
Faculty of Science and Technology
Department of Computer Science

Mearka
Architecting and evaluation of a Sports Video Tagging Software Toolkit

Alexander Torkelsen
INF-3981: Master’s thesis in Computer Science, June 2023

This thesis document was typeset using the UiT Thesis LaTEX Template.
© 2023 – http://github.com/egraff/uit-thesis

http://github.com/egraff/uit-thesis

“Sometimes life is going to hit you in the head with a brick. Don’t lose faith..”
–Steve Jobs

Abstract
In the past decade, substantial advancements have been achieved in effectively
utilizing video surveillance and associated analysis technologies within the
realm of sports. This progress has been particularly noteworthy in elite sports,
where the exploitation of athletes’ digital footprints for sports analytics has
emerged as a catalytic factor, ushering in a paradigm shift in comprehending
and formulating strategic approaches to the game.

The architecture of sports video analytics systems can be broadly categorized
into (1) tagging and (2) analysis. Tagging involves annotating metadata to
specific video sequences and events, and this tagged metadata is subsequently
utilized in the causal analysis process.

Multiple enterprise solutions are available today for recording videos, and
positions and producing tagged data for the top teams. The issue is that they
are often expensive, time-delayed metadata, and the sports organizations do
not control where the data is stored or how the analytics company uses it. The
alternative to enterprise solutions is manually generating the soccer metadata,
which is time-consuming and possibly impossible if, for example, one wants to
tag every player’s position throughout a game.

This thesis presents Mearka, a distributed soccer tagging system based on cheap
common-off-the-shelf components. It allows for tagging events LIVE during a
soccer game through the Mearka-app, as well as generating player position
metadata with time offsets into a user-uploaded video through the Mearka
web-interface, automatically detected using machine learning. After detection,
it is possible to download the soccer metadata as a JSON file through the
web-interface.

The experiment results demonstrate that Mearka can complete the detection
of players’ positions from a 90 minutes soccer game within 12 hours after
detection is started, with a video resolution of 1920x1080 at 25FPS. Expanding
Mearka to only detect on every 10th frame could potentially make Mearka a
viable real-time tagging option, as it is able to detect on ≈3 frames per second,
and a turnaround of 12 hours detects on every single video frame.

Acknowledgements
I want to thank my supervisor, Dag Johansen, and co-supervisor, Pål Halvorsen,
for their unwavering support, valuable guidance, and continuous availability
throughout my thesis. Their passion for the subject matter is genuinely infec-
tious and has been a constant source of inspiration.

I also want to thank Martin Rypdal, the trainer of Hamna IL, for his incredible
inspiration, enthusiasm, and invaluable cooperation. His engaging discussions
and insight have been instrumental in shaping the development of Mearka into
what it is today.

Lastly, I want to thank Ingrid for her love and support during this final year.
Your support has been incredibly invaluable.

Thank you.

Contents
Abstract iii

Acknowledgements v

List of Figures xi

List of Tables xiii

List of Abbreviations xv

1 Introduction 1
1.1 Background and Motivation 2
1.2 Mearka Problem Definition 4
1.3 Methods . 4
1.4 Scope and Limitations . 6
1.5 Context . 7
1.6 Outline . 8

2 Background 9
2.1 Representational State Transfer (REST) 9
2.2 JavaScript Object Notation (JSON) 10
2.3 FFMPEG . 12
2.4 Machine Learning . 12

2.4.1 Supervised Learning 13
2.4.2 Unsupervised Learning 16
2.4.3 Reinforcement Learning 17
2.4.4 OpenCV . 17
2.4.5 CVlib . 17
2.4.6 YOLOv4 . 18

2.5 Related Work . 19
2.5.1 Muithu . 19
2.5.2 Bagadus . 19

2.6 Summary . 20

vii

viii contents

3 Requirement Specification 23
3.1 Functional . 23
3.2 Non-functional . 24
3.3 End user interactions . 25
3.4 Summary . 25

4 Design 29
4.1 System Overview . 29
4.2 Choosing A Camera For Development 30

4.2.1 Requirements . 30
4.2.2 Options . 31

4.3 Mearka-App . 35
4.3.1 System Design . 36
4.3.2 User Interface . 36

4.4 Mearka Web-Interface . 39
4.4.1 User Interface . 39

4.5 Backend . 43
4.5.1 REST API . 43
4.5.2 Soccer Metadata . 45
4.5.3 Mearka-app . 46
4.5.4 Mearka Web-interface 46
4.5.5 Position Detection Component Communication . . . 47

4.6 Position Detection Component 48
4.6.1 Concatinate Video 48
4.6.2 Position Detection 49
4.6.3 Position Detection Component Server 50

4.7 Summary . 51

5 Implementation 53
5.1 System overview . 53
5.2 Web . 54

5.2.1 Api calls . 55
5.3 Mearka-App . 56
5.4 Backend . 57
5.5 Position Detection Component 61

5.5.1 Concatenate video 62
5.5.2 Position detection 62

5.6 Summary . 64

6 Evaluation 67
6.1 Choosing a Camera . 67

6.1.1 Battery life . 68
6.1.2 File size . 72

6.2 Position detection . 74

contents ix

6.2.1 Test system . 74
6.2.2 Resolution speed . 75
6.2.3 Framerate Speed . 78
6.2.4 Detection Accuracy 79

6.3 Metadata Size . 84
6.4 Speedup . 86
6.5 Summary . 87

7 Discussion 89
7.1 Mearka-app . 89
7.2 Mearka Web-interface . 91
7.3 Backend . 93
7.4 Position Detection Component 95

8 Conclusion and Future Work 97
8.1 Concluding Remarks . 97
8.2 Summary . 100
8.3 Future Work . 101

8.3.1 Streaming . 101
8.3.2 Tracking . 101
8.3.3 Extend Tagging Option 102
8.3.4 Translate pixel-positions to real world positions . . . 102
8.3.5 Video queue . 103
8.3.6 Possible Real-Time 104

A Appendix 113
A.1 Progressiv versus interlaced scan modes 114

List of Figures
2.1 Example JSON . 11
2.2 For-loop that prints the event type 12
2.3 Example machine learning model with steps and neurons . . 14

3.1 Example position detection x,y at time t. 26
3.2 Example of positions at time t. 27

4.1 Mearka data and communication illustration. 30
4.2 App flowchart . 37
4.3 Mearka-app UI overview . 38
4.4 Web UI. 40
4.5 Web UI - upload multiple files. 41
4.6 Web UI - confirm send to backend. 42
4.7 Web UI - extracting-positions. 42
4.8 Web UI - remove data or export metadata. 42
4.9 Backend API endpoints. 45
4.10 Data flow when using the Position Detection component. . . 48

5.1 Component system overview. 54
5.2 React typescript component example 55
5.3 Use a React Typescript component. 55
5.4 React Native example. 57
5.5 Setup backend endpoints using Gin for Golang. 59
5.6 Example: soccer metadata used to know positions over time. 60
5.7 Example UUID . 61
5.9 List of Python libraries used. 61
5.10 Machine Learning endpoints. 62
5.11 Example positional object for one offset. 64
5.12 Example list of positional objects. 64
5.8 Example JSON metadata. 66

6.1 Recording times with screen on. 70
6.2 Recording times with screen off. 70
6.3 Compare recording times - blue=screen off, orange=screen on. 71

xi

xii l ist of figures

6.4 File sizes between resolutions and framerates. 73
6.5 Recording time to file size ratio. 74
6.6 Position detection time on 30s video 76
6.7 Accuracy example . 80
6.8 Position detection accuracy 82
6.9 Alternative camera angle 82
6.10 Number of miss classification within six frames 83
6.11 Example XML Metadata . 85

8.1 Example: Pixel-coordinate translated to field-positions 103

A.1 Progressive image . 114
A.2 Interlaced video overview 115

List of Tables
6.1 Settings combination for camera and record options. 68
6.2 Resolution pixel differences. 71
6.3 Example: compare total pixels/second for 1512p25 and 1080p60. 72
6.4 Position detection of 30s video 77
6.5 Time difference between 25 and 60 FPS 78
6.6 Resolution accuracy . 81
6.7 Size difference between JSON and XML 86
6.8 Time difference between Mearka and manual tagging posisions 87

xiii

List of Abbreviations
api Application Programming Interface

cli Command Line Interface

cnn Convolutional Neural Network

cots Common-Of-The-Shelf

cpu Central Processing Unit

csg Cyber Security Group

dnn Deep Neural Network

fov Field Of View

fps Frames Per Second

gb Gigabytes

gop Group Of Pictures

gps Global Positioning System

gpu Graphical Processing Unit

html HyperText Markup Language

http Hypertext Transfer Protocol

json JavaScript Object Notation

mae Mean Absolute Error

xv

xvi l ist of abbreviat ions

mb Megabytes

ml Machine Learning

mse Mean Squared Error

nlp Natural Language Processing

pb Petabytes

poc Proof of concept

poe Power over Ethernet

rest Representational state transfer

sgd Stochastic Gradient Descent

uhd Ultra High Definition

ui User Interface

url Uniform Resource Locator

uuid Universally Unique Identifier

xml Extensible Markup Language

1
Introduction
In the past decade, significant progress has been made in our capacity to
utilize video surveillance and associated analysis technologies within sports
effectively. Particularly in elite sports, the ability to harness the digital footprints
of athletes for sports analytics has already emerged as a transformative factor,
revolutionizing how the game is understood and strategized.

Sports organizations strive to maximize their potential for success, which might
entail investing time and resources in sports technologies. These technologies
aid in analyzing areas for improvement for the team and may also provide
insights into the possible weaknesses of their opponents.

The architecture of sports video analytics systems can be broadly categorized
into (1) tagging and (2) analysis. Tagging involves annotating meta-data to
specific video sequences and events, and this tagged meta-data is subsequently
utilized in the causal analysis process. The word “Mearka” means “mark” in
northern Sami and is chosen as a name due to the nature of the system to be
developed, that will annotate “marks” on video in the form of soccer metadata.
While this thesis primarily focuses on the tagging aspect, it is developed in
connection with the analytical part, particularly aligning and collaborating
with the ongoing research on the analysis software, Dárkon1 [1].

This chapter introduces some background and motivation, starting with how

1. conducted by fellow student Sebastian Lyng Johansen

1

2 chapter 1 introduction

data became popular in soccer. Following is a section introducing “State of
the art” systems available to sporting organizations today and why they might
be flawed. A section outlining the problem definition for this thesis follows,
defining what is different about the proposed system compared to alternatives.
Further is a section defining the scope and limitation of Mearka, before ex-
plaining in short what research method is used during the development. Lastly,
a section explaining the context in which this thesis is written is introduced
before the thesis outline is proposed.

1.1 Background and Motivation
It is becoming increasingly important to sporting organizations to quantify
the performance of a team or individual player through numbers. An example
of this is shown in the book “Expected Goals” by Rory Smith [2]. The book
explains how Chris Anderson, an academic, saw data as an opportunity to
fundamentally change soccer by obtaining data and analyzing it to determine
how a team could gain a competitive advantage. Anderson was inspired by
“Moneyball”, written by Michael Lewis [3], which follows Billy Beane et al., a
baseball theorist searching for knowledge and insights in numbers that could
give the “underdog” team an edge over teams with big money.

An early company, Prozone [2], tried to convince multiple soccer teams to
give them data to analyze, and in return, they would help the teams see their
strengths and weaknesses based on numbers. After a difficult start, where no
clubs were interested, Prozone became a big business, analyzing and reporting
games for many top-tier clubs. Many companies have followed Prozone in
the business of soccer analytics since. In May 2015, Stats Perform acquired
Prozone [4] to add advanced technologies to its tracking and analytics products
suite.

Commercial entities already provide detailed tagging data for soccer games in
top leagues. However, these services come with drawbacks such as high costs,
delays in response, external dependence on third-party providers, debatable
quality of tags, and unavailability in lower leagues. Numerous young players
develop their talents in these lower leagues, making the lack of accessible and
affordable tagging data services a significant challenge.

Hudl [5] is one such commercial entity for video capturing that offers some
tagging functionality. They are a widely-used system for capturing a panoramic
view of the soccer field. This system enables teams to record videos and simul-
taneously tag events during gameplay. However, tagging each event requires
manual input, which can be costly if extra personnel is needed. This is of-

1.1 background and motivation 3

ten not a feasible option for smaller organizations that lack the necessary
resources. As an alternative, recording the video footage and then tagging
events retrospectively could be a more viable solution.

The utilization of video technology to record and evaluate the performance of
a team or an individual player is on the rise. If a sports organization desires
a more comprehensive analysis of how to team is positioned on the field, a
positioning system can be a supplement to video technology.

One option to monitor individual players’ location on the field could be to use
ZXY [6], or similar systems. ZXY equips each player with a belt that emits
a signal to radio towers positioned throughout the stadium. These signals
are triangulated to determine the exact location of each player before being
recorded and stored.

Another increasingly popular system to track players on the field is to use
a Global Positioning System (GPS) vest like the one Statsport provides [7].
Because the vest is equipped with GPS, there is no need to set up radio
transmitters and receivers around the stadium like with ZXY [6]. This means
the vest can be used anywhere, as long as there is GPS signal. At the time of
writing this thesis (April 2023), the vest from Statsport retails for around e235
[7] on sale to individuals.

Today, sporting organizations have two main options regarding video systems
to record and tag matches and training sessions:

1. Use a camcorder or similar to manually record and tag events afterward.

2. Buy an expensive system like Hudl [5], or any of their competitors [8, 9],
that records videos and tags them manually for the team.

For positional data of where the players are on the field, sports organizations
have the following options today:

1. Buy ≈25 GPS vests from someone like Statsport [7], as there are between
20-25 players in each workout. Totaling between e4700 - e5875 to equip
a single team with GPS vests.

2. Invest in a system like Hudl [5] and get them to tag the positions from
the video, resulting in higher prices.

3. Record the video and tag the position of every player on the fieldmanually
afterward.

4 chapter 1 introduction

The problems with the above-mentioned solutions include that they are usually
expensive to buy and operate, require too much manual labor, delay on deliv-
ering data, or a combination. The application domain will be soccer related,
although the final product could be sports agnostics with minor tweaks. It is
intended for bigger and smaller teams to extract data from cheap sources like
a small video camera.

1.2 Mearka Problem Definition
As sporting organizations are increasingly interested in extracting the maxi-
mum potential from their teams, analyzing data is an essential tool to do so.
There is software available for automated tagging, which is currently in opera-
tional use. However, this software is costly, restricted to specific events, lacks
sufficient precision, and may not fully satisfy the requirements of coaches and
analysts. This thesis focuses on how to use video to create tags and metadata as
efficiently, user-friendly, and cheaply as possible, compared to the alternatives
that exists. The thesis statement is defined as:

It is possible to develop a soccer tagging system based on cheap,
common-of-the-shelf components. This will contrast to the state-of-the-
art systems using expensive and specialized hardware and software
that depend on external storing and analytics of data, where you have
no control over where the data is stored, how it is used, or the quality
of the tagged data, in addition to a significant time-delay.

The statement above is investigated through the following steps:

1. Outline specifications and requirements based on the abovementioned
problem definition, related work, and domain.

2. Develop a proof of concept (POC) system and demonstrator based on the
outlined specifications and requirements.

3. Evaluate the system through experiments and conclude to what degree
the system satisfies the requirements.

1.3 Methods
To identify the common core in Computer Science subject matter, the ACM
task force presents the following in their final report. This report presents an

1.3 methods 5

approach to divide the discipline of Computer Science into three paradigms:
Theory, Abstraction, and Design [10].

Theory: consists of four steps to aid in the development of a valid, coherent
theory, and is rooted in mathematics.

1. Definition: Characterize the objects of study.

2. Theorem Hypothesize possible relationships among the objects.

3. Proof Determine if the hypothesized relationship between objects are
true.

4. Results Interpret the result.

A theoretician is expected to re-iterate these steps, for example, if errors or
inconsistencies are discovered.

Abstraction: are rooted in the experimental scientific method and consists of
four stages for investigating a phenomenon.

1. Hypothesis: Form a hyphotesis.

2. Model: Construct a model and make a prediction for the result.

3. Design: Design and run expriments to collect data.

4. Analyze: From the collected data, analyze the result.

A scientis is expected to re-iterate over these steps, for example when a predc-
tion from a model disagrees with experimental evidence.

Design: is rooted in engineering and consists of four steps when a system or
device, that solves a given problem, is constructed.

1. Requirements: State the requirements that the system/device needs to
fulfill.

2. Specification: Specify how the system will fulfill the requirements.

3. Design and implementation: Design and implement the system.

4. Test: Test the system and make sure it reaches the requirements.

6 chapter 1 introduction

It is expected from an engineer to re-iterate these steps, for example, when
tests reveal that the system does not satisfy the requirements stated.

This thesis roots in the design paradigm, as the requirement and specification
are derived from the problem definition and the application domain. A system
prototype will be designed and implemented based on the defined requirement
and specifications. Lastly, the system will be evaluated through experiments to
see if the POC meets said requirements.

1.4 Scope and Limitations
In order to limit the scope of the problem definition, it is necessary to make
some assumptions with regard to the problem domain. The assumptions made
are documented here.

• To simplify the offset calculations of tags and positions, the video pro-
vided by the user needs to start at kick-off. This enables the potential
merging of metadata files to be more easily sorted, as any “offset” refers
to an offset from the same point of time in the game. Another benefit is
easier synchronization of positional data to tags, as the offset noted is
the same.

• Mearka should ideally be so easy to use that anyone, technically savvy
or not, could use it. However, implementing the POC of Mearka assumes
the user knows some basic video editing, specifically to make sure the
videos start at kick-off. 2

• With regards toMachine Learning (ML),Mearka will rely on a pre-trained
model, YOLOv4 [14], to detect where people are on the field. Instead
of training a specific model for this application, a pre-trained model is
chosen based on time constraints.

• Asume that Mearka will run in a trusted environment. The emphasis of
the POC will be on the system functionality rather than the security of
the system.

• Mearka will not provide the video recording device, as it aims to be video-
source agnostic and able to utilize any video that the user provides.

2. Davinci resolve is a free, but very capable, video editing software for macOS, Windows,
and Linux (download Davinci-Resolve-18 [11]). Some sources to get started using Davinci
Resolve can be found here (In-depth-course [12]) and here (shorter overview course [13]).

https://www.blackmagicdesign.com/products/davinciresolve
https://www.youtube.com/watch?v=h9MrEaELl2M
https://www.youtube.com/watch?v=aLIHKHkvKMM

1.5 context 7

• Mearka assumes it will be a small contribution to the ongoing research
within the field of soccer analytics. Developing a system that aims to
be easily expanded with more functionality in the future and used in
combination with other analytical systems, like Dárkon.

1.5 Context
This thesis is written in the context of the Corpore Sano Center 3, which is
affiliated with the Cyber Security Research Group (CSG) at UiT, The Arctic
University of Norway.

Their research has primarily revolved around designing and developing dis-
tributed systems that are scalable, efficient, fault-tolerant, compliant, and se-
cure. The methodology primarily adopted by CSG is an approach that develops
experimental systems, experimentally evaluating a prototype middleware sys-
tem to address different research problems.

Back in 1990, the group researched the co-operation issues in StormCast, a
distributed artificial intelligence application for severe storm forecasting [15].
The design uses the employment of multiple “expert modules” that conducted
predictive forecasting in their respective geographical area. Once a forecast
has been made, it is broadcasted to other “expert modules” to be used in
their future predictions, potentially. Deadlocks are prevented by each “expert
module” only using an incoming prediction from a different area (and thereby
another “expert module”), if it is possible. They found that a modular design
with a loosely-coupled distributed approach, de facto industrial standards have
been sufficient for this application.

Another area of research done by CSG is “Low Overhead Container Format
for Adaptive Streaming”, investigated in 2010 [16]. This paper proposes an
adaptive video player that codes video segments as closed groups of pictures
(GOP) when streaming. It codes the video as H.264/AVC [17] and the audio as
mp3, both standard Audio/Video domain components. The audio and video are
packaged in a custom-made low overhead container optimized for streaming
and easily translatable to different containers if needed. The player can pick
a quality level that uses most of the available network bandwidth and utilizes
the CPU while still having smooth and uninterrupted playback and close to
instant seek and startup times.

In 2018, CSG, together with the School of Sport Sciences, UIT The Arctic

3. https://corporesano.no

https://corporesano.no

8 chapter 1 introduction

University of Norway, ForzaSys AS and Simula Research Laboratory in Oslo,
Norway, did a case study on quantifying soccer using positional data [18].
There is an increasing availability of athlete quantification data, and more
data is being collected automatically, especially after FIFA approved the use of
wearable electronic performance and tracking systems. This research presents
their experience using radio-based wearable positioning data systems in elite
soccer clubs (ZXY [6]). The difference between a GPS system and a radio-based
system is investigated in the paper. They demonstrate that this data can be
used to detect and find anomalies and trends and give important insights for
individual players and soccer team performance development.

This research is just a fraction of what the CSG at UiT, The Arctic University of
Norway, has conducted over the years. Mearka will be designed and developed
in the context of the research already conducted by CSG about distributed
systems, working with video as a source, and potensially detecting positions
to quantize soccer performance which can be utilized in analytics.

1.6 Outline
Chapter 2 covers relevant background information and related work within
the soccer video and tagging systems domain.

Chapter 3 outlines the requirement and spesifications that the POC aims to
reach.

Chapter 4 describes the design of the proposed system.

Chapter 5 covers details on more implementation-specific subjects.

Chapter 6 describes how the system is evaluated, which experiments are
conducted, and why, as well as evaluates the results.

Chapter 7 discusses the choices made during the implementation of the pro-
posed POC system, and possible alternatives.

Chapter 8 concludes the thesis by summarizing the POC system, and proposing
future work for continuous system development.

2
Background
This chapter outlines relevant fundamental concepts grounded in the thesis
and related work. Section 2.1 explains a design principle used to communicate
by multiple components in Mearka. Section 2.2 describes the soccer-metadata
formant that Mearka creates. Section 2.3 explains a framework that is key for
this thesis to work with video files. Section 2.4 gives a brief introduction to
machine learning, as well as touches on more specific libraries and models
utilized. Mearka utilizesML to detect the position of people in the video. Section
2.5 summarizes some related work relevant to this thesis. The mentioned work
is important, as Mearka takes inspiration and builds on the ideas presented in
these.

The goal of Mearka is to develop a sports video tagging system that can detect
players’ positions only based on video recorded with any device. To enable
Mearka to try and solve the problem, it needs a way of communicating between
distributed components, work video, do ML object detection, as well as output
the resulting soccer metadata in a way that is understandable by both humans
and other systems.

2.1 Representational State Transfer (REST)
A REST API, or Representational State Transfer Application Programming Inter-
face, is a standardized architectural style for designing networked applications

9

10 chapter 2 background

[19]. It provides a set of rules and constraints that enable communication and
interaction between different software systems over the internet. REST APIs
are commonly used in web development to facilitate data exchange between
clients (web browsers) and servers.

At its core, a REST API operates on the principles of statelessness and resource-
based interactions. Statelessness means that each request from a client to a
server should contain all the necessary information to understand and process
the request without relying on previous requests or shared session state. This
simplifies the server’s job and allows for better scalability and reliability.

In a REST API, resources are the fundamental entities the API exposes and
manipulates. These resources can be represented using Uniform Resource
Identifiers (URIs), unique addresses used to identify them. Clients can interact
with these resources using standard HTTP methods like GET, POST, PUT, and
DELETE. For example, a client can retrieve data from a server by sending an
HTTP GET request to a specific URI representing the desired resource, and the
server responds with the requested data in a format like JSON or XML. Overall,
a REST API provides a flexible and standardized approach to building web
services that different clients can easily consume. It promotes loose coupling
between the client and server, allowing them to evolve independently. REST
APIs enable interoperability, scalability, and simplicity in distributed systems
by adhering to the principles of statelessness, resource-based interactions, and
standard HTTP methods.

