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Executive Summary 

Lately, the transportation industry has been concentrating heavily on the technologies of 

connected and autonomous vehicles (CAVs). The lane-changing problem of autonomous vehicles 

has been the central topic of our project. Accidents can occur due to inappropriate lane changes 

caused by human drivers' inefficiency in predicting and estimating the surrounding environment. 

Therefore, our project has aimed to develop effective methodologies to enhance the safety and 

comfort of passengers traveling in AVs by efficiently changing lanes in mixed traffic conditions.  

Firstly, to guarantee stability and robustness in the face of parametric uncertainties, non-

linearities, and modeling errors, we have proposed a data-driven optimal control algorithm to 

solve the lane-changing problem of AVs which is inspired by reinforcement learning and adaptive 

dynamic programming. The robustness and optimality of the proposed data-driven control 

algorithm are guaranteed by combining gain-scheduling and Linear Quadratic Regulator (LQR) 

control respectively. Rigorous theoretical analysis and several SUMO simulations are performed 

to establish the effectiveness of the proposed control algorithm.  

Secondly, we have developed a lane change decision-making algorithm to ensure safe and 

efficient lane change. The lane change decision-making algorithm includes inequalities that check 

the safe distance of the AV from the surrounding vehicles. The safe distance from each 

surrounding vehicle is chosen as a function of their respective velocities which ensures more 

safety for fast-moving vehicles. The proposed lane change decision-making algorithm can make 

the AV abort any initiated lane change maneuver at any time if the safety conditions are not met. 

In such scenarios, the proposed decision-making algorithm makes the AV maneuver back to the 

original lane.  

Thirdly, the lane change risk index (LCRI) is used to evaluate the AV lane change safety obtained 

by using the proposed data-driven optimal control algorithm. The safety of the proposed 

technique is compared with Model Predictive Control (MPC) and it was found that the proposed 

technique provided better safety as compared to MPC. Moreover, it is shown that the proposed 

data-driven optimal control algorithm is also computationally efficient than MPC.  

Fourthly, we have combined the data-driven optimal controller with the lane change decision-

making algorithm by using control barrier functions (CBFs). The lane change decision-making 

algorithm includes inequalities that check the position of the AV from the surrounding vehicles 

and ensures that the AV is at a safe distance from the surrounding vehicles. These inequalities 
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have been formed in such a way that they satisfy the requirements to behave as CBFs. Note that 

in the previous formulation of data-driven optimal control for AV lane change, stability was 

ensured independent of safety. In the new formulation with CBFs, we try to compute an optimal 

control action that guarantees stability as well as safety. Such formulation has been seen to 

improve the performance of safety-critical systems like AVs. 

Lastly, we have developed an experimental setup that includes prototypes of AV and highway 

lanes. The computation device on the AV is a Raspberry Pi microcontroller with is connected to a 

camera and a GPS device. The controller obtained from the proposed data-driven optimal control 

algorithm is tested on the AV prototypes. It was found that the AV was successful in changing 

lanes despite the noise in the measurement and uncertainty in the system parameters.  
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Automated Lane Change and Robust Safety 

Background and Contribution 

Inappropriate lane changes are responsible for one-tenth of all accidents in the U.S. [1], due to 

human drivers’ inaccurate estimation and prediction of the surrounding traffic, illegal maneuver, 

and inefficient driving skill. Automated lane-changing is regarded as a solution to reduce these 

human errors. Recently, the rapid development of computing, communication, and sensing 

technologies advances automated lane-changing and prompts the development of safer and 

more reliable lane-changing methods. Traditionally, the automated lane-changing task can be 

decomposed into three modules: decision-making, trajectory planning, and controller design for 

AV lane change maneuver [2]. The decision-making module determines whether to execute or 

abort the lane change according to the safety constraints, which are obtained by using the state 

(position, velocity, acceleration) information of the surrounding vehicles through V2V 

communication and sensing. The trajectory planning module generates the feasible trajectory for 

lane-changing, which will be tracked by the control module. There are several challenges to 

automated lane-changing. Firstly, the complex interactions between the AV and the surrounding 

vehicles and environment make it hard to guarantee safety during lane-changing. Secondly, the 

rapid velocity of the vehicles requires that the lane-changing algorithm should quickly respond 

to the driving conditions in real-time. Thirdly, an accurate dynamic model of the AV and its 

surrounding environment is hard to get. Fourthly, the lane change maneuvers require both 

longitudinal and lateral controller design. Many studies in the literature have studied the problem 

of longitudinal control of AV, some recent studies are done by [3,4,5]. However, it remains 

challenging to precisely control the lateral movement of the AV, especially in the absence of an 

accurate model [6].  

Over the past few years, many decision-making and trajectory-planning methodologies are 

proposed in the literature. Authors in [7] proposed a utility function-based lane change and 

merge technique. The utility function considers the discretionary, anticipatory, and mandatory 

conditions to judge the desirability of the AV to change lanes. Once lane change is deemed 

desirable, a safe longitudinal and lateral safety corridor are determined to perform the 

maneuver. This methodology requires tuning of parameters for the utility functions that can 

affect lane change decision-making. Authors in [8] proposed a real-time dynamic cooperative 

lane-changing model for CAVs with possible accelerations of a preceding vehicle. The lane change 

decision is based on the upper and lower bounds of acceleration of the preceding and following 
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vehicles in the target lane. The lane change trajectory is then generated using a cubic polynomial. 

Here, the acceleration bounds are derived using a simple kinematic model of the AV that might 

not be accurate. Authors in [9] and [10] proposed a constrained optimization-based lane-

changing methodology. The objective function is minimized for the longitudinal and lateral jerks, 

and the total distance of lane change with safety constraints defined as minimum safety spacing 

(MSS). Computing the MSS model is complex in the formulation given by [9], and requires the 

knowledge of the dimension of the surrounding vehicles in the formulation given by [10] which 

might be difficult to estimate for the vehicles that are behind AV. A more practical scenario is 

considered by [11] and [12] where both human-driven vehicles and CAVs interact for lane change 

maneuvers where the safety distances are computed using Gipps’s safe distance and intelligent 

driver model. Authors in [13] proposed a cooperative lane-changing methodology where a 

decentralized cooperative lane-changing decision-making framework for CAV is composed of 

state prediction, candidate decision generation, and coordination with surrounding vehicles.  

Once the lane change decision-making is completed, the next task is to move the AV to the 

desired position/gap in the desired lane. Many control techniques have been proposed in the 

past to maneuver the AV to the desired lane while ensuring safety, see [7]-[14]. In [12], the 

authors have implemented a model predictive control (MPC) based trajectory-tracking 

controller. Authors in [7] used quadratic programming (QP) to compute the control signals for 

lateral and longitudinal maneuvers, where a double integrator model is used for the AV dynamics. 

Authors in [11] and [12] used MPC-based methods for the vehicle control which uses the two-

wheel kinematic vehicle model. Here, the two front (or rear) wheels are considered as one wheel. 

Authors in [9]  proposed a trajectory-tracking controller based on sliding mode control. The 

tracking controller is based on the backstepping approach. Authors in [15] used a hierarchical, 

two-level architecture for the trajectory generation and vehicle control of AV. The high-level 

planner uses a simplified point-mass model and linear collision avoidance constraints, whereas, 

the low-level controller uses a non-linear vehicle model to compute the vehicle control inputs 

required to execute the planned maneuvers. Both the planners are formulated based on MPC. 

Authors in [16] formulated a stochastic MPC controller. The MPC controller can predict future 

states and implement constraints directly into the control algorithm. The proposed algorithm 

uses a linear parameter-varying (LPV) vehicle model. 

 

As evident from the literature, most of the works done to solve the lane changing problem of AVs 

used model-based techniques. One major limitation of these model-based approaches is that the 
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performance of the automated lane-changing algorithm highly depends on the accuracy of the 

AVs' model, and the inaccurate model may deteriorate the lane-changing performance.  Many of 

the methodologies mentioned above require solving an optimization problem in real-time to 

generate/track safe trajectories for the AV lane change maneuver which requires high 

computation effort. Because of these observations, we believe that learning-based optimal 

control is more desirable for practical implementation, which can continually handle any model 

uncertainty introduced by the unknown dynamical parameters and simultaneously optimize the 

performance of the AV lane-changing maneuver by learning from the real-time data. Also, we 

propose a lane-changing algorithm that does not require parameter tuning, solving an 

optimization problem, or vehicle dimension information. 

This paper adopts ideas from reinforcement learning and adaptive dynamic programming (ADP)  

([17]-[20])  to develop an intelligent and safe lane change maneuver algorithm for AVs in the 

mixed traffic scenario. One major advantage of ADP, as opposed to traditional reinforcement 

learning ([17]), lies in the fact that the closed-loop stability of the dynamical system is established 

when the learned control policy is implemented. Noting the facts that maintaining a constant 

velocity during lane change is impractical, and the lateral dynamics of AV depend on the 

longitudinal velocity, we assume an linear parameter-varying  (LPV) AV dynamics instead of an 

linear time-invariant (LTI) dynamic AV model. Thus, one cannot directly apply the LTI data-driven 

controller techniques developed by [21], [18]. In this work, we aim at extending the results of 

[18] for LPV systems. Many authors in the literature have proposed control techniques for LPV 

systems, some of them are summarized in [22,23]. Among other methods, gain scheduling is 

more suitable for the control of LPV systems if the time-varying parameter varies slowly. The 

authors in [22,25] were the first to introduce the systematic design and analysis of gain scheduled 

controllers for LPV systems. Gain scheduling has gained popularity as a control technique for 

complex systems like wind turbines ([26]), missile autopilot ([27, 28]), flight control ([29]), cloud 

computing ([30]), and more recently for AV control ([31]-[35]). However, these methods are 

model-based and suffer from the drawbacks mentioned before. In this work, we propose a 

learning-based gain scheduling technique. This work is an extension of our previous work done 

by [36]. The difference between the work done by [36] and the present work is that the present 

work provides rigorous stability analysis of the learning-based gain scheduling controller. Also, 

the present work studies the safety of the AV during lane change maneuvers when the proposed 

learning-based gain scheduling controller is used. 
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The term “safety-critical system” is used to classify those systems for which safety is considered 

as a major design problem. Control barrier functions (CBFs) have been used to ensure safety in 

autonomous systems [37]. A barrier function based supervisory control algorithm is proposed in 

[38], which works in a plug-and-play fashion. When the risk of collision is low, the barrier function 

is not active; when the risk is high, the barrier function controller will intervene to ensure safety. 

