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Abstract 

The Norwegian fishing industry faces a significant issue of fishery crimes, with product 

traceability systems presenting a potential solution to counter these illegal activities. Current 

supply chain management in the seafood industry is vulnerable to information alterations, 

thereby complicating product traceability. Blockchain technology, with its unique properties, 

offers an interesting approach to address these challenges. Despite this, existing blockchain-

based product traceability systems often fail to integrate government regulation and provide 

limited access to traceability data for consumers. Moreover, those providing such access often 

lack user-friendliness. This thesis explores if a blockchain-based product traceability system 

can support supply chain management, enhance consumer confidence, and enforce regulatory 

compliance. We conducted a review of existing literature and assessed the potential of 

blockchain technology to optimize supply chain management. Furthermore, a traceability 

system, entitled SeaChain, incorporating a permissioned blockchain, smart contracts, and 

governmental regulations was developed. We evaluated this system and compared it with 

existing systems. Our findings suggest that blockchain technology can enhance supply chain 

management, bolster consumer trust, and aid in mitigating fishery crimes. The research 

conducted provides valuable insights for improving supply chain management and contributes 

to future studies in this field.
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1 Introduction 

Norway holds a prominent position as one of the world’s leading seafood-exporting nations. In 

2022, the country exported nearly 3 million tons of seafood, generating revenues of 

approximately 150 billion NOK [1]. The fishing industry plays a crucial role in the Norwegian 

economy, providing a significant source of income and employment opportunities. Moreover, 

the exported seafood serves as an essential food supply for countries that import Norwegian 

seafood products. Unfortunately, the fishing industry faces challenges posed by illegal fishing 

activities. Fishery crimes have significant consequences, leading to substantial economic 

losses, over-exploitation of marine resources, and environmental degradation. Additionally, 

these crimes threaten global food security by obscuring the origin and processing methods of 

products [2]. 

One potential solution to mitigate fishery crimes is the implementation of a product tracking 

system incorporating provenance data throughout the fishing industry supply chain. Such a 

system can not only help ensure regulatory compliance by businesses but also enhance 

consumer confidence in food products. Supply chains can be quite complex, often involving a 

multitude of enterprises that collaborate and interact at various stages of the production and 

distribution process. In traditional supply chain management, data is primarily recorded by each 

enterprise in a centralized database to which only the respective enterprise has access [3]. This 

not only allows for easy data manipulation, which can be exploited to serve the enterprise’s 

interests, but it also poses a significant obstacle for government entities attempting to monitor 

and detect illegal activities within the supply chain. Consequently, it leads to mistrust between 

enterprises and results in inconsistent information throughout the supply chain. Traditional 

product tracking systems face challenges due to these shortcomings in supply chain 

management. 

Blockchain technology presents innovative approaches for tracking products within supply 

chains. Blockchain’s decentralized, transparent, and immutable nature addresses the limitations 

of traditional supply chain management [3]. By integrating smart contracts into the blockchain 

network, various processes can be automated, eliminating the need for intermediaries. This 

combination of blockchain technology and smart contracts enable secure and immutable 

product tracing throughout the supply chain, ensuring no authority or enterprise can manipulate 

data. 
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In this thesis, a proof-of-concept, smart contract-based product traceability system, dubbed 

SeaChain, has been developed and tailored for the Norwegian fishing industry. SeaChain, built 

upon the GoQuorum blockchain, is designed to trace fish and associated products in batches 

using the smart contracts. The GoQuorum network comprises supply chain organizations and 

the Directorate of Fisheries, a government-controlled regulatory body. SeaChain enhances 

consumer confidence by providing QR codes on products, which can be scanned to view 

comprehensive transaction histories and provenance data. 

1.1 Problem definition 

Fishery crimes in the Norwegian sea pose significant challenges to the Norwegian fishing 

industry. A system capable of preventing or reducing these illegal activities would be highly 

beneficial. Blockchain technology and smart contracts have the potential to address these issues 

by enhancing the transparency, security, and data integrity of the supply chain. 

Our thesis is: 

“A blockchain-based traceability system utilizing smart contracts can address the limitations 

of traditional supply chain management by providing secure and transparent tracking, leading 

to enhanced consumer confidence and regulatory compliance.” 

To strengthen the thesis, our research will pursue the following objectives: 

1. Implement a proof-of-concept product traceability system for the Norwegian fishing 

industry using blockchain technology and smart contracts. 

2. Assess whether such a system can improve the Norwegian fishing industry supply chain 

and help reduce fishery crimes. 

1.2 Context 

This thesis is set within the context of the Cyber Security Group (CSG) at UiT The Arctic 

University of Norway. CSG is a research group that tackles fundamental challenges within the 

domain of distributed systems. Its primary objective is to develop robust methodologies for the 

design and implementation of reliable and efficient distributed systems. Furthermore, CSG 

focuses on the application of digital technology in various sectors, such as clinical medicine 

and financial fraud prevention [4, 5]. 
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In recent years, CSG has been actively involved in numerous projects aimed at mitigating fraud 

in the fishing industry [6-8]. This thesis specifically explores the application of blockchain 

technology, a type of distributed system, with the goal of mitigating fishery crimes. The focus 

of this work naturally aligns with the ongoing research interests and objectives of CSG. 

1.3 Method 

In 1989 the Task Force on the Core of Computer Science released a report on how to divide the 

discipline of computing into three major paradigms. These paradigms are theory, abstraction, 

and design [9]. An explanation of each paradigm is provided below. 

The theory paradigm, rooted in the principles of mathematics, adheres to the following four-

step process for developing a coherent and valid theory: 

1. Definition – Characterize the objects of study. 

2. Theorem – Formulate hypotheses about potential relationships among the identified 

objects. 

3. Proof – Evaluate the theorems, proving or disproving them. 

4. Interpretation – Interpret the results obtained from the proof stage. 

The abstraction (or modeling) paradigm, which is based on the experimental scientific method, 

follows this four-step process to investigate a phenomenon: 

1. Hypothesis – Formulate a hypothesis about the phenomenon being researched. 

2. Model & Predict – Construct a model based on the hypothesis and make a prediction 

about its behavior or outcomes. 

3. Experiment & Data Collection – Design an experiment to test the model and collect 

relevant data.  

4. Analysis – Analyze the results from the experiment and data collection stage. 

The design paradigm is based on engineering principles and uses the following four steps in the 

construction of a system intended to solve a given problem: 

1. Requirements – State the requirements that the system needs to meet. 

2. Specifications – Outline the detailed specifications that guide the system’s design and 

functionality. 
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3. Design & Implementation – Design the system according to the stated specifications 

and implement it.  

4. Testing - Conduct thorough testing to ensure the system functions as intended and meets 

the requirements and specifications. 

In our research, we incorporate elements of the abstraction and design paradigms to investigate 

the problem posed in our thesis statement. We have formulated a hypothesis and made a 

prediction of its outcome. While we do not perform an experiment in a real-world scenario, we 

have designed and tested a product tracing system, which aims to address the challenges related 

to supply chain management and fishery crimes. Despite the lack of real-world 

experimentation, our methodology remains comprehensive, ensuring the system operates as 

intended. 

1.4 Scope and limitations 

We make two key assumptions regarding the product tracing system: 

1. Each fishing vessel is equipped with an onboard system that automatically gathers data 

related to the species and weight of fish caught, as well as the GPS location of the boat. 

2. All connections between applications are assumed to be secure, employing modern 

cryptographic protocols and standards, such as TLS, to ensure data integrity and 

confidentiality. 

1.5 Outline 

Section 2 reviews existing product tracing systems and explores the role of blockchain 

technology in supply chain management. 

Section 3 provides the necessary theoretical background to understand the work presented in 

this thesis. 

Section 4 presents the design and implementation of SeaChain, the product tracing system 

developed in this thesis. 

Section 5 evaluates the performance of the components used in building SeaChain. 

Section 6 conducts a security analysis of SeaChain, compares it to existing product tracing 

systems, and reflects on the achievements of this thesis. 

Section 7 concludes the thesis and outlines potential areas for future work. 
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2 Related work 

This section explores research related to the application of blockchain technology within supply 

chain management. The primary objective is to examine existing product tracing systems, as 

well as to study blockchain technology’s role in supply chain management. The goal is to gain 

a comprehensive understanding of the research field and to establish a context for the work 

conducted in this thesis with respect to the existing literature. The primary criteria for selecting 

the reviewed papers in Table 1 include their recency and relevance to the use of blockchain in 

supply chain management. This section is structured to provide an overview of each selected 

paper individually. A comparative analysis between the reviewed product tracing systems and 

SeaChain will be presented in Section 6.2. 

Authors Paper Technology 

Wang et al. [3] Smart Contract-Based Product Traceability System 

in the Supply Chain Scenario 

Public blockchain, 

smart contracts 

Ding et al. [10] Permissioned Blockchain-Based Double-Layer 

Framework for Product Traceability System 

Permissioned and 

private blockchain, 

smart contracts 

Madumidha et al. 

[11] 

A Theoretical Implementation: Agriculture Food 

Supply Chain Management using Blockchain 

Technology 

Public blockchain, 

smart contracts, 

IoT 

Malik et al. [12] ProductChain: Scalable Blockchain Framework to 

Support Provenance in Supply Chains 

Permissioned 

blockchain 

Lin et al. [13] Food Safety Traceability System Based on 

Blockchain and EPCIS 

Public blockchain, 

smart contracts 

Salah et al. [14] Blockchain-Based Soybean Traceability in 

Agricultural Supply Chain 

Public blockchain, 

smart contracts 

Table 1: Overview of the reviewed product tracing systems 

Wang et al. [3] designed a product traceability system built on top of the Ethereum blockchain 

for supply chain management. The system utilizes smart contracts to enable smooth information 

flow and trace transactions throughout the supply chain. To view the transaction history of a 

product, a consumer must join the blockchain network as a node and interact with a webpage 

that requires manual input. The authors proposed an event response mechanism to guarantee 
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the validity of a transaction by verifying the identities of both parties, but this mechanism was 

not implemented. Updating the transaction history of a product requires human interaction 

through a front-end webpage that interacts with the smart contracts. The system tracks materials 

and products separately but fails to create a link between them. Consequently, while a product 

can be traced back to its manufacturer, the origin of the materials used in the product remains 

untraceable. 

