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Abstract 
Many eco-driving strategies through speed control using constrained optimization 

algorithms have proven effective on signalized roads. However, heuristic speed limit control 

strategies and understanding of their overall performance across congestion levels remain an 

unexplored topic. In this work, we systematically study the performance of an eco-driving 

strategy based on Vehicle-to-Infrastructure (V2I) communication via the advisory speed limit 

(ASL), a speed limit designed for individual vehicles based on the idea of making vehicles enter 

signalized intersections at saturated headway intervals. The theoretical performance of our 

algorithm to vehicle trajectories is analyzed across different congestion levels. By simulating 

with the BA Newell’s car-following model, the simplified Gipps model, and the Krauss model, 

calculated network fundamental diagrams (NFDs) and results of the Virginia Tech Microscopic 

Energy and Emission (VT-micro) model reveal an improvement in system mobility by nearly 10% 

and a reduction in fuel consumption by up to about 45% in the saturated condition. We further 

consider different market penetration rates (MPRs) and ASL implementation areas and show 

our algorithm can lead to about 35% fuel consumption reduction even with a 10% MPR. We 

recommend an ASL implementation area of about 100 meters, which can well balance the 

algorithm efficacy and computation cost. 

 

Keywords: Eco-driving, Advisory speed limit, Network fundamental diagram, Fuel consumption, 

Market penetration rate, ASL implementation area  
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Impacts of connected and autonomous vehicles on 
the performance of signalized networks:  A network 
fundamental diagram approach 

Executive Summary 
In this project, we formulate and analyze an eco-driving strategy based on Vehicle-to-

Infrastructure (V2I) communication via the advisory speed limit (ASL), a speed limit designed for 

individual vehicles based on the idea of making vehicles enter signalized intersections at 

saturated headway intervals. We analytically and numerically show how our algorithm can work 

at different congestion levels. We further study how market penetration rates (MPRs) (the 

proportion of connected vehicles that adopt the ASL) and the ASL implementation area (the 

area in which connected vehicles will adopt the ASL) can affect the efficacy of our algorithm.  

Advisory speed limit (ASL) algorithm 

The algorithm provides an ASL to each connected vehicle, which is calculated with the idea 

that vehicles at signalized intersections should enter the intersection at saturation headway 

intervals in the phase time.  

Steps of the ASL algorithm 

The algorithm begins to function in a connected vehicle when it enters the ASL 

implementation area, i.e., the area in which connected vehicles can receive the ASL, and the 

entire algorithm consists of three steps: 

1. We calculate the desired arrival time based on the speed limit. 

2. We calculate the desired arrival time based on the minimum headway to front 

vehicles. 

3. We calculate the ASL with the desired arrival time and the distance to the 

intersection. 

Implementations of the algorithm: 

We consider two implementations of the proposed algorithm: 

 The static ASL 
 The dynamic ASL 

Car-following models and evaluation indicator choice 

We choose the BA Newell’s car-following model, the simplified Gipps model, and the 

Krauss model to simulate vehicles’ movements. All these models are safety-stopping distance 
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car-following models, in which collisions are avoided and meaningful fundamental diagrams are 

guaranteed. We choose network fundamental diagrams to indicate system mobility and fuel 

consumption to indicate environmental impacts. 

Simulation and results 

We choose Python to simulate vehicles’ movements before and after applying our 

algorithm. We construct a signalized ring road with one lane and one typical three-color traffic 

light, on which vehicles are initially distributed evenly. After the simulation begins, the signal 

starts with a green interval, and vehicles move clockwise. We assume all drivers are aggressive 

and traverse the density from 0 to near jam density by changing the vehicle number. We test 

three conditions: 1. no control, 2. the static ASL, 3. the dynamic ASL.  We then investigate how 

our algorithm works with 0.1, 0.3, 0.7, and 1 MPRs. We further change the ASL implementation 

area from 10𝑚 to 300𝑚 at intervals of 10𝑚 to see the performance of the dynamic ASL with 

different ASL implementation areas. Results show that: 

 From the perspective of system mobility, the static ASL is unlikely to have a positive 

effect, it may diminish the system mobility. The dynamic ASL can improve the 

system mobility in the saturated condition by nearly 10%. 

 From the perspective of fuel consumption, the dynamic ASL can reduce fuel 

consumption by up to 45% in the saturated condition. 

 Both the improvement rate of system mobility and the reduction rate of fuel 

consumption is positively related to the MPR.  The improvement rate of system 

mobility is not obvious when the MPR is low, however, fuel consumption can 

reduce by about 35% with only 0.1 MPR. 

 We recommend the ASL implementation area to be approximate 100𝑚, which can 

guarantee control results as well as reduce computation costs. 
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1. Introduction 
        In 2018, the transportation sector is the largest source of greenhouse gas emissions 

accounting for 28% of all the emissions (Agency, 2018). Americans wasted nearly 4.8 billion 

hours and 1.9 billion gallons of fuel sitting in traffic (Milikowsky, 2013). With the urgent need to 

reduce transportation fuel consumption, the concept of ‘eco-driving’ was proposed. It is an 

initiative that has seen widespread attention in the past decade (Alam, 2014). 

According to (Sivak & Schoettle, 2012), eco-driving is composed of a series of decisions 

that can affect the fuel economy. The decisions can be categorized into three groups, namely 

strategic decisions, tactical decisions, and operational decisions. Strategic decisions are about 

vehicle selection and maintenance as well as fuel selection (Anandarajah, et al., 2013) (Huang, 

et al., 2015) (Zhen & Wang, 2015). Admittedly, choosing low-displacement vehicles can reduce 

fuel consumption, but at the cost of lower horsepower and worse acceleration performance 

(Cheah, et al., 2009). Investment and studies on the new vehicle and fuel technologies have a 

broad and significant impact, but it takes a relatively long time for their effects to take place 

(Anandarajah, et al., 2013). Tactical decisions relate to route planning and weight, such as the 

trade-off between arterial routes and highways, sacrificing time or distance in exchange for 

saving fuel (Ahn & Rakha, 151-167). Operational decisions relate to driving styles. Compared 

with the above two, operational decisions have more immediate impacts and are possible to 

reduce fuel consumption without increasing travel time or distance. Therefore, we narrow eco-

driving to driving behaviors in this study.  

From the perspective of driving behaviors, eco-driving can be regarded as an approach 

that involves (1) accelerating moderately, anticipating traffic flow and signals, thereby avoiding 

sudden starts and stops; (2) maintaining an even driving pace, driving at or safely below the 

speed limit; and (3) eliminating excessive idling (Barkenbus, 2010). Vehicles on urban roads are 

regularly interrupted by traffic signals, causing large variations in speed and idling time, and 

additional fuel consumption. Therefore, eco-driving strategies have a large impact when being 

applied at signalized intersections. Those strategies are further supported by the advancement 

of communication technologies and connected vehicles (CVs), vehicles capable of accessing the 

Internet and collecting real-time data (Coppola & Morisio, 49). These technologies enable 

Vehicle-to-Infrastructure (V2I) and Vehicle-to-Vehicle (V2V) communication, providing a 

platform for applying eco-driving strategies at signalized intersections via the availability of 

Signal Phase and Timing (SPaT) information and inter-vehicle information within some distance, 

for example, dedicated short-range communication (DSRC) transmission range (Kenney, 2011).  

Various eco-driving strategies have proposed speed-control algorithms in signalized 

networks that adapt to signal timing and smooth vehicle trajectories. (Mandava, et al., 2009) 

developed an arterial speed planning algorithm aiming at minimizing the 
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acceleration/deceleration rate for human drivers traveling in signalized networks. (Rakha & 

Kamalanathsharma, 2011) developed a strategy to work out the most fuel-optimal speed 

profile for a vehicle to go through the intersection utilizing V2I communication capabilities. 

Taking advantage of V2I communication technology, the Green Light Optimal Speed Advisory 

(GLOSA) system was also developed. It offers each driver a speed or an acceptable speed range 

when approaching a signalized intersection to make better use of green intervals (Katsaros, et 

al., 2011) (Seredynski, et al., 2013) (Eckhoff, et al., 2013). 

