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Abstract: Making complex medical decisions is becoming an increasingly challenging task due to
the growing amount of available evidence to consider and the higher demand for personalized
treatment and patient care. IT systems for the provision of clinical decision support (CDS) can
provide sustainable relief if decisions are automatically evaluated and processed. In this paper, we
propose an approach for quantifying similarity between new and previously recorded medical cases
to enable significant knowledge transfer for reasoning tasks on a patient-level. Methodologically,
102 medical cases with oropharyngeal carcinoma were analyzed retrospectively. Based on indepen-
dent disease characteristics, patient-specific data vectors including relevant information entities for
primary and adjuvant treatment decisions were created. Utilizing the φK correlation coefficient as
the methodological foundation of our approach, we were able to determine the predictive impact
of each characteristic, thus enabling significant reduction of the feature space to allow for further
analysis of the intra-variable distances between the respective feature states. The results revealed a
significant feature-space reduction from initially 19 down to only 6 diagnostic variables (φK correla-
tion coefficient ≥ 0.3, φK significance test ≥ 2.5) for the primary and 7 variables (from initially 14)
for the adjuvant treatment setting. Further investigation on the resulting characteristics showed a
non-linear behavior in relation to the corresponding distances on intra-variable level. Through the
implementation of a 10-fold cross-validation procedure, we were further able to identify 8 (primary
treatment) matching cases with an evaluation score of 1.0 and 9 (adjuvant treatment) matching cases
with an evaluation score of 0.957 based on their shared treatment procedure as the endpoint for
similarity definition. Based on those promising results, we conclude that our proposed method for
using data-driven similarity measures for application in medical decision-making is able to offer
valuable assistance for physicians. Furthermore, we consider our approach as universal in regard
to other clinical use-cases, which would allow for an easy-to-implement adaptation for a range of
further medical decision-making scenarios.

Keywords: clinical decision support systems; case-based reasoning; similarity analysis; head and
neck cancer; diagnostic patient model

1. Introduction

According to the global cancer statistics (GLOBOCAN 2018) nearly 93,000 new cases
of oropharyngeal squamous cell carcinoma (OPSCC) were reported worldwide in 2018 [1].
Lately, the incidence of OPSCC is significantly increasing in many countries worldwide,
particularly due to positive human papillomavirus (HPV)-related OPSCC [2]. HPV, pri-
marily type 16, is recognized as a risk factor and important prognostic factor alongside
tobacco and alcohol consumption [3]. Nevertheless, the actual therapeutic decision for
OPSCC is currently not differentiated according to HPV status. Instead, it is essentially
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based on the individual situation of the patient and his or her anatomical and biomedical
conditions. While early-stage OPSCCs are usually treated by surgery or radiation therapy,
more advanced stages require multimodal therapeutic concepts depending on the patho-
logical indication. These may include invasive surgical procedures as well as adjuvant
radiation or combined radiochemotherapy [4,5]. In cases of unresectable tumors, definitive
radiochemotherapy is indicated. For recurrent or metastatic disease, new therapeutic
options in the field of checkpoint immunotherapy have been approved. These represent
a valuable addition to established conventional chemotherapies by blocking inhibitory
immune checkpoint signaling pathways to reactivate immune response against cancer [6].
Activation of the PD-1 protein, which can be expressed by T cells, in response to PD-L1,
leads to inhibition of the immunological response of T cells and serves as a mechanism
to bypass the tumor immune system. Anti-PD-1/PD-L1 immune checkpoint inhibitors
(ICIs) can inhibit suppressive signaling through the PD-1/PD-L1 pathway and enhance
antitumor immune activity [7,8]. Due to individual tumor characteristics, differences in
resectability and comorbidities that may conflict with radio- or even more chemotherapy,
a personalized view of the diagnostic and therapeutic process becomes necessary. This
includes adjusted diagnostics and individualized decision-making to provide optimal
outcomes and a valuable quality of life for the individual patient.

