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Abstract
Modern fishing vessels have a wide range of instruments and sensors on board
that are used for active fishing operations, with sonar equipment and echo
sounders being among the most common. Sonar allows horizontal observation
of the water column, while echo sounders provide more precise underwater
environment monitoring. These instruments are useful as they are used today
but require a lot of user experience for effective use. Estimating biomass den-
sity, fish size, and species is highly demanding, and the existing systems have
significant uncertainties.

In this thesis, we propose a novel approach to hydroacoustic data analysis that
capitalizes on catch reports as annotations for hydroacoustic transects. Com-
bining catch messages with the positional attribute of echo data allows us to
obtain annotated echo examples that describe the biota within a given loca-
tion. The thesis leverages EchoBERT, a BERT-inspired model, as the underlying
architecture.

To assess the capabilities of the annotations, we evaluate the model using dif-
ferent types of models. Both classification and regression tasks are employed,
wherein the classification task aims to predict the presence of a species based
on catch messages. In contrast, the regression tasks attempt to fit the model to
the catch data and generate a distribution of the species.

Furthermore, we assess the model considering timestamps. Since the catch
messages may not necessarily correspond to the same date as the echo data,
we incorporate weighted loss functions that account for the temporal proximity.
This approach allows for a closer association during the training process, where
the outcome is weighted more heavily for temporally closer labels.

Our results provide insight into the characteristics of catch reports as anno-
tations, shedding light on their usefulness and limitations. We also uncover
potential bias present in the labelled data, where a seasonal fishing activity
can be uncovered in the dataset. We also experiment and find the magnitude of
difference in collation criterion when finding catch data based on the haversines
formula.
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1
Introduction
Species identification is a crucial aspect of fisheries research, as it enables
the assessment of fish populations and supports sustainable fishing practices.
Echosounders, which precisely monitor the underwater environment, have be-
come a common tool in modern fishing fleets. These devices utilize hydroa-
coustic technology to gather data, allowing fishers to observe the presence and
behaviour of fish beneath their boats.

Traditionally, categorising fish species observed in echograms has relied on
manual interpretation by domain experts. However, this approach is subjective
and requires specialized knowledge, leading to potential variations in findings.
While acoustic target classification has the potential to estimate the abundance
and biomass of marine ecosystems, there is currently no automated classifica-
tion process available.

In 2005, the Directorate of Fisheries introduced an electronic reporting system
for Norwegian fishing vessels operating in international waters. This system re-
placed the traditional method of faxing catch and activity reports and allowed
for more efficient and accurate reporting. Subsequently, regulations were pro-
posed to mandate reporting for all Norwegian vessels larger than 15 meters,
further enhancing the documentation of sustainable fishing practices.

Supervised learning, a subfield of deep learning, has achieved significant suc-
cess in various domains, including image, sound, and text classification tasks.
However, successful supervised learning relies on well-defined datasets and

1



2 chapter 1 introduction

labelled examples for training models. In the context of hydroacoustic data
analysis, using catch reports as annotations for hydroacoustic transects is a
novel approach that offers cost-effective annotation compared to manual anno-
tation by domain experts.

This research uses data from the sand eel survey conducted by the Norwe-
gian Institute of Marine Research (HI) to validate the proposed annotation
method with annotated hydroacoustic data. The potential impact of this sys-
tem is substantial, as it can lead to advancements in abundance estimation.
Fishing vessels and fisheries management can use this system as a decision
support tool to validate their decisions and ensure sustainable practices.

By combining the power of deep learning and the availability of electronic catch
reports, this research strives to develop an automatic classification process for
hydroacoustic data. The successful implementation of this system can signifi-
cantly improve species identification and abundance estimation and support
effective fisheries management, ultimately contributing to the conservation
and sustainability of marine ecosystems.

1.1 Problem definition

This thesis addresses the challenges of designing and implementing a deep
learning pipeline for hydroacoustic data analysis. The pipeline incorporates
multiple interconnected layers, including preprocessing and classification lay-
ers, which collaborate during inference. Our primary focus is on the training
aspect of the pipeline, where we propose and evaluate novel approaches for
labelling and training hydroacoustic data.

While this work does not delve into explainability and uncertainty quantifica-
tion, we assess the model’s performance based on relevant prior research [1, 2].
Therefore, our thesis is that:

Deep learning models applied to hydroacoustic data can be used to model fish
abundance by using collated catch reportings as annotations

1.2 Targeted Applications

In this thesis, we develop a processing pipeline to infer and train deep-learning
models for hydroacoustic data. The application holds great potential in various
domains, including decision support systems and search engines, where his-
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torical documentation and prediction of fishing locations based on parameters
are crucial.

1.3 Assumptions and Limitations

The thesis main focus is the annotation method, and experiments to evaluate
the annotation in a deep learning architecture. In order to fulfill the require-
ments, we constrained the implementation by reducing complexities in logic.
These are:

• We will assume the catch data to be static, and will not implement mech-
anisms for periodically fetching new .csv files.

• We will only look at one of the frequencies in the hydroacoustic data.

• We will limit the scope of the experiments to a specific deep learning
architecture, and will not consider alternative architectures or compare
performance across different models.

• The evaluation of the annotation method will be conducted on a specific
dataset, and the results may not generalize to other datasets or domains.

• The experiments will be conducted on a specific hardware setup and
may not reflect the performance of the annotation method on different
hardware configurations.

These assumptions and limitations help to streamline the implementation and
focus on the core objectives of the thesis while acknowledging the potential
constraints and factors that may influence the results and generalizability of
the proposed annotation method.

1.4 Methodology

With the rapid expansion of the computer science discipline, there arose a
need for a comprehensive understanding and definition of the field. The ACM’s
Task Force of the Core of Computer Science was in 1989, formed to charter this
discussion. The task force introduced three paradigms. [3] The first paradigm,
Theory, is deeply rooted in mathematics and involves the development of coher-
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ent and valid theories. It follows a four-step process: characterizing the objects
of study, hypothesizing possible relationships among them, determining the
truth of these relationships through proof, and evaluating and interpreting the
results obtained. This paradigm emphasizes rigorous mathematical reasoning
and iterative refinement to address errors and inconsistencies.

The second paradigm, Abstraction, draws inspiration from experimental scien-
tific methods. It is an iterative process that aims to examine phenomena. The
four steps involved in this paradigm are: forming a hypothesis, constructing
a model to make predictions based on the hypothesis, designing an experi-
ment to collect relevant data, and analyzing the results obtained. Abstraction
allows for exploring complex systems by simplifying them into manageable
models.

The third paradigm, Design, is rooted in engineering principles and focuses on
the iterative creation of systems. It involves four steps: stating requirements,
specifying the system based on those requirements, designing and implement-
ing the system, and testing its functionality. This paradigm emphasizes applying
computer science principles to build real-world solutions.

In the thesis at hand, the research is situated within the framework of Design
Science in Information Systems Research [4], which incorporates the three
paradigms introduced by the ACM’s Task Force. The initial stages of the thesis
involved collecting existing knowledge and theories to establish a solid the-
oretical foundation. With this knowledge, requirements for the system were
defined, and components were designed to meet the specifications derived from
those requirements. We were able to implement the system for labelling and
classification from the theory and abstractions, and by following the iterative
process, we successively increased our knowledge of the domain.

By obtaining more knowledge through the iterative process, we discovered new
and refined existing requirements, enabling us to implement functionality to
satisfy these. Finally, we conducted an experimental evaluation of the system.
The evaluation aimed to demonstrate the system’s capabilities and feasibility
using quantitative methods. Through this evaluation, we provided evidence
of the system’s performance and its alignment with the defined requirements.
Using quantitative methods allowed for a rigorous assessment of the system’s
effectiveness and providing measurable results.
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1.5 Context

This thesis is written as part of the Norwegian Seafood Research Fund project
Datafangst[5] in collaboration with my advisors Peter Haro (SINTEF Nord),
Einar Holsbø (Arctic University of Tromsø).

1.6 Contributions

The contributions of this work are:

• Models for

– Labelled echo data models to quickly index features.

– Annotation of echo data with catch messages.

– Pytorch-specific data loader for echo data.

• Methods for

– Collection of catch messages from sequential data stores.

– Processing of echo data from Kongsberg .raw files.

– Collation of data sources by positional attributes.

– Noise filtering and seabed cropping of echo data.

– Calculation of temporal-proximity weighting of loss functions

• Artifacts

– Pipeline for echo and catch data.

1.7 Thesis Outline

The rest of the thesis is structured as follows:

Chapter 2: Background explores the necessary theories and background for
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understanding the premise of this thesis, as well as related works. The chap-
ter introduces Hydroacoustics, image processing techniques, and Deep Learn-
ing.

Chapter 3: Related Work provides a review of related literature and "state-of-
the-art" methods for deep learning and echo data.

Chapter 4: Design presents the requirements for the pipeline and its de-
sign.

Chapter 5: Implementation describes the implementation of the design, fo-
cusing on the methods used to fulfill the requirements.

Chapter 6: Evaluation outlines the experiments and the results of the annota-
tion method and deep learning model.

Chapter 7: Discussion discusses the choices made in the pipeline’s design and
their impact on performance, feasibility, and practicality.

Chapter 8: Conclusion summarizes the thesis and proposes new fundamental
ideas for future work.



2
Background
This chapter provides an overview of theories and technologies needed to un-
derstand the basis of related work and the thesis. Moreover, this chapter will
cover hydroacoustics regarding echo sounders and data processing. We will
also describe Deep learning and relevant architectures of state-of-the-art mod-
els.

2.1 Hydroacoustics

Modern fishing boats are equipped with a wide range of instruments and sen-
sors that are used for fishing operations, with echo sounders and sonar being
the most common. Sonar is used to look horizontally through the water, and
echo sounders provide higher precision of the environment under the vessel.
In this thesis, we delimit us to echo sounders.

Echosounders collect data by transmitting sound through the water column,
bouncing off objects, biota or seabed. The time it takes for the sound to return
determines the distance between the echosounder and the object, while the
strength and frequency of the sound provide information about the object’s
characteristics, such as size and composition.

When the echosounder transmits sound pulses over a period of time, this results
in a two-dimensional picture, or echogram, of targets over time. The horizontal

7
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extent of targets shows changes in time if the echosounder is stationary or in
space if the echosounder is on a moving vessel. The vertical extent of targets
indicates the height of the object, such as a fish school or scattering layer.

Understanding echo-sounding data requires domain expertise and can be a
difficult and tedious task to do manually.

2.2 Stabilizing hydroacoustic data

Raw hydro-acoustic data requires processing to improve the quality of the data
source. The response of the hydro-acoustic sensor is often noisy, with unwanted
frequencies and artefacts, from the sensor itself or other sources. This section
will cover theories for removing unwanted features and noise.

2.2.1 Spatial filters

A fundamental part of image processing is filtering techniques, which involve
modifying the pixels of an image based on a kernel. The kernel defines how each
pixel value is combined with the values of its neighbouring pixels to produce a
modified pixel.