Ding et al. [10] identify several issues with existing product traceability systems, such as a lack 

of consideration for government regulation, difficulties in protecting sensitive enterprise data, 

and performance bottlenecks. To address these challenges, they propose a product traceability 

scheme based on a permissioned blockchain within a double-layer framework. The primary 

layer comprises a consortium blockchain, while the secondary layer consists of private 

blockchains belonging to individual enterprises. These layers employ smart contracts to 

facilitate government regulation and update product traceability information. The two layers 

are connected by key nodes, which are responsible for maintaining both the consortium 

blockchain in the primary layer and the private blockchain in the secondary layer. The authors 

claim that their double-layer framework can reduce regulatory costs, protect sensitive data, 

improve performance of product data querying, enhance scalability, and ensure tamper 

resistance. However, the framework does not present a mechanism for consumers to access the 

product traceability data, resulting in no consumer accessibility. 

Madumidha et al. [11] present a theoretical description of a system that leverages the Ethereum 

blockchain, smart contracts, and Internet of Things (IoT) technology to enable food traceability 

in the agriculture supply chain. The authors review major drawbacks of traditional supply chain 

management, including the lack of traceability and concerns surrounding food safety. They 

argue that implementing a food traceability system can enhance transparency, streamline 

management, and bolster trust between consumers and suppliers. As part of this system, they 

consider the use of an app to display product traceability data to consumers, thus increasing 

accessibility. Furthermore, they claim that traceability can help minimize errors and mitigate 

unethical and illegal activities. 

Malik et al. [12] proposed a consortium-based blockchain framework, dubbed ProductChain, 

designed to enable consumers and stakeholders to trace the origin of products. The blockchain 

network consists of government regulatory bodies and the key entities within the supply chain. 

Featuring a three-tiered architecture, the system employs sharding to address scalability 
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concerns. The framework incorporates a transaction vocabulary that allows a final product to 

be linked to multiple raw ingredients, as well as access control mechanisms that ensure no 

single participant dominates the blockchain. The system leverages QR codes on products for 

consumers to retrieve traceability data. However, the interface used to display data is not 

showcased, leaving the accessibility to consumers somewhat unclear. Additionally, the authors 

conducted a security analysis demonstrating the system’s resilience against a wide variety of 

client and network-based attacks.  

Lin et al. [13] designed a food safety traceability system, leveraging blockchain technology and 

the Electronic Product Code Information Services (EPCIS). Their system enables consumers to 

query product data using a product code and a smart contract address. Unfortunately, the 

authors do not explain this process in detail or display what the consumer interface looks like. 

To mitigate the issue of data explosion arising from rapid accumulation of data in the 

blockchain, their system integrates dynamic management of on-chain and off-chain data. Smart 

contracts are employed to protect sensitive information and prevent data tampering. The authors 

developed a prototype utilizing the Ethereum blockchain and compared its performance with 

existing traceability systems. Their evaluation results demonstrate that the proposed system 

outperforms three others in terms of tamper-resistance, privacy protection, centralization, and 

the volume of data stored on-chain. 

Salah et al. [14] present a versatile framework utilizing the Ethereum blockchain and smart 

contracts for tracking, tracing, and executing business transactions within the soybean 

agricultural supply chain. The framework is designed to remove the need for intermediaries and 

trusted centralized authorities. Its generic design enables the implementation of trusted and 

decentralized traceability for a wide range of crops and products in the agricultural supply 

chain. The authors claim that their system offers enhanced transparency and traceability in a 

secure, reliable, and efficient manner. Despite these advances, the framework does not provide 

a method for consumers to view traceability data for products. The framework also does not 

address critical challenges in blockchain technology, including scalability, governance, 

privacy, standards, and regulations. In future research, the authors aim to address these issues 

and incorporate proof of delivery and automated payments into their system. 

In conclusion, this section has reviewed various studies that focus on blockchain-based supply 

chain management, particularly with respect to product tracing systems. The reviewed literature 

highlights key issues in supply chain management and demonstrates how the combination of 
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blockchain technology and smart contracts can improve transparency, traceability, and security. 

Furthermore, the studies suggest that food traceability systems can enhance management 

efficiency, foster trust between suppliers and consumers, and reduce illegal activities within the 

supply chain. Despite these benefits, it is evident that many existing product tracing systems 

still have issues related to scalability, governance, privacy, and regulations. By building upon 

the insights gained from the reviewed literature, this thesis aims to contribute to the 

advancement of product tracing systems by addressing some of these challenges. A comparative 

analysis between the reviewed systems and SeaChain will be presented in Section 6.2.  
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3 Background 

This section provides the necessary theoretical foundation required for understanding the work 

presented in this thesis. It is designed to address any questions that may have arisen from 

Section 2 and to deepen the reader’s knowledge of blockchain technology. After reading both 

Section 2 and this section, the reader should have a solid understanding of blockchain 

technology and its application in supply chain management. The section begins with an 

introduction to blockchain technology, followed by an explanation of the Ethereum blockchain, 

smart contracts, and decentralized applications. The focus then shifts to the GoQuorum 

blockchain, which is built on top of Ethereum and forms the backbone of the work presented 

in this thesis. Essential properties of consensus protocols are examined before delving into the 

specific consensus protocol used in this thesis. The section concludes with an explanation of 

product tracing, provenance data, and international standards for unique identifiers. 

3.1 Blockchain 

Blockchain technology is a type of Distributed Ledger Technology (DLT) characterized by 

decentralized databases operating as Peer-to-Peer (P2P) networks without a central authority. 

Users within the network share, replicate, and synchronize data using a consensus algorithm 

[15]. The term blockchain first emerged in the whitepaper for Bitcoin, the world’s first 

cryptocurrency [16]. A cryptocurrency is a type of digital currency that uses cryptography for 

security and enables parties to transfer funds without relying on a financial institution [16, 17]. 

In a blockchain, transactions are grouped together and stored in blocks, which are then linked 

to one another using cryptographic hashes [15]. This structure creates an immutable chain of 

records that is infeasible to alter without controlling the majority of the nodes in the network. 

The first block created is the foundation of the blockchain and is denoted as the genesis block. 

Every block contains metadata, but this data may vary a lot depending on the blockchain 

platform. Typical metadata are block numbers, a hash to the previous block, and a timestamp 

for when the block was created. Figure 1 shows an example of how the blocks in Bitcoin are 

linked together. A block contains metadata and a list of its recorded transactions. The hash 

pointing to the previous block is created by using the SHA256 algorithm on the metadata of the 

previous block [16]. 
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Figure 1: Bitcoin blockchain 

The three main types of blockchains are public, private, and consortium [15, 18]. Public 

blockchains do not have admission control that regulates who can join the network. This means 

anyone can become a node in the network and read and write transactions. Private blockchains 

enforce strict access control and only allow authorized users to participate. Typically, a single 

authority controls the network and access to data is restricted to members. Private blockchains 

are more centralized than the public variants but still provide useful features such as data 

immutability and auditability. Consortium blockchains, also known as permissioned 

blockchains, are a hybrid between public and private blockchains, controlled by a group of 

organizations or entities. The governing group decides on the rules, permissions, and who can 

participate in the network. Consortium blockchains can be used when multiple parties need to 

collaborate without there being any third-party that is trusted by each member [18]. 

The choice of consensus algorithm for a blockchain is crucial, as it heavily impacts the 

performance of the blockchain. This includes metrics like transaction verification speed, 

transaction throughput, block creation speed, and scalability. Furthermore, the consensus 

algorithm affects security, energy efficiency, and accessibility [19]. Bitcoin and Ethereum are 

the most well-known public blockchains, and both initially used the consensus algorithm Proof 

of Work (PoW) [16, 20, 21]. However, as of 2022, Ethereum has switched to Proof of Stake 

(PoS), an algorithm that offers better energy efficiency, reduced hardware requirements, and 

increased security [22]. GoQuorum is an example of a blockchain that can be configured as 

either private or consortium-based. This blockchain supports multiple Proof of Authority (PoA) 

consensus algorithms, such as Clique and Istanbul Byzantine Fault Tolerance (IBFT) [23]. 

In summary, blockchains offer key properties such as decentralization, immutability, security, 

transparency, and consensus. These properties make blockchains suitable for use in various 

industrial sectors, including agriculture, healthcare, and supply chain management [15]. 
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3.2 Ethereum 

Ethereum is a decentralized blockchain platform featuring an embedded computer called the 

Ethereum Virtual Machine (EVM). Every node participating in the network maintains a copy 

of the EVM state, ensuring consensus on its current state. The EVM is Turing-complete, 

meaning it can execute any algorithm provided sufficient time and resources, enabling complex 

computations [20]. In comparison to Bitcoin, which primarily serves as a cryptocurrency 

platform, Ethereum offers a more modern and versatile blockchain solution. 

To interact with the Ethereum network and send transactions, you must have an account. There 

are two types of accounts in Ethereum: Externally Owned Accounts (EOA) and Contract 

Accounts. Both types of accounts have a unique public address that serves as an identifier for 

the account. The account address is a 42-character hexadecimal string that starts with a "0x" 

prefix. An EOA can be controlled by anyone who possesses the private keys associated with 

the account. In contrast, a Contract Account is associated with a smart contract and is controlled 

by the code within the contract [22].  

An Ethereum transaction is initiated by an EOA and contains instructions to be executed on the 

blockchain. Transactions can be categorized as regular transactions, contract deployment 

transactions, or contract execution transactions. A regular transaction could e.g. involve 

sending cryptocurrency from one account to another. Contract deployment transactions occur 

when a smart contract is deployed, while contract execution transactions refer to any transaction 

that interacts with a deployed smart contract [22]. Figure 2 shows an example of a transaction 

and transaction receipt from interacting with a smart contract. Table 2 provides an explanation 

of the various fields displayed in Figure 2.  

 

Figure 2: Transaction and transaction receipt in JSON format. 
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Field Explanation 

from The Ethereum address of the account that sent the transaction. 

to The Ethereum address of the smart contract. 

gas The amount of gas the sender is willing to spend on the transaction. 

gasPrice The price of the gas for the transaction. 

nonce A number representing the total amount of transactions sent from the 

sender’s address. 

data The input data for the transaction, e.g., a smart contract function call and 

the provided arguments. 

transactionHash A unique hash identifier for the transaction. 

blockNumber The block the transaction was included in. 

transactionIndex The index position of the transaction inside of the block. 

status A Boolean indicating if the transaction was successful or not. 

gasUsed The gas consumed by the transaction. 

cumulativeGasU

sed 

The total amount of gas used in the block after the transaction was 

executed. 

logs An array containing log objects generated by the transaction. These log 

objects represent events that were emitted by the smart contract while 

executing the transaction. 

logsBloom A 256-byte bloom filter that is a compact representation of the logs 

included in the transaction receipt. The bloom filter enables efficient 

searching and filtering without processing the entire logs array.  