To consider all personal patient-related factors, the evaluation of ideal treatment
strategies for OPSCCs is currently being discussed in interdisciplinary tumor boards. In
these meetings, specialists from different disciplines evaluate the available options in order
to find the best possible therapy for a specific patient case. The following disciplines are
usually represented: otorhinolaryngology, head and neck surgery, maxillofacial surgery,
pathology, radiology, radiation therapy, as well as medical oncology [9]. Making such
complex clinical decisions involves a set of individual considerations. The particular
knowledge required to act in the patient’s favor comes from various sources of information
such as learned expertise, specialist publications, and individual experience [10]. Verifiable
results from significant medical studies or clinical trials are considered a level of safety
as they represent the current state of clinical evidence [11]. This evidence also serves as a
foundation for the preparation of clinical practice guidelines (CPG), which are provided by
several medical associations. This overall process, also defined as evidence-based medicine
(EBM), represents one current baseline for making medical decisions [12,13].

Although the concept of EBM integrates medical science and research, it provides
general practice recommendations. So, it is therefore not an individual “instruction man-
ual”, but must be applied to the individual patient according to the specific circumstances.
Therefore, the clinical experience that a clinician accumulates during his or her professional
career should not be underestimated in the diagnostic and decision-making process. Most
judgments concerning specific criteria of the patient are made based on the clinician’s
individual knowledge, training, and experience.

According to Lakoff et al., experience does not refer to memory, i.e., the result of inter-
action with the environment, but characterizes the immediate encounter, i.e., the process
of repeated sensorimotor interaction with the environment in the sense of a repetitive
action [14]. This progressively shapes and links the functional neuron groups involved in
this process more effectively. Experience thus changes the neuronal connection patterns
of the brain. This implies that the diagnosis and therapy finding of current patient cases
are cognitively compared with similar patient and diagnostic profiles of the past. For very
unusual, rare, and complex cases, for which even highly trained clinicians may lack the
experience, this described process of decision-making reaches its limit and can no longer
guarantee the optimal strategy for an individual patient [15]. Similarity analysis and com-
parison with previous cases could therefore form a valuable part of selecting an optimal
diagnostic and therapeutic strategy. By means of an IT-supported process, it should be
possible to access a broad knowledge base of patient cases. Based on the human cognitive
process, an automatic search function can be used to evaluate specific diagnostic results of
comparable patient cases and their courses for the current research question.
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The idea of comparing a new problem with a similar previous situation found its
beginnings in the 1980s and has been tried to establish since then [16]. As a cognitive simi-
larity to clinical decision-making based on expertise coupled with the duality of subjective
and objective knowledge, the term case-based reasoning (CBR) was introduced with the
main principle: “similar problems have similar solutions” [16]. Considering the enormous
potential of CBR for automated systems in clinics, the capability has yet to be achieved
with suitable technologies, since other fields already utilize similar approaches. Similarity
analysis is used in the medical context for DNS and protein analysis, for example, but is
also used in many other domains [17]. It already forms an omnipresent and indispensable
part in the context of recommendation systems. Based on the analysis of user behavior, sug-
gestions for online shopping (“customers who bought this item also bought...”), music and
movie streaming, or e-learning applications already influence decisions in our everyday
life. To make recommendations, many member profiles with similar preferences and tastes
are matched with the current user profile and the most suitable objects are recommended
in a personalized catalog according to the collaborative technique of recommendation
systems [18]. This already established concept should now also relieve medical staff in
their everyday work.

The consideration of computational similarity analysis for patients is a well-known
approach that has been thoroughly investigated throughout the years [19]. Especially
since the advent of algorithmic analysis and machine learning (ML), methods such as
k-nearest neighbors (kNN) and associated solutions have been applied to this problem
with large success [20–23]. However, while those similarity metrics are well suited for the
identification of similar (vector-based) abstractions of patients, they do only account for
differences at a variable level (i.e., two patients with the same gender or almost equally
distributed expressions in the blood count) but they do not consider the distances between
individual variable states (i.e., between two categorical variables that are not equidistant
regarding their influential factors, e.g., general performance status (ECOG) or other medical
staging systems). While multiple measures that address this modality (also known as
overlap measure) exist, they do only account for categorical variables. Since medical data
sets are often subject to mixed variable types, solutions that are able to process those diverse
entities are required.

To overcome those current methodological limitations in similarity search among
patients, we present a novel approach that considers the intra-variable similarity of clinical
cases based on mixed-type variables by using the φK correlation coefficient [24]. Due to
this procedure, we also introduce a novel real-world application for the stated φK metric
and evaluate its suitability for the task of patient matching. Accordingly, the main aim of
the presented method is to contribute to comprehensive and objective (unbiased) assistance
in case-based reasoning and thus also to the therapy decision process in the long term.
In conclusion, this methodology made it possible to identify an objective selection of
decisive diagnostic features and their individual impact on primary and adjuvant treatment
decisions in the head and neck tumor board.

