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Abstract: Sample preparation is the most critical step in proteomics as it directly affects the subset of
proteins and peptides that can be reliably identified and quantified. Although a variety of efficient
and reproducible sample preparation strategies have been developed, their applicability and efficacy
depends much on the biological sample. Here, three approaches were evaluated for the human milk
and plasma proteomes. Protein extracts were digested either in an ultrafiltration unit (filter-aided
sample preparation, FASP) or in-solution (ISD). ISD samples were desalted by solid-phase extraction
prior to nRPC-ESI-MS/MS. Additionally, milk and plasma samples were directly digested by FASP
without prior protein precipitation. Each strategy provided inherent advantages and disadvantages
for milk and plasma. FASP appeared to be the most time efficient procedure with a low miscleavage
rate when used for a biological sample aliquot, but quantitation was less reproducible. A prior
protein precipitation step improved the quantitation by FASP due to significantly higher peak areas
for plasma and a much better reproducibility for milk. Moreover, the miscleavage rate for milk, the
identification rate for plasma, and the carbamidomethylation efficiency were improved. In contrast,
ISD of both milk and plasma resulted in higher miscleavage rates and is therefore less suitable for
targeted proteomics.

Keywords: bottom-up proteomics; filter-aided sample preparation (FASP); Folch extraction; in-
solution digestion (ISD); milk; plasma

1. Introduction

Mass spectrometry (MS-) based proteomics is a powerful tool to identify and quantify
proteins as well as to study protein–protein interactions in various biological matrices. It
relies on several critical key steps from sample preparation via MS to data analysis with each
being crucial to obtain reliable and reproducible results. In a typical bottom-up proteomics
workflow, proteins are extracted from the sample, reconstituted, reduced, alkylated, cleaved
with a protease like trypsin, desalted, and analyzed by liquid chromatography (LC-) MS [1].
Some protocols using substances incompatible with consecutive digestion and LC-MS,
such as detergents and chaotropic salts facilitating protein solubilization, require additional
procedures to remove these interfering substances [2]. Furthermore, biological fluids, such
as human milk and plasma, contain many substances at high concentrations, such as sugars
and lipids, which can interfere with LC separation and the electrospray ionization (ESI)
process suppressing signals in MS. Thus, it is important to remove these substances from
protein samples during initial sample preparation, classically by protein precipitation or
ultrafiltration in order to avoid artefacts [3–5]. This is especially important when studying
nonenzymatic posttranslational modifications that can be easily induced during sample
preparation, for example, reducing sugars can react with amino groups in proteins (protein
glycation) [6]. Folch extraction using methanol, chloroform, and water separates lipids
(organic phase) from sugars and other polar small substances (aqueous phase), while
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proteins precipitate in a layer between both phases. This procedure reproducibly yields
higher protein recoveries (~90%) for bovine milk than other commonly used precipitation
procedures using trichloroacetic acid (TCA) or acetone and MTBE extraction [7].

Among the commonly used digestion strategies, the in-solution digestion (ISD) is
the simplest and most powerful approach, because denaturation, reduction, alkylation,
and digestion are performed in a single tube minimizing potential sample losses. As
reagents added during ISD may interfere with LC-MS, solid phase extraction (SPE) is
typically used to purify and concentrate peptides [8]. Alternatively, ISD can be performed
in an ultrafiltration unit, so-called filter-aided sample preparation (FASP), published in
2005 [9]. In this approach, proteins are trapped in an ultrafiltration unit with a high
molecular weight cutoff (MWCO), whereas small molecules can be discarded [10]. Thus,
FASP directly removes detergents and contaminants from samples and does not require a
subsequent clean up procedure.

