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Abstract: This study evaluated the performance of the early, late and final runs of IMERG version
06 precipitation products at various spatial and temporal scales in China from 2008 to 2017, against
observations from 696 rain gauges. The results suggest that the three IMERG products can well
reproduce the spatial patterns of precipitation, but exhibit a gradual decrease in the accuracy from
the southeast to the northwest of China. Overall, the three runs show better performances in the
eastern humid basins than the western arid basins. Compared to the early and late runs, the final
run shows an improvement in the performance of precipitation estimation in terms of correlation
coefficient, Kling–Gupta Efficiency and root mean square error at both daily and monthly scales. The
three runs show similar daily precipitation detection capability over China. The biases of the three
runs show a significantly positive (p < 0.01) correlation with elevation, with higher accuracy observed
with an increase in elevation. However, the categorical metrics exhibit low levels of dependency
on elevation, except for the probability of detection. Over China and major river basins, the three
products underestimate the frequency of no/tiny rain events (P < 0.1 mm/day) but overestimate the
frequency of light rain events (0.1 ≤ P < 10 mm/day). The three products converge with ground-
based observation with regard to the frequency of rainstorm (P ≥ 50 mm/day) in the southern part
of China. The revealed uncertainties associated with the IMERG products suggests that sustaining
efforts are needed to improve their retrieval algorithms in the future.

Keywords: satellite precipitation products; IMERG; accuracy evaluation; rain gauge; China

1. Introduction

Precipitation plays a critical role in water cycle and energy balance [1–4]. Understand-
ing the spatial and temporal variability of precipitation is essential for many applications
including hydrological modeling, climatic prediction and water resource management as
well as environmental and ecological risk analysis [2,5–7]. In general, precipitation esti-
mates can be obtained from three sources: ground-based observations, model simulations
and remote sensing observations [8,9]. Ground-based observation is the most accurate
method of retrieving precipitation records. However, it is largely limited by the sparse
ground networks of rain gauges and the discontinuity of the recording sequences [10,11].
Ground-based radar is an alternative approach for measuring precipitation, but it is affected
by surface backscattering, signal attenuation and reflectivity-rain-rate (Z-R) [12]. Process
models, for instance, the European Centre for Medium-Range Weather Forecasts (ECMWF)
and Modern-Era Retrospective Analysis for Research and Application (MERRA) [13,14],
can well simulate the spatial patterns of precipitation but often show substantial uncer-
tainties [15]. Satellite-based observations provide a unique opportunity to estimate (near)
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real-time precipitation globally with promising accuracy, especially for remote regions such
as mountains, deserts and oceans, where ground-based observations are too sparse [16–18].
Consequently, estimating precipitation from remote sensing observations has become a
major approach to measuring precipitation over the world [19].

In recent decades, the satellite information technologies have achieved greatly de-
velopments especially for precipitation retrieval algorithms [20]. Among them, the main
precipitation retrieval algorithms include Visible (VIS), Infrared (IR), Passive Microwave
(PMW), Active Microwave (AMW) and Multi-Sensor (MS) [21]. Generally, VIS and IR have
high time-space resolution, while they lack the physical basis and have low accuracy [22,23].
PMW has high accuracy in global scale in comparison with VIS and IR, while its drawback
is low time-space resolution [24]. Therefore, Multi-sensor Precipitation Estimation (MPE)
has become the main way to retrieve high accuracy and resolution precipitation products
by combining their complementary strengths [24,25]. For example, Climate Prediction
Center Morphing Method (CMORPH) uses geostationary IR data to obtain cloud motion
and interpolates the precipitation rate by PMW data [25]. Similarly, the TMPA (Tropical
Rainfall Measuring Mission Multi-satellite Precipitation Analysis) algorithm generates the
rainfall by combing the PMW data and IR temperature brightness [26].

Over the world, many available satellite-based precipitation products (SPPs) differ
in terms of their development purposes, input data sources, retrieval algorithms, spa-
tiotemporal resolutions, coverages and temporal spans. Among them, the Tropical Rainfall
Measuring Mission (TRMM) has provided a valuable precipitation dataset over the tropics
and subtropics since 27 November 1997 [26,27]. Subsequently, the Global Precipitation
Measurement (GPM), as a successor to the TRMM, was launched on 28 February 2014,
aims to produce an accurate and reliable global precipitation estimation with all available
sensors in TRMM and GPM eras [28,29]. Compared to TRMM products, the GPM precipi-
tation products have a full coverage of the globe with a half-hourly temporal resolution
and 0.1◦ × 0.1◦ spatial resolution, whereas the TRMM products only cover the latitude
range of 50◦ N-50◦ S at much coarser spatial (0.25◦ × 0.25◦) and temporal (three-hourly)
resolutions [26]. In terms of precipitation retrieval algorithms, previous SPPs still have
some limitations. For example, the Precipitation Estimation from Remotely Sensed Infor-
mation using Artificial Neural Network (PERSIANN) estimates precipitation values based
on infrared brightness temperature image (as input) and artificial neural network (as a
model) [30], whereas CMORPH only uses infrared data for transporting the microwave-
based rain characteristics during the periods when microwave data are not available at
a location [25,31]. However, the Integrated Multi-satellite Retrievals for GPM (IMERG)
combine the advantages of CMORPH, PERSAINN and TMPA products [32,33]. Given
these improvements, the IMERG products tend to perform better than other SPPs in many
regions across the world including China [34], Malaysia [35] and East Asia [36].