 

Table 2: Explanation for the fields in Figure 2 

In Ethereum, gas measures the amount of computational effort needed to execute specific 

operations on the blockchain. All transactions require computational resources, and therefore 

each transaction has a gas fee. These fees are paid in Ethereum’s native currency, ether (ETH) 

[22]. The nodes that participate in the network and add transactions to the blockchain are 

compensated for their work with transaction fees, which are calculated based on the gas used 

and paid in ETH. The concept of gas exists to manage the network’s resources efficiently, create 

incentives for nodes that perform computations, and provide a flexible pricing model. 

The blocks in Ethereum are linked together similarly to Bitcoin in terms of their chain structure, 

with the linking process explained in Section 3.1. One difference between the blocks in these 
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two blockchains is the metadata they store. Ethereum blocks contain more metadata that can 

for example provide information about the state of the network. Just like each transaction 

receipt contains a bloom filter, each block also has a bloom filter. This filter enables clients to 

quickly search and check if a specific smart contract event occurred without having to process 

all the transactions stored in the block. 

3.2.1 Smart contracts 

A smart contract is a program that executes when certain predefined rules or conditions are met. 

This establishes trust and security while also eliminating the need for intermediaries. Smart 

contracts are a key feature of Ethereum and once deployed, smart contract code resides on-

chain and cannot be changed or modified. However, developers do have techniques that can be 

used to upgrade the contracts. One technique for upgrading a smart contract is to transfer the 

state and functionality to another smart contract [22]. This process is typically performed 

through a script that deploys a new contract, copies all the necessary data to the new contract 

and updates all references in other contracts to point to the new contract. 

An Ethereum smart contract is deployed by sending a transaction containing the compiled smart 

contract bytecode without specifying any recipient [22]. The bytecode is machine-readable 

code used by the EVM to execute the contract’s code. To interact with a smart contract, you 

need to have access to the contract’s Application Binary Interface (ABI). An ABI is a JSON 

representation of the functions, events, and other contents of the smart contract. The ABI 

defines how to interact with the smart contract and acts as a bridge between external 

applications and the contract’s binary code [22]. Without a contract’s ABI, external applications 

will not know how to encode and decode data sent and received from the smart contract. 

Most Ethereum smart contracts are written in a programming language called Solidity [22]: a 

statically typed high-level language inspired by C++, Python, and JavaScript. Compiling a 

contract creates the smart contract’s ABI and bytecode. In Solidity, smart contract events are 

named data structures which can be emitted during execution of a transaction. Events allow the 

contract to emit information to external applications that are not connected to the blockchain. 

The parameters in the data structure can be marked with the indexed keyword to make searching 

for them in transaction logs more efficient. Applications can set up an event listener that queries 

the logs and filters for specific events and indexed parameters [24]. Events can thus help 

broadcast information to other applications and be used to monitor and react to specific events 

in smart contracts. 
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Retrieving data from Solidity smart contracts can also be done through functions that are read-

only, denoted view functions. These functions do not modify the state of the blockchain, 

meaning that they do not require a transaction to be executed and do not consume gas. Since 

no transaction is executed when reading data, an account is not necessary. This can be 

convenient for applications that only want to read data from the blockchain. 

3.2.2 Decentralized Applications 

Together, the EVM and smart contracts make it possible to create more advanced blockchain 

applications such as decentralized applications (DApp). The backend code of a DApp is the 

smart contract code which runs on the blockchain, rather than on a centralized server. This 

means that the blockchain serves as both a data storage mechanism and a platform for executing 

the application’s logic [22]. DApps offer many benefits such as zero downtime, identity 

privacy, and complete data integrity. In addition, smart contracts are guaranteed to execute in 

predictable ways, which provides verifiable behavior. A few drawbacks are the performance 

overhead from all nodes having to validate every transaction and network congestion that can 

occur when the network is overwhelmed with transactions. Maintenance of DApps can also be 

difficult since a smart contract cannot easily be updated once deployed. 

Web3.js is a popular JavaScript library which is often used for developing DApps. The library 

enables you to interact with a local or remote Ethereum node through HTTP, IPC or WebSocket 

[25]. Web3.js provides functionality for creating Ethereum accounts, generating cryptographic 

keys, and signing and sending transactions. In addition, it can be used to deploy and interact 

with smart contracts deployed on the Ethereum blockchain. Developers can use the library to 

create contract instances and call methods in the contracts. Event listeners can also be set up to 

listen for specific smart contract events. The library can be used in both server-side and 

browser-based applications. 

3.2.3 Ethereum clients 

There are several different Ethereum clients available that allow nodes to connect and join the 

Ethereum network. All these clients follow the same protocol specifications to ensure 

compatibility within the network. Geth is one of the original Ethereum implementations and is 

written in the Go programming language. Geth handles transactions, deployment and execution 

of smart contracts, contains an EVM, and supports various consensus mechanisms. To turn a 

machine into an Ethereum node Geth can be installed, configured, and run according to the 
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appropriate guidelines [26]. Every Ethereum client implements a JSON-RPC API, which is 

used by applications to interact with the Ethereum blockchain. JSON-RPC is a stateless Remote 

Procedure Call (RPC) protocol [22]. Libraries like Web3.js use this API to interact and 

communicate with the Ethereum clients. 

The three different types of nodes an Ethereum client can run are full, lightweight, and archive 

nodes. A full node stores the full blockchain data, but periodically prunes the data, meaning it 

does not store state data back to the genesis block. The full node validates every block and 

transaction in the blockchain and provides data on request. A lightweight node only downloads 

the block headers and utilizes full nodes for other necessary information. These nodes do not 

participate in the consensus algorithm but can independently verify data they receive based on 

the state roots stored in the block headers. The benefits of lightweight nodes include not 

requiring powerful hardware and consuming less bandwidth. Additionally, a lightweight node 

can access the blockchain with the same security guarantees and functionality as a full node. 

An archive node stores everything a full node does and creates an archive of historical states. 

This type of node is necessary when someone wants to query data stored in old blocks. The 

drawback of archive nodes is that they are more resource-intensive since they typically store 

terabytes of data. Despite this, archive nodes are still incredibly useful for services like block 

explorers and chain analytics [22]. 

Regardless of the type of node (full, lightweight, or archive), all Ethereum nodes need to 

manage and store the network state. One of the key data structures that enable this is the Merkle 

Patricia Trie (MPT), which contains critical information about accounts, storage, smart contract 

code, and transaction receipts. The MPT data structure is a combination of a Merkle tree and a 

radix tree. A Merkle tree is a data structure that uses cryptography to enable efficient and secure 

verification of large data sets [27]. Radix trees are efficient and space-optimized data structures 

used for key-value storage [28]. 

Combining a Merkle tree and a radix tree enables efficient storage and retrieval of state data 

and provides cryptographic verifiability [22]. Note that the metadata in Ethereum blocks 

contain a state root, which is the hash of the MPT. Each time a node updates the state, the MPT 

is modified, and the resulting root hash is included in the block. This means that the network 

state is secured and cryptographically verified by the consensus algorithm. Ethereum clients 

store the block data and MPT on disk. Geth, which is a popular client, uses LevelDB to store 

its data. LevelDB is a key-value storage that has ordered mapping from string keys to string 
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values. The database was developed by Google and is optimized for high write and read 

performance [29]. 

3.3 GoQuorum 

GoQuorum, also known as Quorum, is an open-source Ethereum client that can be used to run 

both private and permissioned networks. It is a lightweight fork of the Geth client and 

implements proof of authority consensus mechanisms [30]. GoQuorum shares many 

similarities with Geth like following the Ethereum protocol, supporting smart contracts, using 

an EVM, and it is written in the Go programming language. This means that core functionality 

like how transactions are processed, how smart contracts execute, how data is stored on disk, 

and interaction between nodes are the same in GoQuorum and Ethereum.  

There are a few differences between GoQuorum and Ethereum since GoQuorum is designed 

for private and permissioned networks. The consensus algorithms are PoA oriented, and the 

available algorithms are IBFT, Clique, and Quorum Byzantine Fault Tolerance (QBFT). The 

P2P layer is changed so only nodes with permission can join the network. GoQuorum has added 

support for private transactions and private smart contracts, which are only visible to a specified 

group of participants. To enable both public and private transactions, the MPT has been split 

into a public MPT and a private MPT [30]. The private transactions and private smart contracts 

are handled by Tessera, which is a private transaction manager. Each of the GoQuorum clients 

has a Tessera component that runs alongside it. This means all regular nodes have a Tessera 

component that can encrypt, decrypt, and distribute private transactions to other nodes.  

Although the block contents in GoQuorum and Ethereum are similar, the PoA consensus 

algorithms and private transactions result in block generation and block validation to be 

significantly different [30]. Another difference is that GoQuorum is by default configured to be 

a zero-gas network. This means that the pricing of gas is removed, but the concept of gas itself 

remains. Since GoQuorum is designed for private and consortium-based networks, there is no 

need to incentivize nodes using gas. 

The two main types of nodes in GoQuorum are known as validators and regular nodes. 

Validators participate in the consensus process and are responsible for validating transactions 

and blocks. Regular nodes store a full copy of the blockchain and can send transactions that are 

handled by validators. The regular nodes provide the RPC interface for interacting with the 

blockchain and act as a gateway for applications that want to use the blockchain. There also 
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exists a third type of node known as a qlight node that uses its own client. These nodes are 

lightweight replicas of regular nodes, optimized to consume less resources. They store only a 

subset of the blockchain data but still allow users to access data. Qlight nodes rely on regular 

nodes to access data that they do not have a copy of. 

3.3.1 Consensus Protocols 

GoQuorum provides three different PoA consensus protocols to choose from when configuring 

a network. To ensure the network operates correctly all nodes must be configured with the same 

protocol. PoA consensus protocols can only be used when participants know each other and 

there is a certain degree of trust between them. Some of the important properties to consider 

when comparing consensus protocols are finality, speed, security, scalability, and the required 

minimum number of validators. 

