a space of constant curvature SecN = (u′(0))2, and
hence either SecN > 0 or SecN = 0. We already know that N is a geodesic
distance sphere which is diffeomorphic to Sn−1, hence the case SecN = 0 can not
occur. Because in this case N will be flat with Euclidean space as its universal
cover, while we know that the universal cover of any sphere is itself. Therefore
SecN > 0.

Consequently (u′(0))2 > 0 and gN = 1
(u′(0))2 gSn−1(1). Moreover using Propo-

sition 4.35 via multiplying both sides of Equation (65) with u2(t) and then tak-
ing the limit while t tends to 0 as well as noting Proposition 4.9, which implies
f(0) ̸= 0, one obtains u′2(0) = k. Hence gN = 1

kgSn−1(1). By our assumption
the metric g is everywhere smooth and has no singularity at t = 0. Therefore
using the same calculation as [Pet16, 1.4.4] we conclude that u(t) is an odd
function at t = 0, i.e. u(even)(0) = 0 and Equation (161) is valid for all t ≥ 0
as the usual expression of the Euclidean metric in polar coordinates. Since u(t)
and f(t) are continuous and since by assumption (M, g, f) satisfies Equation
(11), by Proposition 4.35 the conditions (55) and (56) are satisfied.

2) ⇒ 1) In order to see that ∇f |p = 0 we use the assumption u(0) = 0
together with Lemma 6.6. In order to see that Equation (161) together with
f = f(t), t ∈ I, satisfies Equation (11) of a (λ, n + m)-Einstein manifold in
polar coordinates, one may apply Theorem 6.5 for all points except t = 0.
The oddness of the function u(t), i.e. u(even)(0) = 0, and 0 ̸= u′2(0) = k
yields that the right hand side of (161) has no proper singularity at t = 0.
Thus by continuity Equation (11) holds at t = 0 as well. Moreover, since by
assumption the function u(t) in (161) satisfies u′(0) ̸= 0 and u(even)(0) = 0,
via similar calculations to the proof of [KR97a, Proposition 3.5] we see that the
local warped metric (161) is conformally flat.

Reminder: In Theorem 6.10 if in addition (M, g) is Einstein then Hessf
would be proportional to the metric g. In this situation there is already a
characterization by [Küh88, Lemma 18] in terms of a local warped decomposition
of g with f ′(t) as the warping function.
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6.4 Global characterization of Riemannian (λ, n+m)-Einstein
metrics (M, g, f) based on [HPW12, Theorem 7.1]

Theorem 6.11. ( [HPW12], Theorem 7.2). Let m > 1 and suppose that (M, g)
is complete, simply connected Riemannian manifold and has harmonic Weyl ten-
sor and W (∇f, ., .,∇f) = 0, then (M, g, f) is a non-trivial (λ, n+m)-Einstein
metric if and only if it is of the form

g = dt2 + u2(t)gN

f = f(t)

where gN is an Einstein metric. Moreover, if λ ≥ 0 then (N, gN ) has non-
negative Ricci curvature, and if it is Ricci flat, then u is a constant, i.e, (M, g)
is a Riemannian product.

There are some points to be discussed on Theorem 6.11. The first point:
In Theorem 6.11 the authors assume the manifold is simply connected, while
through the next result we see that “simply connected” is not needed in the
formulation of the theorem.

The second point: Under the assumptions of the theorem the number of
critical points of f can be at most two, cf. Corollary 6.9 or Theorem 6.12. In
particular the warped product structure is global, i.e. complete, if there are no
critical points for f , see Corollary 6.13.

The third point: It is necessary to show that the critical points of f are
isolated, cf. Lemma 6.8. Additionally, in order that the local warped product
g = dt2 + u2(t)gN on M −{critical points of f} can be extended to a metric on
M we need that the warping function u(t) be odd on the critical points of f ,
i.e. u(even)(γ0) = 0 where γ0 = t(q) with ∇f(q) = 0, as well as u′(γ0) ̸= 0, cf.
Theorem 6.10.

The fourth point: Although the relations between u(t) and f(t) are investi-
gated for some specific cases such as (0, n+m)-Einstein and (λ, 2+m)-Einstein
metrics in [HPW12], but for a (λ, n+m)-Einstein metric they are not in general
formulated. To generally relate u(t) and f(t) in the formulation of the theorem
we may use (55), (56) and (57) of Proposition 4.35.

The fifth point: By Lemma 5.9 we may include the properties harmonicity
of the Weyl tensor of (M, g) and W (∇f, ., .,∇f) = 0 in the characterization
equivalence. In other words these two properties may be moved from being as
assumption to be used in the equivalence relation of the characterization. This
is due to Lemma 5.9 which says that any warped product g = dt2+u2(t)gN with
Einstein fibre gN has harmonic Weyl tensor and satisfies W (∇f, ., .,∇f) = 0.

Now considering all these points together we can restate the global statement
[HPW12, Theorem 7.2] as follows

(
[( means either [ or (, similarly does )]

)
.

Theorem 6.12. Let m > 1, λ ∈ R and (M, g) be a connected Riemannian
manifold with a smooth function f on M . Then the following conditions are
equivalent:
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1) (M, g, f) is a non-trivial (λ, n+m)-Einstein metric with harmonic Weyl
tensor and W (∇f, ., .,∇f) = 0.

2) If C denotes the set of critical points of f then N ′ := |C| ≤ 2, and
(M \ C, g) is isometric with a warped product metric

g = dt2 + u2(t)gN (163)

f = f(t) (164)

on I × N where (N, gN ) is a complete Einstein Riemannian hypersurface of
(M, g) with normalized scalar curvature k = ϱN and I = [(α0, β0)] ⊂ R which is
unlimited in both sides, i.e. I = (−∞,∞) if there is niether a critical point for
f nor a boundary point of M . Otherwise, it is closed in the left i.e. I = [α0, β0)]
with α0 ∈ R if there exists a point q0 ∈ ∂M with f(q0) = f(α0) = 0 (or similarly
I = [(α0, β0] with β0 ∈ R for a boundary point q0 with f(q0) = f(β0) = 0). Or,
I = (α0, β0)] has finite α0 with open left side (or I = [(α0, β0) has finite β0 with
open right side) only if it corresponds to a minimum (or maximum) point q0 of
f with f(q0) = f(α0) (or f(q0) = f(β0)). In addition, in the latter case where
γ0 = α0 (or γ0 = β0) is finite and corresponds to a critical point q0, u = u(t)
is odd at γ0, i.e. u

(even)(γ0) = 0, with u′(γ0) ̸= 0. In all cases f((α0, β0)) > 0,
and, f(α0) = 0 if {α0} ×N ∈ ∂M (or f(β0) = 0 if {β0} ×N ∈ ∂M).
The product I ×N becomes complete if we add the set C of critical points to it.
In addition, f = f(t) and u = u(t) satisfy the equations (55), (56) and (57) in
Proposition 4.35.