Accurate speed control, however, requires a high market penetration rate and is very 

sensitive to errors in the external environment and communication devices. Instead, speed limit 

control only works out speed limits according to signal status and traffic conditions, while still 

allowing vehicles to follow their preceding vehicles according to local information. From this 

perspective, speed limit control is more robust subject to changes in the external environment. 

Speed limit control can be divided into variable speed limit (VSL) control (Chen, et al., 2020) and 

advisory speed limit (ASL) control (Yang & Jin, 2014) (Ubiergo & Jin, 2016). VSL is a location-

dependent speed limit, and all the vehicles in one segment follow one speed limit regardless of 

their own situation. On the other hand, ASL is geared towards individual control, providing each 

vehicle with its own speed limit. (Yang & Jin, 2014) initially proposed an ASL algorithm 

attempting to smooth vehicle trajectories, maintain the average speed, allow minimal speed 

limit variations, and function under different market penetration rates; and detected its short-

time impact on fuel consumption and emission. (Ubiergo & Jin, 2016) proposed an idea of 

making connected vehicles enter the intersection during the green at saturation headway 

intervals through ASL and examined the short-time performance of such ASL in some under-

critical conditions. So far, there still lacks research on the ASL algorithm's long-time control 

effect under different congested levels. 

The impact of eco-driving strategies can be evaluated by system mobility and 

environmental impacts. System mobility can be characterized by network fundamental 

diagrams. (Godfrey, 1969) first indicated that there exists a reproducible and well-defined 

relation between average flow and average density in an urban network. Such a relation is 

called the macroscopic fundamental diagram (MFD), and it has shown substantial potential in 

informing traffic control (Keyvan-Ekbatani, et al., 2012) (Zheng, et al., 2012) (Khondaker & 

Kattan, 2015). (Jin, et al., 2013) further defined stationary states, where the MFDs should be 

calculated, in signalized networks as asymptotic periodic traffic patterns, and (Jin & Yu, 2015) 

proved that such periods should be the cycle length or integer multiples of the cycle length.  

Environmental impacts are often evaluated through models such as the Comprehensive modal 

emissions model (CMEM) (Barth, et al., 2000), mobile source emission factor model (MOBILE) 

(others, 2000), and Virginia Tech microscopic energy and emission model (VT-micro model) 



Impacts of connected and autonomous vehicles on the performance of signalized networks:  A network 
fundamental diagram approach 

 

3 
 

(Ahn, et al., 2002). These models collaboratively provide researchers a measure of the amount 

of fuel or emission saved through their control algorithms. 

In this paper, we formulate and analyze an eco-driving strategy based on Vehicle-to-

Infrastructure (V2I) communication via the ASL with the idea that all vehicles should enter the 

intersection at saturation headway intervals in the phase time (Ubiergo & Jin, 2016), i.e., the 

minimum constant headway that can be achieved by a saturated, stable moving queue of 

vehicles passing through the signal (McShane & Roess, 1990). The algorithm begins to function 

when a connected vehicle enters the ASL implementation area, i.e., the area in which 

connected vehicles can receive the ASL. The algorithm consists of three steps: 1. we calculate 

the desired arrival time based on the speed limit; 2. we calculate the desired arrival time based 

on the minimum headway to front vehicles; 3. we calculate the ASL with the desired arrival 

time and the distance to the intersection. We analytically illustrate the performance of two 

implementations, i.e., static ASL and dynamic ASL, of our algorithm at different congestion 

levels from the perspective of vehicle trajectories. The static ASL is calculated only when a 

connected vehicle enters the ASL implementation area, while the dynamic ASL keeps updating 

once it enters the ASL implementation area. We then adopt the BA Newell's car-following 

model (Jin & Laval, 2018), simplified Gipps model (Gipps, 1981) (Treiber & Kesting, 2013), and 

Krauss model (Krauss, et al., 1997) (Krauss, 1998) to describe vehicles’ movements, and the VT-

micro model (Ahn, et al., 2002) to calculate the fuel consumption. We evaluate the long-time 

performance of our ASL algorithm from the perspectives of system mobility and environmental 

impacts. Finally, we examine how different market penetration rates (MPRs) and the length of 

ASL implementation areas can impact the efficacy of our algorithm. 

Our work is an extension of (Ubiergo & Jin, 2016), in which the idea of making vehicles 

enter the intersection at saturated headway intervals was proposed. Our study provides 

detailed steps and formulas for the algorithm and discusses different implementations of the 

algorithm. On the one hand, for a connected vehicle, our algorithm alleviates the requirement 

for knowledge of the desired arrival time of its preceding vehicles and reduces the information 

necessary for the calculation of its ASL to its location, signal status, and the number of vehicles 

in front, all of which are simple and easily measurable. On the other hand, we propose the use 

of NFDs to study long-time impacts on system mobility of dynamic ASL at different congestion 

levels.  

The rest of this paper is organized into 6 sections. In Section 2, we will set up the study, 

propose the principles and assumptions as well as analyze the existed ASL algorithm. In Section 

3, we will extend the ASL algorithm and analytically illustrate the effects of extended ASL. In 

Section 4, we will introduce driving behaviors at signalized roads as well as performance 

measurements of our algorithm. In Section 5, we will set up the simulation, conduct it and 

analyze the corresponding results. In Section 6, we will take MPRs as well as ASL 
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implementation areas into consideration and detect their impacts on the efficiency of our 

algorithm. Finally, we will summarize the conclusions and discuss some potential extensions of 

our research. 

2. Setup and background of advisory speed limit (ASL) 
study 

In this chapter, we illustrate the setup of the system where we design the ASL and 

introduce its rules and assumptions. 

2.1 Illustration of a signalized road with the ASL implementation 
area 

We utilize Figure 1 to illustrate a one-lane road with one fixed time three-color signal and 

the ASL implementation area, i.e., the area in which connected vehicles will adopt the ASL. 

Vehicles on the road include connected vehicles (shown in red) and non-connected ones 

(shown in white). All vehicles are labeled in order from the downstream to the upstream. Once 

a connected vehicle enters the ASL implementation area, the ASL algorithm begins to function. 

Figure 1: Illustration of a signalized road with the ASL implementation area 

 

Apart from the notations marked in Figure 1, more detailed notations we are going to 

utilize are listed in Table 1. 

Table 1. A list of notations 

Variables Definitions Variables Definitions 
Length and position variables 
𝐿  Road length 𝑙𝑛  Length of vehicle 𝑛 
𝑠0  Minimum clearance 𝜁  Jam spacing 
𝐷  ASL implementation area length 𝛾  Transmission range 
𝑥𝑛(𝑡)  Position of vehicle 𝑛 at time 𝑡   
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Intuitively, we should make connected vehicles adopt ASL algorithms as early as possible based 

on satisfying the constraints of the road length and communication technology so that drivers 

have more time to adjust speeds. In this study, a DSRC network is adopted (Kenney, 2011). 

Thus, an optimization problem can be formulated as:  

max𝐷

𝑠. 𝑡.  {
𝐷 ≤ 𝛾
𝐷 ≤ 𝐿
𝐷 ≥ 0

, (1.) 

which means that the ASL implementation area should be the smaller value between road 

length 𝐿 and transmission range 𝛾. 

2.2 Rules and assumptions 
We consider our algorithm should follow the following rules: 

 The algorithm should improve the braking and acceleration process before signalized 

intersections, leading to smoother trajectories with less variation of velocity. 