2.2 JavaScript Object Notation (JSON)
JSON or JavaScript Object Notation is a lightweight data-interchange format
that is easy for humans to read and write and for machines to parse and
generate [20, 21]. JSON stores data in key-value pairs and arrays, making it a
flexible way to represent complex data structures. It is a text format entirely
language-independent, making it a popular choice for data exchange between
different programming languages.

This thesis uses JSON to create and store metadata because it is easy for
humans to read and for machines to parse and generate. JSON is widely used
to store and send data between servers and clients, to store configurations and
logs, etc. Because of this, there are also multiple libraries to parse and generate
JSON. The most important ones for Mearka is a library for python [22], React
Native [23], and Golang [24].

Below, figure 2.1 shows an example of how JSON data can look. This example

2.2 javascript object notation (JSON) 11

shows a JSON “objects” with key-value pairs containing information about
tagged events. Because of how JSON is structured, it is possible to parse this
data and access each field based on the keys. An example, loop over each
element in the list and print out the “eventType” key. As shown in figure 2.2,
Python knows how to parse JSON and handles it like an object. Because it is
handled as an object, it is just a matter of accessing the “eventType” attribute
on that object to get out the attached value, in this case, “Pass”.

1 [
2 {
3 "timeId":3,
4 "eventType":"Pass",
5 "startPlayer":{
6 "team":"our",
7 "player":"Player 1"
8 },
9 "endPlayer":{
10 "team":"opponent",
11 "player":"Player 2"
12 },
13 "result":"medspiller",
14 "startCoordinates":{
15 "x":7.94e1,
16 "y":3.45e1
17 },
18 "endCoordinates":{
19 "x":6.47e1,
20 "y":5.36e1
21 },
22 "startTime":2.2240000000000002e1,
23 "endTime":2.232e1,
24 "playingDirection":"RightToLeft",
25 "ballWin":false,
26 "breakThrough":false,
27 "dangerousMistake":false
28 },

29
...

30]

Figure 2.1: Example JSON

12 chapter 2 background

for event in eventlist:
print(f"Event type: {event.eventType}")

Figure 2.2: For-loop that prints the event type

2.3 FFMPEG
FFmpeg is a free and open-sourcemultimedia frameworkwidely used to process
and manipulate audio and video files [25]. It consists of a set of command-
line tools that allow users to perform a variety of operations on multimedia
files, including cutting, encoding, decoding, and modifying. FFmpeg works by
reading and writing multimedia data from various sources to one or multiple
destinations, such as files, network streams, and devices. FFmpeg provides a
powerful and flexible set of tools for working with multimedia files, making
it a popular choice for many applications, including video editing, streaming,
and compression.

This thesis uses FFmpeg in several ways, most predominantly to concatenate
video files. Some cameras split longer video recordings into smaller video files,
making it more difficult to calculate a time offset when doing object detection
on the video. Since the user might not know how to merge multiple videos into
one, the system enables the upload of multiple files to do merging automatically.
Then the system figures out what is a video and what is not and concatenates
the files into one longer video.

2.4 Machine Learning
Machine learning is a subset of artificial intelligence that involves the devel-
opment of algorithms and statistical models to enable computer systems to
learn from data and make predictions, decisions, or suggestions without being
explicitly programmed [26].

There are three main methods of machine learning, supervised learning (sec-
tion 2.4.1), unsupervised learning (section 2.4.2), and reinforcement learning
(section 2.4.3). Some typical machine learning applications include image
recognition, natural language processing, fraud detection, recommendation
systems, and autonomous vehicles.

This thesis uses machine learning to detect where players are positioned in
the image automatically. CVlib is used with the pre-trained machine learning
model YOLOv4 (section 2.4.6) for object detection. Below is a brief overview of

2.4 machine learning 13

the three main methods for doing machine learning. However, since YOLOv4
is trained on the labeled Microsoft COCO dataset [27], using a supervised
learning method, this is where the main focus of this section will be.

2.4.1 Supervised Learning
In supervised machine learning, “training a model” equals training the algo-
rithm from data. The idea is that systems can automatically learn from data,
identify patterns, and improve their performance over time. Supervised learn-
ing algorithms are designed to learn from large amounts of historical data and
use this knowledge to make predictions or decisions about new data Supervised
[26, ch. 2].

Mearka uses CVlib with the pre-trained model YOLOv4 [14] to detect the
position of people in the video. This model was trained using a supervised
learning method on the COCO image dataset created by Microsoft [27].

A model usually consists of multiple layers, and each layer is there to help the
model to give a correct output. Each layer can consist of one or more “neurons”,
where each neuron works on its input values before passing the output to the
next layer. Each input signal is given a weight to determine the importance
of a given input signal from the previous layer. Figure 2.3 shows a simple
example model with multiple layers containing neurons and weights between
each layer. Models with multiple layers are also called Deep Neural Networks
(DNN), as they are multiple layers “deep” [28]. The most popular type of
machine learning model is the Convolutional Neural Network (CNN).

14 chapter 2 background

Neuron 0

Neuron 1

Neuron 2

Neuron 3

Neuron 0

Neuron 1

Neuron 2

Neuron 3

Neuron 0

Neuron 0

Neuron 1

Neuron 2

Neuron 3

Layer N -1Layer 1Layer 0
(input)

Layer N

Weights

Figure 2.3: Example machine learning model with steps and neurons

For example, a model takes an image as input and can determine if the image
contains a dog or a cat. Step one in the model could cut up the image into
smaller chunks. Another might take the chunks and determine if they contain
edges in different orientations. The next step tries to combine the inputs and
see if the resulting sub-image contains parts of an ear, nose, paws, etc. Following
a step might determine if the ear and nose are more likely to belong to a cat,
dog, or something else. Based on this estimation, if the model is confident
enough that a cat or dog is in the image, it outputs which one it thinks is
present. “Confident enough” is determined by the developer. It is possible to
set a probability threshold that states how certain a model has to be before
stating that the image contains something.

Training a model
Training a model means estimating a value for a given data point against the
label, and adjusting the weights to better estimate the correct classification
or prediction. Labeled data contains an observed truth for every data point
in the set, often called “ground truth”. An iterative method is usually used to
optimize the weights as training progresses. One such iterative approach can
be Stochastic Gradient Descent (SGD) as seen in equation 2.1 [29, eq. 4]. Here
𝑤𝑡+1 is the updated weight after the optimization,𝑤𝑡 the current weight, 𝛾𝑡 a
stepsize function, and ∇𝑤𝑄 (𝑧𝑡 ,𝑤𝑡) is the chosen optimization function that
takes the labeled value 𝑧𝑡 and estimated value 𝑤𝑡 and returns the direction
𝑤𝑡+1 needs to change. The stepsize function 𝛾 scales how much𝑤𝑡+1 changes

2.4 machine learning 15

per iteration 𝑡 while keeping the direction it changes the same.

The supervised learning model splits the data into training and testing sets.
The model is trained on the training data, adjusting its weights gradually with
something like equation 2.1, based on how far off the labeled truth is. After
the model is trained, it is tested with test data to see how well it performs on
data it has never seen before. During testing, the model does not adjust any
weights; it is tested as is.

𝑆𝐺𝐷 = 𝑤𝑡+1 = 𝑤𝑡 − 𝛾𝑡∇𝑤𝑄 (𝑧𝑡 ,𝑤𝑡) (2.1)

Evaluating model
How well a model is trained can be determined using different algorithms; one
of these is the mean square error (MSE) algorithm. This looks at the mean of
squared accumulated distances between estimated and labeled values [30] in
the testing phase. As seen in equation 2.2, for 𝑛 data objects, 𝑌𝑖 denotes the
labeled value 𝑌 on data point 𝑖, and 𝑌𝑖 is the estimated value 𝑌 of the same
data point 𝑖. MSE is a good algorithm to use if it is important that the model
does not contain any outlier predictions with significant errors. This is because
the error, defined as the distance between the estimated and actual values for
each data point, is squared and therefore made more significant in the overall
MSE score.

𝑀𝑆𝐸 =
1
𝑛
·

𝑛∑︁
𝑖=1

(
𝑌𝑖 − 𝑌𝑖

)2
(2.2)

Unlike MSE in equation 2.2, mean absolute error (MAE) takes the absolute
value of the errors without squaring them, as equation 2.3 shows [31]. The
result is that it is less affected by some outlier predictions with bigger errors,
making MAE a better choice if it does not matter that the model has some
outlier predictions with higher errors. Both MSE and MAE will always have a
positive score, as MSE Squares the errors while MAE takes the absolute value.
No matter which of these two is used to evaluate a machine learning model,
the closer to zero the score is, the more accurate the model is predicting

𝑀𝐴𝐸 =
1
𝑛
·

𝑛∑︁
𝑖=1

���𝑌𝑖 − 𝑌𝑖

��� (2.3)

16 chapter 2 background

If the model needs to take the outliers into consideration more than what MAE
does, but still to a lesser degree than what MSE does, the Huber loss function
seen in equation 2.4 could be a good option [32, eq. 2]. Here it is possible to
get “the best of both worlds”, as MSE is only used as long as the error is less
than 𝛿 , and MAE otherwise. When tweaking the model, 𝛿 can be adjusted to
include outliers as close to or as far from the labeled truth as wanted while
giving outliers beyond this less prominence in the score.

𝐿𝛿 (𝑌,𝑌) =
{
1
𝛿

(
𝑌 − 𝑌

)2
, if |𝑌 − 𝑌 | ≤ 𝛿

|𝑌 − 𝑌 | , Otherwise
(2.4)

2.4.2 Unsupervised Learning
Unsupervised learning is a fundamental concept in machine learning that
involves the analysis of data without prior knowledge of the target variable or
explicit supervision from a human expert. Unlike supervised learning, which
relies on labeled data to guide learning, unsupervised learning seeks to discover
underlying patterns and structures in unlabeled data [26, ch. 1.2.4]. The goal of
unsupervised learning is to identify meaningful relationships and regularities
in the data,which can be used to inform downstream tasks such as classification,
clustering, and anomaly detection.

Several common approaches to unsupervised learning include clustering, di-
mensionality reduction, and generative modeling. These methods are not used
in this thesis, therefore they will not be explained further. However, below
is a brief overview of clustering using k-means as an example of how an
unsupervised method might work.

Clustering involves grouping similar data points based on their distance or
similarity. One algorithm to do just that is k-means clustering, which aims
to partition an 𝑁 -dimensional data population into 𝑘 sets [33]. Equation 2.5
shows a clustering algorithm that tries to find 𝑘 set of clusters 𝑠, such that the
sum of squared distances between each data point 𝑥 and the mean `𝑖 of data
points in 𝑠𝑖 is as short as possible.

arg min
𝑠

𝑘∑︁
𝑖=1

∑︁
𝑥𝜖𝑆𝑖

| |𝑥 − `𝑖 | |2 (2.5)

2.4 machine learning 17

2.4.3 Reinforcement Learning
Reinforcement learning (RL) is a method of machine learning that involves
an agent interacting with an environment to learn how to make optimal
decisions. The agent receives feedback through rewards or penalties based on
its actions, which guides its learning process. The goal is to create a policy
that contains a sequence of actions that reaches the destination [26, ch. 1.2.5].
Since each intermediate step is on a path toward the destination, an action is
“good” if it is part of a policy that leads there. RL is particularly useful when
the optimal solution is unknown beforehand or difficult to calculate using
traditional algorithms.

The RL process involves several key components, including a discrete set of
environment states, agent actions, and a set of reinforcement signals [34, page.
3]. The environment states represent the possible states that the environment
can be, while the agent actions is a set of all actions the agent can take. A
reinforcement signal function assigns a numerical value to each action the agent
takes, which the agent seeks to maximize, a low value can be considered a
penalty. Through trial and error, the agent learns to optimize its policy and
cumulative reward over time, resulting in a more effective decision-making
process.

2.4.4 OpenCV
OpenCV (Open Source Computer Vision Library) is an open-source computer
vision and machine learning software library [35]. OpenCV provides vari-
ous video and image processing algorithms, such as feature detection, object
recognition, image segmentation, and several others.

Initially, Intel developed OpenCV in the late 1990s, and it has been supported
by several organizations and individuals since. This thesis uses OpenCV version
4.6.x, distributed under the Apache License 2.0 [36], which allows OpenCV to
be used, modified, and distributed without restriction.

This thesis uses OpenCV to load frames from a video into memory, which is
further worked on by CVlib (section 2.4.5) for object detection.

2.4.5 CVlib
CVlib is a computer vision library built on top of TensorFlow [37] and Keras [38].
TensorFlow is a low-level numerical computation library that provides a flexible
platform for building and deploying machine learning models. Keras is a high-

18 chapter 2 background

level neural networks API written in Python that runs on top of TensorFlow.
The main difference between TensorFlow and Keras is that TensorFlow is more
low-level and requires more coding to build and train models, while Keras
is more high-level and potentially provides a more straightforward, intuitive
interface for building and training neural networks.

CVllib builds on these libraries but has a higher level of abstraction than Keras,
meaning neither library is accessed directly by the developer. Because of this,
there will not be a section going in-depth on how they work, just a mention
that CVlib uses TensorFlow and Keras underneath.

CVlib provides easy-to-use functions for different computer-vision tasks such
as object detection, face detection, and gender detection. It is mainly designed
for Python and provides pre-trained models for easy use.

This thesis uses CVlib for its object detection functionality with the default
pre-trained model YOLOv4 [14]. CVlib takes a frame from the video, loaded
by OpenCV (section 2.4.4), and returns a list of pixel positions if YOLOv4
recognizes an object.

2.4.6 YOLOv4
YOLOv4 (You Only Look Once, version 4) is an advanced real-time object
detection algorithm initially developed by Joseph Redmon and Ali Farhadi
[39], and further improved by Alexey Bochkovskiy [14]. It is trained using the
COCO dataset from Microsoft [27], and the improvements in version 4 over
version 3 are improved accuracy, speed, and generalization capabilities.

YOLOv4 uses a deep neural network to identify objects in an image or video
and predicts their location and class probabilities in a single forward pass of
the network. This differs from other algorithms that need several passes over
an image to detect multiple types/classes of objects. Overall, YOLOv4 is an
efficient and powerful algorithm used for object detection that has been widely
adopted in multiple computer vision applications.

CVlib is a high-level abstraction for object detection machine learning to make
it easier to start doing object detection at all. There is a function that only
needs an image as input and returns a list of positions for any objects detected.
Referencing CVlib in section 2.4.5, YOLOv4 is the pre-trained model chosen by
CVlib, and therefore used by this thesis to detect people and where they are in
the image.

2.5 related work 19

2.5 Related Work
Previously, the CSG team at UIT researched using video recording for soccer
analysis. The selected research aimed to challenge the domination of expensive
tools that only benefit financially strong sporting organizations. This thesis
aims to build on the ideas and essence of the previous research and create an
easy-to-use, semi-automatic, cheap, and efficient system for tagging. The goal
is to simplify the setup and usage process, automating as much as possible
while providing valuable analytical data.

2.5.1 Muithu
Muithu sought to provide an alternative to the excessive use of resources re-
quired by expensive tagging systems [40]. Traditional systems require multiple
people to tag events during matches or training sessions, Moreover, using per-
sonnel can be costly. Additionally, since someone other than the head coach
typically performed the tagging, some of the events that are tagged may not
even be relevant. In contrast, Muithu uses affordable consumer cameras (GoPro
HD Hero 2) and a phone app to move the tagging process into the hands of
the head coach, enabling the coach to tag events in real-time as they unfold
during a game or practice.

By involving the head coach in the tagging process, Muithu ensures that only
relevant events are recorded. Moreover,with the ability to see a situation before
tagging it, precision and recall rates approach 100%. However, the system must
be non-intrusive and fast to use, allowing the coach to focus on the team. The
intuitive user interface (UI) of the Muithu app enables the coach to tag a
situation containing "who" and "what" within five seconds.

After recording, a timeline displays all the events noted, and the specific video
segment from the camera(s) for each event can also be extracted. Each tag con-
tains the offset into the recording where the event occurred, streamlining the
workflow. While the final step is a manual process, it is still significantly faster
than manually scrubbing through the entire recording in retrospect.

2.5.2 Bagadus
Bagadus builds on the research done by Muithu (section 2.5.1) and improves,
and expands on it. It consists of three key sub-systems, Video, position, and
analytics system [41]. The video sub-system is comprised of a multi-camera
array that together covers the entire field. The system allows the user to view
the output from a single camera or see the entire playing field in a panorama.

20 chapter 2 background

In addition, Bagadus has a sensor sub-system that tracks the location of each
player on the field using ZXY tracking sensors [6]. The analytical sub-system
enables users to zoom in and out, navigate the image, and record events in real-
time. All events are automatically stored in a video and sensor data database
for easy retrieval.

Additionally, Bagadus can query video clips based on specific sensor data.
For instance, it is possible to query every clip where a particular player runs
faster than a certain speed or multiple players are located in a specific field
area.

Unlike Muithu’s use of consumer-grade cameras that can be positioned any-
where, Bagadus relies on a static camera array, one of which is installed at
Alfheim Stadium in Tromsø, and it has also been installed at Ullevaal Stadium
for the national team. The reason for a static camera array is that the cameras
must be synced and calibrated to provide a seamlessly stitched panorama,
which is not a concern for Muithu’s cameras.

Muihtu has an intuitive app that lets the user tag events as they happen during
a game, as well as record the game with consumer cameras to be synced
with the tags after the game. Bagadus expands on this with a static camera
array delivering a panorama and adds positional data through ZXY tracking
sensors [6], as well as an analytical sub-system that enables the user to pan
around the panorama. Mearka aims to have a similarly intuitive app that
the user can use to tag events as they happen during the game. Unlike the
beforementioned systems, Mearka should be camera agnostic, utilizing any
camera, from a phone to an action camera or up to professional-level broadcast
cameras, as well as hopefully being able to extract the positions automatically
from the video without the need for tracking sensors on the players.

2.6 Summary
This chapter introduced FFMPEG (section 2.3), which is a framework that
is instrumental in how Mearka works with video files. Next was a section
outlining some machine learning methods, like supervised, unsupervised, and
reinforcement learning. Supervised learning (section 2.4.1, [42]), described how
a machine learning “model” can be trained with labeled data (section 2.4.1), as
well as how to evaluate the trained model (section 2.4.1). Furthermore, other
machine learning libraries used in this thesis were introduced together with the
particular model (YOLOv4 [14]), which will be used for object detection. Lastly,
some relevant work like, Muithu (section 2.5.1) and Bagadus (section 2.5.2),
were introduced.

2.6 summary 21

The next chapter outlines and defines the functional and non-functional re-
quirement specifications of Mearka.

3
Requirement Specification
Based on the goals specified in section 1.2, we have specified a set of require-
ments the system needs to meet to reach the goal. The requirements are divided
into two separate components, functional and non-functional. Section 3.1 de-
scribes the functional requirements set for Mearka, while section 3.2 outlines
the non-functional requirements.

3.1 Functional
Functional requirements are defined as clear statements outlining the services
that the system should offer, specifying how the system should respond to
specific inputs, dictate its behavior in particular situations, or highlight any
actions the system should avoid [43, page 2-4].

1. Input: Mearka should support different inputs from the user. It must
support live tagging of events during a game and handle video uploads
of the game or training sessions afterward.

2. One-click live tagging: It should be possible to tag an event that happens
live, with at most one click or press of a button.

3. Automated: Mearka should be able to extract positional data from the
video automatically. The user should be able to upload any video or

23

24 chapter 3 requirement specification

multiple videos (if they are segments of the same video), to the system
for analysis and get useful positional data back.

4. One-click export:Once the system has detected positions, it should be no
more than one click to get the generated soccer metadata downloaded.

5. Output: The output from Mearka after detecting positions should be
soccermetadata that enables the user to have information on the positions
of players at any given time in the video. At a minimum, the output
should be pixels positions in the frame as illustrated by figure 3.1, with
x,y coordinates for player positions at time t. Ideally, the positions will
be translated to real-world coordinates as illustrated by figure 3.2, with
a simpler 2D-view.

6. Data deletion: The user owns their data, so Mearka needs to make it
easy to delete what user data the system temporarily has stored. Ideally,
the user only needs to click on one button to remove everything.

3.2 Non-functional
Non-functional requirements encompass limitations placed on the services or
functionalities provided by a system. These constraints involve aspects such as
timing, development process, and adherence to standards. Unlike functional
requirements, which pertain to specific system features and services, non-
functional requirements typically apply to the system as a whole[43, page
2-6].

1. Ease-of-use: Any UI of Mearka should be intuitive and easy to use. The
user should not be unsure of what to expect when interacting with the
system.

2. Soft real-time: Data resulting from using Mearka shall strive to be
available in real-time in the long run, such that it is able to give feedback
LIVE during a game. However, since Mearka shall be developed as a POC
prototype in this thesis, a first iteration soft real-time goal will be to have
data available within 12 hours of the system starting to process, such that
a coach can analyze the data the following day, even if the performance
of Mearka is not optimized.

3. Common Of The Shelf (COTS) components: Mearka needs to be as
cheap as possible, both to set up and operate, which is why the system
shall rely on only using COTS components.

3.3 end user interactions 25

4. Data ownership: The user owns the data, so Mearka shall only store the
data for as long as needed and not store anything long-term.

5. Privacy Compliance: The user decides what data they upload and when
they want it removed. The system shall make it easy for a user to delete
their data on the system if they choose to.

6. Security: The system shall restrict the user-uploaded data and the gen-
erated data based on that input to only be available to the user that
uploaded it. Mearka shall store data such that one user cannot access
another user’s data by accident or otherwise.

3.3 End user interactions
Someone on the team must set up a camera to record the match or training
session. What kind of camera shall not be important as Mearka shall be able to
work with the video no matter what camera it comes from. The coach shall be
able to start recording events from the kickoff using a Mearka-app as the match
or training session is about to start. Tagging events shall be able to be done
while the session is still in progress, and the metadata shall be sent from the
backend to the app once the session is over. After the session, the web interface
could be used to upload the video. Uploading the video shall start the system
to detect where players are positioned on the field. Merging the positional
data with the events tagged through the app shall be done by uploading the
file from the app through the web interface. Once Mearka is done detecting
positions, soccer metadata shall be able to be downloaded through a single
button click on the web interface. This file should then be able to be uploaded
to another analyzing software, like Dárkon.

3.4 Summary
To summarize the proposed functional aspects of Mearka, it shall support
different inputs from the user. This can be, at least, live tagging during a game
and handling video uploads of the game or training session. Tagging an event
shall ideally be as simple as pushing a button. Mearka shall be able to extract
players’ positions from the video uploaded by the user. Once the system has
processed the video, it shall be simple for the user to export the data generated
with the click of one button. The output from the system shall be positional
data correlated with timestamps that can be used to create a positional map
for each time “t”, as illustrated by figure 3.1 and 3.2. If the user chooses to

26 chapter 3 requirement specification

(x=255, y =200)

X

Y

Time=minutesT=15.0

Figure 3.1: Example position detection x,y at time t.

delete their data, the functionality should be readily available to do so.

Regarding the non-functional aspects, Mearka shall be easy and intuitive to
use, no matter which UI the user utilizes. Since Mearka shall be as cheap as
possible to set up and operate, it shall be restricted to only choosing COTS
components. When data is uploaded to the system, it shall be able to process
and generate positional data within 12 hours. This means that within 12 hours,
it should be possible to download useful soccer metadata from the system.
As the user owns their own data, Mearka shall only store their data for as
long as it is actually needed. It shall not be designed to keep data long-term.
Mearka takes privacy compliance seriously and shall make it easy to upload
and delete a user’s data in the system at the user’s will. In addition, the system
shall implement some security protocol that restricts the data to only being
accessible by the user that uploaded it.

The following chapter outlines and describes the design of Mearka and all its
components.

3.4 summary 27

Time=minutesT=15.0

Figure 3.2: Example of positions at time t.

4
Design
This chapter outlines the design and architecture of Mearka. Section 4.1 pro-
vides an overview description of the system. Section 4.2 explains the require-
ments and findings when researching which camera to use during development.
Section 4.3 outlines the design of the Mearka-app, while section 4.4 and 4.5
describe the web implementation and backend, respectively. Lastly, section 4.6
describes how the position detection component is set up and used in this
thesis.

