

TESTING OF NEW BRIDGE RAIL AND TRANSITION DESIGNS. VOLUME 3. APPENDIX B. BR27D BRIDGE RAILING

TEXAS TRANSPORTATION INST., COLLEGE STATION

JUN 97

U.S. DEPARTMENT OF COMMERCE

National Technical Information Service

Testing of New Bridge Rail and Transition Designs

Federal Highway Administration

Research and Development
Turner-Fairbank Highway Research Center 6300 Georgetown Pike
McLean, VA 22101-2296

FOREWORD

This report presents the results of a State Planning and Research (SP\&R) pooled-fund study to develop safer bridge rail and transition designs. This pooled-fund study was sponsored by the Federal Highway Administration, 23 States, and the District of Columbia. A panel of representatives from those agencies selected the designs to be studied. Ten bridge rails and two transitions were designed and crash tested in accordance with the recommendations for the various Performance Levels in the 1989 AASHTO Guide Specifications for Bridge Railings. Acceptable performance was demonstrated for all of the crash tested designs.

Detailed drawings are presented for documentation and to facilitate implementation.
> henge Dutersem Office of Safety and Traffic Operations, Research and Development

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof. This report does not constitute a standard, specification, or regulation.

The United States Government does not endorse products or manufacturers. Trade and manufacturer's names appear in this report only because they are considered essential to the object of the document.

TECHNICAL REPORT DOCUMENTATION PAGE

1. Report No. FHWA-RD-93-060	2. Goverrment Accession No.	3. Recipient's Catalog No.
4. Title and Subtitie TESTING OF NEW BRIDGE RAIL AND TRANSITION DESIGNS Volume III: Appendix B BR27D Bridge Railing		5. Reporl Date June 1997
		6. Performing Organization Code
7. Author(s) C. Eugene Buth, T. J. Hirsch, and Wanda L. Menges		8. Performing Organization Report No. Research Foundation 7069-Vol. III
9. Performing Organization Name and Address Texas Transportation Institute The Texas A\&M University System College Station, Texas 77843-3135		10. Work Unit No. NCP \#3A5C0042
		11. Contract or Grant No. DTFH61-86-C-00071
12. Sponsoring Agency Name and Address Office of Safety and Traffic Operations R\&D Federal Highway Administration 6300 Georgetown Pike McLean, Virginia 22101-2296		13. Type of Report and Period Covered Final Report August 1986 - September 1993
		14. Sponsoring Agency Code
15. Supplementary Notes Research performed in cooperation with DOT, FHWA Research Study Title: Pooled Funds Bridge Rail Study Contracting Officer's Technical Representative (COTR) - Charles F. McDevitt		
16. Abstract		
A combination concrete parapet and metal railing for performance level one of the 1989 Guide Specifications for Bridge Railings was designed and tested while mounted both on a sidewalk and flush on the deck. The upper portion of the railing permits some visibility through the railing while the $42-\mathrm{in}(1.07-\mathrm{m})$ height is provided for pedestrians. Acceptable performance was demonstrated in the tests.		

This volume is the third in a series. The other volumes in the series are: Volume I: Technical Report; Volume II: Appendix A, "Oregon Side Mounted Bridge Railing;" Volume IV: Appendix C, "Illinois 2399-1 Bridge Railing;" Volume V: Appendix D, "32-in (813-mm) Concrete Parapet Bridge Railing;" Volume VI: Appendix E, "32-in (813-mm) New Jersey Safety Shape;" Volume VII: Appendix F, "32-in (813-mm) F-Shape Bridge Railing;" Volume VIII: Appendix G, "BR27C Bridge Railing;" Volume IX: Appendix H, "Illinois Side Mount Bridge Rail;" Volume X: Appendix I, "42-in (1.07-m) Concrete Parapet Bridge Railing;" Volume XI: Appendix J, "42-in (1.07-m) F-Shape Bridge Railing;" Volume XII: Appendix K, "Oregon Transition;" Volume XIII:
Appendix L, " 32 -in (813-mm) Thrie-Beam Transition;" and Volume XIV: Appendix M, "Axial Tensile Strength of Thrie and W-Beam Terminal Connectors."
17. Key Words

Bridge Rail, Longitudinal Barriers, Barrier Collision Forces, Ultimate Strength, Yieldline Analysis, Full-Scale Crash Tests, Highway Safety
18. Distribution Statement

No restrictions. This document is available to the public through the National Technical Information Service 5285 Port Royal Road Springfield, Virginia 22161

19. Security Classif. (of this report) Unclassified	20. Security Classif. (of this page) Unclassifled	21. No. of Pages 107	22. Price

*SI is the symbol for the International System of Units. Appropriate
rounding should be made to comply with Section 4 of ASTM E380.
(Revised September 1993)

TABLE OF CONTENTS
Chapter Page

1. DESIGN OF RAILING 1
2. CRASH TEST PROCEDURES 5
3. FULL-SCALE CRASH TESTS 7
BR27D BRIDGE RAILING ON SIDEWALK 7
Test 7069-22 7
Test Description 7
Test Results 8
Conclusions 8
Test 7069-23 28
Test Description 28
Test Results 28
Conclusions 29
BR27D BRIDGE RAILING ON DECK 53
Test 7069-30 53
Test Description 53
Test Results 53
Conclusions 54
Test 7069-31 71
Test Description 71
Test Results 71
Conclusions 72
4. STRENGTH CALCULATIONS 93
REFERENCES 99

LIST OF FIGURES

Figure No. Page

1. BR27D bridge railing on sidewalk 2
2. BR27D bridge railing on deck 3
3. Vehicle before test 7069-22 10
4. Vehicle/bridge railing geometrics for test 7069-22 11
5. Vehicle properties for test 7069-22 12
6. BR27D bridge railing on sidewalk before test 7069-22 13
7. BR27D bridge railing on sidewalk after test 7069-22 14
8. Vehicle after test 7069-22 15
9. Summary of results for test 7069-22 16
10. Sequential photographs for test 7069-22 (front and overhead views) 20
11. Sequential photographs for test 7069-22 (perpendicular and interior views) 22
12. Vehicle angular displacements for test 7069-22 24
13. Vehicle longitudinal accelerometer trace for test 7069-22 (accelerometer located at center-of-gravity) 25
14. Vehicle lateral accelerometer trace for test 7069-22 (accelerometer located at center-of-gravity) 26
15. Vehicle vertical accelerometer trace for test 7069-22 (accelerometer located at center-of-gravity) 27
16. Vehicle before test 7069-23 30
17. Vehicle/bridge railing geometrics for test 7069-23 31
18. Vehicle properties for test 7069-23 32
19. BR27D bridge railing on sidewalk before test 7069-23 33
20. BR27D bridge railing on sidewalk after test 7069-23 34
21. Damage at post 5, test 7069-23 35
22. Movement of posts at 5 and 6, test 7069-23 36
23. Vehicle after test 7069-23 37
24. Damage to left side of vehicle after test 7069-23 38
25. Summary of results for test 7069-23 39
26. Sequential photographs for test 7069-23 (overhead and frontal views) 41
27. Sequential photographs for test 7069-23
(interior and perpendicular views) 43
28. Vehicle angular displacements for test 7069-23 45
29. Vehicle longitudinal accelerometer trace for test 7069-23 (accelerometer located at center-of-gravity) 46
30. Vehicle lateral accelerometer trace for test 7069-23 (accelerometer located at center-of-gravity) 47
31. Vehicle vertical accelerometer trace for test 7069-23 (accelerometer located at center-of-gravity) 48

LIST OF FIGURES (Continued)

Figure No. Page
32. Vehicle longitudinal accelerometer trace for test 7069-23 (accelerometer located at front of vehicle) 49
33. Vehicle lateral accelerometer trace for test 7069-23 (accelerometer located at front of vehicle) 50
34. Vehicle longitudinal accelerometer trace for test 7069-23 (accelerometer located at rear of vehicle) 51
35. Vehicle lateral accelerometer trace for test 7069-23 (accelerometer located at rear of vehicle) 52
36. Vehicle before test 7069-30 55
37. Vehicle/bridge railing geometrics for test 7069-30 56
38. Vehicle properties for test 7069-30 57
39. BR27D bridge railing on deck before test 7069-30 58
40. BR27D bridge railing on deck after test 7069-30 59
41. Vehicle after test 7069-30 60
42. Summary of results for test 7069-30 61
43. Sequential photographs for test 7069-30 (overhead and frontal views) 63
44. Sequential photographs for test 7069-30 (perpendicular and interior views) 65
45. Vehicle angular displacements for test 7069-30 67
46. Vehicle longitudinal accelerometer trace for test 7069-30 (accelerometer located at center-of-gravity) 68
47. Vehicle lateral accelerometer trace for test 7069-30 (accelerometer located at center-of-gravity) 69
48. Vehicle vertical accelerometer trace for test 7069-30 (accelerometer located at center-of-gravity) 70
49. Vehicle before test 7069-31 73
50. Vehicle/bridge railing geometrics for test 7069-31 74
51. Vehicle properties for test 7069-31 75
52. BR27D bridge railing on deck before test 7069-31 76
53. BR27D bridge railing on deck after test 7069-31 77
54. Vehicle after test 7069-31 78
55. Summary of results for test 7069-31 79
56. Sequential photographs for test 7069-31 (overhead and frontal views) 81
57. Sequential photographs for test 7069-31 (perpendicular and interior views) 83
58. Vehicle angular displacements for test 7069-31 85
59. Vehicle longitudinal accelerometer trace for test 7069-31 (accelerometer located at center-of-gravity) 86
60. Vehicle lateral accelerometer trace for test 7069-31 (accelerometer located at center-of-gravity) 87

LIST OF FIGURES (Continued)

Figure No. Page
61. Vehicle vertical accelerometer trace for test 7069-31 (accelerometer located at center-of-gravity) 88
62. Vehicle longitudinal accelerometer trace for test 7069-31 (accelerometer located at front of vehicle) 89
63. Vehicle lateral accelerometer trace for test 7069-31 (accelerometer located at front of vehicle) 90
64. Vehicle longitudinal accelerometer trace for test 7069-31 (accelerometer located at rear of vehicle) 91
65. Vehicle lateral accelerometer trace for test 7069-31 (accelerometer located at rear of vehicle) 92
66. Plan view illustrating some possible failure mechanisms 95
67. Location of resultant force on metal portion of railing 96
68. Yieldline failure pattern for concrete parapet 97

LIST OF TABLES

Table No. Page

1. Evaluation of crash test no. 7069-22 17
2. Bridge railing performance levels and crash test criteria 18
3. Evaluation of crash test no. 7069-23 40
4. Evaluation of crash test no. 7069-30 62
5. Evaluation of crash test no. 7069-31 80

CHAPTER 1. DESIGN OF RAILING

The BR27D bridge railing was designed to meet performance level one of the 1989 Guide Specifications for Bridge Railings. ${ }^{(1)}$ It was designed to be mounted on a $5-\mathrm{ft}(1.5 \mathrm{~m})$ wide sidewalk with an 8 -in ($203-\mathrm{mm}$) curb at the face of the sidewalk. The design force used was $30 \mathrm{kips}(133 \mathrm{kN})$ of uniformly distributed line force $42 \mathrm{in}(1.07 \mathrm{~m})$ long and located 35 in $(90 \mathrm{~cm})$ above the surface of the sidewalk.

