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Abstract 

In the first part, finite-time optimal feedback control for traffic networks under information con-
straints is studied. By utilizing the framework of multi-parametric linear programming, it is demon-
strated that when cost/constraints can be modeled or approximated by piecewise-affine functions, 
the optimal control has a closed-form state-feedback realization. The optimal feedback control law, 
however, has a centralized structure and requires instantaneous access to the state of the entire 
network that may lead to prohibitive communication requirements in large-scale networks. We 
subsequently examine the design of a decentralized (sub)-optimal feedback controller with a one-
hop information structure, wherein the optimum outflow rate from each segment of the network 
depends only on the state of that segment and the state of the segments immediately downstream. 
The decentralization is based on the relaxation of constraints that depend on state variables that 
are unavailable according to the information structure. The resulting decentralized control scheme 
has a simple closed-form representation and is scalable to arbitrary large networks; moreover, we 
demonstrate that, with respect to certain meaningful performance indexes, the performance loss 
due to decentralization is zero; namely, the centralized optimal controller has a decentralized real-
ization with a one-hop information structure and is obtained at no computational/communication 
cost. 

In the second part, we consider a routing game among non-atomic agents where link latency 
functions are conditional on an uncertain state of the network. All the agents have the same 
prior belief about the state, but only a fixed fraction receive private route recommendations or a 
common message, which are generated by a known randomization, referred to as private or public 
signal respectively. The remaining non-receiving agents choose route according to Bayes Nash flow 
with respect to the prior. We develop a computational approach to solve the optimal information 
design problem, i.e., to minimize expected social latency cost over all public or obedient private 
signals. For a fixed flow induced by non-receiving agents, design of an optimal private signal is 
shown to be a generalized problem of moments for polynomial link latency functions, and to admit 
an atomic solution with a provable upper bound on the number of atoms. This implies that, 
for polynomial link latency functions, information design over private and public signals, when 
the non-receiving agents choose route according to Bayes Nash flow, can be equivalently cast as 
a polynomial optimization problem. This in turn can be arbitrarily lower bounded by a known 
hierarchy of semidefinite relaxations. The first level of this hierarchy is shown to be exact for the 
basic two link case with affine latency functions, and it relies on tightening the bound on the number 
of atoms in the support of optimal signal. We also identify a class of private signals over which 
the optimal social cost is non-increasing with increasing fraction of receiving agents. This does not 
require the link latency functions to be polynomial, and is in contrast to existing results where the 
cost of receiving agents under a fixed signal may increase with their increasing fraction. 
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3 Introduction 

Rapid advancements in technology have facilitated a tremendous increase in the number of con-
trol/decision and sensor points in urban traffic networks, ranging from an individual driver carrying 
smart phone to ramp meters to city-scale traffic control center. Due to the large volume of data gen-
eration, it is computationally, and arguably even technologically, infeasible to inter-connect all the 
points to each other for real-time applications. Therefore, it is of interest to study performance of 
traffic networks under various information structures, i.e., sparse interconnection of control/decision 
and sensor points. In this project, we propose to study such issues under two complementary top-
ics, namely (i) feedback control of traffic networks using ramp metering, variable speed limit and 
routing control, and (ii) routing control through information design. 

3.1 Feedback Control of Traffic Networks 

In infrastructure flow networks such as traffic networks, the primary objective for control design is 
to regulate the flow while optimizing a certain performance index. 

In the study of fluid dynamics at macroscopic scale, the fluid is treated as a continuum and its 
motion is described by the mass conservation law stating that “the rate of change of the mass of a 
fluid in a fixed region is equal to the difference between the rate of mass flow into and out of the 
region” [1]. Let ⇢(x, t) and v(x, t) respectively denote the mass density and the velocity vector of 

>a fluid  at  time  t, at  position  x = [x1, x2, x3] in the three-dimensional space. With the continuum 
representation of the fluid, the law of mass conservation is expressed as [1]: 

@⇢ 
+ div(⇢v) = 0, (1)

@t 

which is balancing the rate of change of the mass density ⇢ and the divergence of the mass flow 
>rate ⇢v, where the divergence of a vector field f = [f1, f2, f3] in Cartesian coordinates is defined 

as div(f) , @f1/@x1 + @f2/@x2 + @f3/@x3. In order to simplify the analysis, fluid motion is often 
considered in one dimension reducing equation (1) to 

@⇢ @u 
= , (2)

@t @x 

where u = ⇢v is the mass flow rate of the fluid. Many real flows are essentially one-dimensional, 
and variations in parameters across streamlines can be ignored; or by averaging properties of the 
flow over an appropriate region, it can be analyzed in one dimension [1]. In general, however, there 
are situations for which the one-dimensional assumption leads to highly erroneous results [1]. 

Now, consider fluid motion in a region (cell) of length ` as shown in Fig. 1 with inflow rate of 
uin into the cell and the outflow rate of uout. A discretized version of (2), in both time and space, 

Figure 1: One-dimensional fluid motion in a region (cell) of length ` and internal (average) mass density 
⇢ with inflow rate uin and outflow rate uout. 

is given by 

⇢
k+1 Ts 

⇣ ⌘ 
= ⇢

k + u
k 

u
k 

, (3)in out
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where Ts is the sampling time period, ⇢k is the mass density of the fluid at time t = kTs, and  uk 
in 

and uk are, respectively, the mass inflow and outflow rate into and from the cell at time step out 
t = kTs. 

A widely-used approach for fluid flow control in a transport network is to partition the network 
into several segments, each of which is represented by a cell as shown in Fig. 1. Then, the following 
assumptions are made: 

(i) The fluid dynamics in every cell is described by (3), that is, for cell i of length ` i, mass density 
⇢
k, inflow rate  yk, and  outflow  rate  uk, we have  i i i 

⇢
k+1 Ts k k = ⇢

k
i + (yi ui ). (4)i 

` i 

(ii) The mass density in every cell ⇢k can be measured at each time step k.i 

(iii) The outflow rate from each cell can be controlled through a regulation mechanism. This 
can be done by placing an active network element (e.g. a control valve or a compressor) at 
interfaces between consecutive cells. 

It should be noted that the inflow rate yi
k to cell i is a known function of the outflow rates from 

the immediately upstream cells. If all immediate upstream cells of cell i are merged only into cell 
i, then yk is equal to the sum of all flow rates leaving the upstream cells; otherwise, the inflow to i 
cell i is determined according to flow split ratios of the network which are known a priori. Hence, 
if the outflow rate from every cell is known over a fixed period of time, then from (4), the state of 
the system (densities) is completely known over that period. 

Fig. 2 shows a fluid transmission network with a line structure partitioned into n cells of possibly 
different length, where the cells are increasingly numbered from upstream to downstream. The 
outflow rate ui from cell i can be controlled through a flow regulation mechanism. 

Figure 2: Partitioning a transmission network with a line structure into n cells. A flow regulator at the 
interface between any two consecutive cells controls the outflow rate ui from each cell i. For this linear 
network, the inflow rate to cell i is yk = u

k 
1.i i 

The control objective is to find time series of the outflow rates and the corresponding mass 
densities such as to optimize an integral performance index over a finite period of time, subject to 
dynamical and physical constraints of the network. In general, the optimization problem can be 
expressed as 

⇢ XN 1 
min '(⇢N ) +  k(⇢k, uk) 
u k=0 , (5) 
s.t. (⇢, u) 2 ⇥ 

> 
u
0> 1)> > > 

u
k >where ⇢ = [⇢0

> 
, . . . , ⇢

N> 
] , u = [  , . . . , u

(N ] , ⇢k = [⇢k 
1 , . . . , ⇢

k ] , uk = [  1 , . . . , u
k ] , n isn n 

the number of cells, N is the final time step, ' is the terminal cost functional, is the running 
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cost functional, and ⇥ is the set of admissible state/control variables satisfying (4) and meeting 
supply-demand constraints. The complexity of an optimization problem depends mainly on the 
function forms of its objective function and constraint set. For the sake of tractability, we focus 
on linear objective functions. There are many meaningful cost functions of practical interest which 
can be expressed in a linear form [2–4]. 

The above framework has been widely used to formulate optimal flow control problems for 
complex transmission networks [5–9]. Of particular interest to this study is the work on highway 
traffic networks. 

Traffic flow in highway transportation networks is often regulated by ramp metering and/or 
variable speed limit under the Cell Transmission Model (CTM) dynamics. The CTM is a simple 
macroscopic traffic model capturing most phenomena observed on highways including flow conser-
vation, non-negativity, and congestion wave propagation [5, 6]. Because of its analytical simplicity, 
the CTM is widely used for control design purposes, wherein a one-way road is partitioned into 
multiple cells as shown in Fig. 2, 

described by (4). 
and the traffic flow in each cell is viewed as a homogeneous stream 

of vehicles with a dynamic In this problem, the flow regulation is carried out by 
reducing the outflow rate from the cells, that is the flow regulation mechanism acts as a control 
valve. 

Since the size and complexity of transportation networks are growing, design and implementation 
of an efficient control scheme providing an optimum operation has become more challenging and 
demanding. The existing results on finite-time optimal control of transport networks are mainly 
restricted to schemes with an open-loop feedforward control structure which are not robust in most 
actual applications. It is well known that the use feedback helps reducing the effects of modeling 
uncertainties and improving performance, especially when a simplified plant model is used to make 
the control design and analysis tractable. 

One approach for optimal flow control is the Model Predictive Control (MPC) which is a model-
based feedback control technique relying on real-time optimization [3, 4, 10–12]. Although the 
closed-loop operation of the MPC provides a certain degree of robustness with respect to modeling 
uncertainties, the primary challenge of implementing MPC in real-time is its computational com-
plexity. The framework of multi-parametric linear/quadratic programming has been proposed to 
reduce on-line computation effort in MPC, and effective numerical algorithms have be developed to 
solve multi-parametric programming [13–15]. However, determination of the optimal control action 
at each time step involves centralized operations making its implementation costly or impractical 
for large-scale networks. 

It is, therefore, desired to design an optimal, or at least suboptimal, feedback control law with 
a simple structure that requires access only to local information. Decentralized optimal control 
problems are often substantially more complex than the corresponding problems with centralized 
information. A trivial centralized optimal decision-making problem may become NP-hard under a 
decentralized information structure [16]. This is why most research has been focused on the design 
of meaningful suboptimal decentralized control policies and identification of tractable subclasses of 
problems [17,18]. Since no principled methodology exists for design and performance evaluation of 
decentralized optimal controllers, the problem is often attacked by applying suitable approximations 
and/or relaxations. 

This work is an attempt to deal with decentralized feedback control design for some classes 
of flow networks. A new decentralization method is proposed for feedback flow control, which is 
based on the following logic: (i) Construct a centralized optimal state-feedback control scheme 
with respect to a global performance index generating the control input of the entire network at 
each sample time, given the state vector of the entire network. The resulting controller, in theory, 

8 



provides the ideal performance. In practice, however, such a controller may not be implementable. 
(ii) Design a local version of the centralized optimal feedback control scheme for each portion of 
the network minimizing a local cost function. The performance metric associated with each local 
controller is a local version of the global (centralized) performance index, wherein only local state 
variables (specified by a given information structure) are used to generate the input command to the 
respective actuator. Due to the lack of analytical tools, performance evaluation of the decentralized 
scheme and comparison with centralized optimal control are done through numerical simulations. 

3.2 Information Design for Traffic Networks  

Route choice decision in traffic networks under uncertain and dynamic environments, such as the 
ones induced by recurring unpredictable incidents, can be a daunting task for agents. Private 
route recommendation or public information systems could therefore play an important role in 
such settings. While the agents have prior about the uncertain state, e.g., through experience or 
publicly available historic records, the informational advantage of such systems in knowing the 
actual realization gives the possibility of inducing a range of traffic flows through appropriate route 
recommendation or public information strategies. 

A strategy of a recommendation system to map state realization to randomized private route 
recommendations for the agents is referred to as a private signal ; a strategy to map state realization 
to randomized public messages is referred to as a public signal. A private signal is feasible or 
obedient, if, to every agent, it recommends a route which is weakly better in expectation than the 
other routes. Under a public signal, the agents can be assumed to choose routes consistent with 
Bayes Nash flow with respect to the posterior. The problem of minimizing expected social latency 
cost over all obedient private signals or over all public signals is referred to as information design 
in this study. We are interested in these problems for non-atomic agents, when a fraction of agents 
do not participate in signaling and induce Bayes Nash flow with respect to the prior. The technical 
challenge is the joint consideration of optimal signal for receiving agents and the flow induced by 
non-receiving agents. The non-atomic setting is chosen in part to be consistent with the feedback 
control part of the project which uses macroscopic models. 

Information design for finite agents has attracted considerable attention recently with applica-
tions in multiple domains, e.g., see [19] for an overview; the single agent case was studied in [20] 
as Bayesian persuasion. In the finite agent (and finite action) setting, the obedience condition 
on the signal can be expressed as finite linear constraints, one for each combination of actions by 
the agents. This allows to cast the information design problem as a tractable optimization prob-
lem. Techniques to further reduce computational cost of information design are presented in [21]. 
However, analogous computational approaches to solve information design for non-atomic agents, 
particularly for routing games, are lacking. 

There has been a growing interest recently in understanding the impact of information in non-

information design only for a fraction of agents, while taking into account externality from flow 
induced by the rest, might be beneficial for social cost. Information design using private signals, as 
in this study, has also been pursued recently in [26]. Optimal public signals for some settings were 
characterized in [27]. While these existing works provide useful insights, the information design 
aspect of these works is restricted to stylized settings involving a network with just two parallel 
links, sub-optimal signals, and link latency functions which ensure non-zero flow on all links under 

atomic routing games. For example, [22] demonstrates informational Braess paradox in which 
revealing information about all the links does not necessarily minimize social cost; [23,24] illustrate 
that properly designed information structure could reduce price of anarchy; [25] demonstrates that 
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all state realizations. It is not apparent to what extent can the methodologies underlying these 
studies, which typically rely on analytical solutions, be generalized. On the other hand, we develop 
a computational approach in this study, with focus on parallel networks for illustration. The 
approach however extends to general network setting. 

Our key observation is that information design for polynomial link latency functions has strong 
connections with the generalized problem of moments (GPM) [28]. A GPM minimizes, over finite 
probability measures, a cost which is linear in moments with respect to these measures subject to 
constraints which are also linear in the moments. This connection allows to leverage computational 
tools developed for GPM, such as GloptiPoly [29], which utilizes a hierarchy of semidefinite re-
laxations to lower bound GPM arbitrarily closely by relaxation of sufficiently high order, at the 
expense of increasing computational cost. For a fixed flow induced by non-receiving agents, infor-
mation design for receiving agents is indeed a GPM. Furthermore, since the cost and constraints 
involve moments up to a finite order, there exists an optimal signal which is atomic with provable 
upper bound on the number of atoms [30]. This is utilized to equivalently cast information design, 
when the non-receiving agents choose route according to Bayes Nash flow, as a polynomial opti-
mization problem. This in turn can be arbitrarily approximated by known hierarchy of semidefinite 
relaxations [31], which can also be implemented in GloptiPoly. The first level of this hierarchy 
is shown to be exact for the basic two link case with affine latency functions, and it relies on us-
ing convexity of the cost function and the constraints to sharpen the bound from [30] for optimal 
solution. 

The obedient constraints for the receiving agents in the information design setup of this study 
are reminiscent of characterization of (Bayes) correlated equilibrium. It is therefore natural to com-
pare our approach with semidefinite programming based approaches for computation of correlated 
equilibria, e.g., in continuous polynomial games [32]. In [32], the action set is continuous and the 
agents are finite, and hence alternate formulations for correlated equilibrium are proposed which 
involve approximation through finite moments and discretization of the action set. On the other 
hand, in our setup, where the action set is finite and the agents are non-atomic, the constraints for 
the receiving agents are readily in computational form and involve moments up to a finite order 
without any approximation. This then allows us to consider an equivalent finite discretization, with 
known cardinality, of the agent population, to transform equivalently into a polynomial optimization 
problem. Thereafter, the use of semidefinite relaxation hierarchy for solution is standard. 

The computational approach of this study can be utilized to complement the current studies on 
(paradoxical) effect of different fractions of receiving agents under specific public signals (primarily, 
full information). While existing work, e.g., [33, 34], studies the effect on population-specific (i.e., 
receiving and non-receiving) costs, we study the effect on the social cost, in the spirit of the social 
planner’s perspective adopted in the study. We provide a class of private signals under which the 
optimal social cost is non-increasing with increasing fraction of receiving agents. The key idea is 
to use an optimal solution at a given fraction to synthesize signals which are feasible for all higher 
fractions and give the same cost. This monotonic result does not require the link latency functions 
to be polynomial. We also provide numerical examples to suggest that one should not however 
expect such a monotonic behavior in general for a public signal, even if it is optimal. 

In summary, the main contributions of the information design part of the study are as follows. 
First, by making connection to GPM and associated semidefinite programming machinery, we 
point to a compelling computational framework to solve information design problems. Second, by 
establishing the existence of an atomic optimal solution, we provide credence to such a structural 
assumption often implicitly made in information design studies. The sharpening of the bound 
on the number of atoms that we illustrate in a simple case suggests the possibility of using the 
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problem structure of information design to reduce the size of the optimization formulation, and 
hence the computation cost. Third, the result and underlying proof technique for the monotonic 
behavior of social cost under a reasonable class of private signals could be utilized to design private 
signals that guarantee performance which is robust to higher than anticipated agent participation 
rate. However, our results also suggest that this may be difficult to achieve through public signals. 
Overall, the contributions allow to considerably expand the scope of information design studies for 
non-atomic routing games, which has been limited so far to stylized settings. 

The results for feedback control of traffic networks are presented in Sections 4-7, and the results 
for information design are presented in Sections 8-11. Due to space limitation, several technical 
details are not included here but can be found in extended versions [35, 36]. 

4 Setup for the Study of Feedback Control of Traffic Networks 

Throughout the study of feedback control of flow networks, the set of integers {1, 2, . . . , n} is denoted 
by Nn, and  {(ai) } = {a1, a2, . . . , an}. A  convex polyhedron is the intersection of finitely many 
half-spaces, i.e., {x 2 Rn | Ax  b}, for a matrix A 2 Rm⇥n and a vector b 2 Rm . A real-valued 
function f(x) on D ✓ Rn is said to be increasing (decreasing) if it is increasing (decreasing) in 
every coordinate. 

i2Nn 

Theorem 1. [37] Consider the following multi-parametric linear program 

J
⇤(✓) = min c>z 

z (6) 
s.t. Wz   G+ S✓, ✓ 2 ⌦✓ ✓ Rm 

, 

where z 2 Rn is the decision variables vector and ✓ 2 Rm is a parameter vector, ⌦✓ is a closed 
polyhedral set, and c,W,G, S are constant matrices. Let ⌦⇤ denote the region of parameters ✓ such ✓ 
that (6) is feasible. Then, there exists an optimizer z⇤(✓) :  ⌦⇤ ! Rn which is a continuous and✓ 
piecewise affine function of ✓, that  is  

z
⇤ = pwa(✓) 

(7) 
= Li✓ + li, if ✓ 2 Ri, i  2 Np, 

where sets Ri = {✓ 2 ⌦✓ 
⇤ | ⇧i✓  ⌘i} form a polyhedral partition of ⌦✓ 

⇤ , p is the number of polyhedral 
sets, Li, li,⇧i, ⌘i are constant matrices, and pwa(·) is a generic symbol for piecewise affine functions 
on polyhedral sets. Moreover, the value function J⇤(✓) :  ⌦⇤ ! R is a continuous, convex, and ✓ 
piecewise affine function of ✓. 

Consider the optimal control design problem (4)-(5). The objective is to design an optimal 
control with feedback architecture to benefit from the feedback properties such that the resulting 
control law is suitable for practical implementation. By ‘suitable’, we mean a controller meeting 
limitations in communication and computational power. 

The Matlab-based Multi-Parametric Toolbox [14] together with YALMIP Toolbox [38] 
in (7). 

can be 
used to solve multi-parametric linear programs and compute the matrices Li, li,⇧i, ⌘i 

kFig. 3 shows a general network with a number of inflow/outflow rates, where and µk denote i i 
the i-th inflow and outflow at time k, respectively. The external inflow rates to the network act as 
exogenous inputs which cannot be manipulated by the controller. The controller can regulate only 
the outflow rate of each cell by monitoring the states of the network cells. 
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kFigure 3: A general  controlled network with  nu exogenous inflow rates and ny outflow rates µk
i . Thei 

controller task is to regulate the outflow rate from each cell of the network to optimize a performance 
index. 

Since the objective function and constraints in (5) depend on inflow rates to the network, then, 
in general, a complete knowledge of inflow rate signals over the control horizon is required to solve 
the optimization problem (5). The assumption that the external inflow rate over the control horizon 
is known a priori  is, however, very restrictive in practice. The exogenous input to the network may 
not be known or predictable in all scenarios. When no knowledge on the inflow rate is available, 
a control law must be designed such that the feasibility of the solution (control/state variables) at 

kany time for any admissible is guaranteed. i 
Disregarding communication and computational limitations, finding a globally optimal solution 

to (5) with a feedback realization is a difficult task in general. Hence, some assumptions and 
simplifications need to be made to make the control design tractable and its implementation feasible. 
It is desired to implement the solution to (4)-(5) in the form of a static state-feedback control as 

u
k = k(⇢k), (8) 

> >where uk = [u1 
k
, . . . , u

k ] and ⇢k = [⇢1 
k 
, . . . , ⇢

k ] are the vectors of cells’ outflow rates and mass n n 
densities, respectively. A realization of the form (8) is possible when the performance index and 
constraints satisfy certain properties, or they are simplified through proper approximations to satisfy 
certain properties. 