4.1 System Overview
Mearka is a distributed system that communicates using REST APIs for simplic-
ity and convenience. REST APIs was chosen since all the information needed
to fulfill a request is included in the request. A con of this is that all the data
needs to be sent for each request, which means the same data might be sent
in multiple requests. The Mearka-app offers an interface that enables the user,
a main coach or similar, to record tags while the match or training session
progresses. Since the web interface, backend, and position detection compo-
nent all use REST APIs to communicate, it allows for flexible development of
each component. Each component can be expanded with more functionality
independently of the others as long as the API interface stays the same. The
interfaces may be expanded, but it needs to keep the original interface end-
points, not to break the functionality of the other components that might use

29

30 chapter 4 design

these. An overview of how the different components in Mearka communicate
is illustrated in figure 4.1.

Mearka-app

Mearka web interface

Backend
Position

Detection
Component

Figure 4.1: Mearka data and communication illustration.

For Mearka to meet the requirements set in chapter 3, the system design needs
to fulfill the following:

1. Easy-to-use: Low effort to use the system, no matter if it is tagging
through the Mearka-app or uploading a video to the website. The system
needs to be as close to “one-click” as possible.

2. One-click export: Coupled with the system being easy to use, the result-
ing soccer metadata that Mearka generates should be easy to download
once it is generated.

3. Privacy and Security: System users should only have access to their
data. Uploaded data should be inaccessible to others than the one who
uploaded it.

4.2 Choosing A Camera For Development
Mearka is designed such that the user, sports organization, or private person
does not need a special camera to utilize its functionality. However, a COTS
camera was chosen to help develop the development of Mearka by record-
ing football matches in different resolutions, later used for evaluation of the
system.

4.2.1 Requirements
Choosing a camera for this purpose must meet some requirements to be eligible.
The following requirements are defined on the basis that a game is two times
45 minutes, with a 15 minute break.

4.2 choosing a camera for development 31

1. Battery life: The battery (if any), needs to last for at least 105 minutes.
90 minutes match and 15 minutes break.

• It should be possible to set up the camera, start recording, and not
worry about it until the session ends.

2. Field of view (FOV): It needs a wide enough field of view to cover the
entire football field.

• FOV is often denoted as x° between 0° and 360°. The higher the
number, the wider the FOV.

3. Ease-of-use:

• Operation: The camera has to be easy to use and operate, no matter
the technical level of the user.

• Movable: Taking the camera to different arenas must be easy. The
teams should be able to record wherever they play. The camera can
not be constrained to only being installed and usable in one arena.

4. Rugged: It has to handle any weather the players can play in.

• Waterproof.

• Withstand hot and cold temperatures while still functioning.

• Reliable.

5. Common-of-the-shelf: It should be a common-of-the-shelf camera.

4.2.2 Options
There are different types of cameras, many of which meet parts, if not all, of the
requirements listed above. The first hurdle was to find a camera with a wide
enough FOV to cover the entire field of view while being rugged and having
good enough battery life.

Enterprice Camera Solutions
There are many different solutions for 180°and 360°cameras in the enterprise
surveillance business. These are often installed at construction sites, ware-

32 chapter 4 design

houses, or other areas where a company wants video surveillance covering a
wide field of view.

Examples of enterprise solutions that solve some of the defined requirements
(section 4.2.1) is Axis P3807-PVE network camera [44], or Oncam C-08 outdoor
camera [45].

Axis P3807-PVE network camera is a 180°camera the can shoot in resolutions
as high as 4320x1920 at 25 or 30 frames per second (FPS). This camera has an IP
rating of 66/67, which means it is protected from water, can be submerged up
to 1m, under pressure, for a short period, and is completely protected against
dust [46].

Unlike Axis P3807, Oncam C-08 outdoor camera is a 360°camera, but it can
also output 180°video. Oncam C-08 can record video with a resolution of
2160x2160 and has an IP rating of IP66, IP68, IP69K, which implies it is just as
durable as Axis P3807-PVE.

Both Axis P3807 and Oncam C-08 are high-resolution cameras with a wide
enough FOV to cover the entire field. They are also IP certified [46], which
means they are built to be outdoors and to operate in various conditions.
This means these cameras meet the Field of View and Rugged requirements
defined in the list above. However, since they are both enterprise solutions,
they have their own software to use them, which means they do not meet
the first of the Ease-of-use requirement. Another issue is that both use Power
over Ethernet (PoE) or need to be tethered somehow, making it much more
challenging to move the cameras to other arenas if required. This means both
cameras meet the Battery life requirement, as there is no battery, but neither
camera meets the second requirement of Ease-of-use, in that the cameras are
not that easy to use in different arenas. In addition, neither camera meets the
Common-of-the-shelf requirement, simply by being enterprise for a different
market.

Consumer Cameras: >180°FOV
Like with section 4.2.2 above, there are many different options on the con-
sumer market for cameras capable of one or more of the requirements. On the
spectrum’s widest FOV, there are multiple 360°cameras.

One of which is Insta360 x3 [47], which is a 360°action camera that can
shoot video in 5760x2880 resolution, is waterproof down to 10m without a
dive housing, and operating range from -20°C to 40°C. The conditions in which
players are out on the field will likely not be below or above these temperatures,

4.2 choosing a camera for development 33

so Insta360 x3 meets the Rugged requirement, and being a 360°camera makes
it meet the FOV requirement as well. From the 360°video, it is also possible
to crop in and choose a narrower FOV. As the 5760x2880 resolution is the full
360°image, the quality will degrade the more the video is cropped in to get
a narrower FOV. Because it is an action camera, it is meant to be simple to
use, increasing the likelihood of it being Easy-to-use in operation. It runs on
batteries, which, combined with mounting it to a tripod, reaches the Ease-of-
use requirement by being easily movable to different arenas. Unfortunately,
because it runs on battery, and the advertised battery life is set to be 81 minutes
under perfect conditions, it does not meet the Battery life requirement.

Another camera from Insta360 is the Insta360 One RS [48]. It is also a
360°camera, and like the Insta360 x3, one RS can record video in 5760x2880
resolution; it can also be submerged down to 5m and have similar operating
temperatures, which means it meets the Rugged as well as FOV requirements.
Insta360 One RS is a modular1 action camera that is supposedly easy to operate;
therefore, it meets both of the Ease-of-use requirements in terms of operability
and being movable. However, an advertised battery life of 82 minutes falls short
of the required minimum 105 minutes of Battery life.

The last 360°camera that will be considered is the Gopro MAX [49]. It
can record 360°video in 5376x2688 resolution, and like the beforementioned
360°cameras, it is possible to pan around to crop out the video as wanted,
meaning it makes the FOV requirement. Gopro MAX can be submerged in
4.8m of water and advertised as rugged, which means it meets the Rugged
requirement. The battery life is advertised to be 78 minutes [50]; therefore,
it does not have enough battery life to reach the required minimum of 105
minutes.

These 360°cameras all meet most of the requirements set in section 4.2.1,
because they can record everything around themself, run on battery, and are
easy to set up and use. However, since they all use two or more camera sensors
to achieve this 360°field of view, they all have the same issue with less than the
required Battery life. This makes sense, as two sensors require more power
than one, so the battery will deplete quicker than a one-sensor equivalent
camera with the same battery.

1. “Modular” means this camera can change out the camera sensor while keeping the
battery and processing module. There exists a 360°and a 4k regular camera-sensor module
available. The regular 4K sensor has an advertised battery life of 75 minutes, which is why
it is not considered.

34 chapter 4 design

Consumer Cameras: <180°FOV
As cameras capable of shooting 360°use more than one sensor, which depletes
the battery quicker, the next natural option is cameras with only one sensor
but still a wide FOV. There are plenty of options in this category, in every
price bracket, from action cameras to professional cameras, where it is possible
to change lenses. However, focusing on the Ease-of-use, Rugged, FOV, and
Battery life requirements in section 4.2.1, action cameras tick the first two by
just being “action cameras”. As these types of cameras are built to capture the
action, they usually have a very wide FOV as well. Therefore, it depends on
the Battery life (and the Rugged requirement, but we will get back to this)
for which camera to choose.

A well known brand in the “action camera” segment is GoPro; therefore their
GoPro Hero 11 [51] is considered for this thesis. This camera can record video
up to 5312x4648 resolution and record for 61 minutes, or an advertised 137
minutes if the resolution is lowered to 1920x1080 [50]. As GoPro hero 11 has an
advertised battery life of 135 minutes when recording in 1920x1080 resolution,
it meets the Battery life requirement. Even though it is not a 360°camera, it
can record video with a 122°horizontal FOV [52]. To summarize GoPro hero 11
meets all the Ease-of-use, FOV, Rugged, and Battery life requirements, which
would make it a superb camera for Mearka, if it was not for the overheating
issues. Unfortunately, the last few generations of the GoPro Hero line of cameras
have had issues with overheating [53, 54] when recording over a longer period
of time. GoPro has issued a proposed fix for the overheating problems some
customers have [55], which is, in short, to turn off features and record at a
lower resolution.

The Camera Of Choice
From the cameras above, an action camera with its Ease-of-use, wide FOV and
Rugged (and reliable) design, with a good enough Battery life, is what would
work best during the development of Mearka.

The camera chosen to be used during the development of Mearka is the DJI
Osmo Action 3 [56]. This camera is advertised to be rugged and reliable2,

2. There are reports that the first batch of cameras, produced in September 2022, has a
focusing issue on objects very close to the lens [57, 58]. However, even though the cameras
purchased for the development of Mearka are from the September 2022 batch, it is not
considered an issue in this thesis. The cameras were bought to record sessions from more
than 50cm (estimation of how close is “too close”) away, things further away from the lens
are still in focus. DJI Osmo Action 3 focusing issue seems to have been corrected beginning
with the November 2022 batch and onwards, although there are still unconcluded reports

4.3 mearka-app 35

never to overheat, withstand cold temperatures, and record for longer than the
required 105 minutes. It can withstand being submerged down to 16m without
a dive housing. Additionally, it has operating temperatures from -20°C to 40°C,
which meets the Rugged requirement. Record options include recording in
4096x3072 resolution, with a 155°-FOV, which is a wider FOV than the GoPro
alternative. The camera is presumedly easy to use, based on the premise that
“action cameras” are easy to use and very movable, which means the Ease-of-
use requirement is met. The last requirement Battery life is met by DJI Osmo
Action 3 having an advertised battery life of 160 minutes. This thesis thoroughly
tests this camera’s battery life in section 6.1.1, but in short, the tests show that
in all but the most draining setting, the battery performs well over 105 minutes.
In summary, this camera meets every requirement set in section 4.2.1 and more.
Another trick that the DJI Osmo Action 3 can do is to stream the video to a
server, which will be explained further in section 8.3.1.

4.3 Mearka-App
The Mearka-app is inspired by Muithu [40] and how Muithu used the app
as part of their system. Muithu has an app that lets the head coach tag an
event after it happened and add the player involved. After the match, retrieving
the events from a video recording, accomplished by consumer-grade cameras
(GoPro Hero 2), and playing them back, is possible. Like Muithu, Mearka has
a simple app that is meant to be used by the head coach in real-time, and the
Mearka-app only needs to do one thing: Tag events as they happen on the
field. For the Mearka-app to be used, the following requirements need to be
met:

1. Tag Events: The Mearka-app needs to be able to tag events.

2. Ease-Of-Use: The Mearka-app should be self-explanatory and intuitive
to use.

3. Non-Intrusive: It is designed to be used by the head coach during a
match or training, so it must require as little focus as possible.

4. Low Effort - High Reward: For a coach to use the Mearka-app, it should
require low effort while still giving a lot of value.

5. Rugged UI: The Mearka-app is developed in northern Norway, where

on this. Some users have also fixed the issue themself [59] by opening the cameras and
physically adjusted the lens.

36 chapter 4 design

there is a lot of weather. The Mearka-app needs to have a functional UI
even in rain, snow, and frosty conditions, as well as when sunny and dry.

4.3.1 System Design
The Mearka-app is built on the premise that it can connect to the backend
when used; without this connectivity, the Mearka-app cannot be used. In short,
the Mearka-app is a UI that allows users to interact with the backend to create
tags aligned with time; however, it does not record any video or store tags in
the app. On Mearka-app startup, it is possible to choose to start a recording.
This sets the point in time from where the tag-offsets are calculated for that
session. For this POC, Mearka assumes the record time starts at kick-off, as
stated in section 1.4.

When the Mearka-app starts recording, it sends a notification to the backend
stating it wants to start a recording. If the backend is up and responds as
expected, the Mearka-app allows the user to start tagging. Tagging an event
is done by sending a request to the backend with the click of a button from
the user. The request lets the backend know something of interest happened,
and the time offset is stored. From then on, the Mearka-app will enable the
tagging of events as long as the session is ongoing. More details about how a
tag is created and stored are described in section 4.5. Since the Mearka-app
can tag events, as described, requirement to Tag Events is met.

Once the recording (session) is stopped, the backend gets a notification that the
session is over. Upon the arrival of the request, any soccer metadata associated
with the user is collected and returned as a JSON file that contains a list of
tags. The soccer metadata file can be used to more easily see where in the
video (recorded separately) something of interest happened, or to be used with
something like Dárkon for further analysis. Figure 4.2 illustrates the complete
data flow in the Mearka-app.

4.3.2 User Interface
To comply with the Easy-To-Use requirement listed above, the Mearka-app is
designed with a simple, intuitive user interface (UI). An overview can be seen
in figure 4.3. On startup, the Mearka-app displays a single button that lets the
user choose when the video recording starts, figure 4.3a illustrates this. This
is important because the timestamp of a tag is calculated as the offset from
when “Start recording” is pressed, as described in section 4.3.1.

Once the Mearka-app and the backend agree to start recording, meaning a

4.3 mearka-app 37

App startup

Start
recording

No
Agree with
backend to

start
Stop recording

GET request to
backend for
metadata

Yes

GET request to
backend to add

tag

NoTag and stop
recording

Yes

Check tag
input

No

Yes
Share/save
metadata

Share/save

Figure 4.2: App flowchart

session has begun, it is possible to start tagging events. This is accomplished
with the “Tag event” button displayed while recording, as illustrated by fig-
ure 4.3b. On a button press, the button changes for a split second to give visual
confirmation that the button actuated on the press. How the button gives a
visual indication that it has been pressed is illustrated in figure 4.3c.

The “Stop recording” button, displayed at the top of figure 4.3b, can be pressed
to stop the session. Pressing “Stop recording” notifies the backend that the
session is over and prompts the backend to send any soccer metadata it has,
tags, and otherwise, back to the Mearka-app. Upon receiving the metadata,
the Mearka-app prompts the user to share it wherever needed. Some sharing
options can be sending it as an email attachment or using any possibility
available through the default sharing screen on the given phone operating
system. On Android [60], sharing the received metadata is as depicted in
figure 4.3d.

38 chapter 4 design

(a) Mearka-App Startup. (b) Session is in progress.

(c) Session is in progress -
Tag event.

(d) Session is over and it is
possible to export soccer
metadata.

Figure 4.3: Mearka-app UI overview
.

4.4 mearka web- interface 39

4.4 Mearka Web-Interface
Mearka is camera agnostic for video recordings of a match or training session.
This allows the user to use the system with any available video source. A video
source can be anything from recording with a phone to buying a professional
camera or something in between, for example, choosing one of the options
described in section 4.2.

The web interface illustrated in figure 4.4 is the user’s “portal” to use Mearka.
Through this portal, Mearka could allow the user to expand on the tags and
other metadata created. More about metadata and its content is described in
section 4.5.2. Mearka allows for uploading a video (or multiple video sections)
through the web interface for position detection.

Another option could be to add players and actions that can be used for more
detailed tagging. This would allow the tagging process to be tailored to the
needs of the sport and coach as needed. More on expanding the web interface
can be read in section 8.3.3.

However, this thesis has chosen to focus on implementing functionality that
finds players’ positions on the field. Finding the positions of every player on
the field is very time and labor-intensive as it has to be done manually today.
To find the positions manually, the video must be inspected frame by frame,
and note the positions of each player one by one. How the positions are found
in Mearka is described in section 4.6.

With this positional data, it is possible to analyze player patterns and how
players position themself on the field, including when they do not possess the
ball. These patterns and player positions could be an excellent asset to the coach
for refining the team playing style or better positioning players. Intuitively it
is a lot of work to tag this data, even if it could be of great value. Therefore,
Mearka strives to make this process as easy and automated as possible while
giving the same valuable data.

4.4.1 User Interface
The web interface is how users interact with the Mearka system. To make the
interface as useful as possible, the web interface needs to meet the following
requirements:

1. Easy-to-use: Intuitive UI that makes it easy to use the system no matter
the technical level of the user.

40 chapter 4 design

2. Automatic: Automated process to remove as much manual labor as
possible.

The user interface consists of a video player where it could be possible to replay
video, as well as a template for where the positional data could be visualized.
This thesis focuses on the positional detection functionality, and so the essential
part of the UI displayed in figure 4.4 is the button to upload a video.

Figure 4.4: Web UI.

When the button is pressed, a dialog box opens, and the user can choose one
or more videos that will be uploaded, as figure 4.5 illustrates. The backend
only works on one video at a time. This means that the system considers a
multiple file upload as being multiple parts of one video. Uploading multiple
unrelated videos will work, but the resulting data will not make sense unless
the same video clips are concatenated, or uploaded in separate sessions for
position detection.

Once the video files are selected, the user has to confirm (illustrated in fig-
ure 4.6) that the videos are sendt to the backend. If the user accepts this,
the videos are transferred to the backend before it starts detecting positions.
The user is notified that the position detection has started, through a message,
shown in figure 4.7.

From the position extraction has begun, there is an option to remove the data

4.4 mearka web- interface 41

Figure 4.5: Web UI - upload multiple files.

uploaded to the backend through the button displayed in figure 4.8. That
figure also shows the option to extract the soccer metadata once the position
extraction is complete.

42 chapter 4 design

Figure 4.6: Web UI - confirm send to backend.

Figure 4.7: Web UI - extracting-positions.

Figure 4.8: Web UI - remove data or export metadata.

4.5 backend 43

Following is a summarization of the Mearka web-interface and the interface
requirements defined for it in section 4.4.1. The Mearka web UI gives the user
only one option to upload a video, as illustrated by figure 4.4. This, togetherwith
no further input, qualifies the web interface to have reached the Easy-To-Use
requirement in section 4.4.1 since there is only one option. The system detects
positions automatically, without additional input from the user other than the
uploaded video, thererfore, the Automatic requirement is also met.

4.5 Backend
The backend plays a critical role in the distributed system, Mearka, acting as a
conductor, orchestrating all the requests and inputs from different components.
It ensures that the Mearka-app and web interface can deliver the promised
functionality. The data flow between the Mearka-app, web interface, backend,
and position detection components is illustrated in figure 4.1.

Mearka does not require the user to specifically “log in” to use the system,
but it does require that requests have an attached universally unique identifier
(UUID). Because there is no way for the backend to know if one UUID is the
same user as another UUID, it does not retain any data longer than it has to,
nor does it allow sharing of data between UUIDs. Mearka lets the user upload
a video to get positional data and use the Mearka-app to tag events relative to
the start of the video. However, since there is no login, the user must export
the data from the Mearka-app and import it into the Mearka web-interface to
merge the tags and positional data. The resulting soccer metadata can then be
exported before importing it into something like Dárkon for further use and
analysis [1].

4.5.1 REST API
In Mearka, the backend is built as a REST API server with endpoints that the
system components can use. Figure 4.9 lists an overview of the endpoints
available. Each item in the list is part of a URL, where the sub-list items build
on the URL they are nested beneath.

The backend utilizes the REST design principle for developing its API because it
simplifies the development process as it can assume that it will get all necessary
information through the request itself. This is different than keeping a state
between requests from a user since it then would need to check whether it has
the necessary information to fulfill the request.

44 chapter 4 design

All the endpoints end with a “:uuid”, which is a Universally Unique Identifier
(UUID). This UUID is created by assigning a big and unique number to each
“user”. In Mearka, this is more associated with a specific communication session
than a user through the Mearka-app or the web interface. Because of this, a user
can use the web interface and the Mearka-app simultaneously, but both devices
will be assigned a different UUID. It is possible to merge the two metadata files
by uploading the file from the Mearka-app to the web interface. Given that the
web interface has just detected the position on a video, the uploaded metadata
will be merged with the positional data already on the backend. Once merging
is complete, the newly updated metadata can be exported through the “export”
button in the lower right corner, illustrated in figure 4.8.

An example endpoint is “/app”, and its nested “/record/:uuid”. This describes
the API URL “/app/record/:uuid” used by the Mearka-app. Adding “:uuid” to
the end of the URL means that the endpoint expects an assigned UUID for
each request. This is so the backend knows to which user to add or create
data.

Almost every endpoint will reject a request if it does not contain a UUID. If the
interface does not have a UUID assigned, it calls the “/utils/get-uuid” endpoint
to get an assigned UUID. The newly generated UUID is then added to the
response such that the client interface, Mearka-app, or web can use the same
UUID to add additional data. This, and the “/app/record” endpoint, are the
two endpoints that do not refuse a request without a UUID.

When it comes to building APIs, representing Representational State Transfer
(REST) and GraphQL are two popular options that developers often consider.
REST is a well-established standard for building web services that use HTTP
as the communication protocol [19]. It is resource-oriented and relies on pre-
defined HTTP methods to manipulate resources, such as GET, POST, PUT, and
DELETE. On the other hand, GraphQL is a relatively new technology developed
by Facebook to address some of the limitations of REST [61]. GraphQL is a
query language that allows clients to specify exactly what data they need and
receive only that data in response, making it more efficient and flexible than
REST. While REST works best for simple, straightforward APIs, GraphQL is
better suited for complex, data-intensive applications where performance and
flexibility are critical.

An evaluation between GraphQL and REST API shows that REST is up to
50.50% faster response time [62], which means it is better when multiple
requests access some data. This also means it is better suited to be used in
time-sensitive applications, like when the Mearka-app tags an event. Choosing
to implement the backend as a REST API was mainly chosen for its stateless
property. Because REST is stateless, the backend can assume that each request

4.5 backend 45

has all the information needed to fulfill that request. This simplifies the de-
velopment as each endpoint only needs to require what that endpoint needs.
Another reason is that the backend only requires simple HTTP requests to
fulfill most of its duty besides uploading videos, therefore, a simple REST API
is sufficient.

/app
/record/:uuid
/tag/:uuid

/web
/upload-video/:uuid
/metadata/:uuid

/utils
/get-uuid
/get-user-metadata/:uuid
/remove-user/:uuid
/remove-user-data/:uuid
/check-user-files/:uuid
/begin-processing/:uuid/:numfiles

Figure 4.9: Backend API endpoints.

4.5.2 Soccer Metadata
The premise of Mearka is to help the user get useful metadata from the video
footage they have provided, and so the backend is developed with this in mind.
To store soccer metadata, the backend uses a map where UUID are keys, and
the value mapped to each key is an object containing all the possible soccer
metadata for a user. A more detailed description of how the data is stored on
the backend is described in section 5.4.

When the Mearka-app wants to record, the backend generates a UUID, and
the soccer metadata is set up for that UUID in the local map of UUIDs on the
backend. This UUID is also returned to the source of the request, so it can be
used with subsequent calls to map new tags to the correct UUID.

As figure 4.9 lists, the endpoints for the web also need a valid UUID. If none is
present in the request, the request is invalid. This means that the web client
needs to ask the backend for a UUID, which will then be used when uploading
video or soccer metadata.

46 chapter 4 design

4.5.3 Mearka-app
As described in section 4.3, the Mearka-app needs to agree with the backend
before starting a session to tag events. This is done so the backend can control
how metadata is created and formatted. The Mearka-app sends a request to
the backend, which stores the time of day when the request arrives.