The railing (mounted on sidewalk) was tested to performance level one (1989 guide specifications). ${ }^{(1)}$ The prototype installation was then modified by lowering it 8 in (203 mm) making the top of the sidewalk become the top of the deck with no curb. It was again tested to performance level one of the 1989 guide specifications. ${ }^{(1)}$ Design force for the railing mounted on the deck is $30 \mathrm{kips}(133 \mathrm{kN}$) of uniformly distributed line force $42 \mathrm{in}(1.07 \mathrm{~m})$ long located at least 24 in (610 mm) above the surface of the deck.

A detailed analysis of strength of the railing is presented in Chapter 4.
A cross section of the railing design on sidewalk is shown in figure 1. Total height of the railing is 42 in $(1.07 \mathrm{~m})$. The lower portion of the railing consists of an 18 -in ($457-\mathrm{mm}$) high concrete parapet that is 10 in (254 mm) thick. Specified concrete strength was $3,600 \mathrm{psi}$ $\left(24.8 \times 10^{3} \mathrm{kPa}\right)$ at 28 days, and specified steel yield for the reinforcement was $60,000 \mathrm{psi}$ $\left(413 \times 10^{3} \mathrm{kPa}\right)$.

The two-tube metal railing installed on top of the parapet consists of two TS 4 by 4 by $1 / 4-$ in (102 by 102 by $6-\mathrm{mm}$) A500 grade B rail elements mounted on posts made of TS 4 by 3 by $3 / 16$-in (102 by 76 by $5-\mathrm{mm}$) A500 grade B with A36 baseplates. The installation was originally constructed along the edge of an existing concrete pavement with the sidewalk mounted on the top surface of the existing pavement and cantilevered from that pavement to simulate the cantilever condition that would exist in an actual bridge structure. Heavy rainfall and runoff eroded the soil beneath the concrete pavement and caused structural failure of the pavement. The railing and sidewalk structure was then lifted from the site and the space was filled with crushed limestone pavement base material. The sidewalk and railing structure was then replaced with the sidewalk being supported throughout its length and width instead of being cantilevered as originally designed. A cross section of this railing design is shown in figure 2. This test installation was considered suitable because strength of the cantilevered sidewalk was not being investigated in the performance level one tests performed on this railing installation. Adequacy of the cantilevered sidewalk was being investigated in a series of tests on another similar prototype railing installation.

[^0]Figure 1. BR27D bridge railing on sidewalk.

Figure 2. BR27D bridge railing on deck.

CHAPTER 2. CRASH TEST PROCEDURES

The BR27D bridge railing on sidewalk was tested to performance level one requirements. ${ }^{(1)}$ The nominal test conditions for these tests were as follows:
$1,800-\mathrm{lb}(817-\mathrm{kg})$ passenger car $|50 \mathrm{mi} / \mathrm{h}(80.5 \mathrm{~km} / \mathrm{h})| 20$ degrees (test 7069-22) $5,400-\mathrm{lb}(2452-\mathrm{kg})$ pickup $|45 \mathrm{mi} / \mathrm{h}(72.4 \mathrm{~km} / \mathrm{h})| 20$ degrees (test 7069-23)

The BR27D bridge railing on deck was also tested to performance level one requirements. ${ }^{(1)}$ The nominal test conditions for these tests were as follows:

$$
\begin{gathered}
1,800-\mathrm{lb}(817-\mathrm{kg}) \text { passenger car }|50 \mathrm{mi} / \mathrm{h}(80.5 \mathrm{~km} / \mathrm{h})| 20 \text { degrees (test } 7069-30) \\
5,400-\mathrm{lb}(2452-\mathrm{kg}) \text { pickup }|45 \mathrm{mi} / \mathrm{h}(72.4 \mathrm{~km} / \mathrm{h})| 20 \text { degrees (test } 7069-31)
\end{gathered}
$$

Each of the test vehicles was instrumented with three solid-state angular rate transducers to measure roll, pitch, and yaw rates and a triaxial accelerometer at the vehicle center-of-gravity to measure longitudinal, lateral, and vertical acceleration levels. In addition, each pickup was equipped with two biaxial accelerometers, one forward of the center-ofgravity and one in the rear of the pickup, to measure longitudinal and lateral acccleration levels. The accelerometers were strain gauge type with a linear millivolt output proportional to acceleration.

The electronic signals from the accelerometers and transducers were transmitted to a base station by means of constant band width FM/FM telemetry link for recording on magnetic tape and for display on a real-time strip chart. Provision was made for the transmission of calibration signals before and after the test, and an accurate time reference signal was simultaneously recorded with the data. Pressure sensitive contact switches on the bumper were actuated just prior to impact by wooden dowels to indicate the elapsed time over a known distance to provide a measurement of impact velocity. The initial contact also produced an "event" mark on the data record to establish the exact instant of contact with the installation.

The multiplex of data channels transmitted on one radio frequency was received at a data acquisition station and demultiplexed into separate tracks of Intermediate Range Instrumentation Group (I.R.I.G.) tape recorders. After the test, the data was played back from the tape machines, filtered with an SAE J211 filter, and digitized using a microcomputer for analysis and evaluation of impact performance. The digitized data were then processed using two computer programs: DIGITIZE and PLOTANGLE. Brief descriptions on the functions of these two computer programs are as follows.

The DIGITIZE program uses digitized data from vehicle-mounted linear accelerometers to compute occupant/compartment impact velocities, time of occupant/compartment impact after vehicle impact, and the highest 0.010 -s average ridedown acceleration. The DIGITIZE program also calculates a vehicle impact velocity and the change in vehicle velocity at the end of a given impulse period. In addition, maximum average
accelerations over $50-\mathrm{ms}$ intervals in each of the three directions are computed. Acceleration versus time curves for the longitudinal, lateral, and vertical directions are then plotted from the digitized data of the vehicle-mounted linear accelerometers using a commercially available software package (QUATTRO PRO). For each graph, a $0.050-\mathrm{s}$ average window was calculated at the center of the 0.050 -s interval and plotted with the first 0.050 -s average plotted at 0.026 s .

The PLOTANGLE program uses the digitized data from the yaw, pitch, and roll rate charts to compute angular displacement in degrees at 0.001 -s intervals and then instructs a plotter to draw a reproducible plot: yaw, pitch, and roll versus time. It should be noted that these angular displacements are sequence dependent with the sequence being yaw-pitch-roll for the data presented herein. These displacements are in reference to the vehicle-fixed coordinate system with the initial position and orientation of the vehicle-fixed coordinate system being that which existed at initial impact.

An Alderson Research Laboratories Hybrid II, 50th percentile male anthropometric dummy restrained with lap and shoulder belts was placed in the driver position of each vehicle. The dummy was un-instrumented; however, a high-speed onboard camera recorded the motions of the dummy during the test sequence.

Photographic coverage of the test included four high-speed cameras: one overhead with a field of view perpendicular to the ground and directly over the impact point, one placed to have a field of view parallel to and aligned with the bridge rail system at the downstream end, and a third placed perpendicular to the front of the bridge rail. A high-speed camera was also placed onboard the vehicle to record the motions of the dummy placed in the driver seat during the test sequence. A flash bulb activated by pressure sensitive tape switches was positioned on the impacting vehicle to indicate the instant of contact with the bridge rail curb and was visible from each camera. The films from these high-speed cameras were analyzed on a computer-linked motion analyzer to observe phenomena occurring during the collision and to obtain time-event, displacement and angular data. A $16-\mathrm{mm}$ movie cine, a professional video camera, and a $3 / 4-\mathrm{in}$ ($19-\mathrm{mm}$) video recorder along with $35-\mathrm{mm}$ still cameras were used for documentary purposes and to record conditions of the test vehicle and bridge rail system before and after the test.

Each test vehicle was towed into the test installation using a steel cable guidance and reverse tow system. A steel cable for guiding the test vehicle was stretched along the path, anchored at each end, and threaded through an attachment to the front wheel of the test vehicle. Another steel cable was connected to the test vehicle, passed around a pulley near the impact point, through a pulley on the tow vehicle, and then anchored to the ground such that the tow vehicle moved away from the test site. A 2-to-1 speed ratio between the test and tow vehicle existed with this system. Immediately prior to impact, the test vehicle was released to be free-wheeling and unrestrained. The vehicle remained free-wheeling, i.e., no steering or braking inputs, until the vehicle cleared the immediate area of the test site, at which time brakes on the vehicle were activated to bring the vehicle to a safe and controlled stop.

CHAPTER 3. FULL-SCALE CRASH TESTS

BR27D BRIDGE RAILING ON SIDEWALK

Test 7069-22

Test Description

A 1983 Honda Civic (figures 3 and 4) was used for the crash test. Test inertia mass of the vehicle was $1,800 \mathrm{lb}(817 \mathrm{~kg})$ and its gross static mass was $1,967 \mathrm{lb}(893 \mathrm{~kg})$. The height to the lower edge of the vehicle bumper was 15.0 in (381 mm) and it was 20.25 in (514 mm) to the top of the bumper. Additional dimensions and information on the test vehicle are given in figure 5. The vehicle was directed into the BR27D bridge railing on sidewalk (figure 6) using the cable reverse tow and guidance system, and was released to be free-wheeling and unrestrained just prior to impact. The vehicle impacted the curb of the sidewalk approximately $20 \mathrm{ft}(6 \mathrm{~m})$ upstream of post 5 at a speed of $51.7 \mathrm{mi} / \mathrm{h}(83.2 \mathrm{~km} / \mathrm{h})$ and the angle of impact was 20.8 degrees.

Upon impact with the curb, the left front tire folded under the vehicle, and at 0.109 s after impact the left rear wheel impacted the curb. As the left rear wheel climbed the curb, the right front wheel lost contact with the roadway. At 0.217 s the right front wheel contacted the curb and the left side of the vehicle was airborne. When the right front wheel reached the top the curb, the vehicle was totally airborne and remained as such as it impacted the concrete parapet at 0.261 s . The vehicle impacted the parapet at post 5 traveling at a speed of $46.6 \mathrm{mi} / \mathrm{h}(75.0 \mathrm{~km} / \mathrm{h})$ and at an angle of 13.4 degrees. As the vehicle continued forward, the bumper protruded between the upper and lower metal railing elements, and at 0.332 s the vehicle began to redirect. The right rear wheel struck the curb at 0.414 s as the vehicle was still airborne. By 0.510 s the vehicle was traveling parallel to the bridge railing at a speed of $41.0 \mathrm{mi} / \mathrm{h}(66.0 \mathrm{~km} / \mathrm{h})$, and at the same time the rear of the vehicle impacted the parapet. The vehicle lost contact with the parapet at 0.610 s traveling at $40.8 \mathrm{mi} / \mathrm{h}(65.6$ km / h) and 6.1 degrees. The vehicle contacted the roadway again as it reached posts 7 and 8 and the brakes were applied. The vehicle left the installation and subsequently came to rest $165 \mathrm{ft}(50.3 \mathrm{~m})$ from the point of impact.