There are two main categories of image filters, namely spatial domain filters
and frequency domain filters. The frequency domain filters revolve around
removing, modifying or passing specified frequency components of an image.
Spatial filtering pertains to modifying an image by replacing the value of each
pixel with a function of the pixel itself and its neighbours. The operation or
mathematical function can be linear or nonlinear.

The spatial filters can blur or sharpen an image. A linear spatial filter, such
as a low pass filter, reduces sharp intensities in images. Noise often comes as
sharp transitions in intensity, and applying a low pass filter yields an adequate
application in noise reduction[6].

Order-statistic filters are nonlinear spatial filters with responses based on rank-
ing the pixels in the kernel region. Smoothing is achieved by replacing the
value of the centre pixel with the value determined by the rank result. The
kernel evaluates each pixel in the region and ranks each corresponding pixel’s
intensity. The pixel chosen is based on the filter criteria. The best-known order-
statistic filter, the median filter, chooses the median pixel as its response and
the centre pixel is replaced with the response.
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2.2.2 Frequency filters

Frequency filters allow filtering by modifying, removing or adding frequencies
in the image spectrum. Fourier Transform models the signal in the frequency
domain, and by modifying the spectrum, the inverse transform will obtain the
processed result.

These filters can come in handy when periodic noise exists in the data. In the
context of hydroacoustics, sounds from other bodies, such as the boat, can give
frequencies that can be seen as periodic noise. By observing and eliminating
the said noise frequency, the echogram can be retrieved without noise.

Image smoothing is one application for frequency domain filters. This is done
by low pass filtering for high-frequency attenuation. Ideal, Butterworth and
Gaussian filters are three types of low-pass filters, each with its own distinct
properties in the response. The ideal lowpass is very sharp, whereas Gaussian
filters are smooth. The Butterworth filter is a combination of these two ex-
tremes, where the assumption is that the higher filter order will approach the
response of an ideal filter, and with a smaller filter order, the Butterworth filter
approaches a Gaussian filter[7].

2.3 Deep learning

This section describes the foundation for theories in deep learning that are
applied in related work and for the models introduced in this thesis.

Machine learning can be divided into two main categories, supervised and
unsupervised learning. Supervised learning algorithms involve training amodel
on labelled data with input-output pairings. The goal is to learn an objective
function to infer output for new, unseen input data. unsupervised. . .

Deep learning is a subfield of machine learning that learns a hierarchical repre-
sentation of data. The difference between machine learning and deep learning
lies in the aspect of the multiple layers of neural networks found in deep learn-
ing. There exist multitudes of unique neural networks. In this thesis, we will
describe Neural networks (NN), Convolutional Neural Networks (CNN), Recur-
rent Neural Networks (RNN) and Transformers.
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2.3.1 Neural Networks

The simplest type of neural network is the feedforward neural network. It is
a mathematical function that maps some input data to output values. The
function is formed by combining many simpler functions.

The feed-forward operation is defined in 2.1. This is the output of a single neu-
ron, or perceptron in the network where 𝑏 is the bias,𝑊 is the trainable weights
and 𝑔() is the activation function. Stacking these over multiple layers – having
the previous layer’s output as input – is a Multi-layer Perceptron (MLP).

𝑦 = 𝑔(𝑋𝑇𝑊 + 𝑏) (2.1)

The activation function 𝑔() gives the data non-linearity. The data is fitted along
a line. . . One example of an activation function is the Sigmoid function. Defined
in eq. 2.2 and plotted in Fig ??, is a nonlinearity that fits a perceptron’s output
between 0 and 1. The function is often used in Autoencoders, RNNs, shallow
CNNs, and MLPs.

𝑔(𝑎) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑎) = 1
1 + 𝑒−𝑎 (2.2)

Another example of an activation function is the rectified linear unit, or ReLU.
Eq. 2.3 shows the simplicity of the function. if 𝑎 > 0, the data is fitted linearly,
if 𝑎 < 0 the output will be 0. This function is commonly used as a non-linearity
between convolutional layers.

𝑔(𝑎) = 𝑅𝑒𝐿𝑈 (𝑎) =𝑚𝑎𝑥 (𝑎, 0) (2.3)

2.3.2 CNN - Convolutional Neural Networks

Convolutional neural networks are designed to handle data with a grid-like
structure, such as a 1D grid (time series data) or image data in a 2D grid. The
foundation for this NN comes from the mathematical operation of convolution,
which is widely employed in signal and image processing. CNN is a simple
MLP where matrix multiplications are replaced for convolutions between layers.
Convolutions have three important aspects that improve the machine learning
system. Sparse interactions, parameter sharing and equivariant representations.
These networks also allow for input data of variable size.

Traditional NNs connect every output unit with every input unit. CNNs have
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sparse interactions, reducing the kernel size lower than the input size. This
reduces the number of parameters that need to be stored, reducing memory
size and increasing statistical efficiency[8].

Parameter sharing allows for using the same parameters over different func-
tions in the model. Traditional NNs have parameters 𝑤𝑖 , which, from eq. 2.1,
is defined as multiplication by one element of the input 𝑋 𝑗 and never revisited.
If the parameters, or weights, were used over multiple inputs, this would be
parameter sharing. The nature of the convolution, which convolves a filter win-
dow over a matrix, will allow the parameters to be used over different data
locations[8].

Lastly, equivariance,means that if the input changes, the output changes linearly.
This is useful when, for example, processing time series of data. A convolution
produces a timeline that shows when different features appear in the input
data. If we move an event later in time, the exact representation will appear
in the output just later.

A common approach to a convolutional network layout is:

• A first layer performs convolutions over the input data. This gives a set
of linear activations.

• A second layer which applies a nonlinear activation function to the linear
activation. An example would be a ReLU. This is sometimes called the
detector stage.

• Third layer, a pooling function is applied to further modify the layer’s
output.

Pooling functions replace the layer output at a certain location with a summary
of statistics of the nearby outputs. Pooling assists with making the representa-
tions approximately invariant to small input translations. Invariance to local
translation gives the model a better understanding of whether a property is
present rather than the exact position. For example, if the objective is to clas-
sify faces in an image, pixel-perfect accuracy on the location of the eyes is not
needed[8].
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2.3.3 RNNs and Transformers

RNNs are neural networks that can process sequential information, such as
time-series data or text. CNN models the spatial dependencies, whereas RNNs
model the temporal dependencies in the data. In the previous section, we in-
troduced parameter sharing. Recurrent networks also have parameter sharing,
allowing them variable input data. Parameter sharing in this context is neces-
sary to reduce redundancy in learning[8]. Analogously, the sequence "I bought
a banana yesterday" and "Yesterday I bought a banana" have the same concep-
tual meaning, but the content is rearranged. With parameter sharing in RNNs,
concepts do not need to be learned for every position in a sequence.

Efficient language models often require machine learning techniques specialis-
ing in sequential data, and RNNs have been widely adopted for this application.
These language models consider their previous state (e.g. input data) when
generating their current state. Vanilla RNNs proved incapable of learning long
sequences. Nevertheless, vanilla RNNs demonstrated their limitations in effec-
tively processing lengthy sequences. The issue arises from vanishing gradients
within the backpropagation-through-time (BPTT) algorithm, causing vanilla
RNNs to struggle when confrontedwith lengthy input sequences. This is primar-
ily due to the RNN lacking access to crucial information about the sequence’s
initial stages as it reaches its end[9].

Figure 2.1: Figure of an vanilla cell, Figure from1.

1

1. http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Figure 2.2: Figure of an LSTM cell, Figure from1

LSTM and GRU accounted for this by implementing information gates. These
gates allow the model to decide which information to learn and which to forget.
Fig. 2.1 shows the information flow in a regular NN cell, where the input data
and the previous hidden state ℎ𝑡−1 are passed through a non-linearity which
will be the output of the cell 𝑡 hidden state ℎ𝑡 . The LSTM described in Fig.
2.2, on the other hand, has the ability to remove or add information to the
cell state. Gates regulates the information. The gates are made by a sigmoid
function which outputs a number between zero and one. If the sigmoid is high,
or 1, the gate lets all information through, whereas the gate is 0, and it lets no
information through. The LSTM cell is defined as in eq. 2.4.These give how the
memory is kept and information is stored[10].

The first gate, the forget gate 𝑓𝑡 , uses the previous hidden states ℎ𝑡−1 and the
input data 𝑥𝑡 to the cell to evaluate whether the information in the memory cell
𝐶𝑡 should be kept or forgotten. The update gate 𝑖𝑡 decides whether the memory
cell should be updated with new information. The new information is defined
as 𝐶𝑡 . If the update gate 𝑖𝑡 signals to completely update the information bank,
all the information in candidate state 𝐶𝑡 is added to the new state 𝐶𝑡 .

Furthermore, the cell’s output 𝑜𝑡 will be based on the cell state𝐶𝑡 . For example,
if a language model just saw a subject, the cell might want to output informa-
tion relevant to a verb. The cell’s output is the information that it thinks is
important.

𝑓𝑡 = 𝜎 (𝑊𝑓 · [ℎ𝑡−1, 𝑥𝑡 ] + 𝑏 𝑓 )
𝑖𝑡 = 𝜎 (𝑊𝑖 · [ℎ𝑡−1, 𝑥𝑡 ] + 𝑏𝑖)
𝐶𝑡 = 𝜎 (𝑊𝐶 · [ℎ𝑡−1, 𝑥𝑡 ] + 𝑏𝐶)

𝐶𝑡 = 𝑓𝑡 ⊛ 𝐶𝑡−1 + 𝑖𝑡 ⊛ 𝐶𝑡 (2.4)
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The hidden state of a cell is defined in 2.6.

𝑜𝑡 = 𝜎 (𝑊𝑜 [ℎ𝑡−1, 𝑥𝑡 ] + 𝑏𝑜) (2.5)
ℎ𝑡 = 𝑜𝑡 ⊛ 𝑡𝑎𝑛ℎ(𝐶𝑡 ) (2.6)

With the vanilla RNNs and LSTM, the model maintains a memory of previous
information. The LSTMs allowed us to maintain a better information bank in
the cell state. The sequential nature of recurrent neural networks precludes
optimizations such as parallelizations during training, which is a critical factor
in long sequence lengths.

2.3.4 Transformers

With the RNN’s performance drawbacks becoming apparent, a new model ar-
chitecture was introduced. The Transformer model eschewed the recurrency of
the model and instead relies on an attention mechanism to draw even longer,
global dependencies between input and output. This ubiquitous architecture
introduced the self-attention mechanism. In contrast to previous sequence-to-
sequence models, such as LSTMs, which process the input sequentially and rely
on a fixed-length hidden state to encode the input, the transformers allow for
variable sequence lengths.

The Transformer model embeds the input sequence to a higher-dimensional
space, where the self-attention operates. The self-attention mechanism com-
putes a weighted sum of the input sequence at each position. The similarities
between the current and other sequence positions determine the weights. This
allows themodel to attend to different parts of the input sequence depending on
the current context without relying on a fixed-length hidden state. [11]

Another mechanism in the architecture is the Multi-head attention. This allows
the model to attend to multiple parts of the input sequence simultaneously
and capture more complex relationships between different parts of the input
sequence. Positional encoding of the input sequence was necessary to allow
the model to use the order of the sequence. [11]

2.3.5 BERT - Bidirectional Encoder Representational
Transformer

The BERT paper was introduced in 2018, with several innovations to Natural
Language Processing (NLP) field. The paper introduced pre-training tasks, the
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Masked Language Modelling and Next Sentence Prediction task [12] to the
transformer architecture.