2. Materials and Methods
2.1. Information Modeling Creating a Patient-Specific Vector

In order to adequately compare OPSCC patient cases, it is necessary to determine
the context-specific variables (features) that are considered relevant to decision-making
in relation to a corresponding endpoint (see Figure 1). In the present case, this endpoint
relates to the primary and adjuvant treatment decision. Thus, relevant and specific charac-
teristics were initially identified from the diagnostic results using the hospital’s internal
clinical information system and then transferred into patient- and diagnosis-related fea-
tures. For primary treatment, in the patient category, age, severe pre-existing conditions,
and the ECOG score, a general performance measure, are decisive factors for diagnostic
and therapeutic management (see exemplary patient data in supplement Table S1). While
as diagnostic features, factors such as tumor size, infiltration of certain structures, possible
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metastases, as well as histo- and molecular-pathologic characteristics are important in
assessing whether the tumor is resectable or chemotherapy is tolerable (see Table S2). Pro-
vided that surgical therapy is successfully evaluated in terms of achieving complete tumor
resection with clear margins and optimal quality life expected postoperatively, potential
adjuvant treatment is discussed in a postoperative tumor board based on the definitive
pathologic findings. The histopathological report of the surgical resection should include
tumor localization, tumor size, histological tumor type and grading, lymph vessel invasion,
blood vessel invasion and perineural invasion, locally infiltrated structures, number and
size of affected lymph nodes, presence of extracapsular extension, and the resection status
(see Table S3). In addition, immunohistochemical scores such as the combined positive
score (CPS) and the tumor proportion score (TPS) are also acquired to estimate PD-L1
expression. The CPS score evaluates the number of PD-L1 positive cells (tumor cells,
lymphocytes, macrophages) relative to all viable tumor cells. TPS assesses the percentage
of PD-L1 positive tumor cells in proportion to all viable tumor cells [25]. The result of
this process is a patient-specific vector of independent information entities, which shows
the related medical factors influencing therapy decisions in a structured format. In this
context, Tables S1 and S2 each form the characteristic constellations for the primary decision
scenario and Tables S1 and S3 for the adjuvant therapy.
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To establish the dataset, 102 patient cases with OPSCC from the University Hospital of
Leipzig were retrospectively analyzed. All of them were previously discussed by a team of
interdisciplinary experts in the head and neck tumor board. We were able to only capture
complete patient data without any missing information during this process.

2.2. Data-Driven Reduction of the Feature Space Using the PhiK Correlation Coefficient

Since not every feature is equally important in the context of making a therapeutic
decision, a data-driven metric for expressing the individual weight of that information
needed to be derived from the data set. To achieve this, we first split the data into a training
(81 patients) and test set (21 patients) to enable later verification of our approach with
previously unseen data (patient data that was not used to derive feature space reduction
and intra-variable analysis). Based on the training set, we then calculated the individual
correlation of each feature in relation to the recorded treatment decision using the PhiK (φK)
package (version 0.9.12) in a Jupyter notebook python environment [24]. The φK coefficient
is based on a refined version of Pearson’s χ2 contingency test to evaluate the independence
of two or more variables through an algorithmic calculation without restrictions to a
single variable type. Thus, it enables the parallel consideration of categorical, ordinal, and
interval variables, which is a crucial characteristic when dealing with medical data that is
usually represented in mixed-type data columns, e.g., age (ordinal), ECOG (categorical).
In contrast to more traditional metrics, such as Pearson’s r, it also accounts for non-linear
behavior between variables, which is another important characteristic regarding medical
data including artificial scoring systems to express certain medical modalities (e.g., TNM-
staging, ECOG). The PhiK package allows for the calculation of a correlation matrix using
its own φK coefficient as the associated metric. While there is currently no gold standard
regarding the correlation threshold, we defined scores greater than 0.3 to be significant for
our analysis. The coefficient itself ranges from 0 to 1.

In a second step, we then evaluated the resulting features in terms of their statistical
significance using the integrated PhiK significance based on a modified p-value calcula-
tion [24]. The algorithm then calculates a Z-value for each possible feature constellation
which can then be obtained in a matrix-based representation according to the previous
correlation matrix. For the performed analyses, we have determined a Z-value greater than
2.5 to be significant.