This method is applied to solve the navigation and pedestrian avoidance problem of a low-speed 

AV. In [39], a methodology is proposed for control of safety-critical systems, where the safety 

conditions expressed as control barrier functions are unified with control objectives expressed 

as control Lyapunov functions (CLFs). Here, given a control objective and an admissible set in the 

state space, a quadratic program (QP) is formulated that can mediate the tradeoff between 

obtaining stability and ensuring safety. Here, stability objective is used as a soft constraint while 

safety objective is used as a hard constraint in QP. The proposed methodology is demonstrated 

on adaptive cruise control and lane keeping. A similar algorithm of using a CLF-CBF-QP based 

control methodology is developed for lane change maneuver of autonomous vehicles in [40]. In 

[41], a Constrained Iterative Linear Quadratic Regulator (CILQR) is proposed for motion planning 

of autonomous vehicles. By writing the ILQR problem as a CILQR problem, the constraints for 

obstacle avoidance and reference tracking are incorporated in the objective function. It should 

be noted that, most of the works done in CBF formulation to ensure safety requires the 

information of the system models. Thus, these CBF formulations suffers from similar drawbacks 

of model-based control as mentioned before. In this work, we propose a data-driven formulation 

for safety of safety-critical systems using CBFs that do not require the knowledge of system 

model.  

The main contributions of this work are summarized as follows:  

• Introduced a learning-based optimal control design technique for lane-changing of AVs 

that       

o Uses only the state and input information.  

o Guarantees algorithmic convergence and vehicle stability.  

• Proposed a data-driven lane-changing decision-making algorithm that incorporates the 

following:      

o Scales safe distances of nearby vehicles with their respective velocities. This 

ensures more safety for fast-moving vehicles.          

o Lane abortion in a critical scenario of non-cooperative behavior of surrounding 

vehicles. 
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•  Reduced the computation time by replacing the requirement of trajectory generation 

with a target point defined in the target lane for AV lane change.       

• Proposed a learning-based gain-scheduling controller to handle parameter-varying 

problems for the dynamic model of the AV. The stability of the learning-based gain-

scheduling controller has been rigorously established.      

• Demonstrated the applicability of the proposed methodologies in real-time learning and 

decision-making by SUMO implementation.  

• Developed a data-driven formulation to guarantee safety during AV lane change using 

CBFs. 

• Conducted experiments and verified the robustness of the data-driven controller in the 

presence of measurement noise.  
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Dynamic Model and Problem Formulation 

A. Longitudinal Dynamic Model 

The vehicle's longitudinal dynamic model is given as follows: 

𝒙̇𝑙𝑜 = 𝑨𝒍𝒐𝒙𝑙𝑜 + 𝑩𝑙𝑜𝒖𝑙𝑜 , 

where  

       𝑨𝑙𝑜 = [
0 1
0 0

] , 𝑩𝑙𝑜 = [0,
1

𝑚
]
𝑇
, 𝒙𝑙𝑜 = [𝑥1, 𝑥2]𝑇 , 

with 𝑚 = mass of the vehicle, and 𝒖𝑙𝑜 is the force in the acceleration paddle, 𝑥1 = longitudinal 

position (𝑥𝐴𝑉), and 𝑥2 = longitudinal velocity. 

B. Lateral Dynamic Model 

The lateral dynamic model is based on the position and orientation error variables as shown in 

Fig. 1. Let (𝑇𝑥, 𝑇𝑦) be the coordinates of the target point, 𝜓  be the orientation of the vehicle, 𝑒1 

be the error between the distance of the center of gravity of the vehicle and the center line of 

the target lane, and 𝑒2  be the orientation error of the vehicle with respect to the road. 

 

Assumption : Vehicles travel on a straight road with radius 𝑟 = ∞. 

The dynamic model is given as: 

𝒙̇𝑙𝑎 = 𝑨𝑙𝑎𝒙𝑙𝑎 + 𝑩𝑙𝑎𝒖𝑙𝑎, 

where 𝒖𝑙𝑎 is the front wheel steering angle,  

𝒙𝑙𝑎 = [𝑒1(𝑡), 𝑒1̇(𝑡), 𝑒2(𝑡), 𝑒2̇(𝑡)]
𝑇, 𝑩𝑙𝑎 = [0,

2𝐶𝛼𝑓

𝑚
, 0,

2𝐶𝛼𝑓𝑙𝑓

𝐼𝑧
]
𝑇

, 

Fig. 1: Defining the errors 𝑒1(𝑡) and 𝑒2(𝑡)  

(2) 

(1) 
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𝑨𝑙𝑎 =

[
 
 
 
 
 
0 1 0 0

0 −
2𝐶α𝑓+2𝐶α𝑟

𝑚𝑉𝑥

2𝐶α𝑓+2𝐶α𝑟

𝑚

−2𝐶α𝑓𝑙𝑓+2𝐶α𝑟𝑙𝑟

𝑚𝑉𝑥

0 0 0 1

0
−2𝐶α𝑓𝑙𝑓−2𝐶α𝑟𝑙𝑟

𝐼𝑧𝑉𝑥

2𝐶α𝑓𝑙𝑓−2𝐶α𝑟𝑙𝑟

𝐼𝑧

−2𝐶α𝑓𝑙𝑓
2+2𝐶α𝑟𝑙𝑟

2

𝐼𝑧𝑉𝑥 ]
 
 
 
 
 

. 

To keep the development of the model-free learning-based controller simple, in this report, we 

assume that the longitudinal and lateral dynamics are linear. It can be seen from 𝑨𝑙𝑎that the 

longitudinal velocity 𝑉𝑥 appears non-linearly. From Fig. 1, the lateral position 𝑌(𝑡) of AV  and 

𝜓(𝑡) can be obtained as: 

𝑌(𝑡) = 𝑇𝑦 − 𝑒1(𝑡), 

𝜓(𝑡) = 𝜓𝑑𝑒𝑠 − 𝑒2(𝑡). 

 

 

C. Lane Change Decision Making 

In Fig. 2, 𝐴𝑉 denotes the autonomous vehicle, 𝐿𝐶 denotes the lead vehicle in the current lane, 

𝐹𝐶 denotes the following vehicle in the current lane, 𝐿𝑇 denotes the lead vehicle in the target 

lane, 𝐹𝑇 denotes the following vehicle in the target lane, 𝑆𝑖(𝑡) = 𝐿 + ℎ𝑣𝑖(𝑡), 𝑖 ∈

{𝐿𝑇, 𝐹𝑇, 𝐿𝐶, 𝐹𝐶}, ℎ = headway time, 𝐿 = length of vehicle, and 𝑣𝑖 = velocity of the 𝑖𝑡ℎ vehicle, 

𝑇𝑃 is the target point. In this work, the lane change decision making is introduced for a single 

lane change maneuver. As shown in Fig. 2, four vehicles are involved in a lane change 

maneuver. The 𝐴𝑉 performs a maneuver to change the lane and places itself in the target 

point. Let 𝑥𝐴𝑉, 𝑥𝐿𝑇 , 𝑥𝐹𝑇 , 𝑥𝐿𝐶 , 𝑥𝐹𝐶  be the longitudinal positions of the vehicles involved in the lane 

changing process. Then, the following conditions must hold true for a safe lane change: 

𝑥AV ≤ 𝑥𝐿𝐶 − 𝑆𝐿𝐶(𝑡), 

𝑥AV ≥ 𝑥𝐹𝐶 + 𝑆𝐹𝐶(𝑡), 

𝑥AV ≤ 𝑥𝐿𝑇 − 𝑆𝐿𝑇(𝑡), 

Fig. 2: A typical lane change Scenario 

(3) 

(4) 
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𝑥AV ≥ 𝑥𝐹𝑇 + 𝑆𝐹𝑇(𝑡), 

The safe distances 𝑆𝑖(𝑡) are evaluated continuously. If the above inequalities are violated at any 

time instant during the lane changing, the 𝐴𝑉 maneuvers back to the original lane. This 

maneuver is done based on the change of leader vehicle. Thus, when the safe conditions 

violate, the target point 𝑇𝑃 is chosen at a safe distance from the leader in the original lane. The 

complete lane change algorithm is presented in the flowchart below: 

 

 

 

D. Problem Definition 

Fig. 3: Lane change decision algorithm. 
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Given that the dynamics of the 𝐴𝑉 is unknown and 𝑇𝑃 in the target lane is defined, the 

following problem is addressed in this work: 

Problem: Design a lane changing algorithm for the 𝐴𝑉 that incorporates the following: 

(i) an optimal model-free controller for the 𝐴𝑉 's lateral maneuver such that 𝑒1 → 0 , 

𝑒2 → 0. 

(ii) an optimal model-free controller for the 𝐴𝑉's longitudinal maneuver. 

(iii) a lane change decision making mechanism based on inequalities in (4). 

(iv) an optimal model-free controller for post lane change platooning. 

(v) learning and scheduling optimal gains for change in longitudinal velocity. 

Learning-based Gain Scheduling Algorithm 

A. Model-based Learning 

The gain scheduling technique designs controllers as follows: at a good number of operating 

points obtain the linear time-invariant approximations of the system; design linear time-invariant 

controllers for each linear time-invariant approximations of the system at the selected operating 

points that guarantee stability and certain performance objectives; link these controllers 

together in order to obtain a single controller for the entire range of the system operation. 

Consider the following LPV system: 

𝒙̇ = 𝑨(α)𝒙 + 𝑩(𝛼)𝒖, 

α = α(𝑡), 

where, 𝒙(𝑡) ∈ ℝ𝑛  is the state vector, 𝒖(𝑡) ∈ ℝ𝑚  is the input, 𝑨(α) ∈ ℝ𝑛×𝑛 , and 𝑩(α) ∈

ℝ𝑛 ×𝑚  are the state and input matrices respectively that are considered unknown. For all 𝑡 ≥ 0 

the parameter α = α(𝑡) ∈ [α0, α𝑛] =: 𝐼 ⊂ 𝑅 . For what follows, we make the following 

assumptions: 

Assumption 1: For all 𝛼 ∈ 𝐼, the matrix 𝑩(𝛼) is full column rank.  

Assumption 2: The elements of the system matrices 𝑨(𝛼), and 𝑩(𝛼) are analytic functions of 𝛼. 

Assumption 3: The parameter 𝛼 is a continuous and bounded function of time 𝑡, differentiable 

almost everywhere with bounded derivative and is measured for all time 𝑡 > 0. 

(5) 

(6) 
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Assumption 4: All states are available for feedback, and the system in (5) is stabilizable for all 

𝛼 ∈ 𝐼. 