As can be seen in figure 7, the bridge railing system received minimal damage. There was no measurable permanent deformation to the railing elements and only cosmetic damage to the concrete parapet. There were tire marks on the concrete parapet, on the face of the lower metal railing element in the area of impact, and also on the lower part of post 6 . The vehicle was in contact with the bridge railing for $11.5 \mathrm{ft}(3.5 \mathrm{~m})$. Length of contact with the concrete parapet was $7.0 \mathrm{ft}(2.1 \mathrm{~m})$.

The vehicle sustained damage to the left side as shown in figure 8. Maximum crush at the left front corner at bumper height was 6.0 in $(152 \mathrm{~mm})$. The left front strut was damaged, and the left front wheel was canted inward at the bottom and pushed back reducing the wheelbase on the driver side by 2 in (51 mm). Also, damage was donc to the front bumper,
hood, left headlight, left front quarter panel, left rear quarter panel, left front and rear tires and rims, and right front tire.

Test Results

The vehicle impacted the curb of the sidewalk at $51.7 \mathrm{mi} / \mathrm{h}(83.2 \mathrm{~km} / \mathrm{h})$ and the angle of impact was 20.8 degrees. As the vehicle impacted the concrete parapet, it was traveling at a speed of $46.6 \mathrm{mi} / \mathrm{h}(75.0 \mathrm{~km} / \mathrm{h})$ and an angle of 13.4 degrees. The speed of the vehicle at time of parallel was $41.0 \mathrm{mi} / \mathrm{h}(66.0 \mathrm{~km} / \mathrm{h})$. In determining the effective coefficient of friction which is an assessment of the smoothness of the "vehicle-railing" interaction, it should be noted that vehicle impact speed and angle is used in the calculation. If "vehicle-railing" interaction is interpreted literally, impact at the time of contact with the concrete parapet would be used; however, the curb could be considered to be part of this "vehicle-railing" interaction. Therefore, two assessments could be made: (1) interpreting "vehicle-railing" interaction literally disregarding the impact at the curb and using the speed and angle at which the vehicle impacted the concrete parapet or (2) considering the curb as an element of the "railing" system and using the speed and angle at which the vehicle impacted the curb. The coefficient of friction was calculated both ways for this test. Considering the curb as part of the vehicle-railing interaction the coefficient of friction was 0.40 , while using impact with the concrete parapet in the calculation it was also 0.40 . The vehicle lost contact with the bridge railing traveling at $40.8 \mathrm{mi} / \mathrm{h}(65.6 \mathrm{~km} / \mathrm{h})$, and the exit angle between the vehicle path and the bridge railing was 6.1 degrees. Data from the accelerometer located at the center-of-gravity were digitized for evaluation and occupant risk factors were computed as follows. In the longitudinal direction, occupant impact velocity was $12.2 \mathrm{ft} / \mathrm{s}(3.7 \mathrm{~m} / \mathrm{s})$ at 0.331 s , the highest $0.010-\mathrm{s}$ average ridedown acceleration was -4.7 g between 0.347 and 0.357 s , and the maximum $0.050-\mathrm{s}$ average acceleration was -4.4 g between 0.305 and 0.355 s . Lateral occupant impact velocity was $6.3 \mathrm{ft} / \mathrm{s}(1.9 \mathrm{~m} / \mathrm{s})$ at 0.214 s , the highest $0.010-\mathrm{s}$ occupant ridedown acceleration was -13.3 g between 0.320 and 0.330 s , and the maximum $0.050-\mathrm{s}$ average acceleration was -6.8 g between 0.302 and 0.352 s . The change in vehicle velocity at loss of contact using impact with the curb was $10.9 \mathrm{mi} / \mathrm{h}(17.5 \mathrm{~km} / \mathrm{h})$ and the change in momentum was 894 lb -s ($3,971 \mathrm{~N}$-s). These data and other pertinent information from the test are summarized in figure 9 and tables 1 and 2. Sequential photographs are shown in figures 10 and 11. Vehicular angular displacements are displayed in figure 12. Vehicular accelerations versus time traces filtered with SAE J211 filters are presented in figures 13 through 15 .

Conclusions

The BR27D bridge railing on sidewalk contained the test vehicle with no lateral movement of the bridge railing. There was no intrusion of railing components into the occupant compartment and no debris to present undue hazard to other traffic. The integrity of the occupant compartment was maintained with no intrusion and no deformation. The vehicle remained upright and relatively stable during the collision. The bridge railing smoothly redirected the vehicle. The effective coefficient of friction was considered marginal.

The 1989 American Association of State Highway and Transportation Officials (AASHTO) guide specifications sets forth desired limits for occupant risk factors for tests with the $1,800-\mathrm{lb}(817-\mathrm{kg})$ vehicle. ${ }^{(1)}$ The AASHTO specifications recommend a limit of 30 $\mathrm{ft} / \mathrm{s}(9.1 \mathrm{~m} / \mathrm{s})$ for longitudinal occupant impact velocity and $25 \mathrm{ft} / \mathrm{s}(7.6 \mathrm{~m} / \mathrm{s})$ for the lateral occupant impact velocity. The occupant impact velocities and the occupant ridedown accelerations were within the limits. The vehicle trajectory at loss of contact indicates minimum intrusion into adjacent traffic lanes. See figure 9 and table 1 for more details.

Figure 3. Vehicle before test 7069-22.

Figure 4. Vehicle/bridge railing geometrics for test 7069-22.

Date: 3-24-92 Te_ Test No.: 7069-22 VIN: JHMSR532XDS031645
Make: Honda ___ Model: Civic_ Year:_1983___ Odometer: Il9264
Tire Size: 155R13_ Piy Rating: ___ Bias Ply: \qquad Belted: \qquad Radial: X

Tire Condition: good \qquad
fair \neq
badly worn \qquad Height $=30^{\prime \prime}$

Vehicle Geometry - inches
a $623 / 4$ b $29^{\prime \prime}$
c $881 / 4^{\prime \prime}$
$\mathrm{d}^{*} 52 \quad 1 / 2^{\prime \prime}$
e 29"
f 146.25
g \qquad h 32.7
i \qquad j $28^{\prime \prime}$
k $171 / 4^{\prime \prime}$
ℓ 35"

III 20 1/4" n $31 / 4^{\prime \prime}$

0 15" P $521 / 2^{\prime \prime}$
r 22 s 14 1/4.
Engine Type: 4 cyl
Engine CID: 91
Transmission Type:
Automatic or Manual
FWD or KNW or KXVX
Body Type: 3 door
Steering Column Collapse Mechanism:

M_{1}	$\underline{1188}$	-1133	
M_{2}	-659		1213
M_{T}	1847	-1800	

Note any damage to vehicle prior to test:
Behind wheel units
-Convoluted tube
-cylindrical mesh units
Embedded ball
-NOT collapsible
EOther energy absorption Unknown

Brakes:
Front: disc_X drum_
Rear: disc_ drum_X
*d $=$ overall height of vehicle

$$
\begin{aligned}
& 1 \mathrm{in}=25.4 \mathrm{~mm} \\
& 1 \mathrm{lb}=.454 \mathrm{~kg} \\
& \hline
\end{aligned}
$$

Figure 5. Vehicle properties for test 7069-22.

Figure 6. BR27D bridge railing on sidewalk before test 7069-22.

Figure 7. BR27D bridge railing on sidewalk after test 7069-22.

Figure 8. Vehicle after test 7069-22.

(1 $\mathrm{in}=25.4 \mathrm{~mm}$)

Date 03/24/92

Test Installation . . . BR27D Bridge Railing on sidewalk	
Installation Length	100 ft
Test Vehicle 1983 Honda Civic	
Vehicle Weight	
Test Inertia	1,800 lb (817 kg)
Gross Static 1,967 1b (893 kg)	
Vehicle Damage Classification	
TAD	11LFQ3
	11FLEK2 \& 11LFES
imum V	

Impact Speed. . . . $51.7 \mathrm{mi} / \mathrm{h}(83.2 \mathrm{~km} / \mathrm{h})$
Impact Angle. . . . 20.8 deg
Speed at Parallel . $41.0 \mathrm{mi} / \mathrm{h}(66.0 \mathrm{~km} / \mathrm{h})$
Exit Speed $40.8 \mathrm{mi} / \mathrm{h}(65.6 \mathrm{~km} / \mathrm{h})$
Exit Trajectory . . 6.1 deg
Vehicle Accelerations
(Max. 0.050-sec Avg) at true c.g.
Longitudinal. . . -4.4 g
Lateral - -6.8 g
Occupant Impact Velocity at true c.g.
Longitudinal. . . $12.2 \mathrm{ft} / \mathrm{s}(3.7 \mathrm{~m} / \mathrm{s})$
Lateral $6.3 \mathrm{ft} / \mathrm{s}(1.9 \mathrm{~m} / \mathrm{s})$
Occupant Ridedown Accelerations
Longitudinal. . . -4.7 g
Lateral-13.3 g

Figure 9. Summary of results for test 7069-22.