2.3. Analysis of Intra-Variable Behavior to Enable Granular Similarity Scoring

From a clinical point of view, there may be a difference in terms of treatment capacity
whether a patient has ECOG = 1 or ECOG = 2, whereas no relevant distinction is usually
made here between ECOG = 0 and ECOG = 1 states. Therefore, we further refined our
analysis to account for intra-variable behavior in the remaining features (after reduction)
with the goal to quantify the individual differences between the respective variable states.
We therefore performed the same φK-based correlation and significance tests in relation
to the therapy target variable while limiting the respective input feature states to every
possible pairwise permutation schema, e.g., ECOG 0/ECOG 1, ECOG 0/ECOG 2, and
ECOG 1/ECOG 2. In this way, we were able to calculate the numeric differences between
the resulting clusters, allowing us to derive the amount of similarity or distance that results
from looking at the individual states rather than the overall feature.

2.4. Consolidation of the Findings into a Similarity Metric

Based on the inter- and intra-variable analysis of the considered features, we were able
to construct a weight-matrix that integrates the φK correlation coefficients for all possible
state permutations. Based on this, we suggest the implementation of the derived findings
as additional factors to the calculation of similarity in the following way:

Similarity (S) = 1 − ∑n
i=1 wi

n
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Thereby, n represents the number of features in a patient vector that is considered
for similarity analyses with a range of other same-type vectors in an iterative way. The
weight factor w represents the associated values from the weight-matrix that account for
the respective correlation for each constellation of variable states. Due to w, a relatively
small φK correlation coefficient also results in a small distance as it has been shown that the
derivation between both factors is of less importance for the respective decision scenario.
Consequently, if the normalized sum of all feature correlation is small, it follows that
the distance between two patient vectors is small, which then results in a high similarity
value S.

2.5. Evaluation of the Approach

To verify our approach, we further implemented an initial evaluation process by
performing similarity searches among the test set (new and unseen patient data) with the
training set. In this scenario, we considered a difference in variable states as relevant, if the
calculated weight surpassed a score of 0.5. All other constellations were thus considered
to be similar. If one or more matches (defined as patients to be the same or similar in all
considered features) for a case in the test set were found according to this procedure, we
then checked if their corresponding therapy selection was equal among all findings. For
example, if our approach identified cases B and C as two similarity matches for case A,
and all cases were treated equally, this would result in a perfect evaluation score of 1.0. If
differences were found in the recorded treatments, the score would decrease accordingly.
Finally, we have calculated a final evaluation score through summing up the individual
results and dividing them by the sum of all found matches. To account for unrepresentative
effects caused by only a one-time random selection of cases in the train-test-split, we
implemented a 10-fold cross validation with randomly assigned cases to the respective
test (n = 21) and training (n = 81) cohorts during each fold. The overall evaluation metric
(evaluation score) is thus defined as the mean of the individual per-run outcomes.

3. Results
3.1. Statistical Description of the Data Set

With an average age of 60.4 years and a male share of 74.5% (76 patients), the data set
represents typical patients with OPSCC. A total of 25.5% (26 patients) of the documented
patients are female. This corresponds to a female to male ratio of 1:2.9. Overall, 50%
(51 patients) had ECOG status 0, which means normal unrestricted activity as before the
disease. Whereas 41.2% (42 patients) already have minor physical limitations, which is
encoded by an ECOG status of 1. The remaining have further restrictions and an ECOG
status of 2, which means that the therapy options for invasive procedures may be limited
(see Table 1).

At the time of diagnosis, 81.4% (83 patients) of the cases already had affected lymph
nodes and 59.8% (61 patients) had a tumor size of more than 4 cm (see Table 2). In 8.8%
(9 patients), distant metastases were already detectable at time of diagnosis. Remarkable
are the tumor infiltrations into neighboring structures, such as in 58.8% (60 patients)
into the tongue musculature, in 8.8% (9 patients) into the nasopharynx, and in 23.5%
(24 patients) into the hypopharynx. In particular, the involvement of non-lymphatic
structures, including the internal jugular vein (IJV), spinal accessory nerve (SAN), and
sternocleidomastoid muscle (SCM) determine the surgical management of the neck in
OPSCC [26]. The frequencies for these are distributed as follows in our dataset: IJV: 18.6%
(19 patients), SAN: 5.9% (6 patients), and SCM 13.7% (14 patients).