None of these sample preparation methods performs best for all sample types. As an
ideal universal sample preparation is missing, it is necessary to identify for each type of
biological sample the best procedure allowing a reliable identification and quantitation of
peptides and proteins. Consequently, this study compared sample preparation procedures
for complex sample matrices, i.e., human milk and human plasma, considering protein
precipitation and ultrafiltration to remove small molecules including detergents and to
isolate proteins followed by tryptic digestion performed in-solution and by FASP. The
methods were compared in terms of protein and peptide identifications, efficiency of
digestion (number of missed cleavage sites), quantitation, and reproducibility. All three
procedures allowed a reproducible profiling and quantitation of milk and plasma proteins.
FASP yielded less missed cleavage sites and is, therefore, preferred for quantifying targeted
peptides. Protein precipitation prior to FASP seems to be beneficial due to less miscleavages
of milk proteins and a better carbamidomethylation rate in plasma. In quantitative terms,
protein precipitation followed by FASP provided higher signals than ISD for plasma and a
significantly better reproducibility for milk.

2. Results
2.1. Identification of DnaK Peptides

DnaK recombinantly expressed in E. coli was digested in triplicates using FASP or
ISD, and these were analyzed by nRPC-ESI-MS/MS. Considering an FDR of 1%, PEAKS
proposed 91 tryptic peptides of DnaK corresponding to a sequence coverage of 91% (Table
S1). About 55% of these peptides were identified by both methods, whereas 14 and 26 pep-
tides were only identified in the FASP and ISD samples, respectively (Figure S1). Although,
fewer peptides were identified by FASP, this method provided a better sequence coverage
of 87% (64 peptides) than ISD covering only 70% of the DnaK sequence (76 peptides). The
lower sequence coverage despite more identified peptides by ISD was related to a high
number of peptides with one or two missed cleavage sites (Figure S1B,C). Only 40% of
the peptides identified in the FASP samples contained at least one missed cleavage site,
whereas in ISD about 42% and 17% of the identified peptides contained one and two missed
cleavage sites, respectively. The missed cleavage sites produced by FASP were mainly
located at the termini of the peptides, whereas ISD produced many longer peptides with
missed cleavage sites in mid-chain positions.

2.2. Relative Quantitation of DnaK Peptides

After validation in Skyline and excluding peptides with poor MS/MS quality, DnaK
peptides with S/N ≥10 were relatively quantified by the peak areas between FASP and
ISD. About 60% of the peptides showed different peak areas between both methods. Most
peptides without missed cleavages sites were more intense in FASP, whereas peptides with
one or two missed cleavage sites were more dominant in ISD (Figure S2). FASP occasionally
produced a higher peak area for peptides with one missed cleavage site (Figure S2, panels E–
F), but peptides with two missed cleavage sites were not quantifiable in FASP. Interestingly,
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the sum of all peak areas of quantified peptides was similar between both approaches
(Figure S3), but the relative standard deviation was lower for ISD.

2.3. Human Milk and Plasma

Different sample preparation strategies and the advantage of a spiked control protein
were tested on human milk and plasma representing complex protein mixtures containing
diverse non-proteinogenic substances at partially high concentrations (Figure 1). Overall
six replicates per sample type, three times with or without spiked DnaK, were analyzed
by nRPC-ESI-MS/MS for each strategy. The database searches using PEAKS (1% FDR)
proposed in total 1664 peptides from 325 milk protein groups and 2405 peptides from 551
plasma protein groups (Tables S2 and S3, respectively). The term protein group is used here
as defined by PEAKS as “proteins identified by the same set of peptides”. As the numbers
of peptides identified in individual samples did not depend on spiked DnaK (data not
shown), the data presented below referred to spiked samples. It should be noted that this
study did not aim for an in-depth characterization of human milk and plasma proteomes.
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Figure 1. Schematic representation of the workflow. Protein concentrations of human milk and
plasma were determined before (orange) and after protein extraction (green). Whole and extracted
samples were digested by FASP, and extracted samples were also digested in-solution. Experiments
were performed in triplicates with and without the addition of DnaK as an internal control protein.

Overall, 264 milk (307 plasma) protein groups were found in samples containing the
DnaK spike with ~62% (54.7%) of the proteins being identified by at least two of the applied
three methods (Figure 2). The protein coverage was typically below 25%, but in some cases
the sequence coverage was higher independent of the applied method (Figure 2C,D).
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Figure 2. Quantitative Venn diagrams for proteins (A) identified in human milk (M) and (B) plasma (PL) identified after
digesting a diluted aliquot of the whole sample (W) by FASP as well as protein extracts (F) by FASP and in-solution
digestion (ISD). Percentage protein coverages for (C) human milk and (D) plasma grouped by the sample preparation
method. Experiments were performed in three independent replicates. Identifications are presented as total numbers of
unique proteins for each procedure.