Table 1. Evaluation of crash test no. 7069-22.
\{BR27D bridge railing on sidewalk [1, 800 $1 \mathrm{~b}(817 \mathrm{~kg})|51.7 \mathrm{mi} / \mathrm{h}(83.2 \mathrm{~km} / \mathrm{h})| 20.8$ degrees]\}

CRITERIA
A. Must contain vehicle
B. Debris shall not penetrate passenger compartment
C. Passenger compartment must have essentially no deformation
D. Vehicle must remain upright
E. Must smoothly redirect the vehicle
F. Effective coefficient of friction

G. Shall be less than

Occupant Impact Velocity $-\mathrm{ft} / \mathrm{s}(\mathrm{m} / \mathrm{s})$	
Longitudinal	Lateral
$30(9.2)$	$25(7.6)$

Occupant Ridedown	Accelerations $-\mathrm{g}^{\prime} \mathrm{s}$
Longitudinal	Lateral
15	15

H. Exit angle shall be less than 12 degrees

Pass
TEST RESULTS
PASS/FAIL*
Vehicle was contained Pass

No debris penetrated passenger Pass compartment

No deformation Pass

Vehicle did remain upright Pass
Vehicle was smoothly redirected Pass

$\frac{\mu}{4}$	Assessment	
.40 (Impact @ curb)	$\frac{\text { Marginal }}{\text { (Impact @ rail) }}$	Marginal

Occupant Impact Velocity $-\mathrm{ft} / \mathrm{s}(\mathrm{m} / \mathrm{s})$	
Longitudinal	Lateral
$12.2(3.7)$	$6.3(1.9)$

Occupant Ridedown Accelerations - $\mathrm{g}^{\prime} \mathrm{s}$		Lateral
Longitudinal	Pass	
-4.7	-13.3	

Exit angle was 6.1 degrees Pass

* A, B, C, D and G are required. E, F, and H are desired. (See table 2)

Table 2. Bridge railing performance levels and crash test criteria. (Excerpt from 1989 AASHTO Guide Specifications for Bridge Railings) ${ }^{(1)}$

PERFORMANCE LEVELS	TEST SPEEDS-mph ${ }^{1,2}$			
	TEST VEHICLE DESCRIPTIONS AND IMPACT ANGLES			
	Small Automobile $\begin{aligned} \mathrm{W} & =1.8 \mathrm{Kips} \\ \mathrm{~A} & =5.4^{\prime} \pm 0.1^{\prime} \\ \mathrm{B} & =5.5^{\prime} \\ \mathrm{H}_{\mathrm{cg}} & =20^{\prime \prime} \pm 1^{\prime \prime} \\ \theta & =20 \mathrm{deg} . \end{aligned}$	Pickup Truck $\begin{aligned} \mathrm{W} & =5.4 \mathrm{Kips} \\ \mathrm{~A} & =8.5^{\prime} \pm 0.1^{\prime} \\ \mathrm{B} & =6.5^{\prime} \\ \mathrm{H}_{\mathrm{cg}} & =27^{\prime \prime} \pm 1^{\prime \prime} \\ \theta & =20 \mathrm{deg} . \end{aligned}$	Medium Single-Unit Truck $\begin{aligned} \mathrm{W} & =18.0 \mathrm{Kips} \\ \mathrm{~A} & =12.8^{\prime} \pm 0.2^{\prime} \\ \mathrm{B} & =7.5^{\prime} \\ \mathrm{H}_{\mathrm{cg}} & =49^{\prime \prime} \pm 1^{\prime \prime} \\ \theta & =15 \mathrm{dcg} \end{aligned}$	Van-Type Tractor-Trailer ${ }^{4}$ $\begin{aligned} \mathrm{W} & =50.0 \mathrm{Kips} \\ \mathrm{~A} & =12.5^{\prime} \pm 0.5^{\prime} \\ \mathrm{B} & =8.0^{\prime} \\ \mathrm{H}_{\mathrm{rg}} & =\text { See Note } 4 \\ \mathrm{R} & =0.61 \pm 0.01 \\ \theta & =15 \mathrm{deg} . \end{aligned}$
PL-1	50	45		
PL-2	60	60	50	
PL-3	60	60		50
CRASH TEST EVALUATION Required \qquad	a, b, c, d, g	a, b, c, d	a, b, c	a, b, c
- CRITERIA ${ }^{3}$ Desirable ${ }^{\text {s }}$	e, f, h	e, f, g, h	d, e, f, h	d, e, f, h

Notes:

1. Except as noted, all full-scale tests shall be conducted and reported in accordance with the requirements in NCHRP Report No. 230 . In addition, the maximum loads that can be transmitted from the bridge railing to the bridge deck are to be determined from static force measurements or ultimate strength analysis and reported.
2. Permissible tolerances on the test speeds and angles are as follows:

$$
\begin{array}{cll}
\text { Speed } & -1.0 \mathrm{mph} & +2.5 \mathrm{mph} \\
\text { Angle } & -1.0 \mathrm{deg} . & +2.5 \mathrm{deg} .
\end{array}
$$

Tests that indicate acceptable railing performance but that exceed the allowable upper tolerances will be accepted.
3. Criteria for evaluating bridge railing crash test results are as follows:
a. The test article shall contain the vehicle; neither the vehicle nor its cargo shall penetrate or go over the installation. Controlled lateral deflection of the test article is acceptable.
b. Detached elements, fragments, or other debris from the test article shall not penetrate or show potential for penetrating the passenger compartment or present undue hazard to other traffic.
c. Integrity of the passenger compartment must be maintained with no intrusion and essentially no deformation.
d. The vehicle shall remain upright during and after collision.
e. The test article shall smoothly redirect the vehicle. A redirection is deemed smooth if the rear of the vehicle or, in the case of a combination vehicle, the rear of the tractor or trailer does not yaw more than 5 degrees away from the railing from time of impact until the vehicle separates from the railing.
f. The smoothness of the vehicle-railing interaction is further assessed by the effective coefficient of friction, μ :

$\frac{\mu}{0-0.25}$	
$0.26-0.35$ Assessment >0.35 Gair where $\mu=\left(\cos \theta-V_{p} / V\right) / \sin \theta$.	

Table 2. Bridge railing performance levels and crash test criteria. (Excerpt: from 1989 AASHTO Guide Specifications for Bridge Railings) ${ }^{(1)}$
(continued)
g. The impact velocity of a hypothetical front-seat passenger against the vehicle interior, calculated from vehicle accelerations and $2.0-\mathrm{ft}$. longitudinal and $1.0-\mathrm{ft}$. latcral diplacements, shall be less than:

Occupant Impact			Velocity-fps
Longitudinal	Lateral		
30	25		

and the vehicle highest $10-\mathrm{ms}$ average accelerations subsequent to the instant of hypothetical passenger impact should be less than:

Occupant Ridedown Acceleration-g's	
Longitudinal	Lateral
15	15

h. Vehicle exit angle from the barrier shall not be more than 12 degrees. Within 100 ft . plus the length of the test vehicle from the point of initial impact with the railing, the railing side of the vehicle shall move no more than $20-\mathrm{ft}$. from the line of the traffic face of the railing. The brakes shall not be applied until the vehicle has traveled at least $100-\mathrm{ft}$. plus the length of the test vehicle from the point of initial impact.
4. Values A and R are estimated values describing the test vehicle and its loading. Values of A and R are described in the figure below and calculated as follows:

5. Test articles that do not meet the desirable evaluation criteria shall have their performance evaluated by a designated authority that will decide whether the test article is likely to meet its intended use requirements.

```
1 mi = 1.61 km
1 kip = 4.45 kN
1 in = 25.4 mm
```


Figure 10. Sequential photographs for test 7069-22
(front and overhead views),

Figure 10. Sequential photogrpahs for test 7069-22 (front and overhead views continued).

Figure 11. Sequential photographs for test 7069-22 (perpendicular and interior views).

0.321 s

0.402 s

0.482 s

0.562 s

Figure 11. Sequential photogrpahs for test 7069-22 (perpendicular and interior views continued).

7069-22

Figure 12. Vehicle angular displacements for test 7069-22.

CRASH TEST 7069-22

Accelerometer at center-of-gravity

Figure 13. Vehicle longitudinal accelerometer trace for test 7069-22
(accelerometer located at center-of-gravity).

CRASH TEST 7069-22
Accelerometer at center-of-gravity

Figure 14. Vehicle lateral accelerometer trace for test 7069-22 (accelerometer located at center-of-gravity).

CRASH TEST 7069-22
Accelerometer at center-of-gravity

Figure 15. Vehicle vertical accelerometer trace for test 7069-22
(accelerometer located at center-of-gravity)

Test 7069-23

Test Description

A 1984 Chevrolet Custom pickup (figures 16 and 17) was used for the crash test. Test inertia mass of the vehicle was $5,400 \mathrm{lb}(2452 \mathrm{~kg})$ and its gross static mass was $5,565 \mathrm{lb}$ (2527 kg). The height to the lower edge of the vehicle bumper was $18.0 \mathrm{in}(457 \mathrm{~mm}$) and it was 27.0 in (686 mm) to the top of the bumper. Additional dimensions and information on the test vehicle are given in figure 18. The vehicle was directed into the BR27D bridge railing on sidewalk (figure 19) using the cable reverse tow and guidance system, and was released to be free-wheeling and unrestrained just prior to impact. The vehicle impacted the curb of the sidewalk approximately $20 \mathrm{ft}(6 \mathrm{~m})$ upstream of post 5 at a speed of $45.3 \mathrm{mi} / \mathrm{h}$ ($72.9 \mathrm{~km} / \mathrm{h}$) and the angle of impact was 20.2 degrees.

At 0.171 s the right front wheel contacted the curb and the left side of the vehicle was airborne. The vehicle impacted the concrete parapet at 0.218 s . The vehicle impacted the parapet 3 ft from post 5 (between posts 4 and 5) traveling at a speed of $43.8 \mathrm{mi} / \mathrm{h}(70.5 \mathrm{~km} / \mathrm{h})$ and at an angle of 19.7 degrees. As the vehicle continued forward, the bumper protruded between the lower metal railing element and the concrete parapet. The right front wheel struck the curb at 0.235 s , and at 0.295 s the vehicle began to redirect. By 0.487 s the vehicle was traveling parallel to the bridge railing at a speed of $40.3 \mathrm{mi} / \mathrm{h}(64.8 \mathrm{~km} / \mathrm{h})$, and at 0.501 s the rear of the vehicle impacted the parapet. The vehicle lost contact with the concrete parapet at 0.587 s traveling at $37.2 \mathrm{mi} / \mathrm{h}(59.9 \mathrm{~km} / \mathrm{h})$ and 5.3 degrees. The brakes were applied as the vehicle left the installation. The vehicle yawed counterclockwise and subsequently came to rest $113 \mathrm{ft}(34 \mathrm{~m})$ from the point of impact resting against another barrier downstream of the bridge railing installation.

As can be seen in figures 20 and 21, the bridge railing received minimal damage. The maximum permanent deformation to the railing element was 0.5 in (13 mm) between posts 5 and 6 . Posts 5 and 6 were also pushed rearward approximately $3 / 16$ in (4.8 mm) as shown in figure 22. There was only cosmetic damage to the concrete parapet. There were tire marks on the concrete parapet, on the face of the lower metal railing element in the area of impact, and also on the lower part of post 5 and 6 . The vehicle was in contact with the bridge railing system for $12.8 \mathrm{ft}(3.9 \mathrm{~m})$.

The vehicle sustained damage to the left side as shown in figures 23 and 24. Maximum crush at the left front corner at bumper height was 12.5 in (318 mm) and the right side was deformed outward $5.0 \mathrm{in}(127 \mathrm{~mm})$. Also, damage was done to the front bumper, hood, grill, radiator and fan, left front quarter panel, left door, left rear quarter panel, left front and rear tires and rims, rear bumper, and right front quarter panel and right door.