Risk factors as well as possible indicators for adjuvant treatment are included in the
final histopathological findings (see Table 3). For instance, in our dataset, extracapsular
spread of the lymph node metastasis was observed in 37.3% (38 patients). Positive resection
margins were detected in 7.8% (8 patients). Perineural and lymphatic invasion were
found both in 76.5% (78 patients) of the pathological examinations, vascular invasion in
6.9% (11 patients).
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Table 1. Statistical summary of the patient-related factors for primary and adjuvant treatment decision.

Patient-Related Features
N = 102 Absolute Frequency Relative Frequency

Gender
Male 76 0.745

Female 26 0.255

Consumption Alcohol 81 0.794
Tobacco Smoke 87 0.853

ECOG Status

ECOG 0 51 0.5
ECOG 1 42 0.412
ECOG 2 9 0.088
ECOG 3 0 0

Pre-existing condition
Heart Restriction 13 0.127

Kidney Restriction 11 0.108
Immunodeficiency 1 0.010

Table 2. Statistical summary of the diagnosis-related factors for primary treatment decision.

Diagnosis-Related Features
N = 102 Absolute Frequency Relative Frequency

T State

Tx 0 0
T1 9 0.088
T2 32 0.314
T3 27 0.265

T4a 29 0.284
T4b 5 0.049

N State

Nx 0 0
N0 19 0.186
N1 19 0.186
N2 40 0.392
N3 24 0.235

M State
Mx 2 0.020
M0 91 0.902
M1 9 0.088

HPV status
positive 38 0.373
negative 64 0.627

Grading
G1 1 0.010
G2 60 0.588
G3 41 0.402

Infiltration

Nasopharynx 9 0.088
Hypopharynx 24 0.235

Tongue 60 0.588
Internal jugular vein 19 0.186

Spinal Accessory Nerve 6 0.059
Sternocleidomastoid Muscle 14 0.137

Nevertheless, 66.7% (68 patients) of the cases were treated primarily surgically with
a complete, so-called R0 resection rate of 88.2% (60 patients). Of those who under-
went surgery, an indication for postoperative adjuvant treatment was assessed in 91.2%
(62 patients), dividing into 58.1% (36 patients) with adjuvant radiochemotherapy and 41.9%
(26 patients) with adjuvant radiotherapy alone. A total of 27.5% of cases (28 patients) were
treated with definitive radiochemotherapy. The remaining 5.9% (6 patients) received best
supportive care, which is not a curative approach, but inherits the main aim to relieve the
symptoms and achieve the best possible quality of life (see Table 4).
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Table 3. Statistical summary of the diagnosis-related factors for adjuvant treatment decision.

Diagnosis-Related Features
N = 102 Absolute Frequency Relative Frequency

Resection Margin

No surgery 34 0.333
R0 60 0.588
R1 7 0.069
R2 1 0.010

Extracapsular Spread
Positive 38 0.373

Negative 32 0.314
Not measurable 32 0.314

Vascular Invasion
Vx 34 0.333
V0 57 0.598
V1 11 0.069

Perineural Invasion
Pnx 12 0.118
Pn0 12 0.118
Pn1 78 0.765

Lymphatic Invasion
Lx 12 0.118
L0 12 0.118
L1 78 0.765

Table 4. Statistical summary of the treatment-related factors for primary and adjuvant treatment decision.

Treatment-Related Features
N = 102 Absolute Frequency Relative Frequency

Primary treatment

Surgery 2 0.020
Surgery + Selective neck dissections 57 0.559

Surgery + Modified neck dissection unilateral,
Selective neck dissection contralateral 7 0.069

Surgery + Radical neck dissection unilateral,
Selective neck dissection contralateral 2 0.020

Definitive radiochemotherapy 28 0.275
Best supportive care 6 0.059

Adjuvant treatment
None 40 0.353

radiotherapy 26 0.255
radiochemotherapy 36 0.392

3.2. Identification of Diagnostic Factors for the Primary Treatment Scenario

Regarding the primary treatment scenario, the utilization of φK-based correlation
and significance analysis identified six diagnostic factors with a representative correla-
tion coefficient above 0.3 and a Z-value above 2.5 (see Figure 2). Those included T-state
(correlation: 0.38, significance: 7.27), N-state (correlation: 0.36, significance: 3.34), M-state
(correlation: 0.89, significance: 3.47), ECOG (correlation: 0.65, significance: 4.93), as well as
the infiltrations of the sternocleidomastoid muscle (correlation: 0.35, significance: 2.80), the
internal jugular vein (correlation: 0.36, significance: 2.78), the nasopharynx (correlation:
0.32, significance: 2.86), and the accessory nerve (correlation: 0.46, significance: 2.84). From
a medical point of view, this corresponds to the clinical factors most weighted in the tumor
board. For primary therapy, tumor size and infiltration of certain structures play a decisive
role in the diagnostic process, as this influences resectability. The ECOG concludes a clinical
assessment of a patient’s general performance and therefore, correlates with the tolerability
of invasive procedures such as surgery, radiotherapy, and even more chemotherapy.
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3.3. Analysis of Intra-Variable Distances