Considering the 1485 peptides identified only in milk spiked with DnaK, 1058 peptides
were detected after Folch precipitation and ISD (FM_ISD), 888 peptides after Folch precipi-
tation and FASP (FM_FASP), and 885 after FASP without prior precipitation (WM_FASP)
with ~35% of the peptides identified by all three strategies (Figure 3A). The overlap was
higher between the two FASP procedures (~67%). In plasma, the lowest number of peptides
was observed after FASP without prior precipitation (WPL_FASP, 966 peptides), while sim-
ilar numbers of peptides were identified by ISD (1177 peptides) and FASP (1130 peptides)
after protein precipitation (Figure 3B). From 1785 peptides identified in the different plasma
digests altogether, ~30% were identified by all three strategies and 64% were identified
after FASP. Again, many peptides were solely identified in the ISD sample.

The higher number of peptides identified in the ISD samples of milk and plasma
resulted from missed cleavage sites leading to additional longer peptides (Figure 3C,D). In
milk, only ~14.5% and ~16.4% of all peptides identified in the FM_FASP and WM_FASP
samples, respectively, contained one or two missed cleavage sites compared to ~36.2%
in FM_ISD (Figure S4A). Similarly, in the plasma samples less than 25% of the peptides
detected by either FASP strategy contained at least one missed cleavage site, but ~38.2% in
FPL_ISD (Figure S4B). Thus, ISD produced more peptides with one and especially with
two missed cleavage sites than FASP (Figure 3C,D), which did not improve the sequence
coverage significantly.

The efficiency of reduction and alkylation was judged by the number of Cys(CM)
residues (+57.021 Da). Oxidation during sample processing was judged by the number
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of Met(Ox) residues (+15.99 Da). Therefore, Cys- and Met-containing sequences were
counted and the percentage of modified residues calculated. All three protocols provided a
high degree of carbamidomethylation in milk samples, with a slightly lower level in the
ISD sample, and similar degrees of Met(Ox) (Figure 3E). In plasma, all Cys-containing
peptides were carbamidomethylated after precipitation and FASP, whereas only 42% were
alkylated after ISD (Figure 3F). Again, Met(Ox) was observed at similar degrees in all three
conditions (Figure 3F).
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Figure 3. Quantitative Venn diagrams for the number of peptides identified in (A) human milk (M) and (B) plasma (PL)
after digesting a diluted aliquot of the whole sample (W) by FASP as well as protein extracts (F) by FASP and in-solution
digestion (ISD). The numbers of peptides with up to two missed cleavages (MC) identified in (C) human milk and (D)
plasma. Efficiency of carbamidomethylation and methionine oxidation as % observed for cysteine/methionine containing
sequences in (E) human milk and (F) plasma. Experiments were performed in three independent replicates. Identifications
are presented as total numbers of unique peptides for each procedure.
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Quantitation

Only peptides validated in Skyline and with a signal-to-noise ratio of at least 10 were
quantified using the peak areas in XICs. As described above for DnaK, many peptides
with missed cleavage sites were observed in the ISD samples. Peptides with no missed
cleavage sites showed different, typically protein dependent trends. Importantly, FASP
after precipitation of both milk and plasma proteins typically yielded higher peak areas
of quantifiable peptides than FASP alone, which might be attributed to a more efficient
digestion, higher peptide recovery rates or fewer contaminations suppressing the peptide
signals despite the likely loss of proteins during precipitation. This is obvious from Volcano
plots generated for proteins (total peak areas of all corresponding tryptic peptides) detected
after FASP without or with prior precipitation of milk and plasma proteins (Figure 4A,B).
Although this advantage was more pronounced for plasma, the increase was less than
2-fold for most proteins. Interestingly, the performance of FASP and ISD after protein
precipitation depended on the biological sample. While both methods yielded very similar
quantitative data for milk (Figure 4C), FASP appeared to be advantageous for plasma
(Figure 4D), as most proteins showed more than 2-fold larger peak areas after FASP.
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Figure 4. Volcano plots displaying fold changes in protein abundances between the different digestion strategies and the
statistical value. The fold change was calculated by dividing the whole sample (FASP digestion) by the Folch precipitated
sample (FASP digestion) for (A) milk and (B) plasma and by dividing the Folch precipitated sample (in-solution digestion)
by the Folch precipitated sample (FASP digestion) for (C) milk and (D) plasma. Experiments were performed in three
independent replicates.