Although previous studies have demonstrated that the IMERG products exhibit bet-
ter accuracy and precipitation detection performance than other satellite dataset such as
TRMM 3B42, 3B42RT and PERSIANN-CDR products in many regions [19,37–39], the tem-
poral coverage of these studies are limited. Recently, the latest version of IMERG products
(IMERG V06) has been released, covering the period beginning from June 2000. The prod-
ucts include significant improvements in the algorithm used to estimate precipitations and
provide estimates for precipitation phase [29] using the look-up table method developed
by Sim and Liu [40]. Recent studies have highlighted the high performance of the IMERG
V06 products in various contexts, which include Iran, Austria and Germany [41–43]. To
date, however, a comprehensive accuracy evaluation of the long-term retrospective IMERG
precipitation estimates for China is lacking, which has largely limited its applications in
various fields.

In this study, we aimed to evaluate the long-term (10 years) retrospective IMERG
precipitation data across mainland China, including the near-real-time (NRT) “Early”
(IMERG_E), “Late” (IMERG_L), Post-Real-Time (PRT) and “Final” (IMERG_F) products. To
this end, observed precipitation records from 696 rain gauges and the three runs of IMERG
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V06 products were obtained for the period between 1 January 2008 and 31 December 2017.
The objectives of this study were three-fold: (a) investigate the variations in IMERG V06
performance in multiple time-space scale; (b) evaluate how the performance of IMERG V06
depends on topographic variations; and (c) assess the accuracy and detection performance
of IMERG V06 for capturing different precipitation types. The long-term evaluation results
could further provide references for the improvement of IMERG product algorithms. More
importantly, the outcome of this wok could validate the utility of latest IMERG V06 as a
source of precipitation dataset to forecast and early warning against potentially natural
hazards such as extreme precipitation and drought in less prepared regions.

2. Study Area and Dataset
2.1. Study Area

Our study area includes China, which is located within 73-135◦ E and 18-53◦ N [16].
Globally, the elevation patterns in China decrease from west to east (Figure 1a) [44]. Precip-
itation in China tends to decrease from the southeast coast to the northwest inland, with
higher levels of precipitation usually occurring in summer [34]. Mainland China can be
divided into nine major river basins (Figure 1b): Continental Basin (CB), Southwest Basin
(SWB), Songliao River Basin (SRB), Southeast Basin (SEB), Pearl River Basin (PRB), Yellow
River Basin (YERB), Yangtze River Basin (YARB), Haihe River Basin (HARB) and Huaihe
River Basin (HURB) [44]. SRB and HARB have a colder climate, while HURB, PRB, SEB
and the lower altitude areas of YARB have a temperate climate. YERB and the low altitude
areas of CB have an arid climate. SWB and high-altitude regions of YARB and CB have
polar climate. SEB, PRB and the downstream of YARB have annual mean rainfall over
1000 mm (Figure 1b). SWB exhibits complex terrains with annual mean rainfall from 150 to
1000 mm, with a decrease in the amount of precipitation from east to west (Figure 1b). The
annual mean rainfall of HURB is about 600-1300 mm (Figure 1b). For the northern basins,
namely SRB, HARB, YERB and CB, annual mean rainfall is below 800 mm (Figure 1b).

Figure 1. (a) Topography map of the China and different basins; and (b) the spatial distribution of 696 daily rain gauges, the
division of nine basins and the annual mean precipitation during 2008–2017. CB, Continental Basin; HARB, Haihe River
Basin; HURB, Huaihe River Basin; PRB, Pearl River Basin; SEB, Southeast Basin; SRB, Songliao River Basin; SWB, Southwest
Basin; YARB, Yangtze River Basin; YERB, Yellow River Basin. Each point represents a rain gauge in (b).
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2.2. Rain Gauge Data

Daily precipitation data were obtained for the period of 2008-2017 from meteorological
gauge stations maintained by the Chinese Meteorological Administration (http://data.
cma.cn/ accessed on 5 August 2020). All data records have undergone a series of quality
procedures, developed by Shen and Xiong [45], to ensure the high quality of the ground
rain gauge data. Rain gauges with missing value are simply discarded, resulting in a final
selection of 696 rain gauges over China (Figure 1b). This ground observation dataset was
used as a benchmark for evaluating the three runs of IMERG V06 products (Early, Late
and Final).

2.3. Satellite-Based Precipitation Dataset

GPM is a collaboration mission between the National Aeronautics Space Administra-
tion (NASA) and the Japan Aerospace Exploration Agency (JAXA). It was released in 2014
and aimed to provide globally a precipitation dataset at high spatiotemporal resolution.
GPM was designed to extend the TRMM mission to produce the next generation of Earth’s
precipitation estimates, which consists of approximately 10 constellation satellites and a
core observatory [27,28]. The two main sensors of GPM satellites are the Dual Frequency
Precipitation Radar (DPR) and GPM Microwave Imager (GMI). GMI is used to estimate
precipitation type and intensity, while DPR is utilized to explore the internal structure of
storms under or within clouds [27,28].

The GPM Level 3 precipitation products were generated by NASA using the IMERG
algorithm. Three types of IMERG products are available in each version, namely the
early (E), late (L) and final (F) runs with a latency of 4 h, 12–24 h and 3.5 months, re-
spectively [28,29]. In general, the early and late runs of IMERG are utilized for real-time
applications such as flood monitoring and irrigation regulation, whereas the final run
product is mainly for scientific research. Currently, all runs of IMERG products are avail-
able with half-hourly temporal resolution and a global coverage at 0.1◦ spatial resolution.
NASA also provides daily and monthly data products at 0.1◦ spatial resolution. Three
major changes made in the latest version (V06) of IMERG products are as follows: (1) the
data of Goddard Earth Observing System model (GEOS) Forward Processing (FP) and
the Modern-Era Retrospective Reanalysis 2 (MERRA-2) are used for time interpolation
instead of the infrared data in IMERG V05; (2) the Sounder for Atmospheric Profiling of
Humidity (SAPHIR) estimates and TMI estimates are used for V06; and (3) passive mi-
crowave estimates are morphed at high latitudes to reduce spatial gaps [29]. In this study,
we used the early (IMERG_E), late (IMERG_L) and final runs (IMERG_F) of the IMERG
V06 products for the period of 1 January 2008-31 December 2017. The IMERG prod-
ucts are available at https://disc.gsfc.nasa.gov/datasets?keywords=IMERG&page=1
(accessed on 3 August 2020).