Proof. 1) ⇒ 2): By Lemma 6.8, C is a set of isolated points. For every fixed
point q ∈ M \ C, by Theorem 6.5 there is an open neighborhood U ∋ q in
which equations (163) and (164) hold. Where gN , N := {x ∈ M |f(x) = f(q)},
is an Einstein Riemannian hypersurface of (M, g) say with normalized scalar
curvature k = ϱN . The hypersurface (N, gN ) is complete as every Cauchy
sequence in N converges in M . Accordingly we have U = (α, β) × N . The
trajectory through q is the unique geodesic with tangent ∂

∂t . By completeness
this is defined for every parameter t as far as does not hit the boundary ∂M .

We define α0 and β0 to be the infimum and supremum of α, β such that
(163) holds for (α, β) ×N . Here the extension to (α0, β0) ×N is regardless of
whether or not the points belong to the set O. In fact, it continues as long as
the points lie in regular level sets of f , cf. Theorem 6.5. Moreover, a similar
discussion as in Theorem 6.5 implies that f(t, x) = f(t) on (α0, β0)×N where
x ∈ N .

If α0 (or β0) is finite then there is a limit point q0 on this geodesic with
f(q0) = f(α0) (or f(β0)). If q0 is boundary point i.e. f(q0) = f(α0) = 0
(or f(q0) = f(β0) = 0) by Proposition 4.9 it follows that ∇f(q0) ̸= 0. Thus
Equation (148) in the proof of Proposition 6.5 implies that t would be also
smooth at α0 (or β0). Therefore by smoothness of g, f , t the condition (163) and
(164) are valid at α0 (or β0) as well. In addition, since {α0}×N (or {β0}×N) is
a component of ∂M by completeness we have f−1((−∞, β0)]) = f−1((α0, β0)])
(or f−1([(α0,∞)) = f−1([(α0, β0))).
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If q0 is not a boundary point then it must be a critical point of f because
otherwise by the argument in Theorem 6.5 Equation (163) could be extended
to a neighborhood of q0 which is a contradiction. Furthermore q0 is a minimum
(a maximum) of f , because by Theorem 6.10 u′(q0) ̸= 0 and hence Hess f is
definite at q0. By connectedness no other critical points can occur, cf. the proof
of Lemma 6.8. Hence the number of critical points of f is at most two, i.e.
N ′ := |C| < 2. Moreover, by our assumption the metric g and f are everywhere
smooth and have no singularity at γ0 = α0. Hence through the same calculation
as in [Pet16, 1.4.4] it follows that u(t) is an odd function at γ0 = α0 (or β0),
i.e. u(even)(γ0) = 0, where γ0 ∈ R and u′(γ0) ̸= 0 and moreover equations (163)
and (164) are valid for all t ∈ (α0, β0) and for α0 ∈ R (or β0 ∈ R).

I × N becomes complete if it be added with the set C of critical points of
f . In more details, when N ′ = |C| = 0 it would be global, i.e. complete. If
N ′ = 1 then it would be complete by adding the only critical point which is
the minimum of level f(α0) (or the maximum of level f(β0)). If N ′ = 2 then
I ×N becomes complete by adding the minimum of level f(α0) as well as the
maximum of level f(β0).

Moreover, due to smoothness of g, f and t as well as oddness of u(t) at finite
γ0 = α0 (or γ0 = β0), i.e. u

(even)(γ0) = 0, the functions u = u(t) and f = f(t)
satisfy the equations (55), (56) and (57) in Proposition 4.35.

2) ⇒ 1): By assumption (M \ C, g) is isometric with dt2 + u2(t)gN and
f(t, x) = f(t) on I ×N ; x ∈ N where I = [(α0, β0)]. Also, by assumption even
derivatives of u(t) vanish, i.e. u(t) is odd, at finite end points of the interval I
when they correspond to a critical point of f . Therefore, the warped product
metric extends smoothly to a metric on M .

Since by assumption I ×N becomes complete after addition with the set C
of critical points of f we conclude that the metric g is complete as well.

By assumption, u(t) and f(t) satisfy equations (55), (56) and (57) in Propo-
sition 4.35 on I. On the other hand u(t) is odd on the critical points of f .
Therefore, by Proposition 4.35 it follows that (M, g, f) is a (λ, n+m)-Einstein
manifold.

As gN is Einstein, by Lemma 5.9 and smoothness of the metric (163) due
to oddness of u(t) at critical points of f we conclude that (M, g) has harmonic
Weyl tensor and satisfies W (∇f, ., .,∇f) = 0.

Corollary 6.13. Let m > 1, λ ∈ R and (M, g) be a connected Riemannian
manifold (without boundary) on which a smooth function f is defined. Then the
following conditions are equivalent:

1) (M, g, f) is a non-trivial (λ, n+m)-Einstein metric with harmonic Weyl
tensor and W (∇f, ., .,∇f) = 0 and where f has no critical point.

2) g = dt2 + u2(t)gN on R × N where (N, gN ) is a complete Einstein Rie-
mannain hypersurface of (M, g) say with normalized scalar curvature ϱN = k,
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in addition f = f(t) : R → R+ which together with u = u(t) : R → R+ satisfies
the two equations in Proposition 4.35.1).

Remark 6.14. For a manifold (M, g) with boundary suppose that the metric
locally satisfies g = dt2 + u2(t)gN . If after some time f(t0) = 0 then by Propo-
sition 4.9 it follows that f ′(t0) ̸= 0, and hence via Corollary 6.7 u(t0) > 0.
This implies that {t ∈ I|u(t) = 0 = f(t)} = ∅. Moreover, if (t0, n) ∈ ∂M then
{t0}×N is a level set of f , also, a component of ∂M . Therefore by completeness
of (M, g) every maximal geodesic γ(t) hitting the boundary at {t0} × N must
stop when reaches γ(t0) and there is no level set of f past t = t0.

6.5 Some investigation on Riemannian (λ, n+m)-Einstein
metrics of constant scalar curvature satisfying addi-
tional curvature conditions

Proposition 6.15. Let m > 1, λ > 0 and (M, g, f) be a Riemannian non-trivial
(λ, n+m)-Einstein metric with harmonic Weyl tensor and W (∇f, ., .,∇f) = 0.
Then (M, g) is diffeomorphic to sphere with the standard metric.

Proof. By Theorem 4.18 M is compact, thus the function f must have at least
two critical points. Through the same argument as [Küh88, Theorem 21.(i)] the
result follows.

Proposition 6.16. Let m > 1, λ > 0 and let (M, g, f) be a Riemannian non-
trivial (λ, n+m)-Einstein metric with harmonic Weyl tensor andW (∇f, ., .,∇f) =
0. In addition, suppose (M, g) is of constant scalar curvature and has no bound-
ary. Then (M, g) is isometric with the standard sphere of certain radius.