Remark 1. The main reason for considering “static feedback” is the simplicity of control law. In a 
static state-feedback controller, the control action at each time k depends only on the current state 
vector at time k. One may consider a “dynamic feedback” controller, wherein the control action 
depends on the state variables in the current and previous sampling instants; this, however, makes 
design, analysis, and implementation of the controller more difficult. 

Although design of a centralized feedback optimal control (if it exists) provides the ideal per-
formance, it may not be implementable for large-size networks, as it may require a significant com-
putational resource and a fast and highly-reliable commutation system. It is, therefore, necessary 
to further simplify the control law to meet communication/computational constraints. 

We present our results in a general setting which can then be specialized to highway traffic 
networks, e.g., CTM can be formulated as (4)-(5). We are interested in a finite-horizon decentralized 
control law with the following features: 

• It consists of independent local controllers that have access only to information about their 
local neighborhood (i.e., local state variables and local network’s parameters and architecture) 
providing a performance level (with respect to a certain performance index) sufficiently close 
to that of the optimal centralized controller. 

12 
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• Each local controller can be implemented in a static state-feedback form, feeding back local 
state variables to generate the local control action. This requires that the constrained opti-
mization problem associated with each local controller to be such that its optimal solution 
can be expressed in a feedback form. 

We first study the centralized control design under certain assumptions such that the control 
law is optimal (w.r.t a performance index) and implementable in a state-feedback form. Subse-
quently, decentralization of the resulting centralized control scheme is investigated by considering a 
simple information structure. Communication constraints are often modeled by a fixed information 
structure; for example, in the network shown in Fig. 2, if only the mass density of cells i and i+ 1  
are available to generate the outflow from every cell i, a desired decentralized realization of the i-th 
controller is 

k k
ui = i (⇢

k
i , ⇢i

k 
+1), (9) 

expressing the current required outflow rate from cell i in terms of the current state of local cells i 
and i+ 1. 

We argue that when the cost and constraint satisfy some separability condition, a local version 
of problem (4)-(5) can be constructed for each portion of the network. The i-th local controller 
(generating the outflow rate from cell i) has access only to the state of cells in a pre-specified 
neighborhood of cell i determined by a given information structure, then by expressing the solution 
to each local problem in a feedback form, a state-feedback decentralized control law is designed. 
It should be highlighted that for design of a local controller no information about the parameters, 
structure, and state of the rest of the network is used; only the feedback architecture of the control 
law can indirectly provide information about the status of the rest of the network. In other words, 
feedback is essential to keep a local controller from being completely blind about the rest of the 
network. 

To further illustrate the proposed decentralization, let us consider the network shown in Fig. 2, 
and assume that only knowledge about cells i and i + 1  are available to generate ui. To design 
the i-th controller, we consider the sub-network consisting of only cells i and i + 1, as shown in 
Fig. 4 and solve the centralized problem associated with the two-cell network. In the i-th local 
optimization problem, the decision variables are uki , u

k
i+1, k = 0, . . . , N  1, with zero inflow rate 

to cell i, but  only  uk is used and implemented and the optimal values of uki+1 are unused. For this i 
example, the i-th local optimization problem may be expressed as 

Figure 4: To design the i-th controller generating outflow rate uk, a centralized optimal feedback control i 
law for the sub-network consisting of only cells i and i+ 1 is designed. No knowledge about the rest of 
the network is available to the i-th controller. 

n XN o1 k k kmin '̂i(⇢
N
i , ⇢i

N 
+1) +  ˆ 

i (⇢
k
i , ⇢

k
i+1, ui , ui+1) ui,ui+1 k=0 

s.t. (ui, ui+1, ⇢i, ⇢i+1) 2 ⇥̂i (10) 
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constraint set associated with the i-th controller. The set ⇥̂i is obtained by relaxing any constraint 
involving non-local variables and assuming zero inflow to the local network. From the solutions to 

î is the running cost functional, and ⇥̂iwhere '̂i is the terminal cost functional, is the outflow 

(10), only uki is kept for implementation and the remaining variables are discarded. As mentioned 
before, we would like to implement the solution to (10) in the form of a static state-feedback of 
local states as (9). The feedback realization of the solution is crucial as the values of ⇢i and ⇢i+1 

are affected by the action of the other controllers in the network. 
The proposed decentralization scheme relies on the following properties: 

• Existence of a global optimizer for the centralized problem with a state-feedback realization. 

• Separability of the centralized problem such that for each sub-network a local optimization 
problem can be constructed, for which a global optimizer can be found in a feedback form. 

The above points are clarified in the following sections. 

5 Sub-Optimal Decentralized Feedback Control 

The objective is to design a decentralized static feedback controller with a specific information 
structure e.g. a (unidirectional) one-hop information structure in a line network as uti = t

i(x
t
i 

t
i, x  .+1) 

5.1 Approach 1: Truncation 

Ignore any term in cost and constraint functions that depends on non-local variables, then solve 
the truncated optimization. As an example consider a 4-cell network with the following global 
optimization problem: The global cost function is given by 

N 1 4X X 
t
i 

t
i +

t
iu

t
i), (11)J = (↵ x 

t=0 i=1 

subject to 

x
t+1 
i 

t
i + u

t
i 

t
i, i = 1, 2, 3, 4= x u ,1 

t
i 

t
i di(x ), i = 1, 2, 3, 4, (12)0  u 

t
i+1), i  

Assume the objective is to express the second outflow rate u 

t
i  si+1( = 1, 2, 3u x . 

t 

tttt 

t 

tttt 

2 as a function of local states x 
be local variables for the local controller generating u 

2x2 + 2u2) + (↵3x3 + 3u3) 

t 
2 and xt 3. 

Let x ttt 
2, u2, x3, u  2 as shown in Fig. 5. Then, 

the corresponding local optimization may be constructed by truncating the global optimization as 
t 
3 

N 

J2 = (↵ 
1X 

(13), 
t=0 

subject to 

t+1 t
i + u

t
i u

t
i, i = 2, 3,x = x 1i 

t
i  di(x

t
i), i = 2, 3, (14)0  u 

t
i 

t
ix +1), i

14 
 si+1( = 2.u 
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Figure 5: The local network associated with the second actuator local optimization problem generating 
u
t 

Only the local states xt , xt are available to generate ut 2322. . 

Setting the inflow to the local network zero, i.e., ut 
of only the variables xt , ut , xt , ut . The solution to the truncated problem (13), (14) can be expressed 

1 

3322 

= 0, 8t, makes the truncated problem a function 

as ut x
t 
, x

t 

controller has access to the entire network state as no truncation will take place. We will show 
that this simple approach with a one-hop structure can give the centralized performance for some 
networks of any size. 

5.2 Approach 2: Design of Local Optimization 

Find a suitable parametrization to express each local optimization as a function of only local 
variables such that the minimization of local costs improves the global performance index. Consider 

322 Clearly, this decentralized approach gives the centralized performance if every ( )= . 

3322the global optimization problem (13), (14). Assuming that xt , ut , xt , ut 
local controller generating ut , and given a priori knowledge on the entire network structure and 

, g
t 
, h

t 
2 

2

and formulate the local optimization problem as 
2 2

2

1NX 
f
t

J2 = (
t=0 

3322x
t 
, u

t 
, x

t 
, u

t ) 

2g
t ( 3322x

t 
, u

t 
, x

t 
, u

t )  0 
(15) 

2h
t ( 3322x

t 
, u

t 
, x

t 
, u

t ) = 0  

are local variables for the 

parameters, determine the form/parameters of functionals f t (independent of state variables), 

such that: 

222• The problem of determining ‘suitable’ functionals f t
, g

t 
, h

t 

• The solution to the local optimization is guaranteed to be feasible w.r.t. the original global 
problem. 

• The local optimization problem is tractable for online implementation and its feasible global 
optimum can be found using the standard numerically efficient techniques. 

• The decentralized approach gives the centralized performance if every controller has access to 
the entire network state. 

• The local controllers implicitly collaborate with each other to improve the global performance. 

6 Application to Traffic Networks 

In recent years, due to the ever-increasing traffic demand, efficient control and management of 
transportation networks has received a great deal of attention. There has been a lot of research 
done on the optimal control of freeway networks based on various models for traffic systems, among 
which first-order models, such as the CTM, are widely used for control design. In a CTM-based 

is tractable (off-line computations). 

15 



�

�

traffic model, the network dynamics is described by (4), where ⇢k [veh/mi] is the traffic density, i 
y
k [veh/hr] is the inflow rate, uk [veh/hr] is the outflow rate, and ` i [mi] is the length of cell i.i i 

The constraints are defined in terms of demand and supply functions, where the demand function 
d̄i(·) returns the maximum outflow from the cell as a function of its current traffic density, and 
the supply function s̄i(·) gives the maximum inflow into the cell as a function of its current traffic 
density [2]. The demand and supply functions are assumed to be of the form 

d̄i(⇢i) = min{di(⇢i), Ci}, (16)
s̄i(⇢i) = min{si(⇢i), Ci}, 

where di is continuous non-decreasing function of ⇢i with di(0) = 0 and si is continuous non-
increasing function of ⇢i with si(0) > 0, and  Ci [veh/hr] is maximum flow capacity of cell i. The 
jam traffic density  of cell i is defined as ,i = inf{⇢i > 0 | si(⇢i) = 0}. The functions di(·) and si(·) 
are often assumed to be affine of the form di(⇢i) = vi⇢i and si(⇢i) = wi(,i ⇢i), where vi [mi/hr] 
is the maximum traveling free-flow speed and wi [mi/hr] is the backward congestion wave traveling 
speed of cell i. Then, in a controlled network via speed limit control, the feasible region for outflow 
and inflow rates are defined as [2]: 

0  uk  min{vi⇢k, Ci},i i (17)
k0  y  min{wi(,i ⇢i

k), Ci}.i 

The flow regulation mechanism in a traffic network acts as a collection of control valves, each of 
which at each time can be open to the fullest extent possible, completely closed, or partially closed 
during the network operation. 

Assumption 1. The length of cells ` i and the time interval Ts are chosen such that vehicles traveling 
at maximum speed vi can not cross multiple cells in one time step, i.e., viTs  ` i, 8i. Also,  the  
backward congestion wave traveling speed wi satisfies wiTs  ` i, 8i. 

Assumption 1 is known as Courant-Friedrichs-Lèvy condition [2] which is a necessary condition 
for numerical stability in numerical computations. It can be easily verified that Assumption 1 
together with constraints (17) ensure that at each time the density of each cell is non-negative and 
never exceeds the jam density. 

A flow network can be represented by a directed graph, in which edges represent cells and vertices 
(or junctions) represent interface between consecutive cells which are the actuators’ location. The 
junctions can be of either of the three types defined below. 

Definition 1. [2] A junction with a single incoming and a single outgoing cell is called ordinary; 
a junction  with a single  incoming cell and  multiple outgoing cells  is called  diverge; and  a  junction  
with multiple incoming cells and a single outgoing cell is called merge. 

The following definitions and notations are used throughout this section. 

Definition 2. Consider a network whose topology is described by directed graph G. The  set  of  
edges of G corresponding to on-ramps is called the source set denoted by Eon, and  the  set  of  edges  
corresponding to off-ramps is called the sink set denoted by Eoff. 

At any diverge junction, the traffic flow is distributed according to a given split percentage 
which are estimated from historical data [39]. 
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Definition 3. [2] The split ratio (or turning ratio) Rij 2 [0P, 1] is defined as the fraction of flow 
leaving cell i 62 Eoff that is directed towards cell j =6 i, where  Rij = 1. If  cells  i and j are not j 
adjacent or i = j, Rij is defined to be zero. 

Definition 4. Let cell i be an incoming cell to junction ~ i, where  ~ i denotes the head or the 
downstream junction of cell i. The  set  of  all  outgoing  cells  from  junction  ~ i is called the out-
neighborhood of cell i and is denoted by E+. If  i 2 Eoff, then  E+ is the empty set. In other words, i i 
E+ is the set of all direct successor of cell i. The  elements  of  E+ are referred to as the out-neighbors i i 
of cell i. 

Definition 5. Let cell i be an outgoing cell from junction ⌧i, where  ⌧i denotes the tail or the 
upstream junction of cell i. The  set  of  all  incoming  cells  to  junction  ⌧i is called the in-neighborhood 
of cell i and is denoted by Ei . If  i 2 Eon, then  Ei is the empty set. In other words, Ei is the set 
of all direct predecessor of cell i. The  elements  of  Ei are referred to as the in-neighbors of cell i. 

An example is shown in Fig. 6 clarifying the above definitions. 

Figure 6: Directed graph of a six-cell network with source set (on-ramps) Eon = {1, 2} and sink set (off-

ramps) Eoff = {5, 6}. The merge, ordinary, and diverge junctions are labeled m, o, and d, respectively. 
The split ratios of R45 = 0.3 and R46 = 0.7 imply that 30% of vehicles in cell 4 turn towards cell 5 and 
70% of them turn toward cell 6. The in-neighborhood and out-neighborhood of cell 4 are E4 = {3} and 
E+ 
4 = {5, 6}, respectively. 

It is often more convenient to express the dynamics and constraints in terms of the traffic mass  
of the cells. Let xk = ` i⇢k [veh] denote the traffic mass of cell i at time k, then from (4) and (17), i i 
the dynamics and constraints of an n-cell network can be written as 

k+1
x = xk + T (yk 

u
k
i ), 8i 2 Nn (18a)i i s i Pk k n k

yi = i + j=1Rjiuj , (18b) 
k k0  u  min{(vi/` i)xi , Ci}, (18c) i 

0  yi
k  min{wi(,i (1/` i)x

k
i ), Ci}, (18d) 

k kwhere is an exogenous inflow rate to cell i 2 Eon ( = 0, if  i 62 Eon), and Rij ’s are split ratios. i i Pk nThen, for any i 2 Eon, yik = i , and for any i 62 Eon, yik = j=1Rjiu
k
j . 

k
Remark 2. To ensure that is a feasible exogenous input to the network, it is typically assumed i 

kthat the jam traffic density of any on-ramp is infinity, ,i = 1, and   Ci, 8i 2 Eon.i 

Control Objective: Consider the network dynamics (18) and let xk = [xk 
1 , . . . , x

k ]> be the state n 
]>vector and uk = [u1 

k
, . . . , u

k be the control input vector of the network at time k. The control n 
objective is to design a static feedback control law such that for any initial state x0 and any 

kexogenous inflow , the feasibility of control actions is guaranteed and a performance index of the 
form (5), subject to (18) and a given information structure, over a fixed given control horizon [0, N ] 
is optimized. In this study, we focus on linear objective functions, i.e. (5) with 

n
'(xN ) =  

P 
↵
N 
x
N 
,i=1 i i P (19)

k n k k kk(x , uk) =  ↵i
k
x + i ui ,17i=1 i 
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where N is a fixed final time, and ↵k
i 0 and k

i are cost-weighting parameters. 

Remark 3. There are meaningful performance indexes which can be expressed in a linear form [2–4]; 
for example: 

(i) Minimization of the total travel time of the network is equivalent to minimization of the totalP P n
i 

N
k=0 =1x 

(ii) Maximization of the total travel distance is equivalent to maximization of the flows, then the P 

k
inumber of vehicles in the entire network, then the corresponding cost is J = . 

PN 1following cost should be minimized J = k
i=1u 

(iii) The total congestion delay is defined as the time difference between actual travel time and 
the travel time in free-flow conditions whose minimization is equivalent to minimizing J = PN P 

n
i .k=0 

1 k
i 

k
i=1 

For the centralized control, there is no information constraint and the control law is of the form 
u
k = k(xk). For the decentralized control, we consider controller with a one-hope information 

structure as defined below. 

Definition 6. A feedback controller  is  said to have a  uni-directional one-hop information structure, 

n
i (` i/vi)u(x ).k=0 

if uki depends only on xki and the state of the cell(s) immediately downstream of cell i, i.e.  those  
either entering or leaving the downstream junction of cell i. Similarly,  in  a  bi-directional one-hop 
information structure, uki depends only on xki and the state of the cells immediately upstream a well 

kkkk 

as those of immediately downstream of cell i. 

Clearly, Definition 6 can be extended to uni/bi-directional p-hop structure. Throughout this 
study, however, we focus on uni-directional one-hop structure and call it “one-hop information struc-
ture”, for short. As an example, for the network in Fig. 6, a decentralized static feedback controller 

2(x2, x1, x3 ), kkk 

k 

k 

k 
1(x1, x2, x3), u1 2 

6 (x6 ). 
k kwith a one-hop information structure is of the form: u = = 

kkkkkk 
3 (x3 , x4 ), u 4(x4, x5, x6), u 5 (x5), and  u3 4 5 6 

kkkk k k k
u = = = = 

6.1 Centralized Feedback Control 

The external inflow rates k
i , i 2 Eon, to the network act as exogenous inputs which cannot be 

manipulated by the controller. 
(19) depends on the values of 

In general, the solution to the optimization problem (5), (18), 
k
i ; however, no a priori  knowledge on k

i is often available for 
control design. Analogous to the classical LQR problem where no uncontrolled exogenous input 
is considered for optimal control design [40], we design a centralized optimal controller under the 
assumption of k

i = 0, 8i 2 Eon, k  2 [0, N  1]; and we refer to the resulting controller as zero-inflow 
optimal control law. Then, we show that in the presence of any non-zero inflow, the feasibility of 
the optimal solution is guaranteed. 

Let us first suppose that the sequence of k
i , 8i 2 Eon over the entire control horizon, is known 

beforehand; under this assumption the following theorem gives the true optimal control law. 

Theorem 2. The solution to (5), (18), (19) can be expressed in the form of a continuous piecewise 
affine static feedback law on polyhedra of the state vector as 

(uk)⇤ = pwak(xk) 
(20) 

= F k
i x

k + fk
i , if xk 2 Rk

i , 
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where Rk = {x 2 Rn | Hi
k
x  hk}, i 2 Npk , is  the  i-th polyhedral partition of the set of feasible states, i i 

and pk is the number of polyhedral partitions at time k. The  controller  parameters  F k
, f

k
, H

k
, h

k 
i i i i 

kcan be computed offline; they are independent of xk , 8k, but  may  depend on  the values  of  i . 

Corollary 1. Consider the optimization problem (5), (18), (19). The zero-inflow optimal control 
law can be expressed as (20), where matrices F k

, f
k
, H

k
, h

k can be computed off-line. Moreover, i i i i 
kthe feasibility of the resulting control actions is guaranteed for any non-zero inflow rate , i.e., the  i 

constraints in (18) are always satisfied. 

A true optimal controller is not implementable as it needs unknown inflow rates over the control 
horizon; and a zero-inflow optimal controller may not be truly optimal. However, with respect to 
certain cost functions, the zero-inflow optimal feedback control law is truly optimal. We show that 
for problem (5), (18), (19), under certain assumptions on the network topology, if the cost functions 
satisfy certain properties, the zero-inflow centralized optimal feedback controller has a decentralized 
realization with a one-hop information structure which is truly optimal for any exogenous inflow. 

Theorem 3. Consider the problem (5), (18), (19) for a network with time-invariant split ratios 
and no merge junction. In addition, assume that cost-weighting parameters satisfy ↵i

k 
↵
k
j 0, 

k k+18k, i and 8j 2 E+, and    0, 8k, i. Then,  the  true  optimal  feedback  control  law  (with  i i i 
centralized information) can be realized as 

k(uki )
⇤ = pwai 

⇢ 
(xi

k 
, (xkj ) 

i 
) (21)j2E+ 

vi 
⇣ 
wj 1 Cj 

⌘ 
k k= min  xi , Ci, (,j xj ), . 

j2E+` i Rij ` j Rij i 

The controller (21) has a one-hop information structure (see Definition 6); moreover, its pa-
rameters are obtain at no computational cost independent of the control horizon N . Indeed, the 
expression in the right-hand side of (21) is the upper limit of uk which is known beforehand, that i 
is 0  uk  ū i

k , where i 

⇢ 
vi 

⇣ 
wj 1 Cj 

⌘ 
ū
k
i =min  x

k
i , Ci, (,j x

k
j ), . (22)

j2E+` i Rij ` j Rij i 

Hence, Theorem 3 states that, under the given assumptions, setting each outflow rate equal to its 
upper limit provides the true optimal performance. This is equivalent to opening every control valve 
to the fullest extent possible at each time. We refer to such scheme as trivial control or uncontrolled 
scheme. 

Remark 4. The conditions given in Theorem 3 are sufficient (not necessary) for a linear perfor-
mance index with respect to which a centralized optimal control law has a realization with a specific 
one-hop information structure. It should be also noted that the optimal control is not necessarily 
unique. 

Remark 5. The widely-used performance indexes in Remark 3 satisfy the properties given in The-
orem 3. 

In general, however, the optimal controller needs access to the state of the entire network and 
depends on the control horizon. For a general network with a general linear cost functional, the 
closed-form of the control law (20) enables one to compute the controller parameters offline and 
stored in computer memory before the control actions are ever applied to the network. That is, there 
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is no need to solve a large-size optimization problem at every time step for real-time implementation, 
unless there is a large variation in the network parameters. An optimal feedback controller of the 
form (20), however, suffers from two major drawbacks restricting its applicability to large-scale 
networks: (i) Even though the piecewise-affine form of the control law seems to be simple, when the 
number of cells and the control horizon increase, solving the corresponding multi-parametric linear 
programs may result in a very large number of polyhedral partitions, making the structure of the 
controller too complex. Although applying the merging algorithms [14,15] may considerably reduce 
the number of polyhedral partitions, in general there may still be too many polyhedral sets. (ii) 
Determining the optimal control action at each time involves centralized operations, that is each 
local controller needs instantaneous access to the state of the entire network; this, however, may not 
be feasible for large-size networks, as implementation of a highly reliable and fast communication 
system may be impractical or too costly. It is, therefore, necessary to design an feedback control law 
with a simple structure that requires access only to local information, while providing a satisfactory 
performance level. 