3. Methodology
3.1. Data Processing

To assess the performance of latest IMERG V06 product, the grid data (IMERG data)
were compared with the rain gauge data based on the point-to-point analysis due to the
uncertainty associated with gauge data interpolations [2,46–49]. In this framework, the
corresponding grid data of SPPs is extracted at the locations of the gauge stations.

3.2. Evaluation Metrics

Continuous metrics were used to evaluate the accuracy of the IMERG products.
Pearson correlation coefficient (CC) was used to measure the correlation between rain
gauge and satellite dataset, while root mean square error (RMSE) was computed to evaluate
the error characteristics of satellite datasets. We also used the Kling–Gupta efficiency (KGE)
statistic [50,51] to comprehensively explore the accuracy of IMERG products, considering
the distance between the mean and variance of gauge-based and satellite-based time series

http://data.cma.cn/
http://data.cma.cn/
https://disc.gsfc.nasa.gov/datasets?keywords=IMERG&page=1
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of precipitation as well as their correlation. KGE balances the contributions of correlation,
bias and variability term. The corresponding equations are as follows:

CC =
1
n ∑N

n=1
(
Sn − S

)(
Gn − G

)
σsσG

(1)

RMSE =

√√√√ 1
n

N

∑
n=1

(Sn − Gn)
2 (2)

KGE = 1 −
√
(CC − 1)2 + (β − 1)2 + (γ − 1)2 (3)

where n represents the number of samples, Sn represents satellite precipitation estimate
and Gn represents gauge observed precipitation. S and G are the mean of satellite-
and gauge-based precipitation. The variation of precipitation is given by σG and σs,
which represent the standard deviation of gauge precipitation and satellite precipitation,
respectively. The CC (Equation (1)) possible values range between −1 and 1. The RMSE is
computed as the average of the square of the differences between Sn and Gn (Equation (2))
and is non-negative by construction, with smaller values indicating a better performance.
The estimation of KGE (Equation (3)) includes three terms: β is the bias ratio (β = µS

µG
),

which represents the ratio between the mean satellite precipitation (µS) and the mean
gauge (µG). The variability ratio (γ = CVS

CVG
) is the ratio between the coefficient of variation

associated with satellite precipitations CVS and gauge data CVG, with CVS = σS
S

and,
similarly, CVG = σG

G
. KGE values range in the interval (−∞, 1] and larger values indicate

better performance.
Categorical metrics were utilized to assess the precipitation detection capability of

IMERG products. The critical success index (CSI) describes the ability of IMERG products
to detect precipitation event, with values between 0 and 1 (the perfect value). It is expressed
as a function of probability of detection (POD) ranging from 0 to 1 (the perfect score) and
false alarm ratio (FAR) ranging from 0 (the perfect value) to 1, which are calculated as:

POD =
H

H + M
(4)

FAR =
F

H + F
(5)

CSI =
H

H + M + F
=

1
1

1−FAR + 1
POD − 1

(6)

where H is the precipitation event detected by both gauge and satellite simultaneously,
M is the precipitation event detected by the gauge but not detected by the satellite and F
is inverse with M. The calculation of CSI requires a threshold to determine rain/no-rain
events. The rain gauges and SPPs have a daily time resolution in this study. We selected
0.1 mm/day as the threshold for defining the precipitation occurrence according to the
definition adopted by the Chinese Meteorological Administration.

3.3. Categorizing Elevation, Precipitation Intensity and Season

To evaluate the influence of elevation on the performance of the SPPs, we grouped
all studied stations into six elevation categories (<200, 200–500, 500–1000, 1000–1500,
1500–2000 and >2000 m). Moreover, we classified daily precipitation (P) intensity into five
categories based on China’s national standard on the intensity of precipitation: no/tiny rain
(P < 0.1 mm/day), light rain (0.1 ≤ P < 10 mm/day), moderate rain (10 ≤ P < 25 mm/day),
heavy rain (25 ≤ P < 50 mm/day) and rainstorm (P ≥ 50 mm/day). The mean daily pre-
cipitation was calculated for winter (December–February), spring (March–May), summer
(June–August) and autumn (September–November) for seasonal-scale analysis.
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4. Results
4.1. Spatial Patterns of the Continuous and Categorical Evaluation

The spatial distribution of the continuous and categorical evaluation metrics for the
three runs of IMERG products over China are shown in Figures 2 and 3, respectively. For
the three runs, CC and RMSE metrics show distinct spatial pattern across China, which
can be seen in Figure 2a–c,m–o, respectively. The CC between the observed gauge data
and satellite data ranges from 0.4 to 0.7 in southeast coastal areas, with RMSE values
over 13 mm/day. According to the RMSE, IMERG_F performs better than IMERG_E
and IMERG_L in southern China (PRB). Moreover, CC and RMSE decrease gradually
towards the northwest inland of China. Southeast regions of China belong to sub-tropical
monsoon climate zone with large amount of precipitation over the year, thus showing a
high correlation and high error. The spatial pattern of β, which ranges from 0.6 to 0.8,
suggests that both IMERG_E and IMERG_L underestimate the values of rain gauge rainfall
in the southwest of China (SWB) (Figure 2d,e). In contrast, the IMERG_F appears to
perform better in this region. The differences in the estimation of the variability ratio (γ)
and KGE between the IMERG products across China are not significant. The three runs
of IMERG products show a better performance in the southern and southeastern parts of
China (PRB and SEB), with KGE value over 0.5. In addition, IMERG_F shows the highest
performance in the HARB region (Figure 2l).