Proof. From Proposition 6.15 we know that (M, g) is diffeomorphic to the
sphere. Additionally, by the same argument as Theorem 6.10 we obtain in

M \{p, q} the expression g = dt2+ u2(t)
k gSn−1(1) where the elements p, q show the

critical points of f on a compact manifold M . Then using the same calculation
as [Küh88, Theorem 24] together with Lemma 4.26.(iv) the result follows.

Corollary 6.17. ( [CSW11], Proposition 3.6). Let m > 1 and (M, g, f) be
a Riemannian (λ, n + m)-Einstein metric with constant scalar curvature and
λ ̸= 0, then the scalar curvature is bounded by nλ and nρ. Furthermore if
Scal = nλ or Scal = nρ, then the manifold is Einstein.

If a Riemannian (λ, n + m)-Einstein metric (M, g, f) is of constant scalar
curvature it may be classified by rigidity in the sense of [HPW14], see also
[HPW15] for further results.
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7 Local characterization of pseudo-Riemannian
(λ, n+m)-Einstein metrics and the Brinkmann
case

In this section we generalize the characterization around a regular point of f
from Riemannian to pseudo-Riemannian setting. We then discuss a related
result in dimension 4. We classify non-trivial pseudo-Riemannian (λ, n + m)-
Einstein manifolds (M, g, f) with harmonic Weyl tensor andW (∇f, ., .,∇f) = 0
around critical points of f which in addition are assumed to be isolated. We
already know that at least in the case f is a Morse function critical points will
automatically be isolated. In addition, we investigate the so-called Brinkmann
spaces for (λ, n +m)-Einstein manifolds in the pseudo-Riemannian setting. In
this case in particular the metric can be written in the form of g = 2dt1dt2 +
g∗(t1) where the (n− 2)-dimensional metric g∗(t1) does not depend on t2.

7.1 Local characterization of pseudo-Riemannian (λ, n +
m)-Einstein metrics (M, g, f) around points at which
g(∇f,∇f) ̸= 0

In this subsection we generalize our local result Theorem 6.5 from the Rieman-
nian to the pseudo-Riemannian setting by means of assuming |∇f | ≠ 0 instead
of ∇f ̸= 0. In fact, the generalization excludes not only the critical points of f
but also the points at which ∇f is null. We start with the following statement
which plays an essential role.

Proposition 7.1. Let (Mn, g) be a pseudo-Riemannian manifold of dimension
n > 3. Also let (M, g, f) be a (λ, n+m)-Einstein manifold with harmonic Weyl
tensor and W (∇f, ., .,∇f) = 0. Also suppose g(∇f,∇f) ̸= 0 in the connected
component Ap of the level set of f containing p ∈M . Then the Schouten tensor
S has at most two eigenvalue functions defined in Ap, say σ1 and σ2. If it has
two eigenvalues, then dim Vσ1

= 1 and dim Vσ2
= n−1 (> 1) where Vσi

, i = 1, 2
denotes the eigenspace corresponding to eigenvalue function σi and where as in
Lemma 5.14 σ1 signifies the eigenvalue function relevant to ∇f . Moreover σ2
is constant along the level sets of f in Ap. If it has only one eigenvalue, say σ,
then dim Vσ = n and σ would be constant along the level sets of f in Ap.

Proof. By Lemma 5.14 there are at most two eigenvalue functions σ1 and σ2
in Ap. Suppose σ1 ̸= σ2. Let x 7→ Vσi(x)(x), i = 1, 2 denotes the smooth
eigenspace distribution Vσi for the eigenvalue function σi. Then, by Lemma 5.14
dim Vσ1 = 1 and dim Vσ2 > 1 when n > 2. For eigenvalue functions λ, µ ∈ {σi},
i = 1, 2 and for vector fields X,Y, Z where Y ∈ C∞(Vµ), X ∈ C∞(Vλ) using
the Leibniz rule one obtains

(∇ZS)(X,Y ) = ∇Z(S(X,Y ))− S(DZX,Y )− S(X,DZY )

= ∇Z(λg(X,Y ))− µg(∇ZX,Y )− λg(X,∇ZY ) ⇒
(∇ZS)(X,Y ) = Z(λ)g(X,Y ) + (λ− µ)g(∇ZX,Y ). (165)
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Now let λ = µ = σ2 and X ∈ C∞(Vλ=σ2) not lightlike. Then the restriction
of the metric to the orthogonal of X inside Vσ2 is non-degenerate. Therefore,
we can find locally a non-zero Y ∈ C∞(Vσ2

) there which is not a null vector
and which satisfies g(X,Y ) = 0. Since dim (Vλ) > 2 we can always choose such
Y ∈ C∞(Vσ2

). Furthermore using Equation (165) for λ = µ (= σ2) and for Z =
X, and since, the tensor S is Codazzi we obtain |Y |2.X(λ) = (DXS)(Y, Y ) =
(DY S)(X,Y ) = 0 which by |Y |2 ̸= 0 it follows that X(σ2) = X(λ) = 0. Hence
X(σ2) = X(λ) = 0 for all X in Vσ2

which are not lightlike. However, any
lightlike vector can be approximated by a non lightlike vector. In this regard
there are two statements:
1) Every non-zero vector X is the limit of a sequence of non lightlike vectors
Xn.
2) If Xn(σ2) = 0 for all n, then passing to the limit X(σ2) = 0 also holds.

Statement 1) follows since in an orthonormal basis the metric has the form
x2 − y2 where X=(x,y) are coordinates of the vector. Therefore, if x2 − y2 = 0
and, for instance, x ̸= 0, then Xn = X + ( xn , 0) will be the approximation we
are looking for.

Statement 2) follows since Xn(σ2) = dσ2(Xn). Now the differential dσ2 of
σ2 is linear and hence it is continuous and therefore

0 = lim
n
Xn(σ2) = lim

n
dσ2(Xn) = dσ2(lim

n
Xn)) = dσ2(X) = X(σ2).

Therefore, X(σ2) = 0 for all vectors X ∈ Vσ2
, consequently σ2 is constant along

the level sets of f in Ap.
If σ1 = σ2 = σ in Ap, then by the proof of Lemma 5.14 we have dimVσ = n.

Moreover, via calculation we get Ric = ( Scal
2(n−1) + σ)g through which taking

the trace of both sides gives out σ = n−2
2n(n−1)Scal. So it becomes Ric = Scal

n g

implying that Scal and hence σ are constant along the level sets of f in Ap.
In the literature we may find that the relation Ric = Scal

n g on a neighborhood
implies that Scal is constant on the neighborhood.

From the literature we already know that around a boundary point p ∈ ∂M
there exists a local coordinate system (t, t1, ..., tn−1) with t ≥ 0 where ∂M
corresponds to t = 0. In the generalization of Theorem 6.5, since we use very
similar steps we just provide a brief proof.

