New Methods for Determining Requirements for Truck-Climbing Lanes

FOREWORD

Abstract

This report is part of a four-part series summarizing recent research findings in the area of selected truck geometric features. One of the critical large truck research areas is safety impacts of trucks-including geometric and operational issues, vehicle stability and handling, and accident rates. A number of research studies have been completed in the following areas: truck climbing lanes, grade severity rating systems for trucks, interchange ramp geometry design, and the operation of larger trucks on roads with restrictive geometry. This report summarizes the findings of the research in the area of truck climbing lanes. For specific details on the research, the reader should consult the research reports referenced in the summary report.

Sufficient copies of this report are being distributed to provide one copy to each Regional office, Division office, and State highway agency. Direct distribution is being made to the Division offices. Additional copies are available from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, Virginia 22161.

Stanley R. Byington
Director, Office of Implementation

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The U.S. Government assumes no liability for its contents or use thereof.

The contents of this report reflect the views of the contractors, who is responsible for the accuracy of the data presented herein. The contents do not necessarily reflect the official policy of the Department of Transportation.

This report does not constitute a standard, specification, or regulation.
The U.S. Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein only because they are considered essential to the object of this document.

Form DOTF 1700.7 (8-72) Reproduction of form and completed page is authorized

APPROXIMATE CONVERSIONS TO SI UNITS					APPROXIMATE CONVERSIONS FROM SI UNITS				
Symbol	When You Know	Multiply By	To Find	Symbol	Symbol	When You Know	Multiply By	To Find Syr	bol
		ENGTH					LENGTH		
$\begin{aligned} & \text { in } \\ & \text { in } \\ & \text { yd } \\ & \text { mi } \end{aligned}$	inches foet yards miles	25.4 0.305 0.914 1.61	millimetres metres metres kilometres	$\begin{aligned} & \text { mm } \\ & \text { m } \\ & \text { m } \end{aligned}$	$\begin{gathered} \mathbf{m m} \\ \mathbf{m} \\ \mathbf{m} \\ \mathbf{k m} \end{gathered}$	millimetres metres metres kilometres	$\begin{aligned} & 0.039 \\ & 3.28 \\ & 1.09 \\ & 0.621 \end{aligned}$	incties feet yards miles	$\begin{aligned} & \text { in } \\ & \text { n } \\ & \text { yo } \\ & \text { mi } \end{aligned}$
		AREA					AREA		
	square incties square feet square yards acres square miles	$\begin{aligned} & 645.2 \\ & 0.093 \\ & 0.836 \\ & 0.405 \\ & 2.59 \end{aligned}$	millimetres squared metres squared motres squared hectares kilometres squared	$\begin{aligned} & m m^{2} \\ & \mathbf{m}^{2} \\ & \mathbf{m}^{2} \\ & \mathbf{h a} \\ & k m^{2} \end{aligned}$	$\begin{gathered} \mathrm{m} m^{2} \\ \mathrm{~m}^{2} \\ \mathrm{ha} \\ \mathrm{k} \mathrm{~m}^{2} \end{gathered}$	millinetres squared metres squared hectares kilometres squared	$\begin{aligned} & 0.0016 \\ & 10.764 \\ & 2.47 \\ & 0.386 \end{aligned}$	square inches square feet actes square miles	in n^{2} $\boldsymbol{f}^{\boldsymbol{n}}$ ac mi^{2}
		LUME					VOLUME		
$\begin{aligned} & \text { foz oz } \\ & \mathrm{gal}^{\prime} \\ & \mathrm{t}^{\prime} \\ & \text { dop } \end{aligned}$	fluid ounces gallons cubic feet cubic yards	$\begin{aligned} & 29.57 \\ & 3.785 \\ & 0.028 \\ & 0.765 \end{aligned}$	millilites litres metres cubed metres cubed	$\begin{aligned} & \mathrm{mL} \\ & \mathrm{~L} \\ & \mathrm{~m}^{3} \\ & \mathrm{~m}^{3} \end{aligned}$	mL L m^{3} m^{3}	millifitres litres metres cubed metres cubed	0.034 0.264 35.315 1.308	fluid ounces gallons cubic feet cubic yards	$\begin{aligned} & \mathrm{floz} \\ & \mathrm{gal} \\ & \mathrm{ft}^{3} \\ & \mathrm{yd}^{\mathrm{s}} \end{aligned}$
NOTE: Vo	nes greater than 1000 L	shall be shown in	m^{3}.				MASS		
		ASS			$\begin{gathered} \mathbf{g} \\ \mathbf{k g} \\ \mathbf{M g} \end{gathered}$	grams kilograms megagrams	$\begin{aligned} & 0.035 \\ & 2.205 \\ & 1.102 \end{aligned}$	ounces pounds short tons (2000 10)	$\begin{aligned} & \text { oz } \\ & \mathbf{0} \\ & \mathbf{T} \end{aligned}$
$\begin{aligned} & \mathbf{0 2} \\ & \mathbf{b} \\ & \mathbf{T} \end{aligned}$	ounces pounds short tons (2000 b)	$\begin{aligned} & 28.35 \\ & 0.454 \\ & 0.907 \end{aligned}$	grams. kilograms megagrams	$\begin{aligned} & \mathrm{g} \\ & \mathrm{~kg} \\ & \mathrm{Mg} \end{aligned}$		TEMPER	RATURE (ct)	
	TEMPERA	URE (exa	ct)		${ }^{\circ} \mathrm{C}$	Celcius temperature	$1.8 C+32$	Fahrenheit temperature	${ }^{\circ} \mathrm{F}$
${ }^{\circ} \mathrm{F}$	Fahrenheit temperature	$5(F-32) / 9$	Celcius temperature	${ }^{\circ} \mathrm{C}$					
- SI is the symbol for the International System of Measurement					These factors conform to the requirement of FHWA Order 5190.1A.				