Figure 3 shows the spatial distribution of the categorical evaluation metrics (POD,
FAR and CSI) across China. For the three SPPs, the estimation of the precipitation is more
accurate in PRB, SEB and SWB, with POD values over 0.7 (Figure 3a–c). In CB, however, all
runs have POD less than 0.5, indicating that less than half of rain events can be detected by
satellite-based observations. Regarding the FAR analysis, higher accuracy is observed from
the late and final runs, especially in the HARB and SRB, when compared with the early
run (Figure 3d–f). The CSI shows good performance in the southeast direction, compared
with the northwest (Figure 3g–i).

The evaluation results of continuous and categorical metrics of each basin are listed
in Table 1. The CC and KGE estimations are higher in YARB, PRB, SEB and SWB for all
runs (Table 1). The RMSE values of three SPPs are the lowest in YERB except in CB. The
highest values of POD (0.72–0.75) and lowest values of FAR (0.35) are in SWB and PRB,
respectively. A better precipitation detection performance of three runs is found for PRB,
SEB and SWB, with CSI value ranging 0.48–0.51 (Table 1).

4.2. Temporal Scale Evaluation
4.2.1. Daily Scale

The performances of IMERG_E, IMERG_L and IMERG_F were evaluated on a daily
basis, and the evaluation metrics are summarized in Table 2. Overall, the performance
of IMERG_F is better than the IMERG_E and IMERG_L, with higher mean CC (0.47)
and KGE (0.45) values and lower mean RMSE (9.26 mm/day) (Table 2). Regarding the
accuracy in the estimation of precipitation, the three runs of IMERG products show similar
patterns across China, with POD value ranging from 0.67 to 0.68. The FAR values of three
SPPs are, however, up to 0.5 across China, indicating poor detection performance of the
IMERG products. All SPPs overestimate the mean precipitation across China, with β value
ranging from 1.07 to 1.08. As shown in Figure 4, the median KGE of IMERG_E, IMERG_L
and IMERG_F are 0.31, 0.30 and 0.37, respectively. The improvement is minor for CSI
in comparison to KGE, indicating that gauge adjustment is more effective for improving
intensity estimation than occurrence detection.
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Figure 2. Spatial distribution of statistical metrics (CC (a–c); β (d–f); γ (g–i); KGE (j–l); and RMSE (m–o)) from IMERG_E
(Column 1), IMERG_L (Column 2) and IMERG_F (Column 3) at daily level from 2008 to 2017.
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Figure 3. Spatial distribution of categorical metrics (POD (a–c); FAR (d–f); and CSI (g–i)) for IMERG_E (Column 1),
IMERG_L (Column 2) and IMERG_F (Column 3) at daily level from 2008 to 2017.

Table 1. Performance metrics associated with IMERG products in each basin from 2008 to 2017.

Metrics SPPs
Basin

SRB HARB HURB YERB YARB PRB SEB SWB CB

CC
IMERG_E 0.35 0.33 0.37 0.35 0.40 0.44 0.40 0.40 0.24
IMERG_L 0.35 0.33 0.37 0.35 0.40 0.44 0.43 0.40 0.23
IMERG_F 0.40 0.36 0.41 0.39 0.43 0.48 0.47 0.43 0.28

β

IMERG_E 1.23 1.19 1.23 1.12 1.04 1.01 1.01 0.96 1.45
IMERG_L 1.25 1.22 1.24 1.14 1.04 0.99 0.99 0.95 1.48
IMERG_F 1.12 1.08 1.12 1.09 1.05 1.03 1.04 1.19 1.21

γ
IMERG_E 0.80 0.76 0.80 0.93 0.96 1.06 0.98 0.97 0.76
IMERG_L 0.84 0.81 0.87 0.99 1.01 1.11 1.05 1.01 0.81
IMERG_F 0.83 0.81 0.83 0.88 0.91 0.98 0.96 0.87 0.75

KGE
IMERG_E 0.30 0.26 0.31 0.34 0.40 0.44 0.40 0.39 0.09
IMERG_L 0.28 0.27 0.31 0.33 0.40 0.43 0.43 0.39 0.08
IMERG_F 0.36 0.33 0.37 0.37 0.42 0.48 0.47 0.39 0.21

RMSE
(mm/day)

IMERG_E 6.99 7.31 10.03 5.81 11.26 14.80 13.62 7.17 2.90
IMERG_L 7.24 7.53 10.52 6.06 11.57 15.09 13.06 7.29 3.06
IMERG_F 6.57 7.00 9.50 5.37 10.74 13.83 12.83 7.39 2.55
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Table 1. Cont.

Metrics SPPs
Basin

SRB HARB HURB YERB YARB PRB SEB SWB CB

POD
IMERG_E 0.65 0.66 0.71 0.65 0.68 0.66 0.69 0.74 0.55
IMERG_L 0.64 0.65 0.70 0.63 0.67 0.66 0.70 0.72 0.53
IMERG_F 0.64 0.65 0.70 0.65 0.69 0.67 0.71 0.75 0.55

FAR
IMERG_E 0.58 0.63 0.61 0.57 0.44 0.35 0.38 0.40 0.70
IMERG_L 0.57 0.61 0.59 0.55 0.42 0.35 0.36 0.39 0.69
IMERG_F 0.56 0.60 0.58 0.55 0.43 0.35 0.36 0.40 0.69

CSI
IMERG_E 0.34 0.31 0.33 0.35 0.44 0.49 0.48 0.49 0.24
IMERG_L 0.35 0.32 0.35 0.35 0.45 0.49 0.50 0.49 0.24
IMERG_F 0.35 0.33 0.35 0.36 0.45 0.49 0.51 0.50 0.25

Table 2. Overall performance associated with IMERG products from 2008 to 2017 at daily level across China.