The Masked language Modelling task is done by masking some part of the
input sequence and then predicting the masked input. The training of these
tasks causes a mismatch between pre-training and fine-tuning since the masked
token will not appear in the fine-tuning. Not always replacing masked sequence
parts with the actual token mitigated this. The result of this task is to create a
deep bidirectional model.

Furthermore, theNext sentence Prediction task is to make the languagemodel
capture relations between two sentences or sequences. This is done by selecting
two sentences A and B, with a 50% probability of being the next sentence.
[12]

2.4 ERS - Electronic Reporting System

The electronic reporting system used by the Norwegian Fisheries Directorate
is called "Fangstregistrering" and is used by fishing vessels to report their catch
and fishing activity to the Directorate. Multiple different messages are sent by
vessels. Before a vessel departs, a DEP message is reported. This message re-
ports which harbour the vessel are leaving, the time of department, the quantity
of catch on deck at departure, and planned fishing activity. A vessel is required
to send a POR message when the boat arrives. The message must be sent at
most two hours before arrival to harbor[13].

A DCA message is required to be published at least one time daily and must
be sent until an POR message is sent. The DCA message describes the position
and time of when the fishing operation starts and ends. It also is required to
write total catch, distributed over species in round weight (weight of the fish
before it is gutted).

An example of the records in a DCA message can be seen in Table 1. The table
shows one actual DCA message.

The Directorate of Fisheries has an open data policy, meaning they publish
all data from the reporting system for fishing vessels larger than 15 meters.
Currently, the publishing is done by periodically publishing CSV files on their
webpages [14].





3
Related work
Multitudes of decision support systems formarine ecology exist. Understanding
the "state of the art" is essential for technological advancements. For this thesis,
related machine learning- and survey- systems are presented in this section as
experiences and development of theories can be built upon.

3.1 EchoBERT

We have previously introduced the Transformers and the improvements made
with BERT. EchoBERT[9] is a Transformer-based approach for echograms. The
model was created for behaviour detecting and monitoring fish cage popu-
lations. The paper presents an application of sequence models in echogram
behaviour classification and a novel pre-training task adapted to the hydroa-
coustic domain.

As presented in section ?? the echograms that are output from echosounders
visualize time along the x-axis and depth on the y-axis. The echograms have
spatial and temporal information and can be seen as many time series for
various depth levels stacked on top of each other.

The paper presents the novelty of using sequence models for echo data. Lan-
guage modelling tasks have fixed vocabulary in the corpus that is trained on.
The input sequences for echo are continuous data. This requires the model to

17
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use raw echo vectors instead of word embedding as previous work did.

The paper introduces a novel task for echograms. Next Time Slice Prediction
is a task for the model to understand long-term dependencies in the echograms.
A fish’s school position in a one-time slice affects future school positions. Fur-
thermore, with inspiration from BERT, a substituted Vector prediction task is
used to train the bidirectional transformer model, where the original ’[MASK]’
token is substituted from a random vector sampled from the training dataset.
The task for the model is to predict whether the vector is the true vector or sub-
stituted. The result of this task gives the model a bidirectional aspect without
the mismatch of pre-training and fine-tuning.

The model’s classification task was to detect diseases in fish cages. With this
architecture, the model outperformed LSTM with a substantial margin on the
MCC scoring.

3.2 Machine learning pipelines

The novelty of the proposed approach requires us to adapt existing theories and
artifacts to accommodate our goal. Various methods have been used for species
classification with the use of machine learning, and this thesis will extend their
ideas and shift the constraints to facilitate new artifacts for our method.

3.2.1 CRIMAC

CRIMAC1 is the Centre for Research-based Innovation in Marine Acoustic Abun-
dance Estimation and Species Classification and is a research initiative aim-
ing to develop and improve methods for stock assessments using acoustic
data.

The SFI has contributed a pipeline for pre-processing, detection of the seabed
and various machine learning architectures for hydroacoustics. The data that
has been used in their most recent works are from an EK60 echosounder, which
operated at [18, 38, 129, 200] kHz. This data was collected from The Norwe-
gian Institute of Marine Research on their annual trawl survey of sandeel ar-
eas.

1. The centres’ webpage https://www.crimac.no

https://www.crimac.no


3.2 machine learning pipel ines 19

Pre-processing

Papers [15], [2] introduce the methods used for pre-processing the data of the
sand eel survey. The data must be interpolated to a common time-range grid
across the frequencies. The product of this step is a tensor of size [4, 𝑁𝑝, 𝑁𝑟 ]
where 𝑁𝑝 is the number of pings (time, or x-axis in an echogram) and 𝑁𝑟 is
the range (y-axis in an echogram). The primary frequency of each sample is
set to 200 kHz, considering the sand eels signal-to-noise ratio [16], meaning
that this main frequency aligns with every other frequency data.

Data preparation for machine learning libraries is an important part of the
process. They compose dataset samples with the xarrays [17], allowing for
N-dimensional labelled memory maps with out-of-core computation for large
datasets which does not fit memory.

Bottom detection

Detection of seabed in data is vital for echo integration. Uncalibrated echo
data from echo sounders often experience noise from external noises, and
echograms have garbage intensities below the seabed. This makes it critical to
have techniques for the detection of the seabed.

The project team has implemented multiple echo processing techniques for
bottom classification [18]. Three of them are used separately or in conjunction
with each other. These are:

The Simple algorithm is a fast algorithm which uses the maximum back-scatter
intensity in each ping to find a bottom depth
Secondly, the Angles algorithm uses the spilt beam angles to detect the bottom
depth. This is used when the data contains a slopy bottom, and one or both
split beam angles vary linearly with depth.

The Edge algorithm convolves over the back-scatter 𝑠𝑣 to find bottom candi-
dates. The candidate is selected based on the highest quality, meaning the
width and prominence of the convolution peaks. The three aforementioned
algorithms are used in a combined algorithm, which first uses the simple algo-
rithm, for then to define bottom candidates with angles, if the angle regression
fits succinctly otherwise, use the edge algorithm [19].
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Classification

Recent works include different machine learning models applied to the sandeel
data. Current methods rely on much annotated training data, which is only
acquired by manual annotation processes. Thus, semisupervised learning has
been considered in [1] and [2].

The preceding publications present a novelmethod for leveraging small amounts
of annotated data samples with vast amounts of unannotated data samples.
The model has a clustering and a classification objective. The first objective is
to exploit the underlying structures of all data in the corpus. Figure 3.1 gives
an overview of the proposed model’s operation. Inference takes patches of
echograms for all frequencies included in the data. And classifies it as Sandeel,
other species or background.

Figure 3.1: Illustration of the method for [2], taken from the original publication,
licensed2

2

The latter of the works [1] utilises the same assumption with a semisupervised
approach. Still, instead of classifying the patches, the classification objective
is to utilise semantic segmentation to obtain a pixel-level classification task.
Inspired by U-Net, [20], and previous work of [15] on the echosounder data,
an encoder-decoder architecture with skip connections is postulated.

2. https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/


4
Design
In this section,wewill describe the requirements and design for the pipeline.

The pipeline consists of multiple components with different requirements. Fig-
ure 4.1 gives a high-level architecture of the design and components of a DSS
for fisheries. This thesis delimits itself to the preprocessing and classification
components, as enclosed in red marking and text in the Figure. All components
are created with modularity in mind, and each component has encapsulated
its functional requirements to fulfil this.

Catch data

Echo data

[ . , . , . , ]
[Cod, Pollock ,]

• Collate multiple 
datasources 
(Echosounder, catch 
data, trawl camera, etc.)

Data collation

• Train model with data 
sources 

• Infer on new data

Modelling layer

Generate report of result 
Result is returned to consumer 

e.g. 
[Cod , pollock,tuna,…,herring] 

Report generation
Data processing

Process data 
• Stabilization
• Normalization
• Cropping

Figure 4.1: Illustration showing the design of a pipeline for a decision support system
using echo data
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4.1 Requirements

The requirements of the thesis derive from findings in the literature, as well
as the context from section 1.5. In this section, we outline the requirements
for the system. Henceforth, each subsection describes the requirements in de-
tail.

• Must be able to process echosounder data (ek60 , ek80) from Kongsberg’s
.raw files

• The read echo examples must be stabilized and unwanted features re-
moved

• The echo examples should be annotated with catch data

• Computational overhead must be taken into account when developing

• Must support processing for training and inference. Before training, a
dataset should be generated from a set of echo data.

• Data loading into the deep learning model should be done efficiently.

4.1.1 Echo data processing

The raw data file from Kongsberg is a proprietary file format – .raw – composed
of XML or binary datagrams1. The file contains data collected from Kongsbergs
EK80/EK60 echosounders. These files must be processed into a simpler, more
interpretable form of data structure to easily adapt to new tasks.

4.1.2 Echo data stabilization

In this thesis, we assume imperfections in the echo data. Noise and poor calibra-
tion are common in In-situ operations. Random noise needs to be filtered out,

1. https://www.simrad.online/ek80/interface/ek80_interface_en_a4.
pdf#GUID-09211E50-E0C2-4495-B12F-FD915FC1F472

https://www.simrad.online/ek80/interface/ek80_interface_en_a4.pdf##GUID-09211E50-E0C2-4495-B12F-FD915FC1F472
https://www.simrad.online/ek80/interface/ek80_interface_en_a4.pdf##GUID-09211E50-E0C2-4495-B12F-FD915FC1F472
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and seabed detection is required for cropping. Unwanted and dead features
must be removed to remove potential data discrepancies.

4.1.3 Echo annotation

To utilize supervised learning, we either need a large annotated feature space
or we need to use other means of modelling. Manual annotation methods are
infeasible, so echo examples must be annotated with catch data. In section 2.4,
we explored the catch messages DCA, containing multiple tuples of catches.
The echo data should be labelled with round weight, species and date.

Moreover, it is crucial to consider computational overhead and efficiency in the
context of collating the echo data and catching messages. This process involves
combining two large data sources and performing computations on them si-
multaneously. Therefore, it is essential to address parallelization and effective
resource usage complexities. Efficient utilization of computational resources
and parallelization techniques should be considered to ensure optimal process-
ing performance and minimize computational overhead. This consideration
will contribute to the overall efficiency and effectiveness of the system.

4.1.4 Model Integration

To effectively utilise the echo examples, supporting their usage in both the
training and inference phases is essential. Before training, a dataset must be
generated by processing the raw files. This dataset will serve as the input
for training the deep learning model. The model integration should ensure
seamless integration of the processed echo examples into the training pipeline,
enabling efficient and effective model training. Additionally, the trained model
should be capable of performing inference tasks, providing predictions and
insights based on new input data.