Time variables 
𝑡  Time Δ𝑡  Time step 
𝜏  Time gap 𝑡𝑟𝑒  Reaction time 
𝐵  Cycle length 𝐺  Green interval 
𝑌  Yellow plus all-red interval 𝑅  Red interval 
𝜎  Simulation duration ℎ  Saturation headway 
ℎ𝑛
′   Headway between vehicle 𝑛 and 𝑛 + 1 
𝑡𝑛
∗   The time when vehicle 𝑛 enters the ASL implementation area 
Φ𝑛(𝑡)  Desired arrival time of vehicle 𝑛 at time 𝑡 
𝑇𝑛(𝑁)  Period of vehicle 𝑛's speed in stationary states when 𝑁 vehicles are in the system 
𝑇𝑠𝑦𝑠(𝑁)  Period of the system average speed when 𝑁 vehicles are in the system 
Speed and acceleration variables 
𝑣𝑓  Original speed limit 𝑤  Shock wave in congested traffic 
𝑎0  Bounded acceleration 𝑏  Bounded deceleration 
𝑣𝑛(𝑡)  Speed of vehicle 𝑛 at time 𝑡 𝑎𝑛(𝑡)  Acceleration of vehicle 𝑛 at time 𝑡 
𝑈𝑛(𝑡)  ASL of vehicle 𝑛 at time 𝑡   
Variables Definitions Variables Definitions 
𝑣̅𝑖𝑛𝑑,𝑛(𝑚) The average speed of vehicle 𝑛 in the 𝑚th cycle 
𝑣̅𝑠𝑦𝑠(𝑚)  System average speed in the 𝑚th cycle 
Other variables 
𝜋  = (𝐺 + 𝑌)/𝐵, phase ratio 𝑉𝑛  Fuel consumption of vehicle 𝑛 
𝑞𝑐  Capacity   
𝑉̅𝑛  The average fuel consumption of vehicle 𝑛 to move a unit distance in one period 
𝐽𝑡
𝑛  Number of vehicles in front of vehicle 𝑛 at time 𝑡 
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 The algorithm is designed based on the ideal condition presented in (Ubiergo & Jin, 

2016) that all connected vehicles enter the intersection in phase at saturation headway 

intervals. 

 The efficiency of the algorithm should increase with a higher market penetration rate 

(MPR). Even if only one connected vehicle in the system adopts our algorithm, our 

algorithm should have certain effects. 

 The required information should be as simple and measurable as possible. 

In addition, we have the following assumptions for our study: 

 We assume that vehicles move on a one-lane road, and strictly follow the first in first 

out (FIFO) rule. 

 We assume that the parameters, including length, maximum acceleration and 

maximum deceleration, are the same for all vehicles. And initially, vehicles are evenly 

distributed on the road. 

3. Advisory speed limit (ASL) algorithm 
In this chapter, we present the algorithm and analytically illustrate the impacts of our 

algorithm on vehicle trajectories at different congestion levels. 

3.1 Algorithm design 
Based on the core idea of helping vehicles avoid entering the intersection at red intervals 

and reduce idling time, we formulate an ASL algorithm at discrete time steps. Note that this 

algorithm is only applied to connected vehicles in the ASL implementation area. Whether a 

vehicle is a non-connected vehicle, or it is not in the ASL implementation area, it will follow the 

original speed limit 𝑣𝑓 . 

For each connected vehicle in the ASL implementation area, we can detect the number of 

vehicles in front of it. We assume vehicle 𝑛 is a connected vehicle entering the ASL 

implementation area, and the signal begins with the green interval at 𝑡 = 0. Current time is 

denoted as 𝑡, the number of vehicles in front of vehicle 𝑛 at time 𝑡 is denoted as  𝐽𝑡
𝑛. As shown 

in Figure 2, the whole process can be summarized into three steps at each discrete time step.   
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Figure 2: Flow chart of the ASL algorithm 

 

1. Vehicle speeds cannot exceed the original speed limit. The earliest time vehicle 𝑛 can 

enter the intersection can be calculated based on the original speed limit and the 

signal as follows: 

𝜑𝑛(𝑡) =

{
 
 

 
 𝐻𝑛(𝑡),

𝐻𝑛(𝑡)

𝐵
− ⌊

𝐻𝑛(𝑡)

𝐵
 ⌋ ≤ 𝐹𝑛(𝑡)

(⌊
𝐻𝑛(𝑡)

𝐵
 ⌋ + 1)𝐵, otherwise 

(2.) 

𝐻𝑛(𝑡) = 𝑡 +
𝐿 − 𝑥𝑛(𝑡)

𝑣𝑓
, (3.) 

where 𝐿 is road length, 𝑣𝑓 is the original speed limit and 𝑥𝑛(𝑡) is the position of vehicle 

𝑛 at time 𝑡. 𝐹𝑛(𝑡)𝐵 is the time during which there will be no vehicle stops at the stop 

line. Note that unlike the effective green time, i.e., the amount of time that vehicles 

can departure at a rate of one vehicle every ℎ seconds (McShane & Roess, 1990), 

𝐹𝑛(𝑡)𝐵 only focuses on whether vehicles can cross the stop line, regardless of the rate. 

Aggressive drivers will choose to cross the intersection at their first chance once they 

enter the intersection at phase, thus 𝐹𝑛(𝑡)𝐵 = 𝜋𝐵. Non-aggressive drivers will choose 

to stop at their first chance (Morales Fresquet & Jin, 2018). At the time point when the 

signal changes to yellow from green, they will choose to stop once the distance to the 

intersection is enough for them to brake. We assume the reaction time is 𝑡𝑟𝑒, and the 

braking distance and the time they need for braking can be written as 𝑡𝑟𝑒𝑣𝑛(𝑡) +
𝑣𝑛(𝑡)

2

2𝑏0
 

and 𝑡𝑟𝑒 +
𝑣𝑛(𝑡)

𝑏0
 respectively. Thus, a non-aggressive driver is impossible to cross the 
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stop line in one cycle after 𝐺 + 𝑡𝑟𝑒 +
𝑣𝑛(𝑡)

𝑏0
 and 𝐹𝑛(𝑡)𝐵 = 𝐺 + 𝑡𝑟𝑒 +

𝑣𝑛(𝑡)

𝑏0
 for non-

aggressive drivers, as follows: 

𝐹𝑛(𝑡) = {

𝜋, For aggressive drivers

𝐺 + 𝑡𝑟𝑒 +
𝑣𝑛(𝑡)
𝑏0

𝐵
, For non − aggressive drivers

(4.) 

2. The vehicle should obey the car-following rule, as Figure 3 shows. The ideal condition is 

that connected vehicles in the ASL implementation can enter the intersection at 

saturation headway (ℎ) intervals. Meanwhile, if a vehicle is expected to enter the 

intersection at the end of one phase, the vehicle behind it can enter the intersection at 

the starting point of the next green interval. From this perspective, the earliest time 

vehicle 𝑛 can enter the intersection can be calculated as follows: 

Figure 3: Illustration of the desired arrival time of vehicle 𝒏 based on front vehicles 

 

𝜂𝑛
𝑗 (𝑡)𝑗∈[1,𝐽𝑡𝑛] =

{
 
 

 
 𝜂𝑛

𝑗−1
(𝑡) + ℎ,

𝜂𝑛
𝑗−1(𝑡) + ℎ

𝐵
− ⌊

𝜂𝑛
𝑗−1(𝑡) + ℎ

𝐵
 ⌋ ≤ 𝐹𝑛(𝑡)

(⌊
𝜂𝑛
𝑗−1(𝑡) + ℎ

𝐵
 ⌋ + 1)𝐵, otherwise 

(5.) 

where ℎ is the saturation headway, 𝑗 increases from 1 to 𝐽𝑡
𝑛, and 𝜂𝑛

𝐽𝑡
𝑛

(𝑡) is the final 

result we want to obtain. Note that if there are no vehicles in front of vehicle 𝑛 (𝐽𝑡
𝑛 =

0), then 𝜂𝑛
0(𝑡) = 𝑡 if the current signal is in phase, otherwise it is equal to(⌊

𝑡

𝐵
 ⌋ + 1)𝐵. 
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3. Finally, we calculate the advisory speed at the next time step. The time left for vehicle 

𝑛 to reach the intersection is (max{𝜂𝑛
𝐽𝑡
𝑛

(𝑡), 𝜑𝑛 (𝑡)} − 𝑡) and the distance it needs to 

cover is (𝐿 − 𝑥𝑛(𝑡)). Therefore, the ASL of vehicle 𝑛 can be calculated as follows: 

𝑈𝑛(𝑡) =
𝐿 − 𝑥𝑛(𝑡)

max {𝜂𝑛
𝐽𝑡
𝑛

(𝑡), 𝜑𝑛 (𝑡)} − 𝑡
, (6.) 

The original speed limit will then be replaced by the ASL. There are two ways of 

implementing our ASL algorithm: 1. calculate it only when the vehicle enters the ASL 

implementation area (refers to as ‘statistic ASL’); 2. keep updating it once the vehicle 

enters the ASL implementation area, as shown by the dashed lines in Figure 2 (refers to 

as ‘dynamic ASL’). More discussion about this will be presented in the following. 