SPPs CC β γ KGE RMSE (mm/day) POD FAR CSI

IMERG_E 0.42 1.07 0.93 0.41 9.67 0.68 0.50 0.40
IMERG_L 0.41 1.08 0.97 0.41 9.86 0.67 0.49 0.41
IMERG_F 0.47 1.07 0.90 0.45 9.26 0.68 0.48 0.42

Figure 4. Boxplots of CC (a), β (b), γ (c), KGE (d), RMSE (e), POD (f), FAR (g) and CSI (h) at daily scale from 2008 to 2017.
The bottom and top edges of the boxes indicate the 25th and 75th percentiles, respectively. The central black line indicates
the median. The black dash line is the optimal value.

4.2.2. Monthly Scale

At monthly level, IMERG_F exhibits better correlations (0.94) with ground obser-
vations than IMERG_E and IMERG_L (Table 3). IMERG_E and IMERG_L show similar
accuracy at monthly level. Compared to the other two runs, IMERG_F has the lowest
RMSE value (34.31 mm/month). Overall, the final run shows higher accuracy in China,
with KGE value up to 0.87 (Table 3).
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Table 3. Overall performance metrics associated with IMERG products from 2008 to 2017 at monthly level across China.

SPPs CC β γ KGE RMSE (mm/month)

IMERG_E 0.83 1.08 0.97 0.81 56.57
IMERG_L 0.83 1.08 0.98 0.81 57.62
IMERG_F 0.94 1.07 0.92 0.87 34.31

Figure 5 shows the metric characteristics of IMERG products in different months,
sorted from “good performance” (green) to “bad performance” (red). As indicated by
Figure 5, CC is high from October to December but low from July to September for all runs.
This is consistent with the timing of high and low frequency of precipitation in the study
area. RMSE is high from May to September, which is related to the intense precipitation
that affect various regions in China during these months. At a monthly level, IMERG_F
consistently shows better performance than the other products in all months, with the
highest KGE in autumn. For the categorical metrics of POD, FAR and CSI, July represents
the month where their performance is at the highest level. The beginning of the year shows
the lowest POD, while FAR reaches the highest performance level at the end of the year.
As for the CSIs, the IMERG products show the best performance between June and August.
The results suggest that the overall performances of IMERG_F, IMERG_E and IMERG_L
are not statistically significantly different at a monthly level.

Figure 5. Accuracy comparison of IMERG_E, IMERG_L and IMERG_F products in each month during 2008–2017
across China.
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4.2.3. Seasonal Scale

As a complementary work, we assessed the seasonal performances of the three IMERG
products at a daily level in each basin and across Mainland China (Figure 6). For each
basin, there are great discrepancies in the annual rainfall regime over different basins
of China (Figure S1). Based on the rain gauge observations during 2008–2017, the SEB
has greatest annual mean rainfall of 1742.77 mm, followed by PRB (1638.60/year), YARB
(1200.84 mm/year), HURB (831.23 mm/year), SWB (811.23 mm/year), SRB (576.64 mm/year),
HARB (530.30 mm/year), YERB (475.49 mm/year) and CB (165.82 mm/year) (Figure S2).
With respect to accuracy performance, the precipitation from IMERG_F is moderately
correlated with gauges observations in all seasons and basins, with CC values ranging
from 0.14 to 0.58 (Figure 6a–d and Figure S2). Three runs show poor correlation (CC value
of 0.08–0.33) with rain gauge observations for all seasons in arid regions (CB). Basically,
IMERG_F has lower RMSE value than IMERG_E and IMERG_L in each basin and season
(Figure 6e–h). For KGE, IMERG_F performs better in all seasons and over each basin
compared to IMERG_E and IMERG_L (Figure 6i–l). For accuracy differences in nine basins,
overall, three runs have better performance in humid regions (including SEB, PRB and YARB)
with higher KEG values (Figure 6a–l). In regard to detection capability, the performance of
the IMERG_F compared to IMERG_E and IMERG_L does not improve significantly in all
seasons (Figure 6m–p). Particularly, the higher values of CSI occur in summer for all runs of
IMERG, ranging from 0.32 to 0.64 (Figure S3).

4.3. Evaluations of the Performance Dependency on Elevation

To explore the influence of elevation variations on the performance of IMERG products,
we divided all rain gauges into different categories based on the elevation associated with
each gauge. As shown in Table 4, the amount of precipitation is higher in low altitude
regions (<500 m), with averages over 943.5 mm/year. In addition, the three SPPs exhibit
the highest consistency in regions below 200 m, with CC values ranging from 0.43 to 0.47.
The three runs of IMERG do not show much discrepancy in β values among these elevation
categories, except for regions below 200 m and those over 2000 m. All SPPs have a positive
bias in regions below 1500 m, with β value from 1.01 to 1.14 (Table 4). The γ values of the
three SPPs generally increase with elevation, indicating a substantial underestimation of
precipitation variability in regions of low altitude. In all elevation categories, IMERG_F
shows better performance (lower RMSE and higher KGE values ranging from 0.34 to 0.45)
than IMERG_E and IMERG_L (Table 4). The highest POD values are observed in regions
with elevations below 200 m, while the lowest FAR and highest values CSI are estimated in
regions above 2000 m.