From then on, the Mearka-app can tag events by sending a request that includes
the assigned UUID, and the backendwill add a tag to that UUIDs metadata. The
tags created with the Mearka-app will not contain any additional information
other than the offset into a separately recorded video. This is done to make
the Mearka-app non-intrusive to use by a coach, while still giving value with
time offsets into a video that can show what happened.

Once the match or training session is over, the Mearka-app sends a request
(with the stored UUID) to get the resulting soccer metadata stored on the
backend. When the backend retrieves the soccer metadata from memory and
sends it back to the Mearka-app, the user and the metadata are removed. This
is done because a request to start a new recording from the Mearka-app will
always generate a new UUID. The old data is irretrievable after the Mearka-
app is done with a session since the Mearka-app forces the user to start a new
session once a session is complete. Because of this, removing a user and data
after the Mearka-app completes a session is done to mitigate storing unused
data.

4.5.4 Mearka Web-interface
The web interface interacts with the backend whenever the user uploads or
requests a file. As described in section 4.4, the user can upload a video, or
multiple videos, with just a few clicks. Once the user has chosen which video
files to run position detection on, the front end lists the files and sends them
individually to the backend. The backend receives these files one by one and
stores them in a shared folder named the same as the UUID of the request.
This folder is shared between the backend server and the position detection
component of Mearka.

Once the files are transferred, the frontend notifies the backend that every file
transfer is complete to start position detection on the video(s). The backend
is notified by sending a request to a different endpoint with the same UUID,
with information on how many files have been uploaded.

Depending on how many files were uploaded, the backend acts accordingly. If
multiple files are transferred, then there is a need to concatenate the videos

4.5 backend 47

into one longer video. The functionality to concatenate videos is present in
the position detection component of Mearka. Therefore the backend requests
that the files present in the shared folder, inside the subfolder named the
same as the UUID, be concatenated. More on how this is done is described
in section 4.6. Once the video is concatenated, a new request to the position
detection component is sent to start position detection on this new file.

After the files are sent, the user is notified that the system is working on
detecting people’s positions in the video. The Mearka web-interface enables
the soccer metadata to be downloaded after the system is done processing the
video. To get the soccer metadata, a request for the most up-to-date soccer
metadata from the backend is sent to “/utils/get-user-metadata/:uuid”, where
the actual UUID is appended at the end. The backend uses the UUID from
the request to retrieve the soccer metadata from its local map of data and
respond with the metadata file, which is automatically downloaded to the
client’s machine.

4.5.5 Position Detection Component Communication
Communication between the backend and the position detection component
is very important in Mearka, as these components are what enable the system
to generate the most valuable data. The backend and the position detection
component both have a reachable REST API that other components in the
system can reach.

The user can upload a video through the web interface as described in sec-
tion 4.5.4, and the backend stores this video in a shared folder between the
backend and the position detection component. Once the file transfer is com-
plete, the backend requests the position detection component to detect positions
in the video through an API endpoint. After the position detection component
is done detecting positions, the file containing positions is sent to the backend.
The backend appends this information to the soccer metadata for the UUID
that requested it.

In the case where the user uploads multiple files, the backend requests that the
position detection component concatenate the videos. The position detection
component then responds with the filename of the concatenated video. The
backend then requests the position detection component to start detecting
positions on the video, in the same shared folder, with a request containing
the same UUID of the user. This also refers back to using REST APIs which
are stateless, meaning they expect all relevant information to be present in the
incoming request.

48 chapter 4 design

4.6 Position Detection Component
The position detection component enables Mearka to detect positions in the
video. This component consists of a video concatenation script, a program
detecting positions in the video, and a server. The script concatenating videos
consists of libraries that utilize system calls to list files in folders and start the
program FFMPEG with the appropriate command line arguments. The server
is a middle layer, receiving requests from the backend server and responding
with the results.

No matter which script or program is activated, the data flow is the same, as
illustrated in figure 4.10. The user uploads the video to the backend, which
stores the video in a shared volume between the backend component and the
position detection component. Next, the backend sends a request to the position
detection server (section 4.6.3) to start concatenating video or detect positions.
The appropriate script or program is activated, and the result is returned to
the backend. From there on, the Mearka web-interface (section 4.4) enables
the download of the updated soccer metadata from the backend, as illustrated
by point 6 in figure 4.10.

Backend Position Detection

/Shared Volume

Start Processing

1
2

3
4

5
6

Figure 4.10: Data flow when using the Position Detection component.

4.6.1 Concatinate Video
As some cameras split a longer recording into smaller video files, there is a
need to concatenate those files back into a full-length video3. The script used
in Mearka takes a folder path as input and returns a concatenated video in
the same folder as the input files. It starts by listing all files present in the

3. DJI Action 3 is a camera that splits a longer recording into smaller 4GB files. Although it
is not confirmed, and the camera formats the memory card to exFAT format (max file size
of 128PB [63]), the choice to split a recording every 4GB likely stems from the older FAT32
filesystem days. On the FAT32 filesystem, one file can not be larger than 4GB [64].

4.6 posit ion detection component 49

folder and filtering out anything that is not a video⁴. This script uses FFMPEG
(section 2.3) to concatenate a list of videos into one longer video. Once the
list of filenames to concatenate is obtained, the script creates a file containing
each filename with specific keywords so FFMPEG recognizes it. Once this file
is created, FFMPEG is run with the appropriate command on the operating
system, concatenating the videos listed in the file into a new video stored in
the UUID folder.

FFMPEG concatenates the videos in the same line order that the videos are
listed in this file, which means that the videos listed are appended after each
other in the same order as the file lists them. For this script to be useful,
the videos must be named ascendingly, alphabetically, or numerically. The list
of video filenames is sorted alphabetically before being written to the file.
Once done, the script has a command line interface option to clean out all
the smaller video files that make up the more extensive full-length video. This
could potentially be helpful if storage is an issue and the user does not want
to store the same video twice.

4.6.2 Position Detection
Detecting positions based only on video input is part of Mearka functionality
that can potentially give the most value. The position detection functionality
is further evaluated in section 6.2. This program combines the OpenCV with
the CVlib library to read images from a video file and detect pixel positions
in the frame. Mearka do not convert from pixel coordinates in the frame
to field positions in the current implementation. A possible solution to this
could be to implement something similar to “Pixel2Field” by Liang Peng, which
is able to automatically transform every pixel coordinate to their scaled 2D
field position [65]. Implementing this is left for future work due to time
constraints.

OpenCV interprets the video as a “webcam”, which means it is possible to load
one frame at a time in memory by manually choosing to load the next frame
in the sequence. For each frame, CVlib is used to do the object detection on
the loaded frame.

As explained in section 2.4.5, this thesis uses the default model that CVlib has
set up to do object detection, and that is YOLOv4. This model is trained using
a supervised method [42] on the COCO dataset from Microsoft [27]. YOLOv4
not only detects people, but it can also detect phones, monitors, balls, different
fruits, etc.

4. In this thesis, “video” refers to either .mp4 or .mov files.

50 chapter 4 design

Before frames from the video are loaded into memory, the total number of
frames in the video and the frame rate of the video are noted. OpenCV has
methods to figure out both once the video is loaded. This information is used
for calculating the offset in the video where the positions are found, using
equation 4.1. For each frame, the time offset into the video is calculated and
appended alongside a list of pixel positions.

Time offset =
frame number

FPS
(4.1)

Since YOLOv4 detects more than just people, the output of object detection
has to be filtered before being stored. CVlib returns a list of labels describing
what it has detected, a list of pixel positions, and a list of confidence levels.
The labels are iterated over, and if it has detected people, those positions are
stored in a position object together with the time offset into the video.

After the program has tried to detect positions on the entire video, the result is
a list of position objects containing a time offset and a list of pixel positions for
each offset. This data is stored in a file, and the server responds to the backend
by sending over the positional data.

4.6.3 Position Detection Component Server
To connect the position detection component to the rest of Mearka, it has its
own server. This is a simple REST API server that opens up endpoints to enable
concatenation and position detection through some API calls. These endpoints
make it possible for the backend to request the concatenation of videos in a
folder or to do position detection on a video. The server also helps return the
results from the abovementioned script and program to the backend so that
the soccer metadata can be updated accordingly.

Like with the backend API, the position detection server endpoints also require
that the UUID is included in the URL. The UUID is extracted from the URL and
used to create the path to the folder for that user, which is shared between the
backend and this server.

Upon a request to concatenate video or start position detection, the server
extracts the UUID, creates the necessary paths, and does an operating system
call to start the relevant script or program. Once the processing is done, the
server returns the associated result to the backend.

4.7 summary 51

4.7 Summary
This chapter has presented the design of Mearka. The system is designed with
a distributed architecture, using REST API interfaces to communicate between
components. REST APIs were chosen for their simplicity during development
since each endpoint can assume that any data they need will be provided with
the request. The core component in the system is the backend, which controls
how metadata is formatted and bridges the communication between client
devices and the system’s capabilities.

As described in section 4.3, the Mearka-app consists of two buttons once it
is recording tags. The Mearka web-interface (section 4.4) consists of a few
buttons, one for uploading video and the other for exporting soccer metadata
from the backend. The interfaces for the Mearka-app and web interfaces,
depicted in figure 4.3 and 4.4, strives to meet the Easy-to-use requirement, set
in section 4.1. As the web interface lets the user download the newest version
of the soccer metadata through a click of a button, depicted in figure 4.8, the
One-click export requirement in section 3 is met.

To meet the Privacy and Security requirement, that states the system should
separate users’ data from each other, both the backend and the different
interfaces ensure unique UUIDs are used when generating metadata. The
UUID is generated by the backend on each reload of the web interface and
on each new recording session by the Mearka-app. Since the system uses the
UUID to map metadata to a user, meaning one user only has access to their
own metadata, requirement Privacy and Security is met.

The following chapter builds on the design of Mearka by detailing the imple-
mentational details of the system.

5
Implementation
This chapter presents the implementational details of Mearka. In particular,
section 5.1 gives an overview of the system implementation, such as program-
ming languages, special libraries, etc. Section 5.2 covers the implementational
details of the web interface. Section 5.3 describes the app implementation.
Section 5.4 details the implementation of the backend, while section 5.5 covers
how video is concatenated, and position detection is accomplished.

5.1 System overview
Figure 4.1 illustrates a brief overview of how Mearka is set up. However,
figure 5.1 illustrates the system architecture in more detail. This figure de-
picts the four components that Mearka comprises: The frontend (1), backend
(2), position detection component (3), and a shared volume (4) between the
last two. Each sub-component of the figure is denoted with (<component
number>.<sub-component number>), e.g., the Mearka-app is denoted (1.2)
within figure 5.1.

The Mearka frontend comprises a phone app (Android) and a web interface,
sub-components (1.2) and (1.1) in figure 5.1 respectively. The app is developed
with React Native and the Expo library to make development easier. The Expo
library enables the developer to observe changes in the Mearka-app on a device,
live, during the development process. This is contrary to building the app to

53

54 chapter 5 implementation

observe changes or utilize a virtual device that emulates the Mearka-app on the
computer. React Typescript with the Chakra design library is used to develop
the web interface.

The backend component is wholly written in Golang [66], with the Gin web
framework [67] to help ease the implementation of a REST API. Golang was
primarily chosen for its small language syntax, good support for HTTP servers,
and speed. It was also selected because I wanted to learn Golang for this thesis.
There are two separate REST APIs on the backend, one that communicates
with the frontend (2.1), as well as one for internal communication with the
position detection component (2.2).

Python [68] was chosen for the position detection component because it is
widely used in scientific and machine learning applications, which means mul-
tiple libraries are accessible to help ease the implementation of this prototype.
Flask [69] is used to run the position detection server, implementing a small
REST API (3.1) that enables communication with the backend. In addition, the
server can start the concatenation of a video (3.2) as well as begin position
detection (3.3) upon request. The shared volume (4) between the backend
and position detection component is located on the filesystem, where both
components have access to it.

Backend

REST
API (2.1)

internal
REST
API
(2.2)

User Metadata (2.3)

Frontend UI

Web (1.1)

App (1.2)

internal
REST
API
(3.1) Concat video

(3.2)

Position detect
(3.3)

position
detection

component

1 2 3

Memory

Filesystem (disk) /Shared volume

4

Figure 5.1: Component system overview.

5.2 Web
The web interface is implemented using React typescript [70] in combination
with Chakra UI [71] to simplify the design. React typescript is a library that
wraps around HTML. It lets the developer create and reuse custom components
to simplify the development of a website and enable the use of pre-made

5.2 web 55

components implemented by the library. A component can have input that will
change the information in the generated HTML based on that input. This allows
the component to be dynamic and potentially reused in multiple places on the
website, which minimizes the need to copy-paste HTML. Figure 5.2, depicts
a simple example of a component created with React that uses a component
argument. Once the component is created, it can be used as depicted in
figure 5.3, passing the appropriate arguments.

Chakra is a design library used on top of React Typescript to simplify the design
process while developing the website. It works by having pre-made components
in React that have styling already applied. Using the Chakra components, the
design is set “out of the box”, meaning less time is spent on visual design.

1 import { Flex, Text } from "@chakra-ui/react";
2

3 type args = {
4 numberArgument: number,
5 }
6

7 const exampleComponent = ({ numberArgument }: args) => {
8 return (
9 <Flex>
10 <Text> "This is a number: ",{numberArgument} </Text>
11 <Text> "This is twice the size of the number: ", {numberArgument * 2}</Text>
12 </Flex>
13);
14 };
15 export default FieldPlayer;

Figure 5.2: React typescript component example

1 import exampleComponent from "../components/exampleComponent";
2

3 const website = () => {
4 return (
5 <exampleComponent numberArgument={10}} />
6)
7 }

Figure 5.3: Use a React Typescript component.

5.2.1 Api calls
For the frontend to be useful, it needs to communicate with the backend. This is
done through the REST API available on the backend, illustrated as component
2.1 in figure 5.1. Before doing any API calls, the web interface makes sure it has

56 chapter 5 implementation

a valid UUID. If it does, then it can contact the appropriate API endpoint. If
not, it acquires a UUID by requesting one from the backend via a GET request
to the “/utils/get-uuid” endpoint.

The most important endpoint for the web interface is the “/web/upload-
video:uuid”. This endpoint is used to upload videos from the client frontend,
to the backend, to be used for position detection. When uploading a video or
multiple video segments to the backend, the frontend counts how many files
are being sent. It then creates a multiform that is sent to the backend such that
it can transfer each video. Once the last video (if multiple) is sent, the frontend
sends a notification to the backend to let it know the frontend is done sending
videos and how many videos were sent. Once the videos are on the backend,
the backend ensures multiple video segments are concatenated into one and
starts position detection.

After position detection is complete, it is possible to download the available
soccer metadata from the backend. To download the newly generated soccer
metadata, the web interface has an “export metadata” button in the interface’s
lower right corner, as depicted in figure 4.8. This sends a request to “/utils/get-
user-metadata” API endpoint on the backend, which returns and downloads
the soccer metadata as a JSON file.

5.3 Mearka-App
As described in section 5.1, the Mearka-app is developed using React Native
with the Expo framework [72]. React native is used to develop multiplatform
apps rather than developing for one operating system specifically. This eases
the development process by being developed once and choosing a platform
later, increasing the portability of the app.

Figure 5.4 illustrates how React Native works when developing an app with a
button and a text input field in a portable way. In this example developer envi-
ronment, the implementation states a button or input field should be present.
Once the app is ready to be built, React Native swaps out these components with
the platform-specific equivalent. The platform-specific components are illus-
trated in the “Android” and “IOS” boxes in figure 5.4. The portability is the main
reason why this thesis developed the Mearka-app with React Native.

Expo is a framework that enables the developer to see the app’s development
live as changes are being introduced. For this to work, Expo needs to run a
server on the development computer, and both the computer and the device
(phone, tablet or otherwise) needs to be connected to the same network. The

5.4 backend 57

Development
environment

React Native = RN

UI ButtonButton TextFieldEditText

App buildAndroid IOS

RN Button RN Input field

Figure 5.4: React Native example.

device needs to run the “Expo Go” app, which lets Expo stream the app to the
device live. This allows the developer to observe changes done, in real-time,
instead of using an emulator or building the app and transferring it over to the
device for each change.

Communication with the backend is done through API calls to the appropriate
endpoints (listed in figure 4.9) at the backend. Unlike other endpoints on the
backend, the app does not need to specifically request a new UUID if it does
not have one on app startup. This is because starting a recording prompts the
backend to generate a new UUID that the app gets in response. The UUID is
stored locally on the device and used in every later request to append soccer
metadata to the correct UUID.

Since the backend uses a REST API, all information needed must be included
in each request. Because of this, requesting to start a recording is done with an
HTTP [73] POST request, where the body contains a boolean value informing
the backend if the app wants to record or stop recording. Without this, the
backend cannot know if it is a request to start or stop recording.

5.4 Backend
The backend is implemented using Golang [66] and Gin web framework [67]
to simplify setting up a REST API server. Golang was chosen because of its
built-in concurrency and robust standard library. The backend ties Mearka
together, so it must respond to requests, even when waiting for work, such as
position detection from the position detection component. As a request comes
in, the current thread starts working on it, and a new thread is started to

58 chapter 5 implementation

listen for new incoming requests. Golang is a compiled language, which means
everything it needs to run is compiled into the executable file.

Another reason Golang is chosen to implement the backend is that it is strongly
typed. This helps to keep types consistent, as there is no confusion about what
types a function or API endpoint requires. Python and Typescript [68, 74] have
syntax for types. This means specifying which types a function requires and
returns is possible. However, neither is strongly typed, which means passing
variables without declaring or specifying what type is possible.

To set up the API endpoints, the Gin web framework for Golang was used. Gin
makes it relatively easy to nest endpoints in groups, as depicted in figure 5.5.
Here there are three main groups, “app”, “web”, and “utils”, that all have
nested endpoints. Each nested endpoint adds to the URL it is nested within.
This means the endpoint “/record/:uuid” adds to the URL “/app”, resulting in
the endpoint being “/app/record/:uuid”. Each endpoint also has an appropriate
HTTP method, which means it will only accept a request if both the URL and
method is correct. This removes the need to manually check the method used
when implementing the endpoint handler1.

1. A “handler” is a function responsible for handling the request. Handling a request can
include reading the body, doing some work, and responding with the appropriate response
and/or data.

5.4 backend 59

1 func setEndpoints(r *gin.Engine, users *map[string]UserDataLocal) {
2 appGroup := r.Group("/app")
3 {
4 appGroup.POST("/record/:uuid", record(users))
5 appGroup.GET("/tag/:uuid", tag(users))
6 }
7 webGroup := r.Group("/web")
8 {
9 // Uploading video or metadata
10 webGroup.POST("/upload-video/:uuid", recieveVideo(users))
11 webGroup.POST("/metadata/:uuid", recieveMetadata(users))
12 }
13 utilGroup := r.Group("/utils")
14 {
15 utilGroup.GET("/get-uuid", createUuid())
16 utilGroup.GET("/get-user-metadata/:uuid", getUserMetadata(users))
17 utilGroup.GET("/remove-user/:uuid", removeUser(users))
18 utilGroup.GET("/remove-user-data/:uuid", removeUserData())
19 utilGroup.GET("/check-user-files/:uuid", checkUserFiles())
20 utilGroup.GET("/begin-processing/:uuid/:numfiles",

beginProccessing(users))↩→
21 }
22 }

Figure 5.5: Setup backend endpoints using Gin for Golang.

Figure 5.5 depicts the endpoints used by the app and web interface to communi-
cate with the backend. To communicate with the position detection component,
the backend uses a different API that a server on the position detection compo-
nent is hosting. These endpoints let the backend start the video concatenation
or a position detection process.

Concatenate video is done whenever the user uploads multiple videos from
the frontend to the backend. The backend receives the video and stores it on a
storage volume that is shared between the backend and the position detection
component. This component (4) is illustrated in figure 5.1. Storing the videos
on a shared volume (4) reduces network traffic since the video does not need to
be re-transmitted from the backend to be worked on by the position detection
component. Once the video is concatenated, the backend requests that the new
video is used for position detection.

The backend is the “orchestrator” of Mearka, it controls the input from the
frontend, as well as the response from the position detection component.
These input requests can create metadata or add to existing soccer metadata
connected to a specific UUID.

60 chapter 5 implementation

UUID is created on the backend using Golangs UUID package [75]. This
generates a UUID as a 16-byte array, which is converted to a string, illustrated
in figure 5.7. It is converted to a string, so it is easier to workwith by the frontend
and the position detection component in this POC prototype of Mearka.

What soccer metadata is stored depends on the data available. Figure 5.8
illustrates that metadata is structured on the backend as a map (similar to
dictionaries in Python [76, section 5.5]). In this example, the keys, “uuid0” and
“uuid1”, are UUID’s on the form described in figure 5.7. All metadata is stored
in memory on the backend to make it easy to retrieve and add new metadata
to a UUID. Another option was to store it on disk, but this option will be further
discussed in section 7.3.

To store the soccer metadata as a map, the data structure of which is illustrated
in figure 5.8 and 5.12, on the backendwas chosen because it is humanly readable
and easily convertible to JSON format when exporting. JSON is often used by
REST APIs as many programming languages widely support it [20]. This is
important as the frontend of Mearka is implemented using React Typescript
as well as React Native. The backend is implemented with Golang, and the
position detection component uses Python. Even if the different components
of Mearka uses different languages, they should all be able to handle JSON [22,
23, 24].

An example of how the positional data can be extracted from the soccer
metadata to display players’ positions at a time “t”, is illustrated in figure 5.6. For
each time “t=n” to “t=n+5”, there are certain known positions, as illustrated
by the soccer field illustrations, and the dots depict player positions at time “t”.
Time “t” is based on the “time” key, value stored in the positional object, which
is illustrated in figure 5.11.

0 minutes 45 minutes

t = n t = n + 1 t = n + 2 t = n + 3 t = n + 4 t = n + 5

t = time in minutes

Figure 5.6: Example: soccer metadata used to know positions over time.

When the app wants to start recording a tag session, a new UUID is generated
and sent in return to the app. In addition, an empty metadata object is created
and mapped to the UUID in memory on the backend. When the user tags an
event, a request is sent to the backend, and a new tag event is appended to

5.5 posit ion detection component 61

the list of “tags” in the metadata, illustrated from the list starting on line 4 in
figure 5.8.

UUID: b650161d-ca3d-4781-a9ac-5aa462d734d1

Figure 5.7: Example UUID

5.5 Position Detection Component
For the position detection component, everything is implemented using Python
[68]. Python is chosen because of its simple, easy-to-read syntax and the vast
number of machine learning libraries available. It is also ranked the number 1
programming language for machine learning by the website www.codecademy.
com [77], for the same reasons.

Figure 5.9 lists the Python libraries used in this thesis to do position detection
on the video provided by the user. In addition to these libraries, FFMPEG [25]
is used to concatenate video through an operating system call. Some of the
libraries listed will be described in section 5.5.1 and 5.5.2.

1. OpenCV: Used to load the video and read one frame at a time.
2. Cvlib: Used to detect objects, including people.
3. Flask: Used to implement server with a simple REST API for the backend.
4. Os: Used by Server to run scripts and commands on operating system.
5. Pathlib: Used to extract subpaths from a path or filename from a path.
6. Argpars: Used to setup parser for the scripts Command Line Interfaces
(CLI)

Figure 5.9: List of Python libraries used.

Running the script that concatenates the video and starting the position de-
tection program is done through a server. The server is set up using Flask
[69], implementing a simple REST API that enables the backend to request
concatenation or position detection. The position detection server endpoints
are listed in figure 5.10. As a request comes in, the UUID is extracted from
the URL to create a path to the shared folder between the backend and the
position detection component. Once the correct path to use is created, the OS
library runs a terminal command to start the appropriate script or program
with the correct arguments. Once the script is done, the result is sent back to
the backend. The new filename to the concatenated video is returned after
video concatenation, and for position detection, the list of positional data is

www.codecademy.com
www.codecademy.com

62 chapter 5 implementation

returned.