        In summary,  once a connected vehicle enters the ASL implementation area, we can know 

the number of vehicles in front of it with the loop detectors at the entrance of the ASL 

implementation area and before the stop line. At the moment the connected vehicle enters the 

ASL implementation area, our algorithm will calculate its desired arrival time based on the 

original speed limit and the number of vehicles in front of it. This desired arrival time indicates 

the earliest time point at which the connected vehicle can go through the intersection without 

stopping. The ASL is then calculated by dividing the remaining distance to the intersection by 

the remaining time until the desired arrival time. If we consider the statistic ASL, this value will 

not be updated and the connected vehicle's speed will not exceed this value in the remaining 

distance to the intersection. If we consider the dynamic ASL, the ASL will be calculated and 

updated at each time step, and the value of the ASL may change from time to time; the 

connected vehicle will always follow the newest ASL in the remaining distance to the 

intersection.  

Our algorithm only requires three easily measurable inputs: position, signal status, and the 

number of vehicles in front to calculate the ASL of a vehicle. Calculating desired arrival time 

through the iteration method makes full use of the phase. Meanwhile, both aggressive drivers 

and non-aggressive drivers are considered in the algorithm. 

3.2 Analytical trajectories after applying the ASL 
        We consider two different implementations of the ASL: the static ASL and the dynamic ASL. 

The static ASL is calculated only when a connected vehicle enters the ASL implementation area, 

and the dynamic ASL is continuously updated when the vehicle is in the implementation area. 

Here we assume that our algorithm can fully function, and vehicles are all connected, and 

illustrate how it works with three vehicles, denote as vehicles 𝑛 to 𝑛 + 2, which are entering 



Impacts of connected and autonomous vehicles on the performance of signalized networks:  A network 
fundamental diagram approach 

 

10 
 

the ASL implementation area at the original speed limit 𝑣𝑓. The analysis is shown in Figure 4 to 

Figure 6.  

First, we discuss the under-saturated condition, as Figure 4a, Figure 4c, and Figure 4d 

show, we plot vehicle trajectories for the following conditions: no ASL is applied; static ASL is 

applied; dynamic ASL is applied. From Figure 4a it can be found that lost time exists in start-up 

behaviors after long-time stopping due to the reaction and accelerating process, and the actual 

headway between vehicle 𝑛 and vehicle 𝑛 + 1, marked as ℎ𝑛
′ , is greater than the saturation 

headway.  

When the static ASL is applied, as shown in Figure 4c, all three vehicles can move at their 

own ASLs 𝑈𝑛(𝑡𝑛
∗), 𝑈𝑛+1(𝑡𝑛+1

∗ ), and 𝑈𝑛+2(𝑡𝑛+2
∗ ), as they just enter the ASL implementation area, 

and all these three values are smaller than 𝑣𝑓. However, vehicle 𝑛 + 1 will encounter a shock 

wave caused by the deceleration of vehicle 𝑛 shortly after it enters the ASL implementation 

area and decelerates to 𝑈𝑛(𝑡𝑛
∗). Vehicle 𝑛 will accelerate from 𝑈𝑛(𝑡𝑛

∗) when it crosses the 

intersection. However, after vehicle 𝑛 crosses the intersection, vehicle 𝑛 + 1 is unable to re-

accelerate to 𝑣𝑓 before entering the intersection because its speed is constrained by  

𝑈𝑛+1(𝑡𝑛+1
∗ ) (green line), and it will enter the intersection at  𝑈𝑛+1(𝑡𝑛+1

∗ ). The same condition 

also occurs to vehicle 𝑛 + 2 (orange line), and it can only enter the intersection at  𝑈𝑛+2(𝑡𝑛+2
∗ ). 

As a result, the actual headway between two adjacent vehicles, ℎ𝑛
′  and ℎ𝑛+1

′ , will always be 

greater than the saturation headway. Therefore, also stopping behaviors are eliminated and 

trajectories are smoother, the lost time not only will not decrease but may increase. 

With the application of the dynamic ASL, as shown in Figure 4d, the trajectory of vehicle 𝑛, 

as well as the trajectories of vehicle 𝑛 + 1 and 𝑛 + 2 before vehicle 𝑛 crosses the intersection, 

are the same as those when the static ASL is applied. However, the dynamic ASL for the 

following vehicles will update after their front vehicles cross the intersection. Thus vehicle 𝑛 +

1 (green line) and vehicle 𝑛 + 2 (orange line) can re-accelerate to the original speed limit 

before entering the intersection. Although the headway between vehicle 𝑛 and vehicle 𝑛 + 1 is 

still greater than the saturation headway, the headway between vehicle 𝑛 + 1 and 𝑛 + 2 can 

reach the saturation headway. Therefore, the accelerating process of vehicles 𝑛 + 1 and 𝑛 + 2 

will be reduced, the trajectories will be smoother, and the lost time at the intersection will be 

reduced. 
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Figure 4: Trajectories analysis of the ASL algorithm in the under-saturated condition 

a) Trajectories of vehicles without control     b) Fundamental diagram for calculating ASL 

 

c) Trajectories after applying ASL statically        d) Trajectories after applying ASL dynamically 

We then take the critical density as an example to study how our algorithm works in the 

saturated condition, as Figure 5c and Figure 5d show. The headway between two adjacent 

vehicles is the saturation headway before vehicle 𝑛 enters the ASL implementation area. 

Vehicle 𝑛 + 1 (green lines) and vehicle 𝑛 + 2 (orange lines) will encounter the shock wave and 

decelerate before they enter the ASL implementation area. When the static ASL is applied, as 

shown in Figure 5c, Vehicle 𝑛 + 1 and 𝑛 + 2 still can only enter the intersection at 𝑈𝑛+1(𝑡𝑛+1
∗ ) 

and 𝑈𝑛+2(𝑡𝑛+2
∗ ), respectively, and the headway between two adjacent vehicles will be greater 

than the saturation headway. The trajectories in the saturated condition, as shown in Figure 5d, 

are the same as those in the under-saturated condition after vehicle 𝑛 crosses the intersection. 
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Figure 5: Trajectories analysis of the ASL algorithm in the saturated condition 

a) Trajectories of vehicles without control     b) Fundamental diagram for calculating ASL 

  

c) Trajectories after applying ASL statically         d) Trajectories after applying ASL dynamically 

However, in the over-saturated condition, both implementations of the ASL may have little 

effect, as Figure 6c and Figure 6d show. The ASL for vehicle 𝑛 is greater than the speed at which 

it enters the ASL implementation area, thus vehicle 𝑛 will not be able to travel as expected. 

Instead, it will keep moving at its entering speed, denoted as 𝑣0 in the figures (blue continuous 

lines). Correspondingly, vehicle 𝑛 + 1 and vehicle 𝑛 + 2 will also keep moving at 𝑣0. Therefore, 

the headway between two adjacent vehicles can be reduced little. 
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Figure 6: Trajectories analysis of the ASL algorithm in the over-saturated condition 

a) Trajectories of vehicles without control     b) Fundamental diagram for calculating ASL 

  

c) Trajectories after applying ASL statically          d) Trajectories after applying ASL dynamically 

  

To summarize, from the two ASL implementations we can find that: 

 Both the static ASL and the dynamic ASL can make vehicle trajectories smoother in both 

the under-saturated and saturated conditions. 

 In both the under-saturated and saturated conditions, the dynamic ASL can reduce the 

accelerating process and the lost time at the intersection. However, the static ASL is unable 

to reduce the lost time. 

 In the over-saturated condition, both the static ASL and the dynamic ASL are no more valid. 

Vehicles still need to experience a long accelerating process, and little lost time caused by 

start-up behaviors can be reduced. 