The scatterplots of CC, KGE, RMSE and CSI metrics against elevation are presented
in Figure 7. The three SPPs show a significantly (p < 0.01) decreasing tendency of CC
with elevation variations based on liner regression (Figure 7a–c). Similarly, the KGE
and RMSE values of three runs tend to decrease significantly (p < 0.01) with elevation
(Figures 7d–f and 7g–i, respectively). There is no significant (p > 0.05) dependency of CSI
on elevation (Figure 7j-l), although POD values significantly (p < 0.05) decreased with
variation of altitude (Figure S3g–i). Notably, the slope of trend line for detection evaluation
metrics (POD, FAR and CSI) are larger for IMERG_F, indicating an improvement of the
IMERG_F product in the capability of detection over high-altitude regions (Figure 7j–l
and Figure S3g–l).
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Figure 6. Radial column chart of CC (a–d), RMSE (e–h), KGE (i–l) and CSI (m–p) from IMERG_E, IMERG_L and IMERG_
F at the daily scale from 2008 to 2017 for different seasons over mainland China and nine basins (CB, Continental Basin;
HARB, Haihe River Basin; HURB, Huaihe River Basin; PRB, Pearl River Basin; SEB, Southwest Basin; SRB, Songliao River
Basin; SWB, Southwest Basin; YARB, Yangtze River Basin; YERB, Yellow River Basin).
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Table 4. Performance metrics associated with IMERG products in 6 classes of elevation.

Elevation (m) Mean Rain (mm) SPPs

Metrics

CC β γ KGE RMSM
(mm/day) POD FAR CSI

<200 1197.19
IMERG_E 0.44 1.14 0.90 0.41 12.15 0.71 0.50 0.42
IMERG_L 0.43 1.14 0.95 0.41 12.54 0.71 0.48 0.43
IMERG_F 0.47 1.09 0.89 0.45 11.42 0.72 0.48 0.43

200–500 943.52
IMERG_E 0.39 1.05 0.95 0.38 9.80 0.65 0.50 0.40
IMERG_L 0.38 1.05 0.99 0.38 10.02 0.64 0.49 0.40
IMERG_F 0.43 1.06 0.93 0.42 9.42 0.65 0.48 0.41

500–1000 729.58
IMERG_E 0.37 1.00 0.92 0.36 8.04 0.62 0.52 0.37
IMERG_L 0.36 1.01 0.96 0.36 8.25 0.61 0.50 0.38
IMERG_F 0.40 1.02 0.91 0.40 7.84 0.62 0.50 0.38

1000–1500 523.17
IMERG_E 0.34 1.07 0.92 0.33 6.87 0.61 0.56 0.34
IMERG_L 0.34 1.08 0.95 0.33 7.05 0.59 0.54 0.35
IMERG_F 0.39 1.04 0.90 0.38 6.50 0.61 0.54 0.35

1500–2000 766.16
IMERG_E 0.38 0.92 0.97 0.37 7.63 0.63 0.47 0.40
IMERG_L 0.38 0.92 1.00 0.38 7.75 0.62 0.46 0.40
IMERG_F 0.42 1.00 0.95 0.42 7.61 0.63 0.47 0.41

>2000 554.98
IMERG_E 0.32 0.84 1.13 0.29 5.13 0.66 0.44 0.43
IMERG_L 0.32 0.82 1.18 0.27 5.20 0.64 0.43 0.43
IMERG_F 0.35 1.11 1.01 0.34 5.48 0.68 0.44 0.44

Note: The second column (Mean rain) represents the annual mean precipitation of rain gauge in different elevation classes.

4.4. Evaluation for Precipitation Intensity Bins

Figure 8 shows the probability distribution function (PDF) of daily precipitation for
five precipitation intensity bins across China (Figure 8j) and in nine basins (Figure 8a–i). It
is evident that the PDF of days with precipitation intensity below 0.1 mm/day for three
SPPs is less than the observed one in China and each basin, whereas the opposite is found
for light rain (0.1 ≤ P < 10 mm/day). The precipitation values from the IMERG estimations
are closer to ground observations for the PDF of moderate rain (10 ≤ P < 25 mm/day) in
all regions (China and each basin), especially for PRB. IMERG_F tends to overestimate
the frequency of heavy rain (10 ≤ P < 25 mm/day) in the southern regions of China (PRB,
SEB, YARB and SWB). The IMERG products have the highest levels of consistency with
ground observations in the context of rainstorm (P ≥ 50 mm/day) in the PRB, YARB and
SEB regions.

The evaluation metrics for different precipitation intensity classes are presented in
Table 5 (China) and Figure 9 (nine basins). Table 5 does not provide FAR and CSI because,
if all days in the observed dataset are rainy (P ≥ 0.1 mm/day), the value of FAR is equal to
zero and CSI is equal to POD. In addition, POD is calculated based on different precipitation
intensity thresholds instead of a fixed threshold of 0.1 mm/day. Generally, the performance
associated with CC, RMSE and KGE tend to decrease when data are split into classes. This
suggests that overestimation and underestimation may partially cancel out to when the
data are analyzed as a whole. Thus, larger uncertainties are expected when the assessment
of SPPs dataset is conducted at the event level. The values of CC and KGE tend to increase
in regions that encounter precipitation amount larger than 50 mm/day.
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Figure 7. Relationship between calculated CC (a–c), KGE (d–f), RMSE (g–i) and CSI (j–l) for IMERG_E (Column 1),
IMERG_F (Column 2) and IMERG_L (Column 3) products and elevation at the daily scale during 2008–2017.