4.1.5 Data loader

Efficient data loading is a crucial requirement to facilitate the smooth process-
ing of batches for both training and inference tasks. The data loader component
should be designed to load and process the data in batches efficiently. This in-
volves considerations such as parallelization, effective memory management,
and data preprocessing techniques to ensure that the input data is readily
available for training or inference.
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4.2 Proposed Design

The proposed design of the pipeline involves dividing the requirements into
different layers. The thesis primarily focuses on the processing and the model
layer.

4.2.1 Processing Layer

To fulfil the requirements of echo processing, stabilization and annotation, we
propose the processing layer with three components. The Processor, Fetcher,
and Collator.

Firstly, the Processor component is responsible for reading .raw files and pro-
cessing them to a more interpretable and computational format. The echo data,
or 𝑠𝑣, is combined with time and depth and parsed NMEA data.

The second component, Fetcher, is responsible as an adapter between the
data source containing the catch data and the aforementioned components,
Processor and Collator. The Fetcher reads and stores DCAmessages and selects
the relevant tuples that need to fulfil the collation task.

The primary requirement of the Collator component is to collate two data
sources based on positional attributes. It creates a species distribution mapped
to an echo transect, providing information about its biota based on catch
data.

To train a model, a dataset needs to be created. The pipeline supports process-
ing a set of echo data to generate this dataset. The dataset is generated by the
three components and stored on disk as a representative echo example per file
and a serializable object containing annotation-specific data.

An adapter is created for interchangeable data streams. Upon creation of a
dataset, all pre-processed features are stored on disk. Inference on the pipeline
is made by pre-processing (unknown) data and sent to the classification layer
with data streams??.
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4.3 Proposed model architecture and
requirements

This section outlines the proposed design of the model architecture and its
training process. The model architecture will be designed specifically for the
task of modelling fish abundance using hydroacoustic data. It should be capable
of processing the processed echo data as input and predicting an estimate of
fish abundance based on the collated catch data annotations.

Relatedwork has describedmodels adapted to the echo domain. With CRIMACs
models of semi-supervised learning, both encoder-decoder networks, and VGG-
16, showed significance in classifying sandeel by creating pseudo-labels with
clustering. Other works; include EchoBERT, which employs NLP-inspired BERT,
where a spatiotemporal assumption is made. As the novelty in the thesis does
not rely on the model architecture, details about the architecture are referred
to in the respecting works [1, 2, 9]. The thesis employed the EchoBERT model
as its base architecture and extended it for our requirements.

The first requirement for the model was to be able to do both regression task and
classification tasks. As the annotation method is one of the main contributions,
we wanted to model the data for both tasks.

Secondly, to facilitate the number of species in the model, the model’s output
layer needs to change according to the label set or manually selected variably.
The label set is not a static amount of the number of species. The collation
criterion is based on thresholds, potentially includingmore catchmessages with
unique species. This required the model to interchange its output dimension
based on the input training data.

Finally, the loss function needs to be able to model temporal proximity in time.
If the echo data date is closer in time, the backpropagation should represent
that. The biota in a location is based on many parameters, one of them being
time. By considering the temporal proximity in the loss function, the model can
learn to capture the changes in fish abundance over time, potentially leading
to better predictions.

4.3.1 Objective function

The proposedmodelwill have interchangeable criteria for the objective function
to incorporate the ability to perform both regression and classification tasks.
This means that during training, the model can be configured to optimize for
regression (predicting continuous fish abundance values) or classification (pre-



26 chapter 4 design

dicting discrete labels for fish abundance ranges or species presence/absence).
The loss functions used for the tasks are described in section 4.3.2.

Additionally, the output layer of the model will be designed to variably change
based on the label set or manually selected species. This flexibility allows the
model to adapt to different scenarios where the number of target fish species
can vary. The model will dynamically adjust its output dimension based on the
input training data, ensuring compatibility with different label sets.

4.3.2 Loss function with temporal proximity weighting

To implement the requirement of weighing loss functions based on catch date,
or when the transect time 𝑡𝑡𝑟 is sampled, labels found from the data processing
layer will contain times 𝑡𝐿 = 𝑡1, 𝑡2, ..., 𝑡𝑛. Thus, the model must allow times in
𝑡𝐿 where 𝑡𝑡𝑟 ≈ 𝑡𝐿 is more relevant to the loss output. Past and future labels wrt.
Transect time must be weighed as lower-grade information compared to the
present labels.

As the task is to predict an output or a vector of outputs, mean squared error
is employed. MSE is defined as eq. 4.1

𝑀𝑆𝐸 =
1
𝑚

∑︁
𝑖

(𝑦 − 𝑦)2𝑖 =
1
𝑚
| |𝑦 − 𝑦 | |22 (4.1)

where 𝑦 is the predicted output, and 𝑦 is the ground truth label. The afore-
mentioned loss function is used for regression tasks. To make it possible for the
model to classify species instead, binary cross-entropy, defined as

𝐵𝐶𝐸 = −(𝑦 log(𝑝) + (1 − 𝑦) log(1 − 𝑝)) (4.2)

where 𝑝 is the predicted probability, and 𝑦 is the true label (0 or 1).

Lower grade information is calculated by finding time differences between 𝑡𝑡𝑟
and 𝑡𝐿 and fitting the information scores along a bell curve. If the time proximity
is close, the backpropagation should take advantage of the loss of the node.
As shown in Figure 4.2, dates are aligned along a Gaussian distribution. The
x-axis represents days, and the y-axis represents the output value for a weight
𝑤 .
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Figure 4.2: Graphic of time deltas fitted along a bell curve for illustration

Overall, the proposed model architecture will build upon the strengths of the
EchoBERT model while introducing modifications to address the specific re-
quirements of modelling fish abundance using hydroacoustic data. By incor-
porating interchangeable criteria, flexible output layers, and accounting for
temporal proximity in the loss function, the model aims to provide accurate
predictions and adaptability to varying scenarios and label sets.
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Implementation
In this chapter, we present the implementation of the pipeline. Because each
component’s specific requirements and each layer in the pipeline must be pre-
sented individually, we will propose methods explaining how the design is
implemented in our thesis and cover implementation-specific details.

5.1 Programming language

To enable an iterative approach and fast evaluation of ideas, Python[21] was
chosen as the language for all components. The language enables the usage
of widely used packages in the domain for the thesis, xarray[17], which en-
ables for processing of labelled data arrays in parallel. Moreover, PyTorch is
a high-performance deep-learning library widely used. Both related works
models were developed in this framework, using them in the thesis became
natural.

Lastly, to facilitate the requirement of fast processing of echo and catch data,
Numba[22] was used to create Embarassingly parallel methods.

29
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5.2 Data processing layer

5.2.1 Echo data processing

The echo-sounders .raw files are processed with pyEcholab[23], an open-
source package in Python enabling the processing of Simrad/Kongsberg data
files. With pyEcholab, you can read the .raw files from the echo-sounder and
extract the required information. One of the important calculations performed
during the reading process is the estimation of the volumetric backscatter co-
efficient, denoted as 𝑠𝑣.

After calculating the 𝑠𝑣 values, the data is stored in an xarray dataset, a pow-
erful data structure in Python for handling multi-dimensional arrays with la-
belled axes. Along with the 𝑠𝑣 values, the dataset also incorporates auxiliary
information obtained from the transect. This auxiliary information includes
parameters derived from the parsed NMEA data, such as latitude, longitude,
heave (vertical motion of the vessel), pitch (rotation around the lateral axis
of the vessel), roll (rotation around the longitudinal axis of the vessel), and
transducer angles.

Organizing the echo data and auxiliary information into an xarray dataset
makes it easier to manage and analyze the data in a structured manner. The
dataset allows for efficient retrieval and processing of the hydroacoustic data,
enabling subsequent collation with the catch data as described earlier.

5.2.2 Echo data stabilization

We designed methods of filtering and seabed cropping from the requirements
to reduce noise and enhance the data quality. One of the common sources of
noise in the echogram is random fluctuations, as depicted in Figure ??.

Noise filtering

To mitigate this noise, we employed spatial filters. A Spatial-temporal filter
was implemented as the noise appeared sporadic and noticeable periodicity
was exhibited. Spatial-ordering filters efficiently remove random noise without
requiring computationally expensive operations such as Fourier Transforms.
This approach is beneficial for processing large quantities of data efficiently
and assists in the optimization of the performance of the processing layer.

The implementation of the spatial-ordered filter, or median filter, is shown in
1. The implementation is parallelized with Numba.
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1 @nb.njit(parallel=True)
2 def median_filter(x,size=3):
3 """
4 Median filter
5 """
6 x_new = np.zeros_like(x)
7 for i in nb.prange(x.shape[0]):
8 for j in nb.prange(x.shape[1]):
9 if i == 0 or j == 0 or i == x.shape[0] - 1 or j == x.shape[1] - 1:
10 x_new[i,j] = x[i,j]
11 continue
12 x_new[i,j] = np.median(x[i-size:i+size,j-size:j+size])
13

14 return x_new

Listing 1: Median filter

Seabed Cropping

The requirement of echo stabilization 4.1.2 also describes the need for seabed
cropping. Various image processing techniques can determine the indexes of
the seabed. Section 3.2.1 we described CRIMACs bottom detection algorithms
and the simple algorithm has been one of the methods employed in the thesis.
Sometimes, echosounder data includes .bot files which is a complementary file
containing information on the bottom ranges. These files are often included
with calibrated data and give better results than approximation methods.

Method for finding the index in the echogram where the seabed lies for the
corresponding ping is created and listed in Code listing 2. This method employs
the .bot data file.

Figure 5.1 shows the 𝑠𝑣 before and after cropping. Figure 5.2 shows 𝑠𝑣 before
and after bottom fill.
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Figure 5.1: Cropped image on seabed
(Top) Original seabed image (Bottom) cropped and flood-filled to the
seabed

Figure 5.2: Flood filled to seabed
(Top) Original seabed image, (Bottom) flood-filled to the seabed
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1 def crop_matrix_bottom(ds,crop=0):
2 """
3 Crop matrix from bottom line
4 Finds largest index, and masks out the rest
5 """
6 OFFSET = 2
7

8 if ds is None:
9 return
10

11 bottom_data = ds['bottom'].data[0]
12 range = ds['range'].data
13

14 largest_bottom_data = np.max(bottom_data)
15 index = np.argmax(range > largest_bottom_data )
16

17 x = ds
18

19 if crop:
20 x = ds.isel(range=slice(0,index + OFFSET))
21

22 for i, bottom in enumerate(bottom_data):
23 if i == bottom_data.shape[0] - 1:
24 continue
25 try:
26 biggest_index = np.argmax(x.range.data > bottom)
27 except IndexError:
28 continue
29

30 x.sv[0,i,biggest_index:] = -90
31

32 return x
33

Listing 2: Example cropping

5.2.3 Echo annotation

The echo annotationmethods are implemented using twomain components.

Firstly, the catch data is stored in a PostgreSQL instance. The fetcher component
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is responsible for streaming all the records from the database into a DataArray
from the xarray library.

Since the catch data is periodically updated with new records from the Di-
rectorate of Fisheries, the existing records are assumed to remain static. All
multi-dimensional data objects created from the database are written to disk
to enable efficient retrieval and processing of the catch data. This allows for
quick access to the catch data during processing.