Theorem 7.2. Let m > 1, λ ∈ R and (M, g) be a pseudo-Riemannian manifold
and f a smooth function on M . Then the following conditions are equivalent:

1) (M, g, f) satisfies Equation (11) of a non-trivial (λ, n+m)-Einstein met-
ric with harmonic Weyl tensor and W (∇f, ., .,∇f) = 0 in a neighborhood of p
with g(∇f,∇f)|p ̸= 0.

2) (a) Case p ∈ int(M): There exist local coordinates (t, t1, ..., tn−1) with
t ∈ (−ε, ε) in a neighborhood of p ∈ M and an Einstein Riemannian hyper-
surface (N, gN = gN (t1, ..., tn−1)) of (M, g) with normalized scalar curvature
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ϱN = k and a function u = u(t) > 0, in addition f = f(t) > 0 satisfying (55)
and (56) in Proposition 4.35 such that

I) g(∂t, ∂t) = ϵ, ϵ := sign g(∇f(p),∇f(p)) ∈ {±1}
II) g(∂t, ∂ti) = 0, for i = 1, ..., n− 1
III) g(∂ti , ∂tj ) = u2(t)gN (∂ti , ∂tj )(t1, ..., tn−1) i, j = 1, ..., n− 1.

(b) Case p ∈ ∂M : There exist local coordinates (t, t1, ..., tn−1) with t ∈ [0, ε)
in a neighborhood of p and an Einstein Riemannian hypersurface (N, gN =
gN (t1, ..., tn−1)) of (M, g) with normalized scalar curvature ϱN = k and a func-
tion u = u(t) > 0, in addition f(t) > 0 for all t ∈ (0, ε) satisfying (55) & (56)
as well as f(0) = 0 satisfying (57) at t = 0 such that the conditions I, II, III
in (a) holds.

Any case of 2) implies that g = ϵdt2 + u2(t)gN around p. If the metric is lo-
cally conformally flat in a neighborhood of p then N must be a space of constant
curvature.

Proof. 1)⇒ 2): By Lemma 5.14 the Schouten tensor has at most two eigenvalues

σ1 and σ2 in a neighborhood Ũ of p with g(∇f,∇f)|
Ũ

̸= 0. Without loss of

generality suppose p ∈ O ∩ Ũ , i.e. σ1(p) ̸= σ2(p) (otherwise we may start with

a point p0 ∈ O ∩ Ũ and still get the same result).

For more convenience we first assume p ∈ int(M). Let U ⊂ O ∩ Ũ be a
neighborhood of p with compact closure. Thus the Schouten tensor S has two
distinct eigenvalues σ1 and σ2 in U where σ1 denotes the eigenvalue of S with
eigenfield ∇f and σ2 the eigenvalue for eigenfields in the orthogonal complement
of ∇f . By Lemma 5.14 the tangent space to every point q ∈ U is the direct
sum of the eigenspaces corresponding to σ1 and σ2, denoted by Vσ1

and Vσ2

respectively, where dim Vσ2
is bigger than one in U . Hence Proposition 7.1

says that σ2 is locally constant on the level sets of f in U .
Since S has two distinct eigenvalues in U , via the relation Hessf = f

m (S +

( Scal
2(n−1) − λ)g) it follows that Hessf has also two distinct eigenvalues in U ∩
int(M), call them µ1 and µ2, where the eigenspaces for µi correspond to those
for σi. Through the same discussion as in Theorem 6.5 we see that |∇f |2, µ1

and µ2 are all locally constant on the level sets of f in U .

Let c := f(p) and N ⊂ U be the connected component of f−1(c) containing
p. Since |∇f | ≠ 0 on N one can choose a coordinate chart (t1, ..., tn−1) on
the level hypersurface N . As the pseudo-norm |∇f |:=

√
|g(∇f,∇f)| is locally

constant on the level sets of f it may be considered as a function of f , i.e.
|∇f | = |∇f |(f). Similar to the proof of Theorem 6.5, it follows that there exists
a smooth function t on U such that

dt =
1

|∇f |
df with t = t(f) =

∫ f

N

df

|∇f |
(166)
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respectively |∇t| = 1, in addition ∇∇t∇t = 0. Accordingly the integral curves of
∇t which are normal to level sets of f in U are geodesics. Then we may extend
the coordinate chart on N to geodesic parallel coordinates (t, t1, ..., tn−1) in a
neighborhood of p in which f(t, x) = f(t) and ∇f(t, x) = ϵf ′(t)∂t.

Since the trajectories of unit normal vector fields ∇f
|∇f | = ∇t to level sets of

f in U are geodesics, we may decompose the n dimensional tangent spaces to
points of U into the 1 dimensional space generated by ∇f

|∇f | and its orthogonal

complement.
Furthermore, since t 7→ exp(t ∇f

|∇f | (x)) is a geodesic and hence preserves the

causal character of the velocity vector fields, it follows that g(∂t, ∂t) = ϵ =
sign g(∇f(p),∇f(p)). Moreover, similar to the proof of Theorem 6.5 we see
that around p the metric is of the form

g = ϵdt2 + u2(t)gN (167)

where gN is Einstein. Now suppose that p ∈ ∂M . Then through the same
discussion as above and noting that due to N ⊆ ∂M the trajectory geodesics of
∇f starting at N point only to one side, e.g. to its positive side, it follows that
there exist geodesic parallel coordinates (t, t1, t2, ..., tn−1) in a neighborhood of
p with t ∈ [0, ϵ), t(p) = 0 for which the result holds. Moreover the conditions
(55), (56), (57) in Proposition 4.35 hold on U .

Now consider the closed set O1 = {x ∈ Ũ : g(∇f,∇f)x ̸= 0, σ1(x) =
σ2(x)}. If the interior of O1 = ∂O1 ∪ int(O1) is not empty, then Hessf would
be proportional to the metric g on the interior. [KR97a, Lemma 2.7] together
with the same discussion on the boundary points in the last paragraph implies
a warped product g = ϵdt2 + u2(t)gN (t1, ..., tn−1) where (N, gN ) is a pseudo-
Riemannian hypersurface of (M, g) say with ϱN = k as well as u(t) = f ′(t) ≥ 0.
Again, the same argument as in the proof of Theorem 6.5 implies that gN is
Einstein. Moreover, u(t) and f(t) satisfy (55), (56), (57) in Proposition 4.35 on
the interior of O1. Since, in this case Hessf is a multiple of g|U the equations
in Proposition 4.35 reduce to equations (80), (81) and (82) of Corollary 4.42.