Figure 9 shows the accuracy performances of three SPPs for different precipitation
intensity ranges over the nine basins of China. Generally, the three SPPs exhibit a poor
correlation with rain gauge data for heavy rain (10 ≤ P < 25 mm/day) in all basins except
for CB and YERB (Figure 9b,e,i,m,q,u,y,ac). Additionally, the highest CC between IMERG
data and rain gauge data are found in the rainstorm (P ≥ 50 mm/day) over HARB, HURB,
PRB, SWB and YARB (Figure 9e,i,m,y,ac, respectively). As indicated by KGE, the three runs
consistently have better performance in detecting light rain (0.1 ≤ P < 10 mm/day) and
rainstorm across China except for IMERG_E over SRB (Column 2 of Figure 9). Meanwhile,
IMERG_F shows better performance for all basins except for SRB compared to IMERG_E and
IMERG_L (Column 2 of Figure 9). The RMSE values of three SPPs are positively associated
with precipitation intensity (Column 3 of Figure 9), and the final run shows little improvement
in comparison to the early and late runs for these precipitation intensity bins over each basin.
In particular, the IMERG_F has better performance in SWB and YERB compared to IMERG_E
and IMERG_L. For the precipitation detection performance, the POD values of three runs are
negatively correlated with precipitation intensity, indicating the IMERG V06 has less skills in
detecting high intensity precipitation (Column 4 of Figure 9).
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Figure 8. Probability distribution function (PDF) of IMERG_E, IMERG_L and IMERG_F products and rain gauge in different
precipitation intensity classes across nine basins (a–i) (CB, Continental Basin; HARB, Haihe River Basin; HURB, Huaihe
River Basin; PRB, Pearl River Basin; SEB, Southwest Basin; SRB, Songliao River Basin; SWB, Southwest Basin; YARB, Yangtze
River Basin; YERB, Yellow River Basin) and China (j) during 2008 to 2017.

Table 5. Performance metrics associated with IMERG products in four precipitation bins on a daily scale across China.

Precipitation Bin
(mm/day) SPPs CC β γ KGE RMSE

(mm/day) POD

[0.1, 10)
IMERG_E 0.15 1.61 2.31 −0.68 9.72 0.61
IMERG_L 0.15 1.63 2.40 −0.75 10.19 0.60
IMERG_F 0.17 1.65 2.18 −0.58 9.38 0.61

[10, 25)
IMERG_E 0.11 0.66 6.04 −4.13 17.56 0.32
IMERG_L 0.11 0.69 6.23 −4.31 18.48 0.32
IMERG_F 0.12 0.69 5.55 −3.65 16.67 0.34

[25, 50)
IMERG_E 0.10 0.52 6.63 −4.72 29.04 0.24
IMERG_L 0.09 0.53 6.85 −4.94 29.99 0.25
IMERG_F 0.11 0.53 6.08 −4.17 27.59 0.26

≥50
IMERG_E 0.24 0.39 2.83 −1.07 65.01 0.19
IMERG_L 0.24 0.40 2.92 −1.15 65.46 0.20
IMERG_F 0.28 0.40 2.61 −0.86 62.66 0.21
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Figure 9. CC (a,e,i,m,q,u,y,ac,ag), KGE (b,f,j,n,r,v,z,ad,ah), RMSE (c,g,k,o,s,w,aa,ae,ai) and POD (d,h,l,p,t,x,ab,af,aj) from
IMERG_E (red line), IMERG_L (dashed line) and IMERG_F (green line) products in different precipitation intensity across
nine basins (CB, Continental Basin; HARB, Haihe River Basin; HURB, Huaihe River Basin; PRB, Pearl River Basin; SEB,
Southwest Basin; SRB, Songliao River Basin; SWB, Southwest Basin; YARB, Yangtze River Basin; YERB, Yellow River Basin)
during 2008 to 2017.
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5. Discussion
5.1. Reasons for the Difference in Performance of Three Runs

This work demonstrates that non-significant improvement in late runs compared with
their early runs (Table 1). The same results were found in the northeast and southeast of
Austria [42,52]. In addition, compared to the early and late runs, the final run of the IMERG
products shows a moderate improvement in the overall estimation of precipitation across
China (Tables 2 and 3), probably due to the adjustment against the Global Precipitation
Climatology Centre (GPCC) records [43,53]. Figure S4 shows the spatial distribution of
rain gauges used for GPCC at its 2.5◦ spatial resolutions across China. It is evident that
limited gauges over China are used in the development of GPCC products. The spatial
heterogeneity of GPCC data quality may lead to the diverse performances of the final run
of IMERG. For example, Tan and Santo [35] reported a non-significant improvement in the
IMERG final run compared to NRT products over Malaysia, which may be due to the fact
that only 24 rain gauges are utilized in the development of GPCC dataset and thus cannot
well characterize the spatial patterns of precipitation across Malaysia.

In this study, we found an overestimation of precipitation in the IMERG products over
China (see Tables 2 and 3) at both the daily and monthly scales. Xu et al. [46], Anjum et al. [32],
Sunilkumar et al. [54] and Islam [55] reported similar results about different version of IMERG
products over southern Tibetan Plateau, northern Pakistan, Japan and Nepal and Bangladesh,
respectively. According to the results, overestimation is larger for the early and late runs
compared to the final runs. There are several possible reasons for these discrepancies: First, the
GPCC datasets which are utilized to adjust the final runs of IMERG product have systematic
biases in China [56], which may affect the accuracy of the IMERG products. Second, monthly
GPCC datasets are used to adjust the IMERG data, and thus improvements of daily precipi-
tation datasets are worse than those of monthly datasets [42]. Third, additional uncertainty
can be attributed to the adjustment of spatial resolutions. The IMERG products and GPCC
Full Data Reanalysis offer data at 0.1◦ spatial resolution while the GPCC Monitoring Product
offers data at 0.5◦ spatial resolution [29].

5.2. Reasons for Various Performance of Three Runs in Different Elevation Regions and
Precipitation Intensity Bins

Our evaluations reveal a strong dependence of the performance of IMERG products
on elevation variations, particularly accentuated with the categorical metrics (POD, FAR
and CSI). According to Figure 7, there is a significant relationship between the values
of evaluation metrics and elevation (p < 0.01) for CC, KGE, γ, POD and RMSE. The
number of rain gauges varies with elevation, which might bias the results. Topographic
variations could exert complex controls on satellite-based estimation of precipitation,
from IR, AMW and PMW sensors [18,48,49,57]. For example, Xu et al. [46] assessed the
effects of elevation on accumulative rainfall over southern Tibetan Plateau and identified a
significant relationship between elevation and the performance of GPM IMERG. Zambrano-
Bigiarini et al. [18] evaluated seven SPPs in a case study in Chile and found that all, except
for PGFv3, performed poorly in areas of high elevation. Beria et al. [58] and Fang et al. [59]
indicated a negative relation between IMERG performances and the topographic variation
over India and China, respectively. Here, some factors may influence the performance of
SPPs in different elevation regions. First, precipitation generally increases with elevation,
and therefore the performance of IMERG products may improve with higher precipitation
intensity [41]. Second, the number of rain gauges is very limited in high mountains, and
the performance of IMERG products may not increase significantly even after adjustment
against gauge observations [34,60]. Third, the processes and mechanisms of precipitation
formation are complex in high-altitude regions, which makes the estimation of precipitation
from satellite sensors difficult [59].