After the retrieval of the catch data, the processing component performs the
collation of the echo data with the catch data object.

5.2.4 Collation criterion

Both the hydroacoustic echo data and the catch data contain positional infor-
mation. The method used for collation is indexing the catch messages based
on the distance between the hydroacoustic ping and the catch locations. This
distance calculation is accomplished using the Haversine formula.

The haversine formula is a mathematical equation for calculating the distance
between two points on the surface of a sphere. This is useful in navigation
and GIS for estimating the distance between two points by their latitude and
longitude.

𝑑 = 2𝑅 arcsin

√︂
sin2

Δ𝜙

2
+ cos𝜙1 cos𝜙2 sin2

Δ_

2
(5.1)

Equation 5.1 calculates the great-circle distance 𝑑 between two points, with 𝑅
being the Earth’s radius,𝜙1 and𝜙2 the latitudes of two points (radians),Δ𝜙 the
difference in latitudes 𝜙2 − 𝜙2 and Δ_ is the difference in longitude between
the two points. The output𝑑 (distance) unit is given in𝑚 or𝑘𝑚. This algorithm
determines the distance in a given radius of the hydro-acoustic measurements,
as provided in Figure 5.3.
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DCA

Neighboringcatch I

Neighbouring catch 

Figure 5.3: Illustration of collation of hydroacoustics ping coordinates to DCAmessage
positions
(right) illustrates in red, the positional data from the hydroacoustics and
the blue points are the neighbouring catch messages within a 1𝑘𝑚 radius
of the hydroacoustics coordinates.

In Figure 5.3, the points in blue are the neighbouring catch messages within a
1𝑘𝑚 radius of the hydroacoustics coordinates (red).

Haversine calculation

To allow for fast inference and real-time predictions on data, one of the require-
ments that the annotation method needed was to have a reasonable compute
overhead. The code listing 3 shows the implementation of eq. (5.1).
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1

2

3 @nb.njit(fastmath=True)
4 def calculate_haversine(lat_transect,lat_labels,lon_transect,lon_labels):
5 lon_transect,lat_transect = np.radians(lon_transect),np.radians(lat_transect)
6 lon_labels,lat_labels = np.radians(lon_labels),np.radians(lat_labels)
7

8 dlon = lon_labels - lon_transect
9 dlat = lat_labels - lat_transect
10

11 a = np.sin(dlat/2.0)**2 + np.cos(lat_transect) * \
12 np.cos(lat_labels) * np.sin(dlon/2.0)**2
13

14 c = 2 * np.arcsin(np.sqrt(a))
15

16 return 6367 * c
17

Listing 3: Haversine computation

As the Haversine method is applied for each index 𝑖 ∈ 𝐴 where𝐴 is vectors with
latitude and longitudinal positions of the transect, denoted as 𝐴𝑙𝑎𝑡 and 𝐴𝑙𝑜𝑛 of
size 𝑁 . There is also 𝑗 ∈ 𝐵, corresponding to the positional information from
the catch reports, denoted as 𝐵𝑙𝑎𝑡 and 𝐵𝑙𝑜𝑛 of size 𝑀 . The resulting distance
matrix 𝐷, of size 𝑁,𝑀 reflects all Haversine distances, based on every index
𝑖, 𝑗 ∈ 𝐴, 𝐵.

The code listing 4 shows the implementation of this functionality. Along with
the distance matrix, indices are calculated based on a kilometre threshold. This
enables us to index our Dataset based on the distances within our sampling
region.
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1

2 @nb.njit(fastmath=True,parallel=True)
3 def calculate_haversine_unvectorized(lats_transect,lats_labels,\
4 lons_transect,lons_labels,threshold=10.):
5

6 lat_lon_tr = np.vstack((lats_transect,lons_transect))
7 lat_lon_labels = np.vstack((lats_labels,lons_labels))
8

9 array = np.zeros((lats_transect.shape[0],lons_labels.shape[0]))
10

11 for i in prange(array.shape[0]):
12 lat_i,lon_i = lats_transect[i],lons_transect[i]
13 for j in prange(array.shape[1]):
14 lat_j,lon_j = lats_labels[j],lons_labels[j]
15 km = calculate_haversine(lat_i,lat_j,lon_i,lon_j)
16

17 array[i][j] = km
18

19 indexes = np.argwhere(array < threshold)
20

21 return array, indexes
22

Listing 4: Distance matrix computation

The method in code listing 4 is unvectorized and uses the embarrassingly par-
allel functionality of Numba[22] to allow for significant speedup compared to
other methods we implemented.

Label selection

The labels are selected based on the kilometre threshold taken as a parameter
in code listing 4. Recall the first vector 𝐵, which is the positional information
of the annotated data. By finding the indices in vector 𝐵, it follows that the
indices represent a Message ID in the DCA. Thus, it has a round weight, date
and species code associated with it.

All message IDs in that area are also found by finding all the unique indices in
the 𝑀 dimension found from the distance matrix 𝐷. The code listing 5 is the
method for finding all unique indices in the catch data, and the code listing 6
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shows the rest of the grouping and label collation.

The found labels represent the weight of each species found in the transect. As
seen from the example output label in listing 7, the species codes [GUG ,MAC
,SAN , WHG, HER and HAD] is found, with corresponding summed weight and
dates.

1 def convert_to_unique_indexes(indices,axis=0): # from utils.py
2 """
3 Convert indices to unique indexes
4 @input : np.array(2,X)
5 @returns : indices for specified datasource
6 """
7 return np.unique(indices[:,axis])
8

9

10 class Collator: # snippet of collator class in collator.py
11 ...
12

13 def collate(self,ds,fname,plot=False):
14

15 labels_lat, labels_lon = np.array(self.labels['Startposisjon bredde'].data),\
16 np.array(self.labels['Startposisjon lengde'].data)
17

18 lat_transect = np.array(ds.lat.data[0])
19 lon_transect = np.array(ds.lon.data[0])
20

21 ...
22

23 distance_matrix,indices = calculate_haversine_unvectorized(lat_transect,labels_lat,\
24 lon_transect,labels_lon,threshold=DISTANCE_KM_THRESHOLD)
25

26 indices = convert_to_unique_indexes(indices,axis=1)
27

Listing 5: Unique indices
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2

3 selected_labels = self.labels.isel(dim_0=indices)
4

5 selected_labels = selected_labels.dropna(dim='dim_0',how='any')
6

7 try:
8 selected_labels_grouped = selected_labels.groupby('Melding ID')
9 except Exception:
10 return {}
11

12 groups = selected_labels_grouped.groups
13

14 dict = {}
15

16 for group in groups:
17 group_labels = selected_labels_grouped[group]
18 for group_art_key, group_art_ds in list(group_labels.groupby("Art FAO (kode)")):
19 if group_art_key not in dict:
20 dict[group_art_key] = {'weight':[],'date':[]}
21

22 largest_version = group_art_ds.isel(dim_0=-1)
23

24 dict[group_art_key]['weight'].append(largest_version["Rundvekt"].data)
25 dict[group_art_key]['date'].append(str(largest_version["Startdato"].data))
26

27 for art in dict:
28 dict[art]['weight'] = np.sum(dict[art]['weight'])
29 dict[art]["date"] = list(np.unique(dict[art]["date"]))
30

31 return dict
32

33

34

35 -

Listing 6: Index grouping and storage



40 chapter 5 implementation

1 {
2 "GUG": {
3 "weight": 312.0,
4 "date": [
5 "03.05.2021",
6 "04.05.2021",
7 "06.05.2018",
8 "11.05.2018"
9 ]
10 },
11 "MAC": {
12 "weight": 7635.0,
13 "date": [
14 "03.05.2021",
15 "04.05.2021",
16 "06.05.2018",
17 "11.05.2018",
18 "13.05.2018",
19 "18.05.2018"
20 ]
21 },
22 "SAN": {
23 "weight": 1098000.0,
24 "date": [
25 "03.05.2021",
26 "04.05.2021",
27 "06.05.2018",
28 "11.05.2018",
29 "12.05.2018",
30 "13.05.2018",
31 "16.05.2018",
32 "18.05.2018"
33 ]
34 },
35 "WHG": {
36 "weight": 400.0,
37 "date": [
38 "03.05.2021",
39 "06.05.2018",
40 "11.05.2018"
41 ]
42 },
43 "HER": {
44 "weight": 5200.0,
45 "date": [
46 "13.05.2018",
47 "18.05.2018"
48 ]
49 },
50

51 }
52

Listing 7: JSON labelling
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5.3 Model layer

This section describes the proposed model’s implementation and the require-
ments devised in section 4.3.

5.3.1 Model integration and Data loading

The dataset is created using the data processing layer, and store the response ex-
amples on disk. Each example is stored in a unified folder, where each example
is a .zarr formated multi-dimensional xarray datasets. We processed examples
in stages, meaning the processing of 𝑠𝑣 and auxiliary data is processed, stored,
and afterwards processed in the collator.

Pytorch comes with a dataloadermodule, allowing developers to create dataset
classes which fetch examples and annotations. This component is a paralleliz-
able task. To be able to use this component, we required storage of all echo
examples in a different data structure and file format than previously created.
Thus, all 𝑠𝑣 data was converted into numpy arrays and stored on disk in numpy
format.

The last requirement for integrating the data source into the model was that
the 𝑠𝑣 data was segmented into patches of equally large shapes. This was
done by slicing each echo example into patches. Both the spatial and temporal
resolution of the echo data was segmented. By splitting an example of size
𝑁𝑥𝑀 in 𝐾 parts, returns an array of 𝐾𝑥𝑁𝑥 (𝑀/𝑠) echo examples, where 𝑠 is
the size divided to. The code can be seen in listing 8. If the shape of the example
is not divisible by 𝑠, the last array split returns a non-satisfactory shape and is
discarded. The corresponding segments are stored on disk and are ready for
the data loader.
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1 def segment_image(sv,segment_size=512):
2 """
3 Create patches of size segment_size from sv
4 """
5

6 return np.array_split(sv,sv.shape[1]// segment_size,axis=1)
7

8

9 def segment_dir(dir):
10 import os
11

12 files = os.listdir(dir)
13

14 for file in files:
15 sv = segment_image(load_npy(dir+file))
16 for i in range(len(sv)-1):
17 discard_last = sv[i].shape[1] < 512
18 if discard_last:
19 continue
20 segment = sv2[i][:,:512,:]

Listing 8: segmentation of echo examples

Echo data loader

The model’s data loader is created using PyTorch’s DataLoader component.
The programmer defines a class describing how the examples are loaded, along
with the annotations. The DataLoader is responsible for efficiently loading data
from disk and applying any necessary processing, such as transformations and
augmentation, to both the input data and the corresponding labels.

Each example retrieved by the data loader is transformed. We will first an-
nounce the methods applied to each echo example and, afterwards, the trans-
formations of the targets.