/merge-videos/<uuid>
/position-detection/<uuid>

Figure 5.10: Machine Learning endpoints.

5.5.1 Concatenate video
The videos uploaded to the system can be recorded on any COTS (section 3)
camera, phone, action camera, or other devices. If the backend receives multiple
videos, they must be concatenated for the position detection to be correct. This
script takes a path to the folder containing the video files as a command line
argument from the server. The OS library gets a list of every file in the path,
which is later used when creating a list containing only videos. Filtering is
done by iterating over the list returned by the OS library and adding every file
with the “.mov” or “.mp4” extension to a new list. Pathlib library is used to
extract which file extension each file has. The resulting list is then written to a
file inside the path.

FFMPEG is called with the abovementioned files to concatenate the videos
together. FFMPEG is started through its CLI to create a new video with the
same extension (“.mp4” or “.mov”), which contains the content of the videos
sent by the user. When creating a new video using FFMPEG, there is an option
to copy the codec from the input videos or re-encode it into a new codec. The
decision fell on copying the codec as that is the most efficient way to get a
concatenated video from the list of videos2. Once the video concatenation is
complete, the new file name is returned back to the backend.

5.5.2 Position detection
This program is the component in Mearka that detects players’ positions in the
frame. This is partly accomplished with the help of OpenCV [35] and Cvlib
[78]. It is partly accomplished because this thesis detects the pixel positions in
the frame. Translating pixel coordinates to real-world field coordinates is left
for future work. However, this thesis does have Automatic position detection

2. H.264 [17] is encoded by tracking the changes between frames. Only certain frames (i.e.,
every 10th frame) have all the information needed to display that frame. The “in-between”
frames only store pixel values that have changed since the last “full-frame”. Re-encoding
means FFMPEG would need to, for each frame, go back and look at the last “full-frame”
to get the full image, and then re-encode it to the new codec. This is more processor
intensive than essentially copying the bytes directly from one video into another.

5.5 posit ion detection component 63

(section 3), even if the positions are pixel coordinates in the frame.

As the user uploads a video, the backend ensures that multiple videos are
concatenated, if multiple are uploaded, before any position detection begins.
This is done because the system assumes multiple videos are just multiple parts
of a longer video.

Once the video is ready, the position detection server starts the position detec-
tion program. This program takes a video path as an argument and writes the
resulting positional data to a file in the same folder that the video resides.

The script uses OpenCV to load the video like a “stream” so that it is possible
to read one frame at a time. A frame is loaded into memory, and CVlib’s
“detect_common_objects” method is used on the loaded frame. This method
uses the pre-trained YOLOv4 model [14] to do object detection and utilizes the
Central Processing Unit (CPU) to the max. It is possible to build the library to
utilize the Graphical Processing Unit (GPU) instead, which would likely give a
significant speed increase. The reason is that GPUs are more suited to handle
highly parallel tasks such as these, compared to a CPU [79]. However, this is
not done since this is a POC prototype, and implementing the functionality
was prioritized higher than performance.

The object detection method returns three lists; one containing the labels of
the objects it found, another list with the pixel positions of all objects with the
different labels, and lastly, a list of how confident it was that the positions are
of a given label. Labels are names of machine learning classes, like “person”,
“monitor”, “apple”, etc. The lists have an equal number of elements, such that
element on an index “i” in one corresponds to element on index “i” in the other
two.

Mearka is only interested in finding the position of people relative to a soccer
field, so those positions need to be filtered out. This is done by iterating over
the list of labels and keeping track of which index in the label list the current
label is. If the label is “person”, then the corresponding positions are added to
a position object before that object is appended to a position list. Figure 5.11
illustrates a position object’s appearance. Here the time offset is mapped to the
“time” key, and a list of pixel positions is mapped to the “positions” key. The
time offset is calculated using equation 4.1. Once position detection is done, a
list of position objects, illustrated by figure 5.12, is written to a JSON file in the
same folder as the video.

64 chapter 5 implementation

1 {
2 "time":0.76,
3 "positions":[
4 [18,217,44,300],
5 [400, 36, 222,56],
6]
7 }

Figure 5.11: Example positional object for one offset.

1 [
2 {
3 "time":0.76,
4 "positions":[
5 [18,217,44,300],
6 [400, 36, 222,56],
7]
8 },
9 {
10 "time":3.12,
11 "positions":[
12 [44,100,300,543],
13 [400, 36, 222,56],
14]
15 },

16
...

17]

Figure 5.12: Example list of positional objects.

The server then reads the position file, returning its content to the backend.
On the backend, the positional data is mapped as the value to the “positions”
key of the metadata for the UUID, as depicted on line 25 in figure 5.8.

5.6 Summary
This chapter outlined the implementational details of Mearka. The system is
comprised of three main components, the frontend, backend, and the position
detection component. React Typescript with Chakra, and React Native, is used

5.6 summary 65

to develop the web interface and app, respectively. React Typescript was chosen
for its simplicity to get components displayed on the screen with some pre-
applied styling through Chakra. Developing the app through React Native and
Expo was done to implement once and choose a platform to build the app for
later.

The backend is developed with Golang and the Gin web framework. Golang
is chosen because it has minimal syntax, easily concurrent code, and libraries
like Gin to help ease the implementation of the REST API needed to connect
everything.

The position detection component is developed using Python because of its
high-level syntax that makes it humanly readable and its libraries that makes
it easier to do machine learning tasks. Concatenating video is done using a
combination of OS libraries in Python together with FFMPEG that runs on the
machine. Position detection is done with the help of OpenCV and CVlib. It
loads a video from the volume shared with the backend and runs one frame
at a time through YOLOv4 to detect the pixel position of people in the frame.
Translating the pixel coordinates to real-world field coordinates is left for future
work. However, the “Pixel2Field” system by Peng, Liang, can be a good place
to get inspiration [65]. The result is a file containing a list of positional objects
(illustrated in figure 5.11 and 5.12) stored in the same folder as the video, on
the shared volume.

The next chapter evaluates Mearka through experiments and results. Both
functional and non-functional requirements will be evaluated.

66 chapter 5 implementation

1 [
2 "uuid0":{
3 "metadata": {
4 "tags":[
5 {"player":{},
6 "event":{},
7 "startCoordinates": {},
8 "endCoordinates":{},
9 "startTime":float64,
10 "endTime":float64,
11 "playingDirection":string
12 },
13 {"player":{},
14 "event":{},
15 "startCoordinates": {},
16 "endCoordinates":{},
17 "startTime":float64,
18 "endTime":float64,
19 "playingDirection":string
20 },

21
...

22],
23 "players":[]
24 "globalStartTime": time.Time,
25 "positions":[
26 {
27 "time": float64,
28 "positions":[][]int
29 },
30 {
31 "time": float64,
32 "positions":[][]int
33 },

34
...

35]
36 }
37 },
38 "uuid1":{· · · },

39
...

40]

Figure 5.8: Example JSON metadata.

6
Evaluation
This chapter outlines an evaluation of Mearka. Camera setup and experimenta-
tion are presented in section 6.1. Section 6.2 outlines the experiment setup and
measurement of position detection speed and accuracy. Section 6.3 describes
the experiment and results of testing JSON and XML as options to store meta-
data. The potential speedup Mearka has over manually tagging is measured
and presented in section 6.4.

6.1 Choosing a Camera
When choosing a camera to help the development of Mearka, specific record
time requirements were defined in section 4.2.1. A football match is at a
minimum of 2𝑥45 minutes plus a 15-minute break, which adds up to 105
minutes of minimum record time. It would be possible to stop the recording
and turn the camera off during the break, extending the battery life further.
However, setting up a camera, press record just before the match start, and
not think about the camera until the match is over require fewer resources by
the team. Therefore, 105 minutes is the minimum record time required for the
camera to meet the stated requirement.

The camera was set to record mp4 files to test the battery life, using H.264
compression and 16:9 aspect ratio. H.264 compresses video in the following
way: At a set interval, there are frames called “keyframes”, where every pixel

67

68 chapter 6 evaluation

has the information needed to display that pixel. For every frame between
these “keyframes”, only the changed pixels contain their complete information.
The pixels that have not changed refer back to the last “keyframe” instead of
storing the information for that pixel, meaning the filesizes are lower than raw
(where no information is discarded). However, it also means that the previous
“keyframe” needs to be consulted to display every frame in the video that is
not a “keyframe”.

A combination of different camera and recording settings is tested in this thesis.
Resolutions are denoted on the form Widt 𝑥 Height in pixels. Framerate at
each resolution is denoted as a number XX frames per second (FPS). Table 6.1
presents the different settings combinations tested.

Resolutions
FPS 3840x2160 2688x1512 1920x1080

Screen on while recording 60 ! ! !

25 ! ! !

Screen turns off 3s after
recording is started

60 ! ! !

25 ! ! !

Table 6.1: Settings combination for camera and record options.

6.1.1 Battery life
One requirement for the camera is that it has to be able to record for more than
105 minutes. Another requirement is that the camera should be easy-to-use.
Therefore, the camera should be able to record for long enough (minimum
105 minutes) with various combinations of the settings used. It is not good
enough if the camera can only record for long enough in one or two specific
combinations of settings. Therefore, the camera has been evaluated to observe
the recording limit for different combinations of settings.

The battery life was evaluated by recording continuously, starting with the
battery at 100% and depleting it completely. The recording was conducted in
a room-tempered room, filming with visible skies and a road in the lower part
of the video, out of a window. One downside to benchmarking the camera by
recording this scene is that there is less movement in the frame throughout the
recording. This can be an issue for the data, as the cameras record in H.264 [17],
which compresses each image based on the pixels that have changed values.
Because there are more pixels that are similar between frames, the cameras
might perform overly well since the camera needs to store less data per frame
than a recording with more movement in the frame.

6.1 choosing a camera 69

Each setting combination described in table 6.1 is benchmarked four times,
and the average value is used to create the resulting graphs in figure 6.1, 6.2
and 6.3.

Using the average is chosen because it gives a good indication, rather than
using an overly optimistic or pessimistic value. Benchmarking each setting
combination four times was done to save time, compared to five. Only the
average values would get used, compared to graphing the avg, 25th and 75th
percentile, etc., as is done when evaluating the position detection component
in section 6.2. A result of this is that the reported values are higher than the
worst observations but also lower than the best-performing benchmarks.

The graphs have resolution and frame rates along the x-axis, denoted on the
form “1080p25”, for example. 1080 refers to the vertical pixel resolution of the
video, and 25 refers to how many FPS the video is. The “p” refers to the scan
mode of the video, which indicates how the frames are displayed on the screen.
In this case “p” is for “progressive” rather than “interlaced”. More information
about the two different scan modes is available in appendix A.1.

Screens draw power and heat up when turned on for some time, negatively
impacting the recording time. The first set of exeriments was conducted with
the screen turned on throughout the recording to test the “worst-case scenario”
for the battery. The result is displayed in figure 6.1. From this graph, it is
possible to conclude that in almost every combination, except when recording
with a resolution of 3840x2160 (UHD) at 60 FPS, the camera can record longer
than the minimum of 105 minutes.

The same set of experiments is conducted with the screen turning off three
seconds after the recording starts. Figure 6.2 displays the results of these
benchmarks. The findings are that every resolution and FPS combination can
record for more than 105 minutes with the screen turning off. This is backed
up by every point being above the blue horizontal line, which illustrates the
lower limit of 105 minutes of record time.

Figure 6.3 displays the differences when comparing the results from recording
video with the screen turned on versus off after three seconds. Orange dots are
the results from recording with the screen on at different resolutions and with
the different framerates, and blue dots for recording with the screen off. The
blue line illustrates the minimum requirement of 105 minutes minimum record-
ing time. The plot indicates that the user can choose almost any combination of
settings and still get the required 105 minutes of recording time. As depicted by
the plot, only 3840x2160 resolution, recording 60 FPS and keeping the screen
on during recording, does not meet the 105 minutes required recording time.
These tests are only valid for considering recording times possible with the DJI

70 chapter 6 evaluation

2160p60 2160p25 1512p60 1512p25 1080p60 1080p25
Resolution and framrate.

100

105

110

115

120

125

130

135

Re
co

rd
 ti

m
e

in
 m

in
ut

es

Minimum required recording time

Recording time with camera screen on

Figure 6.1: Recording times with screen on.

2160p60 2160p25 1512p60 1512p25 1080p60 1080p25
Resolution and framrate.

110

120

130

140

150

160

Re
co

rd
 ti

m
e

in
 m

in
ut

es

Minimum required recording time

Recording time with camera screen off

Figure 6.2: Recording times with screen off.

Action 3.

From the plot in figure 6.3, it is possible to conclude that recording with the
screen off will increase the overall recording time of the camera. Decreasing the
resolution is another contributing factor to increase recording time. Resolution
is a measurement of how many pixels need to be stored for each frame in the
video. Table 6.2 displays the resolution differences and the number of pixels

6.1 choosing a camera 71

2160p60 2160p25 1512p60 1512p25 1080p60 1080p25
Resolution and framrate.

100

110

120

130

140

150

160
Re

co
rd

 ti
m

e
in

 m
in

ut
es

screen off
screen on
Minimum required recording time

Recording time with camera screen on and off

Figure 6.3: Compare recording times - blue=screen off, orange=screen on.

stored for each frame at each resolution. If only considering the vertical number
of pixels noted on the x-axis in plot 6.3, it might give the impression that video
with 1512 and 2160 vertical pixels is only 1.5 and 2 times higher resolution than
1080 pixels. However, this is not the case, as table 6.2 describes, the higher
resolutions have closer to double and quadruple the number of pixels per frame.
Each pixel contains data, so storing more pixels per frame means the camera
must work harder to store everything. If the camera needs to work harder,
it consumes more power, which lowers the overall battery life and recording
time.

Resolution 1920x1080 2688x1512 3840x2160
Number of pixels 2073600 4064256 8294400
Multiple of previous resolution 1 1.96 2.0408
Multiple of lowest resolution 1 1.96 4

Table 6.2: Resolution pixel differences.

In addition to the screen and resolution influencing the power consumption and,
thereby, the recording time, the number of frames per second recorded affects
this as well. A good illustration of this is comparing “1512p25” to “1080p60” in
figure 6.3. As explained, higher resolution means more pixels to store per video
frame, which decreases battery life and record time. In this example, the lower
resolution with a higher framerate has a shorter recording than the higher
resolution with a lower framerate. The reason for this is illustrated by table 6.3.
Video with a resolution of 1920x1080 pixels and 60 FPS has to store 124, 416

72 chapter 6 evaluation

million pixels every second. That is 22, 8 more than the video with twice the
resolution at 2688x1512 pixels but half the framerate with 25 FPS. Overall, this
results in the camera doing less work per second and can therefore record for
longer with a higher resolution but lower framerate.

Resolution FPS Pixels per second Difference
1920x1080 60 124416000 228096002688x1512 25 101606400

Table 6.3: Example: compare total pixels/second for 1512p25 and 1080p60.

6.1.2 File size
As described in section 6.1.1, higher resolution means more pixels per frame
in the video. This, in combination with the framerate and the length of the
recording, determines how large the video file will be. File sizes are evaluated to
indicate the potential storage requirements of recording in various resolutions
and framerates.

The data used to test file sizes is the same as what section 6.1.1 uses. The
number of minutes recorded and file size were noted for each battery life
test. These numbers are averaged out within each combination of settings
and used to plot figure 6.4 and 6.5. Only file sizes from the evaluation with
the screen turned off are used for figure 6.4. Only using data from when the
screen turned off was chosen because these recordings lasted longer and had
bigger file sizes. This can better indicate the actual storage requirements for
different settings-combinations, compared to underestimating based on shorter
recording times.

From figure 6.4, it is possible to extract that the higher the resolution and
framerate, the higher the file size. This is not wrong, as illustrated by the linear
regression over the filesizes resulting after recording trending downwards
towards the lowest resolution. However, as table 6.3 presents, and as underlined
by figure 6.4, it is possible to record at a higher resolution while still getting
smaller filesizes than a lower resolution-framerate combo.

6.1 choosing a camera 73

2160p60 2160p25 1512p60 1512p25 1080p60 1080p25
Resolution and framrate.

0

20

40

60

80
Fil

e
siz

e
in

 G
ig

ab
yt

es
 (G

B)
Linear regression over filesizes

Filesizes for different resolutions and framerates

Figure 6.4: File sizes between resolutions and framerates.

To explain how a higher resolution video can record for longer and have smaller
file sizes than a lower resolution one, only based on different framerates,
equation 6.1 can be used. It is established that pixels equal data, so more
data equals larger files. From equation 6.1, it is possible to calculate that
“2160p25”and “1512p25” needs to store 15% and 18.4% fewer pixels every second
than the 60 FPS version of the next step down in resolution.

Pixels per second = Width-pixels · Height-pixels · FPS (6.1)

To further figure out which resolution and framerate combination gives the
most record time per GB, equation 6.2 is used to create figure 6.5. From this
figure, “1080p25” gives the longest recording per GB, but the ratio does not
decline linearly for the higher resolutions. As noted, recording in “1512p25”
rather than “1080p60” results in smaller files and a more extended recording.
This is supported by figure 6.5 displaying that “1512p25” has a higher recording
time per GB ratio than “1080p60”. It is also possible to note the same dis-
crepancy between “2160p25” and “1512p60”, but the difference is less than the
beforementioned example.

Ratio =
Recording time in minutes
File size in gigabytes

(6.2)

74 chapter 6 evaluation

2160p60 2160p25 1512p60 1512p25 1080p60 1080p25
Resolution and framerate

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

m
in

/G
B

Ratio - screen on
Ratio - screen off

Ratio between recording time and file size

Figure 6.5: Recording time to file size ratio.

If it is important to have the longest possible record time, then “1080p25” is
the best option. However, “1512p25” might also be a good choice. It doubles the
resolution while still providing more than adequate battery life and has the
second-best ratio between record time and file size. Which option is best for
position detection is explored in the next section.

6.2 Position detection
Mearka is designed to make position detection as easy as possible. This is
why the web interface described in section 4.4.1 enables the user to upload a
video, or multiple video segments of the same video, to the system for position
detection without additional manual input. How Mearka accomplishes to do
position detection is described in section 4.6.2 and 5.5.2. But, the system must
have completed detection with the specified requirement of soft real-time,
which is defined as within 12h for a full match. This section investigates if
Mearka is able to meet the system requirement defined in chapter 3.

6.2.1 Test system
All the experiments are run on localhost, as the system is a POC and not
deployed on a remote server. Specific experiments, like upload speed, latency

6.2 posit ion detection 75

tests, etc., are not conducted because the system is not deployed.

Localhost runs on an HP EliteDesk 800 G6 Desktop Mini PC with the following
specifications:

• OS: Ubuntu 22.04.2 LTS x86_64

• Kernel: 5.19.0-42-generic

• CPU: Intel i7-10700 (16) @ 4.800GHz

• GPU: Intel CometLake-S GT2 [UHD Graphics 630]

• Memory (RAM): 15776MiB (16GB)

6.2.2 Resolution speed
The first experiment evaluates how resolution impacts position detection time.
The experiment is based on a match recorded in 3840x2160 resolution at 25
FPS. A thirty-second section from this video was extracted, as well as scaled
down to separate 2688x1512 and 1920x1080 resolution files. The choice to use
a thirty-second clip is made to have time to run each test multiple times within
a reasonable time frame. The resolutions that the original video is sized down
to are chosen to mimic actual recording options in the camera of choice.

To prepare Mearka for the experiments, the system was started, and a video
was uploaded to detect positions. The reason is that Mearka needs to download
several libraries andmodels, like YOLOv4 [14], for the first video being uploaded
after a restart.

Each resolution was uploaded five times, and the system was cleared (but not
restarted) to remove old data. Uploading and doing position detection on each
resolution five times was done to get more representative data and an idea of
the variance. The result of this experiment is displayed in figure 6.6, and more
detailed numbers are listed in table 6.4.

The boxplot in figure 6.6 illustrates where the median, mean, and 25th and
75th percentile are. The orange line in each box notes the median, the green
line is the mean for each resolution, and the lower and upper bounds of the
box are the 25th and 75th percentile, respectively. Table 6.4 describes the mean
time for position detection as well as the average FPS, in more detail.

As depicted in figure 6.6, the mean and average timings of both “1512p25” and

76 chapter 6 evaluation

“1080p25” are not that different, even if “1080p25” in general is a little bit faster.
However, “2160p25” needs a bit more time to complete position detection on
the same number of frames. One explanation for why the two lower resolutions
use roughly the same time is that modern computers are efficient. CVlib [78]
and YOLOv4 [14] use all available computing power on the machine. Since
“1080p25” and “1512p25” are “just” doubling in resolution, the resolutions might
be similar enough so that the computer can complete detection almost equally
as fast by utilizing more resources. However, the next step up is a quadrupling
of resolution compared to “1080p25”, and this resolution generally takes more
time, as depicted in figure 6.6. One reason could be that the computer has
exhausted its resources and cannot work faster. It is observed that the computer
used between 80-100% of its CPU, as well as up to 14.7GB of RAM, which
indicates the computer is maxing out the resources.

2160p25 1512p25 1080p25
Resolution and framrate.

225

230

235

240

245

250

255

260

265

Ti
m

e
in

 se
co

nd
s

Position detection time

Figure 6.6: Position detection time on 30s video

Table 6.4 describes concrete numbers for the average time to detect the position
in a 30s video, as well as an estimation for how long it would take to detect
positions in a 90 min video. Referring to figure 6.6, table 6.4 concretizes
the differences in detection time between the three resolutions. The two
lower resolutions differ by ≈4 seconds on a 30-second clip, while the highest
resolution used ≈14 seconds more than the next step down in resolution.

Calculating how many frames the system can detect per second is done with
the help of equation 6.3. This equation needs the framerate of the video, the
length of the video, as well as the time it took to detect the positions in that
clip. The result from using this equation is described in the “avg. detected FPS”
column in table 6.4. Each resolution has an average detect FPS around 3, which

6.2 posit ion detection 77

also builds on the theory that the CPU of the computer is the bottleneck. As
mentioned in section 4.6.2, position detection with CVlib and YOLOv4 can be
done with the help of GPU. This would likely speed up the number of frames
Mearka can detect each second, significantly [79]. Since Mearka is a POC, and
due to time and hardware constraints, this option was not explored any further
in this thesis but left for future work.

Another possible way to decrease the time it takes to run detection is to filter
out pixels that are not part of the soccer field. Since the cameras should be
static during recording (but movable otherwise), segmenting out parts of the
image that does not contain the soccer field is only needed to be detected
on one frame to create a filter [80]. This would reduce the number of pixels
needed to detect over, which could help the system detect more frames per
second.

Avg. detect FPS =
Video FPS · Record time in seconds

Avg. total time in seconds
(6.3)

Resolution Avg. Total time
(in seconds)

Avg. detected
FPS

Est. time (in minutes) for
90min video

3840x2160 255.499 2.935 766,609 (12,776 hours)
2688x1512 240.930 3,112 723,007 (12,050 hours)
1920x1080 236.669 3,168 710,227 (11,837 hours)

Table 6.4: Position detection of 30s video

After calculating the average FPS that the system can detect, it is possible to
calculate how long it would take to run detection on a full football match. To
give the system the best chance to detect a full match within 12 hours, a football
match is set to be 90 minutes of video. The results of using equation 6.4 are
listed in table 6.4. While the differences for detecting positions in a 30-second
clip were ≈4 and ≈15 seconds, that difference is now ≈13 and 43 minutes when
estimating detection time for an entire football match. The estimated detection
times are 11.8, 12.0 and 12.7 hours, respectively.

Est. detect time (in seconds) for XX min video =
(video FPS · 60) · XX min

avg. detect FPS
(6.4)

These numbers illustrate that Mearka is only able to meet the requirement
of soft-realtime, with recordings in the resolution “1920x1080” at 25FPS. soft-
realtime is defined to be 12 hours after the game is complete and the video

78 chapter 6 evaluation

is uploaded. The next step up in resolution misses the mark by ≈ 3 minutes,
rather than 46 minutes for“3840x2160”, both resolutions at 25 FPS.