Therefore we can assume that both the open set O ∩ Ũ and the interior of the

closed set O1 ∩ Ũ are non-empty.
Considering the way of defining the function t at above, we see that t is

smooth as far as g(∇f,∇f) ̸= 0, cf. Equation (166), including the points at

which σ1 = σ2. Therefore t will be smooth on the whole Ũ .
By smoothness of the metric g and t it follows that we have a warped product

of the form (167), where gN is Einstein say with ϱN = k, along all of t as long as

g(∇f,∇f) ̸= 0, therefore on the whole Ũ . In parallel, to extend the relations
f = f(t) and (55), (56), (57) in Proposition 4.35 as far as g(∇f,∇f) ̸= 0 (so

on the whole Ũ ) we use again a similar discussion as above. Moreover, using
Lemma 4.29 a metric in this local form is conformally flat if and only if gN has
constant curvature.

2) ⇒ 1): Suppose by contradiction that g(∇f(p),∇f(p)) = 0. Therefore we
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may consider geodesic polar coordinates with origin at p, hence it must satisfy
u(a) = 0, a = t(p), cf. Remark 6.1. This is a contradiction with the assumption.

Let the metric be isometrically g = ϵdt2 + u2(t)gN (t1, ..., tn−1) where gN is
an Einstein hypersurface with ϱN = k and the conditions (55), (56), (57) in
Proposition 4.35 be satisfied by u(t) > 0 and f = f(t) ≥ 0. Then Proposi-
tion 4.35 implies that (M, g, f) satisfies Equation (11) of (λ, n + m)-Einstein
manifolds around p.

By Lemma 5.9 the manifold (M, g) has harmonic Weyl tensor and satisfies
W (∇f, ., .,∇f) = 0 around p.

One could regard Proposition 7.2 specifically for the definite case of Rie-
mannian manifolds which then (in the case of ∂M = ∅) gives out Theorem
6.5.

Lemma 7.3. Let m > 1, λ ∈ R and (M, g, f) satisfies Equation (11) of a non-
trivial (λ, n+m)-Einstein manifold with harmonic Weyl tensor andW (∇f, ., .,∇f) =
0. In addition, suppose that for a coordinate system (t, t1, t2, ..., tn−1) the metric
is of the form

g = ϵdt2 + u2(t)gN , ϵ ∈ {±1}, t ∈ [−ε, ε], ε ∈ R+ (168)

where u(t) > 0 on (−ε, ε) and the function satisfies

f(t, x) = f(t), x ∈ N. (169)

If u(a) = 0, a ∈ {−ε, ε}, then g(∇f(a),∇f(a)) = 0.

Proof. By contradiction suppose g(∇f(a),∇f(a)) ̸= 0. Then by the proof of
Theorem 7.2 we see that the warped product is extendable to a neighborhood of
t = a, hence the warping function must satisfy u(a) > 0, which is a contradiction
to the assumption u(a) = 0.

Corollary 7.4. Under the same assumptions as Theorem 7.2.1) we have u(t) >
0 if and only if g(∇f(t),∇f(t)) ̸= 0 (equivalently u(t0) = 0 if and only if
g(∇f(t0),∇f(t0)) = 0 where t0 is the first zero for them).

Proof. By combination of Theorem 7.2, Lemma 7.3 and Remark 6.1 the result
follows.

Corollary 7.5. Let m > 1, λ ∈ R and (M, g) be a pseudo-Riemannian manifold
and f a smooth function on M . Then the following conditions are equivalent:

1) (M, g, f) is a non-trivial (λ, n+m)-Einstein metric with harmonic Weyl
tensor and W (∇f, ., .,∇f) = 0, and |∇f | ≠ 0 on the whole M .

2) g = ϵdt2 + u2(t)gN , ϵ ∈ {±1}, on I × N where I = (−∞,∞) provided
f−1(0) = ∅ or I = [α,∞) with f(α) = 0 or I = (−∞, β] with f(β) = 0 or
I = [α, β] with f(α) = f(β) = 0 and (N, gN ) is a complete Einstein pseudo-
Riemannian hypersurface of (M, g) say with normalized scalar curvature ϱN =
k, and u : I → R+, f : I → R+ ∪ {0} satisfying the equations (55), (56), (57)
in Proposition 4.35.
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Proof. 1) ⇒ 2): By Theorem 7.2 we have a global warped product g = ϵdt2 +
u2(t)gN on I ×N where I is the maximal interval on which the trajectories of
∇f
|∇f | are defined and (N, gN ) is an Einstein pseudo-Riemannian hypersurface of

(M, g) say with normalized scalar curvature ϱN = k and where u : I → R+. In
addition, f : I → R+ ∪{0} which together with u(t) satisfies (55), (56), (57) by
Proposition 4.35. Since by assumption g is complete it follows that gN is also
complete.

If f(t0) = 0, i.e. {t0} × N is a component of the boundary ∂M , then the
trajectories of ∇f

|∇f | stop at t0. In more details, If (t0, n) ∈ ∂M then by complete-

ness of (M, g) every maximal geodesic γ(t) hitting the boundary at {t0} × N
stops when γ(t0) and hence there is no level set of f past t = t0. Otherwise, if
f(t) is non-vanishing everywhere then I = R. Therefore, the possible forms of I
would be I = [α,∞) with f(α) = 0 or I = (−∞, β] with f(β) = 0 or I = [α, β]
with f(α) = f(β) = 0, and in the latter case I = (−∞,∞).

2) ⇒ 1) Suppose by contradiction that g(∇f(p),∇f(p)) = 0 for some p ∈M .
Therefore we may consider geodesic polar coordinates with origin at p, hence it
must satisfy u(a) = 0; a = t(p), cf. Remark 6.1 . This is a contradiction with
the assumption that g = ϵdt2 + u2(t)gN is a global metric.

Suppose the metric is isometrically g = ϵdt2 + u2(t)gN on I ×N where I is
as in the assumption and where gN is a complete Einstein pseudo-Riemannian
hypersurface of (M, g) with ϱN = k. Hence g is complete. Additionally, since
the functions u = u(t) : I → R+ and f = f(t) : I → R+ ∪ {0} satisfy the
equations in Proposition 4.35 it follows that (M, g, f) satisfies Equation (11) of
(λ, n+m)-Einstein manifolds.

By Lemma 5.9 the manifold (M, g) has harmonic Weyl tensor and satisfies
W (∇f, ., .,∇f) = 0.

7.2 A specific result in dimension 4

Lemma 7.6. ( [Bes08], Proposition 1.120). A 3-dimensional (connected) pseudo-
Riemannian manifold (M, g) is Einstein if and only if it has constant sectional
curvature.

Proof. As in the literature, we know that any Einstein manifold Ric = γg with
dim M > 2 has constant Einstein function γ. Now in order to complete the
discussion one may instead use the known statement in the literature “(M, g)
has constant sectional curvature k if and only if it satisfies”

R(X,Y, Z, V ) = k(g ⊙ g)(X,Y, Z, V ) for all X,Y, Z, V ∈ TM. (170)

As the dimension is n = 3 we obtain

gklgklRkijl = γgklgij ⇒ 3Rkijl = γgklgij .