Without the knowledge of 𝑨(𝛼) and 𝑩(𝛼), we seek to design a linear optimal control law of the 

form: 

𝒖 = −𝑲(𝛼)𝒙, 

where, 𝑲(α) ∈ ℝ𝑚×𝑛 is the state feedback gain matrix. To design the state feedback control law 

in (7), we first select finite number of fixed α𝑙 ∈ 𝐼. Let 𝑲(α𝑙) and 𝑲(α𝑙+1), respectively, denote 

the gain matrices computed at the adjacent points α𝑙 and α𝑙+1. At each α ∈ [α𝑙 , α𝑙+1], the gain 

𝑲(α) in (7) is obtained as the linear interpolation between 𝑲(α𝑙) and 𝑲(α𝑙+1) given as: 

𝑲(α) = 𝑲(α𝑙) +
𝑲(α𝑙+1)−𝑲(α𝑙)

α𝑙+1−α𝑙
(α − α𝑙). 

The gain matrices are computed such that the following are satisfied: 

1. For each α𝑙 the state feedback gain matrix 𝑲(α𝑙) is computed such that the closed-

loop stability of the frozen system 𝑨𝑐(α𝑙) = 𝑨(α𝑙) − 𝑩(α𝑙)𝑲(α𝑙) along with a 

minimum cost of operating the system is guaranteed.  

2. At each α ∈ [α𝑙 , α𝑙+1], the gain 𝑲(α) obtained using (8) guarantees the stability of the 

closed-loop system. 

In order to reduce the state deviations and control effort, we seek to design a linear optimal 

control law of the form given in (7) for a fixed α𝑙 ∈ 𝐼 that can minimize the following cost 

function: 

min𝒖   𝐽 = ∫ (𝒙𝑇𝑸𝒙 + 𝒖𝑇𝑹𝒖)
∞

0

𝑑𝑡,

 
    

where, 𝑸 = 𝑸𝑇 ≥ 𝟎, 𝑹 = 𝑹𝑇 > 𝟎, and (𝑨(𝛼𝑙),𝑸
1/2) is observable. 

If 𝑨(𝛼𝑙), 𝑩(𝛼𝑙) are completely known, the solution to the above-mentioned problem is well 

known and the optimal gain matrix  𝑲∗ ∈ ℝ𝑚×𝑛   can be found as follows: 

𝑨(𝛼𝑙)
𝑻𝑷(𝛼𝑙) + 𝑷(𝛼𝑙)𝑨(𝛼𝑙) + 𝑸 − 𝑷(𝛼𝑙)𝑩(𝛼𝑙)𝑹

−𝟏𝑩(𝛼𝑙)
𝑻𝑷(𝛼𝑙) = 𝟎, 

𝑲(𝛼𝑙)
∗ = 𝑹−1𝑩(𝛼𝑙)

𝑇𝑷(𝛼𝑙)
∗,  

(7) 

(9) 

(8) 
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where (10) is called the algebraic Riccati equation and 𝑷(𝛼𝑙)
∗ = 𝑷(𝛼𝑙)

∗𝑇 ≥ 0  is the unique 

solution of (10). Since the Riccati equation is non-linear in 𝑷(𝛼𝑙) , it is generally difficult to solve. 

In the literature, many efficient iterative approaches have been proposed to solve (10). One such 

approach is given in [42], which is reproduced for completeness: 

Theorem 1: If 𝑲0(𝛼𝑙)  is any stabilizing control gain,  𝑨𝑘(𝛼𝑙)  =  𝑨(𝛼𝑙) − 𝑩(𝛼𝑙)𝑲𝑘(𝛼𝑙)  and 

𝑷𝑘(𝛼𝑙)  is the symmetric positive definite solution of the Lyapunov equation:  

𝑨𝑘(𝛼𝑙)
𝑻𝑷𝑘(𝛼𝑙) + 𝑷𝑘(𝛼𝑙)𝑨𝑘(𝛼𝑙) + 𝑸 + 𝑲𝑘

𝑻(𝛼𝑙)𝑹𝑲𝑘(𝛼𝑙) = 𝟎, 

𝑲𝑘+1(𝛼𝑙) = 𝑹−𝟏𝑩(𝛼𝑙)
𝑻𝑷𝑘(𝛼𝑙). 

Then, the following conditions hold: 

• 𝑨(𝛼𝑙) − 𝑩(𝛼𝑙)𝑲𝑘(𝛼𝑙) is Hurwitz, 

• 𝑷∗(𝛼𝑙) ≤ 𝑷𝑘+1(𝛼𝑙) ≤ 𝑷𝑘(𝛼𝑙),      

• 𝑙𝑖𝑚
𝑘→∞

𝑲𝑘(𝛼𝑙) = 𝑲∗(𝛼𝑙), 𝑙𝑖𝑚
𝑘→∞

𝑷𝑘(𝛼𝑙) = 𝑷∗(𝛼𝑙).   

Note that (12) is linear in 𝑷𝑘(𝛼𝑙) . Thus, one can iteratively solve (12) and update 𝑲𝑘  to 

numerically approximate the solution. But this assumes the complete knowledge of the system 

matrices 𝑨(𝛼𝑙), 𝑩(𝛼𝑙).   

B. Model-free Learning 

Here, we present an online model-free learning-based controller design strategy that does not 

assume any knowledge of the system matrices 𝑨(𝛼𝑙), 𝑩(𝛼𝑙). Consider the modified system 

equation as follows: 

𝒙̇ = 𝑨𝑘(α𝑙)𝒙 + 𝑩(α𝑙)(𝑲𝑘(α𝑙)𝒙 + 𝒖), 

where, 𝑨𝑘(𝛼𝑙)  =  𝑨(𝛼𝑙) − 𝑩(𝛼𝑙)𝑲𝑘(𝛼𝑙) . Then, using (12), (13), and (14), we have: 

𝒙(𝑡 + δ𝑡)𝑇𝑷𝑘(α𝑙)𝒙(𝑡 + δ𝑡) − 𝒙(𝑡)𝑇𝑷𝑘(α𝑙)𝒙(𝑡) 

    = ∫ [𝒙𝑇(𝑨𝑘
𝑇(α𝑙)𝑷𝑘(α𝑙) + 𝑷𝑘(α𝑙)𝑨𝑘(α𝑙))𝒙 + 2(𝒖 + 𝑲𝑘(α𝑙)𝒙)𝑇𝑩𝑻(α𝑙)𝑷𝑘(α𝑙)𝒙]

𝑡+δ𝑡

𝑡
𝑑τ, 

    =  2 ∫ (𝒖 + 𝑲𝑘(α𝑙)𝒙)𝑇𝑹𝑲𝑘+1(α𝑙)𝒙
𝑡+δ𝑡

𝑡
𝑑τ − ∫ 𝒙𝑇𝑸𝑘𝒙

𝑡+δ𝑡

𝑡
𝑑𝜏, 

(10) 

(11) 

(13) 

(12) 

(14) 

(15) 
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where, 𝑸𝑘 = 𝑸 + 𝑲𝑘
𝑻(𝛼𝑙)𝑹𝑲𝑘(𝛼𝑙). It must be noted that (15) is independent of the systems 

matrices 𝑨(𝛼𝑙),𝑩(𝛼𝑙). 

Define the following: 

𝒙𝑇𝑸𝑘𝒙 = (𝒙𝑇 ⊗ 𝒙𝑇)vec(𝑸𝑘), 

(𝒖 + 𝑲𝑘(𝛼𝑙)𝒙)𝑇𝑹𝑲𝑘+1(𝛼𝑙)𝒙

= [(𝒙𝑇 ⊗ 𝒙𝑇)(𝑰𝑛 ⊗ 𝑲𝑻
𝑘(𝛼𝑙)𝑹) + (𝒙𝑇 ⊗ 𝒖𝑇)(𝑰𝑛 ⊗ 𝑹)]vec(𝑲𝑘+1(𝛼𝑙)). 

For any positive integer 𝑙, define: 𝚫𝒙𝒙 ∈ ℝ𝑙×(1/2)𝑛(𝑛+1), 𝑰𝒙𝒙 ∈ ℝ𝑙×𝑛2
, 𝑰𝒙𝒖 ∈ ℝ𝑙×𝑛𝑚 as follows for 

0 ≤ 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑙: 

𝚫𝒙𝒙 = [𝒙(𝒕𝟏) − 𝒙(𝒕𝟎),⋯ , 𝒙(𝒕𝒍) − 𝒙(𝒕𝒍−𝟏)]
𝑇 , 

𝑰𝒙𝒙 =  [∫ 𝒙
𝑡2

𝑡1

⊗ 𝒙𝒅𝛕,∫ 𝒙
𝑡3

𝑡2

⊗ 𝒙𝒅𝛕,⋯ ,∫ 𝒙
𝑡𝑙

𝑡𝑙−1

⊗ 𝒙𝒅𝛕]

𝑇

, 

𝑰𝒙𝒖 = [∫ 𝒙
𝑡2

𝑡1

⊗ 𝒖𝒅𝛕,∫ 𝒙
𝑡3

𝑡2

⊗ 𝒖𝒅𝛕,⋯ ,∫ 𝒙
𝒕𝑙

𝒕𝑙−𝟏

⊗ 𝒖𝒅𝛕]

𝑻

, 

where 𝒙 = [𝒙𝟏
𝟐, 𝒙𝟏𝒙𝟐, … , 𝒙𝟏𝒙𝒏, 𝒙𝟐

𝟐, 𝒙𝟐, 𝒙𝟑, … , 𝒙𝒏−𝟏𝒙𝒏, 𝒙𝒏
𝟐]

𝑻
. Using (16)-(20), (15) can be written 

as:  

𝚪𝑘 [
𝒑̂

vec(𝑲𝑘+1(𝛼𝑙))
] = 𝚿𝑘 , 

where, 

𝚪𝑘 = [𝚫𝒙𝒙, −𝟐𝑰𝒙𝒙(𝑰𝒏 ⊗ 𝑲𝑘
𝑻(𝛼𝑙)𝑹) − 𝟐𝑰𝒙𝒖(𝑰𝒏 ⊗ 𝑹)], 

𝜳𝑘 = −𝑰𝒙𝒙vec(𝑸𝑘), 

𝒑̂ = [𝑝11, 2𝑝12, … ,2𝑝1𝑛, 𝑝22, 2𝑝23, … ,2𝑝(𝑛−1)𝑛 , 𝑝𝑛𝑛]
𝑇
. 

Thus, given an initial stabilizing control input, the trajectories of the system can be recorded 

online in (18)-(20), which can then be recorded in the data matrices (20), (21). The learning-

based control algorithm is presented in Fig. (4). 

Assumption 5: There exists a sufficiently large integer 𝑙 > 0, such that: 

rank([𝑰𝒙𝒙, 𝑰𝒙𝒖]) =
𝑛(𝑛 + 1)

2
+ 𝑚𝑛. 