(Revised April 1989)
PAGE
CHAPTER I INTRODUCTION 1
CHAPTER II STUDY DESIGN AND RESULTS 4
Study Description 4
Major Results 5
CHAPTER III FINAL CLIMBING SPEED 6
Final Climbing Speeds for Tractor-Semitrailers 6
Final Climbing Speeds for 12.5 Percentile Trucks 6
CHAPTER IV TRUCK DECELERATION RATE 12
Rate of Truck Speed Loss 15
Critical Length of Grade 18
CHAPTER V TOOLS FOR DESIGNING HILL-CLIMBING LANES 21
Problem \#1 24
Problem \#2 25
Problem \#3 28
Limitations of New Method 28
CHAPTER VI CONCLUSION 31
Summary 31
The Impact on Highway Safety 31
REFERENCES 32

LIST OF FIGURES

Figure 1. Speed-distance curves for a "typical" heavy truck (i.e., $300 \mathrm{lb} / \mathrm{hp}$) on upgrades. 2
Figure 2. Average, median, and 12.5 percentile final climbing speeds for tractor-semitrailers. 7
Figure 3a. Final climbing speeds for the 12.5 percentile of single-unit trucks. 8
Figure 3 b . Final climbing speeds for the 12.5 percentile of tractor-semitrailers. 8
Figure 3c. Final climbing speeds for the 12.5 percentile of single-unit trucks pulling trailers. 10
Figure 3d. Final climbing speeds for the 12.5 percentile of doubles and triples. 10
Figure 4. Speed loss for 12.5 percentile tractor-semitrailers and single-unit trucks 16
Figure 5. Speed loss for 12.5 percentile trucks with trailers. 16
Figure 6. Speed loss for 12.5 percentile doubles and triples. 17
Figure 7. Current design guidelines for critical lengths of grade if entering speed is $55 \mathrm{mi} / \mathrm{h}$ 19
Figure 8. Microcomputer program for computing speed-distance curves 22
Figure 9. Procedure for applying method. 23
Figure 10a. Deceleration distributions for doubles and for tractor-semitrailers within a mixed truck population. 27
Figure 10b. Deceleration distribution for a mixed truck population. 27
Figure 11. Trends in weight-to-power. 30

LIST OF TABLES

Table l. Final climbing speeds (mi/h) 11
Table 2. Weight-to-available power ratios in lbs/hp for 12.5 percentile trucks at $25 \mathrm{mi} / \mathrm{h}$. 13
Table 3. Weight-to-available power ratios in lbs/hp for 12.5 percentile trucks at $50 \mathrm{mi} / \mathrm{h}$. 13
Table 4. Weight-to-available power ratios in lbs/hp for 50 percentile trucks at $25 \mathrm{mi} / \mathrm{h}$. 14
Table 5. Weight-to-available power ratios in lbs/hp for 50 percentile trucks at $50 \mathrm{mi} / \mathrm{h}$. 14
Table 6. Critical lengths of grade in ft for $55 \mathrm{mi} / \mathrm{h}$ entry speed 20

CHAPTER I

INTRODUCTION

Trucks have a difficult time climbing hills. As they climb, they often impede the flow of traffic, reduce the highway's capacity to carry traffic, and create possible hazards to other vehicles. Studies have indicated that accidents happen more frequently and are more severe as speed differentials increase. These studies support the conclusion that hill-climbing lanes make highway travel safer. A new study suggests, however, that maintaining costly hill-climbing lanes may not always represent the best use of highway safety dollars.