Similarly one has

3Rkilj = γgkjgil (171)
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giving −3Rkilj = −γgkjgil. By the properties of the curvature tensor we know
that −Rkilj = Rkijl, so we obtain

Rkijl =
γ

6
(gklgij − gkjgil). (172)

Therefore (M, g) is of constant curvature k = γ
6 .

For the converse, suppose (M, g) has constant curvature k. Hence we can
use the identity (170) in local coordinates giving

Rkijl = k(g ⊙ g)(∂k, ∂i, ∂j , ∂l) ⇒ Rkijl = k(gklgij − gkjgil)

which after tracing becomes Rij = 2kgij .

Corollary 7.7. Let m > 1 and (M, g) be a pseudo-Riemannian manifold
with dim M = 4. Also let (M, g, f) be a non-trivial (λ,n+m)-Einstein met-
ric with harmonic Weyl tensor and W (∇f, ., .,∇f) = 0 in neighborhood of p
with g(∇f,∇f)(p) ̸= 0, then (M, g) is conformally flat around p.

Proof. By Theorem 7.2 the metric is locally of the form

g = ϵdt2 + u2(t)gN

around p where gN is Einstein of dimension 3, hence by Lemma 7.6 is of constant
sectional curvature. Now Lemma 4.29 implies that g is conformally flat around
p.

Hint: In Corollary 7.7 above if in addition (M, g) is Einstein then it would
be of constant curvature around p. Because we know from the literature that
a manifold is both locally conformally flat and Einstein if and only if it has
constant sectional curvature.

7.3 Classification of (λ, n + m)-Einstein metrics (M, g, f)
around critical points of f in the pseudo-Riemannian
setting

By Lemma 6.8 we already know that under the conditions harmonicity of the
Weyl tensor and W (∇f, ., .,∇f) = 0, critical points of f in a Riemannian non-
trivial (λ, n + m)-Einstein manifold are isolated. But, still we do not know
whether under the same assumptions on the Weyl tensor as in Lemma 6.8, crit-
ical points of f are isolated in the pseudo-Riemannian setting. Example 4.49
shows that critical points of f in a non-trivial (λ, n + m)-Einstein manifold
are not in general isolated. Any way in case a pseudo-Riemannian (λ,m + n)-
Einstein manifold (M, g, f) is also Einstein, the Hessian tensor will be propor-
tional to the metric and hence by [KR97a, Proposition 2.3] critical points of f
would be isolated.
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Remark 7.8. Suppose (M, g) is a pseudo-Riemannian manifold in which geodesic
polar coordinates (t, x) is of the form

g = ϵdt2 + u2(t)gN . (173)

We know from the literature that the function ψ(t) =
∫ t
0
u(s)ds satisfies ∇2ψ =

ϵu′(t)g. Thus one can use [KR97a, Proposition 2.1 and Remark 2.2] to obtain

∇ψ(γ(t)) = (κ+ θγ(t))γ
′(t) where θγ(t) :=

∫ t
0
ϵu′(γ(s))ds and where κ, γ(t) are

defined as in [KR97a, Proposition 2.1]. Moreover if γ(0) is a critical point of
ψ i.e. ∇ψ(γ(0)) = 0 then κ = 0, ∇ψ(γ(t)) = θγ(t)γ

′(t) and if γ(t) is a null

geodesic then ψ(t)
(
:= ψ(γ(t))

)
= ψ(0) for all t.

On the other hand we have ∇ψ(t, x) = ∇ψ(t) = ϵu(t)∂t and ∇u(t, x) =
∇u(t) = ϵu′(t)∂t. Therefore along geodesic γ

∇u(t, x)|γ(t) = ϵu′(t)∂t|γ(t) =
u′(t)

u(t)
ϵu(t)∂t|γ(t) =

u′(t)

u(t)
∇ψ(γ(t))

=
u′(t)

u(t)
(κ+ θγ(t))γ

′(t) (174)

hence in case γ(0) is a critical point of ψ i.e. ∇ψ(γ(0)) = 0, κ = 0 then

∇u(t, x)|γ(t) =
u′(t)

u(t)
θγ(t)γ

′(t). (175)

In (175) the coefficient of γ′(t) is non-singular at t = 0, as we can see it by
the L’Hospital’s Rule.

Considering isolatedness of critical points of f as an additional assumption,
we classify the triples (M, g, f) satisfying Equation (11) of a non-trivial (λ, n+
m)-Einstein manifold with harmonic Weyl tensor and (∇f, ., .,∇f) = 0 around
critical points of f in the pseudo-Riemannian setting. It shows that in geodesic
polar coordinates whose origin is located at a critical point of f the level sets of
f with the induced metric have constant sectional curvature, and in particular
the metric is conformally flat.

Proposition 7.9. Let m > 1, λ ∈ R and (M, g) be a pseudo-Riemannian
manifold with a smooth non-constant f on M whose critical points are isolated.
In addition suppose that (M, g, f) satisfies Equation (11) of a (λ,n+m)-Einstein
metric with harmonic Weyl tensor and W (∇f, ., .,∇f) = 0 in a neighborhood of
p ∈ M with ∇f |p = 0. Then there are functions u± ∈ F such that the metric
in geodesic polar coordinates (t, x) ∈ Au ⊂ R×

∑
in a neighborhood U of p has

the form

g(t, x) = gu(t, x) = ϵdt2 +
uϵ(t)

2

u′ϵ(0)
2
g1(x); ϵ = g(x, x) ∈ {±1} (176)

where u(t, x) = uϵ(t), ϵ = g(x, x). If all geodesics through p are defined on the
whole real line R, then the metric g is of the form (176) for all (t, x) ∈ Au, i.e.
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as long as uϵ does not vanish. Also, all the conditions in Proposition 4.35 are
satisfied.

Proof. We consider a neighborhood U of p in which g|U has harmonic Weyl
tensor and satisfies W (∇f, ., .,∇f) = 0. By assumption (after possibly restric-
tion of U ) p is the only critical point of f in U . Hence, by Theorem 7.2 we
may introduce locally coordinates such that for t ̸= 0

g = ϵdt2 + u2(t)gN

f(t, x) = f(t), x ∈ N (177)

where gN is the induced metric on a regular level set N of f . By smoothness
of f and g it follows that the equations in (177) hold at the time t = 0 as well.
Via Equation (175) in the notation of Remark 7.8 one has

∇u(t, x)|γ(t) =
(u′(t)
u(t)

θγ(t)
)
γ′(t) (178)

expressing that the normal vectors of the level hypersurfaces u−1(u(t0)) and of
the distance spheres (the sets {t = t0}) are proportional. Thus the connected
components of {t = t0} ∩U and of u−1(u(γ(t0))) which contain γ(t0) coincide.
Consequently there should be two smooth real functions u±1 satisfying u(t, x) =
ug(x,x)(t). Furthermore as the metric g is smooth everywhere, from Proposition

6.4 it follows that u
(2m)
± (0) = 0 and u

(2m+1)
+ (0) = (−1)m+1u

(2m+1)
− (0) for all

m ≥ 0.
Therefore, g in geodesic polar coordinates in U is of the form

g(t, x) = gu(t, x) = ϵdt2 +
uϵ(t)

2

u′2ϵ (0)
gN (x); ϵ = g(x, x) (179)

for a C∞-metric gN on
∑

= S0(1)∪S0(−1). Here the warping function has the
denominator u′ϵ(0) because the two components of the hypersurface N =

∑
=

S0(1) ∪ S0(−1) are of constant sectional curvature ϵ, cf. Lemma 6.3. Now by
Lemma 6.3 the metric gN on the hypersurface

∑
coincides with the standard

metric g1 of constant sectional curvature ϵ, hence we obtain the warped product
(176). Since the metric g is smooth and hence extends to a neighborhood U of
p, Proposition 6.4 implies that u± ∈ F .