4. Driving behavior models and evaluation indicators 
In this chapter, we first introduce the car-following models that are used to simulate 

vehicle movements. We then discuss the start-up and clearance behaviors at signalized 

intersections. Furthermore, we introduce the indicators we adopt, i.e., network fundamental 

diagrams (NFDs) and fuel consumption,  for evaluating the algorithm performance. 
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4.1 Driving behavior models 
4.1.1 BA Newell's car-following model 
We first introduce the BA Newell's car-following model (Jin & Laval, 2018) which was 

developed based on the Newell's car-following model (Newell, 1961) (Newell, 2002) by 

considering the real speed-up behaviors. Because BA Newell's car-following model is 

mathematically tractable and the speed limit is one parameter to decide the speed, thus ASL 

can be simply incorporated using it. The BA Newell's car-following model (Jin & Laval, 2018) can 

be written as follows: 

𝑣𝑛(𝑡 + Δ𝑡) = min {
𝑥𝑛−1(𝑡) − 𝑥𝑛(𝑡) − 𝜁

𝜏
, 𝑣𝑓 , 𝑣𝑛(𝑡) + Δ𝑡𝑎0} , (7.) 

where 𝑣𝑓 is the original speed limit, 𝜏 = 1/(𝑤𝑘𝑗) is the time gap, 𝑘𝑗 is the jam density, 𝜁 =

 1/𝑘𝑗  is the jam spacing, and 𝑎0 is the bounded acceleration. In the BA Newell's car-following 

model, all the vehicles are assumed to move on a homogeneous road. The trajectory of the 

following vehicle is the same as that of the front vehicle, and all the vehicles will maintain 

minimum spaces and time gaps between themselves and the preceding vehicles. 

4.1.2 Simplified Gipps model 
The Gipps model (Gipps, 1981) is proposed based on the idea of pursuing a safe distance 

from the front vehicle to avoid collisions. Its speed can be calculated based on the idea that (1) 

vehicles do not exceed the desired speed; (2) vehicles seek to specify a safe following distance 

within which a collision would be unavoidable. (Treiber & Kesting, 2013) assumed the speed to 

be a constant within the reaction time, and presented the simplified Gipps model, which can be 

written as follows: 

𝑣𝑛(𝑡 + Δ𝑡) = min {𝑣𝑓 , 𝑣𝑛(𝑡) + Δ𝑡𝑎0, −Δ𝑡𝑏 + √Δ𝑡2𝑏2 + 2𝑏[𝑥𝑛−1(𝑡) − 𝑥𝑛(𝑡) − 𝜁] + 𝑣𝑛−1(𝑡)2} , (8.) 

where Δ 𝑡 is the update time-step size, which is usually set as the reaction time, and 𝑏 is the 

bounded deceleration. 

4.1.3 Krauss model 
The Krauss model (Krauss, et al., 1997) (Krauss, 1998) directly calculates the velocity as 

follows: 

𝑣𝑛(𝑡 + Δ𝑡) = max{0, 𝑣𝑑𝑒𝑠,𝑛(𝑡 + Δ𝑡) − 𝜀} , (9.) 

where  𝑣𝑑𝑒𝑠,𝑛(𝑡) is the desired velocity and 𝜀 is a random perturbation. 𝑣𝑑𝑒𝑠,𝑛 is calculated 

according to the safe velocity, 𝑣𝑠𝑎𝑓𝑒,𝑛, as follows: 
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𝑣𝑑𝑒𝑠,𝑛(𝑡 + Δ𝑡) = min{𝑣𝑓 , 𝑣𝑛(𝑡) + Δ𝑡𝑎0, 𝑣𝑠𝑎𝑓𝑒,𝑛(𝑡 + Δ𝑡)} , (10.) 

 

𝑣𝑠𝑎𝑓𝑒,𝑛(𝑡 + Δ𝑡) = 𝑣𝑛−1(𝑡) +
𝑥𝑛−1(𝑡) − 𝑥𝑛(𝑡) − 𝑙𝑛−1 − 𝑣𝑛−1(𝑡)𝑡𝑟𝑒

𝑣𝑛−1(𝑡) + 𝑣𝑛(𝑡)
2𝑏

+ 𝑡𝑟𝑒

, (11.) 

where 𝑙𝑛−1 is the length of vehicle 𝑛 − 1, 𝑡𝑟𝑒 is the driver's reaction time and 𝑎0 and 𝑏 are still 

the desired acceleration and deceleration, respectively. 

4.1.4 Decision process 
 Start-up behaviors are influenced by bounded acceleration and reaction time. 

“Reaction time" is defined as the interval of time between the onset of the stimulus 

and the initiation of the response in the condition that someone has been told to react 

as rapidly as possible (Teichner, 1954). Because of reaction time, when the signal 

changes to green from red, the first stopping vehicle will maintain its current status for 

some time until it reacts to external changes. 

 Before introducing clearance behaviors, the dilemma zone should be eliminated. The 

dilemma zone is widely known as an area on the high-speed intersection approach, 

where vehicles can neither safely stop before the stop line nor proceed through the 

intersection during the yellow interval (Gazis, et al., 1960). It can be eliminated as 

follows: 

𝑌 ≥ 𝑡𝑟𝑒 +
𝑣𝑓

2𝑏
+
𝐿𝑖𝑛𝑡
𝑣𝑓

(12.) 

where 𝐿𝑖𝑛𝑡 is the length of the intersection, 𝑌 is the yellow plus all-red interval, 𝑡𝑟𝑒 is 

the reaction time, and 𝑏 is the bounded deceleration. We assume 𝐿 is road length, 𝑥𝑖𝑛𝑡 

is the position of the intersection, 𝑥𝑛(𝑡) and 𝑣𝑛(𝑡) are the position and the speed of 

vehicle 𝑛 at time 𝑡 respectively. Then the conditions when a vehicle can go through the 

intersection and when it can stop can be written as follows (Morales Fresquet & Jin, 

2018): 

𝑥𝑖𝑛𝑡 − 𝑥𝑛(𝑡) ≥ 𝑡𝑟𝑒𝑣𝑛(𝑡) +
𝑣𝑛(𝑡)

2

2𝑏
, (13.) 

𝑥𝑖𝑛𝑡 + 𝐿𝑖𝑛𝑡 − 𝑥𝑛(𝑡) < 𝑣𝑛(𝑡)𝑌, (14.) 
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There may be some vehicles that are able to both stop and cross, and we consider two 

types of drivers: aggressive drivers and non-aggressive drivers. Aggressive drivers will 

stop only if they cannot go through the intersection, nevertheless, non-aggressive 

drivers will stop once they satisfy the stop condition. It should also be noted that 

bounded deceleration 𝑏 is only considered in the decision process of clearance 

behaviors. However, in the implementation process, deceleration is possible to be 

larger. We assume that the dilemma zone is eliminated. Every time when the signal 

changes to yellow from green, the decision process of drivers can be illustrated in 

Figure 7. 

Figure 7: Decision process when the signal changes to yellow from green 

 

4.2 Network fundamental diagram (NFD) and emission model 
4.2.1 The detection of speed periodicity 
NFDs should be calculated after the system reaches stationary states. (Jin, et al., 2013) 

defined stationary states as asymptotic periodic traffic patterns. (Jin & Yu, 2015) found that 

periods should be the cycle length 𝐵 or multiples of the cycle length in stationary states at 

signalized networks. Therefore, we can detect the period of the average speed in each cycle 

rather than the period of the original speed profile directly, which significantly reduces 

calculation costs. The average speed of vehicle 𝑛 in the 𝑚th cycle can be calculated as follows: 

𝑣̅𝑖𝑛𝑑,𝑛(𝑚) =
𝑥𝑛((𝑚 + 1)𝐵) − 𝑥𝑛(𝑚𝐵)

𝐵
, (15.) 

where 𝑥𝑛((𝑚 + 1)𝐵) − 𝑥𝑛(𝑚𝐵) means the distance vehicle 𝑛 can cover in the 𝑚th cycle. The 

system average speed in the 𝑚th cycle is the sum of all the individual average speeds in such a 

cycle over the number of vehicles. It can be calculated as follows: 

𝑣̅𝑠𝑦𝑠(𝑚) =
∑ 𝑣̅𝑖𝑛𝑑,𝑛(𝑚)
𝑛=𝑁
𝑛=0

𝑁
, (16.) 
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where 𝑁 is the total number of vehicles.  We assume there are 𝑀 cycles during the whole 

simulation duration and use 𝑚 to represent the number which can be shifted along with the 

cycle numbers and 𝑚 is shifted forward from the last cycle. We shift 𝑚 along with up to 50 

cycle numbers for calculating periods. If there exists some integers 𝑖 that can satisfy the 

following equations for any 𝑚: 

max
𝑚 = 𝑀−50,𝑀−49,…,𝑀−1,𝑀

|𝑣̅𝑖𝑛𝑑,𝑛(𝑚) − 𝑣̅𝑖𝑛𝑑,𝑛(𝑚 − 𝑖)| < 𝜖 (17.) 

max
𝑚 = 𝑀−50,𝑀−49,…,𝑀−1,𝑀

|𝑣̅𝑠𝑦𝑠(𝑚) − 𝑣̅𝑠𝑦𝑠(𝑚 − 𝑖)| < 𝜖 (18.) 

where 𝜖 is a small enough number. we consider that those integers are the periods of individual 

speed or system average speed for corresponding cycle length 𝐵 and number of vehicles 𝑁. The 

final 𝑖 is the smallest number among these integers. 