(16) 

(17) 

(20) 

(19) 

(18) 

(19) 

(20) 

(21) 
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Theorem 2[18,19]: Under the assumption (22), there is a unique pair of matrices 

𝑷𝑘(𝛼𝑙),𝑲𝑘+1(𝛼𝑙), with 𝑷𝑘(𝛼𝑙) = 𝑷𝑘
𝑻(𝛼𝑙), ∀𝑘 ∈ ℤ+, such that: 

𝚪𝑘 [
𝒑̂

vec(𝑲𝑘+1(𝛼𝑙))
] = 𝚿𝑘 . 

Theorem 3 [18,19]: Given an initial stabilizing gain 𝑲0(𝛼𝑙) if (22) holds, the sequence {𝑷𝑖(𝛼𝑙)}𝑖=0
∞  

and {𝑲𝑖(𝛼𝑙)}0
∞  obtained by solving (23) converge to the optimal values 𝑷∗(𝛼𝑙)  and 𝑲∗(𝛼𝑙), 

respectively.  

 

 

Thus, we have established a learning-based optimal control framework for fixed α𝑙 ∈ 𝐼 . The 

optimality and convergence guarantee of the optimal learning-based controller for a fixed α𝑙 ∈ 𝐼 

are given by Theorem 2 and Theorem 3. It remains to show that that closed loop system 𝑨𝑐(α) =

(22) 

(23) 

Fig. 4: Learning-based control algorithm. 
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𝑨(α) − 𝑩(α)𝑲(α)  is stable for the control gain 𝑲(α)  obtained using (8) for any fixed α ∈

[α𝑙 , α𝑙+1]. This is discussed in the next subsection. 

C. Stability analysis of LPV systems with learning-based gain scheduling controller 

Let σ(𝑨𝑐(α𝑙)) be the spectrum of the closed-loop system with the feedback gain  𝑲(α𝑙). Since, 

we can design an optimal learning-based controller for a fixed α𝑙 ∈ 𝐼, we call the spectrum of 

σ(𝑨𝑐(α𝑙))  optimal, where 𝑨𝑐(α𝑙) = 𝑨(α𝑙) − 𝑩(α𝑙)𝑲
∗(α𝑙) . Suppose λ𝑜

𝑗
∈ σ(𝑨𝑐(α𝑙))  is an 

eigenvalue in the optimal spectrum σ(𝑨𝑐(α𝑙)) , and λ𝑗 ∈ σ(𝑨𝑐(α))  be an eigenvalue in the 

spectrum σ(𝑨𝑐(α)), where, 𝑗 = 1,2,⋯ , 𝑛. In this subsection, we discuss how close α𝑙 and α𝑙+1 

must be such that for each fixed α ∈ [α𝑙 , α𝑙+1],  𝜆𝑗 is in a small neighbourhood 

𝒩𝑗(ϵ) of σ(𝑨𝑐(α𝑙)), i.e, λ𝑗 ∈ 𝒩𝒿(ϵ) ≔ {𝑠 ∈ 𝐶−
 : |𝑠 − λ𝑜

𝑗
| < 𝜖 < 1}. The results in this section are 

based on the theory of eigenvalue perturbation. 

Lemma 4: Let 𝑺 ∈ 𝑀𝑛 be a diagonalizable matrix where 𝑀𝑛 is the set of all square matrices. Let, 

𝑺 = 𝑽𝚲𝑽−𝟏 , where 𝑽 is nonsingular and 𝚲  is diagonal. Let 𝛅𝑺 ∈ 𝑴𝑛  and let ||. || be a matrix 

norm on 𝑴𝑛 that is induced by an absolute norm on 𝐶𝑛. If λ𝑺̅ be an eigenvalue of 𝑺̅ = 𝑺 + 𝛅𝑺, 

there is an eigenvalue of λ𝑺  of 𝑺 such that: 

|λ𝑺̅ − λ𝑺| ≤ κ(𝑽)||𝛅𝑺||,  

where κ(𝑽) = ||𝑽||||𝑽−𝟏|| is the condition number with respect to the matrix norm ||. ||. 

Remark: If 𝑺 is a symmetric matrix and 𝑽 is the eigenvector matrix of 𝑺. If the induced norm is an 

𝑙2 norm, we have κ(𝑽) = 1. 

Lemma 5: Let 𝐹(𝑧, 𝑤) be a function of two variables which is analytic in the neighbourhood of 

the point (𝑧0, 𝑤0), and suppose the following conditions hold:  

1. 𝐹(𝑧0, 𝑤0) = 0,       

2. 
∂𝐹(𝑧,𝑤)

∂𝑤
|(𝑧0,𝑤0) ≠ 0.  

Then there are neighborhoods 𝒩(𝑧0)  and 𝒩(𝑤0)  such that the equation 𝐹(𝑧,𝑤) = 0  has a 

unique root 𝑤 = 𝑤(𝑧) in 𝑁(𝑤0) for any given 𝑧 ∈ 𝑁(𝑧0). Moreover, the function 𝑤(𝑧) is single-

valued and analytic in 𝑁(𝑧0), and satisfies the condition 𝑤(𝑧0) = 𝑤0. 

(24) 

(24) 

(25) 
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The result of the following theorem is crucial to show λ𝑗 ∈ 𝒩𝑗(ϵ) ≔ {𝑠 ∈ 𝐶−
𝟘: |𝑠 − λ𝑜

𝑗
| < 𝜖 < 1} 

for a sufficiently small ϵ. 

Theorem 6: Let ϵ denote the length of the gain-scheduling interval. Then for any α ∈ [α𝑙 , α𝑙+1], 

we have α = α𝑙 + ϵ𝑐 , where 0 ≤ 𝑐 ≤ 1 . Then, under Assumptions 2 and 4, there exist a 

sufficient small ϵ, such that the following relations hold. 

𝑷∗(α) = 𝑷∗(α𝑙) + 𝓞(ϵ), 

𝑲∗(α) = 𝑲∗(α𝑙) + 𝓞(ϵ). 

Proof: Since the elements of 𝑨(α), and 𝑩(α) are analytic functions of α, for small ϵ, we have 

𝑨(α) = 𝑨(α𝑙) + 𝓞(ϵ), and 𝑩(α) = 𝑩(α𝑙) + 𝓞(ϵ). Thus, for any α the Lyapunov equation can be 

written as the following: 

𝑨𝑘
𝑇(α)𝑷𝑘(α) + 𝑷𝑘(α)𝑨𝑘(α) + 𝑸 + 𝑲𝑘

𝑇(α)𝑹𝑲𝑘(α) = 0, 

where, 𝑨𝑘(α) = 𝑨(α) − 𝑩(α)𝑲𝑘(α) . Using (8), one can obtain 𝑨𝒌(α) = 𝑨𝒌(α𝑙) + 𝓞(ϵ),

where 𝑨𝒌(α𝑙) = 𝑨(α𝑙) − 𝑩(α𝑙)𝑲𝒌(α𝑙) . As 𝑩(α)  is analytic in α , let, 𝑲𝑘+1(ϵ,𝑷𝑘(α)) ≔ 

𝑲𝑘+1(α) = 𝑹−1𝑩(α𝑙)
𝑇𝑷𝑘(α) + 𝓞(ϵ). Next, define the following function: 

𝑭𝑘(ϵ,𝑷𝑘(α)) = (𝑨𝑘(α𝑙) + 𝓞(ϵ))
𝑇
𝑷𝑘(α) + 𝑷𝑘(α)(𝑨𝑘(α𝑙) + 𝓞(ϵ)) + 𝑸 +

𝑲𝑘
𝑇(ϵ,𝑷𝑘−1(α))𝑹𝑲𝑘(ϵ,𝑷𝑘−1(α)). 

Let 𝑘 =  1 and note that at the point (ϵ = 0, 𝑷1(α𝑙)), we have α = α𝑙 and the following: 

𝑭1(0,𝑷1(α𝑙)) = 𝑨1(α𝑙)
𝑇𝑷1(α𝑙) + 𝑷1(α𝑙)𝑨1(α𝑙) + 𝑸 + 𝑲1

𝑇𝑹𝑲𝟏. 

Note that 𝑲1 is the known initial stabilizing controller gain that is used to start the iteration for 

the model-free learning. Thus, 𝐹(0,𝑷1(α𝑙)) = 0  has a unique solution 𝑷1(α𝑙)  as 𝑨1(α𝑙)  is 

Hurwitz. Also, we have that: 

𝑲2(0,𝑷1(α𝑙)) = 𝑹−𝟏𝑩(α𝑙)
𝑇𝑷𝟏(α𝑙). 

Now, 

𝑭1(ϵ,𝑷1(α)) = (𝑨1(α𝑙) + 𝓞(ϵ))
𝑇
𝑷1(α) + 𝑷1(α)(𝑨1(α𝑙) + 𝓞(ϵ)) + 𝑸 + 𝑲1

𝑇𝑹𝑲𝟏. 

(26) 

(27) 

(28) 

(29) 

(30) 

(31) 

(32) 
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Using Lemma 5 for (32) and taking the derivative with respect to vec(𝑷1(α))  at the point 

(ϵ = 0,𝑷1(α𝑙)), we have the following: 

∂vec (𝐹1(ϵ,𝑷1(α)))

∂vec(𝑷1(α))
|(0,𝑷1(α𝑙))

= 𝑰 ⊗ 𝑨1(α𝑙)
𝑇 + 𝑨1(α𝑙)

𝑇 ⊗ 𝑰. 

Since 𝐴1(α𝑙) Hurwitz, all its eigenvalues have strictly negative real parts. Therefore, det(𝑰 ⊗

𝑨1(α𝑙)
𝑇 + 𝑨1(α𝑙)

𝑇 ⊗ 𝑰) ≠ 0. Thus, for a small ϵ by using the implicit function theorem there 

exists an unique solution for 𝑷1(α) with 𝐹1(ϵ,𝑷1(α)) = 0 that is analytic in ϵ. Hence we have 

the following: 

𝑷1(α) = 𝑷1(α𝑙) + 𝓞(ϵ), 

𝑲2(ϵ,𝑷1(α)) = 𝑲2(0,𝑷1(α𝑙)) + 𝓞(ϵ), 

where 𝑲2(0,𝑷1(α𝑙)) = 𝑹−1𝑩𝑻(α𝑙)𝑷1(α𝑙). For 𝑘 = 2 at the point (ϵ = 0, 𝑷2(α𝑙)), we have the 

following: 

𝑭2(0,𝑷2(α𝑙)) = 𝑨2(α𝑙)
𝑇𝑷2(α𝑙) + 𝑷2(α𝑙)𝑨2(α𝑙) + 𝑸 + 𝑲2(0,𝑷1(α𝑙))

𝑇
𝑹𝑲𝟐(0,𝑷1(α𝑙)). 

Then, 𝑭2(0,𝑷2(α𝑙)) = 0 has a unique solution 𝑷2(α𝑙). And thus, 

𝑲3(0,𝑷2(α𝑙)) = 𝑹−1𝑩(α𝑙)
𝑇𝑷𝟐(α𝑙). 