When quantitation reproducibility was assessed at the peptide and protein levels,
precipitation of milk proteins appeared to be favored despite the additional sample prepa-
ration steps (Figure 5). Peptides obtained by FM_FASP and FM_ISD could be quantitated
with a median RSD% of 6% and 8%, respectively (Figure 5A), while it was only 19% for
FASP itself (WM_FASP). This clearly indicates that removal of interfering compounds prior
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to tryptic digestion is a crucial step in human milk bottom-up proteomics. Unexpectedly,
the difference was less pronounced for plasma, as both FASP strategies, i.e., WPL_FASP
versus FPL_FASP, showed a similar reproducibility outperforming ISD (Figure 5B). The
same trends were observed at the milk and plasma protein levels (Figure 5C,D). The higher
RSDs typically derived from low abundant peptides and proteins. When the peak areas
of all peptides were correlated between replicates one and two of each method and for
both sample types, a very strong correlation confirmed the very reproducible quantitation
(Figure S5). The coefficient of determination R2 ranged from 0.988 (WM_FASP) to 0.998
(FM_ISD) in milk and from 0.975 (FPl_FASP) to 0.983 (FPl_ISD) in plasma (Figure S5).

Molecules 2021, 26, x FOR PEER REVIEW 7 of 12 
 

 

 
Figure 5. Relative standard deviations (RSDs) for quantifiable peptides in (A) human milk and (B) 
plasma, as well as RSDs for the proteins calculated based on the peptide peak area sum for the 
different sample preparation methods applied to (C) human milk and (D) plasma. Experiments 
were performed in three independent replicates. 

Interestingly, the peak area sum of spiked DnaK was always higher in milk and 
plasma samples digested after protein precipitation, independent of FASP and ISD, and 
the reproducibility of quantitation was better (Figure S6). Both digestion strategies relying 
on protein precipitation showed similar DnaK quantities (Figure S6), indicating that DnaK 
it a good internal control to judge analytical strategies in different matrices. 

3. Discussion 
Although a variety of sample preparation methods have been reported for bottom-

up proteomics, none can be considered universal for all sample types. The simplest work-
flows rely on in-solution digestion, despite the drawback of containing all sample-derived 
contaminations and added reagents that may interfere with proteolysis or LC-MS. Ideally, 
protein precipitation should precede the ISD followed by desalting prior to LC-MS [11]. 
Common precipitation methods, using for example TCA, chloroform-methanol, ethyl ac-
etate or acetone, are similarly efficient for a wide variety of samples [12–15]. However, the 
Folch procedure (methanol/chloroform/water) was reported to be better for milk proteins 
[7]. Alternatively, contaminations and reagents can be removed during digestion using 
ultrafiltration, such as FASP [16]. The current study compared the combination of ISD 
with preceding protein precipitation and following SPE to FASP with or without preced-
ing protein precipitation. FASP without a prior protein precipitation was the least time 
consuming, whereas the other two strategies required similar times. Despite possible sam-
ple losses during protein precipitation and additionally in SPE after ISD, both FASP and 
ISD allowed a slightly better protein quantitation in milk and more importantly a higher 
reproducibility than FASP alone. The latter method might be limited by substances pre-
sent in biological samples that may interfere with digestion or LC-MS. However, FASP 
performed better than ISD on plasma protein extracts, but with a lower reproducibility. 
Thus, FASP of precipitated proteins appears to be the best method for plasma. 