Remark 6. Throughout the study, it is assumed that no information about the exogenous inflow to 
the network is available for control design (both centralized and decentralized), that is any controller 
is designed under the assumption of zero external inflow rate. The controller, however, can be 
applied to the network with any admissible inflow rates. For nonzero inflow rate, the feasibility of 
the control actions is guaranteed, but they are not necessarily truly optimal. 

6.2 Decentralized Feedback Control 

In this subsection, the objective is to design a static state-feedback control law with a one-hop 
information structure for problem (5), (18), (19). Such a control law, for a general network, is of 
the form 

k
u
k 
i = i (xi

k 
, (xj

k)j2Di ), (23) 

where Di denotes the set of all cells, excluding cell i, leaving/entering the downstream junction 
(head) of cell i. From the definition of Di, it follows that E+ ✓ Di; also, for any i 2 Eoff, Di = {}.i 
For example, in Fig. 6, D1 = {2, 3} and D4 = {5, 6}. 

Design of a decentralized feedback controller can be viewed as solving an uncertain optimization 
problem, wherein non-local variables/parameters are unknown. The main challenges are how to 
ensure the feasibility of the solution and how to express or implement it in a feedback form. 

Uncertain linear program has been the subject of a lot of research and several approaches have 
been proposed to deal with robust optimization problems [41] including: solving the problem for 
nominal values of the unknown parameters and then performing sensitivity analysis; formulating the 
problem as a stochastic optimization by incorporating the knowledge on the probability distribution 
of the uncertain parameters; and assigning a finite set of possible values to the uncertain parameters 
and determining a solution which is relatively good for all the scenarios [42]. Also, some research 
has focused on evaluating the impact of uncertainty on the cost by computing the worst and best 
optimum solutions [43]. In some other works, in order to ensure the feasibility of solution, a worst-
case approach is considered which, in general, leads to extremely conservative solutions [41]. 

In this study, we follow the decentralized procedure proposed in Section 5 which lead to a simple 
decentralized control law with the desired information structure and provides a feasible solution that 
under certain conditions could provide the optimal centralized performance. 

In order to design the i-th control law with a one-hope information structure, we design a 
centralized optimal static state-feedback controller for the sub-network consisting of cells i and any 
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j 2 Di, with zero inflow rate to cell i. Then, the i-th local optimization is 
n 

N Nmin '̂i(x , (xj )j2Di ) +  (24)i 
ui,(uj )j2Di 

XN 1 o 
k k k k kˆ 
i (xi , (xj )j2Di , ui , (uj )j2Di )k=0 

s.t. (xi, (xj )j2Di , ui, (uj )j2Di ) 2 ⇥̂i, 

where P
'̂i = ↵

N
i x

N
i + j2Di 

↵j
N 
x
N
j , 

P (25)
ˆk k k 
i = ↵

k
i xi

k + i ui
k + j2Di 

(↵k
j xj

k + j uj
k). 

and the constraint set ⇥̂i is defined by (18) with zero inflow rate yk = 0, 8k, wherein any constraint i 
involving non-local variables is relaxed. 

Theorem 4. Consider the local optimization (24), for a sub-network of cells i, j 2 Di. The  solution  
can be expressed as 

k k k k(ûi )
⇤ = pwai (xi , (xj )j2Di ). (26) 

which is a piecewise affine function on polyhedra of local state variables whose parameters can be 
computed off-line. Moreover, it satisfies all constraints in (18) for any k, i. 

We refer to (26) as a “sub-optimal decentralized control law with a one-hope information struc-
ture”. It should be highlighted that the separability property of the objective function and con-
straints has enabled us to simply construct a local version of the centralized optimization problem 
as (24). 

The natural question that arises is how to evaluate the performance and sub-optimality level 
of the above decentralized control scheme. As mentioned earlier, in general, performance analysis 
of decentralized controllers is a very difficult task. Due to the lack of analytical tools, performance 
evaluation can be done through extensive numerical simulations. It should be noted that although 
the above decentralization procedure involves constraints/relaxations that may affect the conserva-
tiveness of the solution, under certain conditions, performance degradation due to decentralization 
is zero. It is easy to verify that if the conditions in Theorem 3 are satisfied, solving the local 
optimization (24) gives the true optimal controller. 

Example 1. In order to illustrate the decentralization process, let us consider a 3-cell network with 

kFigure 7: A 3-cell network with exogenous inflow rate  . 

the following cost function and constraints 
PNmin J = (x1 

k + 4x2 
k + 2xk 

k=0 3) 
k+1 k k k k ks.t. x = x + u ui , u  = ,i i i 1 0 (27)

k k0  u  0.9xi , i = 1, 2, 3,i 

u
k  1 0.3xk 

, i  = 1, 2.i i+1 

Table 1 shows how the centralized controller can be implemented in a feedback form. In a decentral-
ized control with a one-hop information structure, given local state at time t, the  control  action  at  
each time t = 0, 1, . . . , N  1, is  obtained as  shown  in  Table 2.  

21 



�
�
�

�

�

�

�
�

�

�

�
�

�

�

�
�

Table 1: Centralized control in feedback form. 

Global optimization at Control action at 
time t time t 
Given xt:P 

=t 
N
k 

t t(xt),u = (x1 + 4x2 +
kkmin J t = 

k , 8k >Discard u 
3) 

k+1 

k2x 
t 

1 + 0  
= x2 + u 

k

k 

k .
x = x u1,1 
k+1 k 

1 
k 
2 ,x 

x 
u2 

k+1 
3 = x3 + u

k k 
2 

k 
3 ,u 

0  u1  0k k 
1 ,.9x 

1  1 
0  u2  0k 

k k 
2,0.3xu 

.9xk 
2 , 

2  1 
0  u3  0k 

k k 
3 ,0.3xu 

.9xk 
3 , 

Table 2: A decentralized control  in feedback form.  

Local optimization at time 
t 

Control action at 
time t 

k 

k 

k 

k 

k 

k 

k 

k 

t 

N 
k

t
x,1 

k 

k 

Given x 2:Pt 
1 

k 

k 

min J = (x1 + 4x=t 2) 
k+1

x = x1 + 0  u1 1, 

k 

k+1
x = x u2 2 + u1 2 , 
0  u1  0.9x1 , 
u1  1 0.3x2, 
0  u2  0.9x2 , 

tt 

k 

tt
u = 1, x1 1(x 2), 
Discard u1, 8k >  
t. 

k 

k 

k 

k 

k 

k 

k 

k 

t 

N 
k

k 

k 

t 

t 

k 

k 

k 

Given x2, x3:P
min J = (4x2 + 2x2 =t 3 ) 
k+1

x = x2 + 0  u2 2, 
k+1

x = x u3 3 + u2 3 , 
0  u2  0.9x2 , 
u2  1 0.3x3 , 
0  u3  0.9x3 , 

tt 

k 

tt
u = 2, x2 2(x 3), 
Discard u2, 8k >  
t. 

k 

k 

k 

N 
k

k 

t 

t 

k 

Given x3:P
min J = 2x3 =t 3 
k+1

x = x3 + 0  u3 3, 
0  u3  0.9x3 , 

t 

k 

tt
u =3 3(x3), 
Discard u3, 8k >  
t. 

In a decentralized feedback control with a one-hop information structure (see Definition 6), by 
setting yki = 0, 8k, and removing any constraints involving state of non-local (not immediately 
down-stream) cells, the global optimization problem is decomposed into multiple lower-dimensional 
local problems. For any i, the  i-th local optimization problem is such that, given local states at 
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current time t, the feasibly of ut is guaranteed (see Theorem 4). i 

7 Simulations: Feedback Control of Traffic Networks 

As mentioned earlier, it is generally difficult to analytically evaluate performance of a decentralized 
control scheme in compared with that of an optimal centralized controller, hence comprehensive 
numerical simulations must be performed to demonstrate the effectiveness of a decentralization 
technique and numerically assess the level of sub-optimality. 

Simulation 1 : Consider the 8-cell cyclic traffic network shown in Fig. 8, with cost function PN P8
J = ↵ixi

k , subject to (18), where ↵i = 1, for i = 1, 2, 3, 5, 7, 8, ↵4 = 5, and  ↵6 = 3.k=0 i=1 
Turning ratios at diverge junctions are R38 = R34 = 0.5 and R56 = R57 = 0.5. The external inflow 

k kFigure 8: An 8-cell cyclic network with exogenous inflow rates and 2, where Eon = {1, 2} and 1 
Eoff = {7, 8}. 

k krate to the network are = = 1, 8k. The other parameters are vi = 0.9, wi = 0.3, Ci = 10,1 2 
,i = 10, ` i = 1, xi(0) = 0, 8i, and  Ts = 1  Let J⇤ 

dec be respectively the cost value of the . and J⇤ 
cen 

centralized control and decentralized control with a one-hop information structure. Fig. 9 shows 
the relative percentage of the performance loss due to decentralization " = 100(J⇤ 

J
⇤ )/J⇤ 

dec cen cen 
for different values of control horizon N = 1, 2, . . . , 30. 

Figure 9: Relative performance loss due to decentralization as a function of control horizon. The 
maximum relative error is 2.22% at N = 8. 

Simulation 2 : To evaluate the performance of the decentralized scheme, let us consider a larger 
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network with more realistic architecture and parameters. We consider the freeway system of an 
area in the southern Los Angeles as shown in Fig. 10(a) modeled by the CTM. The directed graph 
of the network of the region of interest consisting of 32 cells is shown in Fig. 10(b). Consider 

Figure 10: (a) The map of an area in the southern Los Angeles. The red ellipse shows the region used in 
our numerical simulation. (b) The directed graph of the transportation network of the region of interest 
with 32 cells, where Eon = {1, 2, 7, 13, 19, 21, 22, 29, 32} and Eoff = {11, 15, 17, 27, 28, 31}. 

PPN nminimization of J = i , subject to (18), with the following parameters. The sampling k=0 i=1x
k 

time is Ts = 1/360 hr (or 10 sec). For on-ramp cells, the jam traffic density ,i is assumed to be 
infinity and for other cells is ,i = 200 veh/mi. For all cells, the backward congestion wave traveling 
speed is wi = 13 mi/hr. For cells 3, 4, 9, 10, 12, 16, 20, the cell’s length is ` i = 2  mi, the free-flow speed 
is vi = 65 mi/hr, and the maximum flow capacity is Ci = 800 veh/hr, and for other cells, ` i = 0.5 mi, 
vi = 25 mi/hr, and Ci = 400 veh/hr. At any diverge junction, ~ i with incoming cell i, the  turning  
ratios are time-invariant and are split uniformly between the outgoing cells, i.e., Rij = 1/n , where ~ i 

n~ i is the number of outgoing cells from junction ~ i; for example, R8,3 = R8,11 = R8,12 = 1/3. The 
kexogenous inflow rate to on-ramp cells are = 1, 8k, i 2 {1, 2, 7, 13, 19, 21, 22, 29, 32}, and  x0 = 0,i i 

8i. Fig. 11 shows the relative percentage of the performance loss due to decentralization for different 
values of control horizon N = 1, 2, . . . , 10, 20, . . . , 100. For example, for N = 60, the optimal cost 
value of the centralized controller is J⇤ = 33.7367 and that of the decentralized one (with one-cen 
hop information structure) is J⇤ = 33.7383, then the relative decentralization performance loss dec 
" = 100(J⇤ 

J
⇤ )/J⇤ = 0.0047%.dec cen cen 

8 Setup for Information Design Study 

We state a few key notations to be used for this study. E [x] will denote the expected value of 
random variable x with respect to probability distribution . int(X) will denote the interior of set X 
and 4(X) the set of all probability distributions on X. For an integer n, we let [n] :=  {1, 2, . . . , n}. 
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Figure 11: Relative performance loss due to decentralization as a function of control horizon. The 
maximum relative error is 0.0292% at N = 6. 

For a vector x 2 Rn , let supp(x) :=  {i 2 [n] | xi = 06 } be the set of indices whose corresponding n P o 
entries in x are not zero. For 0, let Pn( ) :=  x 2 Rn | = be the (n 1)-0 i2[n] xi 

dimensional probability simplex of size . When = 1, we shall simply denote the simplex as Pn 

for brevity in notation. 0n⇥m and 1n⇥m will denote n⇥ m matrices all of whose entries are 0 and 
1 respectively. In all these notations, the subscripts corresponding to size shall be omitted when 
clear from the context. For a matrix A, its transpose is denoted as AT . For matrices A and B ofP
the same size, their inner product is A · B = Ai,j Bi,j . A ⌫ 0 for a symmetric matrix A will i,j 
imply that it is positive semidefinite. 

Consider a network consisting of n parallel links between a single source-destination pair. With-
out loss of generality, let the agent population generate a unit volume of traffic demand. The link 
latency functions ` !,i(fi), i 2 [n], give latency on link i as a function of flow fi through them, 
conditional on the state of the network ! 2 ⌦ = {!1, . . . ,!s}. Throughout the study, we shall 
make the following basic assumption on these functions. 

Assumption 2. For every i 2 [n], ! 2 [s], ` !,i is a non-negative, continuously differentiable and 
non-decreasing function. 

At times, we shall strengthen the assumption to ` !,i being strictly increasing. A class of functions 
satisfying Assumption 2 which is attractive from a computational perspective is that of polynomial 
functions: 

DX 
` !,i(fi) =  ↵d,!,i f

d 
i , i 2 [n], ! 2 [s] (28) 

d=0 

with ↵0,!,i 0 and ↵1,!,i 0. We shall also let ↵d refer to the s ⇥ n matrix whose entries are 
↵d,!,i. Two instances of (28) commonly studied in the literature are affine and the Bureau of 
Public Roads (BPR) functions [44]. In the former case, D = 1  and in the latter case, D = 4  with 
↵1 = ↵2 = ↵3 = 0. Furthermore, the BPR function has the following interpretation: ↵0,!,i is the 

⇣ ⌘ 1 
↵0,!,i 4free flow time on link i when the state is !, and  0.15 is the flow capacity of link i when ↵4,!,i 

the state is !. 
Let ! ⇠ µ0 2 int(4(⌦)), for some prior µ0 which is known to all the agents. The agents do 

not have access to the realization of !, but a fixed fraction ⌫ 2 [0, 1] of the agents receives private 
route recommendations conditional on the realized state. These conditional recommendations are 
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generated by a signal ⇡ = {⇡! 2 4(Pn(⌫)) : ! 2 ⌦} as follows. Given a realization ! 2 ⌦, sample  
a x 2 Pn(⌫) according to ⇡!, and partition the agent population into n + 1  parts with volumes 
(x1, . . . , xn, 1 ⌫). All the agents are identical, and therefore in the non-atomic setting that we are 
considering here the partition can be formed by independently assigning every agent to a partition 
with probability equal to the volume of that partition. The agents in the (n + 1)-th partition, with 
volume 1 ⌫, do not receive any recommendation, whereas all the agents in the i-th partition, 
i 2 [n], receive recommendation to take path i. 

The signal ⇡ and the fraction ⌫ is publicly known to all the agents. Therefore, it is easy to see 
that the (joint) posterior on (x, !), i.e., the proportion of agents getting different recommendations 
and the state of the network, formed by an agent who receives recommendation i 2 [n] is: 

µ
⇡,i(x, !) =  

xi ⇡!(x) µ0(!)P R 
pi ⇡✓(p) dp µ0(✓)✓2⌦ p2P(⌫) 

(29) 

and the posterior formed by an agent who does not receive a recommendation is: 

µ
⇡,;(x, !) =  ⇡!(x)µ0(!) (30) 

Remark 7. One could consider an alternate setup where the set of agents who do not participate 
in the signaling scheme is pre-determined. These agents do not receive a recommendation and also 
do not have knowledge about ⇡. In  this  case,  (30) can be replaced with µ;(x, !) =  µ0(!) obtained by |P(⌫)|
replacing ⇡! with the uniform distribution. The methodologies developed in this study also extend 
to this alternate setting. 

A signal is said to  obedient if the recommendation received by every agent is weakly better, 
in expectation with respect to posterior in (29), than other routes, while the non-receiving agents 
induce a Bayes Nash flow with respect to their posterior in (30). Formally, a ⇡ is said to be obedient 
if there exists y 2 Pn(1 ⌫) such that1: 

Z ZX X 
` !,i(xi + yi)µ

⇡,i(x, !) dx  ` !,j (xj + yj )µ
⇡,i(x, !) dx, i, j 2 [n] (31a) 

x x! !Z ZX X 
` !,i(xi + yi)µ

⇡,;(x, !) dx  ` !,j (xj + yj )µ
⇡,;(x, !) dx, i 2 supp(y), j  2 [n] (31b) 

x x! ! 

Plugging the expressions of beliefs from (29) and (30), noting that the denominators on both sides 
of the inequalities are the same in (31), and multiplying both sides of (31b) by yi, one equivalently 
gets: 

ZX ZX 
` !,i(xi + yi) xi ⇡!(x)dxµ0(!)  ` !,j (xj + yj ) xi ⇡!(x)dxµ0(!), i,  j  2 [n] (32a) 

x! ZX 
x! ZX 

` !,i(xi + yi) yi ⇡!(x)dxµ0(!)  ` !,j (xj + yj ) yi ⇡!(x)dxµ0(!), i,  j  2 [n] (32b) 
! x ! x 

We emphasize that multiplying both sides by yi allows to equivalently relax the restriction on i in 
terms of y in (31b) to get (32b). 

1
Throughout the study, unless noted otherwise, the summation over indices for degree, state and link, such as d, 

! and i, respectively,  are to  be  taken  over  the  entire  range, i.e.,  {0, . . . , D}, [s] and [n], respectively.  
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The social cost is taken to be the expected total latency: 
ZX 

J(⇡, y) :=  (xi + yi) ` !,i(xi + yi) ⇡!(x)dxµ0(!) (33) 
!, i  

The information design problem can then be stated as 

min J(⇡, y) s.t. (32) (34) 
(⇡,y)2⇧⇥P(1 ⌫) 

where ⇧ is the concise notation for 4(P(⌫))s . 

Remark 8. (i) If there are multiple feasible y for a given ⇡, then  a  solution  (⇡⇤, y⇤) to (34) can 
be interpreted as implicitly requiring an additional action from the social planner to enforce 
y
⇤. One  could  alternately  consider  a  robust formulation by replacing min(⇡,y) in (34) with 

min⇡ maxy. We  leave  such  an  extension  for  future  consideration. Moreover,  Lemma  1  below  
shows that, under a rather reasonable condition on the link latency functions, there exists a 
unique feasible y for every ⇡, in  which case the robust  version  is  the same as  (34). 

(ii) The revelation principle, e.g., see [19], implies that optimality in the class of obedient direct 
private signals, i.e., signals which recommend routes, also ensures optimality within a broader 
class which includes indirect signals. An indirect signal provides noisy information about the 
state realization. The route choice is then determined by Bayes Nash flow with respect to the 
posterior beliefs induced by the signal. In Section 10, we consider a special case of indirect 
signals, known as public signals. 

(iii) The feasible set in (34) is non-empty for all ⌫ 2 [0, 1]. A  formal  argument  is  postponed  to  
Remark 13, after we have discussed public signals. 

Lemma 1. For every ⇡ 2 ⇧, a  y 2 P(1 ⌫) satisfies (32b) if and only if it solves the following 
convex problem: Z ZX yi 

min ` !,i(xi + s) ⇡!(x)dx ds µ0(!) (35) 
y2P(1 ⌫) 0 x2P(⌫)!, i  

Moreover, such a y is unique if {` !,i}!,i are strictly increasing over [0, 1]. 

Lemma 1 follows from a straightforward adaptation of the standard argument for Wardrop 
equilibrium in the deterministic case. 

Remark 9. Lemma 1 implies that, in order to ensure a unique feasible y for every ⇡, it  is  sufficient 
to have ↵1,!,i > 0 for all !, i  for affine latency functions, and ↵4,!,i > 0 for all !, i  for BPR latency 
functions.2 

Following Lemma 1, minimizing J(⇡, y) with respect to y for a fixed ⇡ is trivial for strictly 
increasing link latency functions. Joint optimization over ⇡ and y in (34) however is challenging, 
not the least because it involves optimizing over probability distributions. The next section presents 
finite dimensional formulations which are provably equivalent to (34) for polynomial link latency 
functions. 

2
Note that all the derivatives of the BPR latency function are zero at 0. However, one can easily show uniqueness  

in the special cases when, for a signal supported only on xi = 0, (35) has a solution with yi = 0. 
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9 Private Signals 

In this section, unless stated otherwise, we assume that the link latency functions are polynomial, 
i.e., of the form in (28). Let us first consider minimizing J(⇡, y) over ⇡ satisfying (32a), for a fixed 
y. Note that, for y = 0, this corresponds to the information design problem in the special case when 
⌫ = 1. Even in this special case, which has been studied previously in [24, 26], no comprehensive 
solution methodology exists. 

We start by rewriting the information design problem in terms of moments of the signal ⇡. Let 
z be the vector of all monomials in x1, . . . , xn up to degree dD/2e, arranged in a lexicographical 

Torder. For example, for D = 3, z = [1, x1, . . . , xn, x21, . . . , x1xn, x2x1, . . . , x2xn, . . . , xnx1, . . . , x
2 ] .n 

For a fixed y, (34) can then be written as: 
ZX 

min C!(y) · zzT 
⇡!(x)dx (36a)

⇡2⇧ 
! ZX 

s.t. A
(i,j) T(y) · zz! ⇡!(x)dx 0, i, j  2 [n] (36b) 

! ZX 
B

(i,j)(y) · zzT 
! ⇡!(x)dx 0, i, j  2 [n] (36c) 

! 

for appropriate symmetric matrices C!, A( 
! 
i,j), and  B! 