Test Results

The vehicle impacted the curb of the sidewalk at $45.3 \mathrm{mi} / \mathrm{h}(72.9 \mathrm{~km} / \mathrm{h})$ and the angle of impact was 20.2 degrees. As the vehicle impacted the concrete parapet, it was traveling at
a speed of $43.8 \mathrm{mi} / \mathrm{h}(70.5 \mathrm{~km} / \mathrm{h})$ and an angle of 19.7 degrees. The speed of the vehicle at time of parallel was $40.3 \mathrm{mi} / \mathrm{h}(64.8 \mathrm{~km} / \mathrm{h})$. In determining the effective coefficient of friction which is an assessment of the smoothness of the "vehicle-railing" interaction, it should be noted that vehicle impact speed and angle is used in the calculation. If "vehicle-railing" interaction is interpreted literally, impact at the time of contact with the concrete parapet would be used; however, the curb could be considered to be part of this "vehicle-railing" interaction. Therefore, two assessments could be made: (1) interpreting "vehicle-railing" interaction literally disregarding the impact at the curb and using the speed and angle at which the vehicle impacted the concrete parapct or (2) considering the curb as an element of the "railing" system and using the speed and angle at which the vehicle impacted the curb. The coefficient of friction was calculated both ways for this test. Considering the curb as part of the vehicle-railing interaction, the coefficient of friction was 0.07 while using impact with the concrete parapet in the calculation it was 0.06 . The vehicle lost contact with the bridge railing traveling at $37.2 \mathrm{mi} / \mathrm{h}(59.9 \mathrm{~km} / \mathrm{h})$, and the exit angle between the vehicle path and the bridge railing was 5.3 degrees. Data from the accelerometer located at the center-of-gravity were digitized for evaluation, and occupant risk factors were computed as follows. In the longitudinal direction, occupant impact velocity was $13.2 \mathrm{ft} / \mathrm{s}(4.0 \mathrm{~m} / \mathrm{s})$ at 0.405 s , the highest $0.010-\mathrm{s}$ average ridcdown acceleration was -2.3 g between 0.510 and 0.520 s , and the maximum $0.050-\mathrm{s}$ average acceleration was -3.7 g between 0.282 and 0.332 s . Lateral occupant impact velocity was $14.0 \mathrm{ft} / \mathrm{s}(4.3 \mathrm{~m} / \mathrm{s})$ at 0.360 s , the highest $0.010-\mathrm{s}$ occupant ridedown acceleration was -10.6 g between 0.484 and 0.494 s , and the maximum $0.050-\mathrm{s}$ average acceleration was -7.8 g between 0.224 and 0.274 s . The change in vehicle velocity at loss of contact using impact with the curb was $8.1 \mathrm{mi} / \mathrm{h}(13.0 \mathrm{~km} / \mathrm{h})$ and the change in momentum was $1,992 \mathrm{lb}$-s (8860 N -s). These data and other pertinent information from the test are summarized in figure 25 and table 3. Sequential photographs are shown in figures 26 and 27. Vehicular angular displacements are displayed in figure 28. Vehicular accelerations versus time traces filtered with SAE J211 filters are presented in figures 29 through 35.

Conclusions

The BR27D bridge railing on sidewalk contained the test vehicle with minimal lateral movement of the metal railing element of the bridge railing. There was no intrusion of railing components into the occupant compartment and no debris to present undue hazard to other traffic. The integrity of the occupant compartment was maintained with no intrusion and no deformation. The vehicle remained upright and relatively stable during the collision. The bridge railing smoothly redirected the vehicle. The effective coefficient of friction was considered good.

The 1989 AASHTO guide specifications sets forth desired (but not required) limits for occupant risk factors for tests with the $5,400-\mathrm{lb}(2452-\mathrm{kg})$ vehicle. ${ }^{(1)}$ The AASHTO specifications recommend a limit of $30 \mathrm{ft} / \mathrm{s}(9.1 \mathrm{~m} / \mathrm{s})$ for longitudinal occupant impact velocity and $25 \mathrm{ft} / \mathrm{s}(7.6 \mathrm{~m} / \mathrm{s})$ for the lateral occupant impact velocity. The occupant impact velocities and the occupant ridedown accelerations were within the limits. The vehicle trajectory at loss of contact indicated minimum intrusion into adjacent traffic lanes. For more details see figure 25 and table 3.

Figure 16. Vehicle before test 7069-23.

Figure 17. Vehicle/bridge railing geometrics for test 7069-23.

Date: \qquad Test No.: 7069-23

VIN: 2GCEC24H5E1155177
Make: \qquad Model: Custom Deluxe Year: 1984 \qquad Odometer: 110142
Tire Size: LT 23585 R16Ply Rating: \qquad Bias Ply: \qquad Belted: \qquad Radial: X

Tire Condition: good \qquad

4-wheel weight for c.g. det. $\ell f 1293$ rf 1194 er 1480 rr 1433

Mass - pounds Curb Test Inertial Gross Static

M_{1}	2445	2487	2580
M_{2}	1820	2913	2985
MT	4265	5400	5565

Note any damage to vehicle prior to test:
Crack in windshield (marked)
$*_{d}=$ overall height of vehicle
$1 \mathrm{in}=25.4 \mathrm{~mm}$
$1 \mathrm{lb}=.454 \mathrm{~kg}$

Height of Accelerometer fair X badly worn 2. $301 / 2^{\prime \prime}$ 3. $361 / 2^{\prime \prime}$

Vehicle Geometry - inches
a
c $\frac{131.5^{\prime \prime}}{53^{\prime \prime}}$ \qquad
e 53" \qquad
g \qquad h $70.9^{\prime \prime}$
i
k $301 / 2^{\prime \prime} \quad \ell \quad 1691 / 2^{\prime \prime}$
m $\frac{27^{\prime \prime}}{18^{\prime \prime}} \cdot{ }^{n} \frac{27 / 8^{\prime \prime}}{651 / 4^{\prime \prime}}$
r $301 / 2^{\prime \prime}$ s $171 / 2^{\prime \prime}$

Engine Type: \qquad
Engine CID: 5.0 liter
Transmission Type:
Automatic or Mown.
FXNOX or RWD or GMOX
Body Type: PU
Steering Column Collapse Mechanism:
Behind wheel units
-Convoluted tube cylindrical mesh units Embedded ball

NOT collapsible Other energy absorption -Unknown

Brakes:

Front: disc_x drum
Rear: disc
\qquad drum X

Figure 18. Vehicle properties for test 7069-23.

Figure 19. BR27D bridge railing on sidewalk before test 7069-23.

Figure 20. BR27D bridge railing on sidewalk after test 7069-23.

Figure 21. Damage at post 5, test 7069-23.

Figure 22. Movement of posts at 5 and 6, test 7069-23.

Figure 23. Vehicle after test 7069-23.

Figure 24. Damage to left side of vehicle after test 7069-23.

Impact Speed. . . . $45.3 \mathrm{mi} / \mathrm{h}(72.9 \mathrm{~km} / \mathrm{h})$
Impact Angle. . . . 20.2 deg
Speed at Parallet . $40.3 \mathrm{mi} / \mathrm{h}(64.8 \mathrm{~km} / \mathrm{h})$
Exit Speed $37.2 \mathrm{mi} / \mathrm{h}(59.9 \mathrm{~km} / \mathrm{h}$)
Exit Trajectory . . 5.3 deg
Vehicle Accelerations
(Max. 0.050-sec Avg) at true c.g.
Longitudinal. . . -3.7 g
Lateral -7.8 g
Occupant Impact Velocity at true c.g.
Longitudinal. . . $13.2 \mathrm{ft} / \mathrm{s}(4.0 \mathrm{~m} / \mathrm{s})$
Lateral $14.0 \mathrm{ft} / \mathrm{s}(4.3 \mathrm{~m} / \mathrm{s})$
Occupant Ridedown Accelerations
Longitudinal. . . -2.3 g
Lateral-10.6 g

Figure 25. Summary of results for test 7069-23.

Table 3. Evaluation of crash test no. 7069-23.
\{BR27D bridge railing on sidewalk [5,400 1b (2 452 kg$) \mid 45.3 \mathrm{mi} / \mathrm{h}(72.9 \mathrm{~km} / \mathrm{h}) 20.2$ degrees $]\}$

CRITERIA
TEST RESULTS

TEST RESULTS		PASS/FAIL
Vehicle was contained		Pass
No debris penetrated passenger compartment	Pass	
No deformation	Pass	

C. Passenger compartment must have essentially no deformation
D. Vehicle must remain upright
E. Must smoothly redirect the vehicle
F. Effective coefficient of friction
Vehicle did remain upright Pass

Vehicle was smoothly redirected Pass

Occupant Impact	Velocity $-\mathrm{ft} / \mathrm{s}(\mathrm{m} / \mathrm{s})$
Longitudinal	Lateral
$13.2(4.0)$	$14.0(4.3)$

Occupant Ridedown	Accelerations $-\mathrm{g}^{\prime} \mathrm{s}$
Longitudinal	Lateral
-2.3	-10.6

Exit angle was 5.3 degrees Pass

$\frac{\mu}{}$	Assessment
.07 (Impact @ curb)	Good
.06 (Impact @ rail)	Good

H. Exit angle shall be less than 12 degrees

μ	Asses sment
0-. 25	Good
. 26 - . 35	Fair
> . 35	Marginal

G. Shall be less than

Occupant Impact	Velocity $-\mathrm{ft} / \mathrm{s}$
Longitudinal	Lateral
$30(9.2)$	$25(7.6)$

Occupant Ridedown	Accelerations
Longitudinal	g's
15	15

* A, B, C, and D are required. E, F, G, and H are desired. (See table 2)

Figure 26. Sequential photographs for test 7069-23 (overhead and frontal views).

Figure 26 Sequential photogrpahs for test 7069-23 (overhead and frontal views continued).

$$
0.000 \mathrm{~s}
$$

0.083 s

0.166 s

s

$$
0.100 \mathrm{~s}
$$

0.249 s

Figure 27. Sequential photographs for test 7069-23
(interior and perpendicular views).

0.332 s

0.415 s

0.498 s

0.581 s

Figure 27. Sequential photogrpahs for test 7069-23 (interior and perpendicular views continued).

Figure 28. Vehicle angular displacements for test 7069-23.

CRASH TEST 7069-23

Accelerometer at center-of-gravity

Figure 29. Vehicle longitudinal accelerometer trace for test 7069-23 (accelerometer located at center-of-gravity).

CRASH TEST 7069-23
Accelerometer at center-of-gravity

Figure 30. Vehicle lateral accelerometer trace for test 7069-23 (accelerometer located at center-of-gravity).

CRASH TEST 7069-23
Accelerometer at center-of-gravity

Figure 31. Vehicle vertical accelerometer trace for test 7069-23
(accelerometer located at center-of-gravity)

CRASH TEST 7069-23
Accelerometer at front of vehicle

$1 \mathrm{lb}=.454 \mathrm{~kg}$
$1 \mathrm{mi}=1.61 \mathrm{~km}$

Figure 32. Vehicle longitudinal accelerometer trace for test 7069-23 (accelerometer located at front of vehicle).