The echo data is normalized and arranged. The normalization step is done as
presented in Code listing 11. The code scales the input image by subtracting
the mean and dividing it by the standard deviation and max value. The ar-
rangement of the data is implemented by the related work EchoBERT[9] even
though the paper implemented the method for a continuous echo of the cages,
the same principle is implemented in this thesis.
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Each echo example has corresponding target labels. We processed four differ-
ent labels, each evaluated by a different threshold on the collation criterion.
We employ the threshold as a hyperparameter in the model. The correspond-
ing label for the selected threshold is read and transformed into the desired
label.

The labels are originally represented as presented in listing 7. We transform
the labels into a stochastic distribution for the regression task or a multi-hot
encoded array for classification.

The Stochastic distribution is calculated by

𝑦𝑖 =
𝑦𝑖

𝑠𝑢𝑚(𝑦) (5.2)

where 𝑦 is the target vector and 𝑖 is an target class. means that each target
class is divided by the sum of the target vector.

The shape of the label vector is dependent on the desired task. We proposed
a method for either applying a vector representing all species in the label set
or specification of desired species as output vector. For example, the labels can
represent one species, sand eel ("SAN"), corresponding to a binary classification
or a regression task with one output. This is implemented as shown in code
listing 9.
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1 def transform_labels_json(annotation : dict,truth:str,selection : list = None,onehot : int = 1):
2 '''
3 Param:
4 Annotation: the examples label.
5 truth: representing the date echo data is recorded.
6 selection: list of FAO codes that should be learnt
7 onehot: bool to determine the representation
8 '''
9

10 sz = len(selection)
11

12 arr = np.zeros(sz)
13

14 date_arr = []
15

16 for key in selection:
17 label = annotation.get(key,None)
18 if label :
19 arr[selection.index(key)] = 1 if onehot else label['weight']
20 del annotation[key]
21 date_arr.append(create_delta_time(truth, label['date']))
22 else: # if no date, still insert empty list to ascertain right shape.
23 date_arr.append([]) # no date for this label
24

25 if not onehot and np.sum(arr) > 0:
26 arr = np.clip(arr,1e-3,np.max(arr))
27 arr = arr / np.sum(arr)
28 arr = np.clip(arr,1e-3,1 - 1e-3)
29

30 return arr, date_arr,selection
31

Listing 9: Transformation method for labels

As said, the number of output neurons depends on the use case. We have im-
plemented methods for the multi-vector case that find all unique species codes
for a corresponding threshold. This gives the model a label set corresponding
to all existing species codes for the threshold. The implementation is enclosed
in code listing 10.
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1 def find_max_number_species_code(dir:str = 'ds/labels_crimac_2021/', T="_5"):
2 max_species = 0
3 existing_label = np.zeros(len(os.listdir(dir)))
4 selection = set([])
5

6 for i,file in enumerate(os.listdir(dir)):
7 if file.endswith(T+".json"):
8 ds = load_json(dir+file)
9 max_species = max(max_species,len(ds.keys()))
10

11 if len(ds.keys()) > 0:
12 existing_label[i] = 1
13 keys = set([*ds])
14 selection = selection.union(keys)
15

16 selection = list(selection)
17 selection.sort()
18

19 return len(selection),selection

Listing 10: Find unique species in label set

The last objective of the target transformation is to create the data objects for
the temporal proximity weights. The implementation is discussed in section
5.3.3.

1 def normalize_sv(sv):
2 mean = torch.mean(sv)
3 std = torch.std(sv)
4

5 sv = (sv- mean)/std
6

7 sv = sv / torch.max(sv)
8 return sv

Listing 11: Normalize echo data

A synthetic data class, originally from EchoBERT, is modified for the purpose
of this thesis. This class is used for the pre-training tasks described in related
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work, section 3.1. The modifications done compared to the original data loader
are the method of retrieving examples from disk, the dimensionality of the
data and the transformations as presented previously.

5.3.2 Model implementation

The model layer was implemented using PyTorch and PyTorch Lightning[24].
PyTorch Lightning is a wrapper for PyTorch enabling researchers to simplify
the training and implementation of deep learning models. With abstractions
and high-level interfaces, the researchers and practitioners can focus on the
model’s logic rather than boilerplate code.

The implementation was created by defining a Lightning class and its required
methods. The model is, as said, a modified version of EchoBERT.

The Lightning module requires you to implement these methods for a working
framework:

• Forward: Feedforward logic of model

• Configure optimizers: Configures the optimizers used in the model

• Step functions: Step functions for train, validation test step.

The first method, Forward, is the logic of the output neurons. Inspired by
EchoBERT, the logic is divided between the pretraining and finetuning tasks.
The pretraining task is retrieved from the implementation of EchoBERT1. But
the classification task is adapted for the thesis use case. See code listing 12 of
the forward implementation for reference. See Appendix ?? for the full model
implementation.

The secondmethod configures the optimizers used. As themodel architecture is
based on EchoBERT[9], we chose to employ the same optimizers, AdamW[25]
and OneCycleLR[26].

The step functions implemented for training, validation and test steps use the
forward method mentioned earlier.

1. Repository link: https://github.com/haakom/EchoBERT

https://github.com/haakom/EchoBERT
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1 class LitModel(pl.LightningModule):
2

3 # ....
4 def forward(self, batch,batch_idx,forward_type,training=True):
5 src = batch["enc"]
6 dec = batch["dec"]
7

8 if self.classification:
9 if self.temporal:
10 weights = batch["date"]
11 weights = calculate_loss_resampling_weight(weights,sig=self.sig)
12 weights = torch.tensor(weights)
13 else:
14 weights = torch.ones_like(batch["target"])
15

16 weights = weights.to(self.device)
17

18 preds = self.model(src.float(),dec.float(),None,None)
19 if self.criterion == "mse":
20 loss = F.mse_loss(preds,targets,reduction="none")
21 loss = (loss*weights).sum() / loss.sum()
22

23 r2 = r2_score(targets.detach().cpu(),preds.detach().cpu())
24 mae = self.mae(preds,targets).to(self.device)
25 return loss,[],_,preds
26 else:
27 loss = F.binary_cross_entropy_with_logits(preds,targets,weight=weights if self.temporal else None)
28

29 mcc = self.mcc(preds,targets).to(self.device)
30

31 acc = self.accuracy(preds,targets)
32 precision = self.precision(preds,targets)
33 recall = self.recall(preds,targets)
34

35 return loss,[],acc,preds

Listing 12: PyTorch Lightning Forward pass method
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5.3.3 Temporal-proximity in truth labels

The delta date is calculated by taking a truth date 𝑡𝑡 and subtracting along all
dates in the label dates 𝑡𝑙 = 𝑡1, 𝑡2, ..., 𝑡𝑛. The output lists delta times expressing
the days since the species was reported. The implementation of the method is
shown in Code listing 13

1

2 def to_utc(dt):
3 return dt.astimezone(datetime.timezone.utc)
4

5 def from_string(string : str,fmt="%d.%m.%Y"):
6 return datetime.datetime.strptime(string,fmt)
7

8 def create_delta_time(truth :str, obj):
9 truth = from_string(truth,fmt="%Y-%m-%dT%H")
10 return [(to_utc(from_string(x)) - to_utc(truth)).days for x in obj]

Listing 13: date time conversion

In each step of the model’s loop, the weights are created. Temporal proximity
is implemented for both Mean Squared Error (MSE) and Binary Cross-Entropy
(BCE) by calculating the sum of weights from each species’ history. The imple-
mentation of this method can be seen in the code snippet provided in Listing 14.
These calculated weights are used in conjunction with the mean squared error
or binary cross-entropy to incorporate temporal information into the train-
ing.

In the training process, each batch contains a target vector and correspond-
ing dates for the vector. If the output vector size is N = 3, there will be a
corresponding list of dates for each of the three species.

The method in Listing 14 calculates the sum of weights based on temporal prox-
imity for each target species. This method incorporates temporal information
by assigning weights to the elements of the target vector.

Figure 4.2, mentioned in the Design, visualizes how the weights look using
a bell curve representation. This visualization provides an understanding of
the distribution of weights based on the temporal proximity of the target val-
ues.
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1 def gaussian_function(x, mu,sig):
2 return np.exp(-np.power(x - mu, 2.) / (2 * np.power(sig, 2.)))
3

4 def calculate_loss_resampling_weight(dates : list = [],mu=0,sig=2000):
5

6 weights = np.ones((len(dates),len(dates[0])))
7

8 for i,target in enumerate(dates):
9 sum_w = [gaussian_function(np.array(target[i]),mu,sig) \
10 for i in range(len(target))]
11

12 for j, l in enumerate(sum_w):
13 if len(l) == 0:
14 sum_w[j] = 1 # Dates should always exist.
15 else:
16 sum_w[j] = sum(l)/len(l)
17 weights[i] = np.array(sum_w)
18

19 return weights

Listing 14: temporal proximity gaussian fit
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Evaluation
This thesis presents a novel method of labelling echosounder data. The echo
data labels are composed of every catch message within a perimeter. To inves-
tigate whether the catch messages make a good proxy for the abundance in an
echo image, we compare it with an already-annotated data set.

Furthermore, the effectiveness of the labelling is investigated. The threshold
on the haversine distance can be increased or decreased. A larger radius can
potentially give more information about fish abundance in an area. On the
other hand, a smaller radius will give a more pinpointed evaluation.

6.1 Sandeel survey

As presented in related works in Section 3.2.1, CRIMAC proposed multiple
classificationmodels for the sandeel survey conducted byHI. As HI have an open
data policy, we requested the dataset from Kongsberg Maritime. The dataset
[1, 2], contains .bot files containing seabed estimates from the echosounder.
This allowed more detailed information in the seabed indexes. All data in each
ping below the seabed index is masked to a specific intensity.

The data is highly-calibrated multi-modal echosounder data. For this thesis, we
delimit ourselves to one of the frequencies 128 kHZ, as gridding and aligning
of multiple back-scatters gives a higher logic complexity.

51
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Threshold Number of distinct species
1 73
5 98
10 110
20 130

Table 6.1: Number of distinct species in each threshold label set

6.2 Benchmark setup

The hardware specifications listed in Table ??, is the compute node used through-
out the thesis.

Hardware information
CPU Genuine Intel(R) CPU @ 2.00GHz x 72 ; 2 threads per core
RAM 8 * 32 GB (256 GB) Samsung 41E8436D
GPU 1 x GeForce RTX 2070 , 1 x GeForce RTX 2060
OS Ubuntu 20.04 (Focal Fossa)

6.3 Experimental environment

This section describes the test environment for the experiments done in this the-
sis. We evaluate the annotation method both through analysis of the resulting
labels, as well as through model training.

Each echo example is stabilized through a median filter and seabed segmenting.
Seabed segmenting is done using the mentioned .bot file and segmenting all
intensities below the seabed to a low intensity of −90 dB.

Furthermore, the examples are cropped to a satisfactory size with regard to
the input dimensions of the model. Each patch is of size 512𝑥526, meaning a
patch represents 512 pings, and each ping is 526.

The output heads in the regression models and multi-output heads depend on
the threshold’s unique species set. Table 6.1 shows the different output heads
used on the different thresholds.
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6.3.1 Model parameters

We ran all model experiments with a learning rate of 0.001 for 40 epochs. For
temporal experiments, we used ` = 0 and 𝜎 = 500 for the Gaussian weights.
The threshold for the collation criterion was 1,5,10,20.