(i,j); expressions for these matrices in the 
special case when D = 1 (i.e., affine link latency functions) are provided in [36]. The cost in (36a) 
is the same as the cost in (33), (36b) corresponds to the obedience constraint in (32a), and (36c) 

�

�

�

�

corresponds to (32b). 
(36) is an instance of the generalized problem of moments (GPM) [28], which in turn can be 

solved numerically using GloptiPoly [29]. This software solves GPM by lower bounding it with 
semidefinite relaxations of increasing order. The stopping criterion on the order is however problem-
dependent; approximations can be obtained by a user-specified order. In the special of n = 2, the  
first order relaxation is tight. 

Proposition 1. Let n = 2. For  every  y 2 P(1 ⌫), (36) is equivalent to a semidefinite program. 

Remark 10. Proposition 1 implies that, in the case of two links, when all the agents are receiving, 
i.e., ⌫ = 1, computing  optimal  signal  is  tractable  for  arbitrary  polynomial  latency  functions.  This  
is to be contrasted with existing work, e.g., [24, 26], where an optimal signal is provided for such a 
setting only for certain affine link latency functions. 

Proposition 1 and the discussion before it suggests a natural alternating heuristic for solving 
(34): start with an arbitrary y 2 P(1 ⌫), and alternate between solving (36) for a fixed y and 
finding a feasible y using Lemma 1. Under appropriate conditions on the latency functions, one can 
show that this heuristic results in a sequence of feasible (⇡, y) whose associated cost is monotonically 
decreasing, and hence convergent, though not necessarily to a global optimum of (34). 

9.1 An Exact Polynomial Optimization Formulation via Atomic Signals 

A natural approach to approximate the joint optimization in (34) is to discretize the support of ⇡. 
A signal  ⇡ is called m-atomic, m 2 N, if, for every ! 2 ⌦, ⇡ is supported on m discrete points 
x
(k) 2 P(⌫), k 2 [m]. Let the set of such signals be denoted as ⇧(m). It is easy to see that every 

signal in ⇧(m) can be represented as a s ⇥ m row stochastic matrix. To emphasize the matrix 
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notation, we let ⇡(k|!) denote the probability of recommending routes according to x(k) when the 
state realization is !. Computing optimal signal in ⇧(m) can be written as the following polynomial 
optimization problem3: 

⇣ ⌘X 
(k) (k)min x + yi ` !,i(x + yi) ⇡(k|!) µ0(!) (37a) 

x(k)2P(⌫), k2[m] 
i i 

k, !, i  
y2P(1 ⌫) 
⇡2⇧(m) 

X X
(k) (k) (k) (k)s.t. ` !,i(x + yi) x ⇡(k|!) µ0(!)  ` !,j (x + yj ) x ⇡(k|!) µ0(!), i, j 2 [n]i i j i 

k, ! k, ! 

(37b) 
X X

(k) (k)
` !,i(xi + yi) yi ⇡(k|!) µ0(!)  ` !,j (xj + yj ) yi ⇡(k|!) µ0(!), i, j 2 [n] 

k, ! k, ! 

(37c) 

In particular, for (28) with D = 1, i.e., affine link latency functions, the polynomials in the cost func-
tions and the constraints are of degree 3. (37) can also be solved (approximately) using GloptiPoly. 
(37) gives an increasingly tighter upper bound to (34) with increasing m 2 N. While  it  is  natural  
to expect the gap between (37) and (34) to go to zero as m ! +1, the gap in fact becomes zero 
for finite m. 

D+n
Theorem 5. (34) is equivalent to (37) for m s D+1 . 

The upper bound in Theorem 5 on the number of atoms required to realize an optimal signal 
can be tightened in some cases, as we show in the next section. 

9.2 Diagonal Atomic Signals 

An atomic signal which has attracted particular attention is when ⇡ is the identity matrix of size 
!

s. We shall refer to such a signal as a diagonal atomic signal, and denote its finite support as x , 
! 2 ⌦. The polynomial optimization problem in (37) in this case simplifies to: 

X 
min 

x! 2P(⌫), !2⌦ 

!(xi 
!+ yi) ` !,i(xi + yi) µ0(!) (38a) 

y2P(1 ⌫) !, i  

X X 
s.t. !

` !,i(xi 
!+ yi) x µ0(!) i 

!
` !,j (xj 

!+ yj ) x µ0(!), i, ji 2 [n] (38b) 
!X 

!X 
!

` !,i(xi + yi) yi µ0(!)  !
` !,j (xj + yj ) yi µ0(!), i, j 2 [n] (38c) 

! ! 

In general, (38) gives an upper bound to (37) for m s, and hence also for (34). The next result 
establishes the equivalence between the two formulations in a special case, and also establishes that 

3
Throughout the study, unless noted otherwise, the summation over index for discrete support, such as k, is  to  

be taken over the entire range, i.e., m. 
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(38) is equivalent to the following semidefinite program: 

min Ĵ(M) := C · M (39a)
M⌫0 

A
(i,j)s.t. · M 0, i, j  2 [n] (39b) 

B
(i,j) · M 0, i, j  2 [n] (39c) 

M(1, 1) = 1 (39d) 
M(i, j) 0,  i, j  2 [(s+ 1)n+ 1] (39e) 

S
(k) · M = 0, Sy · M = 0, k 2 [m] (39f) x 

T
(i,k) · M = 0, T

(i) · M = 0  i 2 [n], k  2 [m] (39g) x y 

, Sy, T
(i,k), B(i,j), S(k)where the expressions for symmetric matrices C, A(i,j) 

x x and Ty 
(i) for the special 

case D = 1 are provided in [36]. 

Proposition 2. If n = 2, then  (38), (34) and (39) are all equivalent to each other for (28) with 
D = 1, i.e., for affine link latency functions. 

Remark 11. (i) For n = 2  and D = 1, Proposition  2  implies  that  an  optimal  signal  can  be  
3realized with s atoms, which is much less than the bound s = 3s given by Theorem 5. 

[x , x  , . . . , x  , x  , y1, y2] = ⌘̂
⇤ is an optimal solution for (38), and hence also for  (34). 

2 

(ii) For n = 2 and D = 1, if  M⇤ = 

 
1 
⌘̂
⇤ 

⌘
⇤Tˆ 

M
0,⇤ is an optimal solution to (39), then  

!1 !1 !s !s T 
1 2 1 2 

(iii) Proposition 2 and its proof approach (cf. [36])might appear to be generalization of an obser-
vation in [26], which was made for ⌫ = 1, and  for  a  class  of  affine link latency functions. Not 
only do we remove these restrictions, but more importantly, our proof implicitly highlights that 

�
�

�

� �

�

the obedience constraint needs more careful treatment than suggested in [26]. 

(iv) It is informative to contrast the different approaches of Proposition 1 and Proposition 2 for 
establishing tightness of the natural semidefinite relaxation of the corresponding variants of 
the information design problem. Proposition 5 simply relies on the ability to rewrite the 
problem in terms of univariate probability measures with compact support. On the other hand, 
Proposition 2 relies on the tightness of the GPM obtained by relaxation of the problem because 
it has optimal probability measures supported on single atoms. 

9.3 Monotonicity of Optimal Cost Value under Diagonal Atomic Signals 

Let Jdiag(x, y) denote the cost function in (38a), and let Jdiag,⇤(⌫) denote the optimal value for a 
given ⌫. 

Theorem 6. Jdiag,⇤(⌫) is continuous and monotonically non-increasing with respect to ⌫ 2 [0, 1]. 

Remark 12. (i) Note that Theorem 6 does not require the link latency functions to be polynomial. 

(ii) In light of Proposition 2, Theorem 6 implies that, if n = 2 and if the link latency functions are 
affine, then the optimal cost value under all, i.e., not necessarily (diagonal) atomic, private 
signals is continuous and monotonically non-increasing in ⌫ 2 [0, 1]. However,  this  is  not  
necessarily the case with public signals, as we illustrate in Section 11. 
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(iii) The proof of Theorem 6 (cf. [36]) implies that for a (not necessarily optimal) atomic diagonal 
signal ⇡diag for some ⌫1 2 [0, 1], one  can  construct  a  simple  ⌫-dependent atomic diagonal 
signal with the same social cost as ⇡diag for all ⌫ 2 [⌫1, 1]. In  other  words,  one  can  construct  
a simple  feedback (using  ⌫) atomic diagonal signal  around a  nominal ⇡diag under which the 
social cost does not increase due to higher than nominal fraction of receiving agents for which 
⇡
diag is designed. This is to be contrasted with existing results according to which the cost of 

receiving agents may increase with their increasing fraction under a fixed (open-loop) signal, 
e.g., see [33, 34]. 

10 Public Signals 

A public signal is an indirect signal, under which, for every state realization, ⌫ fraction of agents all 
receive the same message among {1, . . . ,m} = [m]. Formally,  a  public  signal  is  a  map  ⇡pub : ⌦ ! 
4([m]), or can alternately be represented as a s⇥ m row stochastic matrix. The posterior formed 
by agents when the message they receive is k is: 

⇡
pub(k|!)µ0(!)

µ
⇡pub,k(!) =  P , ! 2 ⌦ (40)

⇡pub(k|✓)µ0(✓)✓ 

The joint posterior formed by agents who do not receive message, but have knowledge of ⇡pub, is:  

,;(k,!) =  ⇡pub(k|!)µ0(!),µ
⇡pub 

k 2 [m], ! 2 ⌦ (41) 

Public signals over m messages have strong parallel with, but are not equivalent to, m-atomic 
private signals considered in Section 9.1. We return to this connection in Proposition 3. 

�

�

�

Let x(k) 2 P(⌫) be the link flow induced by receiving agents, when the message they receive is 
k 2 [m], and let y 2 P(1 ⌫) be the link flow induced by agents not receiving the message. x(k) is 
the Bayes Nash flow with respect to the posterior in (40) and y is the Bayes Nash flow with respect 
to the posterior in (41). That is, x(k) satisfies: 

X X 
⇡pub,k(!)  ⇡pub,k(!),(k) (k)

` !,i(xi + yi)µ ` !,j (xj + yj )µ i 2 supp(x(k)), j  2 [n] 
! ! 

Substituting the expression from (40), the conditions on {x(1), . . . , x(m)} can be collectively rewrit-
ten as 

X⇣ ⌘ 
(k) (k) (k) 

⇡
pub(k|!)µ0(!)  0,xi ` !,i(xi + yi) ` !,j (xj + yj ) i, j  2 [n], k  2 [m] (42) 

! 

Similarly, the condition on y can be written as 
X⇣ ⌘ 

(k) (k) 
⇡

pub(k|!)µ0(!)  0,yi ` !,i(xi + yi) ` !,j (xj + yj ) i, j  2 [n] (43) 
k, ! 

The social cost is: 
X 

J(⇡pub (k) (k) + yi) ⇡
pub(k|!)µ0(!), x, y) :=  (x + yi) ̀  !,i(xi i (44) 

k, i, ! 
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Therefore, the problem of optimal public signal design can be written as: 

J(⇡pubmin , x, y) s.t. (42) (45) 
x(k)2P(⌫), k2[m] 

y2P(1 ⌫) 
⇡pub2⇧(m) 

(43) 

Similar to (37), (45) is a third degree polynomial optimization problem for affine link latency 
functions. 

Example 2. Two public signals which have attracted particular interest are full information and 
no information: 

k=1 k=2 ... k=m k=1 k=2 ... k=m2 23 3 
!1 1 0 . . .  0 !1 1 0 . . .  0 

6664 

0 1 . . .  0 
. . . . . . . . . . .  . 

7775
, ⇡

pub, no = 
!2 

. . . 

6664 

1 0 . . .  0 
. . . . . . . . . . .  . 

7775 

!2 

⇡
pub, full (46)= . . . 

!s 0 0 . . .  1 !s 1 0 . . .  0 

where m = s for the full information signal, and m is arbitrary, e.g., m = 1, for  the  no  information  
signal. In general, any row-stochastic ⇡pub, no with identical rows corresponds to a no information 
signal. 

It is sometimes of interest to evaluate the cost of a given public signal. The cost can be computed 
once the induced flows x(k), k 2 [m], and  y are known, which in turn can be computed using the 
next result. 

Lemma 2. The link flows, y and x(k), k  2 [m], induced by  a public signal  ⇡pub are solutions to 

ZX 
min 

y2P(1 ⌫); x(k)2P(⌫), k2[m] 0i,!,k 

(k)
x +yii 

` !,i(z) dz ⇡
pub(k|!) µ0(!) (47) 

It is interesting to compare the formulations in (37) and (45) for m-atomic private signals and 
public signals with m messages respectively. While next result implies that every public signal with 
m messages can be equivalently realized by an m-atomic private signal, the converse is not true in 
general. 

Proposition 3. Given a ⌫ 2 [0, 1], for  every  public  signal  ⇡pub with m messages, there exists an 
m-atomic direct private signal with the same cost. 

Remark 13. Proposition 
(46) 

3 implies that, for every ⌫ 2 [0, 1], there 
(34) 

(38) 

exists a feasible 1-atomic private 
signal corresponding to ⇡pub, no in with m = 1. Therefore,  is feasible for every ⌫ 2 [0, 1]. 
Considering s duplicates of the same atom as for m = 1  case implies that is feasible for all 
⌫ 2 [0, 1]. Feasibility  of  (37) can be established along similar lines. 

11 Simulations: Information Design for Traffic Networks 

We compare the minimum cost achievable under private signals, public signals, and full information 
over two parallel links under affine (Section 11.1) and BPR latency functions (Section 11.2). The 
computations were performed using a combination of GloptiPoly and the MultiStart function 
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(with fmincon solver) in MATLAB. In particular, the upper bound computed by MultiStart allows 
to certify optimality of the lower bound obtained from GloptiPoly, especially when the solution 
from GloptiPoly does not come with an explicit certificate of optimality. In all the instances, 
it was found sufficient to have 125 starting points for MultiStart and relaxation order of 3 for 
GloptiPoly. The no information signal corresponds to ⌫ = 0, when all the costs are expectedly 
equal. For both the scenarios, the total demand is set to be 5. 

0 0.5 1 
108 

110 

112 

114 

116 

118 

120 

co
st

 

full info 
optimal private 
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(a) 
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Figure 12: Comparison of minimum cost achievable under private signals, public signals and full infor-

mation over two parallel links, under different ⌫ for (a) affine latency functions and (b) BPR latency 
functions. 

11.1 Affine Latency Functions 

Figure 12(a) provides comparison between social costs for the following simulation parameters: 

i=1 i=2 i=1 i=2   
!1 5 25 !1 4 2 !1 0.6

↵0 = , ↵1 = , µ0 = 
!2 20 15 !2 1 2 !2 0.4 

The minimum social cost, i.e., the social cost when the planner can mandate which route every 
(receiving as well as non-receiving) agent takes for every realization of ! , 

using (38). 
4 for these parameters is 

83.33. Following Proposition 2, optimal private signal is computed The approximation 
to optimal social cost under public signals using (45) was found to be identical for m = 2, 3, 4, and  
therefore these values are plotted under optimal public signal in Figure 12(a). The corresponding 

4
This is also referred to as the first-best strategy. 
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public signals for a few representative ⌫ are: 
k=1 k=2 k=1 k=2   

i=1 1.25 0 i=1 3.23 !1 1 0 
, ⇡

pub
⌫ = 0.25 : x = , y = = 

i=2 0 1.25 i=2 0.52 !2 0 1 

k=1 k=2 k=1 k=2   
i=1 2.06 2.06 i=1 2.11 !1 1 0 

, ⇡
pub

⌫ = 0.5 :  x = , y = = 
i=2 0.44 0.44 i=2 0.39 !2 1 0 

k=1 k=2 k=1 k=2   
i=1 3.75 0 i=1 0.42 !1 1 0 

, ⇡
pub

⌫ = 0.75 : x = , y = = 
i=2 0 3.75 i=2 0.83 !2 1 0 

k=1 k=2 k=1 k=2   
i=1 4.17 0.2 i=1 0 !1 1 0 

, ⇡
pub

⌫ = 1 :  x = , y = = 
i=2 0.83 4.8 i=2 0 !2 1 0 

and optimal private signals for the same representative ⌫ are: 
k=1 k=2 k=1 k=2   

i=1 0.32 0 i=1 3.75 !1 1 0
⌫ = 0.25 : x = , y = , ⇡ = 

i=2 0.93 1.25 i=2 0 !2 0 1 

k=1 k=2 k=1 k=2   
i=1 1.58 0.37 i=1 2.5 !1 1 0

⌫ = 0.5 :  x = , y = , ⇡ = 
i=2 0.92 2.13 i=2 0 !2 0 1 

k=1 k=2 k=1 k=2   
i=1 2.83 1.62 i=1 1.25 !1 1 0

⌫ = 0.75 : x = , y = , ⇡ = 
i=2 0.92 2.13 i=2 0 !2 0 1 

k=1 k=2 k=1 k=2   
i=1 4.08 2.87 i=1 0 !1 1 0

⌫ = 1 :  x = , y = , ⇡ = 
i=2 0.92 2.13 i=2 0 !2 0 1 

While the cost in Figure 12(a) shows non-monotonic behavior with respect to ⌫ in the full 
information case as well as under optimal public signal, the optimal cost is monotonically non-
decreasing under private signals. Expectedly, the optimal cost under public signal is no greater 
than the cost under full information, and the optimal cost under private signal is no greater than 
under public signal. Interestingly, in this case, full information is an optimal public signal for small 
values of ⌫, and gives the same cost as an optimal private signal for even smaller values of ⌫. 

11.2 BPR Latency Functions 

Figure 12(b) provides comparison between social costs for the following simulation parameters: 

i=1 i=2 i=1 i=2   
!1 5 25 !1 0.047 0.025 !1 0.6

↵0 = , ↵1 = ↵2 = ↵3 = 0, ↵4 = , µ0 = 
!2 20 15 !2 0.037 0.058 !2 0.4 

 i=1 i=2 

!1These parameters correspond to free flow travel times and capacities being equal to ↵0 and 
!2 

2 
3 

3.5 
2.5 

respectively. The minimum social cost for these parameters is 52.78. 
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The approximation to optimal social cost under private signals using (37) was found to be 
identical for m = 2, 3, 4, suggesting that m = 2  atoms are possibly sufficient to realize optimal 
private signal in this case. This is much less than the upper bound of 2 6 = 12 atoms given by 5 
Theorem 5. Similarly, the approximation to optimal social cost under public signals using (45) was 
found to be identical for m = 2, 3, 4. Therefore, values for m = 2  are plotted under optimal private 
and optimal public, respectively, in Figure 12(b). Optimal public signals for a few representative ⌫ 
are: 

k=1 k=2 k=1 k=2   
i=1 1.25 0 i=1 3.75 !1 1 0 

, ⇡
pub

⌫ = 0.25 : x = , y = = 
i=2 0 1.25 i=2 0 !2 0 1 

k=1 k=2 k=1 k=2   
i=1 2.5 0 i=1 2.5 !1 1 0 

, ⇡
pub

⌫ = 0.5 :  x = , y = = 
i=2 0 2.5 i=2 0 !2 0 1 

k=1 k=2 k=1 k=2   
i=1 3.75 0 i=1 1.25 !1 1 0 

, ⇡
pub

⌫ = 0.75 : x = , y = = 
i=2 0 3.75 i=2 0 !2 0 1 

k=1 k=2 k=1 k=2   
i=1 5.0 2.08 i=1 0 !1 1 0.13 

, ⇡
pub

⌫ = 1 :  x = , y = = 
i=2 0.0 2.92 i=2 0 !2 0 0.87 

and optimal private signals for the same representative ⌫ are: 

k=1 k=2 k=1 k=2   
i=1 0.99 0 i=1 3.75 !1 1 0

⌫ = 0.25 : x = , y = , ⇡ = 
i=2 0.26 1.25 i=2 0 !2 0 1 

k=1 k=2 k=1 k=2   
i=1 2.24 0.0 i=1 2.5 !1 1 0

⌫ = 0.5 :  x = , y = , ⇡ = 
i=2 0.26 2.5 i=2 0 !2 0 1 

k=1 k=2 k=1 k=2   
i=1 3.49 0.76 i=1 1.25 !1 1 0

⌫ = 0.75 : x = , y = , ⇡ = 
i=2 0.26 2.99 i=2 0 !2 0 1 

k=1 k=2 k=1 k=2   
i=1 4.74 2.01 i=1 0 !1 1 0

⌫ = 1 :  x = , y = , ⇡ = 
i=2 0.26 2.99 i=2 0 !2 0 1 

The social cost profile in Figure 12(b) shows similar qualitative dependence on ⌫ as in Figure 12(a). 
Since diagonal atomic private signals are observed to be optimal (based on the sample values 
reported above), monotonicity of the corresponding cost is consistent with Theorem 6. 

12 Conclusions and Future Work 

12.1 Feedback Control of Traffic Networks 

This project provides some structural insights into the finite-horizon optimal feedback control for 
flow networks. The enabling tool for the design of an optimal feedback control law is the multi-
parametric linear program. It is well known that for large-size complex networks, the prohibitive 
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computation and computation loads makes the design and implementation of a centralized controller 
too costly or impractical; moreover, the effect of noise, delay, or any type of error or failure in data 
transmission may substantially degrade the control quality. It is, therefore, necessary to develop 
decentralized feedback controllers with simple structure. A simple procedure is proposed to design 
a decentralized feedback control with a “one-hop” information structure. Moreover, it is shown that 
the optimal feedback controller with respect to certain linear performance indexes possesses a one-
hop information structure, making the optimal controller suitable for practical implementations in 
large-scale networks. This suggests that if certain conditions are satisfies, the trivial control (with 
the least computational/communication cost) can provide the same (or very close) performance to 
that of the centralized control (with the most computational/communication cost). 