Finality in blockchains means that well-formed blocks cannot be reversed once added to the 

blockchain. In consensus protocols like PoW, the finality is probabilistic, and the deeper a block 

is in the blockchain, the higher the probability that the transaction cannot be reversed [31]. 

Immediate finality refers to the condition where a transaction or block is considered irreversible 

once it has been added to the blockchain. There is no possibility that a transaction or block can 

be changed or removed after it has been added to the chain. This assurance relies on the 

conditions necessary for consensus, such as network synchrony and a valid number of 

Byzantine nodes. The immediate finality property guarantees that the chain of blocks cannot 

experience a fork [32]. Forking occurs when the blockchain splits into multiple chains because 

the nodes have different views of the transaction history. Thus, a protocol that has immediate 

finality ensures that all nodes always agree on one consistent version of the chain. 

The time it takes to reach consensus is of utmost importance as it determines the throughput of 

the network, affects scalability, and impacts overall performance. A fast consensus protocol 

improves the user experience for applications that use the blockchain. In addition, it can 

improve security by reducing the chance of forks and various attacks. A consensus protocol’s 

resistance to attacks and other malicious behavior is also important to consider. A poorly 

designed protocol could weaken the integrity of the blockchain [33]. 

The consensus protocol used in a blockchain directly impacts the scalability of the network. 

How a protocol handles an increased number of nodes and transactions is important to consider. 

The performance of a good consensus protocol should not be ruined by an increase in nodes 
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and transactions. The choice of protocol can also determine the minimum number of required 

nodes to function correctly. Byzantine Fault Tolerant (BFT) protocols typically require that 

two-thirds of the validators are operating as intended [34, 35]. Note that Byzantine fault 

tolerance refers to the ability to continue functioning correctly and reach consensus despite 

nodes failing or sharing incorrect information to other nodes [32]. A protocol which is BFT 

requires at least 3f + 1 nodes, where f is the number of faulty nodes the system should be able 

to handle [36]. Therefore, 4 validators are the minimum number of nodes required for BFT 

consensus protocols to function correctly when up to one validator is unresponsive. 

3.3.2 Istanbul Byzantine Fault Tolerance Consensus 

IBFT is one of the protocols recommended by the developers of GoQuorum for production 

networks. The protocol uses a group of validators to determine if a proposed block should be 

added to the chain. Blocks are added in rounds and each round a validator is arbitrarily selected 

as the proposer. The proposer is responsible for constructing the block and sharing it with the 

other validators. If two-thirds of the validators agree on the validity of the block it is added to 

the chain. When the consensus round is over, a different validator is selected to be the proposer 

for the next block [37]. 

After a block has been appended to the chain by being approved by two-thirds of the validators, 

it cannot be changed. This means IBFT provides immediate block finality and ensures no 

transactions are changed after the validators agree to add a block. As the name implies, IBFT 

provides Byzantine fault tolerance. The protocol offers system stability if less than one-third of 

the validators are behaving incorrectly [37]. The GoQuorum developers do not recommend 

using IBFT with less than four validators. A network containing less than four validators can 

still produce blocks but cannot provide the finality guarantee [32].  

The possible states for a validator in IBFT are awaiting proposal, preparing, ready, and round 

change. A validator in the awaiting proposal state is waiting to receive a block from the 

proposer. In the preparing state, a validator has received a proposed block, which it must 

validate and then notify other validators of the result. After doing this, the validator waits to 

receive messages from others. When a validator is in the ready state, it has validated the block 

and it exchanges commit messages with other validators. These messages indicate that they are 

ready to add the block to their local copy of the blockchain. Once a validator has received 

commit messages from at least two-thirds of the validators, it adds the block to the chain. The 
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round change state occurs when consensus is not reached within a given time limit or when a 

block fails to insert [37]. 

In GoQuorum, IBFT can be configured to manage validators through either block header 

selection or contract selection. With block header selection, validators propose and vote to add 

or remove validators using the JSON-RPC API. In contrast, contract selection relies on a smart 

contract to specify the set of validators [38]. Both methods for managing the validators are 

initially configured in the genesis file, which is used to configure the network when it is created. 

In conclusion, IBFT in GoQuorum is a consensus protocol that offers immediate finality and 

Byzantine fault tolerance. It is designed for private networks and reduces the required 

infrastructure that other consensus algorithms like PoW require [37]. 

3.3.3 Docker and Quorum Developer Quickstart 

Docker is a platform used to build, deploy, run, update, and manage containers. A container is 

a standardized, executable component that consists of application code and all the dependencies 

required to run the code in any environment. Containers can simplify development and delivery 

of distributed applications [39]. Docker compose is a tool that enables running multi-container 

Docker applications. Compose uses a YAML file to configure the application’s services and 

allows developers to start the multi-container application with a single command [40]. 

One way of setting up a GoQuorum network is using Quorum Developer Quickstart (QDQ). 

This is a command-line tool that creates a local GoQuorum network. Each node runs as a 

Docker container and is managed by Docker Compose. QDQ also operates various other 

services within separate containers, such as block explorers, and monitoring tools like Grafana 

and Prometheus. Grafana provides real-time visual analytics and Prometheus is used as a time 

series database to store data logged by the nodes. By default, the network uses the IBFT 

consensus protocol and consists of four validator nodes and three regular nodes. Since each 

node operates as an isolated process in a Docker container, data storage is not shared between 

the nodes. Every container has its own file system where it stores the blockchain data. 

3.4 Product tracing 

Product tracing refers to the ability to track the journey of a product or a batch of products from 

its origin throughout all stages of the supply chain. These stages include the sourcing of raw 

materials, manufacturing, storage, and transportation. Traceability in the supply chain can help 
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ensure food safety, prevent fraud, verify the authenticity of products, and create consumer trust 

[11]. Modern supply chains can be highly complex and can consist of hundreds of stages [3]. 

This complexity makes it difficult to trace products using traditional supply chain management 

where each enterprise stores its data separately. Blockchain technology has the potential to 

enhance supply chain traceability through decentralized and transparent tracking of products 

using transactions. Product tracing systems that utilize blockchain can provide secure and 

tamper-proof logs that contain product histories.  

Provenance data refers to metadata that records data origin and its processing history [41]. 

Collecting provenance data in each part of the supply chain can help create the detailed product 

history needed in product tracing systems. Another important aspect of product tracing is the 

usage of unique identifiers. Products with unique identifiers are easier to manage and track in 

the supply chain. Using international information systems and standards for unique identifiers 

can improve traceability, efficiency, and accuracy in the supply chain. The following 

subsections provide explanations of the unique identifiers used in SeaChain. 

3.4.1 Food and Agriculture Organization 

The Food and Agriculture Organization (FAO), a part of the United Nations, manages an 

information system called the Aquatic Sciences and Fisheries Information System (ASFIS). 

ASFIS contains a global reference list of aquatic species used for fishery purposes, which 

includes standardized names, taxonomic classification, and unique species identification codes 

for fish and other aquatic organisms. The primary aim of the list is to enable data exchange and 

communication among fishery organizations, researchers, and other stakeholders in the field 

[42]. The list for aquatic species is used in SeaChain to uniquely identify fish species. 

The unique identifier for a species consists of three alphabetic characters and is known as a 3-

alpha code. The three letters are usually assigned randomly but, in a few cases, they are related 

to the scientific or English name of the species. The ASFIS list of species currently contains 

13417 different species. Since more than 17500 different 3-alpha codes can be generated using 

the 26 characters in the English alphabet, the database can be further expanded. The ASFIS list 

of species can only be updated by the Fisheries and Aquaculture Division of the FAO [42]. 

3.4.2 EAN-13 

EAN-13 is a widely used 13-digit barcode standard managed by GS1, an international 

organization that maintains standards for supply chains. Using EAN-13, unique product codes 
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can be generated for products. An EAN-13 code consists of a country prefix, company prefix, 

product number, and check digit [43]. Table 3 explains the length and purpose of each part of 

the code. SeaChain uses EAN-13 product codes to uniquely identify products. 

Country prefix 2-3 digits; Represents the country of the product’s 

manufacturer. 

Company prefix 4-7 digits; A unique identification code for the company. 

Product number 3-6 digits; A unique reference number for a product. 

Check digit 1 digit; A checksum based on the first 12 digits of the 

EAN-13 code. 

Table 3: EAN-13 product code description 

The country and company prefixes are both assigned by GS1. Large countries or those with 

more companies requiring unique identification codes can have a range of country codes instead 

of a single code. The length of the company prefix will vary depending on the number of 

products the company needs to identify. Each company is responsible for maintaining unique 

product numbers for their products. When added together, the country, company, and product 

number must always be 12 digits. The 13th digit, the checksum, is used for error detection. 

Figure 3 shows an example of what an EAN-13 barcode can look like. For instance, the country 

code 700 indicates that the company is in Norway and GS1 has assigned the company the 

unique code 12345. Since the product number is 0001 it can be interpreted as this being the 

company's first product. The checksum for the country code + company prefix + product 

number is 7. 

 

Figure 3: EAN-13 barcode 
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The checksum for an EAN-13 code is calculated using the 4-step algorithm displayed below 

[43]. In this algorithm, 𝑑𝑖 represents the 𝑖-th digit of the first 12 digits in the EAN-13 code, 

where 𝑖 ranges from 1 to 12. 

1. 𝑂 = ∑ 𝑑2𝑖−1
6
𝑖=1  

2. 𝐸 =  3 ∗ ∑ 𝑑2𝑖
6
𝑖=1  

3. 𝑆 = 𝑂 + 𝐸 

4. 𝐶ℎ𝑒𝑐𝑘𝑠𝑢𝑚 = (10 − (𝑆 𝑚𝑜𝑑 10)) 𝑚𝑜𝑑 10 

In summary, product tracing is a crucial component of supply chain management that involves 

tracking a product throughout the supply chain. Implementing a product tracing system that 

employs international standards for unique identifiers, provenance data, and the inherent 

security and transparency provided by blockchain technology, presents a promising approach 

to improving supply chain management. 
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4 Design & Implementation 

In this section we describe SeaChain: a smart contract-based product traceability system 

designed to track fish and related products throughout the supply chain in the Norwegian fishing 

industry. Utilizing a GoQuorum blockchain, SeaChain is built upon three distinct smart 

contracts, inspired by those proposed by Wang et al. [3] (see Section 2). Members of the 

GoQuorum network use SeaChain’s API servers to deploy and interact with these smart 

contracts. 