Following the similar steps for the 𝑘 = 1 case, by using the implicit function theorem, one can 

obtain a unique solution for 𝑷2(α) with 𝐹2(ϵ,𝑷2(α)) = 0 that is analytic in ϵ. Hence, we have 

the following: 

𝑷2(α) = 𝑷2(α𝑙) + 𝓞(ϵ), 

𝑲3(ϵ,𝑷2(α)) = 𝑲3(0,𝑷2(α𝑙)) + 𝓞(ϵ), 

where 𝑲3(0,𝑷2(α𝑙)) = 𝑹−1𝑩𝑻(α𝑙)𝑷2(α𝑙).  

From (34) and (38), we have that: 

𝑷1(α) − 𝑷2(α) = 𝑷1(α𝑙) − 𝑷2(α𝑙) + 𝓞(ϵ). 

(33) 

(34) 

(35) 

(36) 

(37) 

(38) 

(39) 

(40) 
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By Theorem 1, 𝑺(α𝑙) = 𝑷1(α𝑙) − 𝑷2(α𝑙) ≥ 0. Note that, 𝑺(α𝑙)  is a symmetric matrix. Thus, 

using Lemma 4, we have that 𝑷1(α) − 𝑷2(α) ≥ 0 for sufficiently small ϵ. Similarly, for 𝑘 = 3, we 

have 𝑷2(α) − 𝑷3(α) ≥ 0 for sufficiently small ϵ. Thus, 𝑷2(α) is bounded below and has finite 

norm and thus 𝑨2(α) = 𝑨(α) − 𝑩(α)𝑲2(ϵ,𝑷1(α))  is Hurwitz. Hence, 𝑲2(ϵ,𝑷1(α))  is 

stabilizing. Repeating the above analysis for 𝑘 = 1,2,⋯, the statement of the theorem is proved. 

Next, using Theorem 6 we show that λ𝑗 ∈ 𝒩𝑗(ϵ) ≔ {𝑠 ∈ 𝐶−
 : |𝑠 − λ𝑜

𝑗
| < 𝜖 < 1} for a sufficiently 

small ϵ. Consider the following Theorem. 

Theorem 7: Let the coefficients of the system matrices 𝑨(α), and 𝑩(α) be analytic functions of 

the scheduling parameter α, and Assumption 4 hold. Then, using Theorem 6, for sufficiently small 

ϵ the following holds: 

λ𝑗 = λ𝑜
𝑗
+ 𝒪(ϵ), 𝑗 = 1,2,⋯ , 𝑛. 

Proof:  

From Theorem 6, we have: 

𝑲∗(α𝑙+1) = 𝑲∗(α𝑙) + 𝓞(ϵ). 

 Thus, (8) implies that: 

𝑲(α) = 𝑲∗(α𝑙) + 𝓞(ϵ), 

for all α ∈ [α𝑙 , α𝑙+1]. Also,  the elements of 𝑨(α), and 𝑩(α) are analytic functions of ϵ, for small 

ϵ, we have, 𝑨(α) = 𝑨(α𝑙) + 𝓞(ϵ), and 𝑩(α) = 𝑩(α𝑙) + 𝒪(ϵ) for all α ∈ [α𝑙 , α𝑙+1]. Thus,  

𝑨𝑐(α) = 𝑨(α) − 𝑩(α)𝑲(α) = 𝑨𝑐(α𝑙) + 𝓞(ϵ). 

Thus, using the results on the analytic perturbation of eigenvalues, the statement of the theorem 

holds. 

Thus, it can be said that if ϵ is sufficiently small, the set σ(𝑨𝑐(α)) is in a small neighborhood of 

σ(𝑨𝑐(α𝑙)) for all α ∈ [α𝑙 , α𝑙+1]. 

Having answered the question of stability for fixed α ∈ [α𝑙 , α𝑙+1], the next question arises on the 

stability of the LPV system (5). From the results on slow-varying systems ([24], [43]), we have that 

if the rate of change of α is sufficiently small, then the stability of the LPV system (5) under the 

(41) 

(42) 

(43) 

(44) 
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control action (7) can be deduced from the stability analysis of the corresponding frozen systems. 

Readers are advised to check the references [24] and [43] for further details.  

The gain scheduling-based learning algorithm is presented in Fig. 5. The algorithm starts by 

initializing the initial stabilizing controllers 𝑲0
1 , 𝑲0

2,⋯ ,𝑲0
𝑛  for the finite velocity points 

Vx
1, Vx

2, ⋯ , Vx
n  where we wish to freeze our system and learn the optimal controller gains 

𝑲 
1∗, 𝑲 

2∗, ⋯ ,𝑲 
𝑛∗. Next, we collect the position data xAV, x𝐿𝐶 , x𝐿𝑇 , x𝐹𝐶 , x𝐹𝑇  and feed it to the 

lane change decision module (see Fig. 3). The lane change decision module decides whether to 

do a lane change or remain in the desired lane based on the safety conditions explained above. 

In any situation, we collect the actual velocity data Vx
AV of the AV. The gain scheduling technique 

suggests that we need to freeze our system at all the velocity points Vx
1, Vx

2,⋯ , Vx
n , but in a 

practical scenario this is not possible as when the AV is on the road it would be very challenging 

to maintain a constant Vx
AV. Thus, we define a tolerance value 𝜖1such that when Vx

AV is close to 

one of the Vx
i’s and |Vx

AV − Vx
i| ≤ 𝜖1 we assume Vx

AV = Vx
i  and start collecting data for learning 

𝑲 
𝑖 for Vx

i and store in the database. It must be noted that the longitudinal velocity of the car 

might vary and the condition |Vx
AV − Vx

i| ≤ 𝜖1  might not be always satisfied when we start 

collecting data for Vx
i. In such scenario, we again start from the very beginning step of collecting 

the position data xAV, x𝐿𝐶 , x𝐿𝑇 , x𝐹𝐶 , x𝐹𝑇  and repeat all the steps as explained above until we 

have collected enough data. Once we collect enough data, say 𝑚 samples for a particular velocity 

Vx
i, we pass the data to the learning module (see Fig. 4). The learning module then returns the 

learned controller gain 𝑲 
𝑖∗ and it is stored in the database. The flag learned Vx

i is used to avoiding 

repeated learning for the same Vx
i. Once, a gain 𝑲 

𝑖∗ is learned for a Vx
i, we change 𝑲0

1 with 𝑲 
𝑖∗ 

and use the new controller for the AV maneuvers. Once 𝑲 
𝑖∗ and 𝑲 

𝑖+1∗ for two given adjacent 

points are learned, we define the interval [Vx
i , Vx

i+1) and use the interpolated gain given in (26) to 

obtain the control signal whenever Vx
i lies the interval [Vx

i , Vx
i+1). 
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A Data-Driven Approach to Safety-Critical Systems Using Control Barrier Function 

In this section, we develop a data-driven formulation for the safety of safety-critical systems 

using control barrier functions. Consider the following definitions: 

Fig. 5: Learning-based gain scheduling 

control algorithm. 
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Definition 1: A continuous function β: [0,∞) → [0,∞) is a 𝜅-function if the following hold: 

• It is strictly increasing;

• 𝛽(0) = 0.

Definition 2: A continuous function 𝛽: [0,∞) → [0,∞) is a 𝜅∞-function if it is 𝜅-function and 

the following holds: 

• lim
𝑠→∞

𝛽(𝑠) = ∞. 

Definition 3: A continuous function 𝛽: [−∞,∞) → [−∞,∞) is an extended 𝜅∞-function if 

• It is strictly increasing;

• 𝛽(0) = 0;

• lim
𝑠→∞

𝛽(𝑠) = ∞ , lim
𝑠→−∞

𝛽(𝑠) = −∞. 

Consider an affine-in-the-control system: 

𝒙̇ = 𝒇(𝒙) + 𝒈(𝒙)𝒖, 

where 𝒙 ∈ ℝ𝑛 and 𝒖 ∈ ℝ𝑚 are the state and control input, respectively. 

The control objective is to keep the state of the above system in a closed admissible set 𝒞 ⊂ ℝ𝑛 

defined as: 

𝒞 = {𝒙 ∈ ℝ𝑛: ℎ(𝒙) ≥ 0}, 

∂𝒞 = {𝒙 ∈ ℝ𝑛: ℎ(𝒙) = 0}, 

𝐼𝑛𝑡(𝒞) = {𝒙 ∈ ℝ𝑛: ℎ(𝒙) > 0}, 

 where ℎ: ℝ𝑛 → ℝ is a twice continuously differentiable function. In addition, we assume that 𝒞 

is nonempty, that is, 𝐼𝑛𝑡(𝒞) ≠ ∅. For the system (44) with control input 𝒖, a function ℎ(𝒙) is a 

control barrier function (CBF) with respect to the admissible set 𝒞 if there exists an extended 𝜅∞-

function 𝛽 such that for the control system (44): 

supu∈ℝ𝑚 [𝐿𝒇ℎ(𝒙) + 𝐿𝒈ℎ(𝒙)𝒖] ≥ −𝛽(ℎ(𝒙)), 

(44) 

(46) 

(45)
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𝐿𝒇ℎ(𝒙) =
∂ℎ(𝒙)

∂𝒙
𝑓(𝒙), 

𝐿𝒈ℎ(𝒙) =
𝜕ℎ(𝒙)

𝜕𝒙
𝑔(𝒙). 

For the safety of AV along the longitudinal direction consider the following barrier functions: 

ℎ1 ≔ −𝑥AV + 𝑥𝐿𝐶 − 𝑆𝐿𝐶(𝑡) ≥ 0, 

ℎ2 ≔ 𝑥AV − 𝑥𝐹𝐶 − 𝑆𝐹𝐶(𝑡) ≥ 0, 

ℎ3 ≔ −𝑥AV+𝑥𝐿𝑇 − 𝑆𝐿𝑇(𝑡) ≥ 0, 

ℎ4 ≔ 𝑥AV−𝑥𝐹𝑇 − 𝑆𝐹𝑇(𝑡) ≥ 0, 

where 𝑥AV  is the longitudinal position of the AV, 𝑥𝑖 , 𝑖 ∈ {𝐿𝐶, 𝐹𝐶, 𝐿𝑇, 𝐿𝐶}  are the longitudinal 

position of the surrounding vehicles, 𝑆𝑖(𝑡) = 𝐿 + ℎ𝑣𝑖(𝑡) is the safety distance, 𝐿 is the length of 

the vehicles, ℎ is the headway time and 𝑣𝑖(𝑡) is the velocity of the 𝑖th vehicle. Here 𝐴𝑉 is the

autonomous vehicle, 𝐿𝐶 is the lead vehicle in the current lane, 𝐹𝐶 is the following vehicle in the 

current lane, 𝐿𝑇 is the lead vehicle in the target lane, 𝐹𝑇 is the following vehicle in the target 

lane. 