In the past, highway designers have determined the need for hillclimbing lanes based on relationships developed for a "typical" (i.e., 300$1 \mathrm{bs} / \mathrm{hp}$ [182 kg/kW]) heavy truck. Figure 1 presents the relationships of speed versus distance for various percent grades. Current design guidelines are based on these relationships.

A study by the University of Michigan Transportation Research Institute (UMTRI) recommends revising these guidelines. ${ }^{(1)}$ Researchers developed a new procedure for estimating truck speed loss and based their recommendations on the current performance of the 12.5 percentile of trucks. The 12.5 percentile was selected for the following reasons:

- It falls near the bottom of the linear portion of the probability distribution.
- It is a real value that can be determined directly from experimental observations.

Figure 1. Speed-distance curves for a "typical" heavy truck (i.e., $300 \mathrm{lb} / \mathrm{hp}$) on upgrades. ${ }^{(2)}$

- It reflects performance of one truck in eight and is more conservative than the median (i.e., one in two).
- Below this value, trucks differ markedly in their performance.
- The California Department of Transportation (CALTRANS) has used this value.

Based on a limited number of observations, UMTRI found that current design guidelines closely correlated with the performance of the 12.5 percentile of single-unit trucks pulling trailers and of doubles. However, UMTRI also found that the performance of the 12.5 percentiles of single-unit trucks and of tractor-semitrailers is significantly better than the current design guidelines suggest.

Therefore, current design guidelines may be leading designers to maintain costly hill-climbing lanes unnecessarily. Highway design engineers may want to use the new methods developed by UMTRI when deciding whether to build or maintain hill-climbing lanes and how long to make them. If fewer or shorter lanes were built, the money saved might be used to improve highway safety more effectively elsewhere.

CHAPTER II
 STUDY DESIGN AND RESULTS

The UMTRI study focused on one fundamental question: whether the current method of predicting the speed loss of trucks climbing grades is adequate.

Study Description

To answer this question, the study identified two objectives: to measure trucks' hill-climbing performance and to develop methods for predicting the general truck population's speed loss on arbitrary grades.

The study defined a truck as a vehicle having at least one axle with dual wheels and weighing at least 10,000 lbs (4536.9 kg). Trucks were grouped into single-unit trucks, single-unit trucks pulling trailers, tractorsemitrailers, and doubles and triples, i.e., tractor trucks pulling one semitrailer and one or more additional trailers.

UMTRI conducted field tests at 10 sites in the Eastern United States and 10 sites in the Western United States; geography and road classes were diverse. Hill-climbing performance and vehicle descriptions were recorded in a database, and data were analyzed to determine the distribution of truck performance. Past assumptions about how trucks decelerate on grades were evaluated.

The performance of more than 4,000 trucks was measured. Speed losses were measured on grades ranging from 2 to 6 percent. At weighing stations near test sites, truck weight and power were also recorded.

Major Results

The study determined the following:

- The performance of single-unit trucks and tractor-semitrailers is notably better than standard design guidelines suggest.
- The critical length of grade used in current design guidelines is shorter than single-unit trucks and tractor-semitrailers warrant, due to improved truck performance.
- Current design guidelines seem reasonable for predicting the 12.5 percentile of single-unit trucks pulling trailers and of doubles and triples. However, more study on these trucks' performance is needed.

In addition, the study produced a new, simplified method to predict trucks' hill-climbing performance. However, the study indicated that further improvements are needed in the decision-making process for the design of hillclimbing lanes.

CHAPTER III
 FINAL CLIMBING SPEED

Final climbing speed is the steady speed to which a truck decelerates when climbing a constant grade. Final climbing speeds influence highway capacity and affect decisions on whether hill-climbing lanes are necessary.

When considering adding such lanes, highway designers determine whether trucks slow to a steady speed that is at least $10 \mathrm{mi} / \mathrm{h}(16 \mathrm{~km} / \mathrm{h})$ below the prevailing highway speed. The determination depends on the distribution of trucks by type.

Final Climbing Speeds for Tractor-Semitrailers

Figure 2 shows the final climbing speed of tractor-semitrailers as a function of grade observed at the 20 test sites. Superimposed on the plot is the curve of speed versus grade that indicates values used in current design practice. As can be seen, the data indicate that tractor-semitrailers achieve higher final climbing speeds than assumed in current design practice. In fact, some tractor-semitrailers, especially those climbing shallower grades, have sufficient power to climb the grade at normal traffic speed.