In SeaChain, fish and product information are added in batches and the system records their 

transfer history through the supply chain using the smart contracts. This creates an immutable 

chain of records on the blockchain that can be used to trace the origin of products. After a 

product has gone through the supply chain, consumers can scan a QR code that is on the product 

to view its transaction history. 

Since the supply chain can be complex and involve many entities, this thesis considers only a 

simplified supply chain as displayed in Figure 4. First, a fishing vessel delivers fish to a fish 

factory. Then the fish factory produces a product and hands it over to a distributor, which ends 

up moving it to a retailer. Note that this simplification is only made to make our descriptions 

clearer. SeaChain is designed to handle any number of entities and is not limited to those 

depicted in Figure 4. To simulate a product moving through the supply chain, a script is used 

that sequentially interacts with the API servers. 

 

Figure 4: Simplified supply chain of the Norwegian fishing industry 

The upcoming sections will first provide a detailed explanation of the GoQuorum network, the 

smart contracts, and the API servers. Finally, an overview of how the supply chain is simulated 

will be presented, illustrating how the components work together. All source code is available 

in the zip-file submitted with the thesis. Please refer to the included README file for a detailed 

explanation of the file structure and contents. 
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4.1 GoQuorum network 

A local GoQuorum network has been set up using the Quorum Developer Quickstart tool. Each 

node in the network runs as a Docker container, and the validators use the IBFT consensus 

algorithm. Figure 5 provides an overview of the network, illustrating the various entities 

involved. The network consists of participants from the supply chain and the Directorate of 

Fisheries, a regulatory organization. 

 

Figure 5: Overview of the participants in the GoQuorum network 

Each entity controls a validator and regular node, except for the Directorate of Fisheries which 

has an additional regular node. This extra node is used to provide services such as querying 

product transaction histories. In total, the network consists of 21 nodes, including 10 validators 

and 11 regular nodes. 

4.2 Smart contracts 

The three smart contracts used in SeaChain are the Product Registration Contract (PRC), the 

Batch Addition Contract (BAC), and the Transaction Update Contract (TUC). The PRC is 

deployed once by the Directorate of Fisheries and is used to register products or fish species. A 

BAC is deployed for each registered product or fish species, providing the functionality to add 

a batch of that product or species. A TUC is deployed for each batch and contains the transaction 

history for the batch. These three smart contracts are designed to trace the fish and the products 

made with the fish separately. This means that the unprocessed fish and the product made with 

it have two separate transaction histories. 
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As previously mentioned, the contracts are inspired by those proposed by Wang et al. [3]. All 

three contracts have been refactored to a newer version of Solidity and updated with additional 

functionality. The most notable changes are the addition of events to improve communication 

with off-chain applications and design modifications that enhance the product tracing 

capabilities. These modifications include creating a link between the transaction history of the 

unprocessed fish and the final product, which enables traceability all the way back to the origin 

of the fish. Furthermore, the contracts track additional provenance related data such as weight 

and location. The structure and error handling of the smart contracts have also been significantly 

improved. 

All SeaChain contracts contain authorization mechanisms that verify if the account initiating a 

transaction is permitted to interact with the smart contract. These access restrictions apply only 

to functions that add new data to the smart contract, without preventing other accounts from 

reading the stored data. Since GoQuorum is not a public network, access to smart contract data 

remains limited to those with network permissions. When a contract is deployed, the deploying 

account is granted administrator privileges, allowing them to manage authorizations for adding 

new data to the contract. Implementing these authorization mechanisms ensures that faulty 

applications or users with malicious intent cannot fill smart contracts with erroneous data. 

Another similarity between the three contracts is the use of Solidity mappings, which are key-

value data structures. Mappings enable efficient storage and organization of data in the smart 

contract, allowing fast searches using the keys. The contracts utilize these mappings for various 

purposes, including storing product, batch, and transaction data. Additionally, the mappings are 

used to provide various functions such as managing authorization and linking product codes to 

IDs. 

The ABI and bytecode for each smart contract are required so applications can interact and 

deploy the contracts, respectively. Compiling the contracts to obtain the ABI and bytecode is 

achieved using a script. Most of the contracts are deployed by API servers. However, the PRC 

is only deployed once, making its deployment process unique. To reduce the possibility of 

multiple PRCs being deployed accidentally, a script has been written for its deployment. When 

this script is executed, the PRC contract is deployed by an account representing the Directorate 

of Fisheries. 
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4.2.1 Product Registration Contract 

The data structure used by SeaChain to store both products and fish species, as well as the 

associated event, is illustrated in Figure 6. The data is stored in a mapping where the key is the 

number of registered products. Each product entry contains a product name, an EAN-13 product 

code, a 3-alpha code specifying the type of fish, an account address to the registrant, an address 

for the associated BAC, and a timestamp. Since fish species are registered using the same data 

structure as products, they contain the same information as a product. However, for a fish 

species, the product code is replaced by a 3-alpha code provided by the FAO.   

 

Figure 6: Data structure and product event used in PRC. 

The smart contract code presented in Figure 7 is used to register products. It requires four 

arguments, and the sender must be authorized to interact with the contract. The function starts 

with error handling to ensure that the product has not already been registered and that the 

provided arguments are valid. Next, the product is created using the provided arguments, the 

sender's address, and a timestamp from the blockchain. Subsequently, the smart contract 

updates multiple mappings with information about the new product. The total number of 

products is then increased, and the register product event is emitted. This event uses the indexed 

keyword to enable efficient transaction log filtering on product IDs and the product owner’s 

address. Since the code for registering a fish species is almost identical to registering a product, 

it is not shown here but can be viewed in the source code. 
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Figure 7: Smart contract code for registering a product. 

4.2.2 Batch Addition Contract 

Batches of fish or products are stored in mappings using the data structure shown in Figure 8. 

Each batch stored in the contract contains a batch number, product code, account address of the 

sender, and the addresses of the related TUCs. Additionally, a batch stores a timestamp, weight, 

and GPS coordinates. This provenance data is used to help track the history and origin of 

products throughout the supply chain.  

The fish and products are tracked separately in batches, and a TUC is deployed for each batch. 

To create a link between a batch of products and the batch of fish used to create the products, 

each batch contains a reference TUC. This reference is the address of the TUC belonging to the 

batch of fish used to create a product. By linking the batch of unprocessed fish and batch of 

products together in this manner, a complete product history is created. This history traces a 

product from the time the fish is caught until its delivery to the retailer. 
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Figure 8: Data structure and event used in BAC. 

Adding a batch is done through the smart contract code presented in Figure 9. This function 

requires seven arguments and ensures that the sender is authorized. These arguments include 

the batch number, product code, TUC addresses, and other provenance data. The function first 

performs error handling to check that batch number has not been used before and that the 

provided arguments are valid. Since the Solidity programming language does not have native 

support for floats, the GPS decimal degrees are stored as integers using fixed-point arithmetic. 

The product batch is then created, and all batch related mappings are updated. Finally, the total 

number of batches is increased and the add batch event, defined in Figure 8, is emitted.  
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Figure 9: Smart contract code for adding a batch. 

4.2.3 Transaction Update Contract 

The transaction history of every batch is stored in TUCs using the data structure displayed in 

Figure 10. The data structure includes the hash of the current and previous transactions, the 

addresses of the sender and receiver, and a timestamp. The transaction hashes are 32-byte 

hexadecimal strings that uniquely identifies each transaction within the network. By using the 

number of transactions as the key in a mapping, an ordered list is created, providing the 

transaction history of a product. 
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Figure 10: Data structure and event used in TUC. 

Updating the transaction history of a product is done using the smart contract code displayed 

in Figure 11. This function is called each time a batch of fish or products is transferred between 

entities in the supply chain. The function requires the sender to be authorized and takes the 

hashes of the current and previous transactions, as well as the address of the receiving entity, 

as arguments. Error handling is first performed to confirm the validity of the current and 

previous transactions and the receiver address. Then the new transaction is added to storage, 

the number of transactions is increased, and the add transaction event is emitted. 

 

Figure 11: Smart contract code for updating the transaction history of a batch. 

4.3 API servers 

To interact with the smart contracts, each organization that participates in the GoQuorum 

network has an API server. In our simulated supply chain, the Directorate of Fisheries, fishing 

vessels, fish factories, and distributors utilize API servers. Retailers, however, do not need one 

as they are the final destination in the supply chain and do not update the transaction history of 
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products. The API servers are configured to use each entity’s node credentials to communicate 

with the blockchain. A web3 instance, which enables interaction with the blockchain network, 

is created using each node’s WebSocket JSON-RPC URL.  

Each API server is built using JavaScript Express, a lightweight web application framework for 

Node.js. The framework simplifies the process of creating server-side applications and provides 

a robust set of features. These API servers use HTTP as the underlying communication protocol 

for exchanging data. Since each API server runs locally on the same server, they share a utilities 

file to reduce code duplication. This file contains elements such as the ABI and bytecode for 

each contract, as well as other shared functionality, like the code required for deploying smart 

contracts. 

Event listeners are used by the API servers to automatically react to events emitted by the smart 

contracts. For instance, fishing vessels and fish factories listen for the species registered event 

to always have an up-to-date list of available species. Initially, the API servers communicated 

with the GoQuorum network using HTTPS. However, this was changed to WebSocket because 

the web3 event listener requires it. It is important to note that, although the API servers interact 

with the network using WebSocket, the endpoints for each API are accessed using HTTPS. 

In our deployment scenario, the Directorate of Fisheries API server has many endpoints, and 

some of them are used by the other API servers. To simplify the explanation of this API, Table 

4 provides an overview of each endpoint and a brief explanation. Since this API server belongs 

to a regulatory organization it has a list that contains the names and addresses of the different 

nodes in the network. It also has an overview of all nodes that are supposed to be able to add 

batches and register products. When this API starts up, it ensures all accounts who should have 

access to the PRC are authorized. 

Endpoint Functionality 

GET request 

/prc-address 

Used by other API servers to retrieve the PRC address. This ensures all 

entities use the official PRC and not a fabricated smart contract. 