Combining the longitudinal and lateral dynamics leads to: 

𝒙̇ = 𝑨 𝒙 + 𝑩 𝒖 , 

where 𝑨 = [
𝑨𝒍𝒂 𝟎
𝟎 𝑨𝒍𝒐

] ∈ 𝑹𝒏𝟏× 𝒏𝟏 , 𝑩 = [
𝒃𝒍𝒂 𝟎
𝟎 𝒃𝒍𝒐

] ∈ 𝑹𝒏𝟏× 𝒎𝟏 , 𝒙 = [
𝒙𝒍𝒂

𝒙𝒍𝒐
] ∈ 𝑹𝒏𝟏 , 𝒖 = [

𝒖𝒍𝒂

𝒖𝒍𝒐
] ∈

𝑹𝒎𝟏, 𝒙𝒍𝒂 = [𝑒1(𝑡), 𝑒1̇(𝑡), 𝑒2(𝑡), 𝑒2̇(𝑡)]
𝑇 , 𝒙𝒍𝒐 = [𝑥𝐴𝑉, 𝑥̇𝐴𝑉]𝑇 .

Equation (46) for h1 to h4 can be obtained as follows: 

𝑪𝟏𝑨𝒙 + 𝑪𝟏𝑩𝒖 ≥ −ℎ1(𝒙), 

𝑪𝟐𝑨𝒙 + 𝑪𝟐𝑩𝒖 ≥ −ℎ2(𝒙), 

𝑪𝟑𝑨𝒙 + 𝑪𝟑𝑩𝒖 ≥ −ℎ3(𝒙), 

𝑪𝟒𝑨𝒙 + 𝑪𝟒𝑩𝒖 ≥ −ℎ4(𝒙), 

(47) 

(48) 

(49)

where 
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where, 𝑪1 = 𝑪3 = [0, 0, 0, 0, −1, 0], 𝑪2 = 𝑪4 = [0, 0, 0, 0, 1, 0]. 

Note that the optimal data-driven controller for (48) can be computed by following the algorithm 

given in Fig. 5. Let 𝑲𝑖 be the controller gain for the 𝑖𝑡ℎ scheduling point. Then, the safe controller 

can be obtained by solving the following optimization problem: 

𝒖𝒊(𝒙) = argmin𝑢∈ℝ𝑚10.5||𝒖𝒊 − 𝑲𝑖𝒙||2

subject to (49). 

However, (49) uses the knowledge of 𝑨 and 𝑩 matrices. The data-driven solution is given next 

that does not use the information of the 𝑨 and 𝑩 matrices. Note that the derivative of any barrier 

function ℎ𝑗 given above can be written as: 

ℎ𝑗̇(𝒙) = 𝑪𝑗𝑨𝒙 + 𝑪𝒋𝑩𝒖, 𝑗 = 1,⋯ ,4. 

Then along the solutions of (51), it follows that 

ℎ𝑗(𝒙(𝑡 + δ𝑡)) − ℎ𝑗(𝒙(𝑡)) = ∫ 𝑪𝑗𝑨𝒙
𝑡+δ𝑡

𝑡

𝑑τ + ∫ 𝑪𝑗𝑩𝒖
𝑡+δ𝑡

𝑡

𝑑𝜏. 

For any positive integer 𝑙, define 𝚲𝒋
 ∈ ℝ𝑙1×1, 𝑱𝒋

𝒙 ∈ ℝ𝑙×𝑛1, 𝑱𝒋
𝒖 ∈ ℝ𝑙×𝑚1  as follows for 0 ≤ 𝑡1 <

𝑡2 < ⋯ < 𝑡𝑙 : 

𝚲𝒋
 = [ℎ𝑗(𝒙(𝑡2)) − ℎ𝑗(𝒙(𝑡1)), . . . , ℎ𝑗(𝒙(𝑡𝑙)) − ℎ𝑗(𝒙(𝑡𝑙−1))]

𝑻
,

𝑱𝒋
𝒙 = [∫ (𝒙

𝒕𝟐

𝒕𝟏

⊗ 1) 𝑑τ,∫ (𝒙
𝒕𝟑

𝒕𝟐

⊗ 1) 𝑑τ,⋯ ,∫ (𝒙
𝒕𝒍

𝒕𝒍−𝟏

⊗ 1) 𝑑τ]

𝑻

, 

𝑱𝒋
𝒖 = [∫ (𝒖

𝒕𝟐

𝒕𝟏

⊗ 1) 𝑑τ,∫ (𝒖
𝒕𝟑

𝒕𝟐

⊗ 1) 𝑑τ,⋯ ,∫ (𝒖
𝒕𝒍

𝒕𝒍−𝟏

⊗ 1) 𝑑τ] .𝑻 

Using (52) and (53), we have: 

𝚪̃𝒋 
[
vec(𝑪𝑗𝑨)

vec(𝑪𝑗𝑩 )
] = 𝚲𝐣, 

where 𝚪̃𝒋 
= [𝑱𝒋

𝒙 𝑱𝒋
𝒖].

(50) 

(51) 

(52) 

(53) 

(54)
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Assumption 6: There exists a sufficiently large integer 𝑙 > 0, such that 

rank(𝚪̃𝒋) = n1 + m1. 

Under Assumption 6, 𝑪𝑗𝑨 and 𝑪𝑗𝑩 can be computed as follows: 

[
vec(𝑪𝑗𝑨)

vec(𝑪𝑗𝑩 )
] = 𝚪̃𝒋

+
𝚲𝐣, 

where 𝚪̃𝒋
+

 is the pseudo inverse of 𝚪̃𝒋 
. 

Lane Change Risk Index 

In this section, we perform a comparative study between the proposed gain scheduling controller 

and the MPC for the lane-changing risks when both controllers are used for a lane-changing 

maneuver in a non-cooperative scenario. To evaluate the safety, we use the lane change risk 

index (LCRI) proposed in the [44]. The authors in [44] uses stopping sight distance (SSD) and 

stopping distance index (SDI) to compute two risk indicators: risk exposure level (REL) and risk 

severity level (RSL). SDI is a discrete measure used to determine whether a given car-following 

event is safe by comparing SSDs for the preceding vehicle and the following vehicle. The REL 

indicates how long a subject vehicle is exposed to a hazardous situation that could potentially 

lead to a crash while making a lane change. Meanwhile, RSL represents the severity of the crash 

that would occur if a subject vehicle does not make the appropriate evasive maneuver. Then, a 

fault tree analysis (FTA), which is a well-known technique for risk analysis, is adopted to integrate 

the REL and the RSL. As a result, a new index to estimate the probability of failing to make a safe 

lane change, which is referred to as the lane change risk index (LCRI), is proposed.   

The SSD is computed as: 

𝑆𝑆𝐷𝑖(𝑡) =
𝑉𝑖(𝑡)

2

254 × (𝑓 ± 𝑔)
+ 𝑡𝑟 × 𝑉𝑖(𝑡) × 0.278,

where 𝑉𝑖(𝑡) is the vehicle speed in kph, 𝑓 is the coefficient of friction, typically for a poor, wet 

pavement, 𝑔  is the grade decimal, 𝑡𝑟  is the perception-reaction time (2.5s), 𝑖 ∈

{𝐿𝑇, 𝐹𝑇,𝐴𝑉, 𝐿𝐶, 𝐹𝐶}. Once, the SSDs are computed, one can compute the SDIs as follows:  

(57) 

(55) 

(56)



24 Automated Lane Change and Robust Safety 

𝑆𝐷𝐼𝑖,𝑗(𝑡) = {
safe, if 𝑆𝑖,𝑗(𝑡) + 𝑆𝑆𝐷𝑖(𝑡) − 𝑆𝑆𝐷𝑗(𝑡) − 𝑙𝑖 > 0,

unsafe, otherwise,

where, 𝑆𝐷𝐼𝑖,𝑗(𝑡) is the stopping distance index for the front vehicle 𝑖 and the following vehicle 𝑗, 

𝑆𝑖,𝑗(𝑡) is the front spacing between the front vehicle 𝑖 and the following vehicle 𝑗, 𝑆𝑆𝐷𝑖(𝑡) is the 

stopping distance index for the front vehicle, 𝑆𝑆𝐷𝑗(𝑡) is the stopping distance index for the 

following vehicle, 𝑙𝑖  is the length of the front vehicle. Note that for the group of vehicles 

{𝐴𝑉, 𝐿𝑇, 𝐿𝐶}, 𝑖 ∈ {𝐿𝑇, 𝐿𝐶}, 𝑗 =  𝐴𝑉, and for the group of vehicles {𝐴𝑉, 𝐹𝑇, 𝐹𝐶}, 𝑖 =  𝐴𝑉, 𝑗 ∈

{𝐿𝐹, 𝐿𝐶}. 

Then, using SDI, REL and RSL are computed as follows: 

𝑅𝐸𝐿𝑖,𝑗 =
𝑈𝐿𝐶𝐷

𝑇𝐿𝐶𝐷
,

 where 𝑈𝐿𝐶𝐷 is the unsafe lane change distance, 𝑇𝐿𝐶𝐷 is the total lane change distance. 

𝑅𝑆𝐿𝑖,𝑗 =
max(−𝑆𝐷𝐼𝑖,𝑗(𝑡))

𝑆𝐷𝐼𝑐𝑟𝑖
, 

where 𝑆𝐷𝐼𝑐𝑟𝑖  is obtained when a crash occurs while the subject vehicle is traveling at the highest 

speed. Next, using fault tree analysis one can obtain the crash probabilities as ([44]):  

ϕ𝑘 = 𝑅𝐸𝐿𝑖,𝑗 × 𝑅𝑆𝐿𝑖,𝑗, 

where, 𝑘 =  1,2,3,4. Next, the probability of lane change failure for the 𝐴𝑉 can be obtained as: 

ϕ𝐴𝑉 = 1 − ∏ (1 − ϕ𝑘)4
𝑘=1 . 

Simulation and Experimental Results  

A. Simulation results

We obtain each 𝑲(𝛼𝑖) by means of the learning-based control technique discussed above which 

guarantees the stability for each of the fixed 𝛼𝑖's. To guarantee the stability of the overall system, 

we need that 𝑉𝑥(𝑡) is slowly varying. Since, 𝑉𝑥̇(𝑡) = 𝑢𝑙𝑜/𝑚, and 𝑢𝑙𝑜 = −𝑲𝒍𝒐𝒙𝒍𝒐  one needs to 

design 𝑲𝒍𝒐 such that that vehicle acceleration has a small magnitude. We have generated the 

results by implementing the above techniques of learning-based gain scheduling and lane change 

decision-making in SUMO simulation. The SUMO simulation time started at 𝑡0  = 0s and 

terminated at 𝑡𝑓  = 80s. Data from SUMO environment is collected at every 0.01s. We have 

(58) 

(59) 

(60) 

(61) 

(62)
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generated the results by assuming the distance between FT and LT remains constant for a 

cooperative scenario and varying the headway time (ℎ) from 0.5s to 1s.  