The differences among the tested methods were more evident at the peptide level, 
both in qualitative and quantitative terms. ISD identified more peptides in both milk and 
plasma, but mainly because it produced many peptides containing missed cleavage sites. 
This might be a result of the interference of sample components and digestion reagents 

Figure 5. Relative standard deviations (RSDs) for quantifiable peptides in (A) human milk and (B) plasma, as well as RSDs
for the proteins calculated based on the peptide peak area sum for the different sample preparation methods applied to
(C) human milk and (D) plasma. Experiments were performed in three independent replicates.

Interestingly, the peak area sum of spiked DnaK was always higher in milk and
plasma samples digested after protein precipitation, independent of FASP and ISD, and
the reproducibility of quantitation was better (Figure S6). Both digestion strategies relying
on protein precipitation showed similar DnaK quantities (Figure S6), indicating that DnaK
it a good internal control to judge analytical strategies in different matrices.

3. Discussion

Although a variety of sample preparation methods have been reported for bottom-up
proteomics, none can be considered universal for all sample types. The simplest work-
flows rely on in-solution digestion, despite the drawback of containing all sample-derived
contaminations and added reagents that may interfere with proteolysis or LC-MS. Ideally,
protein precipitation should precede the ISD followed by desalting prior to LC-MS [11].
Common precipitation methods, using for example TCA, chloroform-methanol, ethyl
acetate or acetone, are similarly efficient for a wide variety of samples [12–15]. However,
the Folch procedure (methanol/chloroform/water) was reported to be better for milk
proteins [7]. Alternatively, contaminations and reagents can be removed during digestion
using ultrafiltration, such as FASP [16]. The current study compared the combination
of ISD with preceding protein precipitation and following SPE to FASP with or without
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preceding protein precipitation. FASP without a prior protein precipitation was the least
time consuming, whereas the other two strategies required similar times. Despite possible
sample losses during protein precipitation and additionally in SPE after ISD, both FASP
and ISD allowed a slightly better protein quantitation in milk and more importantly a
higher reproducibility than FASP alone. The latter method might be limited by substances
present in biological samples that may interfere with digestion or LC-MS. However, FASP
performed better than ISD on plasma protein extracts, but with a lower reproducibility.
Thus, FASP of precipitated proteins appears to be the best method for plasma.

The differences among the tested methods were more evident at the peptide level,
both in qualitative and quantitative terms. ISD identified more peptides in both milk and
plasma, but mainly because it produced many peptides containing missed cleavage sites.
This might be a result of the interference of sample components and digestion reagents with
the proteolysis step [17]. Previous studies on tissues and cell samples have also reported
lower missed cleavage rates for FASP [18–21]. Interestingly, the missed cleavage rates were
lower for milk than for plasma.

Importantly, all methods covered similar parts of the proteomes, typically providing
similar sequence coverages for the proteins allowing a reliable profiling of both milk and
plasma. Interestingly, milk proteins contained always similar degrees of Cys(CM) and
Met(Ox) residues, whereas ISD lead to inefficient carbamidomethylation of plasma proteins,
unlike the FASP procedures. A recent study showed lower carbamidomethylation rates for
FASP on otolaryngeal tissues than for ISD, but the authors did not perform reduction prior
to alkylation [17].

Protein precipitation followed by FASP yielded for both sample types higher pep-
tide peaks areas and for milk also a better quantitation reproducibility than FASP alone.
Moreover, FASP produced less missed cleavage sites than ISD and thus appears especially
advantageous for targeted proteomics, where complete and reproducible proteolysis is
crucial for precise quantitation [22].

The spiked DnaK did not affect the digestibility of the sample proteins, nor did the
biological matrix affect digestion of DnaK. Therefore, it appears to be a suitable internal
digestion control for complex protein mixtures, such as milk and plasma, which should be
combined with a mixture of isotopologuos peptides after digestion [23].

Due to the high dynamic range of milk and plasma protein concentrations, studies
aiming for in-depth proteome characterization should consider additional processing
steps, such as depletion or fractionation. However, further sample preparation steps
most likely introduce uncertainty, variance, or bias into the data [24]. Therefore, the
simplified sample preparation strategies evaluated here are predominantly relevant for
large cohort proteomics studies. In particular, when aiming for a correlation of milk
and plasma proteomics data, FASP after protein precipitation should be the method of
choice. This study was limited to one protein quantity (50 µg), which may not reflect
the digestion efficiency for lower or higher protein amounts. The ISD procedure could
be further optimized, for example by using two proteases pair (e.g., LysC and trypsin)
to improve the cleavage rate for ISD or increasing the solvent volumes to decrease the
concentration of interfering substances. However, the latter approach may also negatively
affect the digestion efficiency as the protein/trypsin concentration would decrease as well.
These aspects should be addressed in future studies in order to optimize the selected
sample preparation procedure to its best performance rate.