Based on the fact that the M-state as well as the identified infiltrations are represented
as binary states that can either be present or not present (0 or 1 for the M-state, respectively),
those factors did not account for intra-variable investigation. Thus, the overall correlation
of the feature can be further considered. In terms of the T-state, our analysis showed a non-
linear behavior which closely adapts to clinical expectations (see Figure 3). Consequently,
extreme differences in staging (i.e., T1 to T4) do also have extreme deviations while smaller
distances do have smaller impact on the therapeutic decision and thus, more similarity
during case comparison.

Diagnostics 2022, 12, x FOR PEER REVIEW 2 of 17 
 

 

3.3. Analysis of Intra-Variable Distances 

Based on the fact that the M-state as well as the identified infiltrations are repre-

sented as binary states that can either be present or not present (0 or 1 for the M-state, 

respectively), those factors did not account for intra-variable investigation. Thus, the 

overall correlation of the feature can be further considered. In terms of the T-state, our 

analysis showed a non-linear behavior which closely adapts to clinical expectations (see 

Figure 3). Consequently, extreme differences in staging (i.e., T1 to T4) do also have ex-

treme deviations while smaller distances do have smaller impact on the therapeutic de-

cision and thus, more similarity during case comparison. 

 

Figure 3. Correlation coefficient of the T-state variable under different state permutations. The 

T-state (tumor state) is defined as a multi-factorial metric that classifies a range of tumor charac-

teristics, e.g., size or an infiltration of specific anatomic regions. 

In a similar way, the analysis of ECOG provided equally comprehensible results that 

clearly show the value of considering intra-variable distances to derive medical case 

similarity (see Figure 4). While the derivation of ECOG 0 and ECOG 1 showed almost no 

impact on assessing two individuals as different during therapy decision-making, larger 

distances (i.e., ECOG 0 and ECOG 2) carry tremendous differences. This behavior would 

have not been obvious from considering the overall feature correlation of 0.65 (see Figure 

2) during similarity calculation. 

 

Figure 4. Correlation coefficient of the ECOG variable under different state permutations. The 

ECOG status is a medical classification system to express the activity index and overall fitness of an 

individual patient. 

Implementing the previously introduced 10-fold cross evaluation approach for sim-

ilarity-based case matching through unseen test data, we were able to identify a median 

of eight cases from the testing cohort with one or more identified matches from the 

training cohort. Based on the fact that all those identified matches shared an equal 

treatment modality with the corresponding test case, we were able to achieve a perfect 

evaluation score of 1.0. 

Figure 3. Correlation coefficient of the T-state variable under different state permutations. The T-state
(tumor state) is defined as a multi-factorial metric that classifies a range of tumor characteristics, e.g.,
size or an infiltration of specific anatomic regions.

In a similar way, the analysis of ECOG provided equally comprehensible results
that clearly show the value of considering intra-variable distances to derive medical case
similarity (see Figure 4). While the derivation of ECOG 0 and ECOG 1 showed almost no
impact on assessing two individuals as different during therapy decision-making, larger
distances (i.e., ECOG 0 and ECOG 2) carry tremendous differences. This behavior would
have not been obvious from considering the overall feature correlation of 0.65 (see Figure 2)
during similarity calculation.
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individual patient.

Implementing the previously introduced 10-fold cross evaluation approach for similarity-
based case matching through unseen test data, we were able to identify a median of eight
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cases from the testing cohort with one or more identified matches from the training cohort.
Based on the fact that all those identified matches shared an equal treatment modality with
the corresponding test case, we were able to achieve a perfect evaluation score of 1.0.