6.2.3 Framerate Speed
Exploring how different framerates affect the time it takes to do position
detection is done by recording a one-minute video in 2688x1512 resolution, both
in 60 and 25FPS. The clips are trimmed to exactly one minute while keeping
the other recorded attributes the same. Mearka is started, and each video is
uploaded three times to get the average timing for each framerate.

Table 6.5 displays the difference in how long it takes to run position detection
on 60FPS versus 25FPS1. The time difference between the two framerates to
detect positions are around 10 minutes. This means that, for every minute
of video, Mearka needs roughly 10 minutes longer to detect positions when
recording at 60FPS instead of 25FPS. Calculating an estimation of how long
it would take to process an entire match (90 minutes of video), table 6.5
illustrates that the 60 FPS video would take around 2.3 times as long at nearly
27 hours.

As table 6.5 illustrates, there is a time penalty to recording video in 60FPS
when detecting positions with Mearka. Implementing support for GPU can
help speed up the system’s processing capabilities [79]. However, the current
implementation of Mearka runs on the CPU, and it is at the limit of what the
hardware can do, maxing out at processing roughly ≈3 frames every second.
Therefore, to get the most value out of Mearka within a reasonable timeframe,
the proposed best framerate is to record at 25FPS. This enables the system
to meet the soft-realtime requirement, set in chapter 3, defined as delivering
positional data within 12 hours.

Video length Video FPS Total time in
seconds/min-
utes

Avg. detect
FPS

Est. time 90min
match (min-
utes/hours)

1 minute 60 1073.09/17,88 3,35 1611,94/26,87
1 minute 25 462.35/7,71 3,24 694,44/11,57

Table 6.5: Time difference between 25 and 60 FPS

1. Support for GPU will drastically speed up the number of frames Mearka is able to detect
each second [79]. However, the current implementation uses the CPU for position detection
and therefore needs to consider a max detection speed of around ≈3 FPS.

6.2 posit ion detection 79

6.2.4 Detection Accuracy
The accuracy of Mearka is evaluated to observe how well the position detection
is, to inform about the quality of data that it is able to provide. To evaluate
the accuracy, three resolutions of the same video are uploaded and verified.
These resolutions are “4096x3072”, “2688x2016” and “1920x1440”, which are
all “4:3” aspect ratios2. For each video, Mearka exports a frame every 20th
frame, containing a bounding box around every detected person. Six exported
frames from each resolution are copied from Mearka to be verified manually.
The positions detected are pixel coordinations in the frame rather than actual
field positions. This translation is not developed in this thesis but is left for
future work.

Verifying the frames is done by counting every player the system detects and
noting any player it does not. For a detection to be valid, the bounding box must
clearly show that it has detected an entire player. A bounding box with only a
player’s shoes inside will not be counted as a success. People that are detected
but that are not players are not counted towards the system’s accuracy. If
Mearka detects something as a person that is not a person, that counts towards
the misclassification statistics.

Figure 6.7 displays two frames with bounding boxes after position detection.
Subfigure 6.7b illustrates that Mearka sometimes detects people where there
are none.

Ideally, every player should have a box illustrating where they are in the frame.
However, as figure 6.8 displays, the accuracy of Mearka rarely exceeds 50%.
The percentages are calculated with equation 6.5. The numbers used to create
this figure are collected from the same video as the frames in figure 6.7. One
possible reason why the detection percentage is so low is that the camera
was mounted in the stands with multiple columns and stances in the frame
(depicted in figure 6.7). The camera is also far away from the field and very
wide-angled, resulting in people appearing smaller in the frame, which makes
it more difficult to detect them. It is noted that Mearka is better at detecting
people closer to the camera than further away. This can be explained by people
closer to the camera taking up more of the frame, which equals more pixels
that can then be detected.

2. These resolutions and aspect ratios were chosen because they could record more of the
environment than their “16:9” aspect ratio counterparts.

80 chapter 6 evaluation

(a) Accuracy with bounding boxes

(b) Accuracy fail

Figure 6.7: Accuracy example

6.2 posit ion detection 81

Figure 6.8 illustrates that the resolution has less impact on the detection
accuracy. And,as backedup by the numbers in table 6.6, themedian and average
of “1080p25” are higher than the higher-resolution options from the same angle.
It also has less variance as the 25th and 75th percentile are closer together,
with between 40% and 48% accuracy. The highest 75th percentile, between
the three resolutions from the same angle, goes to the highest resolution, a
few percentage points higher than the lower resolutions.

Percentage =
Number of detected people

Number of people
(6.5)

Although the resolution does not have the highest impact on the accuracy of
detecting people, the placement of the camera does. Figure 6.9 depicts an
alternative camera angle with fewer columns and stands in the frame. The
same test is run on a one-minute video from this angle, exporting a frame with
bounding boxes every 20th frame. From these frames, the same interval of
frames was extracted from the system formanual inspection. The data from this
angle is placed next to, but separated from the other data, as this is a different
angle with only one resolution. As observed by table 6.6, the alternative camera
angle gives the highest median and average percentage of 49.24 and 50 %. The
25th percentile is the second highest of all four measurements, and the 75th
percentile is 2.69 percent points above the next one down.

Resolution Mean Median 25th percentile 75th percentile
3840x2160 41.85 40.87 31.78 50.71
2688x1512 40.89 39.74 30.39 46.83
1920x1080 42.80 42.02 40.29 48.21

Alternative camera angle
2688x2016 49.24 50.0 39.77 53.40

Table 6.6: Resolution accuracy

82 chapter 6 evaluation

2160p25 1512p25 1080p25 1512p25 (Alt.)
Resolution and framrate.

0

10

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 in
 p

er
ce

nt
ag

e

Position detection accuracy

Figure 6.8: Position detection accuracy

Figure 6.9: Alternative camera angle

As described, Mearka is not perfect, and it does not detect 100% of the players

6.2 posit ion detection 83

on the field. There are multiple reasons why this might be. The camera can have
physical obstacles between the lens and the field, like the columns in figure 6.7,
or water droplets as in figure 6.9. In addition, players can be overlapping in
the frame or be so far away that there are not enough pixels to detect that it
is a person. But, Mearka, and by extension YOLOv4 [14], sometimes detects a
personwhere there are none. This is illustrated in figure 6.7b,where a bounding
box takes up half the frame. Based on how YOLOv4 notes the position, the
bounding box should frame a person with little to no space around it, which
illustrates that this is a misclassification.

Figure 6.10 describes the number of miss classifications observed from the
frames verified. That is the total number of misclassifications for each resolu-
tion’s validated frames. As depicted, the number of misclassifications is almost
the same, except for the highest resolution, with one less misclassification than
the rest.

2160p25 1512p25 1080p25 1512p25 (Alt.)
Resolution and framrate.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Nu
m

be
r o

f w
ro

ng
 d

et
ec

tio
ns

Miss classifications

Figure 6.10: Number of miss classification within six frames

The data for accuracy suggests that the lower-resolution options are just as
accurate, if not more than the higher-resolution options. However, the most
significant increase in accuracy comes from choosing a camera angle well suited
for position detection. This means an angle with as few visual obstructions as
possible, where the players have as much contrast to the background, and take
up as much of the frame as possible.

84 chapter 6 evaluation

6.3 Metadata Size
The data generated by Mearka should be humanly readable and take up as
little storage space as possible. Since JSON is very human readable, that is one
of the reasons it was the preferred format to store the metadata. In addition,
JSON is widely supported by the technologies used in this implementation.
However, JSON was not the only option when deciding which format to store
metadata. Another alternative to JSON is the “Extensible Markup Language”
(XML) [81].

XML is a markup language based on tags, similar to HTML, that differentiate
items in the file and enable items to be nested within other objects. Figure 6.11
illustrates how the metadata could look using the XML format instead of
JSON. As illustrated, each item needs an opening tag like “<tags>” with
a corresponding closing tag “</tags>”. Each item in between also needs
an opening and closing tag, as illustrated on line 8 in figure 6.11, “<start-
Time>3.777054983</startTime>”.

6.3 metadata size 85

1 <?xml version="1.0" encoding="UTF-8" ?>
2 <root>
3 <tags>
4 <player/>
5 <event/>
6 <startCoordinate/>
7 <endCoordinate/>
8 <startTime>3.777054983</startTime>
9 </tags>
10 <tags>
11 <player/>
12 <event/>
13 <startCoordinate/>
14 <endCoordinate/>
15 <startTime>4.992716238</startTime>
16 </tags>
17 <tags>
18 <player/>
19 <event/>
20 <startCoordinate/>
21 <endCoordinate/>
22 <startTime>5.24555306</startTime>
23 </tags>
24 <tags>
25 <player/>
26 <event/>
27 <startCoordinate/>
28 <endCoordinate/>
29 <startTime>7.215931706</startTime>
30 </tags>
31 <globalStartTime>2023-05-26T08:30:36.64658778Z</globalStartTime>
32 <positions>
33 <time>0</time>
34 <positions>
35 <row>2112</row>
36 <row>1107</row>
37 <row>2158</row>
38 <row>1210</row>
39 </positions>
40 <positions>
41 <row>1807</row>
42 <row>1070</row>
43 <row>1855</row>
44 <row>1156</row>
45 </positions>
46 <positions>
47 <row>1584</row>
48 <row>944</row>
49 <row>1608</row>
50 <row>1012</row>
51 </positions>
52 </positions>
53 </root>

Figure 6.11: Example XML Metadata

86 chapter 6 evaluation

Having opening and closing tags for each element in the metadata amounts to
more characters needed to be stored to convey the same information, compared
to JSON, which is illustrated in 5.8. This observation is also quantified by
table 6.7. The table illustrates the file size difference between JSON and
XML of metadata created from the same 30 and 60-second video clips. These
observations illustrate that the XML takes up six times as much space as the
JSON equivalent metadata. Based on these findings, in combination with JSON
being widely supported by both Python [22], Golang [24], and React Native
[23], this was the clear choice for Mearka.

Video length FPS JSON size XML size
1 minute 25 0.403 MB 2.3 MB
30 seconds 25 0.203 MB 1.2 MB

Table 6.7: Size difference between JSON and XML

6.4 Speedup
To test the speedup that Mearka provides when generating metadata, it is
compared to 100% manual tagging of the positional data in the video. As it
is previously stated and illustrated that Mearka can detect ≈ three frames a
second; this is how many frames were tagged manually to compare. It should
be noted that the three frames, tagged manually, are the first three frames in
the same video that are uploaded to Mearka.

The frames from the video are tagged as similar to how Mearka tags positions
as possible. For each person detected in the frame, note the pixel coordinate
of a potential bounding box’s top left and bottom right corners.

As table 6.8 illustrates, Mearka can detect more frames per second than doing
it 100% manually. The difference is substantial, as Mearka is over three orders
of magnitude faster than tagging the positions manually. Table 6.8 displays the
average frames per second for each tagging method. Calculating the speedup
is done with equation 6.6, which finds 𝑥 speedup compared to 𝑦. The average
detected frames per second numbers were used to calculate the speedup
between Mearka and manual tagging. The result concludes that Mearka gives
a 1538 times speedup compared to manually tagging the positions.

Speedup(𝑥,𝑦) = 𝑥

𝑦
(6.6)

6.5 summary 87

Video
length in
frames

Video
FPS

Manual
or
Mearka

Total time in
seconds/min-
utes

Avg. detect
FPS

Est. time 90min
match minutes/
hours

3 25 Manual 1442.28/24.038 0,0021 1071428,57/
17857,14
(2,04 years)

50 25 Mearka 15.47/0,26 3,23 696,59/ 11,60

Table 6.8: Time difference between Mearka and manual tagging posisions

6.5 Summary
This chapter provided an evaluation of Mearka based on different experimental
results. The experiments were organized into camera benchmarks, position de-
tection speed, and accuracy, Metadata size as well as system speedup compared
to manual tagging.

For the camera tests, the result shows that only the highest resolution and
framerate, with the camera screen turned on during recording, is not able to
reach the 105 minutes of minimum record time. Apart from this, the camera
reaches 105 minutes of record time in every other settings combination.

Position detection is able to finish with the soft-realtime requirement of 12h
with a video in the lowest resolution, recorded at 25FPS. Recording in 60FPS
scales the detection time linearly compared to 25FPS, meaning roughly 2,4
times longer. Although the position detection accuracy rarely exceeded 50%
accuracy, the result illustrated that resolution has less to do with the accuracy
than the camera angle and position. Camera placement can increase the mean
accuracy between 15-20% compared to increasing the resolution. The median
accuracy is improved by 18-25%, with better camera placement.

To store metadata, the results describe that JSON takes up six times less
space than the XML equivalent. Lastly, experimenting with speedup indicates
a 1538 times faster turnaround using Mearka rather than 100% manually
tagging.

The next chapter elaborates on a discussion of Mearka.

7
Discussion
This chapter outlines a discussion on Mearka. Section 7.1 discusses the Mearka-
app and the design choices made. Section 7.2 Outlines the strengths, weak-
nesses, and possible improvements of the Mearka web-interface. The backend’s
system design, implementation, and discussion are outlined in section 7.3. Sec-
tion 7.4 discusses the position detection component and possible improvements
to position detection.

7.1 Mearka-app
The Mearka-app has four requirements it needs to meet. It needs to Tag events,
be intuitive and easy to use (Ease-of-use),Non-intrusive, and in addition, give
a lot of value with minimal effort (Low effort - high reward).

On startup, the Mearka-app allows to start a new recording. A new recording
means a new session where the user can tag events, with the tags storing the
offset from when that recording started. During a recording it is possible to tag
an event or stop the recording, as illustrated by figure 4.3. This UI only allows
do two things, and so the UI should be intuitive, fulfilling the Ease-of-use
requirement. Since the Mearka-app can tag events as well, by sending an API
request to the backend, it is able to meet the requirement to Tag events.

As illustrated by figure 4.3b, once a recording is underway, the tag button takes

89

90 chapter 7 discussion

up most of the screen, allowing the user to tag events almost without needing
to look down at all. This design philosophy is inspired by the app used in
Muithu [40], as it greatly decreases how intrusive the app is while a game is
ongoing. Because of this, the Mearka-app is designed to meet the requirement
of being Non-intrusive, as well as having a Rugged UI that could work in
harsher environments.

Additionally, even though the Mearka-app itself starts and stops recording by
contacting the backend and sends a request to tag events, it does not store
anything locally. Tagged soccer metadata is returned as a JSON file from the
backend as soon as a recording is stopped. This enables the Mearka-app to be
hopefully Low effort - high reward, meeting that requirement.

Once a recording is complete and the backend responds with the recorded
soccer metadata, it is possible to share that soccer metadata in different ways.
This means sending it to an email address, storing it on the phone, or any
other options provided by a sharing screen on Android or IOS phone operating
systems. However, the Mearka-app does not store anything locally in memory
or otherwise if the user does not share it from the Mearka-app once that screen
appears. As a result, if the user closes out of the sharing popup without storing
or sharing the data somewhere, it is lost forever. The reason it is lost forever is
that the backend wipes the user data once a recording is complete, and it has
responded with the soccer metadata,

The Mearka-app was designed to be simple and a POC to enhance the usability
of Mearka, which is why it is a UI to interact with the system rather than
processing locally. A welcome addition to the Mearka-app would be the ability
to store a selection of historical recordings locally Then it would be possible to
retrieve the soccer metadata, even after the Mearka-app has been restarted, or
the sharing screen has been clicked away.

Contrary to the web interface, the Mearka-app does not need to request a
UUID from the backend when starting a recording. The Mearka-app has
separate endpoints at the backend, and the backend assumes a new recording
means a new match or training session. Therefore, it generates a new UUID
automatically as a response to a recording start.

A possible option would be to keep the UUID and let the user choose when to
clear it, as long as the Mearka-app has not been restarted. This would allow the
user to append tags if they stopped the recording prematurely (as an example),
as starting a new recording (without app restart) could let the user tag an
event with an offset based on the first recording start.

An example could be a training session where they start the video and the

7.2 mearka web- interface 91

Mearka-app recording simultaneously. The first training set is over, but the
camera is still recording, and then a player wants the coach to look at some
drills. If the soccer metadata file starts at the same time as the video, then a
new recording start would append new tags with an offset into the video that
is recording already. Unlike today, where a new recording would mean the tags
are offset from the start of that specific session. This option would mean that
the tags would line up in the video recording after the entire session is over
and the video recording is stopped.

The Mearka-app is designed to be simple and to be easily expandable if future
implementations require or desire it. An example would be to have a few
different tagging options when tagging, of different severity or types. This
could be “Offence”, “Defence”, “Tackle”, or as simple as “Tag”, and “Important
tag”. But as Mearka is currently a POC prototype, the focus has been on creating
the option to tag through an Mearka-app at all, which is the reason behind its
simplistic design.

7.2 Mearka Web-interface
For the Mearka web-interface to be helpful, it has to meet two requirements:
to be Easy-to-use and Automatic. Some solutions, like Hudl [5], provide video
recording systems where the customer can tag events manually or pay them
to tag the videos for the team. This is either labor-intensive or an expensive
option for the team.

The web-interface of Mearka allows to upload a video to be used for position
detection, as well as export the resulting soccer metadata once it is done.
On the UI, there are two upload buttons as well as a button to export the
soccer metadata from the backend. The “Upload video” button opens a popup
where one can choose to upload a video to the backend to be processed. The
other upload option is for uploading a JSON file containing soccer metadata,
i.ex. Resulting from the Mearka-app. If both video and soccer metadata are
uploaded, the soccermetadata from the upload, and the positional data created
by the position detection component, will be merged on the backend to be one.
Since there are only two buttons to upload and a button to export the data
from the system, Mearka meets the requirements of Easy-to-use. The system
does not need additional input other than the video, and optionally the soccer
metadata from the Mearka-app, to give positional information in return. This
means that the system is automatic in terms of detecting the (pixel) positions
of the players in the frame, meeting the Automatic requirement.

The Mearka web-interface communicates with the backend through the REST

92 chapter 7 discussion

API it provides. To use any of the endpoints, the web interface needs to get
an appointed UUID, which it will send with every request. Requesting a UUID
is done as soon as the user tries to upload a video or soccer metadata to the
backend before sending the data. Doing this ensures the data is mapped to
that UUID, meaning one layer of protection against someone trying to find a
users data on the backend. It should be noted that the web interface, upon
refresh, also loses its UUID. This means that a user should not refresh the
page once a video is uploaded until the position detection is complete and the
soccer metadata has been extracted. A good next step would be to implement
the use of cookies, so the UUID could be more persistent. However, this is not
implemented in the current version of Mearka

As figure 4.4 displays, the UI in terms of visual elements is slightly cluttered
and leaves the impression of additional functionality. There are only a few
options for the user, as described, uploading a video and soccer metadata, or
exporting soccer metadata from the backend. The web interface is easy to use
in terms of functionality and options. However, the visual UI could benefit from
improvement.

The thought behind the green box was that it should be possible to see a bird’s
eye view of the field, with player positions illustrated by small circles or similar.
Due to time constraints, this translation from pixel position in the frame to
physical position on the field is not completed in this POC.

The grey box is put there to be a video player, playing back the video and
letting the user interact with the video. There were two options for using the
video player on the web interface: Playback video directly from the frontend or
send the video from the backend to be played back in the web interface. Option
one would work if the video is only one file and always one file. However, the
system is developed and used with action cameras (DJI Action 3) that record
multiple files, which are all part of a more extended recording. Because of this,
the system is designed to let the user upload multiple videos as if they are
all part of a larger recording, and the backend then concatenates them with
the help of functionality on the position detection component. Because this
functionality resides on the backend and in the position detection component of
Mearka, with the current implementation, the only option would be to transfer
the concatenated video back to the frontend for playback after processing. As
figure 6.4 illustrates, the filesizes of a video could be between 40 and 80GB.
Because of the potentially large files, this thesis chose not to transfer the video
back after processing to save on network bandwidth. A third option could be
to play back the files as a playlist, but this functionality is not implemented to
reduce the web interface complexity.

The web interface is designed to make it easy for future development to add

7.3 backend 93

additional functionality and elements to the UI. One such option would be to
implement functionality to concatenate the video on the client machine. This
option could save on bandwidth, especially if the video gets slightly compressed
as well. In addition, it would be easy to let the user playback the concatenated
video and add functionality for tagging while the position detection component
creates positional data on the backend.

7.3 Backend
The backend is the core component in Mearka. As illustrated by figure 5.1, both
the Mearka web-interface and Mearka-app are pure interfaces for the user to
interact with the backend. The backend acts as a hub of the soccer metadata
and all the inputs from the user, and the results returned from the position
detection component. To do this, the backend has set up a REST API with
endpoints that the web interface and app can utilize. Communication with the
ML component is done through a REST API set up on that component, which is
monitored by its own server. Video uploaded from the web interface is received
by the backend and stored on a storage volume shared between the backend
and the position detection component.

When the Mearka-app tries to start a new recording, the backend generates a
UUID and maps an empty soccer metadata object to that UUID, in memory,
before returning the UUID to the app. Any subsequent request from theMearka-
app appends a tag to the mapped soccer metadata unless it is a request to stop
recording. On a request to stop the recording, the soccer metadata is collected
from memory and returned to the Mearka-app before being removed from the
backend. This is done because a request from the Mearka-app to start a new
recording generates a new UUID, which means the old data is not accessible
to anyone.

The backend uses UUID to identify who has access to what soccer metadata.
Any request, except the Mearka-app starting a recording, to the API that does
not include a UUID will be refused. Using UUID was chosen because it adds a
layer of security to the data being generated. The user does not need to think
about UUID, as the Mearka-app and web-interface do this in the background.
If the web-interface tries to upload a video, but discovers that it does not have
a UUID, a request to get a UUID is sent first before trying the original request
again.

Because handling of the UUIDs is done in the background, the user does not
have the option to share it with collaborators or the team. As Mearka does
(pixel) position detection automatically and live tagging with the Mearka-app,

94 chapter 7 discussion

there is not much need to collaborate through the system, yet. However, this
POC could be expanded, and in future revisions of Mearka, it might be possible
to tag more extensively and add tags of different types. This could create the
need for several people to be able to tag on the same video and soccer metadata
simultaneously. In that case, the system would need to allow for sharing of a
key, such that tags are merged and appended to the correct file on the backend,
and not multiple soccer metadata files, one for each user of the system.

To store this soccer metadata, Mearka chose to use JSON for a few reasons.
One is that it is widely supported by the technologies that the system utilizes.
Another reason is that evaluating it against XML, JSON has one-sixth the
storage requirements as XML. This is also backed up by the results described
in table 6.7.

All the soccer metadata residing on the backend is kept in memory and not in
persistent storage. This was done to simplify the setup during the development
of the POC of Mearka and to make the data quicker to access upon request from
the user. However, all the soccer metadata is lost if the backend shuts down
or something happens. Therefore, storing the soccer metadata on persistent
storage could be a good alternative, at least at some intervals. This does not
remove the qualities of having the data in memory, but in the case of a failure,
the system would still be able to regain the last stored state the data was
in.

As mentioned, the backend communicates through a REST API with the position
detection component. This API is run by a server on that component and lets
the backend request to concatenate videos and start position detection on a
video. Both requests require the backend to pass along the UUID to the user
whose video it should work on. Concatenating video returns a filename to
the newly concatenated video. Once position detection is complete, the return
value lists all the (pixel) positions detected in that video, with the time offset
into the video where the positions are detected. Since the backend knows
which UUID those positions belongs to, it appends that list of positions to the
soccer metadata already mapped to that UUID. The user could then extract
This newly updated soccer metadata through the same web interface from
which the video was uploaded.

Even though the backend gets all the positional data through the response
from the position detection component, that data is also stored in a file on the
shared volume. The reason for appending the data in the response is that the
data is rarely larger than (observed) ≈ 80MB for a 45min video, and reading
data from a file on disk would mean more “steps” to get the same information
for the backend.