GET request 

/species-to-bac 

Sends a key-value collection that contains 3-alpha species codes (keys) 

mapped to BAC addresses (values). This can be used by other API 

servers to easily obtain an overview of the different available species and 

their corresponding BACs. 
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GET request 

/species-to-name 

Similar to the /species-to-bac endpoint but instead sends a key-value 

collection that maps 3-alpha species codes to their standardized name. 

GET request 

/products 

Retrieves all the registered products from the PRC and sends them as a 

list. 

GET request 

/product-batches 

Takes a BAC address or species/product code as query parameters. 

Sends a list of all the batches added for either a fish species or a product. 

GET request 

/get-nodes 

Sends a collection of contact information for the different nodes in the 

network. The contact information consists of the company name and 

their account address. 

POST request 

/register-species 

Used by the Directorate of Fisheries to register a new fish species in the 

PRC. A new BAC is created for the new species and all nodes in the 

network who should have access to it are authorized.  

Table 4: API endpoints for Directorate of Fisheries 

The API server that retrieves the product history of a batch, denoted the transaction history API, 

also belongs to the Directorate of Fisheries. This server has an endpoint that retrieves the 

complete transaction history of a product. The endpoint requires the product code and batch 

number as query parameters. The product code and batch number are used to retrieve the TUC 

address of the product batch and the fish batch used to create the product. Then all the recorded 

transactions for both the fish batch and the product batch are retrieved from the smart contract 

in separate lists. After this, the previous transaction field in the first transaction of the product 

batch is updated to reference the last transaction of the fish batch. The process of linking the 

fish batch and product batch is illustrated in Figure 12. Formatting is then performed on the 

data to present it in human-readable format. A few examples include converting Unix time to a 

regular date format, changing account addresses to company names, and dividing GPS decimal 

degrees due to fixed-point arithmetic. Finally, an HTML template is rendered using a 

templating engine to display the transaction history to a consumer. When a consumer scans the 

QR code on a product, this is the API endpoint they are taken to. 
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Figure 12: Linking fish batch and product batch transaction histories. 

The API servers for fishing vessels, fish factories, and distributors all have an endpoint that 

enables them to update the transaction history of a batch. Updating the transaction history 

occurs after the product is transferred from one entity to another, making the address of the 

receiving entity necessary. Additionally, the species code or product code, along with the batch 

number, is required to retrieve the address of the TUC belonging to the batch. The total number 

of transactions is then read from the TUC and used to determine if this is the first transaction 

recorded. This information is necessary for setting the previous transaction field in the data 

structure of the new transaction. For the first transaction, the previous transaction field is set to 

the string "FirstTransaction". In all other cases, the field is set to the hash of the previous 

transaction. After this, the new transaction is created, and the smart contract function to add a 

transaction is called to store it permanently. To help illustrate how updating the transaction 

history occurs, Figure 13 displays a flow chart of the process. Note that the dashed lines in the 

flow chart indicate that it is not possible to loop back. 



 

Page 34 of 59 

 

Figure 13: Flow chart for updating the batch transaction history. 

Fishing vessels and fish factories both have a similar endpoint for adding batches. Note that we 

assume the fishing vessel API servers automatically register batches based on data received 

from the system that automatically collects fish data (see section 1.4). To add a fish or product 

batch, the API servers deploy a new TUC, authorize the appropriate accounts, generate a unique 

batch number, and call the add batch function in the BAC. Unique batch numbers are generated 

by using the date (DD.MM.YY), time (HH:mm), and the variable in each BAC that keeps track 

of the total number of batches (Total Count or TC). The format of the batch number is 

"DD.MM.YY-HH:mm-TC".  



 

Page 35 of 59 

A major difference between adding a fish batch and a product batch lies in the links they 

establish. While a product batch is linked to the fish batch used to create the product, a fish 

batch has no such connection. This is because fish is viewed as a raw material in a product 

rather than a product itself. For example, consider fish batch A and product batch B, where 

batch B is made using batch A. Batch A sets the TUC supply reference (see data structure in 

Figure 8) to the zero address, commonly used to indicate the absence of an address. In contrast, 

product batch B sets the TUC supply reference to the TUC address of batch A. This is done to 

create a complete product history, as mentioned in Section 4.2.2. 

The fish factory API server also features an endpoint for registering a new product. To register 

a product, a product name, a species code for the fish used, a country code, and company code 

are required. First, a BAC is deployed for the new product, followed by retrieving the number 

of registered products from the PRC. The country code, company code, and number of products 

are used to generate a unique EAN-13 product code. Once the product code is generated, the 

register product function in the PRC is called to create the product. 

4.4 Simulating the supply chain 

Since SeaChain has not yet been deployed in a product setting, the supply chain and product 

data must be simulated. A script has been written for this purpose and it sequentially interacts 

with the API servers to portray the supply chain. There is no mechanism to verify the delivery 

of a batch. Therefore, we assume that each entity receives their batch of fish or products when 

it is transferred in the supply chain, and the entity transferring the batch is notified upon 

successful delivery. 

Figure 14 displays a flow chart of the supply chain script, illustrating how the API servers 

interact with the smart contracts. The figure also contains a legend with color codes that 

represent which entity an API server belongs to. Note that the dashed lines in the flow chart 

indicate that it is not possible to loop back. The script follows these steps: 

1. The Directorate of Fisheries registers a new fish species using the PRC. 

2. A fishing vessel adds a new fish batch by interacting with a BAC. 

3. The fishing vessel transfers the batch to the fish factory, then it updates the transaction 

history in the TUC for this batch. 

4. The fish factory registers a new type of product in the PRC and adds a new product 

batch using the fish batch it received. 
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5. The product batch is transferred to a distributor, and then the fish factory updates the 

product batch transaction history. 

6. The distributor transfers the product batch to a retailer and then updates the transaction 

history. 

7. Finally, the script generates a QR code that can be scanned to view the transaction 

history. 

 

Figure 14: Flow chart for the supply chain simulation script. 
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By scanning the QR code generated by the supply chain script, consumers can access important 

information about the product. The transaction history API retrieves product information, origin 

of the fish, and the transaction history. The process is displayed in Figure 15, and the product 

history is linked together as shown in Figure 12. 

 

Figure 15: Accessing the transaction history. 

The data displayed to consumers when accessing the webpage on PC can be viewed in Figure 

16. The product history table tracks the journey of fish and product batches throughout the 

supply chain, with the sender and receiver fields indicating the addresses of various entities 

involved. To make the information more easily understandable for consumers, the addresses 

are converted into company names. The time field denotes the moment when a batch is 

transferred from the sender to the receiver. The previous and current transaction fields display 

unique transaction hashes originating from the blockchain, serving as evidence for the 

transaction history’s validity. It should be noted that since this thesis utilizes a simplified supply 

chain model, the product history is quite short. If SeaChain were used in a production 

environment, each batch would have a more extensive history. 

 

Figure 16: PC screenshot displaying the page consumers view by scanning QR codes. 
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Since the product history is accessed by scanning a QR code, the page has been designed for 

mobile compatibility as well. Figure 17 illustrates the mobile layout, with the primary 

difference being tables optimized for screen size and the addition of horizontal scrolling 

functionality added to the product history table. 

 

Figure 17: Smartphone screenshot displaying the page consumers view by scanning QR codes. 
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5 Evaluation 

This section evaluates the performance of the three smart contracts, the core functionality of 

the API servers, and the GoQuorum network. Table 5 outlines the experiments conducted to 

analyze performance, the metrics collected, and their respective purpose. These metrics have 

been selected since they are standard benchmarks for blockchain networks and other systems. 

In this evaluation, transaction throughput refers exclusively to the network’s capacity to process 

smart contract transactions. This emphasis aligns with the thesis’s relevance and objectives, as 

the measurement of regular transactions, such as cryptocurrency transfers, is not considered 

necessary for this analysis. Latency provides insights into the delays involved in transaction 

processing and the responsiveness of each API endpoint. Additionally, hardware utilization 

offers an understanding of the system’s resource efficiency. By examining these metrics under 

varying workloads, we can measure system performance and identify potential bottlenecks. 

Experiment Metrics Purpose 

Evaluation of smart 

contracts with various 

numbers of validators 

Transactions per second, 

transaction latency 

Measure the performance 

and efficiency of each smart 

contract and see how the 

network scales with more 

validators 

Evaluation of API endpoints 

for registering products, 

adding batches, and updating 

transaction histories 

Response latency Determine the 

responsiveness of the API 

servers 

Product history retrieval Latency for retrieving 

product histories 

Assess the efficiency of 

product history retrieval and 

API server performance 

GoQuorum network 

performance 

CPU usage, memory usage, 

network traffic, disk usage, 

database usage 

Evaluate the resource 

utilization of the GoQuorum 

network 

Table 5: Overview of the experiments conducted, the metrics collected, and their purpose. 

All metrics, except for those related to hardware utilization, have been collected using scripts 

that run multiple benchmarks. This method provides a more accurate representation of 
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performance, allowing for the calculation of standard deviations to better understand the 

variability of results. The benchmarking scripts are included in the source code submitted with 

the thesis. It is important to note that the GoQuorum network and API servers used in this thesis 

are running in a centralized manner on an Azure virtual machine (VM). While decentralizing 

the network was beyond the scope of this thesis, such a setup could potentially yield different 

experimental results. The hardware specifications for the VM are detailed in Table 6. 

Component Specification 

Processor Intel(R) Xeon(R) Platinum 8171M (8 cores available) 

Memory 32 GiB 

Storage 64 GiB SSD (Max 12800 IOPS, 192 MBps) 

Network Max 4 NICs. Expected network bandwidth: 4000Mbps 

Operating System Ubuntu 20.04 (Focal Fossa) 

Table 6: Hardware specifications for the server used to benchmark the system. 

Hardware utilization data was collected from each node in the network using Prometheus, a 

monitoring tool that functions as a time series database. The collected data was visualized with 

Grafana, an analytics and monitoring tool that has integration support for Prometheus. Data 

was logged under both idle and heavy workload conditions to capture the network’s operation 

under different scenarios. Queries to the Prometheus database were specifically configured to 

select the average performance of validator and regular nodes, respectively. To simulate heavy 

workloads, a script testing the transaction throughput was executed during the performance 

measurement for both validator and regular nodes. 

The details of each experiment, including the steps taken during each test, will be discussed in 

the upcoming section. The section will also include an analysis and detailed discussion of the 

results for each experiment. 