For a given flow network of size n and control horizon N , it is invaluable to analytically de-
termine when it is worth to implement uncontrolled scheme, or a decentralized control law with a 
p-hop information structure to achieve a satisfactory level of performance. We also plan to extend 
and evaluate the approach to higher order traffic dynamics, such as ARZ and PW models. Our 
ultimate objective is to develop a principled approach for distributed optimal control of physical 
infrastructure networks under given information constraints. 

12.2 Information Design for Traffic Networks  

Information design for non-atomic routing games is gaining increasing attention. While existing 
works provide useful insights through analysis of simple scenarios, the generality of these insights is 
not readily apparent. Relatedly, a computational approach to operationalize optimal information 
design for general settings does not exist to the best of our knowledge. By making connection to 
semidefinite programming (SDP), this project not only fills this gap, but also allows to leverage 
computational tools developed by the SDP community. The latter is particularly relevant for 
extending the approach to non-atomic games beyond routing. 

There are several immediate directions for future work. The bound in Theorem 5 on the number 
of atoms required to realize optimal private signals may be computationally prohibitive for large 
networks. Proposition 2 and Section 11.2 on the other hand suggest the possibility of exploring 
problem structure to tighten the bound. A counterpart to Theorem 5 for public signals remains 
open. A relatively unexplored direction is to provide sub-optimality bounds for simple classes 
of signals such as diagonal atomic. Finally, it would be interesting to utilize the approach in 
this project to quantify the reduction in price of anarchy under information design. This will 
complement existing work, e.g., in [23], where such an analysis is provided under specific models for 
correlation between coefficients of affine latency functions across links, and under a specific class of 
signals. 

13 Implementation 

Not applicable. 
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Data Management Plan 
Products of Research 
The majority of the project was methodological and algorithmic. These findings have been submitted for 
journal publication. The simulation studies were performed in Matlab. The Matlab script includes the 
following components: 

1. Traffic network description, including node-link connectivity, speed limits, wave speeds, traffic 
and demand; 

2. Control algorithms for routing, speed limit control and ramp metering, and optimization 
algorithm to determine optimal information design; 

3. Output in standard Matlab format. 

Data Format and Content 
The input files are in .txt format; the Matlab scripts are in .mat format. 

Data Access and Sharing 
All data used in the project were either synthetic or from Caltrans Performance Measurement System 
(PeMS), which data can be accessed here: http://pems.dot.ca.gov/ 

Reuse and Redistribution 
The intellectual property rights of the data belong to the researchers of the project. Upon request, the 
data will be released to the public or public agencies, who are then allowed to use the data with proper 
citation and attribution to the research team and project. 

http://pems.dot.ca.gov
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	3 Introduction 
	3 Introduction 
	Rapid advancements in technology have facilitated a tremendous increase in the number of control/decision and sensor points in urban traﬃc networks, ranging from an individual driver carrying smart phone to ramp meters to city-scale traﬃc control center. Due to the large volume of data generation, it is computationally, and arguably even technologically, infeasible to inter-connect all the points to each other for real-time applications. Therefore, it is of interest to study performance of traﬃc networks un
	-
	-
	-

	3.1 Feedback Control of Traﬃc Networks 
	3.1 Feedback Control of Traﬃc Networks 
	In infrastructure ﬂow networks such as traﬃc networks, the primary objective for control design is to regulate the ﬂow while optimizing a certain performance index. 
	In the study of ﬂuid dynamics at macroscopic scale, the ﬂuid is treated as a continuum and its motion is described by the mass conservation law stating that “the rate of change of the mass of a ﬂuid in a ﬁxed region is equal to the diﬀerence between the rate of mass ﬂow into and out of the region” [1]. Let ⇢(x,t)and v(x,t)respectively denote the mass density and the velocity vector of 
	>
	aﬂuid at time t,at position x =[x,x,x] in the three-dimensional space. With the continuum 
	1
	2
	3

	representation of the ﬂuid, the law of mass conservation is expressed as [1]: 
	@⇢ 
	+div(⇢v)=0, (1)
	which is balancing the rate of change of the mass density ⇢ and the divergence of the mass ﬂow 
	@t 

	>
	rate ⇢v, where the divergence of a vector ﬁeld f =[f,f,f] in Cartesian coordinates is deﬁned as div(f), @f/@x+@f/@x+@f/@x. In order to simplify the analysis, ﬂuid motion is often 
	1
	2
	3
	1
	1 
	2
	2 
	3
	3

	considered in one dimension reducing equation (1) to 
	@⇢ @u 
	= , (2)
	where u =⇢v is the mass ﬂow rate of the ﬂuid. Many real ﬂows are essentially one-dimensional, and variations in parameters across streamlines can be ignored; or by averaging properties of the ﬂow over an appropriate region, it can be analyzed in one dimension [1]. In general, however, there 
	@t @x 

	are situations for which the one-dimensional assumption leads to highly erroneous results [1]. 
	Now, consider ﬂuid motion in a region (cell) of length ` as shown in Fig. 1 with inﬂow rate of 
	uin into the cell and the outﬂow rate of uout. 
	uin into the cell and the outﬂow rate of uout. 
	A discretized version of (2), in both time and space, 

	Figure
	Figure 1: One-dimensional ﬂuid motion in a region (cell) of length ` and internal (average) mass density 
	⇢ with inﬂow rate uin and outﬂow rate uout. 
	is given by 
	k+1 T
	⇢
	s 
	⇣⌘ 

	=⇢+ uu, (3)
	k 
	k 
	k 

	in out
	` 
	where Ts is the sampling time period, ⇢is the mass density of the ﬂuid at time t =kTs,and uand uare, respectively, the mass inﬂow and outﬂow rate into and from the cell at time step 
	k 
	k 
	in 
	k 

	out 
	t=kTs. A widely-used approach for ﬂuid ﬂow control in a transport network is to partition the network 
	into several segments, each of which is represented by a cell as shown in Fig. 1. Then, the following 
	assumptions are made: 
	(i) The ﬂuid dynamics in every cell is described by (3), that is, for cell iof length ` i, mass density 
	⇢,inﬂowrate y,and outﬂow rate u,wehave 
	k
	k
	k

	ii i 
	k+1 Tsk k 
	⇢

	=⇢+(yu). (4)
	k
	i 
	i 
	i 

	i 
	` 
	i 

	(ii) The mass density in every cell ⇢can be measured at each time step k.
	k 

	i 
	(iii) The outﬂow rate from each cell can be controlled through a regulation mechanism. This can be done by placing an active network element (e.g. a control valve or a compressor) at interfaces between consecutive cells. 
	It should be noted that the inﬂow rate yto cell i is a known function of the outﬂow rates from the immediately upstream cells. If all immediate upstream cells of cell i are merged only into cell i, then yis equal to the sum of all ﬂow rates leaving the upstream cells; otherwise, the inﬂow to 
	i
	k 
	k 

	i 
	cell i is determined according to ﬂow split ratios of the network which are known apriori. Hence, 
	if the outﬂow rate from every cell is known over a ﬁxed period of time, then from (4), the state of 
	the system (densities) is completely known over that period. 
	Fig. 2 shows a ﬂuid transmission network with a line structure partitioned into ncells of possibly 
	diﬀerent length, where the cells are increasingly numbered from upstream to downstream. The outﬂow rate ui from cell i can be controlled through a ﬂow regulation mechanism. 
	Figure
	Figure 2: Partitioning a transmission network with a line structure into n cells. A ﬂow regulator at the interface between any two consecutive cells controls the outﬂow rate ui from each cell i. For this linear network, the inﬂow rate to cell i is y=u.
	k 
	k 
	1

	ii 
	The control objective is to ﬁnd time series of the outﬂow rates and the corresponding mass densities such as to optimize an integral performance index over a ﬁnite period of time, subject to dynamical and physical constraints of the network. In general, the optimization problem can be expressed as 
	⇢ 
	XN 1 
	min '(⇢)+ (⇢,u) 
	N 
	k
	k
	k

	uk=0 
	, (5) s.t. (⇢,u)2 ⇥ 
	> 1)>> k >
	u
	0
	> 
	> 
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	where ⇢ =[⇢,...,⇢] , u =[ ,...,u] , ⇢=[⇢,...,⇢] , u=[ ,...,u] , n is
	0
	> 
	N
	> 
	(N 
	k 
	k 
	1 
	k 
	k 
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	k 

	nn 
	cost functional, and ⇥ is the set of admissible state/control variables satisfying (4) and meeting supply-demand constraints. The complexity of an optimization problem depends mainly on the function forms of its objective function and constraint set. For the sake of tractability, we focus on linear objective functions. There are many meaningful cost functions of practical interest which can be expressed in a linear form [2–4]. 
	Figure

	The above framework has been widely used to formulate optimal ﬂow control problems for complex transmission networks [5–9]. Of particular interest to this study is the work on highway traﬃc networks. 
	Traﬃc ﬂow in highway transportation networks is often regulated by ramp metering and/or variable speed limit under the Cell Transmission Model (CTM) dynamics. The CTM is a simple macroscopic traﬃc model capturing most phenomena observed on highways including ﬂow conservation, non-negativity, and congestion wave propagation [5,6]. Because of its analytical simplicity, the CTM is widely used for control design purposes, wherein a one-way road is partitioned into multiple cells as shown in Fig. and the traﬃc ﬂ
	-
	Figure
	Figure
	2, described by (4). 

	Since the size and complexity of transportation networks are growing, design and implementation of an eﬃcient control scheme providing an optimum operation has become more challenging and demanding. The existing results on ﬁnite-time optimal control of transport networks are mainly restricted to schemes with an open-loop feedforward control structure which are not robust in most actual applications. It is well known that the use feedback helps reducing the eﬀects of modeling uncertainties and improving perf
	One approach for optimal ﬂow control is the Model Predictive Control (MPC) which is a model-based feedback control technique relying on real-time optimization [3, 4, 10–12]. Although the closed-loop operation of the MPC provides a certain degree of robustness with respect to modeling uncertainties, the primary challenge of implementing MPC in real-time is its computational complexity. The framework of multi-parametric linear/quadratic programming has been proposed to reduce on-line computation eﬀort in MPC,
	-

	It is, therefore, desired to design an optimal, or at least suboptimal, feedback control law with a simple structure that requires access only to local information. Decentralized optimal control problems are often substantially more complex than the corresponding problems with centralized information. A trivial centralized optimal decision-making problem may become NP-hard under a decentralized information structure [16]. This is why most research has been focused on the design of meaningful suboptimal dece
	Figure
	Figure
	Figure

	This work is an attempt to deal with decentralized feedback control design for some classes of ﬂow networks. A new decentralization method is proposed for feedback ﬂow control, which is based on the following logic: (i) Construct a centralized optimal state-feedback control scheme with respect to a global performance index generating the control input of the entire network at each sample time, given the state vector of the entire network. The resulting controller, in theory, 
	This work is an attempt to deal with decentralized feedback control design for some classes of ﬂow networks. A new decentralization method is proposed for feedback ﬂow control, which is based on the following logic: (i) Construct a centralized optimal state-feedback control scheme with respect to a global performance index generating the control input of the entire network at each sample time, given the state vector of the entire network. The resulting controller, in theory, 
	provides the ideal performance. In practice, however, such a controller may not be implementable. 

	Figure
	Figure
	Figure
	(ii) Design a local version of the centralized optimal feedback control scheme for each portion of the network minimizing a local cost function. The performance metric associated with each local controller is a local version of the global (centralized) performance index, wherein only local state variables (speciﬁed by a given information structure) are used to generate the input command to the respective actuator. Due to the lack of analytical tools, performance evaluation of the decentralized scheme and co

	3.2 Information Design for TraﬃcNetworks 
	3.2 Information Design for TraﬃcNetworks 
	Route choice decision in traﬃc networks under uncertain and dynamic environments, such as the ones induced by recurring unpredictable incidents, can be a daunting task for agents. Private route recommendation or public information systems could therefore play an important role in such settings. While the agents have prior about the uncertain state, e.g., through experience or publicly available historic records, the informational advantage of such systems in knowing the actual realization gives the possibil
	A strategy of a recommendation system to map state realization to randomized private route recommendations for the agents is referred to as a private signal; a strategy to map state realization to randomized public messages is referred to as a public signal. A private signal is feasible or obedient, if, to every agent, it recommends a route which is weakly better in expectation than the other routes. Under a public signal, the agents can be assumed to choose routes consistent with Bayes Nash ﬂow with respec
	Information design for ﬁnite agents has attracted considerable attention recently with applications in multiple domains, e.g., see [19] for an overview; the single agent case was studied in [20] as Bayesian persuasion. In the ﬁnite agent (and ﬁnite action) setting, the obedience condition on the signal can be expressed as ﬁnite linear constraints, one for each combination of actions by the agents. This allows to cast the information design problem as a tractable optimization problem. Techniques to further r
	-
	Figure
	Figure
	-
	Figure

	There has been a growing interest recently in understanding the impact of information in non-
	information design only for a fraction of agents, while taking into account externality from ﬂow induced by the rest, might be beneﬁcial for social cost. Information design using private signals, as in this study, has also been pursued recently in [26]. Optimal public signals for some settings were characterized in [27]. While these existing works provide useful insights, the information design aspect of these works is restricted to stylized settings involving a network with just two parallel links, sub-opt
	information design only for a fraction of agents, while taking into account externality from ﬂow induced by the rest, might be beneﬁcial for social cost. Information design using private signals, as in this study, has also been pursued recently in [26]. Optimal public signals for some settings were characterized in [27]. While these existing works provide useful insights, the information design aspect of these works is restricted to stylized settings involving a network with just two parallel links, sub-opt
	Figure
	Figure

	all state realizations. It is not apparent to what extent can the methodologies underlying these studies, which typically rely on analytical solutions, be generalized. On the other hand, we develop a computational approach in this study, with focus on parallel networks for illustration. The approach however extends to general network setting. 

	atomic routing games. For example, [22] demonstrates informational Braess paradox in which revealing information about all the links does not necessarily minimize social cost; [23,24] illustrate that properly designed information structure could reduce price of anarchy; [25] demonstrates that 
	Our key observation is that information design for polynomial link latency functions has strong connections with the generalized problem of moments (GPM) [28]. A GPM minimizes, over ﬁnite 
	probability measures, a cost which is linear in moments with respect to these measures subject to constraints which are also linear in the moments. This connection allows to leverage computational tools developed for GPM, such as GloptiPoly [29], which utilizes a hierarchy of semideﬁnite re
	-

	laxations to lower bound GPM arbitrarily closely by relaxation of suﬃciently high order, at the expense of increasing computational cost. For a ﬁxed ﬂow induced by non-receiving agents, information design for receiving agents is indeed a GPM. Furthermore, since the cost and constraints involve moments up to a ﬁnite order, there exists an optimal signal which is atomic with provable upper bound on the number of atoms [30]. This is utilized to equivalently cast information design, 
	-

	when the non-receiving agents choose route according to Bayes Nash ﬂow, as a polynomial optimization problem. This in turn can be arbitrarily approximated by known hierarchy of semideﬁnite relaxations [31], which can also be implemented in GloptiPoly. The ﬁrst level of this hierarchy is shown to be exact for the basic two link case with aﬃne latency functions, and it relies on using convexity of the cost function and the constraints to sharpen the bound from [30] for optimal 
	-
	-

	solution. 
	The obedient constraints for the receiving agents in the information design setup of this study are reminiscent of characterization of (Bayes) correlated equilibrium. It is therefore natural to compare our approach with semideﬁnite programming based approaches for computation of correlated equilibria, e.g., in continuous polynomial games [32]. In [32], the action set is continuous and the 
	-

	agents are ﬁnite, and hence alternate formulations for correlated equilibrium are proposed which involve approximation through ﬁnite moments and discretization of the action set. On the other hand, in our setup, where the action set is ﬁnite and the agents are non-atomic, the constraints for the receiving agents are readily in computational form and involve moments up to a ﬁnite order without any approximation. This then allows us to consider an equivalent ﬁnite discretization, with known cardinality, of th
	The computational approach of this study can be utilized to complement the current studies on (paradoxical) eﬀect of diﬀerent fractions of receiving agents under speciﬁc public signals (primarily, full information). While existing work, e.g., [33, 34], studies the eﬀect on population-speciﬁc (i.e., 
	Figure

	receiving and non-receiving) costs, we study the eﬀect on the social cost, in the spirit of the social planner’s perspective adopted in the study. We provide a class of private signals under which the optimal social cost is non-increasing with increasing fraction of receiving agents. The key idea is to use an optimal solution at a given fraction to synthesize signals which are feasible for all higher fractions and give the same cost. This monotonic result does not require the link latency functions to be po
	In summary, the main contributions of the information design part of the study are as follows. First, by making connection to GPM and associated semideﬁnite programming machinery, we point to a compelling computational framework to solve information design problems. Second, by establishing the existence of an atomic optimal solution, we provide credence to such a structural assumption often implicitly made in information design studies. The sharpening of the bound on the number of atoms that we illustrate i
	In summary, the main contributions of the information design part of the study are as follows. First, by making connection to GPM and associated semideﬁnite programming machinery, we point to a compelling computational framework to solve information design problems. Second, by establishing the existence of an atomic optimal solution, we provide credence to such a structural assumption often implicitly made in information design studies. The sharpening of the bound on the number of atoms that we illustrate i
	problem structure of information design to reduce the size of the optimization formulation, and hence the computation cost. Third, the result and underlying proof technique for the monotonic behavior of social cost under a reasonable class of private signals could be utilized to design private signals that guarantee performance which is robust to higher than anticipated agent participation rate. However, our results also suggest that this may be diﬃcult to achieve through public signals. Overall, the contri

	The results for feedback control of traﬃc networks are presented in Sections 4-7, and the results for information design are presented in Sections 8-11. Due to space limitation, several technical details are not included here but can be found in extended versions [35,36]. 
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	Figure
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	4 Setup for the Study of Feedback Control of Traﬃc Networks 
	4 Setup for the Study of Feedback Control of Traﬃc Networks 
	Throughout the study of feedback control of ﬂow networks, the set of integers {1,2,...,n} is denoted 
	by Nn,and {(ai) } ={a,a,...,an}.A convex polyhedron is the intersection of ﬁnitely many half-spaces, i.e., {x 2 R| Ax  b}, for a matrix A 2 Rand a vector b 2 R. A real-valued function f(x) on D ✓ Ris said to be increasing (decreasing) if it is increasing (decreasing) in every coordinate. 
	1
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	m⇥n 
	m 
	n 

	i2Nn 
	Theorem 1. [37] Consider the following multi-parametric linear program 
	Figure

	J(✓)=mincz 
	⇤
	>

	z 
	(6) 
	s.t. Wz  G+S✓, ✓ 2 ⌦✓ ✓ R, 
	m 

	where z 2 Ris the decision variables vector and ✓ 2 Ris a parameter vector, ⌦✓ is a closed polyhedral set, and c,W,G,S are constant matrices. Let ⌦denote the region of parameters ✓ such 
	n 
	m 
	⇤ 

	✓ 
	that (6) is feasible. Then, there exists an optimizer z(✓): ⌦! Rwhich is a continuous and
	⇤
	⇤ 
	n 

	✓ 
	piecewise aﬃne function of ✓,that is 
	z
	z
	⇤ 

	=pwa(✓) 
	(7) 
	=Li✓ +li, if ✓ 2 Ri,i 2 Np, 
	where sets Ri ={✓ 2 ⌦| ⇧i✓  ⌘i} form a polyhedral partition of ⌦, p is the number of polyhedral sets, Li,li,⇧i,⌘i are constant matrices, and pwa(·)is a generic symbol for piecewise aﬃne functions on polyhedral sets. Moreover, the value function J(✓): ⌦! R is a continuous, convex, and 
	✓ 
	⇤ 
	✓ 
	⇤ 
	⇤
	⇤ 

	✓ 
	piecewise aﬃne function of ✓. 
	Consider the optimal control design problem (4)-(5). The objective is to design an optimal control with feedback architecture to beneﬁt from the feedback properties such that the resulting control law is suitable for practical implementation. By ‘suitable’, we mean a controller meeting limitations in communication and computational power. 
	The Matlab-based Multi-Parametric Toolbox [14] together with YALMIP Toolbox [38] can be used to solve multi-parametric linear programs and compute the matrices Li,li,⇧i,⌘i 
	Figure
	Figure
	Figure
	in (7). 
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	Fig. 3 shows a general network with a number of inﬂow/outﬂow rates, where and µdenote 
	k 

	ii 
	the i-th inﬂow and outﬂow at time k, respectively. The external inﬂow rates to the network act as exogenous inputs which cannot be manipulated by the controller. The controller can regulate only the outﬂow rate of each cell by monitoring the states of the network cells. 
	Figure
	k
	Figure 3: Ageneral controllednetworkwith nu exogenous inﬂow rates and ny outﬂow rates µ. The
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	i 
	controller task is to regulate the outﬂow rate from each cell of the network to optimize a performance index. 
	Since the objective function and constraints in (5) depend on inﬂow rates to the network, then, 
	in general, a complete knowledge of inﬂow rate signals over the control horizon is required to solve 
	the optimization problem (5). The assumption that the external inﬂow rate over the control horizon 
	is known apriori is, however, very restrictive in practice. The exogenous input to the network may not be known or predictable in all scenarios. When no knowledge on the inﬂow rate is available, a control law must be designed such that the feasibility of the solution (control/state variables) at 
	k
	any time for any admissible is guaranteed. 
	i 
	Disregarding communication and computational limitations, ﬁnding a globally optimal solution to (5) with a feedback realization is a diﬃcult task in general. Hence, some assumptions and simpliﬁcations need to be made to make the control design tractable and its implementation feasible. 
	It is desired to implement the solution to (4)-(5) in the form of a static state-feedback control as 
	u= (⇢), (8) 
	k 
	k
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	>>
	where u=[u,...,u] and ⇢=[⇢,...,⇢] are the vectors of cells’ outﬂow rates and mass 
	k 
	1 
	k
	k 
	k 
	1 
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	nn 
	densities, respectively. A realization of the form (8) is possible when the performance index and 
	constraints satisfy certain properties, or they are simpliﬁed through proper approximations to satisfy certain properties. 
	Remark 1. The main reason for considering “static feedback” is the simplicity of control law. In a static state-feedback controller, the control action at each time k depends only on the current state vector at time k. One may consider a “dynamic feedback” controller, wherein the control action depends on the state variables in the current and previous sampling instants; this, however, makes design, analysis, and implementation of the controller more diﬃcult. 
	Although design of a centralized feedback optimal control (if it exists) provides the ideal performance, it may not be implementable for large-size networks, as it may require a signiﬁcant computational resource and a fast and highly-reliable commutation system. It is, therefore, necessary to further simplify the control law to meet communication/computational constraints. 
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	We present our results in a general setting which can then be specialized to highway traﬃc networks, e.g., CTM can be formulated as (4)-(5). We are interested in a ﬁnite-horizon decentralized 
	control law with the following features: 
	• 
	• 
	• 
	It consists of independent local controllers that have access only to information about their local neighborhood (i.e., local state variables and local network’s parameters and architecture) providing a performance level (with respect to a certain performance index) suﬃciently close to that of the optimal centralized controller. 