Final Climbing Speeds for 12.5 Percentile Trucks

Figures 3a-d show the findings for the 12.5 percentile of each truck group. The experimental data points reflect a variation in truck performance at different test sites and show that the distinction between final climbing speeds on different road classes is not especially significant.

Figures 3a and 3b also indicate that the values for final climbing speed used in current design practice are clearly conservative in estimating the performance equivalent to the 12.5 percentile of single-unit trucks and tractor-semitrailers, respectively. The design values currently used roughly

Figure 2. Average, median, and 12.5 percentile final climbing speeds for tractor-semitrailers. ${ }^{(1)}$

Figure 3a. Final climbing speeds for the 12.5 percentile of single-unit trucks. ${ }^{\text {(1) }}$

Figure 3b. Final climbing speeds for the 12.5 percentile of tractor-semitrailers. ${ }^{\text {(1) }}$
equal the performance of a vehicle in the 5th percentile; in general, current design guidelines are about $3 \mathrm{mi} / \mathrm{h}(5 \mathrm{~km} / \mathrm{h})$ below the performance of the 12.5 percentile.

For the 12.5 percentile of trucks with trailers (figure 3 c) and of doubles and triples (figure 3d), current guidelines may be a good guide. However, the sample sizes used to develop these estimates were somewhat limited.

The final climbing speeds for the 12.5 percentile of each truck type and the final climbing speeds used in the current design guidelines are summarized in table 1.

Figure 3c. Final climbing speeds for the 12.5 percentile of single-unit trucks pulling trailers. ${ }^{(1)}$

Figure 3d. Final climbing speeds for the 12.5 percentile of doubles and triples. ${ }^{\text {(1) }}$

Table 1. Final climbing speeds (mi/h). ${ }^{\text {(1) }}$

Grade \%	12.5 Percentile Speed				
	Current Design Guidelines	Straight Trucks	Trucks with Semitrailers	TractorSemitrailers	65-foot Doubles
1.5	40.0	47.5	42.3	47.5	39.9
2	34.0	40.3	33.7	40.3	33.8
3	26.5	30.9	24.0	30.9	25.9
4	22.0	25.0	18.6	25.0	21.0
5	18.4	21.0	15.2	21.0	17.7
6	15.5	18.1	12.8	18.1	15.2
7	13.8	15.9	11.1	15.9	13.4
8	12.2	14.2	9.8	14.2	12.0
9	10.6	12.8	8.8	12.8	10.8

CHAPTER IV
 TRUCK DECELERATION RATE

The performance of trucks climbing uphill was found to be related to the weight-to-available power or drive power $\left(W / P_{3}\right)$ ratio. Drive power is the power available from the engine at the drive wheel. It is a function of the effective power available at the engine, the power loss due to rolling resistance, and the power loss from aerodynamic forces.

A good approximation of W / P_{3} was obtained over a limited range of speeds by matching the higher order function at two speeds and assuming a linear relationship between the two values. For the hill-climbing characterization, the speeds of $25 \mathrm{mi} / \mathrm{h}(40 \mathrm{~km} / \mathrm{h})$ and $50 \mathrm{mi} / \mathrm{h}(80 \mathrm{~km} / \mathrm{h})$ were selected. A good match at $25 \mathrm{mi} / \mathrm{h}(40 \mathrm{~km} / \mathrm{h})$ ensures that the final hill-climbing speed is accurate; a good match at $50 \mathrm{mi} / \mathrm{h}(80 \mathrm{~km} / \mathrm{h})$ ensures that high-speed decelerations are accurate. Table 2 presents the W / P_{3} values at $25 \mathrm{mi} / \mathrm{h}$ (40 km / h), as derived from the field data for the 12.5 percentile. Table 3 presents the W / P_{3} values at 50 miles (80 km) per hour for the 12.5 percentile derived from the field data. The lower the W / P_{3} value, the better the performance.

Tables 4 and 5 present the W / P_{3} values for the 50 percentile derived from the field data at 25 and $50 \mathrm{mi} / \mathrm{h}$ (40 and $80 \mathrm{~km} / \mathrm{h}$), respectively.