This section discusses the effectiveness of the proposed gain scheduling-based learning-based 

controller and the lane change decision-making algorithm by implementing them in SUMO. We 

assume that the AV learns in a cooperative scenario where the neighboring vehicles of the AV 

are cooperative with the AV while the AV starts changing the lane. By keeping the distance 

between FT and LT constant, we have tested the proposed methodology by varying ℎ from 0.5s 

to 1s. We have observed that the AV could change the lane for all the considered ℎ. We use the 

following weight matrices for the lateral controller design 𝑸 = diag([20,50,2000,3000]) =

diag([𝑞1, 𝑞2, 𝑞3, 𝑞4]), and 𝑹  = 1. The desired orientation of the vehicle ψ𝑑𝑒𝑠 = 90∘ . For the

purpose of learning with an initial control gain 𝑲0, we apply the control input 𝒖 = −𝑲0𝒙𝒍𝒂 + 𝑒, 

where 𝑒 is noise which is obtained using the summations of sinusoidal signals with randomly 

distributed frequencies. Note that the noise 𝑒  is deterministic. The choice of the 𝑸  and 𝑹 

matrices is done considering the passenger and driver comfort, and low fuel use. The diagonal 

entries 𝑞1, 𝑞2  will penalize (𝑒1(𝑡), 𝑒̇1(𝑡)) of AV, and 𝑞3, 𝑞4 will penalize (𝑒2(𝑡), 𝑒̇2(𝑡)) which will 

ensure passenger and driver comfort. Increasing 𝑞1, 𝑞2  will make the controller more aggressive 

and might increase fuel consumption. Choosing 𝑹 = 1, we have found that the control input to 

the AV, i.e., the steering angle of the AV, can be computed such that the driver comfort is assured. 

We learn optimal controllers when the AV longitudinal velocity changes by half a unit, i.e., ϵ =

0.5. As the AV longitudinal velocity changes we learn optimal controllers for 𝑉𝑥
1 = 20m/s, 𝑉𝑥

2 =

20.5m/s, and 𝑉𝑥
3 = 21m/s, 𝑉𝑥

4 = 21.5m/s, 𝑉𝑥
5 = 22m/s, and 𝑉𝑥

6 = 22.5m/s (see Fig. 6a). We use the

Figure 6: (a) Velocities of the vehicles (b) Convergence of gains 
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algorithm presented in Fig. 5 to perform gain scheduling-based learning using these initial 

stabilizing control gains:  

𝑲0
1 = [0.5345,0.0233, 88.5456, 92.4413],

𝑲0
2 = [0.5345,0.0246, 88.8799, 92.4431], 

𝑲0
3 = [0.5345,0.0258,89.2143,92.4448], 

𝑲0
4 = [0.5345,0.0270,89.5487,92.4463], 

𝑲0
5 = [0.5346,0.0282,89.8831,92.4478], 

𝑲0
6 = [0.5345,0.0293,90.2176,92.4491]. 

The tolerance ϵ1 is set as 0.2. To demonstrate the learning process and application of the learned 

gains we perform the lane-changing two times. 

Fig. 6a shows the velocity of the vehicles that are obtained from the SUMO environment, where 

Δ𝐿𝐶
1  and Δ𝐿𝐶

2  are the pre-learning and post-learning lane-changing times. The light blue strips in

Fig. 6a indicate the intervals where |𝑉𝑥
AV − 𝑉𝑥

𝑖| ≤ ϵ1. Each of these intervals comprises of 50 data

points. Thus, with a sampling rate of 0.01s, we collect data for 0.5s for learning for every 𝑉𝑥
𝑖. After

the optimal controller gains were obtained for every 𝑉𝑥
𝑖, the initial gains are replaced with the

updated gains and the AV maneuver is performed using the updated gains and using the 

interpolation formula presented in (8). It is evident for Fig. 6a that Δ𝐿𝐶
2 ≈ 4s < Δ𝐿𝐶

1 ≈ 8s, where

Δ𝐿𝐶
1  is the lane change duration. Thus, a significant improvement is seen in the lane-changing

time with the update optimal gain scheduled controller. In this work, the lane change start time 

is defined as the time when the AV decides to do a lane change maneuver and the lane change 

end time is defined as the time when the AV's back bumper crosses the lane marking. 
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Fig. 6b shows the convergence of the optimal gains. The ϵ0 in Fig. 4 is set as 10−4. It is clearly

seen from Fig. 6b that the gains converge to the optimal gains with just 7 iterations. Thus, it can 

be said that for the proposed algorithm, 50 samples or in other words 0.5s data is enough for the 

learning algorithm to converge. The converged gains are:  

𝑲1∗ = [4.4721,1.4437, 149.0064, 53.6656], 

𝑲2∗ = [4.4721,1.4633,151.5636,53.6489], 

𝑲3∗ = [4.4721,1.4831,154.1037,53.6320], 

𝑲4∗ = [4.4721,1.5030,156.6272,53.6149], 

𝑲5∗ = [4.4721,1.5231,159.1316,53.5974], 

𝑲6∗ = [4.4721,1.5434,161.6178,53.5797]. 

Figure 7: Distance of AV from surrounding vehicles.  
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Fig. 7 shows the safe distance of the AV with the surrounding vehicle. It can be observed at 𝑡 =

0𝑠, the AV was not at a safe distance from FT, thus the AV does not start a lane change maneuver. 

At 𝑡 ≈ 4𝑠, the safety conditions for lane-changing satisfy for all the surrounding vehicles and the 

AV starts the first lane change maneuver that is completed in approximately 8s. For the second 

lane change maneuver, the vehicles are already at safe distance, thus the AV can safely start the 

lane change maneuver. 

Fig. 8a shows the states of the lateral system. The states converge to zero with the application 

of the controllers obtained using the proposed methodology. It was mentioned above that the 

gain scheduled controller can guarantee overall system stability if the feedback law 𝑲𝑙𝑜 for the 

longitudinal motion can be obtained such that vehicle acceleration has a small magnitude. Here, 

Figure 8: (a) Error states (b) Acceleration of AV.  

Figure 9: SUMO screenshots for non-cooperative scenario with ℎ=0.5s: (a) 𝑡 = 46.5𝑠, (b) 

𝑡 = 47.8𝑠, (c) 𝑡 = 53.8𝑠 
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we have obtained the 𝑲𝑙𝑜
∗ = [4.4721,110.3821]  with 𝑸𝑙𝑜 = diag([1,  1]) , 𝑹𝑙𝑜 = 0.05  using

historical data. The choice of 𝑸𝑙𝑜  and 𝑹𝑙𝑜  must be such that the acceleration has a lower 

magnitude. Fig. 8b shows the longitudinal acceleration profile of the AV. It can be seen that the 

acceleration magnitude is low. 

In a non-cooperative scenario, the FT is not cooperative with the AV while the AV starts changing 

the lane. By running the SUMO simulations for different values of ℎ, it was observed that the AV 

was able to change lanes for all ℎ ≤ 0.65𝑠. The scenarios are presented as screenshots for ℎ =

0.5𝑠 in Fig. 9, for ℎ = 0.65𝑠 in Fig. 10, for ℎ = 0.7𝑠 in Fig. 11. It can be seen that the AV was able 

to change the lane for ℎ = 0.5𝑠 and ℎ = 0.65𝑠.  For demonstrating the lane abortion scenario 

clearly. The case of ℎ = 0.65𝑠 is elaborately explained next. Fig. 12a shows lane abortion, and 

the velocities of the vehicles are shown in Fig. 12b. The lane change starts at 49.1s. From Fig. 12a, 

it can be seen that the FT starts accelerating more than the AV. At around 50.9s, FT comes close 

to the AV and thus to maintain safety, the AV starts aborting the lane change and maneuvers 

back to the current lane at 53.5s. Again, at 54.5s when the safety conditions are satisfied, the AV 

starts maneuvering to the target lane. It must be noted that the plots in Fig. 12a are normalized 

for the sake of clarity in understanding. For the cases where ℎ ≥ 0.7𝑠, the AV could not change 

the lane as the safety conditions did not satisfy for the simulation duration (see Fig. 11).   

Figure 10: SUMO screenshots for non-cooperative scenario with ℎ=0.65s: (a) 𝑡 = 49.1𝑠, (b) 

𝑡 = 50.1𝑠, (c) 𝑡 = 50.9𝑠 (d) 𝑡 = 53.5𝑠, (e) 𝑡 = 54.5𝑠, (f) 𝑡 = 68.6𝑠 
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To evaluate if lane change could be possible with a constant gain instead of gain scheduling, we 

did SUMO simulations where the AV was made to change lane using constant gains. The results 

are given in Table 1, Fig. 13a and Fig. 13b. The headway time is 0.5s, and the lane change velocity 

is in the range of 21.5m/s to 23m/s. We do five simulations, where we make the AV change lane 

using controller gains (𝑲𝑉𝑥
) trained for 𝑉𝑥 ∈ {12𝑚/𝑠, 15𝑚/𝑠, 17𝑚/𝑠, 20𝑚/𝑠, 23𝑚/𝑠}. Fig. 13a

shows the trajectories obtained using gain scheduling and constant gains. It can be seen that 

when the AV changes lane with 𝑲12 , there is a small overshoot in the AV trajectory. This 

overshoot decreases as we make the AV change lane with the controller gain that is trained close 

to the actual lane change velocity. Also, as we make the AV change lane with the controller gain 

that is trained close to the actual lane change velocity, the AV trajectories converge to the 

trajectory obtained using gain scheduling (𝐺𝑆) . A similar observation is seen with the 

convergence of AV lateral states (see Fig. 13b for 𝑒1). Table 1 shows the cost obtained using the 

proposed gain-scheduling controller for lane-changing and the constant gain controllers for lane-

changing. The cost is computed using 𝐽 = ∫ (𝒙𝑇𝑸𝒙 + 𝒖𝑇𝑹𝒖)𝑑𝑡
𝑡𝑓
𝑡0

. It can be seen that the 

Figure 11: SUMO screenshots for non-cooperative scenario with ℎ=0.7s: (a) 𝑡 = 49.5𝑠, (b) 

𝑡 = 50.7𝑠, (c) 𝑡 = 50.9𝑠 (d) 𝑡 = 63.5𝑠 

Figure 12: (a) Lane abortion of AV, (b) Velocities during lane abortion 
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proposed gain-scheduling controller gives the least cost. This suggests that the gain-scheduling 

controller is optimal when compared to the constant gain controllers. 