	• 
	• 
	Each local controller can be implemented in a static state-feedback form, feeding back local state variables to generate the local control action. This requires that the constrained optimization problem associated with each local controller to be such that its optimal solution can be expressed in a feedback form. 
	-



	We ﬁrst study the centralized control design under certain assumptions such that the control law is optimal (w.r.t a performance index) and implementable in a state-feedback form. Subsequently, decentralization of the resulting centralized control scheme is investigated by considering a simple information structure. Communication constraints are often modeled by a ﬁxed information structure; for example, in the network shown in Fig. 2, if only the mass density of cells i and i+1 
	-

	are available to generate the outﬂow from every cell i, a desired decentralized realization of the i-th controller is 
	kk
	u= (⇢,⇢), (9) 
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	i 
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	expressing the current required outﬂow rate from cell i in terms of the current state of local cells i and i+1. 
	We argue that when the cost and constraint satisfy some separability condition, a local version of problem (4)-(5) can be constructed for each portion of the network. The i-th local controller (generating the outﬂow rate from cell i) has access only to the state of cells in a pre-speciﬁed neighborhood of cell i determined by a given information structure, then by expressing the solution to each local problem in a feedback form, a state-feedback decentralized control law is designed. It should be highlighted
	To further illustrate the proposed decentralization, let us consider the network shown in Fig. 2, 
	and assume that only knowledge about cells i and i+1 are available to generate ui. To design the i-th controller, we consider the sub-network consisting of only cells i and i+1, as shown in Fig. 4 and solve the centralized problem associated with the two-cell network. In the i-th local optimization problem, the decision variables are u,u, k =0,...,N 1, with zero inﬂow rate to cell i,but only uis used and implemented and the optimal values of uare unused. For this 
	k
	i 
	k
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	i 
	example, the i-th local optimization problem may be expressed as 
	Figure
	Figure 4: To design the i-th controller generating outﬂow rate u, a centralized optimal feedback control 
	k

	i 
	law for the sub-network consisting of only cells i and i+1is designed. No knowledge about the rest of the network is available to the i-th controller. 
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	constraint set associated with the i-th controller. The set ⇥i is obtained by relaxing any constraint involving non-local variables and assuming zero inﬂow to the local network. From the solutions to 
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	is the running cost functional, and ⇥i
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	where 'i is the terminal cost functional, 
	is the outﬂow 
	(10), only u
	ki
	is kept for implementation and the remaining variables are discarded. As mentioned 
	before, we would like to implement the solution to (10) in the form of a static state-feedback of 
	local states as (9). The feedback realization of the solution is crucial as the values of ⇢i and ⇢i+1 are aﬀected by the action of the other controllers in the network. 
	The proposed decentralization scheme relies on the following properties: 
	• 
	• 
	• 
	Existence of a global optimizer for the centralized problem with a state-feedback realization. 

	• 
	• 
	Separability of the centralized problem such that for each sub-network a local optimization problem can be constructed, for which a global optimizer can be found in a feedback form. 


	The above points are clariﬁed in the following sections. 

	5 Sub-Optimal Decentralized Feedback Control 
	5 Sub-Optimal Decentralized Feedback Control 
	The objective is to design a decentralized static feedback controller with a speciﬁc information 
	structure e.g. a (unidirectional) one-hop information structure in a line network as u
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	5.1 Approach 1: Truncation 
	5.1 Approach 1: Truncation 
	Ignore any term in cost and constraint functions that depends on non-local variables, then solve the truncated optimization. As an example consider a 4-cell network with the following global optimization problem: The global cost function is given by 
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	Figure 5: The local network associated with the second actuator local optimization problem generating uOnly the local states x, xare available to generate u
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	Setting the inﬂow to the local network zero, i.e., uof only the variables x,u,x,u. The solution to the truncated problem (13), (14) can be expressed 
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	=0,8t, makes the truncated problem a function 
	as ux,xcontroller has access to the entire network state as no truncation will take place. We will show that this simple approach with a one-hop structure can give the centralized performance for some networks of any size. 
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	5.2 Approach 2: Design of Local Optimization 
	5.2 Approach 2: Design of Local Optimization 
	Find a suitable parametrization to express each local optimization as a function of only local variables such that the minimization of local costs improves the global performance index. Consider 
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	Clearly, this decentralized approach gives the centralized performance if every 
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	the global optimization problem (13), (14). Assuming that x,u,x,ulocal controller generating u, and given a priori knowledge on the entire network structure and ,g,h
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	are local variables for the 
	parameters, determine the form/parameters of functionals f
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	such that: 
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	• 
	• 
	• 
	The problem of determining ‘suitable’ functionals f,g,h
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	• 
	• 
	The solution to the local optimization is guaranteed to be feasible w.r.t. the original global problem. 

	• 
	• 
	The local optimization problem is tractable for online implementation and its feasible global optimum can be found using the standard numerically eﬃcient techniques. 

	• 
	• 
	The decentralized approach gives the centralized performance if every controller has access to the entire network state. 

	• 
	• 
	The local controllers implicitly collaborate with each other to improve the global performance. 




	6 Application to Traﬃc Networks 
	6 Application to Traﬃc Networks 
	In recent years, due to the ever-increasing traﬃc demand, eﬃcient control and management of transportation networks has received a great deal of attention. There has been a lot of research done on the optimal control of freeway networks based on various models for traﬃc systems, among which ﬁrst-order models, such as the CTM, are widely used for control design. In a CTM-based 
	is tractable (oﬀ-line computations). 
	traﬃc model, the network dynamics is described by (4), where ⇢[veh/mi] is the traﬃc density, 
	k 

	i y[veh/hr] is the inﬂow rate, u[veh/hr] is the outﬂow rate, and ` i [mi] is the length of cell i.
	k 
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	ii 
	The constraints are deﬁned in terms of demand and supply functions, where the demand function 
	P
	di(·) returns the maximum outﬂow from the cell as a function of its current traﬃc density, and the supply function si(·)gives the maximum inﬂow into the cell as a function of its current traﬃc 
	density [2]. The demand and supply functions are assumed to be of the form 
	P
	di(⇢i)=min{di(⇢i),Ci}, 
	(16)
	si(⇢i)=min{si(⇢i),Ci}, 
	where di is continuous non-decreasing function of ⇢i with di(0) =0 and si is continuous non-increasing function of ⇢i with si(0)> 0,and Ci [veh/hr] is maximum ﬂow capacity of cell i. The jam traﬃcdensity of cell i is deﬁned as i =inf{⇢i > 0| si(⇢i)=0}. The functions di(·)and si(·) are often assumed to be aﬃne of the form di(⇢i)=vi⇢i and si(⇢i)=wi(i ⇢i), where vi [mi/hr] is the maximum traveling free-ﬂow speed and wi [mi/hr] is the backward congestion wave traveling speed of cell i. Then, in a controlled net
	and inﬂow rates are deﬁned as [2]: 
	0 u min{vi⇢,Ci},(17)
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	ii 

	k
	0 y  min{wi(i ⇢),Ci}.
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	i 
	The ﬂow regulation mechanism in a traﬃc network acts as a collection of control valves, each of which at each time can be open to the fullest extent possible, completely closed, or partially closed during the network operation. 
	Assumption 1. The length of cells ` i and the time interval Ts are chosen such that vehicles traveling at maximum speed vi can not cross multiple cells in one time step, i.e., viTs  ` i, 8i.Also, the backward congestion wave traveling speed wi satisﬁes wiTs  ` i, 8i. 
	Assumption 1 is known as Courant-Friedrichs-Lèvy condition [2] which is a necessary condition 
	for numerical stability in numerical computations. 
	for numerical stability in numerical computations. 
	It can be easily veriﬁed that Assumption 1 

	together with constraints (17) ensure that at each time the density of each cell is non-negative and 
	never exceeds the jam density. 
	A ﬂow network can be represented by a directed graph, in which edges represent cells and vertices (or junctions) represent interface between consecutive cells which are the actuators’ location. The junctions can be of either of the three types deﬁned below. 
	Deﬁnition 1. [2] A junction with a single incoming and a single outgoing cell is called ordinary; ajunction withasingle incomingcelland multipleoutgoingcells iscalled diverge;and a junction with multiple incoming cells and a single outgoing cell is called merge. 
	The following deﬁnitions and notations are used throughout this section. 
	Deﬁnition 2. Consider a network whose topology is described by directed graph G.The set of edges of G corresponding to on-ramps is called the source set denoted by Eon,and the set of edges corresponding to oﬀ-ramps is called the sink set denoted by Eoﬀ. 
	At any diverge junction, the traﬃc ﬂow is distributed according to a given split percentage 
	which are estimated from historical data [39]. 
	Deﬁnition 3. [2] The split ratio (or turning ratio) Rij 2 [0,1] is deﬁned as the fraction of ﬂow leaving cell i 62 Eoﬀ that is directed towards cell j =6 i,where Rij =1.If cells i and j are not 
	P

	j 
	adjacent or i= j, Rij is deﬁned to be zero. 
	Deﬁnition 4. Let cell i be an incoming cell to junction ~ i,where ~ i denotes the head or the downstream junction of cell i.The set of all outgoing cells from junction ~ i is called the out-neighborhood of cell i and is denoted by E.If i 2 Eoﬀ,then Eis the empty set. In other words, 
	+
	+ 

	ii 
	Eis the set of all direct successor of cell i.The elements of Eare referred to as the out-neighbors 
	+ 
	+ 

	ii 
	of cell i. 
	Deﬁnition 5. Let cell i be an outgoing cell from junction ⌧i,where ⌧i denotes the tail or the upstream junction of cell i.The set of all incoming cells to junction ⌧i is called the in-neighborhood of cell i and is denoted by E.If i 2 Eon,then Eis the empty set. In other words, Eis the set of all direct predecessor of cell i.The elements of Eare referred to as the in-neighbors of cell i. 
	i 
	i 
	i 
	i 

	An example is shown in Fig. 6 clarifying the above deﬁnitions. 
	Figure
	Figure 6: Directed graph of a six-cell network with source set (on-ramps) Eon = {1,2} and sink set (oﬀramps) Eoﬀ = {5,6}. The merge, ordinary, and diverge junctions are labeled m, o, and d, respectively. The split ratios of R=0.3 and R=0.7 imply that 30% of vehicles in cell 4 turn towards cell 5 and 70% of them turn toward cell 6. The in-neighborhood and out-neighborhood of cell 4 are E= {3} and 
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	= {5,6}, respectively. 
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	It is often more convenient to express the dynamics and constraints in terms of the traﬃcmass of the cells. Let x= ` i⇢[veh] denote the traﬃc mass of cell i at time k, then from (4) and (17), 
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	the dynamics and constraints of an n-cell network can be written as 
	k+1
	x = x+ T (yu), 8i 2 Nn (18a)
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	y= + Rjiu, (18b) 
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	0  u  min{(vi/` i)x,Ci}, (18c) 
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	0  y min{wi(i (1/` i)x),Ci}, (18d) 
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	kk
	where is an exogenous inﬂow rate to cell i 2 Eon ( =0,if i 62 Eon), and Rij’s are split ratios. 
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	kn
	Then, for any i 2 Eon, y= , and for any i62 Eon, y= Rjiu. 
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	Remark 2. To ensure that is a feasible exogenous input to the network, it is typically assumed 
	i 
	k
	that the jam traﬃc density of any on-ramp is inﬁnity, i = 1,and  Ci, 8i2 Eon.
	i 
	Control Objective: Consider the network dynamics (18) and let x=[x,...,x]be the state 
	k 
	k 
	1 
	k 
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	]>
	vector and u=[u,...,ube the control input vector of the network at time k. The control 
	k 
	1 
	k
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	n 
	objective is to design a static feedback control law such that for any initial state xand any 
	0 

	k
	exogenous inﬂow , the feasibility of control actions is guaranteed and a performance index of the 
	form (5), subject to (18) and a given information structure, over a ﬁxed given control horizon [0,N] 
	is optimized. In this study, we focus on linear objective functions, i.e. (5) with 
	n
	'(x)= ↵x,
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	P (19)
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	(x ,u)= ↵x + u,
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	where N is a ﬁxed ﬁnal time, and ↵
	ki
	0 and
	ki
	are cost-weighting parameters. 
	Remark 3. There are meaningful performance indexes which can be expressed in a linear form [2–4]; 
	for example: 
	(i) Minimization of the total travel time of the network is equivalent to minimization of the total
	PP 
	ni Nk
	=0 =1
	x 

	(ii) Maximization of the total travel distance is equivalent to maximization of the ﬂows, then the 
	P 
	ki
	number of vehicles in the entire network, then the corresponding cost is J = 
	. 
	N 1
	P

	following cost should be minimized J =
	ki
	=1
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	(iii) The total congestion delay is deﬁned as the time diﬀerence between actual travel time and the travel time in free-ﬂow conditions whose minimization is equivalent to minimizing J = 
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	For the centralized control, there is no information constraint and the control law is of the form u= (x). For the decentralized control, we consider controller with a one-hope information structure as deﬁned below. 
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	Deﬁnition 6. Afeedbackcontroller is saidtohavea uni-directional one-hop information structure, 
	ni
	(` i/vi)u
	(x 
	).
	k=0 
	if u
	ki
	depends only on x
	ki
	and the state of the cell(s) immediately downstream of cell i,i.e. those 
	either entering or leaving the downstream junction of cell i.Similarly, in a bi-directional one-hop 
	information structure, u
	ki
	depends only on x
	ki
	and the state of the cells immediately upstream a well 
	kkkk 
	as those of immediately downstream of cell i. 
	Clearly, Deﬁnition 6 can be extended to uni/bi-directional p-hop structure. Throughout this study, however, we focus on uni-directional one-hop structure and call it “one-hop information structure”, for short. As an example, for the network in Fig. 6, a decentralized static feedback controller 
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	with a one-hop information structure is of the form: 
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	6.1 Centralized Feedback Control 
	6.1 Centralized Feedback Control 
	The external inﬂow rates 
	ki
	, i 2 Eon, to the network act as exogenous inputs which cannot be 
	manipulated by the controller. 
	(19) depends on the values of 
	(19) depends on the values of 
	In general, the solution to the optimization problem (5), (18), 

	ki
	; however, no apriori knowledge on 
	ki
	is often available for 
	control design. Analogous to the classical LQR problem where no uncontrolled exogenous input 
	is considered for optimal control design [40], we design a centralized optimal controller under the 
	assumption of 
	ki
	=0, 8i 2 Eon,k 2 [0,N 
	1]; and we refer to the resulting controller as zero-inﬂow 
	optimal control law. Then, we show that in the presence of any non-zero inﬂow, the feasibility of the optimal solution is guaranteed. 
	Let us ﬁrst suppose that the sequence of 
	ki
	, 8i 2 Eon 
	over the entire control horizon, is known 
	beforehand; under this assumption the following theorem gives the true optimal control law. 
	Theorem 2. The solution to (5), (18), (19) can be expressed in the form of a continuous piecewise 
	aﬃne static feedback law on polyhedra of the state vector as (u)= pwa(x) 
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	where R= {x2 R| Hx h}, i 2 Nk ,is the i-th polyhedral partition of the set of feasible states, 
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	and pis the number of polyhedral partitions at time k.The controller parameters F,f,H,h
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	can be computed oﬄine; they are independent of x, 8k,but may dependon thevalues of . 
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	Corollary 1. Consider the optimization problem (5), (18), (19). The zero-inﬂow optimal control 
	law can be expressed as (20), where matrices F,f,H,hcan be computed oﬀ-line. Moreover, 
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	the feasibility of the resulting control actions is guaranteed for any non-zero inﬂow rate ,i.e.,the 
	i 
	constraints in (18) are always satisﬁed. 
	A true optimal controller is not implementable as it needs unknown inﬂow rates over the control horizon; and a zero-inﬂow optimal controller may not be truly optimal. However, with respect to certain cost functions, the zero-inﬂow optimal feedback control law is truly optimal. We show that for problem (5), (18), (19), under certain assumptions on the network topology, if the cost functions 
	satisfy certain properties, the zero-inﬂow centralized optimal feedback controller has a decentralized realization with a one-hop information structure which is truly optimal for any exogenous inﬂow. 
	Theorem 3. Consider the problem (5), (18), (19) for a network with time-invariant split ratios 
	and no merge junction. In addition, assume that cost-weighting parameters satisfy ↵↵0, 
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	8k,i and 8j 2 E,and  0, 8k,i.Then, the true optimal feedback control law (with 
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	centralized information) can be realized as 
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	(u)= pwa(x,(x) ) (21)
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	The controller (21) has a one-hop information structure (see Deﬁnition 6); moreover, its pa
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	rameters are obtain at no computational cost independent of the control horizon N. Indeed, the expression in the right-hand side of (21) is the upper limit of uwhich is known beforehand, that 
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	Hence, Theorem 3 states that, under the given assumptions, setting each outﬂow rate equal to its 
	upper limit provides the true optimal performance. This is equivalent to opening every control valve to the fullest extent possible at each time. We refer to such scheme as trivial control or uncontrolled scheme. 
	Remark 4. The conditions given in Theorem 3 are suﬃcient (not necessary) for a linear perfor
	-

	mance index with respect to which a centralized optimal control law has a realization with a speciﬁc one-hop information structure. It should be also noted that the optimal control is not necessarily unique. 
	Remark 5. The widely-used performance indexes in Remark 3 satisfy the properties given in The
	-

	orem 3. 
	In general, however, the optimal controller needs access to the state of the entire network and depends on the control horizon. For a general network with a general linear cost functional, the 
	closed-form of the control law (20) enables one to compute the controller parameters oﬄine and 
	closed-form of the control law (20) enables one to compute the controller parameters oﬄine and 
	is no need to solve a large-size optimization problem at every time step for real-time implementation, unless there is a large variation in the network parameters. An optimal feedback controller of the 

	form (20), however, suﬀers from two major drawbacks restricting its applicability to large-scale 
	networks: (i) Even though the piecewise-aﬃne form of the control law seems to be simple, when the number of cells and the control horizon increase, solving the corresponding multi-parametric linear programs may result in a very large number of polyhedral partitions, making the structure of the controller too complex. Although applying the merging algorithms [14,15] may considerably reduce 
	the number of polyhedral partitions, in general there may still be too many polyhedral sets. (ii) Determining the optimal control action at each time involves centralized operations, that is each local controller needs instantaneous access to the state of the entire network; this, however, may not be feasible for large-size networks, as implementation of a highly reliable and fast communication system may be impractical or too costly. It is, therefore, necessary to design an feedback control law with a simp
	Remark 6. Throughout the study, it is assumed that no information about the exogenous inﬂow to the network is available for control design (both centralized and decentralized), that is any controller is designed under the assumption of zero external inﬂow rate. The controller, however, can be applied to the network with any admissible inﬂow rates. For nonzero inﬂow rate, the feasibility of the control actions is guaranteed, but they are not necessarily truly optimal. 