4. Materials and Methods

Materials were obtained from the following suppliers: AppliChem GmbH (Darmstadt
Germany): Iodoacetamide (IAA, ≥99%) and Tris (≥99.9%). Biosolve GmbH (Valkenswaard,
Netherlands): Acetonitrile (ULC-MS grade, ≥99.97%), formic acid (ULC-MS grade, ≥99%),
and methanol (ULC-MS grade, ≥99.98%). Carl Roth GmbH (Karlsruhe, Germany):
Methanol (HPLC grade, ≥99.9%), urea (≥99.5% p.a.), sodium dodecyl sulfate (SDS,
≥99.5%), glycerol (≥99.5%), and dithiothreitol (DTT, ≥99%). Promega GmbH (Mannheim,
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Germany): sequencing grade modified trypsin. Merck KGaA (Darmstadt, Germany): Chlo-
roform (≥99.8%). Riedel-de Haën (Steinheim, Germany): Bromophenol blue sodium salt.
SERVA Electrophoresis GmbH (Heidelberg, Germany): Bovine serum albumin (BSA, >98%),
ammonium persulfate (>99%), acrylamide/bis solution (30% w/v), tetramethylene diamine
(≥98.5%), and Coomassie Brilliant Blue G 250. Sigma-Aldrich Chemie GmbH (Stein-
heim, Germany): Thiourea (≥99%), ammonium bicarbonate (≥99.5%), β-mercaptoethanol
(≥99%), sodium deoxycholate (≥97%), and tris-(2-carboxyethyl) phosphine (TCEP, ≥98%).

Water was purified in-house (resistance >18 mΩ/cm; total organic content < 10 ppb)
on a PureLab Ultra Analytic System (ELGA Lab Water, Celle, Germany).

4.1. Samples

Experiments with one human milk and one plasma sample, collected from two healthy
donors, were conducted in accordance with the Declaration of Helsinki according to a
protocol approved by the Ethics Review Board of the Medical Faculty, Leipzig Univer-
sity (277/19-ek for milk and 313/14-ek for blood), with written informed consent from
both donors. The samples were stored in aliquots at -80◦C and thawed only once prior
to analysis.

4.2. Protein Precipitation and Tryptic Digestion

Proteins were precipitated from three aliquots of each milk and plasma sample using
Folch extraction [7]. Briefly, milk and plasma samples (50 µL), methanol (375 µL), and
chloroform (750 µL) were mixed, incubated under gentle shaking (1 h, 4 ◦C, 40 rpm), water
(625 µL) added, and further incubated (10 min, 4 ◦C, 40 rpm). The organic phase was
removed after centrifugation (10 min, 10,000× g, 4 ◦C), and the remaining sample was
centrifuged again to remove the aqueous phase. The protein pellets were immediately
dried under vacuum, dissolved in lysis buffer (50 mmol/L Tris-HCl, pH 7.5, 7 mol/L
urea, and 2 mol/L thiourea), and the proteins quantified by a Bradford assay relative to
a dilution series of bovine serum albumin. Additionally, plasma proteins (dissolved in
50 mmol/L ammonium bicarbonate solution) were quantified on a NanoPhotometer NP80
(IMPLEN, Munich, Germany, λ= 280 nm). Protein contents were further confirmed by
SDS-PAGE (T = 15%) using a Coomassie stain [7].

Recombinant DnaK, a heat shock protein present in Escherichia coli but not in humans,
was expressed and purified in-house [25] and spiked to samples as internal standard. Thus,
the standard, as well as human milk and plasma (50 µg protein each) were digested in
solution or by FASP without or with DnaK spike (0.25 µg). The samples were spiked with
DnaK before digestion (Figure 1). Each sample was processed in triplicates.