 
Figure 13: (a) AV trajectories obtained using gain scheduling and constant gains, (b) error state 𝑒1 

obtained using gain scheduling and constant gains. 

Table 1: Comparison with constant gain 

Figure 14: (a) AV trajectories obtained using gain scheduling and MPC, (b) error 

state 𝑒1 obtained using gain scheduling and MPC. 
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MPC is also an optimal control technique. MPC tries to find the optimal control input at each time 

step by minimizing the cost function 𝐽 = ∑ (𝒙𝒊
𝑇𝑸𝒙𝒊 + 𝒖𝒊

𝑇𝑹𝒖𝒊)
𝑁𝑝−1

𝑖=0 + 𝒙𝑵𝒑
𝑇𝑸𝑁𝑝

𝒙𝑵𝒑
, where

𝒙𝑵𝒑
𝑇𝑸𝑁𝑝

𝒙𝑵𝒑
 is the terminal cost, and 𝑁𝑝  is the prediction horizon. Designing a proper 𝑸𝑁𝑝

 is

essential for stability of the MPC controller. Also, one needs to properly select the prediction 

horizon 𝑁𝑝 to attain a balance between accuracy and computation cost. In the literature, an MPC 

controller is used to track a trajectory generated by the trajectory planning module for a lane 

change. Here, we test if the MPC can be used as a lane-changing controller when a lane-change 

reference trajectory is not available. We have implemented the model-based MPC controller for 

lane change for 𝑁𝑝 ∈ {20,70,100,150,200,300,500}  and compared the results with the 

proposed learning-based gain scheduling technique in a non-cooperative scenario with ℎ=0.5s. 

The plots obtained from SUMO simulations are given in Fig. 14a and Fig. 14b. It can be seen that 

the MPC controller does not achieve satisfactory performance with small prediction horizon. As, 

the prediction horizon is increased, the performance is similar to the proposed learning-based 

gain scheduling technique. It was observed that for 𝑁𝑝 < 150  the AV could not perform a 

successful lane change in a non-cooperative scenario. The SUMO simulation screenshots are 

given in Fig. 15 and Fig. 16. It can be seen that when 𝑁𝑝 = 100, the AV could not change the lane 

as the MPC controller could not produce adequate control input (steering wheel angle). Whereas, 

when 𝑁𝑝 = 300, the AV could successfully change the lane and the performance is like the 

proposed learning-based gain scheduling controller. 

Figure 15: SUMO screenshots obtained for MPC controller in a non-cooperative scenario 

with ℎ=0.5s, 𝑁𝑝=300: (a) 𝑡 = 46.8𝑠, (b) 𝑡 = 48.4𝑠, (c) 𝑡 = 53.5𝑠. 
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It must be noted that, increasing the prediction horizon increases the computation time of MPC. 

The MPC used in this work is model-based and thus there is no learning time and thus to compare 

with the learning-based gain scheduling technique, we calculate the computation time of the 

MPC controller shown in Table 2. In Table 2, the computation start time in the time when the AV 

decides to do a lane change maneuver, and the computation end time is the time when the AV 

reaches the mid-point of the target lane. Note that the learning-based gain scheduling technique 

uses exploration noise. Hence, the learning time might vary each time the gain scheduling 

algorithm is executed. Thus, we execute the algorithm given in Fig. 5, 100 times to get a 

distribution of the learning times for different control gains. The histogram for learning times for 

each 𝑲 is given in Fig. 17 and the histogram of total learning times is given in Fig. 19. Comparing 

the total computation time of MPC in Table 2 and the total learning times for the proposed 

technique in Fig. 19 it can be said that the proposed learning-based gain scheduling technique is 

computationally efficient when compared to MPC. 

Figure 16: SUMO screenshots obtained for MPC controller in a non-cooperative scenario with 

ℎ=0.5s, 𝑁𝑝=100: (a) 𝑡 = 47𝑠, (b) 𝑡 = 47.7𝑠, (c) 𝑡 = 49.5𝑠 (d) 𝑡 = 54𝑠. 



34 Automated Lane Change and Robust Safety 

Figure 17: Histogram of learning times for each 𝑲 

Table 2: Computation time of MPC 

Figure 19: Histogram of total learning times in 100 runs obtained by adding the 

learning times of each 𝑲 of the proposed gain scheduling algorithm in one run 
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In this work, the SDI for the 𝐴𝑉 and 𝐹𝑇 for the proposed gain scheduling controller and MPC are 

shown in Fig. 20a and Fig. 20b, respectively. As we want to determine the safety of AV from the 

non-cooperative vehicle FT, we have not considered the SDI of other vehicles. In this work, 𝑆𝐷𝐼𝑐𝑟𝑖  

is set to 40m considering the spacing between two interacting vehicles is 0m and that the speed 

of the following vehicle is 100 kph. 

After computation, we have obtained the LCRI for gain scheduling ϕ𝐴𝑉 =0.05, and for MPC 

ϕ𝐴𝑉=0.5 with 150 steps as prediction horizon. Also, note that the proposed learning-based gain 

scheduling technique needs only 50 samples to learn the scheduling gains. In a similar manner, 

we have computed LCRI for MPC for 𝑁𝑝 = 200,300,500 and observed that as the prediction 

horizon is increased, the LCRI for MPC is improved. But note that increasing 𝑁𝑝 increases the 

computation time, whereas the proposed methodology provides better safety in a non-

cooperative scenario with lower computation costs. Thus, it can be said that the proposed gain-

scheduling technique is safer and computationally efficient. 

B. Experimental setup development and validation

Here we explain the AV prototypes we are building. We have tested the robustness of the data-

driven controller by implementing it on the Raspberry Pi. 

Figure 20: (a) SDI for GS obtained for AV and FT, (b) SDI for MPC obtained for AV 

and FT. 
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Figure 21 shows the AV prototype 1. In this prototype, we have used two Raspberry Pi 

microcontrollers. Raspberry Pi 1 is connected to the GPS device which is used to collect the 

location data of the AV and Raspberry Pi 2 is connected to the camera and the AV motor control 

system. The position data from the Raspberry Pi 1 is sent to a local server which sends the data 

to the Raspberry Pi 2. The data-driven controller (see Fig. 4) and lane changing algorithm (see Fig. 

3) are implemented on the Raspberry Pi 2. The GPS provides the (𝑥, 𝑦) coordinates of the 𝐴𝑉.

Also, same GPS devices are mounted on the surrounding vehicles. Thus, we can acquire the 

position data of all the vehicles in the environment. The flow chart of signal transmission for AV 

prototype 1 is shown in Fig. 22 and the AV prototype 1 placed between lane markings is shown 

in Fig. 23. 

Camera

GPS 

Raspberry Pi 1 

Raspberry Pi 2 
Figure 21: AV prototype 1. 

Camera Raspberry Pi 2 

GPS Raspberry Pi 1 

AV Motor control 

Via local 

server 

Figure 22: Signal transmission in AV prototype 1. 
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To compute the optimal control signal for longitudinal and lateral motion, and evaluate safety 

distance, we need the information of the following states: 

𝒙𝒍𝒂 = [𝑒1(𝑡), 𝑒1̇(𝑡), 𝑒2(𝑡), 𝑒2̇(𝑡)]
𝑇, 

𝒙𝒍𝒐 = [𝑥1(𝑡), 𝑥 ̇ 1(𝑡)]
𝑇 ,

where 𝑥1 is longitudinal position, and 𝑥 ̇ 1(𝑡) = 𝑥2 = longitudinal velocity, 𝑒1 is the error between

the distance of the center of gravity of the vehicle and the center line of the target lane, and 𝑒2 

be the orientation error of the vehicle with respect to the road. Thus, using the position data 

obtained from the GPS device, one can obtain 𝑥1, 𝑒1, and 𝑒2. The derivates of these states can be 

computed using Euler approximation.  

Figure 23: AV prototype 1 and lane markings. 

Figure 24: 𝑒1 tends to a neighborhood of 0 despite measurement noise. 

Lane markings 
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Figure 24 shows the result obtained by implementing the data-driven controller in Raspberry Pi 

2. It can be seen that, with the optimal control law, the state 𝑒1  converges to a small

neighborhood of the origin. This implies that the lane change has been successful, and the data-

driven controller is robust to measurement noise. The video of lane change has been uploaded

as a separate file with this report. Interested readers can play the video to observe the lane

change.
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Conclusions and contributions 

In this work, we have introduced an optimal data-driven control algorithm to solve the lane 

changing problem of AVs, where we make use of the online information of the state and input to 

solve the algebraic Riccati equation iteratively by using approximate/adaptive dynamic 

programming (ADP). In this work, we have assumed that the state and control input are received 

from a linear system. In order to make the proposed methodology applicable to non-linear 

and/or parameter varying systems, we have proposed a gain scheduling-based data-driven 

control technique to learn optimal gains. Also, we have developed a lane change decision making 

algorithm to ensure safe and efficient lane change. Safety is assured during lane changing by 

maintaining a safe distance from the surrounding vehicles. The proposed lane changing algorithm 

can make the AV perform a lane abortion if safety conditions are violated during lane change. 

The optimal data-driven gain-scheduling control algorithm and the lane change decision making 

algorithm has been validated by means of SUMO and MATLAB based computer simulations.  

As compared to existing methodologies in the literature, our proposed method is completely data 

driven. We do not use or assume any information of the system parameters. We only assume the 

knowledge of the state vector and the control input, and derive a model-free optimal controller 

with guaranteed stability. It must be noted that many methodologies in the literature of lane 

changing does not guarantee optimal control of their AV. Many of the techniques that are 

proposed in the literature require to solve an optimization problem at every time step whereas 

our proposed methodology only requires to learn at specific time intervals with a smaller number 

of data points when the longitudinal velocity changes. Also, due to the fast convergence of the 

proposed methodology, it is suitable for real-time applications. Although we assume that we 

receive data from a linear model, the gain-scheduling based data-driven controller design adds 

to the versatility of the methodology that makes the proposed methodology applicable to non-

linear systems and/or parameter varying systems as well. Also, with the obtained optimal gain, 

the lane changing time is seen to be considerably improved. The safety of lane change maneuver 

was evaluated using Lane Change Risk Index (LCRI) for the proposed learning-based gain 

scheduling controller and MPC. Also, the computation time of MPC and learning time of the 

proposed controller were compared. It was found that the proposed controller is safer and 

computationally efficient than MPC. Also, in this work we have proposed a data-driven approach 

to use Control Barrier Function (CBFs) to improve safety of safety-critical systems. Furthermore, 

the data-driven controller is implemented on a Raspberry Pi and it was found that the data-driven 

controller is robust to measurement noise. 
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