	6.2 Decentralized Feedback Control 
	6.2 Decentralized Feedback Control 
	In this subsection, the objective is to design a static state-feedback control law with a one-hop 
	information structure for problem (5), (18), (19). Such a control law, for a general network, is of 
	the form 
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	= (x, (x)j2D), (23) 
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	where Di denotes the set of all cells, excluding cell i, leaving/entering the downstream junction (head) of cell i. From the deﬁnition of Di, it follows that E✓ Di; also, for any i 2 Eoﬀ, Di = {}.
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	i 
	For example, in Fig. 6, D= {2, 3} and D= {5, 6}. 
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	Design of a decentralized feedback controller can be viewed as solving an uncertain optimization problem, wherein non-local variables/parameters are unknown. The main challenges are how to ensure the feasibility of the solution and how to express or implement it in a feedback form. 
	Uncertain linear program has been the subject of a lot of research and several approaches have been proposed to deal with robust optimization problems [41] including: solving the problem for 
	nominal values of the unknown parameters and then performing sensitivity analysis; formulating the problem as a stochastic optimization by incorporating the knowledge on the probability distribution of the uncertain parameters; and assigning a ﬁnite set of possible values to the uncertain parameters and determining a solution which is relatively good for all the scenarios [42]. Also, some research 
	has focused on evaluating the impact of uncertainty on the cost by computing the worst and best 
	optimum solutions [43]. In some other works, in order to ensure the feasibility of solution, a worst-
	case approach is considered which, in general, leads to extremely conservative solutions [41]. 
	In this study, we follow the decentralized procedure proposed in Section 5 which lead to a simple decentralized control law with the desired information structure and provides a feasible solution that under certain conditions could provide the optimal centralized performance. 
	Figure

	In order to design the i-th control law with a one-hope information structure, we design a centralized optimal static state-feedback controller for the sub-network consisting of cells i and any 
	j 2 Di, with zero inﬂow rate to cell i. Then, the i-th local optimization is 
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	and the constraint set ⇥i is deﬁned by (18) with zero inﬂow rate y=0, 8k, wherein any constraint 
	StyleSpan
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	involving non-local variables is relaxed. 
	Theorem 4. Consider the local optimization (24), for a sub-network of cells i, j 2 Di.The solution 
	can be expressed as 
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	(u)=pwa(x,(x)j2D). (26) 
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	which is a piecewise aﬃne function on polyhedra of local state variables whose parameters can be 
	computed oﬀ-line. Moreover, it satisﬁes all constraints in (18) for any k,i. 
	We refer to (26) as a “sub-optimal decentralized control law with a one-hope information struc
	-

	ture”. It should be highlighted that the separability property of the objective function and constraints has enabled us to simply construct a local version of the centralized optimization problem 
	-

	as (24). 
	The natural question that arises is how to evaluate the performance and sub-optimality level of the above decentralized control scheme. As mentioned earlier, in general, performance analysis of decentralized controllers is a very diﬃcult task. Due to the lack of analytical tools, performance evaluation can be done through extensive numerical simulations. It should be noted that although the above decentralization procedure involves constraints/relaxations that may aﬀect the conservativeness of the solution,
	-

	optimization (24) gives the true optimal controller. 
	Example 1. In order to illustrate the decentralization process, let us consider a 3-cell network with 
	Figure
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	Figure 7: A3-cellnetworkwithexogenousinﬂowrate . 
	the following cost function and constraints 
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	Table 1 shows how the centralized controller can be implemented in a feedback form. In a decentral
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	Table 2: Adecentralizedcontrol infeedbackform. 
	Local optimization at time t 
	Local optimization at time t 
	Local optimization at time t 
	Control action at time t 

	k k k k k k k k t N ktx,1 k k Given x2:Pt 1 k k minJ= (x1 +4x=t2) k+1x=x1 +0 u1 1, k k+1x=xu2 2 +u1 2 , 0 u1  0.9x1 , u1  1 0.3x2, 0 u2  0.9x2 , 
	k k k k k k k k t N ktx,1 k k Given x2:Pt 1 k k minJ= (x1 +4x=t2) k+1x=x1 +0 u1 1, k k+1x=xu2 2 +u1 2 , 0 u1  0.9x1 , u1  1 0.3x2, 0 u2  0.9x2 , 
	tt k ttu=1,x1 1(x2), Discard u1, 8k> t. 
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	k k k N kk t t k Given x3:PminJ= 2x3 =t3 k+1x=x3 +0 u3 3, 0 u3  0.9x3 , 
	t k ttu=3 3(x3), Discard u3, 8k> t. 


	In a decentralized feedback control with a one-hop information structure (see Deﬁnition 6), by 
	setting y
	ki
	=0, 8k
	, and removing any constraints involving state of non-local (not immediately 
	down-stream) cells, the global optimization problem is decomposed into multiple lower-dimensional local problems. For any i,the i-th local optimization problem is such that, given local states at 
	22 
	current time t, the feasibly of uis guaranteed (see Theorem 4). 
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	7 Simulations: Feedback Control of Traﬃc Networks 
	7 Simulations: Feedback Control of Traﬃc Networks 
	As mentioned earlier, it is generally diﬃcult to analytically evaluate performance of a decentralized control scheme in compared with that of an optimal centralized controller, hence comprehensive numerical simulations must be performed to demonstrate the eﬀectiveness of a decentralization technique and numerically assess the level of sub-optimality. 
	Simulation 1 : Consider the 8-cell cyclic traﬃc network shown in Fig. 8, with cost function 
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	J = ↵ix, subject to (18), where ↵i =1, for i =1,2,3,5,7,8, ↵=5,and ↵=3.
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	Turning ratios at diverge junctions are R=R=0.5and R=R=0.5. The external inﬂow 
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	Figure
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	Figure 8: An 8-cell cyclic network with exogenous inﬂow rates and , where Eon = {1,2} and 
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	Eoﬀ ={7,8}. 
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	rate to the network are = =1, 8k. The other parameters are vi =0.9, wi =0.3, Ci =10,
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	i =10, ` i =1, xi(0)=0, 8i,and Ts =1 Let Jbe respectively the cost value of the 
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	centralized control and decentralized control with a one-hop information structure. Fig. 9 shows the relative percentage of the performance loss due to decentralization " =100(JJ)/J
	⇤ 
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	for diﬀerent values of control horizon N =1,2,...,30. 
	Figure
	Figure 9: Relative performance loss due to decentralization as a function of control horizon. The maximum relative error is 2.22%at N =8. 
	Simulation 2 : To evaluate the performance of the decentralized scheme, let us consider a larger 
	network with more realistic architecture and parameters. We consider the freeway system of an 
	area in the southern Los Angeles as shown in Fig. 10(a) modeled by the CTM. The directed graph 
	of the network of the region of interest consisting of 32 cells is shown in Fig. 10(b). 
	of the network of the region of interest consisting of 32 cells is shown in Fig. 10(b). 
	Consider 

	Figure
	Figure 10: (a) The map of an area in the southern Los Angeles. The red ellipse shows the region used in our numerical simulation. (b) The directed graph of the transportation network of the region of interest with 32 cells, where Eon = {1,2,7,13,19,21,22,29,32} and Eoﬀ = {11,15,17,27,28,31}. 
	Figure 10: (a) The map of an area in the southern Los Angeles. The red ellipse shows the region used in our numerical simulation. (b) The directed graph of the transportation network of the region of interest with 32 cells, where Eon = {1,2,7,13,19,21,22,29,32} and Eoﬀ = {11,15,17,27,28,31}. 
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	minimization of J = , subject to (18), with the following parameters. The sampling 
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	time is Ts =1/360 hr (or 10 sec). For on-ramp cells, the jam traﬃc density i is assumed to be inﬁnity and for other cells is i = 200 veh/mi. For all cells, the backward congestion wave traveling speed is wi = 13 mi/hr. For cells 3,4,9,10,12,16,20, the cell’s length is ` i =2 mi, the free-ﬂow speed is vi = 65 mi/hr, and the maximum ﬂow capacity is Ci = 800 veh/hr, and for other cells, ` i =0.5 mi, vi = 25 mi/hr, and Ci = 400 veh/hr. At any diverge junction, ~ i with incoming cell i,the turning ratios are tim
	~ i 
	n~ is the number of outgoing cells from junction ~ i; for example, R,3 = R,11 = R,12 =1/3. The 
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	exogenous inﬂow rate to on-ramp cells are =1, 8k, i2 {1,2,7,13,19,21,22,29,32},and x=0,
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	8i. Fig. 11 shows the relative percentage of the performance loss due to decentralization for diﬀerent 
	values of control horizon N =1,2,...,10,20,...,100. For example, for N = 60, the optimal cost value of the centralized controller is J= 33.7367 and that of the decentralized one (with one
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	hop information structure) is J= 33.7383, then the relative decentralization performance loss 
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	" = 100(JJ)/J=0.0047%.
	⇤ 
	⇤ 
	⇤ 

	dec cen cen 

	8 Setup for Information Design Study 
	8 Setup for Information Design Study 
	We state a few key notations to be used for this study. E [x] will denote the expected value of random variable xwith respect to probability distribution . int(X) will denote the interior of set X and 4(X) the set of all probability distributions on X. For an integer n, we let [n]:= {1,2,...,n}. 
	Figure
	Figure 11: Relative performance loss due to decentralization as a function of control horizon. The maximum relative error is 0.0292% at N =6. 
	Figure 11: Relative performance loss due to decentralization as a function of control horizon. The maximum relative error is 0.0292% at N =6. 


	For a vector x 2 R, let supp(x):= {i2 [n] | xi =06 } be the set of indices whose corresponding 
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	entries in x are not zero. For 0, let Pn( ):= x2 R| = be the (n 1)
	n 
	-

	0 i2[n] i dimensional probability simplex of size . When =1, we shall simply denote the simplex as Pn for brevity in notation. 0n⇥m and 1n⇥m will denote n⇥ m matrices all of whose entries are 0 and 1 respectively. In all these notations, the subscripts corresponding to size shall be omitted when clear from the context. For a matrix A, its transpose is denoted as A. For matrices A and B of
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	the same size, their inner product is A· B = Ai,j Bi,j . A ⌫ 0 for a symmetric matrix A will 
	i,j 
	imply that it is positive semideﬁnite. 
	Consider a network consisting of nparallel links between a single source-destination pair. Without loss of generality, let the agent population generate a unit volume of traﬃc demand. The link latency functions ` !,i(fi), i 2 [n], give latency on link i as a function of ﬂow fi through them, conditional on the state of the network ! 2 ⌦ = {!,...,!s}. Throughout the study, we shall make the following basic assumption on these functions. 
	-
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	Assumption 2. For every i 2 [n], ! 2 [s], ` !,i is a non-negative, continuously diﬀerentiable and non-decreasing function. 
	At times, we shall strengthen the assumption to ` !,i being strictly increasing. A class of functions 
	satisfying Assumption 2 which is attractive from a computational perspective is that of polynomial 
	functions: 
	functions: 
	functions: 
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	with ↵0,!,i 
	0 and ↵1,!,i 
	0. We shall also let ↵d 
	refer to the s⇥ n matrix whose entries are 
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	Two instances of (28) commonly studied in the literature are aﬃne and the Bureau of 

	Public Roads (BPR) functions [44]. In the former case, D =1 and in the latter case, D =4 with 
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	= ↵= ↵= 0. Furthermore, the BPR function has the following interpretation: ↵,!,i is the 
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	free ﬂow time on link i when the state is !,and 0.15 is the ﬂow capacity of link i when 
	↵,!,i 
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	the state is !. 
	Let ! ⇠ µ2 int(4(⌦)), for some prior µwhich is known to all the agents. The agents do not have access to the realization of !, but a ﬁxed fraction ⌫ 2 [0,1] of the agents receives private route recommendations conditional on the realized state. These conditional recommendations are 
	Let ! ⇠ µ2 int(4(⌦)), for some prior µwhich is known to all the agents. The agents do not have access to the realization of !, but a ﬁxed fraction ⌫ 2 [0,1] of the agents receives private route recommendations conditional on the realized state. These conditional recommendations are 
	0 
	0 

	generated by a signal ⇡ = {⇡! 24(Pn(⌫)) : ! 2⌦} as follows. Given a realization ! 2⌦,sample a x 2 Pn(⌫) according to ⇡!, and partition the agent population into n +1 parts with volumes (x,...,xn, 1 ⌫). All the agents are identical, and therefore in the non-atomic setting that we are considering here the partition can be formed by independently assigning every agent to a partition with probability equal to the volume of that partition. The agents in the (n + 1)-th partition, with volume 1 ⌫, do not receive a
	1


	The signal ⇡ and the fraction ⌫ is publicly known to all the agents. Therefore, it is easy to see that the (joint) posterior on (x, !), i.e., the proportion of agents getting diﬀerent recommendations 
	and the state of the network, formed by an agent who receives recommendation i 2[n] is: 
	and the state of the network, formed by an agent who receives recommendation i 2[n] is: 
	and the state of the network, formed by an agent who receives recommendation i 2[n] is: 

	µ⇡,i(x, !)= 
	µ⇡,i(x, !)= 
	xi ⇡!(x) µ0(!)P R pi ⇡✓(p)dpµ0(✓)✓2⌦ p2P(⌫) 
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	and the posterior formed by an agent who does not receive a recommendation is: 
	and the posterior formed by an agent who does not receive a recommendation is: 

	µ⇡,;(x, !)= ⇡!(x)µ0(!) 
	µ⇡,;(x, !)= ⇡!(x)µ0(!) 
	(30) 


	Remark 7. One could consider an alternate setup where the set of agents who do not participate in the signaling scheme is pre-determined. These agents do not receive a recommendation and also do not have knowledge about ⇡.In this case, (30) can be replaced with µ(x, !)= obtained by 
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	µ
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	|P(⌫)|
	replacing ⇡! with the uniform distribution. The methodologies developed in this study also extend to this alternate setting. 
	Asignalissaidto obedient if the recommendation received by every agent is weakly better, 
	in expectation with respect to posterior in (29), than other routes, while the non-receiving agents 
	induce a Bayes Nash ﬂow with respect to their posterior in (30). Formally, a ⇡ is said to be obedient 
	if there exists y 2Pn(1 ⌫) such that: 
	1
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	` !,i(xi + yi)µ(x, !)dx  ` !,j (xj + yj )µ(x, !)dx, i 2supp(y),j 2[n] (31b) xx
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	Plugging the expressions of beliefs from (29) and (30), noting that the denominators on both sides 
	of the inequalities are the same in (31), and multiplying both sides of (31b) by yi, one equivalently 
	gets: 
	gets: 
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	We emphasize that multiplying both sides by yi allows to equivalently relax the restriction on i in 
	terms of y in (31b) to get (32b). 
	Throughout the study, unless noted otherwise, the summation over indices for degree, state and link, such as d, ! and i,respectively, areto be taken over the entire range,i.e., {0,...,D}, [s] and [n],respectively. 
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	The social cost is taken to be the expected total latency: 
	Z
	X 
	J(⇡,y):= (xi + yi) ` !,i(xi + yi) ⇡!(x)dxµ(!) (33) !,i 
	0

	The information design problem can then be stated as 
	min J(⇡,y) s.t. (32) (34) 
	(⇡,y)2⇧⇥P(1 ⌫) 
	where ⇧ is the concise notation for 4(P(⌫)). 
	s 

	Remark 8. (i) If there are multiple feasible y for a given ⇡,then a solution (⇡,y) to (34) can be interpreted as implicitly requiring an additional action from the social planner to enforce y.One could alternately consider a robust formulation by replacing minin (34) with min⇡ maxy.We leave such an extension for future consideration.Moreover, Lemma 1 below 
	⇤
	⇤
	⇤
	(⇡,y) 
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	shows that, under a rather reasonable condition on the link latency functions, there exists a 
	unique feasible y for every ⇡,in whichcasetherobust version is thesameas (34). 
	(ii) The revelation principle, e.g., see [19], implies that optimality in the class of obedient direct 
	private signals, i.e., signals which recommend routes, also ensures optimality within a broader class which includes indirect signals. An indirect signal provides noisy information about the state realization. The route choice is then determined by Bayes Nash ﬂow with respect to the posterior beliefs induced by the signal. In Section 10, we consider a special case of indirect signals, known as public signals. 
	(iii) The feasible set in (34) is non-empty for all ⌫ 2 [0,1].A formal argument is postponed to 
	Remark 13, after we have discussed public signals. 
	Lemma 1. For every ⇡ 2 ⇧,a y 2 P(1 ⌫) satisﬁes (32b) if and only if it solves the following convex problem: 
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	!,i 
	Moreover, such a y is unique if {` !,i}!,i are strictly increasing over [0,1]. 
	Lemma 1 follows from a straightforward adaptation of the standard argument for Wardrop 
	equilibrium in the deterministic case. 
	Remark 9. Lemma 1 implies that, in order to ensure a unique feasible y for every ⇡,it is suﬃcient 
	to have ↵,!,i > 0 for all !,i for aﬃne latency functions, and ↵,!,i > 0 for all !,i for BPR latency 
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	functions.
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	Following Lemma 1, minimizing J(⇡,y) with respect to y for a ﬁxed ⇡ is trivial for strictly 
	increasing link latency functions. Joint optimization over ⇡ and y in (34) however is challenging, 
	not the least because it involves optimizing over probability distributions. The next section presents 
	ﬁnite dimensional formulations which are provably equivalent to (34) for polynomial link latency 
	functions. 
	NotethatallthederivativesoftheBPRlatencyfunctionarezeroat0.However,onecaneasilyshowuniqueness inthespecialcaseswhen,forasignalsupportedonlyonxi =0,(35)hasasolutionwithyi =0. 
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	9 Private Signals 
	9 Private Signals 
	In this section, unless stated otherwise, we assume that the link latency functions are polynomial, 
	i.e., of the form in (28). Let us ﬁrst consider minimizing J(⇡,y)over ⇡ satisfying (32a), for a ﬁxed 
	y. Note that, for y =0, this corresponds to the information design problem in the special case when ⌫ =1. Even in this special case, which has been studied previously in [24, 26], no comprehensive solution methodology exists. 
	We start by rewriting the information design problem in terms of moments of the signal ⇡. Let z be the vector of all monomials in x,...,xn up to degree dD/2e, arranged in a lexicographical 
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	order. For example, for D =3, z =[1,x,...,xn,x,...,xxn,xx,...,xxn,...,xnx,...,x] .
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	For a ﬁxed y, (34) can then be written as: 
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	for appropriate symmetric matrices C!, A! ,and B! ; expressions for these matrices in the 
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	special case when D =1(i.e., aﬃne link latency functions) are provided in [36]. The cost in (36a) is the same as the cost in (33), (36b) corresponds to the obedience constraint in (32a), and (36c) 
	corresponds to (32b). 
	(36) is an instance of the generalized problem of moments (GPM) [28], which in turn can be 
	solved numerically using GloptiPoly [29]. This software solves GPM by lower bounding it with semideﬁnite relaxations of increasing order. The stopping criterion on the order is however problem-dependent; approximations can be obtained by a user-speciﬁed order. In the special of n =2,the ﬁrst order relaxation is tight. 
	Proposition 1. Let n=2.For every y 2 P(1 ⌫), (36) is equivalent to a semideﬁnite program. 
	Remark 10. Proposition 1 implies that, in the case of two links, when all the agents are receiving, i.e., ⌫ =1,computing optimal signal is tractable for arbitrary polynomial latency functions. This is to be contrasted with existing work, e.g., [24, 26], where an optimal signal is provided for such a 
	Figure

	Figure
	setting only for certain aﬃne link latency functions. 
	Proposition 1 and the discussion before it suggests a natural alternating heuristic for solving (34): start with an arbitrary y 2 P(1 ⌫), and alternate between solving (36) for a ﬁxed y and ﬁnding a feasible y using Lemma Under appropriate conditions on the latency functions, one can show that this heuristic results in a sequence of feasible (⇡,y)whose associated cost is monotonically 
	Figure
	1. 

	decreasing, and hence convergent, though not necessarily to a global optimum of (34). 
	9.1 An Exact Polynomial Optimization Formulation via Atomic Signals 
	9.1 An Exact Polynomial Optimization Formulation via Atomic Signals 
	A natural approach to approximate the joint optimization in (34) is to discretize the support of ⇡. 
	Asignal ⇡ is called m-atomic, m 2 N, if, for every ! 2 ⌦, ⇡ is supported on m discrete points x2 P(⌫), k 2 [m]. Let the set of such signals be denoted as ⇧(m). It is easy to see that every signal in ⇧(m) can be represented as a s⇥ m row stochastic matrix. To emphasize the matrix 
	(k) 

	notation, we let ⇡(k|!) denote the probability of recommending routes according to xwhen the state realization is !. Computing optimal signal in ⇧(m) can be written as the following polynomial 
	(k) 

	optimization problem: 
	3

	⇣⌘
	X 
	(k)(k)
	min x + yi ` !,i(x + yi) ⇡(k|!) µ(!) (37a) 
	0

	x2P(⌫),k2[m] 
	(k)
	ii 

	k, !,i 
	y2P(1 ⌫) ⇡2⇧(m) 
	XX
	(k)(k)(k)(k)
	s.t. ` !,i(x + yi) x⇡(k|!) µ(!)  ` !,j (x + yj ) x⇡(k|!) µ(!),i,j2 [n]
	0
	0

	ii ji k, ! k, ! 
	(37b) 
	XX
	(k)(k)
	` !,i(x+ yi) yi ⇡(k|!) µ(!)  ` !,j (x+ yj ) yi ⇡(k|!) µ(!),i,j2 [n] k, ! k, ! 
	i 
	0
	j 
	0

	(37c) In particular, for (28) with D=1, i.e., aﬃne link latency functions, the polynomials in the cost func
	-

	tions and the constraints are of degree 3. (37) can also be solved (approximately) using GloptiPoly. 
	(37) gives an increasingly tighter upper bound to (34) with increasing m2 N.While it is natural to expect the gap between (37) and (34) to go to zero as m! +1, the gap in fact becomes zero for ﬁnite m. 
	D+n
	Theorem 5. (34) is equivalent to (37) for ms. 
	D+1 

	The upper bound in Theorem 5 on the number of atoms required to realize an optimal signal 
	can be tightened in some cases, as we show in the next section. 

	9.2 Diagonal Atomic Signals 
	9.2 Diagonal Atomic Signals 
	An atomic signal which has attracted particular attention is when ⇡ is the identity matrix of size 
	!
	s. We shall refer to such a signal as a diagonal atomic signal, and denote its ﬁnite support as x, ! 2 ⌦. The polynomial optimization problem in (37) in this case simpliﬁes to: 
	X 
	min x! 2P(⌫), !2⌦ 
	min x! 2P(⌫), !2⌦ 
	min x! 2P(⌫), !2⌦ 
	!(xi 
	!+ yi) ` !,i(xi 
	+ yi) µ0(!) 
	(38a) 

	y2P(1 
	y2P(1 
	⌫) 
	!,i 

	TR
	X 
	X 

	TR
	s.t. 
	!` !,i(xi 
	!+ yi) xµ0(!) i 
	!` !,j (xj 
	!+ yj ) xµ0(!),i,ji 
	2 [n] 
	(38b) 

	TR
	!X 
	!X 

	TR
	!` !,i(xi 
	+ yi) yi µ0(!)  
	!` !,j (xj 
	+ yj ) yi µ0(!),i,j
	2 [n] 
	(38c) 

	TR
	! 
	! 