Tryptic in-solution digest: Samples (50 µg protein) were diluted with ammonium bicar-
bonate (25 mmol/L) to obtain a protein concentration of 0.5 g/L. Sodium deoxycholate (1%,
w/v) was added to denature the proteins and TCEP (5 mmol/L) to reduce disulfides (60 ◦C,
30 min, 550 rpm). Thiols were alkylated with iodoacetamide (10 mmol/L, 37 ◦C, 30 min,
darkness, 550 rpm) and remaining iodoacetamide was quenched with DTT (10 mmol/L,
37 ◦C, 30 min, 550 rpm). Trypsin was added (1:25 enzyme to protein ratio, 37 ◦C, overnight,
550 rpm) and the digest stopped with formic acid (0.5%, v/v). Precipitated sodium deoxy-
cholate was removed by centrifugation (10 min, 9700× g) and the supernatant desalted by
SPE (Oasis HLB 1 cc, 10 mg, Waters GmbH, Eschborn, Germany) [26]. Briefly, cartridges
were washed with methanol and equilibrated with aqueous formic acid (0.1%, v/v) (1 mL,
2×) before the sample was loaded. Non-binding substances were washed out with aqueous
formic acid (0.1%, v/v) (1 mL, 3×) and the peptides were eluted using aqueous acetonitrile
(70%, v/v) containing formic acid (0.1%, v/v; 500 µL) and dried under vacuum.

FASP: The ultrafiltration units (Microcon®-10 kDa regenerated cellulose centrifugal
filters) were conditioned twice with urea solution (8 mol/L urea in 0.1 mol/L Tris-HCl, pH
8.5, 200 µL, 15 min, 14,000× g, 25 ◦C). Aliquots (50 µg protein) of Folch extracts, whole milk,
and plasma with and without spiked DnaK, were diluted with lysis buffer to obtain protein
concentrations of 0.5 g/L. Protein samples were reduced with DTT (12.5 µL, 0.5 mol/L in
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urea solution, 1 h, 37 ◦C, 550 rpm). Samples were transferred to ultrafiltration units and
centrifuged (30 min, 14,000× g, 25 ◦C). Thiols were alkylated with IAA (100 µL, 50 mmol/L
in urea solution, 20 min, darkness, RT) and centrifuged (30 min, 14,000× g, 25 ◦C). All
samples were washed twice with urea solution (100 µL) and centrifuged (15 min, 14,000× g,
25 ◦C). Ammonium bicarbonate solution (50 mmol/L, 2 × 100 µL) was added and samples
were centrifuged (15 min, 14,000× g, 25 ◦C). Proteins were digested with trypsin (1:25
enzyme to protein ratio, 37 ◦C, wet chamber, overnight). Peptides were transferred into
collection tubes via centrifugation (10 min, 14,000× g, 25 ◦C) and filters were washed
three times with ammonium bicarbonate solution (50 mmol/L; 2 × 50 µL, 1 × 100 µL;
15 min, 14,000× g, 25 ◦C). Samples were dried under vacuum and reconstituted in aqueous
acetonitrile (3%, v/v) containing formic acid (0.1%, v/v; 100 µL).

4.3. Protein Analysis

Tryptic digests were separated on a nanoACQUITY UPLC (Waters GmbH, Eschborn,
Germany) coupled on-line to a Synapt G2-Si mass spectrometer equipped with a nano-ESI
source (Waters GmbH, Eschborn, Germany). Peptides (175 ng for milk and 35 ng for
plasma digests, 10 µL) were trapped (nanoACQUITY Symmetry C18-column, internal
diameter (ID) 180 µm, length 2 cm, particle diameter 5 µm) at a flow rate of 5 µL/min
(1% eluent B) and separated on a BEH 130 column (C18-phase, ID 75 µm, length 10 cm,
particle diameter 1.7 µm; 35 ◦C) at a flow rate of 0.3 µL/min. Eluents A and B were water
and acetonitrile, respectively, containing formic acid (0.1%, v/v). Peptides were eluted by
two linear gradients starting from 3% to 40% eluent B during 89 min and to 85% eluent
B within 5 min [27]. Mass spectra were recorded in positive ion mode (data-dependent
acquisition, DDA) using previously reported settings [28]. Briefly, the MS scan time was
0.2 s. Fragmentation was performed in the trap cell using a collision energy ramp (25–50 V
for DDA). A GluFib solution (m/z 785,8426, z = 2) was used to record a lock mass. DDA top
5 was performed from m/z 360 to m/z 1600, with an MS/MS scan of 0.4 s using a dynamic
exclusion window of 45 s (250 mDa).