Now assume (t0, x0) ∈ Au, i.e. uϵ(t) ̸= 0 for all t ∈ (0, t0); ϵ = g(x, x).
Then there is t1 ∈ (0, t0) such that (t1, x0) ∈ U . Assume t∗ is the supremum of
the numbers t > 0 such that for a neighborhood of the radial geodesic segment
r ∈ [0, t) 7→ ϕ(r, x0) = (r(∇u)1(x0), ..., r(∇u)n(x0)) ∈ M ((∇u)i denotes the i-
th component of∇u in an orthonormal basis) the metric has the warped product
representation (176). Here note the geodesically completeness property. Then
we have uϵ(t∗) = 0, because otherwise (under assumptions of harmonicity of the
Weyl tensor and W (∇f, ., .,∇f) = 0) via Theorem 7.2 there would be t∗1 > t∗
such that t∗1

∈ Au respectively the warped product is valid on (0, t∗1
).

To see that ϕ : Au −→M is injective, suppose ϕ(t1, x1) = ϕ(t2, x2), (tj , xj) ∈
Au. Two cases are possible:
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1). If x1, x2 belong to the same component of
∑

, then as u(t) is strictly monoton
from u(t1) = u(t2) it follows that t1 = t2.
2). If x1, x2 belong to different components of

∑
, assume γ1(t) = ϕ(t, x1),

γ2(t) = ϕ(t, x2) be the two geodesics starting from p with γ1(t1) = γ2(t2) =
ϕ(t1, x1) = ϕ(t2, x2) = q, t1 < 0 < t2. Then via Equation (178) it follows that

∇u(q) = −u′ϵ1(t1)γ
′
1(t1) = u′ϵ2(t2)γ

′
2(t2), ϵj = g(γ′j , γ

′
j). (180)

As x1 and x2 belong to different components we get γ′1(t1) ̸= γ′2(t2). On the
other hand Equation (180) implies that γ′1(t1) and γ

′
2(t2) are parallel, and more-

over, says that ϵj = g(γ′j , γ
′
j) meaning that γ′1(t1) and γ

′
2(t2) have pseudo-norm

one. Consequently γ′1(t1) = −γ′2(t2). Therefore from Equation (180) above it
follows that u′ϵ1(t1) = u′ϵ2(t2). This is not possible as by Equation (144) in
Proposition 6.4 we see that u′ϵ changes sign at 0. Since u(t) and f(t) are contin-
uous and that by assumption (M, g, f) satisfies Equation (11), the conditions
in Proposition 4.35.1) should be satisfied.

Hint: In Proposition 7.9 if in addition (M, g) is Einstein, then Hessf is
proportional to the metric g, see [KR09, Step 4 and Step 5] for the corresponding
results.

7.4 A note in the specific case of dimM = 2

When a manifold (M2, g) is of dimension 2, by multi-linearity the Ricci tensor
satisfies Ric = Scal

2 g. Thus for every (M2, g, f) satisfying Equation (11) of a
(λ, 2 +m)-Einstein manifold the tensor Hessf is proportional to the metric g,
hence by [KR97a, Lemma 2.7] resp. [KR97a, Proposition 6.1] around points at
which |∇f | ≠ 0 resp. at which |∇f | = 0 the metric is locally a warped product.
This in turn implies that, unlike Theorem 7.2 resp. Proposition 7.9 around
points at which |∇f | ≠ 0 resp. at which |∇f | = 0 we do not need any more
the additional assumptions on the Weyl tensor in order that the metric splits
into a local warped product. Similarly, in our results in the Riemannian case
like theorems 6.5, 6.10 and 6.12 we do not need any more the assumptions of
harmonicity of the Weyl tensor and W (∇f,∇f) = 0 in dimension 2. For a
classification of (λ, 2 +m)-Einstein metrics see [Bes08, 9.118].

7.5 A comparison between (λ, n+m)-Einstein structure in
the Riemannian and pseudo-Riemannian settings

We already know that in a connected Riemannian (λ, n+m)-Einstein manifold
(M, g, f) with harmonic Weyl tensor and W (∇f, ., .,∇f) = 0 the function f
has at most two critical points, cf. Theorem 6.12. But this simple behavior of
f in the Riemannian case does not generalize to the pseudo-Riemannian set-
ting. In fact, [KR97a, Theorem 4.3] implies that there exists a smooth pseudo-
Riemannian manifold carrying smooth non-constant functions f and γ satisfying
∇2f = γg such that the set of critical points of f is in natural bijection with ei-
ther the set J = {1, ...,m} or J = N or J = Z. Since the proof of the theorem is
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independent from the Einstein property, one may choose a (λ, n+m)-Einstein
manifold which is also Einstein. Then the corresponding Equation (11) be-
comes ∇2f = γg where γ = f

m{Scaln − λ} and allows us to apply Theorem
4.3 in [KR97a]. In addition to these categories J of critical points for f in the
pseudo-Riemannian setting, it may also happen that ∇f is a null vector at some
points of M .

Therefore, considering the behavior of f , it seems we may not have a nice
characterization like Theorem 6.12 for the pseudo-Riemannian setting. Let N
shows the set of critical points of f and the points at which∇f is null. Even if we
can show that the critical points of f in the pseudo-Riemannian setting under the
assumptions of harmonicity of the Weyl tensor and (∇f,∇f) = 0 are isolated,
we do not know whether and how the points at which ∇f is null are isolated.
Comparing to Theorem 6.12, if we assume the very strong condition that the
points in N be isolated, then we may only characterize with the properties
that the warping function u(t) is odd at the points in N , cf. Proposition
6.4.2). In addition, the warped product is complete if we add the set N to
it, and, the equations in Proposition 4.35 are satisfied. But this situation for a
characterization is not interesting.

7.6 The Brinkmann case in the pseudo-Riemannian set-
ting

Lemma 7.10. [Bri25]. If (M, g) admits a lightlike parallel vector field V , then
there are local coordinates t1, t2, ..., tn (n := dimM > 2) such that V = ∂

∂t1
and

(gij) =


0 1
1 0

0 · · · 0
0 · · · 0

0 0
...