3.4. Identification of Diagnostic Factors for the Adjuvant Treatment Scenario

In clinical practice, the decision to conduct postoperative (adjuvant) therapy is based
on CPG, such as the NCCN guidelines, which specify exactly which characteristics require
adjuvant therapy and if so, which particular strategies [27]. Thus, for example, a patient
who has undergone a complete R0 resection with sufficient margins after surgery, along
with a N0 status, would not require adjuvant therapy in many cases. However, in clinical
practice, patients are still offered the option of adjuvant therapy, for example when certain
risk factors such as expended tumor size (T3 and larger) or lymphatic (L1), venous (V1), or
perineural invasion (Pn1) are identified.

Our analysis identified seven diagnostic factors as relevant for adjuvant therapy deci-
sion (see Figure 5). Those included primary therapy (correlation: 0.71, significance: 8.09),
ECOG status (correlation: 0.60, significance: 2.69), lymphatic invasion (correlation: 0.57, sig-
nificance: 2.88), perineural invasion (correlation: 0.68, significance: 3.72), vascular invasion
(correlation: 0.70, significance: 3.94), extracapsular spread (correlation: 0.92, significance:
7.54), as well as resection margin (correlation: 0.51, significance: 6.29). The factors identified
by the application are also consistent with the clinical approach. The interdisciplinary
tumor board for post-surgery treatment also considers various characteristics that deter-
mine the adjuvant therapy. Firstly, results from pathological diagnostics, such as a positive
resection margin or extracapsular spread of the lymph node metastasis, are an indication
for adjuvant therapy.

While the presence of invasion in the distinct anatomical structures is again repre-
sented as binary expressions, we further investigated the ECOG status variable according
to our presented approach. From the numbers (see Figure 6), we again perceive a non-linear
behavior, which ranges between a correlation score of 0.06 and 0.32. For our approach, how-
ever, this relates to the fact that changes throughout those states need not to be considered
during similarity matching: a fact which would have been the case if state deviations in the
variable would have been considered in general (correlation: 0.60, see Figure 5). Further
analysis would have also been necessary regarding the resection margin variable based
on our stated method. However, since the presence of state R2 was only found once in the
data, it was not possible to find matches in the train-test split. Thus, we considered it at an
overall variable level (correlation: 0.51) during evaluation and only considered absolute
matches throughout the respective states to be similar.

Based on the 10-fold cross evaluation procedure, we were able to identify a median of
nine cases from the testing cohort with one or more matches from the training cohort. The
results revealed a mean evaluation score of 0.957 (minimum: 0.71, maximum: 0.96), which
relates to a very high accuracy in the identification of patients that received equal adjuvant
therapeutic procedures.

For practical application of the model to support the diagnostic and therapeutic pro-
cess, the model emphasizes a detailed determination of extracapsular extension of lymph
nodes. For a patient with pT2 pN1 M0 (according to TNM classification 2017 [28]) OP-
SCC and HPV-16 positivity, there are critical differences in treatment decision-making.
In particular, the absence of extracapsular extension has to be considered, which practi-
cally indicates radiotherapeutic adjuvance alone, whereas the presence of extracapsular
extension requires combined adjuvant chemoradiation. Another example points out the
significance of the ECOG status. In a patient with pulmonary metastasis from an OPSCC,
the model refers to the evaluation of ECOG status to estimate chemo tolerability: A patient
with ECOG 1 is likely to tolerate systemic chemotherapy, whereas a similar patient with
ECOG 3 will probably not tolerate conventional chemotherapy. Another finding directs to
the diagnostic assessment of nasopharyngeal infiltration of OPSCC regarding treatment
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decision, as indicated in Figure 5. How case comparison could be used in a clinical setting
is also shown in Figure A1 in Appendix A.
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4. Discussion

Based on our approach, an initial objective selection of crucial diagnostic features and
their individual impact regarding primary and adjuvant therapy decisions in the head
and neck tumor board could be established. Nevertheless, it should be noted that the
determination of the introduced metrics is highly dependent on the underlying database. It
must therefore be assumed that the results of our retrospective analysis of 102 patient cases
are limited to some extent and would be more significant with the integration of more or
other data sets. This research therefore serves as a proof-of-concept study. The outcomes
presented in this paper should be considered as a starting point that needs to be further
analyzed and verified by including additional case data. The precision of the decision is
then proportional to the amount of case evidence provided. However, based on the trends
and effects revealed by the utilized algorithms, we were able to agree with the results
from the perspective of clinical professionals in the weighting of diagnosis-related factors.
This indicates that the presented approach is likely to adapt to causal implications in the
real-world setting (e.g., lowering the need for adjuvant treatment when an R0 resection
with clear margins was achieved).