As indicated by the PDF analysis, all runs tend to underestimate the frequency of
no/tiny rain events (P < 0.1 mm/day) but overestimate the frequency of light rain events
(0.1 ≤ P < 10 mm/day), which is consistent with research works carried out in Malaysia [35],
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Tibetan Plateau [46], north Pakistan [30] and Bangladesh [55]. Moreover, our evaluation
results show that the RMSE values tend to increase with precipitation intensity (Table 5
and Figure 9), which is in line with the findings of Habib et al. [61] and Yu et al. [49].
Theoretically, the satellite sensors infrared and microwave sensors are designed to retrieve
facet information based on the brightness and temperature of the top clouds and precipi-
tation particles, respectively [62]. In this study, precipitation intensity is classified based
on rain gauge data (point data), which may not well represent precipitation intensity in
the surrounding areas of the stations (facet precipitation information), which affects the
reliability of the evaluation of satellite products at different precipitation intensity classes.

5.3. Reasons for the Changing Performance of IMERG in a Long-Time Span

For a data product with a long-time span, it is important to examine whether it
shows a stable performance over time. Figure S5 shows all evaluation metrics of IMERG
products from 2008 to 2017. The results show no statistically significant change in the
performance of eight metrics associated with the estimation of precipitation from IMERG
V06 products during 2008–2017 (F-test, p > 0.05). However, all runs of IMERG products
exhibit poor accuracy from 2009 to 2012 (Figure S5d,h). From 2013, the performance of
SPPs has gradually improved. It is well known that the GPM era starts from 2014, and
the changing performances between the two eras (TRMM era and GPM era) indicate that
IMERG is relatively robust in the transition between the two eras. It is reasonable to
conclude that the increasing number of passive microwave samples has contributed to the
increasing accuracy of IMERG. In addition, the improving microwave sensors with higher
resolutions and more frequency channels are also likely to have contributed to the IMERG’s
improvement. Besides, according to the Huffman et al. [29], the IMERG team used two
GPCC products, the V8 Full Data Reanalysis data and the V6 Monitoring Product, to correct
IMERG products’ systematic bias, whereas the former is only available for the period from
1998 to 2016 and the latter is employed to adjust data after 2016. It should be noted that the
GPCC Monitoring Product is developed based on about 7000–8000 stations, while the GPCC
Full Data Reanalysis includes 67,200 stations across the world. As a result, the performance
of IMERG products is expected to decrease substantially after 2016 (Figure S5). However,
the accuracy of IMERG still need to be explored further after 2016.

5.4. Study Limitations and Future Works

In this study, only daily precipitation data were available for rain gauges across China,
which could not allow for a more extensive and detailed assessment of satellite products at
finer time scale. Therefore, the sub-daily scale evaluation can be carried in the future work.
In addition, while this study evaluated the performances of IMERG V06 in nine basins, it
did not consider the impact of the discrepancy of rain gauges density in different basins.
Finally, IMERG performed better in humid regions (SEB, PRB and YARB downstream) of
China, which verifies the utility of IMERG V06 product as a source of precipitation data
over humid regions; it can be used to near-real-time application such as flood simulation
and monitoring.

6. Conclusions

This study provides a comprehensive evaluation of daily precipitation from different
runs (early, late and final) of the latest version (V06) of IMERG against 696 key synoptic
stations from 1 January 2008 to 31 December 2017 across China. We analyzed the accuracy
of the IMERG products at various spatial and temporal scales through various performance
metrics. Furthermore, we identified the effects of elevation on the accuracy of the estima-
tion of precipitation from the IMERG products. The main conclusions of this study are
summarized as follows:

(1) All runs of the IMERG products can accurately capture the spatial patterns of daily
precipitation from 2008 to 2017. However, the performances of the products vary
among the river basins and gradually decrease from the southeast to the northwest of
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China. Better performance is measured in eastern humid basins compared to western
arid basins.

(2) Our analysis does not show significant differences between the early and late runs of
IMERG products in China. However, moderate improvement is observed in the final
run, as indicated by higher CC and KGE and lower RMSE at both daily and monthly
levels of analysis. The three runs of IMERG show similar accuracy in estimating
precipitation in China, with CSI values ranging from 0.4 to 0.41.

(3) Our evaluation reveals a significant (p < 0.01) association between the performance
of IMERG products and elevation, mainly highlighted by the analysis based on
continuous performance metrics. For all runs, the accuracy gradually decreases with
an increase in elevation. However, the categorical metrics exhibit lower levels of
dependence on elevation except for POD.

(4) In China and in each basin, all SPPs underestimate the frequency of no/tiny
rain events (P < 0.1 mm/day) but overestimate the frequency of light rain events
(0.1 ≤ P < 10 mm/day). The IMERG products better match the ground observa-
tions in areas with frequent moderate rain events (10 ≤ P < 25 mm/day). IMERG_F
tends to overestimate the frequency of heavy precipitation (10 ≤ P < 25 mm/day)
in southern China. All products align with ground-based observation in areas that
frequently encounter rainstorms (P ≥ 50 mm/day) in PRB, YARB and SEB.
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