Table 2. Weight-to-available power ratios in lbs/hp for 12.5 percentile trucks at $25 \mathrm{mi} / \mathrm{h} .{ }^{(1)}$

Truck Class	Interstate Highways		Primary Highways	
	East	West	East	West
Single-Unit Trucks	375	290	350	350
Single-Unit Trucks Pulling Trailers	*	525	*	525
Tractor-Semitrailers	375	375	375	375
Doubles	475	475	*	475

* Data not available

Table 3. Weight-to-available power ratios in lbs/hp for 12.5 percentile trucks at $50 \mathrm{mi} / \mathrm{h}$. ${ }^{(1)}$

Truck Class	Interstate Highways		Primary Highways	
	East	West	East	West
Single-Unit Trucks	550	500	500	500
Single-Unit Trucks Pulling Trailers	*	625	*	625
Tractor-Semitrailers	550	550	550	550
Doubles	800	800	*	800

* Data not available

Table 4. Weight-to-available power ratios in lbs/hp

 for 50 percentile trucks at $25 \mathrm{mi} / \mathrm{h}$. ${ }^{\text {(1) }}$| Truck Class | Interstate Highways | | Primary Highways | |
| :---: | :---: | :---: | :---: | :---: |
| | East | West | East | West |
| Straight Trucks | 250 | 200 | 150 | 150 |
| Straight Trucks Pulling Trailers | 350 | 325 | 350 | 325 |
| Tractor-
 Semitrailers | 250 | 250 | 250 | 250 |
| Doubles | 350 | 350 | * | 350 |
| * Data not available | | | | |
| Table 5. Weight-to-available power ratios in lbs/hp for 50 percentile trucks at $50 \mathrm{mi} / \mathrm{h}$. | | | | |
| Truck Class | Interstate Highways | | Primary Highways | |
| | East | West | East | West |
| Straight Trucks | 475 | 400 | 300 | 300 |
| Straight Trucks Pulling Trailers | 1,200 | 550 | 1,200 | 550 |
| TractorSemitrailers | 475 | 475 | 475 | 475 |
| Doubles | 700 | 700 | * | 700 |

[^0]
Rate of Truck Speed Loss

As trucks travel uphill, their speeds drop and they lose effective power. The rate of speed loss can be calculated using the following equation:

$$
\begin{equation*}
\mathrm{dU} / \mathrm{dX}=.465\left[375 /\left(\left(W / P_{3}\right)(U)\right)-G_{r}\right] \mathrm{g} / \mathrm{U} \tag{1}
\end{equation*}
$$

where
$d U / d X=\quad$ the rate of change in truck speed with respect to distance in mi/hr/ft
$W / P_{3}=\quad$ weight-to-available power ratio in lbs/hp
$\mathrm{G}_{\mathrm{r}}=$ constant grade, expressed as a percent/100
$\mathrm{U}=$ speed in mi / h
$\mathrm{g}=$ gravitational constant $=32.2 \mathrm{ft} / \mathrm{s}^{2}$

Since W / P_{3} depends on speed, the rate of change increases as trucks travel uphill until the trucks reach their final climbing speed.

Figure 4 presents speed as a function of grade and distance for the 12.5 percentile of single-unit trucks and tractor-semitrailers as derived from the experimental data. Figures 5 and 6 present the derived relationships between speed, grade, and distance for the 12.5 percentile of single-unit trucks pulling trailers and doubles, respectively. Comparing these relationships with figure 1 , which served as the basis for current design guidelines, reveals that the rate of speed loss for single-unit trucks and tractorsemitrailers is less than the values used as the basis for current guidelines.

Figure 4. Speed loss for 12.5 percentile tractor-semitrailers and single-unit trucks. ${ }^{(1)}$

Figure 5. Speed loss for 12.5 percentile trucks with trailers. ${ }^{(1)}$

Figure 6. Speed loss for 12.5 percentile doubles and triples. ${ }^{(1)}$

Critical Length of Grade

A Policy on Geometric Design of Highways and Streets defines critical
length of grade as the term "used to indicate the maximum length of a designated upgrade on which a loaded truck can operate without an unreasonable reduction in speed. For a given grade, lengths less than critical ones result in acceptable operation in the desired range of speeds." The common basis for determining critical length of grade is a $10 \mathrm{mi} / \mathrm{h}(16 \mathrm{~km} / \mathrm{h})$ reduction in speed of trucks below the average running speed. Figure 7 presents the current guidelines, which were based on a $300-1 \mathrm{~b} / \mathrm{hp}$ truck.

Table 6 compares the critical lengths of grade derived from this study with the values used in current design practice. On steep grades, the differences for the 12.5 percentile of single-unit trucks and tractorsemitrailers were fairly small. For instance, the critical length of grade on a 6 percent grade is about 600 ft (183 m), based on current guidelines for an entry speed of $55 \mathrm{mi} / \mathrm{h}(89 \mathrm{~km} / \mathrm{h})$. This study found these trucks travel about $700 \mathrm{ft}(213 \mathrm{~m})$ before speed drops more than $10 \mathrm{mi} / \mathrm{h}(16 \mathrm{~km} / \mathrm{h})$.