We consider that 𝑁 vehicles keep moving on a closed ring road, and the period of vehicle 

𝑛's speed is denoted as 𝑇𝑛(𝑁). We find that periods of different individuals are the same under 

one specific density, and this can be clarified with an example. We assume the 𝑁 = 20, free-

flow speed is 12𝑚/𝑠, and the cycle length is 60𝑠 (24𝑠 green, 6𝑠 yellow, and 30𝑠 red). We plot 

the speed profiles of vehicle 1 and vehicle 20, as Figure 8a shows. The periods for speeds of 

both vehicles are 20𝐵. In addition, after shifting back the speed profile of vehicle 1, it coincides 

with that of vehicle 20, as Figure 8b shows. Therefore, we can consider that all the vehicles 

cover the same distance and experience the same moving pattern in 𝑇𝑛(𝑁). However, such 

periods may not be the same as the period of the system average speed 𝑇𝑠𝑦𝑠(𝑁). With the 

above settings, the period of the system average speed is 𝐵.  With more experiments, we find 

that periods of the system average speed are much smaller and more stable than periods of 

individual speeds. Therefore, when calculating network fundamental diagrams, we calculate the 

average flow rate at corresponding densities with the system average speed. 

Figure 8: Speed profiles in the last two individual periods 

a) Speed profiles of vehicle 1 and vehicle 20 
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b) Speed profiles of shifted vehicle 1 and vehicle 20 

 

4.2.2 Network fundamental diagram 
The network fundamental diagram (NFD) of a system is a diagram that gives a relation 

between the average traffic flow and average traffic density (Godfrey, 1969). It is chosen to 

evaluate the impact on system mobility of our algorithm. In this simulation, the simulation 

duration 𝜎 of all the vehicles are the same. We assume there are 𝑁 vehicles in the system. The 

density can be calculated through: 

𝑘̅(𝑁) =
𝑁

𝐿
, (19.) 

and the system average speed in 𝑇𝑠𝑦𝑠(𝑁) can be calculated as follows: 

𝑣̅(𝑁) =
∑ 𝑣̅𝑠𝑦𝑠(𝑚)
𝑚=𝑀
𝑚=𝑀−𝑇𝑠𝑦𝑠(𝑁)

𝑇𝑠𝑦𝑠(𝑁)
, (20.) 

where 𝑇𝑠𝑦𝑠(𝑁) is the period of the system average speed (the unit is the cycle) and 𝑀 is the 

number of cycles during the simulation duration. Thus, the flow rate can be calculated through: 

𝑞̅(𝑁) = 𝑘̅(𝑁)𝑣̅(𝑁). (21.) 

        (Jin, Wen-Long, 2015) derived theoretical results for the NFD on a signalized road. Instead 

of a triangular fundamental diagram, the fundamental diagram will be approximated by a 

piecewise linear function. Compared with a single point of the maximum flow rate when there 

is no signal, on a signalized road, the maximum flow rate will be a horizontal line segment, as 

Figure 9 shows, where 𝜋 is the phase ratio and 𝑞𝑐 is the saturation flow rate when there is no 

signal. 

 

 

 

Figure 9: The representation of the network fundamental diagram 
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4.2.3 VT-micro model for estimating fuel consumption 
In consideration of simplicity, accuracy, and ease of implementation, we use the Virginia 

Tech Microscopic Energy and Emission Model (VT-Micro model) to describe environmental 

influence (Ahn, et al., 2002). It is a regression model which considers a combination of linear, 

quadratic, and cubic speed and acceleration terms. We utilize fuel consumption to indicate the 

environmental impacts of our algorithm. Lower fuel consumption corresponds to 

environmental improvement. This model provides the least number of terms with a relatively 

good fit to the original data (𝑅2 in excess of 0.92 for all measures of effectiveness (MOE)). The 

model has the following form: 

𝑀𝑂𝐸𝑒(𝑡, 𝑛) = {
𝑒∑ ∑ 𝐿𝑖,𝑗

𝑒 𝑣𝑛(𝑡)
𝑖𝑎𝑛(𝑡)

𝑖𝑖=3
𝑖=3

𝑖=3
𝑖=0 , if 𝑎𝑛(𝑡) ≥ 0

𝑒∑ ∑ 𝐹𝑖,𝑗
𝑒 𝑣𝑛(𝑡)

𝑖𝑎𝑛(𝑡)
𝑖𝑖=3

𝑖=3
𝑖=3
𝑖=0 , if 𝑎𝑛(𝑡) < 0

(22.) 

where 𝑀𝑂𝐸𝑒(𝑡, 𝑛) is instantaneous fuel consumption (𝑙/𝑠) of vehicle 𝑛 at time 𝑡, 𝐿𝑖,𝑗
𝑒  and 𝐹𝑖,𝑗

𝑒  

are regression model coefficients for MOE `𝑒' at speed power `𝑖' and acceleration power `𝑗', 

𝑣(𝑡, 𝑛) is instantaneous vehicle speed (𝑘𝑚/ℎ), and 𝑎(𝑡, 𝑛) is instantaneous vehicle acceleration 

(𝑘𝑚/ℎ/𝑠). To create a simple enough condition, the vehicles utilized in our system are assumed 

to be composite, and the coefficients we utilize are the averages of 9 vehicle categories, as 

Table 2 and Table 3 show. 

Table 2: Positive Acceleration Coefficient 

 

 

Coefficient 𝐂𝐨𝐧𝐬𝐭𝐚𝐧𝐭  𝐀𝐜𝐜𝐞𝐥𝐞𝐫𝐚𝐭𝐢𝐨𝐧  𝐀𝐜𝐜𝐞𝐥𝐞𝐫𝐚𝐭𝐢𝐨𝐧𝟐  𝐀𝐜𝐜𝐞𝐥𝐞𝐫𝐚𝐭𝐢𝐨𝐧𝟑 
𝐂𝐨𝐧𝐬𝐭𝐚𝐧𝐭  7.734520000 0.229460000 -0.005610000 0.000097730 
𝐒𝐩𝐞𝐞𝐝  0.027990000 0.006800000 -0.000772210 0.000008380 
𝐒𝐩𝐞𝐞𝐝𝟐   -0.000222800 -0.000044020 7.90000 × 10−7  8.17000 × 10−7  
𝐒𝐩𝐞𝐞𝐝𝟑  1.09000 × 10−6 4.80000 × 10−8  

 

3.27000 × 10−8  -7.79000 × 10−9 
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Table 3: Negative Acceleration Coefficient 

 

As mentioned above, all the vehicles have the same individual periods and cover the same 

distance during one individual period in stationary states. Therefore, we use the average fuel 

consumption of vehicle 1 to move one unit distance in one individual period to represent the 

fuel consumption level.  Considering the computation cost, we choose 50 cycles, which is long 

enough and only results in a small and acceptable error, as the upper boundary of individual 

periods. It means that if periods are larger than 50 cycles, we calculate the average fuel 

consumption during 50 cycles. The total fuel consumption of the first vehicle in one period is 

the sum of the instantaneous fuel consumption, as follows: 

𝑉1 = ∑ 𝑀𝑂𝐸𝑒(𝑡𝑠𝑡𝑒𝑝Δ𝑡, 1)Δ𝑡

𝑡𝑠𝑡𝑒𝑝=
𝜎
Δ𝑡

𝑡𝑠𝑡𝑒𝑝=
𝜎−𝑧
Δ𝑡

. (23.) 

The corresponding distance the vehicle has covered can be calculated through: 

𝑑1 = 𝑥1(𝜎) − 𝑥1(𝜎 − 𝑧), (24.) 