Three types of models, Binary, multi, and regression was evaluated.

• Binary Model: The model outputted a single value representing the pres-
ence or absence of lesser sand eels.

• Multi Model: The model outputted all species in the label set for the
various thresholds tested.

• Regression Model: The model performed regression analysis, predicting
the round weight distribution of lesser sand eels and potentially other
species.

For every run, the dataset was shuffled and divided into a data split, where the
training dataset was 0.8, and the validation and test set was 0.2.
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6.4 Annotation experiments

In the initial exploration of the annotation data, an evaluation was done with
regard to the catch data. This evaluation aims to understand the labels and
obtain information about the label’s features. The data for these experiments
are both from the labels and from statistical information found during the
collation of the labels. For each echo example and each threshold, statistical
information is stored, such as the number of DCA messages (label size) collated
and the time spent. Moreover, each label contains a round weight of species
and the corresponding dates.

6.4.1 Label size

One aspect examined was the number of catch messages found within the
thresholds. The experiments had thresholds set at 𝑇 = 1, 5, 10, 20. The impact
of these thresholds on the collation criterion was investigated.

Figure 6.1 is a graph depicting the number of catch messages for each threshold.
This visualization provides insights into how the choice of threshold affects the
magnitude of each label’s size per echo example.
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Figure 6.1: Magnitude of catch messages for each threshold 𝑇 , compared to number
of echo examples
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6.4.2 Unique species in labels

This experiment concerns itself with the number of unique species found in
each label set for the different thresholds mentioned in section 6.4.1. The goal
is to understand how the choice of threshold impacts the diversity of species
captured by the labels.

The number of unique species present in each label set was determined by evalu-
ating the annotation data using the specified thresholds (𝑇 = 1, 5, 10, 20). This
analysis provides insights into the variety and distribution of species captured
at different threshold levels.
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Figure 6.2: Number of different species for each threshold 𝑇

6.4.3 Distribution of temporal proximity in data

We examined the distribution of temporal proximity in the data to explore
the potential of the weighted loss function. This analysis involved mapping all
collated labels to their corresponding potential truth candidates based on date
(The date of the echo example).

The resulting distributions were visualized using a histogram with respect to
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threshold 𝑇 . Each spike in the histogram represents a periodical increase in
the catch. The spikes are roughly a year apart in days, indicating a recurring
pattern in the catch data.

Figure 6.3 displays the histogram depicting the number of species for each
threshold value 𝑇 . This visualization provides insights into the distribution of
species and their temporal proximity based on the evaluation of truth dates
with label dates.
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Figure 6.3: Number of different species for each threshold 𝑇

The logic behind calculating these distributions is explained in the code listing
15.
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1

2 def retreive_temporal_distribution(image_dir:str , dir:str='ds/labels_crimac_2021'):
3 threshold_dict = {1:[],5:[],10:[],20:[] }
4 date_dict = {1:[],5:[],10:[],20:[]}
5

6 for label ,threshold in load_dir(dir):
7 for species in label:
8 threshold_dict[threshold].append((label[species]['date']))
9

10 for img_file in os.listdir(image_dir):
11 truth = img_file.split('-')[1]
12

13 for k in threshold_dict.keys():
14 for t in threshold_dict[k]:
15 for date in t:
16 date_dict[k].append((to_utc(from_string(date)) \
17 - to_utc(from_string(truth,fmt="D%Y%m%d"))).days)
18 date_dict[k].append(create_delta_time(date,t))

Listing 15: proximity distribution

6.4.4 Computation Time of Catch and Echo Collation

In this experiment, we aimed to assess the computational overhead associated
with calculating the distance matrix for catch and echo collation. The objective
was to understand the relationship between the time required for calculating
the distance matrix with different thresholds and the size of the found catch
messages within the specified region.

To visualize this comparison, a scatter plot was generated. The x-axis represents
the time spent calculating the distance matrix, while the y-axis represents
the size of the found catch messages within the region. Figure 6.4 provides a
visual representation of this comparison, allowing a better understanding of
the computational trade-off associated with different threshold values.
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Figure 6.4: Plot expressing computation time compared to the size of found DCA
messages.
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6.5 Model experiments

This section outlines the experimental methods for our proposed usage of the
annotated data in regression and classification tasks. We conducted three pri-
mary experiments, and each experiment is aligned with metrics for running
the models with and without temporal proximity weighting.

6.5.1 Regression method

In the regression experiment, the objective was to predict an output vector
representing the species distribution. To create the target vector, the round
weight of each species was summed to obtain the total weight, which was then
divided by the sum to normalize the distribution.

The evaluation of the regression models involved the use of two metrics:

Mean Squared Error (MSE) Loss: This metric calculates the average squared
difference between the predicted and actual target values in the validation
data. It provides an overall measure of the model’s performance in terms of the
accuracy of its predictions.

Mean Absolute Error (MAE): This metric compute the average absolute dif-
ference between the predicted and actual target values in the validation data.
It provides a measure of the model’s average prediction error, irrespective of
the direction of the error (Magnitude).

Figure 6.5 and 6.6 depicts the Loss (MSE) and Mean absolute error of the
model’s performance on the validation set per epoch. The data is averaged
over three runs, with a shuffled dataset and dropout of 0.1 in the model’s
layer.
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Figure 6.5: Loss and Mean Absolute Error for regression model
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Figure 6.6: Loss and Mean Absolute Error for regression model with temporal prox-
imity

6.5.2 Classification method

Two classification methods were employed and experimented with in this study.
The first experiment used a binary output vector, where the model labels rep-
resented a single species. Specifically, the focus was on classifying lesser sand
eels.

Figure 6.7 and Figure 6.8 illustrate the model’s performance on this classifica-
tion task.
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Figure 6.7: Plot without temporal weighting, showing Loss and Accuracy of binary
model
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Figure 6.8: Plot with temporal weighting, showing Loss and Accuracy of binary model

Amulti-classification approach was employed in the second experiment, which
utilized all annotations corresponding to the specific threshold value. Table 6.1
outlines the details of the output heads used in this experiment, along with the
dimensions of the target vectors for each threshold.

Figure 6.9 and 6.10 illustrate the model’s performance on this classification
task. The Loss, Binary cross-entropy, and Accuracy were evaluated per epoch
on the validation set.
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Figure 6.9: Plot without temporal weighting, showing Loss and Accuracy of multi
model
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Figure 6.10: Plot with temporal weighting, showing Loss and Accuracy of multi model
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Discussion
7.1 Preprocessing

Stabilization and removal of unwanted features were one of the requirements
of the design. This was done by utilizing the .bot files from the sand eel survey
dataset. The testing environment did not utilise the functionality of cropping
the image based on the bottom indexes but segmented all features below the
seabed to an intensity value of −90 dB. By cropping the seabed as presented
in figure 5.1, the datasets patches would hold more relevant information yet
decrease the size of the dataset.

The sand eel survey data is already calibrated, so the backscatter exhibits a
high signal-to-noise ratio. Consequently, noise is not a major concern in this
particular case. Therefore, the need for noise filtering during training is minimal.
However, noise filtering can become more important in-situ operations where
echosounders are not optimally calibrated.

The preprocessing of the .raw files utilized xarray Datasets as the data struc-
ture, offering convenient indexing capabilities for dimensions and variables,
including auxiliary information.

Moreover, adopting Dask, a xarrays parallelization framework, allows for out-of-
core computations, yielding faster reads and writes for the files than traditional
file formats. [27, 17].
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7.2 Exploring the annotation

This section will first give an analysis of the experiments done. Then move on
to discuss the implementation itself.

7.2.1 Label analysis

The experiments done regarding the annotation method are described in sec-
tion 6.4. The graphs give information about the annotation method.

Firstly, the plot depicted in Figure 6.1 illustrates each annotation’s varying sizes
(measured by the number of catch messages). The visualization displays a scale
factor that corresponds to the set threshold. For instance, a threshold of𝑇 = 20
is twice as large as 𝑇 = 10. This scaling relationship can be observed among
the other thresholds as well.

Secondly, evaluating the number of species found with regard to the threshold
radius is another important experiment to conduct. Figure 6.2 shows the dis-
tinct classes (species) found. A remark to present is the thresholds 𝑇 = 1 lack
of finding catch messages for some labels.

Figure 6.3 visualises the temporal proximity for each example in the echo data.
The season of fishing activity can be seen from the yearly period spikes. This
suggests that the found labels are likely to be clustered in time, indicating a
potential bias in the data.

The temporal clustering of labels within specific periods, such as fishing seasons,
can introduce bias in the dataset. This bias may affect the generalizability and
representativeness of the model’s performance.

Lastly, we investigate the compute time of the parallelized numba distance
matrix calculation. A scatter plot shows the relationship between compute
time and the number of labels found. Most of the processing times and sizes lie
in the same quadrant of the plot, but outliers exist. With this, we concluded that
it was not the amount of catch messages found that was the compute expensive
part of the collation.

7.2.2 Label processing

The processing of labels was implemented by collating echosounder data with
positional attributes of DCA messages. The collation was done by creating a
distance matrix which was threshold and indexed back to the xarray dataset
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created in the preprocessing.

As we utilized numba as our parallelization method, the parallelization meth-
ods offered by xarray became redundant. Although xarray lazy evaluation and
parallelizability could potentially provide benefits, the implementation over-
head compared to numba made a compelling argument. The JIT compiler’s
embarrassingly parallel functionality is something not to take for granted. An
experiment evaluating the two frameworks’ speed compared to each other
would be interesting.

As the distance matrix calculation filled up the benchmarks cores, paralleli-
sation made some echo examples unsolvable. An assumption made for the
collator is that if the shape of the echo ping is greater than 6000, the example
will be skipped in the calculation. This was because the benchmark setup, with
72 cores and 256 GB memory, started swapping memory access, leading to a
full halt in the process. We also concluded that a watchdog timer was neces-
sary to avoid hanging on the process. Improvements to this will be discussed
in future work.

7.3 Using the annotation

7.3.1 Model dataloader

PyTorch data loaders were utilised while implementing the echo and annota-
tion examples. As mentioned in Section 5.3.1, the data loading process was
implemented using a PyTorch data loader. This framework offers the advan-
tage of parallelizing batch retrieval from disk, allowing multiple workers to be
assigned to load batch files simultaneously.

However, there was an issue with the data loader’s compatibility with another
parallelizable method. Specifically, the .zarr files generated by the preprocess-
ing components were loaded lazily from the disk, meaning that they were
only fetched when the data was evaluated (when printed). Unfortunately, the
data loader did not cooperate seamlessly with this parallelization approach.
As a result, the echo examples were converted to numpy arrays and stored as
associated files to ensure proper functioning.

7.3.2 Model analysis

During the fine-tuning task, validation data was fed into the model after each
epoch, and metrics were calculated. We had two primary model types: regres-
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sion and classification.