On shallow grades of 3 percent or less, however, the differences were substantial. Based on the current design guidelines, the critical length of a 3 percent grade for trucks is $1,400 \mathrm{ft}$ (426.7 m); the study showed the distance to be over $2,100 \mathrm{ft}(640.1 \mathrm{~m})$. Thus, the current design guidelines for critical length of grade may be more than 700 ft (213 m) shorter than warranted for single-unit trucks and tractor-semitrailers.

In other words, hill-climbing lanes may be needed less often than current guidelines suggest.

Figure 7. Current design guidelines for critical lengths of grade
if entering speed is $55 \mathrm{mi} / \mathrm{h}$. 2 .

Table 6. Critical lengths of grade in ft for $55 \mathrm{mi} / \mathrm{h}$ entry speed. ${ }^{(1)}$

Values Developed from This Study

| | Current
 Design
 Guideline | Single Trucks and
 Gractor-Semitrailers | Single Trucks
 Pulling Trailers | Doubles |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 2,500 | 5,250 | 4,170 | |
| 3 | 1,400 | 2,040 | 1,850 | 1,620 |
| 4 | 1,000 | 1,270 | 1,190 | 1,090 |
| 5 | 750 | 920 | 880 | 820 |
| 6 | 625 | 720 | 700 | 660 |
| 7 | 525 | 600 | 580 | 550 |
| 8 | 450 | 500 | 490 | 470 |
| 9 | 400 | 450 | 430 | 410 |

CHAPTER V TOOLS FOR DESIGNING HILL-CLIMBING LANES

This study produced a method which can help highway designers analyze the effect of grades on truck speeds, assess the need for hill-climbing lanes, and design or maintain hill-climbing lanes. This chapter describes the method, gives examples to illustrate its application, and compares the results with values used in current design guidelines.

The general formula to calculate speed losses on grades for a particular type of truck is:

$$
\begin{equation*}
d U / d X=0.465\left[375 /\left(\left(W / P_{3}\right)(U)\right)-G_{r}\right] 32.2 / U \tag{2}
\end{equation*}
$$

where
$\mathrm{U}=$ speed, in mi / h
$G_{r}=$ grade, in percent/ 100
$W / P_{3}=$ weight-to-available power ratio, in lbs/hp.

As described earlier, W / P_{3} is speed dependent. The speed at which a specific type of truck climbs a hill can be computed through an iteration process:

$$
\begin{equation*}
U_{i}=U_{(i-1)}+(d U / d X) \Delta x \tag{3}
\end{equation*}
$$

where
$U_{1}=$ speed in mi / h for the $\mathrm{i}^{\text {th }}$ iteration
$\Delta x=$ a distance increment, e.g., $10 \mathrm{ft}(3.0 \mathrm{~m})$

To assist designers, a computer program in the BASIC language was developed to calculate truck speed. Figure 8 lists this program.

Although it is recommended that the W / P_{3} values for the 12.5 percentile be used, this method can be applied using values for percentiles greater than 12.5. Moreover, the method can be applied to account for different truck mixes. The general procedure for applying this method is shown in figure 9.

Figure 8. Microcomputer program for computing speed-distance curves. ${ }^{(1)}$

1. Select/Determine entry speed.
2. Estimate/Determine distribution of trucks in terms of:

- single-unit trucks and tractor-semitrailers
- doubles
- single-unit trucks pulling trailers.

3. Select design percentile; 12.5 percent recommended.
4. Determine W / P_{3} at 25 and $50 \mathrm{mi} / \mathrm{h}$ (40 and $80 \mathrm{~km} / \mathrm{h}$) for design percentile truck.
5a. Compute critical length of grade.

Or
5b. Determine speed for given uphill profile.
Figure 9. Procedure for applying method.

The following three examples are presented to show highway designers how to use this method to calculate critical lengths of grade.

Problem \#1

Determine critical length of a 4 percent uphill grade for a proposed primary highway located in a Western State. Assume truck entry speed is 55 $\mathrm{mi} / \mathrm{h}(89 \mathrm{~km} / \mathrm{h}$).

Solution Using Current Design Guidelines:

The critical length of grade for a speed reduction of $10 \mathrm{mi} / \mathrm{h}(16 \mathrm{~km} / \mathrm{h})$ as determined from figure 7 is a little less than $1,000 \mathrm{ft}(304.8 \mathrm{~m})$.