7.4 posit ion detection component 95

7.4 Position Detection Component
The main component, besides the backend, is the position detection compo-
nent. This component has three parts, one server that serves a REST API, a
script concatenating video, and a program that detects positions in the frame.
Together, these enable Mearka to detect the positions automatically without
additional user input. It also allows the system to accept multiple smaller video
files that are part of a full recording and do position detection after the videos
have been concatenated into one file.

The main part of this component is the ability to do position detection on a
video. This is done by loading the video with OpenCV [35], and for one frame at
a time, use CVlib [78] to do object detection on that frame. The object detection
function is a high-level function that uses a pre-trained model, YOLOv4 [14]
to detect multiple objects in the frame. The resulting list of objects is iterated
over, and if it is a person, the positions are added to a list.

YOLOv4 detects multiple things in the frame: people, phones, monitors, and
other types of objects. Because of this, the list of objects it returns needs to be
iterated over only to save the positions of detected people. An alternative to
using YOLOv4 is to train and use a custom model. This model could be trained
using supervised ML methods, as explained in section 2.4.1, only to detect
people. Using this custom-trained model would eliminate the need to iterate
over objects found in every frame, as the positions returned would already be
people only.

As the current implementation uses the CPU to do object detection, the system
is able to detect roughly three frames per second. Building OpenCV and CVlib
to utilize a GPU would drastically increase the throughput per second [79]. The
reason that GPU support is not implemented in the current POC of Mearka is
that this functionalitywas added later in the project. This resulted in insufficient
time to get a machine with a GPU and optimize the system to use it.

Position detection speeds are influenced mainly by two things, the resolution
and framerate of the video. The higher the resolution, the longer it takes to
detect, as figure 6.6 illustrates. This is because the model has more pixels to
cover to detect people. As figure 6.7 displays, a lot of the pixels in the frame
are not part of the field or of the players.

One possible solution is to do image segmentation [80] on the video to filter out
pixels that are not part of the field. This would drastically reduce the number
of pixels in each frame that the position detection would need to consider. In
addition, since the video is static, meaning the camera does not move during
recording, the segmentation could be a static “filter” such that it does not need

96 chapter 7 discussion

to be computed for every frame, only once for the entire video.

The goal of Mearka is to be able to do tagging and give feedback in real-time,
such that it can be used LIVE during a game. To do this would require a
more performance-optimized system, especially with regards to the position
detection component and video work. A potential big step in the right direction
would be the introduction of using GPUs to help detect positions.

If multiple people should be able to tag simultaneously on the same data, then
a schema for sharing id as well as how to handle concurrent updates need to
be developed.

The next chapter makes concluding remarks, summarizes Mearka as well as
provides some future work.

8
Conclusion and FutureWork
This chapter outlines concluding remarks about the thesis based on the problem
statement and our findings. Following that is a summarization of the system
before some potential future work is provided.

Revisiting the problem statement defined in section 1.2:

It is possible to develop a soccer tagging system based on cheap,
common-of-the-shelf components. This will contrast to the state-of-the-
art systems using expensive and specialized hardware and software
that depend on external storing and analytics of data, where you have
no control over where the data is stored, how it is used, or the quality
of the tagged data, in addition to a significant time-delay.

8.1 Concluding Remarks
From the problem statement above, section 3 defines the following require-
ments, briefely summarized here:

Functional:

97

98 chapter 8 conclusion and future work

1. Input: Allow for tagging and video input.

2. One-click live tagging: Possible to tag an event, live, with one press
of a button.

3. Automatically: Extract positional data automatically from the pro-
vided video.

4. One-click export: Export soccer metadata generated by the system
with the press of a button.

5. Output: Mearka should generate soccer metadata containing tags
as well as positional data.

6. Data deletion: It should be possible to delete any data uploaded to
or generated by the system.

Non-functional:

1. Easy-to-use: Any UI should be intuitive and easy-to-use.

2. Soft real-time: Strive to get real-time soccer metadata for LIVE
feedback during games. With the current POC prototype, this is
defined to be: Deliver soccer metadata 12 hours after a video is
uploaded, containing positional data of the game.

3. Common Of The Shelf (COTS) components: Mearka should be
as cheap as possible, therefore using COTS components to be im-
plemented.

4. Data ownership: Should only store the data for as long as needed,
but not longer.

5. Privacy compliance: The user should be able to easily upload data
and delete data from the system, at will.

6. Security: Only the user that uploads a video or tags a game should
have access to that data and any soccer metadata generated by
Mearka from that data.

These requirements need to be met for Mearka to have answered the problem
statement.

This thesis has presented Mearka, a POC prototype based on cheap common-

8.1 concluding remarks 99

of-the-shelf (COTS) components that can automatically detect pixel positions
of players in a video, as well as tag events live field-side through a simple
app.

As part of the thesis,Mearka is designed, implemented, and evaluated. The goal
was to investigate if it is possible to develop a camera-agnostic soccer tagging
system that utilizes cheap COTS components while still delivering valuable
positional and event-tagged data within a reasonable time frame.

Through a distributed design, we have designed a system that consists of a
frontend, backend, and a position detection component. The system allows
for input from the user, both in terms of One-click live tagging, during a
game, but also through video, recorded with any camera, uploaded to the
system. From the uploaded video, Mearka is able to automatically extract
(pixel) positional data of players in the frame. The resulting output is soccer
metadata containing tags and positions that can be extracted with a one-click
export button.

Section 4.3.2 and 4.4 displays the UI of Mearka. Both interfaces are simple
and contain few clickable components, which indicates that it presumedly is
easy-to-use.

To meet the data ownership, privacy compliance, and security requirements,
user-uploaded data is not stored for longer than it needs to. In addition, each
session interacting with Mearka has its own UUID, so a user uploading a
video to the system cannot access anyone elses data, which is implemented for
security concerns. Mearka web-interface allows the user to do data deletion of
their own data whenever they want to, through a button. This was implemented
because Mearka is designed with privacy compliance in mind.

Based on the results, the system is estimated to do position detection on a 90
minute recording within 12 hours. It is estimated to finish in ≈11,7 hours, given
1920x1080 resolution and 25FPS. When measuring the time and accuracy with
higher-resolution video, the accuracy did not improve significantly by raising
the resolution, even though it took longer to process. Choosing a camera angle
with as few distractions in the frame as possible (illustrated by figure 6.9)
improved the mean accuracy by 15% more than the highest mean accuracy
measured at the main camera angle, depicted in figure 6.7.

The results demonstrate that Mearka is able to provide a soccer tagging system
based on cheap, common-of-the-shelf components, and deliver on the require-
ment of allowing inputs from the user, automatically tag positional data based
on provided, camera-agnostic video, and delivering valuable soccer metadata,

100 chapter 8 conclusion and future work

that contains player positional data1, within the soft real-time requirement of
12 hours, defined in section 3.2.

8.2 Summary
Mearka is designed as a distributed network of loosely coupled components
communicating through HTTP and different REST API endpoints. A loose
coupling between components enables the flexibility to scale the system if
needed. It also allows additional functionality to be implemented as long as
the existing API stays the same. A user can tag events during an ongoing
session through the Mearka-app and get position data by uploading a video
once the session is over through a web interface. The user does not need
to give additional information or inputs to get the positional data from the
system. Once Mearka has detected positions in the video, the soccer metadata
can be downloaded as a JSON file through one click of a button on the web
interface.

Position detection is done by reading one frame at a time from the uploaded
video with OpenCV, and using CVlib combined with the pre-trained model,
YOLOv4, to do object detection on each frame. If the model finds a person, the
positions are saved in a list and returned to the backend to be appended to the
user’s soccer metadata.

The evaluation investigates the throughput and accuracy of the system as well as
the battery performance of the chosen camera used during development.

Based on the results, Mearka can deliver valuable positional data within the soft
real-time requirement of 12 hours2. It also alludes to the CPU being the current
bottleneck, as Mearka maxes out at around three frames per second while
detecting. Three FPS max does not change much, even if the resolution differs
by four times between the lowest and highest resolution investigated. The
results also illustrate that camera position is more important than increasing
the resolution to improve detection accuracy, as described in figure 6.8.

To develop Mearka, the DJI Action 3 camera was chosen. It can record long
enough3, in almost any settings combination⁴. DJI Action 3 has a wide variety

1. Player positions are pixel positions in the frame for this thesis.
2. Estimation based on a video recording with resolution 1920x1080 and 25 FPS. The video
length is set to 90 minutes to mimic a minimum length soccer game.

3. The requirement is set to minimum 105 minutes, as a football match is 90 minutes plus 15
min break.

4. 3840x2160 resolution at 60FPS, with the camera screen turned on during recording, is the

8.3 future work 101

of resolutions and FPS settings, enabling the user to record how they want. It
can stream to an RTMP server [82], which can be additional functionality to
implement in future work.

8.3 Future Work
Mearka is currently a simple prototype, and there are many potential directions
for future work.

8.3.1 Streaming
As Mearka is implemented, it requires an already recorded file through the
web interface for position detection. However, the end goal of Mearka is to
be able to do position detection and tagging in real-time. One step towards
real-time tagging and position detection is to expand the system to enable
cameras to stream directly instead of waiting for a recorded file to be uploaded.
As stated in section 4.2.2, the DJI Action 3 camera chosen can stream video
through RTMP [82], which could be used to help develop the system to allow
for streaming.

8.3.2 Tracking
In Mearka, position detection is done by using CVlib with the pre-trained
model YOLOv4 to detect the pixel positions in the image. However, the current
implementation does not track the bounding boxes produced by CVlib across
multiple frames. This means that the positions on the current frame do not
relate to positions on the previous frame. Tracking each position and giving
IDs or names to each bounding box would help differentiate players and
teams.

In the ByteTrack-paper, the authors present a compelling and generic method
to track detection boxes in a video, by associating almost every detection box
between frames [83] instead of tracking only the detection boxes with a high
enough confidence level. This method outperformed several other trackers like
FairMOT [84] and CorrTracker [85], as illustrated by the comparison in [83,
figure 1].

only combination that does not meet the requirement.

102 chapter 8 conclusion and future work

8.3.3 Extend Tagging Option
Currently, it is possible to tag through the Mearka-app while recording and get
positional data through the Mearka web-interface afterwards. The tags created
by the Mearka-app do not have any information since they only note that
something happened at a given offset. Extending the system, web-interface, or
Mearka-app to allow for more details to be filled in and more detailed tagging
would yield more data that can be analyzed.

Uploading the metadata and video to the Mearka web-interface should allow
the user to scrub through the video, jump between tags (as well as jump to the
correct timestamp in the video), update tags, as well as add additional tags of
different types.

Custom Tags
What type of tags and who (players) are tagged should be customizable, as
different games might need different tags. This can potentially be done by
adding a field in the metadata that lists the tags used and the people that can
be tagged. Upon uploading the metadata, these fields can be parsed, and the
options made available to the user through the UI.

Voice Recording
When an event is tagged, a voice recording can be started to record a short
message from the user of the event they have tagged. This recording could
simplify the tagging process in two ways.

Firstly, the need to look closely at the video to understand what was tagged is
removed, as the essential things to note are said in the audio recording.

Improving on this can be done by usingNatural Language Processing (NLP [86]),
which is a form of ML, to recognize what is being said and add tags automati-
cally. This would more immediately give more details in the tags, even those
created by the Mearka-app, match-side, as the game is ongoing.

8.3.4 Translate pixel-positions to real world positions
Positional data in Mearka is currently the pixel coordinates in the frame of the
upper left and lower right corner of a bounding box containing the detected
person. Although this is valuable information, the next step is to convert these

8.3 future work 103

pixel positions from the frame to real-world coordinates (on a field). This
would improve the data by better representing where the players are on the
field, not only where in the frame they are. An example of how this could be
illustrated to the user is depicted in figure 8.1.

Liang Peng proposes a system, “Pixel2Field”, that does this translation between
frame pixel coordinate to 2d field positions [65]. This system can be used as
inspiration for tackling this problem.

Time=minutesT=15.0

Figure 8.1: Example: Pixel-coordinate translated to field-positions

8.3.5 Video queue
The current implementation interprets an upload of multiple videos to be
multiple video segments of the same video. These segments are concatenated
into one video before position detection is run. Giving the user the option to
choose if the videos are multiple parts of the same video or different videos
could improve the system’s value proposition.

This would allow the user to upload multiple matches or video clips and get
tailored data for each clip. The system could utilize a queue where each video
gets a unique id. Upon upload, the videos are placed in a processing queue
on the backend. Allowing for batch processing since the position detection
component can move on to the next video once one video position detection is
complete.

104 chapter 8 conclusion and future work

8.3.6 Possible Real-Time
As section 6 illustrates, Mearka can process ≈3 FPS with the current setup.
Processing video with 25FPS means it is not able to detect positions in real-
time. However, processing only three video frames per second would possibly
enable the system to give data real-time, as the number of frames needed to
be processed is within the throughput of the system.

H.264 video is compressed by having frames containing values on every pixel
only with a specific interval, e.g., every 10th frame. Every frame between these
only stores the pixel values that have changed since the last “keyframe”.

If Mearka is set up to only process and evaluate those “keyframes”, it could
potentially be efficient enough to be used to detect positions in real-time.

Bibliography
[1] Sebastian Lyng Johansen. “Dárkon.” Submitted for review, May 2023.

MA thesis. UiT - The Artic University of Norway, May 22, 2023.
[2] Rory Smith. “Expected Goals:” in: The story of how data conquered

football and changed the game forever. HarperCollins Publishers, Sept.
2022, p. 299.

[3] Michael Lewis. “Moneyball:” in: The Art of Winning an Unfair Game. W.
W. Norton & Company, Mar. 2004, p. 336. isbn: 0393324818.

[4] www.statsperform.com. STATS Acquires Prozone. 2015. url: https :
//www.statsperform.com/press/stats-acquires-prozone/ (visited on
May 7, 2023).

[5] Inc. Agile Sports Technologies. Hudl. 2007-2022. url: https://www.
hudl.com/ (visited on Dec. 12, 2022).

[6] Svein Arne Pettersen, Dag Johansen, Håvard Johansen, Vegard Berg-
Johansen,Vamsidhar ReddyGaddam,AsgeirMortensen,Ragnar Langseth,
Carsten Griwodz, Håkon Kvale Stensland, and Pål Halvorsen. “Soccer
Video and Player Position Dataset.” In: Proceedings of the 5th ACM Multi-
media Systems Conference. MMSys ’14. Singapore, Singapore: Association
for Computing Machinery, 2014, pp. 18–23. isbn: 9781450327053. doi:
10.1145/2557642.2563677. url: https://doi.org/10.1145/2557642.
2563677.

[7] STATSports Group Limited. APEX Athlete Series - GPS Performance
Tracker. 2023. url: https://eu.shop.statsports.com/products/apex-
athlete-series (visited on Apr. 20, 2023).

[8] www.footovision.com. Reveal the true power of sports analytics. 2021.
url: https://www.footovision.com/ (visited on May 8, 2023).

[9] soccerlytics.com. Succeed With Data-Driven Soccer Analytics. 2023. url:
soccerlytics.com (visited on May 8, 2023).

[10] D. E. Comer,David Gries,Michael C. Mulder, Allen Tucker, A. Joe Turner,
Paul R. Young, and Peter J. Denning. “Computing as a Discipline.”
In: Commun. ACM 32.1 (Jan. 1989), pp. 9–23. issn: 0001-0782. doi:
10.1145/63238.63239. url: https://doi.org/10.1145/63238.63239.

[11] www.blackmagicdesign.com. DaVinci Resolve 18 - Professional Editing,
Color, Effects and Audio Post! 2023. url: https://www.blackmagicdesign.
com/products/davinciresolve (visited on May 10, 2023).

105

https://www.statsperform.com/press/stats-acquires-prozone/
https://www.statsperform.com/press/stats-acquires-prozone/
https://www.hudl.com/
https://www.hudl.com/
https://doi.org/10.1145/2557642.2563677
https://doi.org/10.1145/2557642.2563677
https://doi.org/10.1145/2557642.2563677
https://eu.shop.statsports.com/products/apex-athlete-series
https://eu.shop.statsports.com/products/apex-athlete-series
https://www.footovision.com/
soccerlytics.com
https://doi.org/10.1145/63238.63239
https://doi.org/10.1145/63238.63239
https://www.blackmagicdesign.com/products/davinciresolve
https://www.blackmagicdesign.com/products/davinciresolve

106 BIBLIOGRAPHY

[12] Casey Faris. RESOLVE 18 CRASH COURSE - Davinci Resolve 18 Walk-
through

𝐵𝐸𝐺𝐼𝑁𝑁𝐸𝑅

. 2022. url: https://www.youtube.com/watch?v=h9MrEaELl2M (visited
on Nov. 11, 2022).

[13] Skills Factory. DaVinci Resolve 18 - Tutorial for Beginners in 15 MINUTES!

𝐶𝑂𝑀𝑃𝐿𝐸𝑇𝐸

. Apr. 2022. url: https://www.youtube.com/watch?v=aLIHKHkvKMM
(visited on May 10, 2023).

[14] Alexey Bochkovskiy,Chien-YaoWang,andHong-YuanMark Liao. “YOLOv4:
Optimal Speed and Accuracy of Object Detection.” In: arXiv e-prints,
arXiv:2004.10934 (Apr. 2020), arXiv:2004.10934. doi: 10.48550/arXiv.
2004.10934. arXiv: 2004.10934 [cs.CV].

[15] G. Hartvigsen and D. Johansen. “Co-operation in a distributed artificial
intelligence environment—The StormCast application.” In: Engineer-
ing Applications of Artificial Intelligence 3.3 (1990), pp. 229–237. issn:
0952-1976. doi: https://doi.org/10.1016/0952- 1976(90)90046-
O. url: https : / / www . sciencedirect . com / science / article / pii /
095219769090046O.

[16] Haakon Riiser, Pål Halvorsen, Carsten Griwodz, and Dag Johansen. “Low
Overhead Container Format for Adaptive Streaming.” In: Proceedings of
the First Annual ACM SIGMM Conference on Multimedia Systems. MMSys
’10. Phoenix, Arizona, USA: Association for Computing Machinery, 2010,
pp. 193–198. isbn: 9781605589145. doi: 10.1145/1730836.1730859.
url: https://doi.org/10.1145/1730836.1730859.

[17] T. Wiegand, G.J. Sullivan, G. Bjontegaard, and A. Luthra. “Overview
of the H.264/AVC video coding standard.” In: IEEE Transactions on
Circuits and Systems for Video Technology 13.7 (2003), pp. 560–576. doi:
10.1109/TCSVT.2003.815165.

[18] Svein A Pettersen, Håvard D Johansen, Ivan A M Baptista, Pål Halvorsen,
and Dag Johansen. “Quantified Soccer Using Positional Data: A Case
Study.” In: Frontiers in physiology. 9 (2018), p. 866. issn: 1664-042X.

[19] IBM. What is a REST API? url: https://www.ibm.com/topics/rest-
apis (visited on May 18, 2023).

[20] www.json.org. Introducing JSON. 1999. url: https://www.json.org/
json-en.html (visited on May 14, 2023).

[21] mozilla.org. Working with JSON. 1998-2023. url: https://developer.
mozilla.org/en-US/docs/Learn/JavaScript/Objects/JSON (visited on
May 14, 2023).

[22] Python Software Foundation. JSON encoder and decoder. 2023. url:
https://docs.python.org/3/library/json.html (visited on May 14,
2023).

https://www.youtube.com/watch?v=h9MrEaELl2M
https://www.youtube.com/watch?v=aLIHKHkvKMM
https://doi.org/10.48550/arXiv.2004.10934
https://doi.org/10.48550/arXiv.2004.10934
https://arxiv.org/abs/2004.10934
https://doi.org/https://doi.org/10.1016/0952-1976(90)90046-O
https://doi.org/https://doi.org/10.1016/0952-1976(90)90046-O
https://www.sciencedirect.com/science/article/pii/095219769090046O
https://www.sciencedirect.com/science/article/pii/095219769090046O
https://doi.org/10.1145/1730836.1730859
https://doi.org/10.1145/1730836.1730859
https://doi.org/10.1109/TCSVT.2003.815165
https://www.ibm.com/topics/rest-apis
https://www.ibm.com/topics/rest-apis
https://www.json.org/json-en.html
https://www.json.org/json-en.html
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/JSON
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/JSON
https://docs.python.org/3/library/json.html

BIBLIOGRAPHY 107

[23] Inc. Meta Platforms. Networking - Handling the response. 2023. url:
https://reactnative.dev/docs/network (visited on May 14, 2023).

[24] Andrew Gerrand. JSON and Go. 2011. url: https://go.dev/blog/json
(visited on May 14, 2023).

[25] FFmpeg.org. A complete, cross-platform solution to record, convert and
stream audio and video. 2023. url: https://ffmpeg.org/ (visited on
Apr. 21, 2023).

[26] Ethem Alpaydin and Francis Bach. Introduction to Machine Learning.
eng. 3rd ed. Adaptive computation and machine learning. Cambridge:
MIT Press, 2014. isbn: 0262028182.

[27] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona,
Deva Ramanan, Piotr Dollar, and Larry Zitnick. “Microsoft COCO: Com-
mon Objects in Context.” In: ECCV. European Conference on Computer
Vision, Sept. 2014. url: https://www.microsoft.com/en-us/research/
publication/microsoft-coco-common-objects-in-context/.

[28] Christian Szegedy, Alexander Toshev, and Dumitru Erhan. “Deep Neu-
ral Networks for Object Detection.” In: Advances in Neural Information
Processing Systems. Ed. by C.J. Burges, L. Bottou, M. Welling, Z. Ghahra-
mani, and K.Q. Weinberger. Vol. 26. Curran Associates, Inc., 2013. url:
https://proceedings.neurips.cc/paper_files/paper/2013/file/
f7cade80b7cc92b991cf4d2806d6bd78-Paper.pdf.

[29] Léon Bottou. “Stochastic Learning.” In: Advanced Lectures on Machine
Learning. Ed. by Olivier Bousquet and Ulrike von Luxburg. Lecture
Notes in Artificial Intelligence, LNAI 3176. Berlin: Springer Verlag, 2004,
pp. 146–168. url: http://leon.bottou.org/papers/bottou- mlss-
2004.

[30] “Mean Squared Error.” In: The Concise Encyclopedia of Statistics. New
York,NY: SpringerNewYork, 2008, pp. 337–339. isbn: 978-0-387-32833-
1. doi: 10.1007/978-0-387-32833-1_251. url: https://doi.org/10.
1007/978-0-387-32833-1_251.

[31] “Mean Absolute Error.” In: Encyclopedia of Machine Learning. Ed. by
Claude Sammut and Geoffrey I. Webb. Boston, MA: Springer US, 2010,
pp. 652–652. isbn: 978-0-387-30164-8. doi: 10.1007/978- 0- 387-
30164- 8_525. url: https://doi.org/10.1007/978- 0- 387- 30164-
8_525.

[32] Kaan Gokcesu and Hakan Gokcesu. Generalized Huber Loss for Robust
Learning and its Efficient Minimization for a Robust Statistics. 2021. arXiv:
2108.12627 [stat.ML].

[33] J. MacQueen. Some methods for classification and analysis of multivariate
observations. English. Proc. 5th Berkeley Symp. Math. Stat. Probab.,
Univ. Calif. 1965/66, 1, 281-297 (1967). 1967.