CRASH TEST 7069-23
Accelerometer at front of vehicle

Figure 33. Vehicle lateral accelerometer trace for test 7069-23
(accelerometer located at front of vehicle).

CRASH TEST 7069-23

Accelerometer at rear of vehicle

$$
\begin{aligned}
& 1 \mathrm{lb}=.454 \mathrm{~kg} \\
& 1 \mathrm{mi}=1.61 \mathrm{~km}
\end{aligned}
$$

$$
\text { -Class } 180 \text { filter }-50-\mathrm{msec} \text { Average }
$$

Figure 34. Vehicle longitudinal accelerometer trace for test 7069-23 (accelerometer located at rear of vehicle).

CRASH TEST 7069-23
Accelerometer at rear of vehicle

-Class 180 filter -50 -msec Average
Figure 35. Vehicle lateral accelerometer trace for test 7069-23 (accelerometer located at rear of vehicle),

BR27D BRIDGE RAILING ON DECK

Test 7069-30

Test Description

A 1983 Honda Civic (figures 36 and 37) was used for the crash test. Test inertia mass of the vehicle was $1,800 \mathrm{lb}(817 \mathrm{~kg})$ and its gross static mass was $1,970 \mathrm{lb}(894 \mathrm{~kg})$. The height to the lower edge of the vehicle bumper was 14.5 in (368 mm) and it was 19.5 in (495 mm) to the top of the bumper. Additional dimensions and information on the test vehicle are given in figure 38. The vehicle was directed into the BR27D bridge railing on deck (figure 39) using the cable reverse tow and guidance system and was released to be free-wheeling and unrestrained just prior to impact. The vehicle impacted the concrete parapet approximately $25.5 \mathrm{ft}(7.8 \mathrm{~m})$ from the end of the bridge railing at a speed of $51.2 \mathrm{mi} / \mathrm{h}(82.4 \mathrm{~km} / \mathrm{h})$ and the angle of impact was 20.5 degrees.

Shortly after impact $(0.036 \mathrm{~s})$ the vehicle began to redirect, and at 0.093 s the right front corner of the vehicle began to shift outward. At approximately 0.095 s after impact the dummy impacted the driver side door and shattered the door glass. The right front tire lost contact with the roadway at 0.108 s . By 0.164 s the vehicle was traveling parallel to the bridge railing at a speed of $43.6 \mathrm{mi} / \mathrm{h}(70.2 \mathrm{~km} / \mathrm{h})$, and at 0.178 s the rear of the vehicle impacted the parapet. The right rear tire lost contact with the roadway at 0.196 s . The vehicle lost contact with the bridge railing at 0.319 s traveling at $43.0 \mathrm{mi} / \mathrm{h}(69.2 \mathrm{~km} / \mathrm{h})$ and 6.8 degrees. The right front tire of the vehicle contacted the roadway again at 0.476 s and the right rear at 0.0557 s . The brakes were applied as the vehicle exited the test site. The vehicle subsequently came to rest $150 \mathrm{ft}(46 \mathrm{~m})$ down from and $70 \mathrm{ft}(21 \mathrm{~m})$ in front of the point of impact.

As can be seen in figure 40, the bridge railing received minimal damage. There was no measurable permanent deformation to the railing elements and only cosmetic damage to the concrete parapet. There were tire marks on the concrete parapet and on the face of the lower metal railing element in the area of impact. The vehicle was in contact with the bridge railing for $8.0 \mathrm{ft}(2.4 \mathrm{~m})$.

The vehicle sustained damage to the left side as shown in figure 41. Maximum crush at the left front corner at bumper height was $7.0 \mathrm{in}(178 \mathrm{~mm})$. The left front strut was damaged and the left front wheel was canted inward at the bottom and pushed back reducing the wheelbase on the driver side by 2.25 in (57 mm). Also, damage was done to the right front quarter panel, front bumper, hood, left headlight, left front quarter panel, left door and glass, left rear quarter panel, rear bumper, and left front and rear tires and rims.

Test Results

The vehicle impacted the bridge railing at $51.2 \mathrm{mi} / \mathrm{h}(82.4 \mathrm{~km} / \mathrm{h})$ and the angle of impact was 20.5 degrees. The speed of the vehicle at time of parallel was $43.6 \mathrm{mi} / \mathrm{h}(70.2$ km / h). The effective coefficient of friction was calculated at 0.24 . The vehicle lost contact
with the bridge railing traveling at $43.0 \mathrm{mi} / \mathrm{h}(69.2 \mathrm{~km} / \mathrm{h})$, and the exit angle between the vehicle path and the bridge railing was 6.8 degrees. Data from the accelerometer located at the center-of-gravity were digitized for evaluation, and occupant risk factors were computed as follows. In the longitudinal direction, occupant impact velocity was $16.0 \mathrm{ft} / \mathrm{s}(4.9 \mathrm{~m} / \mathrm{s})$ at 0.179 s , the highest 0.010 -s average ridedown acceleration was -3.6 g between 0.248 and 0.258 s , and the maximum 0.050 -s average acceleration was -7.5 g between 0.032 and 0.082 s . Lateral occupant impact velocity was $21.5 \mathrm{ft} / \mathrm{s}(6.6 \mathrm{~m} / \mathrm{s})$ at 0.098 s , the highest $0.010-\mathrm{s}$ occupant ridedown acceleration was -6.1 g between 0.175 and 0.185 s , and the maximum $0.050-\mathrm{s}$ average acceleration was -12.8 g between 0.031 and 0.081 s . The change in vehicle velocity at loss of contact was $8.2 \mathrm{mi} / \mathrm{h}(13.2 \mathrm{~km} / \mathrm{h})$ and the change in momentum was 672 $\mathrm{lb}-\mathrm{s}(2,990 \mathrm{~N}-\mathrm{s})$. These data and other pertinent information from the test are summarized in figure 42 and table 4. Sequential photographs are shown in figures 43 and 44. Vehicular angular displacements are displayed in figure 45. Vehicular accelerations versus time traces filtered with SAE J211 filters are presented in figures 46 through 48.

Conclusions

The BR27D bridge railing on deck contained the test vehicle with no lateral movement of the bridge railing. There was no intrusion of railing components into the occupant compartment and no debris to present undue hazard to other traffic. The integrity of the occupant compartment was maintained with no intrusion and no deformation. The vehicle remained upright and relatively stable during the collision. The bridge railing smoothly redirected the vehicle. The effective coefficient of friction was considered good.

The 1989 AASHTO guide specifications sets forth desired limits for occupant risk factors for tests with the $1,800-\mathrm{lb}(817-\mathrm{kg})$ vehicle. ${ }^{(1)}$ The AASHTO specifications recommend a limit of $30 \mathrm{ft} / \mathrm{s}(9.1 \mathrm{~m} / \mathrm{s})$ for longitudinal occupant impact velocity and $25 \mathrm{ft} / \mathrm{s}$ $(7.6 \mathrm{~m} / \mathrm{s})$ for the lateral occupant impact velocity. The occupant impact velocities and the occupant ridedown accelerations were within the limits. The vehicle trajectory at loss of contact indicated minimum intrusion into adjacent traffic lanes. For more details see figure 42 and table 4.

Figure 36. Vehicle before test 7069-30.

Figure 37. Vehicle/bridge railing geometrics for test 7069-30.
Date: $\frac{5-19-92}{}$ Test No.: 7069-30__ VIN: JHMSR5324CS021403

Make: HONDA Mode1: CIVIC_ Year: 1983 __ Odoneter: 086248 Tire Size: P155/80R13 Ply Rating: ___ Bias Ply:__ Belted: Radial: _ _ _

Tire Condition: good
\qquad Height of Rear fair x Accelerometer
badly worn \qquad

Vehicle Geometry - inches
a \qquad b $30.5^{\prime \prime}$
c 88.25" d*52.5"
e $28.5^{\prime \prime}$ f $147.25^{\prime \prime}$
g \qquad

i j 28.5^{11}
$k \quad 16^{\prime \prime} \quad$ \& $30^{\prime \prime}$
II $19.5^{\prime \prime}{ }^{n} 3.75^{\prime \prime}$
o 14.5"
p 53.25"
r 22.75" s 14.5"
Engine Type: 4 cy]
Engine CID: 91 CID
Transmission Type:
4-wheel weight
for c.g. det. \&f 586 rf 538 er 327 rr 349

Mass - pounds

Curb	Test Inertial	Gross Static
1140	1124.	1212
706	676	758
1846	1800	1970

Note any damage to vehicle prior to test:

Automatic or Manual
FWO or RWO or 4W0
Body Type: HATCH
Steering Column Collapse
Behind wheel units Convoluted tube
Cylindrical mesh units
Embedded ball
NOT collapsible
Other energy absorption
Unknown

Brakes:
Front: disc_x drunl__ Rear: disc drum x
*d $=$ overall height of vehicle
1 in $=25.4 \mathrm{~mm}$
$1 \mathrm{lb}=.454 \mathrm{~kg}$

Figure 38. Vehicle properties for test 7069-30.

Figure 39. BR27D bridge railing on deck before test 7069-30.

Figure 40. BR27D bridge railing on deck after test 7069-30.

Figure 41. Vehicle after test 7069-30.

0.000 s

0.090 s

0.181 s

0.271 s

Figure 42. Summary of results for test 7069-30.

Table 4. Evaluation of crash test no. 7069-30.
\{BR27D bridge railing on deck $[1,800 \mathrm{lb}(817 \mathrm{~kg})|51.2 \mathrm{mi} / \mathrm{h}(82.4 \mathrm{~km} / \mathrm{h})| 20.5$ degrees $]\}$
CRITERIA

TEST RESULTS
PASS/FAIL*
A. Must contain vehicle
B. Debris shall not penetrate

为 was contained
Pass
No debris penetrated passenger Pass compartment
C. Passenger compartment must have

No deformation Pass essentially no deformation
D. Vehicle must remain upright

Vehicle did remain upright Pass
E. Must smoothly redirect the vehicle

Vehicle was smoothly redirected
F. Effective coefficient of friction
$\frac{\mu}{0-.25}$
Assessment
Good
Fair
Marginal
$\frac{\mu}{.24} \quad \frac{\text { Assessment }}{\text { Good }}$

Pass
G. Shall be less than

Occupant Impact	Velocity $-\mathrm{ft} / \mathrm{s}(\mathrm{m} / \mathrm{s})$
Longitudinal	Lateral
$30(9.2)$	$25(7.6)$

Occupant Impact Velocity $-\mathrm{ft} / \mathrm{s}(\mathrm{m} / \mathrm{s})$	
Longitudinal	Lateral
$16.0(4.9)$	$21.5(6.6)$

Occupant Ridedown Accelerations - $g^{\prime} s$
Longitudinal
15
$\begin{array}{cc}\text { Occupant Ridedown Accelerations }-\mathrm{g}^{\prime} \mathrm{s} \\ \text { Longitudinal } & \text { Lateral } \\ -3.6 & -6.1\end{array}$
Exit angle was 6.8 degrees
H. Exit angle shall be less than 12 degrees

* A, B, C, D and G are required. E, F, and H are desired. (See table 2)

Figure 43. Sequential photographs for test 7069-30 (overhead and frontal views).