𝑧 = {
𝑇1(𝑁)𝐵, 𝑖𝑓 𝑇1(𝑁) ≤ 50

50𝐵, 𝑖𝑓 𝑇1(𝑁) > 50
 

where 𝜎 is the simulation duration, 𝑇1(𝑁) is the individual period of vehicle 1 (its unit is the 

cycle length), 𝑁 is the total number of vehicles in the system (it can represent congestion 

levels), Δ𝑡 is the time-step size, 𝑡𝑠𝑡𝑒𝑝 is time in the unit of time step-size. To move a certain 

distance 𝑑1, the fuel we need is 𝑉1. Thus, the quotient of the two represents the fuel required 

for a car to travel per unit distance, as follows: 

𝑉̅1 =
𝑉1
𝑑1
. (25.) 

 

 

Coefficient 𝐂𝐨𝐧𝐬𝐭𝐚𝐧𝐭  𝐀𝐜𝐜𝐞𝐥𝐞𝐫𝐚𝐭𝐢𝐨𝐧  𝐀𝐜𝐜𝐞𝐥𝐞𝐫𝐚𝐭𝐢𝐨𝐧𝟐  𝐀𝐜𝐜𝐞𝐥𝐞𝐫𝐚𝐭𝐢𝐨𝐧𝟑 
𝐂𝐨𝐧𝐬𝐭𝐚𝐧𝐭  -7.734520000 -0.017990000 -0.004270000 0.000188290 
𝐒𝐩𝐞𝐞𝐝  0.028040000 0.007720000 0.000837440 0.000033870 
𝐒𝐩𝐞𝐞𝐝𝟐   -0.000219880 -0.000052190 -7.44000 × 10−7  2.77000 × 10−7  
𝐒𝐩𝐞𝐞𝐝𝟑  1.08000 × 10−6 2.47000 × 10−8  

 

4.87000 × 10−8  3.79000 × 10−9  
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5. Numerical example 

5.1 Simulation setup 
To begin with, we build the simulation system, and the parameters settings are listed in 

Table 4. 

Table 4: Settings of the simulation 

 

We construct a signalized ring road with one lane and one typical three-color traffic light. It 

is equivalent to a fixed segment, on which there is inexhaustible traffic flow. We assume all 

drivers are aggressive. Initially, vehicles are evenly distributed on the ring road and labeled in a 

counterclockwise direction. After the simulation begins, the signal starts with a green interval, 

and vehicles move clockwise. When the signal turns from red to green, the first stopping 

vehicle's reaction time is 1.5𝑠𝑒𝑐. We set Δ 𝑛 to be 1 and traverse the density from 0 to near 𝑘𝑗. 

Based on the system we have created the jam density 𝑘𝑗 =
1

𝜁
=

1

7
 𝑣𝑒ℎ/𝑚, thus the simulation 

starts from 2 vehicles to 101 vehicles.  

5.2 Results of system mobility 
Network fundamental diagrams of three car-following models are shown in Figure 10. It 

can be found that the impact of our algorithm shows similar patterns for all three models. The 

static ASL makes no difference in the under-saturated condition, but it reduces system mobility 

in the saturated condition compared to the cases without control. Applying the dynamic ASL 

can increase system mobility in the saturated condition. However, it cannot contribute to 

system mobility in the under-saturated or the over-saturated conditions. These are consistent 

with our anticipation in Section 3.2 that lost time may increase. 

 

  

Parameters Values Parameters Values 
Road length 𝐿 720𝑚  ASL implementation area 𝐷 300𝑚  
Minimum clearance 𝑠0 2𝑚  Vehicle length 𝑙𝑛 5𝑚  
Jam spacing 𝜁 7𝑚  Time gap 𝜏 1.5𝑠  
Reaction time 𝑡𝑟𝑒 0.5𝑠  Cycle length 𝐵 60𝑠  
Green interval 𝐺 24𝑠  Yellow plus all-red interval 𝑌 6𝑠  
Red interval 𝑅 30𝑠  Phase ratio 𝜋 0.5  
Free-flow speed 𝑣𝑓 12𝑚/𝑠  Bounded acceleration 𝑎0 1.5𝑚/𝑠2  
Bounded deceleration 𝑏 3𝑚/𝑠2  Acceptable error range 𝜖 10−5  
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Figure 10: NFDs of different car-following models 

a) BA Newell's model                    b) Simplified Gipps model           c) Krauss model 

   

We plot vehicle trajectories of three models in the last five cycles when 1. there is no ASL; 

2. the static ASL is applied; 3. the dynamic ASL is applied. Because ASL mainly function in the 

saturated condition, we choose 50 vehicles, which corresponds to about 0.5𝑘𝑗 , as an example. 

The signals are plotted at the beginning and the end of the road, and note that the green 

represents the phase, including green and yellow plus red intervals. The trajectories are shown 

in Figure 11. The magenta and blue trajectories clearly show that when there is no control or 

when the static ASL is applied, vehicles must still stop before the intersection, and the lost time 

cannot be reduced.   From the cyan trajectories, we can see that vehicles directly accelerate 

from the ASL, shortening the acceleration process and resulting in reduced start-up time and 

smoother trajectories. 

Figure 11: Vehicle trajectories in the last 5 cycles 

a) BA Newell's car-following model 
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b) Simplified Gipps model 

 

c) Krauss model 

 

5.3 Results of fuel consumption 
We choose fuel consumption to measure environmental impacts and utilize the VT-micro 

model to calculate it. We assume all the vehicles are connected and discuss the conditions of all 

these models. Considering the reality, we set the upper boundary of fuel consumption for a 

vehicle (either a connected vehicle or a non-connected vehicle) to cover a unit distance to be 

50 liters. Because 50 liters is the capacity of many fuel tanks, and 50𝑙/𝑚 means that the vehicle 

uses up all the fuel immediately. Therefore, when the calculated fuel consumption is larger 

than 50𝑙/𝑚, we consider it to be 50𝑙/𝑚.  Because network fundamental diagrams have shown 

that the static ASL can have a negative effect on system mobility, we no longer discuss the 

static ASL here. 

The reduction rates of fuel consumption versus relative densities are plotted in Figure 12. 

We fitted the trend of fuel consumption versus densities through nonlinear regression.  The 

performance of our algorithm in the three models is still similar.  In addition, the impact of the 

dynamic ASL has similar trends from the perspectives of system mobility and fuel consumption. 

It has the best performance in the saturated condition, and the reduction rate (the proportion 

of the fuel that can be saved through the dynamic ASL) can reach up to about 45%. 
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Figure 12: Reduction of fuel consumption of different car-following models 

a) BA Newell’s model                         

  

b) Simplified Gipps model 

  

c) Krauss model 
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6. Impacts of market penetration rates (MPRs) and ASL 
implementation areas 

In this chapter, we detect the effect of our algorithm under different MPRs and ASL 

implementation areas. We adopt the Krauss model to apply our algorithm and show how the 

algorithm can increase system mobility and reduce fuel consumption with different MPRs and 

ASL implementation areas.  

6.1 Impact of MPRs 
In our study, we consider the MPR as the probability of a vehicle in the system being a 

connected vehicle. For one density and one MPR, the number of connected vehicles in the 

system is fixed, but the distribution of connected vehicles and non-connected vehicles is 

random. That is, some random elements are added to the system, and simulation results may 

be different from time to time. Therefore, we use Monte Carlo simulation (Mooney, 1997) 

(Raychaudhuri, 2008). We simulate ten times at each density point and calculate the average. 

We take 0.1, 0.5, 0.7, and 1 MPRs of connected vehicles as examples. The results are 

shown in Figure 13. From the perspectives of both system mobility and fuel consumption, in the 

cases of different MPRs, the ASL algorithm mainly plays a role in the saturated condition. 

Neither under-saturated condition nor over-saturated condition can it fully function. From 

Figure 13a we can see that the improvement rate of system mobility is not obvious when the 

MPR is low. When the MPR is 0.1, the corresponding NFD shows little difference. However, 

when the MPR increases to 0.5 or 0.7, we can see more improvement in system mobility 

through corresponding NFDs. When the MPR is 1, system mobility can be further improved. 