5.1 Results 

The Transactions Per Second (TPS) metric was measured by running a script designed to 

register products, add batches, and update transaction histories. The script sent batches of 

concurrent transactions to the network nodes, distributing the transactions evenly to avoid 

potential bottlenecks. To focus on the pure transactional performance of the smart contracts, 

the transactions were sent directly to the contracts, circumventing the API servers, which add 
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an extra layer of processing. The experiments were performed for each smart contract with 

networks containing 4, 10, and 20 validators. The results of these benchmarks are displayed in 

Figure 18, Figure 19, and Figure 20.  

The results suggest that the TPS can vary significantly, which is likely due to competition for 

hardware resources. The upcoming hardware utilization analysis confirms that CPU resources 

were indeed a point of contention during these benchmarks. As the number of validators 

increased, each node had access to a smaller share of the CPU resources. Keeping this in mind 

while analyzing the graphs, it becomes evident that the difference in TPS between networks 

with 4 and 20 validators is not as substantial as one might initially expect. 

 

Figure 18: Transaction throughput when registering products in the PRC for different number of validators under 

varying workloads. 
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Figure 19: Transaction throughput when adding batches in the BAC for different number of validators under 

varying workloads. 

 

Figure 20: Transaction throughput when updating transaction histories in the TUC for different number of 

validators under varying workloads. 



 

Page 43 of 59 

The transaction latency, defined as the duration from the submission of a transaction until it is 

confirmed to be added to the blockchain, was measured under varying workloads to evaluate 

scalability under network constraints. The results of this experiment, illustrated in Figure 21, 

suggest a relatively linear relationship between the workload and the latency. However, the 

standard deviation indicates an increased variability in latency as workloads increase, possibly 

due to limited hardware resources. 

 

Figure 21: The average latency for smart contract transactions for various workloads. 

The core functionality of the API servers utilized in the supply chain includes registering 

products, adding batches, and updating transaction histories. Therefore, the latency associated 

with these API interactions was measured. Furthermore, the duration required to simulate the 

entire supply chain – from the moment a batch of fish is caught until a product is delivered to 

a retailer – was also assessed. The results of this experiment are presented in Table 7. The 

average response time is significantly higher than the TPS achieved when directly interacting 

with the smart contracts. This difference arises because the API servers are tasked with essential 

operations such as deploying new contracts, processing data, and performing error handling. 
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Functionality Average latency (s) 

Register product 9.9 

Add batch 15.2 

Update transaction history 10.3 

Supply chain simulation 84.7 

Table 7: Response time for API endpoints used to register products, add batches, update transaction histories, as 

well as the time required to run the supply chain simulation script. 

Consumer retrieval of product histories through an API server was evaluated for various 

workloads. The experiment measured the average latency of the API server in fetching and 

processing product histories in response to batches of concurrent calls to the API endpoint. The 

results, displayed in Figure 22, show a linear performance trend, which is expected given the 

concurrent call handling capability of the Express framework used in creating the API servers. 

The average latency for retrieving a single product’s history is approximately 35ms, a delay so 

brief it would likely be unapparent to a consumer. 

 

Figure 22: Average API server latency for retrieving product histories for various workloads. 

Hardware utilization for both validators and regular nodes was benchmarked using the same 

methodology. This involved first measuring a few minutes of idle load, followed by running 
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the TPS benchmark that sends concurrent transactions, and finally capturing a few more 

minutes of load to observe any residual effects. Notably, the script sending these concurrent 

transactions incorporates a brief pause between each batch to prepare the next set of 

transactions. This pause is visible in certain graphs and will be further clarified within the 

discussions accompanying any graph where its influence on the visual representation is 

significant.  

Figure 23 presents a time series line chart illustrating the CPU utilization during idle workload 

and the TPS benchmark execution. Given the use of a multi-core VM with eight cores, the 

maximum CPU utilization for the VM is represented as 800%. The results reveal that during 

idle load, the CPU uses approximately 1/8 of its total capacity. Conversely, during the 

benchmarks, it operates at maximum capacity while processing the concurrent batches of 

transactions sent by the script. This suggests that the system performance may be constrained 

by the CPU, and more powerful hardware could potentially enhance performance. The 

substantial dips evident in the graph occur when the validators have completed processing the 

transactions and the script is preparing to send the next batch of concurrent transactions.  

 

Figure 23: A time series line chart displaying the servers CPU utilization during idle and heavy workloads. 

The average memory utilization by validators and regular nodes is illustrated in Figure 24. This 

graph tracks both the memory actively used by each node and the memory reserved by them. 

During benchmarking, a substantial surge in memory usage was observed for both validators 

and regular nodes. Interestingly, the memory reserved is much greater than what is currently 

being utilized, likely because nodes allocate memory in anticipation of future needs and do not 

instantly deallocate memory once tasks are completed. The data suggests that validator nodes 

consume slightly more memory during idle load, while regular nodes are more memory-

intensive during heavy workloads. The larger memory consumption by regular nodes during 

heavy workloads likely stems from the benchmarking script distributing concurrent transactions 
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only to regular nodes, resulting in significant memory usage. During some experiments, the 

memory limit of the VM was reached, which constrained the experiments to sending no more 

than 750 concurrent transactions. 

 

Figure 24: The average memory utilization by validators (left) and regular nodes (right) during idle and heavy 

workloads. 

Figure 25 illustrates the average network traffic for both validators and regular nodes, capturing 

both ingress (incoming) and egress (outgoing) network traffic. The data demonstrates that 

validators consistently transmit and receive more data than regular nodes, a trend observable 

under both idle and heavy load conditions. It is worth noting that during idle load, the ingress 

and egress network traffic of validators is approximately five times higher than that of regular 

nodes. This is expected, given that validators must engage in extensive communication to reach 

consensus on the state of the blockchain. 

 

Figure 25: The average network traffic for validators (left) and regular nodes (right) during idle and heavy 

workloads. 

The rate at which data is read and written to the LevelDB database (which stores the chain data) 

by each node in the network is illustrated in Figure 26. Since there were no requests for data 

during the idle load or during the benchmarking, the read rate is consistently zero in the graphs. 
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Both validators and regular nodes have a similar write speed to the database during idle and 

heavy workloads. This makes sense since regardless of node type, the chain data stored in the 

LevelDB database should be the same. 

 

Figure 26: The average LevelDB I/O for validators (left) and regular nodes (right) during idle and heavy 

workloads. 

The average read and write rate for disk activity among validators and regular nodes are 

illustrated in Figure 27. The graph reveals that validators have a higher I/O rate than regular 

nodes. Although the scale of the graph makes it less obvious, the idle write rate for validators 

is double that of regular nodes, and the read rate nearly quadruples. Comparing this to the 

average LevelDB I/O portrayed in Figure 26, the disk usage is notably higher. This difference 

can be attributed to the fact that the disk utilization data considers all disk access operations, 

including logging, Docker I/O, and other necessary disk activities. 

 

Figure 27: The average disk I/O for validators (left) and regular nodes (right) during idle and heavy workloads. 

In summary, the experiments demonstrate that the GoQuorum network possesses solid 

transaction throughput and low latency. The smart contracts operate efficiently, and despite 

hardware constraints limiting the extent of testing, the network displays potential for scaling 
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with an increase in validators. The API servers that register products, add batches, and update 

transaction histories provide responses within a reasonable timeframe, considering the tasks 

they perform. The retrieval of product histories experiences minimal delay, and the API server 

displays linear performance under concurrent workloads. Hardware benchmarks indicate that 

the system’s performance is bottlenecked by the CPU utilization and the 32 GiB memory limit. 

However, these limitations stem from running the network locally, suggesting that a 

decentralized network will likely not encounter the same issues with CPU and memory. 
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6 Discussion 

This section is divided into three distinct parts, each providing deeper insight into different 

aspects of our research. We begin with a security analysis of SeaChain, with the aim of 

assessing its robustness and identifying potential vulnerabilities. The second part involves a 

comparison of SeaChain with the existing product tracing systems previously discussed in 

Section 2. In the final part of this section, we reflect on the achievements of our research, 

evaluating if the objectives have been met and to what extent our findings support the thesis 

statement.  

6.1 Security analysis 

Ensuring the confidentiality, integrity, and availability of supply chain data is crucial to be able 

to enforce regulatory compliance and provide consumers with legitimate information. In this 

section, we perform a security analysis of SeaChain. Threats are identified and mitigation 

strategies are proposed. Although the GoQuorum network utilized in this thesis is operating 

locally, this analysis will consider a fully decentralized deployment as intended in a practical 

application. The objective is to analyze the potential vulnerabilities, evaluate SeaChain’s 

robustness against these threats, and suggest areas for further improvement. 

The identified threats, along with their description and proposed mitigation strategies, are 

presented in Table 8. This table serves as an overview of the identified threats, and the 

remaining part of this section will provide a more in-depth review of each threat. 

Threat Description Mitigation Strategies 

Unauthorized 

access 

Unauthorized entities gaining 

access to the system 

Implement robust authentication and 

authorization mechanisms 

Supply chain data 

integrity threats 

False or inaccurate data is input 

into the system 

Deploy systems that automatically 

register data in a trusted and reliable 

manner. 

Smart contract 

vulnerabilities 

Bugs or vulnerabilities in smart 

contracts that can be exploited 

to manipulate the behavior of 

the system 

Regularly conduct security audits. 

Use formal verification methods to 

ensure that a smart contract’s logic 

meets predefined specifications 
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Denial of service 

(DoS) attacks 

Overwhelming the API servers 

with traffic, rendering services 

unavailable 

Employ rate limiting and DoS 

protection services 

Insider threats Organizations with legitimate 

access to the system misuse it 

with malicious intent 

Regular government-controlled 

audits. Establish clear sanctions for 

misuse 

Physical security 

threats 

Threats to the physical 

infrastructure hosting the API 

servers and nodes in the 

network 

Secure physical infrastructure 

locations. Employ hard-drive 

encryption. 

Table 8: Overview of identified threats and the proposed mitigation strategies 

Despite the assumption of implementing secure communication standards, such as 

TLS/HTTPS, on the API servers, unauthorized access to the system remains a significant threat. 

An attacker who has successfully obtained valid credentials might submit fraudulent 

transactions or leak sensitive information. To mitigate this risk, it is crucial to implement robust 

authentication and authorization mechanisms, such as secure passwords, two-factor 

authentication, API keys, and regular access reviews. In addition, logging system activities and 

continuous monitoring for any unusual behavior are essential steps for enabling swift responses 

in case of a security breach. 