...
0 0

(gαβ)


where α, β ∈ {3, ..., n} and

∂gαβ

∂t1
= 0

Proposition 7.11. Let m > 1, n ≥ 3 and let (M, g, f) be a pseudo-Riemannian
non-trivial (λ, n+m)-Einstein manifold which is also Einstein. Also let ∇f be
a non-vanishing and isotropic (i.e. null) vector field on an open subset of M .
Then ∇f is parallel, and the metric tensor can be converted in to the form
g = 2dt1dt2 + g∗(t1) where ∇f = ∂t2 = ∇t1 and where the (n− 2)-dimensional
metric g∗(t1) does not depend on t2. Moreover, (M, g) is Ricci flat.

Proof. As the manifold (M, g) is Einstein and hence of constant scalar curva-
ture, via Proposition 4.41 (after adaptation to the pseudo-Riemannian case) the
Einstein constant is ρ, i.e. Ric = ρg. Therefore

∇2f =
f

m
(Ric− λg) ⇒

∇2f = γg where γ =
f

m
(ρ− λ). (181)
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By assumption g(∇f,∇f) = 0 on an open set U , hence 0 = ∇X(g(∇f,∇f)) =
2g(∇X∇f,∇f) = 2γg(X,∇f) for any vector field X. By non-degeneracy of g it
follows that γ∇f = 0, hence γ = 0 as ∇f is non-vanishing on U by assumption.
On the other hand, following equation (181) we have ∇2f(X,Y ) = γg(X,Y )
and respectively ∇X∇f = γX for any X by the non-degeneracy of g. Thus
∇X∇f = 0 for any X which means ∇f is parallel.

As ∇f is non-vanishing on U , we may use the function f as a coordinate
t1, then using Lemma 7.10 the metric can be converted into the form g =
2dt1dt2 + g∗(t1). Since t1 = f , by definition of f we see that the coordinate
function t1 vanishes on the boundary points and is positive elsewhere. Moreover
via the calculation

∇t1 = gij
∂t1
∂ti

∂

∂tj
= g12

∂t1
∂t1

∂

∂t2
= 1.1.∂t2 ; i, j ∈ {1, ..., n}

we see that ∇t1 = ∂t2 (∂t2 := ∂
∂t2

). Hence using the equation ∇∂ti
∂tj = ∇∂tj

∂ti
as well as the fact that ∂t2 = ∇t1 (= ∇f) is parallel one obtains

∂t2g(∂ti , ∂tj ) = g(∇∂ti
∂t2 , ∂tj ) + g(∂ti ,∇∂tj

∂t2) = 0

expressing the metric does not depend on t2.
Using again the fact that ∂t2 is parallel, i.e. ∇X∂t2 = 0, one obtains

R(X,Y )∂t2 = 0 for all X,Y . Since the manifold is Einstein with Ric = ρg
it follows that ρ = Ric(∂t1 , ∂t2) = 0.

Such spaces which admit a parallel isotropic vector field are called Brinkmann
spaces. Here we did not consider the usual assumptions on the Weyl tensor be-
cause ∇f is isotropic and hence does not meet the conditions of Lemma 5.14.
So we can not see the Hessian tensor has at most two eigenvalue functions to
use it then to show ∇f is parallel on the open set. Instead we let (M, g) be
Einstein by which ∇f becomes parallel, as explained in the proof of Proposition
7.11.

Reminder: For the case where (M, g) is not necessarily Einstein and car-
ries a function f ∈ C∞(M) satisfying ∇2f = γg and in addition results in a
Brinkmann space see [KR09, Theorem 3.12].

Remark 7.12. For more details on transition from a non-isotropic gradient
to an isotropic gradient see [Cat06, Theorem 3.1]. There, Catalano proves that
for a function f ∈ C∞(M) satisfying ∇2f = γg around a point p ∈ M with
∇f |p ̸= 0 there are local coordinates t1, t2, ..., tn such that ∇f = ∂

∂t1
+ a ∂

∂t2
, for

a function a = a(t2), and in addition g = −a(t2)dt22 + 2dt1dt2 + g∗(t2). Then
the transition corresponds to passing to the limit a(t2) → 0.
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2436236

[CSW11] Jeffrey Case, Yu-Jen Shu, and Guofang Wei, Rigidity of quasi-
Einstein metrics, Differential Geom. Appl. 29 (2011), no. 1, 93–100.
MR 2784291

[HPW12] Chenxu He, Peter Petersen, and William Wylie, On the classifica-
tion of warped product Einstein metrics, Comm. Anal. Geom. 20
(2012), no. 2, 271–311. MR 2928714

[HPW14] , Warped product Einstein metrics over spaces with constant
scalar curvature, Asian J. Math. 18 (2014), no. 1, 159–189. MR
3215345

[HPW15] , Uniqueness of warped product Einstein metrics and appli-
cations, J. Geom. Anal. 25 (2015), no. 4, 2617–2644. MR 3427140

[KK03] Dong-Soo Kim and Young Ho Kim, Compact Einstein warped prod-
uct spaces with nonpositive scalar curvature, Proc. Amer. Math.
Soc. 131 (2003), no. 8, 2573–2576. MR 1974657

82



[KR97a] W. Kühnel and H.-B. Rademacher, Essential conformal fields in
pseudo-Riemannian geometry. II, J. Math. Sci. Univ. Tokyo 4
(1997), no. 3, 649–662. MR 1484606

[KR97b] Wolfgang Kühnel and Hans-Bert Rademacher, Conformal vector
fields on pseudo-Riemannian spaces, Differential Geom. Appl. 7
(1997), no. 3, 237–250. MR 1480537

[KR09] , Einstein spaces with a conformal group, Results Math. 56
(2009), no. 1-4, 421–444. MR 2575870

[KR16] , Conformally Einstein product spaces, Differential Geom.
Appl. 49 (2016), 65–96.

[Küh88] Wolfgang Kühnel, Conformal transformations between Einstein
spaces, Conformal geometry (Bonn, 1985/1986), Aspects Math.,
E12, Friedr. Vieweg, Braunschweig, 1988, pp. 105–146. MR 979791

[MO08] Andrei Moroianu and Liviu Ornea, Conformally Einstein products
and nearly Kähler manifolds, Ann. Global Anal. Geom. 33 (2008),
no. 1, 11–18. MR 2369184

[O’N10] B. O’Neill, Semi-Riemannian Geometry: With Applications to Rel-
ativity, Pure and applied mathematics, Academic Press, 2010.

[Pet16] Peter Petersen, Riemannian geometry, third ed., Graduate Texts in
Mathematics, vol. 171, Springer, Cham, 2016. MR 3469435

[Sán95] Miguel Sánchez, An introduction to the completeness of com-
pact semi-riemannian manifolds, Séminaire de théorie spectrale et
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