Figure 43. Sequential photogrpahs for test 7069-30
(overhead and frontal views continued).

Figure 44. Sequential photographs for test 7069-30 (perpendicular and interior views)

Figure 44. Sequential photogrpahs for test 7069-30 (perpendicular and interior views continued).

Figure 45. Vehicle angular displacements for test 7069-30.

CRASH TEST 7069-30

Accelerometer at center-of-gravity

Figure 46. Vehicle longitudinal accelerometer trace for test 7069-30 (accelerometer located at center-of-gravity)

CRASH TEST 7069-30
Accelerometer at center-of-gravity

Figure 47. Vehicle lateral accelerometer trace for test 7069-30 (accelerometer located at center-of-gravity) .

CRASH TEST 7069-30
Accelerometer at center-of-gravity

Figure 48. Vehicle vertical accelerometer trace for test 7069-30 accelerometer located at center-of-gravity).

Test 7069-31

Test Description

A 1985 Chevrolet Custom pickup (figures 49 and 50) was used for the crash test. Test inertia mass of the vehicle was $5,400 \mathrm{lb}(2452 \mathrm{~kg})$ and its gross static mass was $5,566 \mathrm{lb}$ (2527 kg). The height to the lower edge of the vehicle bumper was 18.0 in (457 mm) and it was 27.0 in (686 mm) to the top of the bumper. Additional dimensions and information on the test vehicle are given in figure 51. The vehicle was directed into the bridge railing (figure 52) using the cable reverse tow and guidance system and was released to be free-wheeling and unrestrained just prior to impact. The vehicle impacted the concrete parapet approximately 1 $\mathrm{ft}(305 \mathrm{~mm})$ downstream of post 5 at a speed of $45.6 \mathrm{mi} / \mathrm{h}(73.4 \mathrm{~km} / \mathrm{h})$ and the angle of impact was 18.8 degrees.

At 0.020 s the left front wheel contacted the concrete parapet, and at 0.029 s the right front corner of the vehicle began to deform outward. The vehicle began to redirect at 0.048 s after impact, and at 0.148 s the dummy impacted the driver side door and shattered the glass. By 0.231 s the vehicle was traveling parallel to the bridge railing at a speed of $40.8 \mathrm{mi} / \mathrm{h}$ $(65.6 \mathrm{~km} / \mathrm{h})$, and shortly thereafter the rear of the vehicle impacted the parapet. The vehicle lost contact with the bridge railing at 0.333 s traveling at $38.0 \mathrm{mi} / \mathrm{h}(61.1 \mathrm{~km} / \mathrm{h})$ and 6.2 degrees. The brakes were applied 2.3 s after impact. The vehicle yawed counterclockwise due to the deflated left front tire and subsequently came to rest $225 \mathrm{ft}(69 \mathrm{~m})$ down from and 40 $\mathrm{ft}(12 \mathrm{~m})$ behind the point of impact.

As can be seen in figure 53, the bridge railing received minimal damage. The maximum permanent deformation to the railing element was 0.5 in (13 mm) between posts 5 and 6 . There was only cosmetic damage to the concrete parapet. There were tire marks on the concrete parapet, on the face of the lower metal railing element in the area of impact, and also on the lower part of post 6 . The vehicle was in contact with the bridge railing for 11.7 ft (3.6 m).

The vehicle sustained damage to the left side as shown in figure 54. Maximum crush at the left front corner at bumper height was $6.5 \mathrm{in}(165 \mathrm{~mm})$ and the right side was deformed outward 4.0 in (102 mm). Also, damage was done to the front bumper, hood, grill, left front quarter panel, left door, left rear quarter panel, left front and rear tires and rims, rear bumper, and right front quarter panel and right door.

Test Results

The vehicle impacted the bridge railing at $45.6 \mathrm{mi} / \mathrm{h}(73.4 \mathrm{~km} / \mathrm{h})$ and the angle of impact was 18.8 degrees. The speed of the vehicle at time of parallel was $40.8 \mathrm{mi} / \mathrm{h}(65.6$ km / h). The effective coefficient of friction was calculated at 0.16 for this test. The vehicle lost contact with the bridge railing traveling at $38.0 \mathrm{mi} / \mathrm{h}(61.1 \mathrm{~km} / \mathrm{h})$, and the exit angle between the vehicle path and the bridge railing was 6.2 degrees. Data from the accelerometer located at the center-of-gravity were digitized for evaluation and occupant risk factors were computed as follows. In the longitudinal direction, occupant impact velocity was $11.7 \mathrm{ft} / \mathrm{s}$
$(3.6 \mathrm{~m} / \mathrm{s})$ at 0.277 s , the highest $0.010-\mathrm{s}$ average ridedown acceleration was 2.2 g between 0.282 and 0.292 s , and the maximum $0.050-\mathrm{s}$ average acceleration was -4.1 g between 0.058 and 0.108 s . Lateral occupant impact velocity was $12.3 \mathrm{ft} / \mathrm{s}(3.7 \mathrm{~m} / \mathrm{s})$ at 0.158 s , the highest $0.010-\mathrm{s}$ occupant ridedown acceleration was -8.2 g between 0.209 and 0.219 s , and the maximum 0.050 -s average acceleration was -7.5 g between 0.054 and 0.104 s . The change in vehicle velocity at loss of contact was $7.6 \mathrm{mi} / \mathrm{h}(12.2 \mathrm{~km} / \mathrm{h})$ and the change in momentum was $1,869 \mathrm{lb}-\mathrm{s}(8,315 \mathrm{~N}$-s). These data and other pertinent information from the test are summarized in figure 55 and table 5. Sequential photographs are shown in figures 56 and 57. Vehicular angular displacements are displayed in figure 58. Vehicular accelerations versus time traces filtered with SAE J211 filters are presented in figures 59 through 65.

Conclusions

The BR27D bridge railing on deck contained the test vehicle with minimal lateral movement of the metal railing element of the bridge railing system. There was no intrusion of railing components into the occupant compartment and no debris to present undue hazard to other traffic. The integrity of the occupant compartment was maintained with no intrusion and no deformation. The vehicle remained upright and relatively stable during the collision. The bridge railing smoothly redirected the vehicle. The effective coefficient of friction was considered good.

The 1989 AASHTO guide specifications sets forth desired (but not required) limits for occupant risk factors for tests with the $5,400-\mathrm{lb}(2452-\mathrm{kg})$ vehicle. ${ }^{(1)}$ The AASHTO specifications recommend a limit of $30 \mathrm{ft} / \mathrm{s}(9.1 \mathrm{~m} / \mathrm{s})$ for longitudinal occupant impact velocity and $25 \mathrm{ft} / \mathrm{s}(7.6 \mathrm{~m} / \mathrm{s})$ for the lateral occupant impact velocity. The occupant impact velocities and the occupant ridedown accelerations were within the limits. The vehicle trajectory at loss of contact indicated minimum intrusion into adjacent traffic lanes. See figure 55 and table 5 for more details.

Figure 49. Vehicle before test 7069-31.

Figure 50. Vehicle/bridge railing geometrics for test 7069-31.

Tire Size: 7.5016LT Ply Rating: \qquad Bias Ply: X_ Belted: \qquad Radial: \qquad
Tire Condition: good \qquad fair \underline{x}
badly worn _

Vehicle Geometry - inches
a $\quad 79^{\prime \prime}$ b \qquad $32^{\prime \prime}$
c $\underbrace{131.5^{\prime \prime}}$ $\mathrm{d}^{*} 71.25^{\prime \prime}$
e 51" f \qquad
g \qquad h 70.2"
i _---- j 44.5"
k $\quad 30.75^{\prime \prime}$ \& 73"
m 27" n $3.75^{\prime \prime}$
0 18" p $\underline{66.5^{\prime \prime}}$
r 31.75" \qquad

Engine Type: \qquad
Engine CID:

$$
: 5.7 \text { Liter }
$$

Transmission Type:
Automatic or Manual
FWD or RWD or 4WD
Body Type: _Pick-llp
Steering Column Collapse Mechanism:
Behind wheel units Convoluted tube Cylindrical mesh units Embedded ball NOT collapsible Other energy absorption Unknown

Brakes:

Front: disc $_{\ldots}$ drum__
Rear: disc_drum x
*d = overall height of vehicle

$$
\begin{aligned}
& 1 \mathrm{in}=25.4 \mathrm{~mm} \\
& 1 \mathrm{lb}=.454 \mathrm{~kg}
\end{aligned}
$$

Figure 51. Vehicle properties for test 7069-31.

Figure 52. BR27D bridge railing on deck before test 7069-31.

Figure 53. BR27D bridge railing on deck after test 7069-31.

Figure $54 . \quad$ Vehicle after test $7069-31$.

0.000 s

0.095 s

0.191 s

0.286 s

(1 in $=25.4 \mathrm{~mm})$
Test No. 7069-31
Date 05/21/92

Impact Speed. . . . $45.6 \mathrm{mi} / \mathrm{h}(73.4 \mathrm{~km} / \mathrm{h})$
impact Angle. . . . 18.8 deg
Speed at Parallel . $40.8 \mathrm{mi} / \mathrm{h}(65.6 \mathrm{~km} / \mathrm{h})$
Exit Speed $38.0 \mathrm{mi} / \mathrm{h}(61.1 \mathrm{~km} / \mathrm{h})$
Exit Trajectory . . 6.2 deg
Vehicle Accelerations
(Max. 0.050-sec Avg) at true c.g.
Longitudinal. . . -4.l g
Lateral -7.5 g
Occupant Impact Velocity at true c.g.
Longitudinal. . . $11.7 \mathrm{ft} / \mathrm{s}(3.6 \mathrm{~m} / \mathrm{s})$
Lateral $12.3 \mathrm{ft} / \mathrm{s}(3.7 \mathrm{~m} / \mathrm{s})$
Occupant Ridedown Accelerations
Longitudinal. . . 2.2 g
Lateral -8.2 g

Figure 55. Summary of results for test 7069-31.