Solution Using New Method:

Assuming that the mix of trucks is 100 percent single-unit trucks and tractor-semitrailers and that the design percentile is 12.5 percent, then the critical length of grade can be determined in one of the following three ways:

1. Read from the plots developed in this study; in this case, see figure 4.
2. Use the BASIC program with entry speed equaling $55 \mathrm{mi} / \mathrm{h}(89 \mathrm{~km} / \mathrm{h})$ and WP25 and WP50 set at 375 and 550, respectively. (W/P P_{3} values are taken from tables 2 and 3.)
3. Calculate $d U / d X$ for an average speed of $50 \mathrm{mi} / \mathrm{h}(80 \mathrm{~km} / \mathrm{h})$ (i.e., entry limited speed $=55 \mathrm{mi} / \mathrm{h}$ [89 km/h] and final speed $=45 \mathrm{mi} / \mathrm{h}$ [72 km/h]), an average W / P_{3} of $550 \mathrm{lbs} / \mathrm{hp}$ (i.e., appropriate for 12.5 percentile at $50 \mathrm{mi} / \mathrm{h}$ [$80 \mathrm{~km} / \mathrm{h}]$) and an uphill grade of 4 percent. Then calculate critical length of grade $=(10$ $\mathrm{mi} / \mathrm{h}) /(\mathrm{dU} / \mathrm{dX})$.

The critical length of grade would be calculated to be more than 1,200 $\mathrm{ft}(365.7 \mathrm{~m})$, which is more than $200 \mathrm{ft}(61.0 \mathrm{~m})$ longer than the current design guidelines indicate.

Problem \#2

Determine the critical length of grade if the truck mix is 80 percent tractor-semitrailers and 20 percent doubles.

Solution Using Current Design Guidelines:

Since the current methodology does not consider different truck types, the solution would be the same as that for Problem \#1, which is $1,000 \mathrm{ft}$ (304.8 m).

Solution Using New Method:

The solution can be obtained in two ways. For the first, estimate the W / P_{3} values at $25 \mathrm{mi} / \mathrm{h}(40 \mathrm{~km} / \mathrm{h})$ and $50 \mathrm{mi} / \mathrm{h}(80 \mathrm{~km} / \mathrm{h})$ for the 12.5 percentile of the truck mix and then execute the BASIC program. Alternatively, estimate the $\mathrm{dU} / \mathrm{dX}$ value for $50 \mathrm{mi} / \mathrm{h}(80 \mathrm{~km} / \mathrm{h}$) for the 12.5 percentile of the truck mix and calculate the Δx. The full solutions follow below:

1. First, based on proportions, the 12.5 percentile W / P_{3} value for the specified truck mix is equivalent to the 62.5 percent W / P_{3} value for doubles (i.e., 12.5% : $x=20 \%$: 100%). Estimates for this W / P_{3} value at $50 \mathrm{mi} / \mathrm{h}(80 \mathrm{~km} / \mathrm{h})$ can be extrapolated from the values in tables 2 through 5. The W / P_{3} values were calculated to be 308 and 667 at 25 $\mathrm{mi} / \mathrm{h}(40 \mathrm{~km} / \mathrm{h})$ and $50 \mathrm{mi} / \mathrm{h}(80 \mathrm{~km} / \mathrm{h})$, respectively. Using the BASIC program, the critical length of grade is computed to be $1,150 \mathrm{ft}$ (305.5 m).
2. Using the W / P_{3} values in tables 2 through 5 , the $d U / d X$ values at 50 $\mathrm{mi} / \mathrm{h}(80 \mathrm{~km} / \mathrm{h})$ can be computed to be:

	$\mathrm{dU} / \mathrm{dX}$, in mi/h per $1,000 \mathrm{ft}$	
	12.5 Percentile	50.0 Percentile
Tractor-Semitrailer	-7.89	-7.25
Doubles	-9.17	-8.77

Plotting these points to reflect the $80 / 20$ truck mix results in figure 10a. Combining the two curves to develop a distribution for the $80 / 20$ truck mix yields figure 10b. Based on this curve, the $\mathrm{dU} / \mathrm{dX}$ for the 12.5 percentile can be approximated to be $-8.6 \mathrm{mi} / \mathrm{h}$ per $1,000 \mathrm{ft}(-14 \mathrm{~km} / \mathrm{h}$ per 304.8 m$)$. Therefore
$\Delta x=\frac{\Delta S}{d U / d X}=\frac{-10 \mathrm{mi} / \mathrm{h}}{-8.6 \mathrm{mi} / \mathrm{h} \mathrm{per} 1000 \mathrm{ft}} \quad=1163 \mathrm{ft}$
The critical length of grade is approximately $1,150 \mathrm{ft}$ (350.5 m).