	In general, (38) gives an upper bound to (37) for ms, and hence also for (34). The next result establishes the equivalence between the two formulations in a special case, and also establishes that 
	Throughout the study, unless noted otherwise, the summation over index for discrete support, such as k,is to be taken over the entire range, i.e., m. 
	3

	(38) is equivalent to the following semideﬁnite program: 
	min J(M):=C · M (39a)
	StyleSpan

	M⌫0 (i,j)
	A

	s.t. · M 0,i,j 2 [n] (39b) (i,j) 
	B

	· M 0,i,j 2 [n] (39c) M(1,1)=1 (39d) M(i,j)0, i,j 2 [(s+1)n+1] (39e) 
	(k) 
	S

	· M =0,Sy · M =0,k 2 [m] (39f) 
	x (i,k) 
	T

	· M =0,T· M =0 i2 [n],k 2 [m] (39g) 
	(i) 

	xy 
	xy 
	(i,k)
	, S
	y
	, T


	(i,j)(k)
	, B
	, S

	where the expressions for symmetric matrices C, Axx and Ty for the special 
	(i,j) 
	(i) 

	case D =1are provided in [36]. 
	Proposition 2. If n =2,then (38), (34) and (39) are all equivalent to each other for (28) with 
	D =1,i.e.,foraﬃne link latency functions. Remark 11. (i) For n =2 and D =1,Proposition 2 implies that an optimal signal can be 
	3
	realized with s atoms, which is much less than the bound s=3s given by Theorem 5. 
	[x ,x ,...,x ,x ,y,y] =⌘is an optimal solution for (38),andhencealsofor (34). 
	1
	2
	⇤ 

	2 
	2 
	2 

	(ii) For n=2and D =1,if M⇤ 
	(ii) For n=2and D =1,if M⇤ 
	= 
	 1 ⌘⇤ 
	⌘⇤T M0,⇤ 
	is an optimal solution to (39),then 

	!1 
	!1 
	!1 
	!s 
	!s T 


	12 12 
	(iii) Proposition 2 and its proof approach (cf. [36])might appear to be generalization of an obser-vation in [26], which was made for ⌫ =1,and for a class of aﬃne link latency functions. Not only do we remove these restrictions, but more importantly, our proof implicitly highlights that 
	the obedience constraint needs more careful treatment than suggested in [26]. 
	(iv) It is informative to contrast the diﬀerent approaches of Proposition 1 and Proposition 2 for 
	establishing tightness of the natural semideﬁnite relaxation of the corresponding variants of the information design problem. Proposition 5 simply relies on the ability to rewrite the problem in terms of univariate probability measures with compact support. On the other hand, Proposition 2 relies on the tightness of the GPM obtained by relaxation of the problem because 
	it has optimal probability measures supported on single atoms. 

	9.3 Monotonicity of Optimal Cost Value under Diagonal Atomic Signals 
	9.3 Monotonicity of Optimal Cost Value under Diagonal Atomic Signals 
	Let J(x,y)denote the cost function in (38a), and let J(⌫)denote the optimal value for a 
	diag
	diag,⇤

	given ⌫. 
	Theorem 6. J(⌫)is continuous and monotonically non-increasing with respect to ⌫ 2 [0,1]. Remark 12. (i) Note that Theorem 6 does not require the link latency functions to be polynomial. 
	diag,⇤

	(ii) In light of Proposition 2, Theorem 6 implies that, if n=2and if the link latency functions are 
	aﬃne, then the optimal cost value under all, i.e., not necessarily (diagonal) atomic, private signals is continuous and monotonically non-increasing in ⌫ 2 [0,1].However, this is not 
	necessarily the case with public signals, as we illustrate in Section 11. 
	30 
	(iii) The proof of Theorem 6 (cf. [36]) implies that for a (not necessarily optimal) atomic diagonal 
	signal ⇡for some ⌫2 [0,1],one can construct a simple ⌫-dependent atomic diagonal signal with the same social cost as ⇡for all ⌫ 2 [other words, one can construct asimple feedback(using ⌫)atomicdiagonalsignal arounda nominal ⇡under which the social cost does not increase due to higher than nominal fraction of receiving agents for which 
	diag 
	1 
	diag 
	⌫,1].In 
	1

	diag 

	diag is designed. This is to be contrasted with existing results according to which the cost of receiving agents may increase with their increasing fraction under a ﬁxed (open-loop) signal, 
	⇡

	e.g., see [33, 34]. 


	10 Public Signals 
	10 Public Signals 
	A public signal is an indirect signal, under which, for every state realization, ⌫ fraction of agents all receive the same message among {1,...,m} =[m].Formally, a public signal is a map ⇡: ⌦ ! 4([m]), or can alternately be represented as a s⇥ m row stochastic matrix. The posterior formed by agents when the message they receive is k is: 
	pub 

	pub
	⇡
	(k|!)µ
	0
	(!)

	pub
	µ
	⇡
	,k
	(!)= 

	P , ! 2 ⌦ (40)
	pub
	⇡
	(k|✓)µ
	0
	(✓)

	✓ 
	The joint posterior formed by agents who do not receive message, but have knowledge of ⇡,is: 
	pub

	,;pub
	(k,!)= ⇡
	(k|!)µ
	0
	(!),

	µk 2 [m], ! 2 ⌦ (41) 
	⇡
	pub 

	Public signals over m messages have strong parallel with, but are not equivalent to, m-atomic 
	private signals considered in Section 9.1. We return to this connection in Proposition 3. 
	Let x2 P(⌫) be the link ﬂow induced by receiving agents, when the message they receive is k 2 [m], and let y 2 P(1 ⌫) be the link ﬂow induced by agents not receiving the message. xis 
	(k) 
	(k) 

	the Bayes Nash ﬂow with respect to the posterior in (40) and y is the Bayes Nash ﬂow with respect 
	to the posterior in (41). That is, xsatisﬁes: 
	(k) 

	XX 
	pubpub
	⇡
	,k
	(!) 
	 
	⇡
	,k
	(!),

	(k)(k)
	` !,i(x+ yi)µ ` !,j (x+ yj )µi 2 supp(x),j 2 [n] 
	i 
	j 
	(k)

	!! 
	Substituting the expression from (40), the conditions on {x,...,x} can be collectively rewrit
	(1)
	(m)
	-

	ten as 
	X⇣ ⌘ 
	(k)(k)(k) pub
	⇡
	(k|!)µ
	0
	(!)  0,

	x` !,i(x+ yi) ` !,j (x+ yj ) i,j 2 [n],k 2 [m] (42) 
	i 
	i 
	j 

	! 
	Similarly, the condition on y can be written as 
	X⇣ ⌘ 
	(k)(k) pub
	⇡
	(k|!)µ
	0
	(!)  0,

	yi ` !,i(x+ yi) ` !,j (x+ yj ) i,j 2 [n] (43) k, ! 
	i 
	j 

	The social cost is: 
	X 
	pub (k)(k) pub
	J(⇡
	+ y
	i
	) ⇡
	(k|!)µ
	0
	(!)

	,x,y):= (x + yi) ` !,i(x
	ii (44) 
	k, i, ! 
	Therefore, the problem of optimal public signal design can be written as: 
	pub
	J(⇡

	min ,x,y) 
	(45) 
	s.t. (42) 

	x2P(⌫),k2[m] y2P(1 ⌫) pub
	(k)
	⇡
	2⇧(m) 

	(43) 
	Similar to (37), (45) is a third degree polynomial optimization problem for aﬃne link latency functions. 
	Figure
	Figure

	Example 2. Two public signals which have attracted particular interest are full information and no information: 
	k=1 k=2 ... k=m 
	k=1 k=2 ... k=m 
	k=1 k=2 ... k=m

	2
	2
	3
	3 
	!10 ... 0 !10 ... 0 
	1 
	1 

	6664 
	01 ... 0 
	.. . 
	.. . 
	.. 
	... 
	. 
	7775
	, 
	pub, no 
	⇡

	= 
	!
	2 

	. 
	. 
	. 
	6664 
	10 ... 0 
	.. . 
	.. . 
	.. 
	... 
	. 
	7775 
	!
	2 

	pub, full 
	⇡

	(46)
	= 
	. 
	. 
	. 
	!s 00 ... 1 !s 10 ... 0 
	where m= s for the full information signal, and m is arbitrary, e.g., m=1,for the no information signal. In general, any row-stochastic ⇡with identical rows corresponds to a no information signal. 
	pub, no 

	It is sometimes of interest to evaluate the cost of a given public signal. The cost can be computed once the induced ﬂows x, k 2 [m],and y are known, which in turn can be computed using the next result. 
	(k)

	Lemma 2. The link ﬂows, y and x,k 2 [m],inducedby apublicsignal ⇡are solutions to 
	(k)
	pub 

	ZX 
	min 
	y2P(1 ⌫); x2P(⌫),k2[m]0
	(k)

	i,!,k 
	(k)
	x +yi
	pub
	i 
	` 
	!,i
	(z)dz⇡
	(k|!) µ
	0
	(!) 

	(47) 
	It is interesting to compare the formulations in (37) and (45) for m-atomic private signals and public signals with m messages respectively. While next result implies that every public signal with m messages can be equivalently realized by an m-atomic private signal, the converse is not true in general. 
	Figure
	Figure

	Proposition 3. Given a ⌫ 2 [0,1],for every public signal ⇡with m messages, there exists an m-atomic direct private signal with the same cost. 
	pub 

	Remark 13. Proposition 3 implies that, for every ⌫ 2 [0,1], there exists a feasible 1-atomic private signal corresponding to ⇡in with m =1.Therefore, is feasible for every ⌫ 2 [0,1]. Considering s duplicates of the same atom as for m =1 case implies that is feasible for all ⌫ 2 [0,1].Feasibility of (37) can be established along similar lines. 
	(46) 
	(34) (38) 
	pub, no 
	Figure


	11 Simulations: Information Design for Traﬃc Networks 
	11 Simulations: Information Design for Traﬃc Networks 
	We compare the minimum cost achievable under private signals, public signals, and full information 
	over two parallel links under aﬃne (Section 11.1) and BPR latency functions (Section 11.2). The 
	(with fmincon solver) in MATLAB. In particular, the upper bound computed by MultiStart allows to certify optimality of the lower bound obtained from GloptiPoly, especially when the solution from GloptiPoly does not come with an explicit certiﬁcate of optimality. In all the instances, it was found suﬃcient to have 125 starting points for MultiStart and relaxation order of 3 for GloptiPoly. The no information signal corresponds to ⌫ =0, when all the costs are expectedly equal. For both the scenarios, the tota
	0 0.5 1 108 110 112 114 116 118 120 cost full info optimal private optimal public (m=2) (a) 0 0.5 1 70 75 80 85 cost full info optimal private (m=2)optimal public (m=2) (b) 
	Figure 12: Comparison of minimum cost achievable under private signals, public signals and full information over two parallel links, under diﬀerent ⌫ for (a) aﬃne latency functions and (b) BPR latency functions. 
	Figure 12: Comparison of minimum cost achievable under private signals, public signals and full information over two parallel links, under diﬀerent ⌫ for (a) aﬃne latency functions and (b) BPR latency functions. 
	-



	11.1 Aﬃne Latency Functions 
	11.1 Aﬃne Latency Functions 
	Figure 12(a) provides comparison between social costs for the following simulation parameters: 
	i=1 i=2 i=1 i=2
	 
	!5 25 !42 !0.6
	1 
	1 
	1 

	↵= , ↵= ,µ= 
	0 
	1 
	0 

	!20 15 !12 !0.4 
	2 
	2 
	2 

	The minimum social cost, i.e., the social cost when the planner can mandate which route every (receiving as well as non-receiving) agent takes for every realization of !for these parameters is 83.33. Following Proposition 2, optimal private signal is computed The approximation 
	, using (38). 
	4 

	to optimal social cost under public signals using (45) was found to be identical for m =2, 3, 4,and 
	therefore these values are plotted under optimal public signal in Figure 12(a). The corresponding 
	This is also referred to as the ﬁrst-best strategy. 
	4

	public signals for a few representative ⌫ are: 
	k=1 k=2 k=1 k=2
	  
	i=1 1.25 0 i=1 3.23 !10 
	1 

	pub
	,⇡

	⌫ =0.25 : x= ,y== 
	i=2 01.25 i=2 0.52 !01 k=1 k=2 k=1 k=2
	2 

	  
	i=1 2.06 2.06 i=1 2.11 !10 
	1 

	pub
	,⇡

	⌫ =0.5: x= ,y== 
	i=2 0.44 0.44 i=2 0.39 !10 k=1 k=2 k=1 k=2
	2 

	  
	i=1 3.75 0 i=1 0.42 !10 
	1 

	pub
	,⇡

	⌫ =0.75 : x= ,y== 
	i=2 03.75 i=2 0.83 !10 k=1 k=2 k=1 k=2
	2 

	  
	i=1 4.17 0.2 i=1 0 !10 
	1 

	pub
	,⇡

	⌫ =1: x= ,y== 
	i=2 0.83 4.8 i=2 0 !10 
	2 

	and optimal private signals for the same representative ⌫ are: 
	k=1 k=2 k=1 k=2
	  
	i=1 0.32 0 i=1 3.75 !10
	1 

	⌫ =0.25 : x= ,y= ,⇡ = 
	i=2 0.93 1.25 i=2 0 !01 k=1 k=2 k=1 k=2
	2 

	  
	i=1 1.58 0.37 i=1 2.5 !10
	1 

	⌫ =0.5: x= ,y= ,⇡ = 
	i=2 0.92 2.13 i=2 0 !01 k=1 k=2 k=1 k=2
	2 

	  
	i=1 2.83 1.62 i=1 1.25 !10
	1 

	⌫ =0.75 : x= ,y= ,⇡ = 
	i=2 0.92 2.13 i=2 0 !01 k=1 k=2 k=1 k=2
	2 

	  
	i=1 4.08 2.87 i=1 0 !10
	1 

	⌫ =1: x= ,y= ,⇡ = 
	i=2 0.92 2.13 i=2 0 !01 
	2 

	While the cost in Figure 12(a) shows non-monotonic behavior with respect to ⌫ in the full 
	information case as well as under optimal public signal, the optimal cost is monotonically nondecreasing under private signals. Expectedly, the optimal cost under public signal is no greater than the cost under full information, and the optimal cost under private signal is no greater than under public signal. Interestingly, in this case, full information is an optimal public signal for small values of ⌫, and gives the same cost as an optimal private signal for even smaller values of ⌫. 
	-


	11.2 BPR Latency Functions 
	11.2 BPR Latency Functions 
	Figure 12(b) provides comparison between social costs for the following simulation parameters: 
	i=1 i=2 i=1 i=2
	  
	!5 25 !0.047 0.025 !0.6
	1 
	1 
	1 

	↵= , ↵= ↵= ↵= 0, ↵= ,µ= 
	0 
	1 
	2 
	3 
	4 
	0 

	!20 15 !0.037 0.058 !0.4 
	2 
	2 
	2 

	 
	 
	 
	i=1 
	i=2 

	!1These parameters correspond to free ﬂow travel times and capacities being equal to ↵0 and !2 
	!1These parameters correspond to free ﬂow travel times and capacities being equal to ↵0 and !2 
	2 3 
	3.5 2.5 

	respectively. The minimum social cost for these parameters is 52.78. 
	respectively. The minimum social cost for these parameters is 52.78. 

	34 
	34 


	The approximation to optimal social cost under private signals using (37) was found to be 
	identical for m=2,3,4, suggesting that m=2 atoms are possibly suﬃcient to realize optimal private signal in this case. This is much less than the upper bound of 2 = 12 atoms given by 
	6 

	5 
	Theorem 5. Similarly, the approximation to optimal social cost under public signals using (45) was 
	found to be identical for m=2,3,4. Therefore, values for m=2 are plotted under optimal private 
	and optimal public, respectively, in Figure 12(b). Optimal public signals for a few representative ⌫ 
	are: 
	k=1 k=2 k=1 k=2
	  
	i=1 1.25 0 i=1 3.75 !10 
	1 

	pub
	,⇡

	⌫ =0.25 : x= ,y== 
	i=2 01.25 i=2 0 !01 k=1 k=2 k=1 k=2
	2 

	  
	i=1 2.50 i=1 2.5 !10 
	1 

	pub
	,⇡

	⌫ =0.5: x= ,y== 
	i=2 02.5 i=2 0 !01 k=1 k=2 k=1 k=2
	2 

	  
	i=1 3.75 0 i=1 1.25 !10 
	1 

	pub
	,⇡

	⌫ =0.75 : x= ,y== 
	i=2 03.75 i=2 0 !01 k=1 k=2 k=1 k=2
	2 

	  
	i=1 5.02.08 i=1 0 !10.13 
	1 

	pub
	,⇡

	⌫ =1: x= ,y== 
	i=2 0.02.92 i=2 0 !00.87 
	2 

	and optimal private signals for the same representative ⌫ are: 
	k=1 k=2 k=1 k=2
	  
	i=1 0.99 0 i=1 3.75 !10
	1 

	⌫ =0.25 : x= ,y= ,⇡ = 
	i=2 0.26 1.25 i=2 0 !01 k=1 k=2 k=1 k=2
	2 

	  
	i=1 2.24 0.0 i=1 2.5 !10
	1 

	⌫ =0.5: x= ,y= ,⇡ = 
	i=2 0.26 2.5 i=2 0 !01 k=1 k=2 k=1 k=2
	2 

	  
	i=1 3.49 0.76 i=1 1.25 !10
	1 

	⌫ =0.75 : x= ,y= ,⇡ = 
	i=2 0.26 2.99 i=2 0 !01 k=1 k=2 k=1 k=2
	2 

	  
	i=1 4.74 2.01 i=1 0 !10
	1 

	⌫ =1: x= ,y= ,⇡ = 
	i=2 0.26 2.99 i=2 0 !01 
	2 

	The social cost proﬁle in Figure 12(b) shows similar qualitative dependence on ⌫ as in Figure 12(a). 
	Since diagonal atomic private signals are observed to be optimal (based on the sample values 
	reported above), monotonicity of the corresponding cost is consistent with Theorem 6. 


	12 Conclusions and Future Work 
	12 Conclusions and Future Work 
	12.1 Feedback Control of Traﬃc Networks 
	12.1 Feedback Control of Traﬃc Networks 
	This project provides some structural insights into the ﬁnite-horizon optimal feedback control for ﬂow networks. The enabling tool for the design of an optimal feedback control law is the multi-parametric linear program. It is well known that for large-size complex networks, the prohibitive 
	This project provides some structural insights into the ﬁnite-horizon optimal feedback control for ﬂow networks. The enabling tool for the design of an optimal feedback control law is the multi-parametric linear program. It is well known that for large-size complex networks, the prohibitive 
	computation and computation loads makes the design and implementation of a centralized controller too costly or impractical; moreover, the eﬀect of noise, delay, or any type of error or failure in data transmission may substantially degrade the control quality. It is, therefore, necessary to develop decentralized feedback controllers with simple structure. A simple procedure is proposed to design a decentralized feedback control with a “one-hop” information structure. Moreover, it is shown that the optimal 

	For a given ﬂow network of size n and control horizon N, it is invaluable to analytically determine when it is worth to implement uncontrolled scheme, or a decentralized control law with a p-hop information structure to achieve a satisfactory level of performance. We also plan to extend and evaluate the approach to higher order traﬃc dynamics, such as ARZ and PW models. Our ultimate objective is to develop a principled approach for distributed optimal control of physical infrastructure networks under given 
	-


	12.2 Information Design for TraﬃcNetworks 
	12.2 Information Design for TraﬃcNetworks 
	Information design for non-atomic routing games is gaining increasing attention. While existing works provide useful insights through analysis of simple scenarios, the generality of these insights is not readily apparent. Relatedly, a computational approach to operationalize optimal information design for general settings does not exist to the best of our knowledge. By making connection to semideﬁnite programming (SDP), this project not only ﬁlls this gap, but also allows to leverage computational tools dev
	There are several immediate directions for future work. The bound in Theorem 5 on the number of atoms required to realize optimal private signals may be computationally prohibitive for large networks. Proposition 2 and Section 11.2 on the other hand suggest the possibility of exploring problem structure to tighten the bound. A counterpart to Theorem 5 for public signals remains open. A relatively unexplored direction is to provide sub-optimality bounds for simple classes of signals such as diagonal atomic. 
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	Figure
	Figure
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	13 Implementation 
	Not applicable. 
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	Data Management Plan 
	Data Management Plan 
	Products of Research 
	Products of Research 
	The majority of the project was methodological and algorithmic. These findings have been submitted for journal publication. The simulation studies were performed in Matlab. The Matlab script includes the following components: 
	1. 
	1. 
	1. 
	Traffic network description, including node-link connectivity, speed limits, wave speeds, traffic and demand; 

	2. 
	2. 
	Control algorithms for routing, speed limit control and ramp metering, and optimization algorithm to determine optimal information design; 

	3. 
	3. 
	Output in standard Matlab format. 



	Data Format and Content 
	Data Format and Content 
	The input files are in .txt format; the Matlab scripts are in .mat format. 

	Data Access and Sharing 
	Data Access and Sharing 
	All data used in the project were either synthetic or from Caltrans Performance Measurement System (PeMS), which data can be accessed here: 
	/ 
	http://pems.dot.ca.gov



	Reuse and Redistribution 
	Reuse and Redistribution 
	The intellectual property rights of the data belong to the researchers of the project. Upon request, the data will be released to the public or public agencies, who are then allowed to use the data with proper citation and attribution to the research team and project. 
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