In this work, we exclusively focused on the utilization of the φK-correlation coefficient
to perform feature-space reduction and similarity scoring. While this method was mainly
based on the fact that the integrated data set inherited a mixed-type variable constellation,
the resulting sets for both treatment decision scenarios were purely categorical. This would
have allowed for benchmarking our approach with other methodological solutions that
are also capable of considering state differences among variables (i.e., Goodall measure
or probability-based methods). However, since the main goal of our work was to present
a novel solution to the problem of case-based reasoning, an in-depth comparison of our
approach to other potential solutions was out of scope but should be considered in future
works, also using further data sets to evaluate the generalizability. While this might go
along with different outcomes regarding the resulting feature set (e.g., by integrating
numerical variables such as laboratory measures), the issue of unprocessable complexity in
the analysis of state permutations among two variables would require pre-processing, e.g.,
by transforming the respective values to z-scores.

The analysis performed in this study considers only patients who were assessed and
treated in a single hospital. Thus, the aspect of institutional bias cannot be completely
dismissed. However, due to the generalized description and design of the methodological
process, a simple transferability to a multicenter application is feasible. This could not only
lead to a minimization of bias but could also make the process of identifying similar patient
cases even more useful by extending the associated search area accordingly. However, this
implementation is associated with a correspondingly high organizational and technical
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effort in practice as it would require the provision of a central repository for the structured
input and storage of medical case data. It would also be necessary to ensure terminological
consistency. This standardization also applies to the initial evaluation of the individual
information entities for prior classification.

Furthermore, it should be noted that for certain patient cases, there may be more
than one possible treatment option and that the patient’s will should not be disregarded.
This may lead to deviations between the tumor board decision and the intervention that is
performed and documented in the electronic health record. Consequently, it is possible that
patients who might be identified as similar by our approach might have received another
treatment option than the one initially suggested to the patient. In a future setting that
integrates our approach towards similarity calculation for case-based reasoning, this very
likely circumstance should be addressed.

Although the methodological approach was presented and evaluated using the exam-
ple of OPSCC, it requires very little adaptation for further use cases in both oncological and
non-oncological contexts. For this purpose, the presented processes only need to be mapped
to the respective domain and the results need to be interpreted and evaluated accordingly.

This method may also be suitable for very rare and complex cases, where decision-
making is further complicated when the available information and experience is limited.
Therefore, misdiagnosis and incorrect treatment are more likely in rare and complex
diseases due to insufficient knowledge and awareness [29]. A concise identification of
objective, decisive diagnostic features and an analysis of similarity to previous cases can
answer individual questions with the aim of determining the best possible diagnosis and
treatment strategy for the patient. This adds quality and granularity to the decision-making
process and potentially improves patient outcomes. In addition, the analyses provided may
contribute to the training and expertise of health professionals. Particularly, beginners may
benefit from this, which also enhances objectivity and quality control in hospital diagnostic
and treatment processes.

While the provided solution is intended to offer rational and intuitive assistance in
clinical decision-making, it still needs to be considered that medical cases provide enormous
diversity and should not be exclusively evaluated by a set of features. However, our
primary aim is to provide proper assistance in identifying relevant cases as a further source
of evidence in the therapy decision process and not the specification of the decision itself.

5. Conclusions

In this paper, we developed and evaluated a novel approach to provide data-driven
similarity analysis for medical cases to support the diagnosis and treatment process in
clinical practice. By calculating the individual φK- correlation of each diagnostic feature in
relation to the registered treatment decision and evaluating its significance, it was possible
to identify both patient- and diagnosis-related factors that are consistent with the clinical
assessment of experts and the clinical practice guidelines. Based on the implemented
procedure, we were able to evaluate a novel real-world application that can benefit from
the theoretical works by Baak et al. [24] and the resulting φK correlation coefficient in a
meaningful way.

This allows an individualized diagnostic assessment of the patient, potentially re-
ducing the patient’s waiting time for treatment proposals and enabling the application of
the most effective treatment method. Since the individual expertise of the collaborative
members of a tumor board highly depends on the individual participants, the presented
method can introduce a new layer of competence by enabling case comparison. This helps
to tackle uncertainty or decision bias, thus providing sufficient support to the diagnosis
and treatment process in order to improve patient outcomes.
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