Table 5. Evaluation of crash test no. 7069-31.
\{BR27D bridge railing on deck [5, 400 $\mathrm{lb}(2452 \mathrm{~kg})|45.6 \mathrm{mi} / \mathrm{h}(73.4 \mathrm{~km} / \mathrm{h})| 18.8$ degrees] $\}$
\qquad
A. Must contain vehicle
B. Debris shall not penetrate passenger compartment
C. Passenger compartment must have essentially no deformation
D. Vehicle must remain upright
E. Must smoothly redirect the vehicle
F. Effective coefficient of friction
TEST RESULTS PASS/FAIL*
Vehicle was contained Pass

No debris penetrated passenger Pass compartment

No deformation Pass

Vehicle did remain upright Pass
Vehicle was smoothly redirected Pass

Occupant Impact Velocity $-\mathrm{ft} / \mathrm{s}(\mathrm{m} / \mathrm{s})$	
Longitudinal	Lateral
$30(9.2)$	$25(7.6)$

$\begin{array}{cc}\text { Occupant Ridedown Accelerations }-\mathrm{g}^{\prime} \mathrm{s} \\ \text { Longitudinal } & \text { Lateral } \\ 15 & 15\end{array}$
H. Exit angle shall be less than 12 degrees

Occupant Impact Velocity $-\mathrm{ft} / \mathrm{s}(\mathrm{m} / \mathrm{s})$	
Longitudinal	Lateral
$11.7(3.6)$	$12.3(3.7)$

$\begin{array}{ll}\text { Occupant Ridedown Accelerations - } g^{\prime} \mathrm{s} & \text { Longitudinal } \\ \text { Lateral } & \text { Pass }\end{array}$
$2.2-8.2$
Exit angle was 6.2 degrees

* A, B, C, and D are required. E, F, G, and H are desired. (See table 2)

Figure 56. Sequential photographs for test 7069-31 (overhead and frontal views).

0.191 s

0.238 s

0.286 s

0.333 s

Figure 56. Sequential photogrpahs for test 7069-31
(overhead and frontal views continued).
0.000 s

0.095 s

Figure 57. Sequential photographs for test 7069-31 (perpendicular and interior views) *

Figure 57. Sequential photogrpahs for test 7069-31 (perpendicular and interior views continued).

Figure 58. Vehicle angular displacements for test 7069-31.

CRASH TEST 7069-31
Accelerometer at center-of-gravity

Figure 59. Vehicle longitudinal accelerometer trace for test 7069-31 (accelerometer located at center-of-gravity).

CRASH TEST 7069-31
Accelerometer at center-of-gravity

Figure 60. Vehicle lateral accelerometer trace for test 7069-31
(accelerometer located at center-of-gravity).

CRASH TEST 7069-31
Accelerometer at center-of-gravity

Figure 61. Vehicle vertical accelerometer trace for test 7069-31 (accelerometer located at center-of-gravity).

CRASH TEST 7069-31
Accelerometer at front of vehicle

Figure 62. Vehicle longitudinal accelerometer trace for test 7069-31
(accelerometer located at front of vehicle).

CRASH TEST 7069-31

Accelerometer at front of vehicle

Figure 63. Vehicle lateral accelerometer trace for test 7069-31 (accelerometer located at front of vehicle).

CRASH TEST 7069-31
Accelerometer at rear of vehicle

Figure 64. Vehicle longitudinal accelerometer trace for test 7069-31 (accelerometer located at rear of vehicle)

CRASH TEST 7069-31
Accelerometer at rear of vehicle

Figure 65. Vehicle lateral accelerometer trace for test 7069-31 (accelerometer located at rear of vehicle).

CHAPTER 4. STRENGTH CALCULATIONS

The railing consists of a metal beam-and-post portion mounted on top of a concrete parapet. Strength of the metal portion is first analyzed assuming that the concrete parapet has adequate strength to support the metal railing. Equations given in figure 66 are used to compute strength of the metal railing. The two metal rail elements are TS 4 by 3 by $1 / 4$ (102 by 76 by $6-\mathrm{mm})$ ASTM A500 grade B with a plastic section modulus of $3.3 \mathrm{in}^{3}\left(54 \times 10^{3} \mathrm{~mm}^{3}\right)$ and a plastic moment capacity of $12.7 \mathrm{ft}-\mathrm{kips}(17.2 \mathrm{~m}-\mathrm{Kn})$. Total plastic moment capacity for the two rail elements is $25.3 \mathrm{ft}-\mathrm{kips}$ ($34.3 \mathrm{~m}-\mathrm{Kn}$).

The plastic moment capacity of the post section [TS 4 by 4 by $3 / 16$-in (102 by 102 by $5-\mathrm{mm})$ ASTM A500 grade B] is 15.0 ft -kips $(20.4 \mathrm{~m}-\mathrm{Kn})$. The anchor bolts provide a computed moment capacity at the base of the post of 23.1 ft -kips $(31.4 \mathrm{~m}-\mathrm{Kn})$. The post-to-baseplate weld provides a moment capacity of $11.3 \mathrm{ft}-\mathrm{kips}(15.3 \mathrm{~m}-\mathrm{Kn})$ which is the controlling failure mode. It is noted that strength of the weld should be increased so that the moment capacity of the post section would control and the plastic hinge would be forced into the post section rather than in the welded connection.

The resistance of the post to lateral load depends on the location of the applied force. If the force were located midway between the two rail elements, it would be 15.25 in (387 mm) above the base of the post and strength of the post would be $8.9 \mathrm{kips}(39.6 \mathrm{kN})$. Under this loading situation, strength of the metal portion of the railing, computed in accordance with figure 66 , would be $41.1 \mathrm{kips}(182.8 \mathrm{kN})$ for a one-span mechanism, $27.7 \mathrm{kips}(123.2 \mathrm{kN})$ for a twospan mechanism, $24.1 \mathrm{kips}(107.2 \mathrm{kN}$) for a three-span mechanism, and $27.2 \mathrm{kips}(121.0 \mathrm{kN}$) for a four-span mechanism. The three-span mechanism controls and computed capacity of the metal railing is $24.1 \mathrm{kips}(107.2 \mathrm{kN})$ located at $34 \mathrm{in}(864 \mathrm{~mm})$ above the top of the sidewalk.

If the force were located at the top rail element, it would be 22 in (559 mm) above the base of the post and strength of the post would be $6.2 \mathrm{kips}(27.6 \mathrm{kN})$. Under this loading situation, strength of the metal portion of the railing, computed in accordance with figure 66 , would be $41.1 \mathrm{kips}(182.8 \mathrm{kN})$ for a one-span mechanism, $24.6 \mathrm{kips}(109.4 \mathrm{kN})$ for a two-span mechanism, $20.1 \mathrm{kips}(89.4 \mathrm{kN})$ for a three-span mechanism, and $21.4 \mathrm{kips}(95.2 \mathrm{kN})$ for a fourspan mechanism. The three-span mechanism controls and computed capacity of the railing is 20.1 kips (89.4 kN). The force would be located at $40 \mathrm{in}(1.02 \mathrm{~m})$ above the top of the sidewalk.

Strength of the concrete parapet may be analyzed using the equations for the yieldline mechanism shown in figure 68. Computed cantilever moment capacity of the parapet, M_{c}, is 10.8 $\mathrm{ft}-\mathrm{k} / \mathrm{ft}(48.1 \mathrm{~m}-\mathrm{kN} / \mathrm{m})$. Moment capacity of the parapet about a vertical axis, M_{w}, is $25.5 \mathrm{ft}-\mathrm{k} / \mathrm{ft}$ $(113.5 \mathrm{~m}-\mathrm{kN} / \mathrm{m})$. No additional beam stiffening exists along the top of the parapet; therefore, M_{b} is zero. These values result in a length of failure mechanism, L , of $8.5 \mathrm{ft}(2.6 \mathrm{~m})$ and computed strength of the parapet of $122.4 \mathrm{kips}(544.4 \mathrm{kN})$.

If it is assumed that load is applied to both metal rail elements and to the parapet such that maximum resistance of the railing system is obtained, a three-span failure mechanism would be involved in the metal portion of the railing and a yieldline failure pattern in the parapet would
be located at midlength of the failure mechanism in the metal railing. Total strength of the railing system would be approximately 24.1 kips (107.2 kN) plus $122.4 \mathrm{kips}(544.4 \mathrm{kN}$) equals $146.5 \mathrm{kips}(651.6 \mathrm{kN}$) located $20.6 \mathrm{in}(523 \mathrm{~mm})$ above the sidewalk.

$$
w \ell=\frac{16 M_{p}}{2 L-L_{t}}
$$

$$
w \ell=\frac{16 M_{p}+4 P_{p} L}{4 L-L_{t}}
$$

Two-Span Failure Mode

$$
w \ell=\frac{16 M_{p}+8 P_{p} L}{6 L-L_{t}}
$$

Three-Span Failure Mode

Four-Span Failure mode

Longer mechanisms may also be possible.

Figure 66. Plan view illustrating some possible failure mechanisms.

Figure 67. Location of resultant force on metal portion of railing.

$$
L=\frac{\ell}{2}+\sqrt{\left(\frac{\ell}{2}\right)^{2}+\frac{8 H\left(M_{b}+M_{w} H\right)}{M_{c}}}
$$

$$
(w \ell)_{\text {utt }}=\frac{8 M_{b}}{L-\frac{\ell}{2}}+\frac{8 M_{w} H}{L-\frac{\ell}{2}}+\frac{M_{o} L^{2}}{H\left(L-\frac{\ell}{2}\right)}
$$

Figure 68. Yieldline failure pattern for concrete parapet.

REFERENCES

1. Guide Specifications For Bridge Railings, American Association of State Highway and Transportation Officials (AASHTO), Washington, DC, 1989.
2. Hirsch. T. J., "Analytical Evaluation of Texas Bridge Rails to Contain Buses and Trucks," Research Report 230-2, Texas Transportation Institute, Texas A\&M University, College Station, TX, August 1978.

Reproduced by NTIS

National Technical Information Service
Springfield, VA 22161

This report was printed specifically for your order from nearly 3 million titles available in our collection.

For economy and efficiency, NTIS does not maintain stock of its vast collection of technical reports. Rather, most documents are printed for each order. Documents that are not in electronic format are reproduced from master archival copies and are the best possible reproductions available. If you have any questions concerning this document or any order you have placed with NTIS, please call our Customer Service Department at (703) 487-4660.

About NTIS

NTIS collects scientific, technical, engineening, and business related information - then organizes, maintains, and disseminates that information in a variety of formats - from microfiche to online services. The NTIS collection of nearly 3 million titles includes reports describing research conducted or sponsored by federal agencies and their contractors; statistical and business information; U.S. military publications; audiovisual products; computer software and electronic databases developed by federal agencies; training toois; and technical reports prepared by research organizations worldwide. Approximately 100.000 new tities are added and indexed into the NTIS collection annually.

For more information about NTIS products and services, call NTIS at (703) 487-4650 and request the free NTIS Catalog of Products and Services, PR-827LPG, or visit the NTIS Web site http://www.ntis.gov.

NTIS
 Your indispensable resource for government-sponsored information-U.S. and wortawide

U.S. DEPARTMENT OF COMMERCE

Technology Administration National Technical Information Service Springtield, VA 22161 (703) 487-4650

[^0]: $1 \mathrm{in}=25.4 \mathrm{~mm}$
 $1 \mathrm{psi}=6.89 \mathrm{kPa}$