4.4. Data Analysis

Acquired data sets were imported into PEAKS Studio 10.5 (Bioinformatics Solutions,
Waterloo, Canada). After a DeNovo procedure considering cysteine carbamidomethylation
(Cys(CM); +57,022 Da) and oxidation of methionine to a sulfoxide (Met(Ox); +15,9949 Da) as
variable modifications, tandem mass spectra were searched against the Human Swissprot
protein database (accessed on 4 April 2019) additionally containing the DnaK sequence
and the cRAP contaminants database (https://www.thegpm.org/crap, accessed on 4 April
2019) considering a precursor mass tolerance of 20 ppm and a fragment mass tolerance
of 0.08 Da. Peptides with zero to two missed tryptic cleavage sites were considered for
further data processing. Data sets were filtered with a 1% false discovery rate (FDR) at the
peptide level and results were exported as tables (pepXML and mzXML).

4.5. Relative Quantitation

A spectral library was built with Skyline (v 20.1.0.155) using the pepXML and mzXML
files without adding additional FDR thresholds. Identifications with poor quality tandem
mass spectra were excluded. Extracted ion chromatograms (XICs) were generated using
the first three isotopes of each signal with a TOF resolution of 20,000. Isotopes indicating
integration interferences were removed when possible. Integration results were manually
filtered for signal-to-noise ratios of at least 10 (S/N ≥ 10) before peak areas were exported.

For statistics, average, standard deviation, and relative standard deviation of peak
areas were calculated (Excel 2016) for each peptide in each condition based on the triplicate
measurements. For volcano plots the fold change was calculated by dividing the Folch
precipitated sample (in-solution digestion) or whole sample (FASP digestion) by the Folch
precipitated sample (FASP digestion). A two-sided t-test was performed in order to obtain
p-values (Excel 2016).

https://www.thegpm.org/crap
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5. Conclusions

Sample preparation is a very crucial step in (bottom-up) proteomics. Despite many
reports on a variety of protein digestion protocols, each biological matrix may need a
specific approach. Here, we compared three digestion strategies for human milk and
plasma, i.e., FASP as well as ISD and FASP after protein precipitation, which allowed a
reproducible profiling and quantitation of proteins. However, FASP yielded less missed
cleavage sites and should be preferred for target peptide quantitation. Quantitation by
FASP in combination with protein precipitation was more reproducible for milk, whereas
protein precipitation followed by ISD provided a better reproducibility for plasma despite
lower peak areas and lower carbamidomethylation degrees (42%). Thus, for each biological
material the most efficient and reproducible sample preparation method has to be chosen
prior to proteomics studies.

Supplementary Materials: The following are available online, Figure S1: Numbers of DnaK peptides
identified in tryptic digests prepared by filter-aided sample preparation (FASP) and in-solution
digestion (ISD), the corresponding sequence coverage and numbers of peptides without and with
missed cleavage sites. Figure S2: Relative quantities of DnaK peptides without and with one missed
cleavage site. Figure S3: Summed peak area of all quantifiable DnaK peptides in digests prepared
by FASP and ISD. Figure S4: Overlap of peptides without missed cleavages identified in milk and
plasma. Figure S5: Correlation of peptide peak areas for replicates 1 and 2 for each condition in milk
and plasma. Figure S6: Summed peak area of spiked DnaK in human milk and plasma. Table S1:
DnaK peptides identified by nRPC-ESI-MS/MS in FASP and in-solution digests. Table S2: Peptides
identified in FASP and in-solution digests of human milk. Table S3: Peptides identified in FASP and
in-solution digests of human plasma.
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