[34] Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. “Re-
inforcement Learning: A Survey.” In: J. Artif. Int. Res. 4.1 (May 1996),
pp. 237–285. issn: 1076-9757.

https://reactnative.dev/docs/network
https://go.dev/blog/json
https://ffmpeg.org/
https://www.microsoft.com/en-us/research/publication/microsoft-coco-common-objects-in-context/
https://www.microsoft.com/en-us/research/publication/microsoft-coco-common-objects-in-context/
https://proceedings.neurips.cc/paper_files/paper/2013/file/f7cade80b7cc92b991cf4d2806d6bd78-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/f7cade80b7cc92b991cf4d2806d6bd78-Paper.pdf
http://leon.bottou.org/papers/bottou-mlss-2004
http://leon.bottou.org/papers/bottou-mlss-2004
https://doi.org/10.1007/978-0-387-32833-1_251
https://doi.org/10.1007/978-0-387-32833-1_251
https://doi.org/10.1007/978-0-387-32833-1_251
https://doi.org/10.1007/978-0-387-30164-8_525
https://doi.org/10.1007/978-0-387-30164-8_525
https://doi.org/10.1007/978-0-387-30164-8_525
https://doi.org/10.1007/978-0-387-30164-8_525
https://arxiv.org/abs/2108.12627

108 BIBLIOGRAPHY

[35] Ivan Culjak, David Abram, Tomislav Pribanic, Hrvoje Dzapo, and Mario
Cifrek. “A brief introduction to OpenCV.” In: 2012 Proceedings of the 35th
International Convention MIPRO. 2012, pp. 1725–1730.

[36] The Apache Software Foundation. APACHE LICENSE, VERSION 2.0. Tech.
rep. The Apache Software Foundation, Jan. 2004. url: https://www.
apache.org/licenses/LICENSE-2.0 (visited on Apr. 23, 2023).

[37] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng
Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Ian Goodfellow,AndrewHarp,Geoffrey Irving,
Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manju-
nath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry
Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Van-
houcke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete War-
den, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
Software available from tensorflow.org. 2015. url: https : / / www .
tensorflow.org/ (visited on Apr. 23, 2023).

[38] Keras-team. Keras. 2023. url: https://github.com/keras-team/keras.
[39] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. “You

Only Look Once: Unified, Real-Time Object Detection.” In: 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 2016,
pp. 779–788. doi: 10.1109/CVPR.2016.91.

[40] Dag Johansen, Magnus Stenhaug, Roger B. A. Hansen, Agnar Chris-
tensen, and Per-Mathias Høgmo. “Muithu: Smaller footprint, potentially
larger imprint.” In: Seventh International Conference on Digital Informa-
tion Management (ICDIM 2012). 2012, pp. 205–214. doi: 10.1109/ICDIM.
2012.6360105.

[41] Håkon Kvale Stensland, Vamsidhar Reddy Gaddam, Marius Tennøe, Es-
pen Helgedagsrud, Mikkel Næss, Henrik Kjus Alstad, Asgeir Mortensen,
Ragnar Langseth, Sigurd Ljødal, Østein Landsverk, Carsten Griwodz,
Pål Halvorsen, Magnus Stenhaug, and Dag Johansen. “Bagadus: An
Integrated Real-Time System for Soccer Analytics.” In: ACM Trans. Mul-
timedia Comput. Commun. Appl. 10.1s (Jan. 2014). issn: 1551-6857.
doi: 10.1145/2541011. url: https://doi.org/10.1145/2541011.

[42] Mohammed Amine El Mrabet, Khalid El Makkaoui, and Ahmed Faize.
“Supervised Machine Learning: A Survey.” In: 2021 4th International
Conference on Advanced Communication Technologies and Networking
(CommNet). 2021, pp. 1–10. doi: 10.1109/CommNet52204.2021.9641998.

[43] Frank F. Tsui. Essentials of software engineering. eng. Burlington, Mass,
2014.

[44] Axis Communications AB. AXIS P3807-PVE Network Camera. 2023. url:
https : / / www . axis . com / products / axis - p3807 - pve # technical -
specifications (visited on May 12, 2023).

https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://www.tensorflow.org/
https://www.tensorflow.org/
https://github.com/keras-team/keras
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1109/ICDIM.2012.6360105
https://doi.org/10.1109/ICDIM.2012.6360105
https://doi.org/10.1145/2541011
https://doi.org/10.1145/2541011
https://doi.org/10.1109/CommNet52204.2021.9641998
https://www.axis.com/products/axis-p3807-pve#technical-specifications
https://www.axis.com/products/axis-p3807-pve#technical-specifications

BIBLIOGRAPHY 109

[45] ONVU Technologies Group AG. C-08 Outdoor Camera. 2023. url: https:
//www.oncamgrandeye.com/product/c-08-outdoor-camera/ (visited on
May 12, 2023).

[46] www.PacerGroup.Net. Understanding IP Certification. 2018. url: https:
//www.pacergroup.net/pacer-news/understanding-ip-certification/
(visited on May 12, 2023).

[47] Insta360. Insta360 X3. Sept. 2022. url: https://store.insta360.com/
product/x3?utm_source=website&utm_medium=product_page_button&
utm_campaign=x3 (visited on May 12, 2023).

[48] Insta360. Insta360 ONE RS. Mar. 2022. url: https://store.insta360.
com/product/one_rs?utm_source=website&utm_medium=product_page_
button&utm_campaign=one_rs (visited on May 12, 2023).

[49] GoPro Inc. MAX. Oct. 2019. url: https : / / store . insta360 . com /
product/one_rs?utm_source=website&utm_medium=product_page_
button&utm_campaign=one_rs (visited on May 12, 2023).

[50] GoPro Inc. GoPro Camera Battery Life. Oct. 2022. url: https : / /
community . gopro . com / s / article / gopro - camera - battery - life ?
language=en_US#max (visited on May 12, 2023).

[51] GoPro Inc. HERO11 Black. Sept. 2022. url: https://gopro.com/en/
us/shop/cameras/hero11- black/CHDHX- 111- master.html?option-
id=CHDHX-111-master (visited on May 12, 2023).

[52] GoPro Inc. HERO11 Black: Digital Lenses FOV Information. Sept. 2022.
url: https : / / community . gopro . com / s / article / HERO11 - Black -
Digital-Lenses-FOV-Information?language=en_US (visited on May 12,
2023).

[53] “kafi65” GoPro Inc. Overheating Problem with GoPro 11 Black. Nov. 2022.
url: https://community.gopro.com/s/question/0D53b00008o6E8bCAE/
overheating-problem-with-gopro-11-black?language=en_US (visited
on May 12, 2023).

[54] “goldenc4312” GoPro Inc. Over heating problem with HERO 11 Black. Apr.
2023. url: https://community.gopro.com/s/question/0D53b00009DNsxZCAT/
over-heating-problem-with-hero-11-black?language=en_US (visited
on May 12, 2023).

[55] GoPro Inc. Over heating problem with HERO 11 Black. Sept. 2022. url:
https://community.gopro.com/s/article/HERO11-Black-Camera-Is-
Too-Hot?language=en_US (visited on May 12, 2023).

[56] DJI. Osmo Action 3 Adventure Combo. Sept. 2022. url: https://store.
dji.com/sk/product/osmo-action-3?site=brandsite&from=landing_
page&vid=120471 (visited on May 13, 2023).

[57] MarcoR.Why the Action 3 is out of focus - a great explanation video. 2022.
url: https://forum.dji.com/thread-276860-1-1.html (visited on
May 14, 2023).

[58] rex_alpha3 Et al. Effective_Youth_8036 xavster. DJI Osmo Action 3 Batch
11/22 no more focus issues? 2022. url: https://www.reddit.com/r/dji/

https://www.oncamgrandeye.com/product/c-08-outdoor-camera/
https://www.oncamgrandeye.com/product/c-08-outdoor-camera/
https://www.pacergroup.net/pacer-news/understanding-ip-certification/
https://www.pacergroup.net/pacer-news/understanding-ip-certification/
https://store.insta360.com/product/x3?utm_source=website&utm_medium=product_page_button&utm_campaign=x3
https://store.insta360.com/product/x3?utm_source=website&utm_medium=product_page_button&utm_campaign=x3
https://store.insta360.com/product/x3?utm_source=website&utm_medium=product_page_button&utm_campaign=x3
https://store.insta360.com/product/one_rs?utm_source=website&utm_medium=product_page_button&utm_campaign=one_rs
https://store.insta360.com/product/one_rs?utm_source=website&utm_medium=product_page_button&utm_campaign=one_rs
https://store.insta360.com/product/one_rs?utm_source=website&utm_medium=product_page_button&utm_campaign=one_rs
https://store.insta360.com/product/one_rs?utm_source=website&utm_medium=product_page_button&utm_campaign=one_rs
https://store.insta360.com/product/one_rs?utm_source=website&utm_medium=product_page_button&utm_campaign=one_rs
https://store.insta360.com/product/one_rs?utm_source=website&utm_medium=product_page_button&utm_campaign=one_rs
https://community.gopro.com/s/article/gopro-camera-battery-life?language=en_US#max
https://community.gopro.com/s/article/gopro-camera-battery-life?language=en_US#max
https://community.gopro.com/s/article/gopro-camera-battery-life?language=en_US#max
https://gopro.com/en/us/shop/cameras/hero11-black/CHDHX-111-master.html?option-id=CHDHX-111-master
https://gopro.com/en/us/shop/cameras/hero11-black/CHDHX-111-master.html?option-id=CHDHX-111-master
https://gopro.com/en/us/shop/cameras/hero11-black/CHDHX-111-master.html?option-id=CHDHX-111-master
https://community.gopro.com/s/article/HERO11-Black-Digital-Lenses-FOV-Information?language=en_US
https://community.gopro.com/s/article/HERO11-Black-Digital-Lenses-FOV-Information?language=en_US
https://community.gopro.com/s/question/0D53b00008o6E8bCAE/overheating-problem-with-gopro-11-black?language=en_US
https://community.gopro.com/s/question/0D53b00008o6E8bCAE/overheating-problem-with-gopro-11-black?language=en_US
https://community.gopro.com/s/question/0D53b00009DNsxZCAT/over-heating-problem-with-hero-11-black?language=en_US
https://community.gopro.com/s/question/0D53b00009DNsxZCAT/over-heating-problem-with-hero-11-black?language=en_US
https://community.gopro.com/s/article/HERO11-Black-Camera-Is-Too-Hot?language=en_US
https://community.gopro.com/s/article/HERO11-Black-Camera-Is-Too-Hot?language=en_US
https://store.dji.com/sk/product/osmo-action-3?site=brandsite&from=landing_page&vid=120471
https://store.dji.com/sk/product/osmo-action-3?site=brandsite&from=landing_page&vid=120471
https://store.dji.com/sk/product/osmo-action-3?site=brandsite&from=landing_page&vid=120471
https://forum.dji.com/thread-276860-1-1.html
https://www.reddit.com/r/dji/comments/z6h3db/dji%5C_osmo%5C_action%5C_3%5C_batch%5C_1122%5C_no%5C_more%5C_focus%5C_issues/
https://www.reddit.com/r/dji/comments/z6h3db/dji%5C_osmo%5C_action%5C_3%5C_batch%5C_1122%5C_no%5C_more%5C_focus%5C_issues/
https://www.reddit.com/r/dji/comments/z6h3db/dji%5C_osmo%5C_action%5C_3%5C_batch%5C_1122%5C_no%5C_more%5C_focus%5C_issues/

110 BIBLIOGRAPHY

comments/z6h3db/dji%5C_osmo%5C_action%5C_3%5C_batch%5C_1122%
5C_no%5C_more%5C_focus%5C_issues/ (visited on May 14, 2023).

[59] JustName. Tutorial how to fix the Osmo Action 3 focus issue in 5 Minutes.
2022. url: https://forum.dji.com/thread-280288-1-1.html (visited
on May 14, 2023).

[60] Android. What is Android. url: https://www.android.com/what-is-
android/ (visited on May 16, 2023).

[61] The GraphQL Foundation. A query language for your API. 2023. url:
https://graphql.org/ (visited on May 19, 2023).

[62] Armin Lawi, Benny L. E. Panggabean, and Takaichi Yoshida. “Evaluating
GraphQL and REST API Services Performance in a Massive and Intensive
Accessible Information System.” In: Computers 10.11 (Oct. 2021), p. 138.
issn: 2073-431X. doi: 10.3390/computers10110138. url: http://dx.
doi.org/10.3390/computers10110138.

[63] Wikipedia contributors. ExFAT—Wikipedia, The Free Encyclopedia. 2023.
url: https://en.wikipedia.org/w/index.php?title=ExFAT&oldid=
1155042128 (visited on May 20, 2023).

[64] Microsoft. File Systems. 2008. url: https://learn.microsoft.com/
en-us/previous-versions/windows/it-pro/windows-2000-server/
cc938937(v=technet.10)%5C?redirectedfrom=MSDN (visited on May 20,
2023).

[65] Liang Peng. “Pixel2Field Single Image Transformation to Physical Field
of Sports Videos.” In: Oct. 2019. isbn: 978-3-030-33719-3. doi: 10.
1007/978-3-030-33720-9_51.

[66] Google. Build simple, secure, scalable systems with Go. 2023. url: https:
//go.dev/ (visited on May 22, 2023).

[67] Gin Team. Gin Web Framework. 2022. url: https://gin-gonic.com/
(visited on May 22, 2023).

[68] Python Software Foundation. Python. 2023. url: https://www.python.
org/ (visited on May 22, 2023).

[69] Pallets. Flask. 2010. url: https://flask.palletsprojects.com/en/2.
3.x/ (visited on May 22, 2023).

[70] Meta Open Source. React - The library for web and native user interfaces.
2023. url: https://react.dev/ (visited on May 22, 2023).

[71] Segun Adebayo. Create accessible React apps with speed. 2023. url:
https://chakra-ui.com/ (visited on May 22, 2023).

[72] expo.dev. Create amazing apps that run everywhere. 2023. url: https:
//docs.expo.dev/ (visited on May 22, 2023).

[73] mozilla.org contributors.HTTP. 2023. url: https://developer.mozilla.
org/en-US/docs/Web/HTTP (visited on May 22, 2023).

[74] Microsoft. TypeScript is JavaScript with syntax for types. 2023. url:
https://www.typescriptlang.org/ (visited on May 22, 2023).

[75] Google. google/uuid. 2021. url: https://github.com/google/uuid
(visited on May 23, 2023).

https://www.reddit.com/r/dji/comments/z6h3db/dji%5C_osmo%5C_action%5C_3%5C_batch%5C_1122%5C_no%5C_more%5C_focus%5C_issues/
https://www.reddit.com/r/dji/comments/z6h3db/dji%5C_osmo%5C_action%5C_3%5C_batch%5C_1122%5C_no%5C_more%5C_focus%5C_issues/
https://www.reddit.com/r/dji/comments/z6h3db/dji%5C_osmo%5C_action%5C_3%5C_batch%5C_1122%5C_no%5C_more%5C_focus%5C_issues/
https://www.reddit.com/r/dji/comments/z6h3db/dji%5C_osmo%5C_action%5C_3%5C_batch%5C_1122%5C_no%5C_more%5C_focus%5C_issues/
https://www.reddit.com/r/dji/comments/z6h3db/dji%5C_osmo%5C_action%5C_3%5C_batch%5C_1122%5C_no%5C_more%5C_focus%5C_issues/
https://forum.dji.com/thread-280288-1-1.html
https://www.android.com/what-is-android/
https://www.android.com/what-is-android/
https://graphql.org/
https://doi.org/10.3390/computers10110138
http://dx.doi.org/10.3390/computers10110138
http://dx.doi.org/10.3390/computers10110138
https://en.wikipedia.org/w/index.php?title=ExFAT&oldid=1155042128
https://en.wikipedia.org/w/index.php?title=ExFAT&oldid=1155042128
https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-2000-server/cc938937(v=technet.10)%5C?redirectedfrom=MSDN
https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-2000-server/cc938937(v=technet.10)%5C?redirectedfrom=MSDN
https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-2000-server/cc938937(v=technet.10)%5C?redirectedfrom=MSDN
https://doi.org/10.1007/978-3-030-33720-9_51
https://doi.org/10.1007/978-3-030-33720-9_51
https://go.dev/
https://go.dev/
https://gin-gonic.com/
https://www.python.org/
https://www.python.org/
https://flask.palletsprojects.com/en/2.3.x/
https://flask.palletsprojects.com/en/2.3.x/
https://react.dev/
https://chakra-ui.com/
https://docs.expo.dev/
https://docs.expo.dev/
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://www.typescriptlang.org/
https://github.com/google/uuid

BIBLIOGRAPHY 111

[76] The Python Software Foundation. 5.5. Dictionaries. 2023. url: https:
//docs.python.org/3/tutorial/datastructures.html?highlight=
dictionary (visited on May 23, 2023).

[77] Codecademy. 7 Top Machine Learning Programming Languages. 2023.
url: https://www.codecademy.com/resources/blog/machine-learning-
programming-languages/ (visited on May 23, 2023).

[78] arunponnusamy. cvlib. Jan. 11, 2021. url: https : / / github . com /
arunponnusamy/cvlib (visited on May 23, 2023).

[79] Ebubekir BUBER and Banu DIRI. “Performance Analysis and CPU vs GPU
Comparison for Deep Learning.” In: 2018 6th International Conference
on Control Engineering & Information Technology (CEIT). 2018, pp. 1–6.
doi: 10.1109/CEIT.2018.8751930.

[80] Raksha Kale and Dr Thorat. “Image Segmentation Techniques with
Machine Learning.” In: International Journal of Scientific Research in
Computer Science, Engineering and Information Technology (Dec. 2021),
pp. 232–235. doi: 10.32628/CSEIT1217653.

[81] Tim Bray et al. Extensible Markup Language (XML) 1.0 (Fifth Edition).
2008. url: https://www.w3.org/TR/REC-xml/REC-xml-20081126.xml
(visited on May 26, 2023).

[82] M. Thornburgh H. Parmar. Adobe’s Real Time Messaging Protocol. Dec. 21,
2012. url: https://rtmp.veriskope.com/pdf/rtmp_specification_1.
0.pdf (visited on May 29, 2023).

[83] Yifu Zhang, Peize Sun, Yi Jiang, Dongdong Yu, Fucheng Weng, Zehuan
Yuan, Ping Luo,Wenyu Liu, and XinggangWang. ByteTrack: Multi-Object
Tracking by Associating Every Detection Box. 2022. arXiv: 2110.06864
[cs.CV].

[84] Yifu Zhang, Chunyu Wang, Xinggang Wang, Wenjun Zeng, and Wenyu
Liu. “FairMOT: On the Fairness of Detection and Re-identification in
Multiple Object Tracking.” In: International Journal of Computer Vision
129.11 (Sept. 2021), pp. 3069–3087. doi: 10.1007/s11263-021-01513-4.
url: https://doi.org/10.1007%2Fs11263-021-01513-4.

[85] Qiang Wang, Yun Zheng, Pan Pan, and Yinghui Xu. Multiple Object
Tracking with Correlation Learning. 2021. arXiv: 2104.03541 [cs.CV].

[86] Kai Jiang and Xi Lu. “Natural Language Processing and Its Applications
in Machine Translation: A Diachronic Review.” In: 2020 IEEE 3rd In-
ternational Conference of Safe Production and Informatization (IICSPI).
2020, pp. 210–214. doi: 10.1109/IICSPI51290.2020.9332458.

[87] Vincent T. Progressive vs. Interlaced. Dec. 22, 2019. url: https://medium.
com/hd- pro/progressive- vs- interlaced- e18e2924800e (visited on
May 24, 2023).

https://docs.python.org/3/tutorial/datastructures.html?highlight=dictionary
https://docs.python.org/3/tutorial/datastructures.html?highlight=dictionary
https://docs.python.org/3/tutorial/datastructures.html?highlight=dictionary
https://www.codecademy.com/resources/blog/machine-learning-programming-languages/
https://www.codecademy.com/resources/blog/machine-learning-programming-languages/
https://github.com/arunponnusamy/cvlib
https://github.com/arunponnusamy/cvlib
https://doi.org/10.1109/CEIT.2018.8751930
https://doi.org/10.32628/CSEIT1217653
https://www.w3.org/TR/REC-xml/REC-xml-20081126.xml
https://rtmp.veriskope.com/pdf/rtmp_specification_1.0.pdf
https://rtmp.veriskope.com/pdf/rtmp_specification_1.0.pdf
https://arxiv.org/abs/2110.06864
https://arxiv.org/abs/2110.06864
https://doi.org/10.1007/s11263-021-01513-4
https://doi.org/10.1007%2Fs11263-021-01513-4
https://arxiv.org/abs/2104.03541
https://doi.org/10.1109/IICSPI51290.2020.9332458
https://medium.com/hd-pro/progressive-vs-interlaced-e18e2924800e
https://medium.com/hd-pro/progressive-vs-interlaced-e18e2924800e

A
Appendix

113

114 appendix a appendix

A.1 Progressiv versus interlaced scan modes
When talking about progressive or interlaced video, it refers to how the image
is displayed on the screen.

An image is a matrix of pixels. For the resolution 1920x1080, which denotes
the resolution of FullHD, there are 1080 rows of 1920 pixels. When all 1080
rows of 1920 pixels are displayed on top of each other, the image is displayed
in full.

Progressive video is the most common way to display videos today, and it
displays the entire frame at a time [87]. For video recorded in 25 FPS, this
means that every 125 th of a second, a new frame is displayed.

Figure A.1: Progressive image

Contrary to progressive, interlaced video displays half of the frame at a time
in rapid succession to make it look like one whole frame [87]. For video with
25 FPS, the interlaces method must send 50 half-frames each second to make
up the 25 complete frames. To display half-frames, odd-numbered rows are
sent first, and then the even numbered rows after, which then completes the
image. Sending odd and even numbered rows is illustrated in figure A.2a, A.2b,
while figure A.2c illustrates that the two halves make up one frame when
combined.

a.1 progressiv versus interlaced scan modes 115

(3)

(1)

(a) First half

(4)

(2)

(b) Second half

(3)

(1)

(4)

(2)

(c) Combined frame

Figure A.2: Interlaced video overview

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Background and Motivation
	1.2 Mearka Problem Definition
	1.3 Methods
	1.4 Scope and Limitations
	1.5 Context
	1.6 Outline

	2 Background
	2.1 Representational State Transfer (rest)
	2.2 JavaScript Object Notation (json)
	2.3 FFMPEG
	2.4 Machine Learning
	2.4.1 Supervised Learning
	2.4.2 Unsupervised Learning
	2.4.3 Reinforcement Learning
	2.4.4 OpenCV
	2.4.5 CVlib
	2.4.6 YOLOv4

	2.5 Related Work
	2.5.1 Muithu
	2.5.2 Bagadus

	2.6 Summary

	3 Requirement Specification
	3.1 Functional
	3.2 Non-functional
	3.3 End user interactions
	3.4 Summary

	4 Design
	4.1 System Overview
	4.2 Choosing A Camera For Development
	4.2.1 Requirements
	4.2.2 Options

	4.3 Mearka-App
	4.3.1 System Design
	4.3.2 User Interface

	4.4 Mearka Web-Interface
	4.4.1 User Interface

	4.5 Backend
	4.5.1 rest api
	4.5.2 Soccer Metadata
	4.5.3 Mearka-app
	4.5.4 Mearka Web-interface
	4.5.5 Position Detection Component Communication

	4.6 Position Detection Component
	4.6.1 Concatinate Video
	4.6.2 Position Detection
	4.6.3 Position Detection Component Server

	4.7 Summary

	5 Implementation
	5.1 System overview
	5.2 Web
	5.2.1 Api calls

	5.3 Mearka-App
	5.4 Backend
	5.5 Position Detection Component
	5.5.1 Concatenate video
	5.5.2 Position detection

	5.6 Summary

	6 Evaluation
	6.1 Choosing a Camera
	6.1.1 Battery life
	6.1.2 File size

	6.2 Position detection
	6.2.1 Test system
	6.2.2 Resolution speed
	6.2.3 Framerate Speed
	6.2.4 Detection Accuracy

	6.3 Metadata Size
	6.4 Speedup
	6.5 Summary

	7 Discussion
	7.1 Mearka-app
	7.2 Mearka Web-interface
	7.3 Backend
	7.4 Position Detection Component

	8 Conclusion and Future Work
	8.1 Concluding Remarks
	8.2 Summary
	8.3 Future Work
	8.3.1 Streaming
	8.3.2 Tracking
	8.3.3 Extend Tagging Option
	8.3.4 Translate pixel-positions to real world positions
	8.3.5 Video queue
	8.3.6 Possible Real-Time

	A Appendix
	A.1 Progressiv versus interlaced scan modes