Impacts to fuel consumption under different MPRs are shown in Figure 13b. We can see a 

substantial reduction in fuel consumption when the MPR is only 0.1, and a higher MPR leads to 

more reduction. 0.5 MPR can lead to as much as 40% fuel consumption reduction and when the 

MPR increases to 1, about 45% of fuel can be saved.  

To conclude, the results about MPRs conform to the rules of our algorithm: it should work 

even when there is only one connected vehicle in the system, but with a higher MPR, it should 

have better performance. 

 

 

 

 

 



Impacts of connected and autonomous vehicles on the performance of signalized networks:  A network 
fundamental diagram approach 

 

26 
 

Figure 13: NFDs and fuel consumption reduction of the dynamic ASL under different MPRs 

a) Network fundamental diagram                       

  

b) Fuel consumption reduction 

 

Vehicle trajectories under different MPRs are plotted in Figure 14. We still take vehicle 

number is 50 as an example. It should be noted that as mentioned above, some stochastic 

elements exist in our simulation when considering MPRs, thus vehicle trajectories are only a 

sample. We plot vehicle trajectories in the last five cycles when MPRs are 0.1, 0.5, 0.7, and 1. 

From trajectories we can see that the trajectories are smoother and stopping time can already 

be reduced to a great extent when the MPR is only 0.1, and with the increase of MPRs, stopping 

time can be further reduced. In the cases when MPRs are low, stopping behaviors cannot be 

eliminated and many vehicles still need to accelerate from zero when going through the 

intersection, and the accelerating process cannot be shortened. Thus, from the perspective of 

system mobility, the effect of ASL is relatively limited when MPRs are very low. 
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To summarize, ASL can make trajectories smoother, and the degree to which trajectories 

become smoother is positively related to MPRs. Therefore, the improvement rate of system 

mobility and the reduction of fuel consumption is also positively related to MPRs. 

Figure 14: Vehicle trajectories in the last 5 cycles under different MPRs 

a) MPR=0.1                                                                  b) MPR=0.5 

  

a) MPR=0.7                                                                  b) MPR=1 

  

6.2 Impact of ASL implementation areas 
Our study has proved that our ASL algorithm can contribute to the system when the ASL 

implementation area is 300 meters. The control group, that is, the case where no algorithm is 

applied can be regarded as the condition where the ASL implementation area is zero. 

Although increasing the ASL implementation area may improve the algorithm's 

performance, a larger ASL implementation area will result in higher communication and 

computation costs. Therefore, our principle for selecting the ASL implementation area is to 

reduce the computation and communication cost as much as possible while guaranteeing the 

efficacy of ASL algorithms. The selection of the ASL implementation area can be formulated as 

an optimization problem as follows: 
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min𝐷

𝑠. 𝑡.  {

𝐷 ≤ 300,
𝐷 ≥ 0,

|𝑉̅1(𝐷) − 𝑉̅1(300)| ≤ 𝜖,
|𝑞𝑐(𝐷) − 𝑞𝑐(300)| ≤ 𝜖,

  (26.) 

where 𝐷 is the length of the ASL implementation area, thus it should be in the range of 0 to the 

maximum transmission range 300𝑚. 𝑉̅1(𝐷) is the average fuel consumption for vehicle 1 to 

move a unit distance in one period when the ASL implementation area is 𝐷, and 𝑞𝑐(𝐷) is the 

capacity of the system when the ASL implementation area is 𝐷. Therefore, the third and the 

fourth constraints mean that when the length of the ASL implementation area is 𝐷, the 

improvement in system mobility and the reduction in fuel consumption is almost the same as 

when it is 300𝑚. 

We assume the MPR is 1 and solve this problem through simulation. Because we have 

found that this algorithm mainly works in the saturated condition, we take vehicle numbers 

equal to 20, 30, 40, and 50 as examples. We change the ASL implementation area from 10𝑚 to 

300𝑚 at intervals of 10𝑚.  

The results are shown in Figure 15. From the results, we can see that the system mobility 

improvement and fuel consumption reduction show the same tendency along the ASL 

implementation area. When the ASL implementation area is larger than certain values, system 

mobility improvement and fuel consumption reduction are stable, and the algorithm can fully 

function. For system mobility, it can no longer be improved when the ASL implementation area 

is shorter than 50𝑚. The reduction in fuel consumption gradually disappears when such an 

area is smaller than 100𝑚. Considering all the conditions, to guarantee control results as well 

as reduce computation cost, we recommend the ASL implementation area to be approximate 

100𝑚. 

Figure 15: System mobility improvement and fuel consumption reduction with different ASL 
implementation areas 

a) System mobility                                                      b) Fuel consumption 
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7. Conclusion 
In this project, we formulate and analyze a heuristic hierarchical ASL algorithm based on 

the idea in (Ubiergo & Jin, 2016) that all the vehicles enter the intersection at saturation 

headway intervals. The entire algorithm consists of three steps: 1. we calculate the desired 

arrival time based on the original speed limit; 2. we calculate the desired arrival time based on 

the minimum headway to front vehicles;  3. we calculate the ASL with the desired arrival time 

and the distance to the intersection. We consider two implementations of the algorithm: the 

static ASL and the dynamic ASL.  

We first theoretically analyze the effects of our algorithm on vehicle trajectories with the 

two implementations at different congestion levels and find that the lost time not only will not 

decrease but may increase with the static ASL, while the dynamic ASL can reduce the lost time 

and eliminate stopping behaviors. We then apply our algorithm with the BA Newell’s car-

following model, the Gipps model, and the Krauss model, and propose the use of network 

fundamental diagrams and fuel consumption to evaluate the efficacy of our algorithm. The 

fundamental diagrams show that the static ASL has negative effects on system mobility, while 

the dynamic ASL can improve system mobility. Especially in the saturated condition,  system 

mobility increases by nearly 10%. These findings are consistent with our analysis. The fuel 

consumption of one vehicle to move a unit distance also decreases after applying the dynamic 

ASL. Our algorithm still has the best performance in the saturated condition, where the fuel 

consumption can be reduced by up to 45%. 

In addition, we study how MPRs and ASL implementation areas can influence the efficacy 

of our algorithm. In general, the efficacy of our algorithm improves with the increase of MPRs, 

however, even with 0.1 MPR, our algorithm can substantially reduce fuel consumption. We also 

proposed a recommendation for the ASL implementation area to be about 100 meters, which 

can not only guarantee algorithm efficiency but also reduce communication and computation 

costs. 

But our study still has certain limitations. We consider that not only MPRs can influence 

the efficiency of our algorithm. Firstly, we only consider the one-lane scenario and assume that 

vehicles are first-in-first-out (FIFO). However, when we consider the multilane scenario where 

lane-changing and overlapping may happen, the performance of our algorithm may be 

different, and evaluating the performance of our algorithm in the multilane scenario is one 

extension of this study. Under one MPR, the distribution of connected vehicles and non-

connected vehicles may also impact how our algorithm can function, and this can also be one 

extension of this study. Besides, we can consider different categories of vehicles, things like 

buses and trucks, and explore what effect our algorithm will have on different categories of 

vehicles. In addition, the numerical analysis of our algorithm in this study is based on 



Impacts of connected and autonomous vehicles on the performance of signalized networks:  A network 
fundamental diagram approach 

 

30 
 

simulations with car-following models, while we consider applying our algorithm to real 

vehicles or to scaled-down vehicle models in the future to provide a more comprehensive 

evaluation of our algorithm. 
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Data Management Plan (Heading 1 style) 

Products of Research  
As a simulation-based study, the products of this project include: 

1. A peer-reviewed research report. 
2. A script for simulating the application of our algorithm 

Data Format and Content  
The research report will appear in a common document-viewing format, such as PDF, the 

script is written in Python, and a Jupyter notebook file will be provided. 

Data Access and Sharing  
The numerical study is based on simulation, and no personal data is used in the project, so 

there is no threat of identity theft. The jupyter notebook file can be accessed and downloaded 
from: https://github.com/ximeng96/Advisory-speed-limit-ASL-algorithm  

Reuse and Redistribution  
The research products' intellectual property rights are owned by the project's researchers, 

who also manage the data before their transfer to a data archive. Public agencies such as 
Caltrans have free and complete access to the research products. The team permits the use of 
research products with appropriate citation and credit to the research team and project. 
 
 

 