Regression model

The regression task used percentages, as presented in 5.2, as targets. Figure
6.5 shows the metrics without temporal proximity. The aforementioned has
an MSE circulating around 0 and an increase in MAE after each epoch. The
model’s Loss function is spiked, and no patterns between the thresholds can be
seen. The MAE can be seen as more robust than the MSE, as the model shows
far fewer spikes in difference in magnitude.

As the target class lies between 0 and 1, the model regresses fast to this interval,
and after the first epoch, all model lies under 1. Whether this is, a method of
modeling the catch data remains unanswered. But by the metrics, it can be
seen as a possible solution.

The Regressionmodel with temporal proximity, illustrated in figure 6.6, shows
the thresholds loss values, where 𝑇 = 1 has the highest loss, while the 𝑇 = 20
has the lowest. This is because the amount of DCA messages found for 𝑇 =

20 is much higher than 𝑇 = 1 as seen from the temporal experiment in Fig.
6.3. Consequently, the weights have thus a greater scaling factor for lower
thresholds.

Classification model

Both classification tasks have a loss (Binary cross-entropy) and Accuracy as
primary metrics. The first task, Binary illustrated in Figure 6.7, shows the loss
and accuracy for each threshold. The lowest threshold, 𝑇 = 1 kilometers also
has the lowest loss response and the highest accuracy. This shows that it may
be beneficial with a fine-granularity in the annotated labels. This is also shown
by𝑇 = 20, where the coarse-granularity labels have the highest loss and lowest
accuracy.

The Multi classifiers Figure 6.9 illustrates the same behavior as for the binary
classification task. However, the model is much more robust to the outliers. The
accuracy in the multi-task is higher; 𝑇 = 1 is 94% accurate, and the others lie
over 85%. The reason for the high accuracy in the task can be reasoned by the
choice of loss function. The BCE is used as objective function, and the model
outputs whether the selected species exists in the echo data.

Finally, Figures 6.8 and 6.10 depict the performance of the models where the
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loss is scaled by temporal proximity. These weights aim to adjust the difference
between predictions and targets based on the dates of the targets. The loss
values in the temporal models can look as though they have been normalized or
averaged over, but in reality, it is the cause of the down-scaling by the temporal
weights.

TheMulti-head classification model, illustrated in figure6.10, exhibits a distinc-
tion between the weighted and non-weighted versions. The temporal model’s
loss demonstrates a low validation loss, with𝑇 = 1 being the lowest and𝑇 = 20
the highest.

In most cases, the model achieves an accuracy of over 50% in all classification
tasks. However, this may not accurately assess the model’s performance. For
instance, consider a scenario where the target vector consists of 100 classes,
and the objective is to predict their presence. The model classifies all classes
as not present, whereas in reality, 25 of the classes are actually present. This
results in 75 true negatives and 25 false positives, leading to an accuracy of
75%.

Therefore, alternative metrics can offer a better evaluation of the model.

Lastly, it is important to consider the temporal weighting implemented in the
model. Weights in loss functions are typically used as a countermeasure to
class imbalances. Temporal weighting is designed to assign different weights
to the differences between predictions and ground truth based on the temporal
proximity of the species. However, it is crucial to note that while the assumption
behind temporal weighting holds true, the loss function used in the model is
typically a mean or sum of all output neurons.

In conclusion, while the temporal weighting implemented in the model may
not work as expected for the loss function, it can still provide valuable temporal
information to guide the model’s training. Further research and analysis are
necessary to explore the potential impact and effectiveness of incorporating
temporal weighting in a model.





8
Conclusion
In this thesis, we have presented the design and implementation of a deep
learning pipeline that utilizes echo data and annotations from collated catch
messages. The design of the pipeline is based on theoretical considerations and
prior research in the field. The preprocessing and retrieval of echo data involved
reading Kongsbergs .raw files and organizing them into labeled multidimen-
sional arrays. The most computationally intensive step involved collating echo
examples and catch messages, resulting in large matrices with approximately
9 billion elements per echo example. By employing parallelization techniques
with numba, this task was completed in an average time of 34 seconds.

For the model architecture, we employed EchoBERT as a base model and
made modifications to suit our specific needs. We conducted experiments with
multiple different output heads to understand the utilization of our annota-
tions.

The annotation experiments revealed important insights into the characteris-
tics of the annotation method. The analysis of label size, the number of distinct
species found, and the temporal proximity of labels provided valuable informa-
tion about the data. We observed a scaling relationship between the label sizes
and the threshold values and noted that certain thresholds exhibited limitations
in finding catch messages.

The visualization of temporal proximity based on the echo data highlighted the
presence of yearly period spikes, indicating the seasonality of fishing activity.
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This temporal clustering of labels raised concerns that labels likely clustered
in time, introducing a potential bias in the data. Based on the experiments, it
became evident that accuracy alone might not be a sufficient metric for evaluat-
ing the classification model’s performance. The presence of imbalanced classes
can lead to misleading accuracy values.

This paper implemented our novel method, temporal proximity weighting of
loss functions. The idea was to leverage the timestamps in the annotation
to train the model based on proximity in time and proximity in the target
objective. By doing so, the idea was to lower the loss in the distant neurons
in time, while the neurons close in time gained a higher loss. Even though the
temporal weighting did not seem fit in this case, it is a sound idea giving real-
world data a dimension of uncertainty in the measurements. Further research
incorporating temporal weights in a model is needed, and we suggest some
promising directions in Section 8.1.

8.1 Future work

This section describes improvements that can be made to improve the pipeline
further. We divide the future work section as per the requirements from Section
4.1.

8.1.1 Processing layer

First of all, the volumetric backscatter coefficient found in the echo data, 𝑠𝑣,
may be stacked to multi-modal frequency echograms. In the thesis, we used
one of the frequencies captured, 128 kHz. CRIMAC’s work on preprocessing
indicates that they have stacked multiple frequencies into their CNNs in order
to capture features over multiple frequencies. They had their main frequencies
as 200kHz in their works [1, 2] because of the target strength of sandeel and
for maximization of signal-to-noise ratio. Using different or more frequencies,
the model may capture more of the sand eels features.

Furthermore, the collation criterion required us to delimit the collation to
samples below 6000 pings, with a further investigation regarding resource
starvation and memory consumption. For example, splitting the echoes into
smaller vectors may benefit the computation as not as much data must be held
in memory.

Another experiment could also be done where xarrays out of core computation
are compared to parallelizing with Numba. The out-of-core computation may
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contribute to minimizing memory starvation.

Finally, more precise patching needs to be done. As we did not crop the seabed
away, many of the patches may contain the mask value intensity of −90. First,
cropping the seabed and, afterward, segmenting the patches will contribute to
capturing more informational data.

8.1.2 Optimizing the model

Even though the model may not have performed as expected, many propo-
sitions have been constructed. With temporal proximity weighting being, to
our knowledge novel, it may have immense potential. This technique offers
a unique way of expressing uncertainty in labels. For instance, one possible
application is to incorporate it as a standalone loss function, where the target
and temporal loss are summed rather than multiplied. Alternatively, it can be
employed as a regularizer term or optimizer. The objective of the temporal
proximity mechanism was to encourage the model to assign greater impor-
tance to more recent samples during backpropagation compared to outdated
labels. An optimizer would then strive to align the gradients with the desired
objective, in this case, emphasizing learning in proximity.

Additionally, we propose two additional experiments to evaluate the model.
Firstly, we can better understand the model’s performance by utilizing the F1
score on the test set, which considers both precision and recall.

Comparing the annotated labels predicted labels, or probabilities with the
sandeel survey annotations could provide valuable insights into the model’s
performance in real-world scenarios.
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DCA messages
Table 1: DCA Table

Relevant år 2023

Meldingsår 2023

Meldingstype (kode) DCA

Meldingstype Detaljert Fangst og aktivitetsmelding

Meldingsnummer 1

Meldingsversjon 1

Sekvensnummer ;

Melding ID 2776531

Meldingstidspunkt 01.01.2023

Meldingsdato 01.01.2023

Meldingsklokkeslett 00:01

Radiokallesignal (ERS) LCUF

Fartøynavn (ERS) Prowess

Registreringsmerke (ERS) H-2-BN

Fartøynasjonalitet (kode) NOR

Fartøygruppe (kode) N

Fartøygruppe Norsk

Kvotetype (kode) 1

Kvotetype Normalt fiske
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Aktivitet (kode) STE

Aktivitet Steaming

Havn (kode) ;

Havn ;

Havn nasjonalitet ;

Starttidspunkt ;

Startdato ;

Startklokkeslett ;

Startposisjon bredde ;

Startposisjon lengde ;

Hovedområde start (kode) ;

Hovedområde start ;

Lokasjon start (kode) ;

Sone (kode) ;

Sone ;

Områdegruppering start (kode) ;

Områdegruppering start ;

Havdybde start ;

Stopptidspunkt ;

Stoppdato ;

Stoppklokkeslett ;

Varighet ;

Fangstår ;

Stopposisjon bredde ;

Stopposisjon lengde ;

Hovedområde stopp (kode) ;
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Hovedområde stopp ;

Lokasjon stopp (kode) ;

Områdegruppering stopp (kode) ;

Områdegruppering stopp ;

Havdybde stopp ;

Trekkavstand ;

Pumpet fra fartøy ;

Redskap FAO (kode) ;

Redskap FAO ;

Redskap FDIR (kode) ;

Redskap FDIR ;

Redskap - gruppe (kode) ;

Redskap - gruppe ;

Redskap - hovedgruppe (kode) ;

Redskap - hovedgruppe ;

Redskapsspesifikasjon (kode) ;

Redskapsspesifikasjon ;

Redskap maskevidde ;

Redskap problem (kode) ;

Redskap problem ;

Redskap mengde ;

Hovedart FAO (kode) ;

Hovedart FAO ;

Hovedart - FDIR (kode) ;

Art FAO (kode) ;

Art FAO ;
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Art - FDIR (kode) ;

Art - FDIR ;

Art - gruppe (kode) ;

Art - gruppe ;

Art - hovedgruppe (kode) ;

Art - hovedgruppe ;

Sildebestand (kode) ;

Sildebestand ;

Sildebestand - FDIR (kode) ;

Rundvekt ;

Individnummer ;

Kjønn (kode) ;

Kjønn ;

Lengde ;

Omkrets ;

Spekkmål A ;

Spekkmål B ;

Spekkmål C ;

Fosterlengde ;

Granatnummer ;

Fartøy ID 2015067973

Registreringsmerke H 0002BN

Radiokallesignal LCUF

Fartøynavn PROWESS

Fartøykommune (kode) 4601

Fartøykommune BERGEN
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Fartøyfylke (kode) 46

Fartøyfylke Vestland

Største lengde 60,2

Lengdegruppe (kode) 5

Lengdegruppe 28 m og over

Bruttotonnasje 1969 1612

Bruttotonnasje annen ;

Byggeår 1988

Ombyggingsår ;

Motorkraft 2250

Motorbyggeår 1988

Fartøymateriale (kode) STÖL

Bredde 11

Fartøy gjelder fra dato 01.01.2020

Fartøy gjelder til dato 31.05.2023

Fartøyidentifikasjon PROWESS - LCUF - H 0002BN

Fartøylengde 60,2
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