POPULATION-\%

Figure 10a. Deceleration distributions for doubles and for tractor-semitrailers within a mixed truck population. ${ }^{(1)}$

Figure 10b. Deceleration distribution for a mixed truck population. ${ }^{(1)}$

Determine the critical length of a 5 percent upgrade preceded by a 1,500 ft (457.2 m) length of 2 percent upgrade. Assume trucks enter the 2 percent upgrade at $55 \mathrm{mi} / \mathrm{h}(89 \mathrm{~km} / \mathrm{h})$ and that 100 percent of the trucks are tractorsemitrailers.

Solution Using Current Design Guidelines:

Figure 7 shows that after traveling $1,500 \mathrm{ft}(457.2 \mathrm{~m})$ up a 2 percent grade, the estimated drop in truck speed is $6 \mathrm{mi} / \mathrm{h}(10 \mathrm{~km} / \mathrm{h})$. Using this figure, it can be determined that the remaining allowable speed reduction of $4 \mathrm{mi} / \mathrm{h}(6 \mathrm{~km} / \mathrm{h})$ will be made on approximately 275 ft (83.8 m) of the 5 percent upgrade.

Solution Using New Method:

The critical length of grade could be computed using the BASIC program with the entry speed set to $55 \mathrm{mi} / \mathrm{h}(89 \mathrm{~km} / \mathrm{h})$, WP25 and WP50 set equal to 375 and 550 , respectively, and distance and elevation data reflecting first the $1,500 \mathrm{ft}(457.2 \mathrm{~m}), 2$ percent upgrade and then a long (e.g., $2,000 \mathrm{ft}), 5$ percent upgrade. The output of the program indicates that truck speed drops below $45 \mathrm{mi} / \mathrm{h}(72 \mathrm{~km} / \mathrm{h})$ at a distance approximately equal to $2,100 \mathrm{ft}(640.1 \mathrm{~m})$. Therefore, $600 \mathrm{ft}(183 \mathrm{~m})$ up a 5 percent grade is acceptable.

Limitations of New Method

While the method described in this study may yield better predictions of speed loss going uphill than current guidelines, the decision-making process for designing or maintaining hill-climbing lanes needs further improvements. This new method deals only with relative differences among four truck types. It does not consider the relative percentage of trucks compared to cars or the absolute number of trucks per day. From a safety perspective, a potentially
dangerous situation occurs when trucks travel significantly more slowly than the traffic stream. Therefore, in determining the need for hill-climbing lanes, designers should try to minimize the frequency of times that this situation occurs. Thus the decision-making process should consider such factors as the probability that the event described above occurs, average daily truck traffic volumes, and trucks as a percentage of the total traffic stream.

In addition, this new method may require estimating trucks by truck class. Traffic engineers, transportation planners, and highway designers already have difficulty simply projecting the number of trucks that will travel daily on a given roadway in the future. For this method, they also will have to estimate the number of trucks for each of the following groups: doubles, single-unit trucks pulling trailers, tractor-semitrailers, and single-unit trucks. Accuracy is an issue.

The method also does not anticipate future improvements in truck design. As shown in figure 1l, trends indicate that trucks are being designed with more horsepower per pound of gross weight.

Finally, since the relationships established for the weight-to-available power ratio for doubles and single-unit trucks pulling trailers are based on a rather limited sample, more data are needed to estimate these parameters better.

Figure 11. Trends in weight-to-power. ${ }^{(2)}$

Summary

- Current design guidelines are conservative for single-unit trucks and tractor-semitrailers. As a result, the critical length of grade being used for these two types of trucks is shorter than warranted.
- Single-unit trucks with trailers and doubles do not perform as well as single-unit trucks and tractor-semitrailers.
- The weight-to-available power ratio should be used to determine critical length of grade.
- Highway designers need more comprehensive methods for deciding when hill-climbing lanes are warranted.

The Impact on Highway Safety

Trucks often have a difficult time traveling uphill. They can impede the flow of traffic, reduce the highway's capacity to carry traffic, and create possible hazards to other vehicles. For all of these reasons, highway designers consider constructing hill-climbing lanes to make travel safer.

This study, however, shows that the current design guidelines may be leading designers to construct and maintain more hill-climbing lanes than actually needed. This means that there is a low rate of return on precious dollars being spent to construct these lanes. These dollars could perhaps be used elsewhere to improve highway safety more effectively.

REFERENCES

(1) Thomas D. Gillespie, Methods for Predicting Truck Speed Loss on Grades, FHWA/RD-86/059, Federal Highway Administration, U.S. Department of Transportation, Washington, DC, 1986.
(2) American Association of State Highway and Transportation Officials (AASHTO), A Policy on Geometric Design of Highways and Streets, Washington, DC, Copyright 1984. Figures used by permission.

[^0]: * Data not available