The challenge of ensuring data integrity in the supply chain is of utmost importance in a product 

tracing system. False or inaccurate data compromises the reliability of the system, which could 

lead to loss of trust and illegal activities going unnoticed. SeaChain relies on fishing vessels 

being equipped with systems that automatically register data regarding the fish caught. This 

automated system avoids the possibility of manual input errors and makes it difficult for false 

data to be entered maliciously. However, even with automated data entry, errors can still occur. 

Therefore, incorporating data validation mechanisms at various stages of data capture and entry 

is essential. These mechanisms can help identify and correct errors, ensuring that only accurate 

and reliable data is written to the blockchain. 

Smart contracts are quite different from regular applications that can be patched whenever a 

vulnerability or bug is found. Although there are methods for updating smart contracts, they are 

not as straightforward as simply changing the code that causes the vulnerability. If 

vulnerabilities are not detected before deployment, smart contracts can be exploited, putting the 
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system’s integrity at risk. Due to these challenges, it is crucial to keep the development of smart 

contracts simple and clearly document them to minimize bugs. Furthermore, thorough testing 

and regular security audits should be conducted before deploying the smart contracts. To 

provide stronger guarantees of functional correctness, formal methods can also be used in the 

development and verification process. 

The API servers in SeaChain serve as crucial gateways for interacting with the smart contracts 

stored on the blockchain. Their central role makes it important to protect them from becoming 

overloaded, which could lead to them being unable to process valid requests. Any disruption to 

the API servers could cause significant impact to the supply chain process, leading to 

operational difficulties. To alleviate these risks, specific techniques can be employed to manage 

and control the traffic to the servers. One effective method is rate limiting, a process that limits 

the number of requests a user can make within a certain timeframe. This method helps prevent 

any user or entity from monopolizing the server’s resources and degrading its performance. In 

addition, the use of DoS protection services can further enhance the server’s resilience against 

attacks that try to overwhelm and incapacitate the system. These services are designed to 

identify and block traffic from sources exhibiting malicious or unusual behavior, thereby 

ensuring that the servers remain accessible to legitimate users. 

The threat posed by authorized entities with potential malicious intent can be particularly 

challenging to address. Since these users are authorized, they have the capability to leak 

sensitive information or attempt to deliberately input false data into the system. Such actions 

can have serious consequences including privacy breaches and compromised data integrity. To 

reduce this risk, regular government-controlled audits should be performed to detect any 

misuse. Furthermore, strict penalties can be enforced for violations, reinforcing the 

consequences of system misuse. Additional strategies to address the potential issue of 

information leakage from the blockchain are elaborated in Section 6.2. 

Physical attacks on the infrastructure hosting the API servers and nodes in the network pose a 

serious threat to the system’s stability and security. These attacks can lead to service disruption, 

potential data loss, and breaches of sensitive information. The consequences of such incidents 

can extend beyond immediate operational difficulties, potentially damaging the trust in the 

system and causing reputational harm. To mitigate these risks, it is crucial to secure the physical 

locations housing the infrastructure. This can be achieved using access control mechanisms, 

surveillance systems, and security protocols. Moreover, the use of hard-drive encryption can 
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offer an additional layer of protection. Disk encryption will prevent attackers, who manage to 

gain physical access to a server or node, from accessing confidential and sensitive information. 

In conclusion, the security analysis of SeaChain has identified several significant threats that 

need to be addressed before the system can be effectively deployed in a real-world scenario. 

These critical threats include unauthorized access, integrity of supply chain input data, 

vulnerabilities within smart contracts, the potential for DoS attacks, insider threats, and physical 

security risks. Each threat has been discussed in detail and appropriate mitigation strategies 

have been proposed. These strategies include enhancing access control, deploying reliable data 

registration systems, conducting thorough testing and audits of smart contracts, implementing 

rate limiting and DoS protection services, and enforcing physical security measures. 

Implementing these countermeasures will help ensure the confidentiality, integrity, and 

availability of SeaChain. 

6.2 Comparison to related work 

This section provides a comparative analysis of SeaChain and the related work reviewed in 

Section 2. The objective of this analysis is to contextualize the findings of this thesis, assess the 

unique contributions of the system, and identify potential areas for future development. The 

related work reviewed is primarily focused on the application of blockchain technology for 

enhancing supply chain management and product traceability. These studies provide valuable 

insights into state-of-the-art blockchain-based product traceability systems. Each work presents 

a unique approach to tackling the challenges of supply chain management, with each study 

emphasizing different aspects of importance. The comparison will focus on key aspects such 

as consumer accessibility, data privacy, scalability, and traceability. 

One of the primary advantages of SeaChain is its enhanced accessibility for consumers. The 

system simplifies the process of viewing product information by allowing consumers to access 

data through a simple QR code scan. This feature significantly enhances the user friendliness 

and the amount of work required to view the data. In contrast, Wang et al. [3] require consumers 

to join the blockchain network as a node or lightweight node to view product data. This 

requirement could potentially limit the ease of access for consumers, as it is much more 

technical and cumbersome.  

Ding et al. [10] and Salah et al. [14], on the other hand, do not present any specific method for 

consumers to view product data. Their focus primarily lies on the product traceability 
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framework itself, without mentioning how consumers interact with it. Madumidha et al. [11] 

propose the use of a dedicated app for displaying data to consumers. This approach is more 

consumer-focused than Wang et al. [3], but still involves more steps than scanning a QR code. 

Lin et al. [13] suggest that consumers can query product data using a product code and a smart 

contract address. Their explanation of this process is somewhat vague, leaving uncertainties 

around the ease of use for consumers. Finally, Malik et al. [12] propose using QR codes on 

products to retrieve product histories, similar to our approach. However, they do not provide a 

demonstration of the consumer interface, making it difficult to assess whether their system is 

as user-friendly as ours. 

Our system, along with the ones proposed by Ding et al. [10] and Malik et al. [12], employs 

permissioned and private blockchain approaches. These blockchains restrict network access 

and safeguard sensitive enterprise data, contrasting with the public blockchain approaches used 

by the other systems reviewed in this thesis. The approach presented by Ding et al. [10] utilizes 

a combination of permissioned and private blockchains. This stands out as an optimal strategy 

for concealing sensitive data between enterprises and can provide valuable guidance for future 

improvements to our system. 

To address scalability, several of the reviewed works utilize various strategies. Ding et al. [10] 

improve scalability by implementing a double-layer framework which separates the functions 

of data entry and data reading. This strategy allows for more efficient handling of data input 

and output requests. Malik et al. [12] employ sharding, which divides the blockchain into 

multiple separate chains, an approach that can increase the network’s capacity. Lin et al. [13] 

uniquely address the challenge of rapid data accumulation in the blockchain. They manage this 

by dynamically balancing on-chain and off-chain data, which effectively reduces the volume 

of data stored directly on-chain. This mitigates the potential performance drawbacks that can 

arise due to large quantities of data in the blockchain. Each of these strategies offers a unique 

solution to help improve scalability. The data management scheme proposed by Lin et al. [13] 

could be a valuable addition if future large-scale testing indicates that data size might become 

an issue in our system. 

Most of the reviewed product tracing systems, including SeaChain, utilize smart contracts in a 

similar way to track data throughout the supply chain. One exception is Malik et al. [12], which 

creates a transaction vocabulary that is used to track products. Based on the reviewed literature 

the use of smart contracts seems to be the best way to ensure accurate and efficient traceability 
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in blockchain-based systems. Therefore, the traceability functionality in SeaChain does not 

stand to gain any improvements from those presented in the reviewed literature. 

The comparative analysis presented above provides a description of the unique attributes of 

SeaChain as well as its similarities with those described in the existing literature. Additionally, 

it emphasizes distinctive aspects of the other systems that could potentially improve our own. 

Our system surpasses the others in terms of consumer accessibility. Like the majority of the 

systems reviewed, SeaChain also utilizes smart contracts for product tracking. Data privacy 

could potentially be improved in our system by integrating elements of the double-layer 

framework proposed by Ding et al. [10]. Moreover, the scalability of our system, especially 

concerning data size, might be improved by adopting the dynamic data management approach 

proposed by Lin et al. [13]. It is important to note that like our system, all the others reviewed 

have only been tested as prototypes, with some systems being purely theoretical. To advance 

the development of blockchain-based product tracing it is essential to test these systems in real-

world scenarios. 

6.3 Reflection on thesis results 

This section revisits the initial objectives of this research to assess its success. The first 

objective was to develop a proof-of-concept product tracing system using blockchain and smart 

contracts. The second objective was to evaluate if this system could improve the Norwegian 

fishing industry’s supply chain and contribute to reducing fishery crimes. This section discusses 

these objectives considering our findings and evaluates if they were fulfilled. This assessment 

will help us determine the overall validity of our thesis statement. 

Reading the design and implementation section should make it clear that the first objective has 

been achieved. A proof-of-concept product tracing system has been successfully implemented 

and evaluated. The system consists of a local GoQuorum blockchain network, three distinct 

smart contracts, and multiple API servers. Our findings indicate that, when compared to other 

systems in related literature, our system refines consumer accessibility and user-friendliness, 

while maintaining a high degree of traceability. Additionally, the research suggests that data 

privacy and scalability are potential areas for improvement in our system. 

The evidence gathered from this research and the supporting literature indicates that the second 

objective has been achieved. SeaChain has the potential to significantly enhance the 

transparency, traceability, and security of data in the Norwegian fishing industry’s supply chain. 
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By leveraging the system’s collection of provenance data and the inherent immutability of 

blockchain, there is a strong potential to reduce fishery crimes. This could be achieved by 

ensuring authentic product origin and history, making illegal activities more difficult to perform 

without detection. However, to accurately measure the system’s effectiveness in reducing 

fishery crimes, further research involving its deployment and use in real-world scenarios is 

required. 

Given the successful achievement of both objectives, the findings of this research strongly 

support the thesis statement. The blockchain-based traceability system, leveraging smart 

contracts, has shown its potential to address the limitations of traditional supply chain 

management. The transparency and security provided by blockchain technology can enhance 

consumer confidence and reinforce regulatory compliance. Nonetheless, it is important to 

continue research in this field and perform real-world testing to verify and extend these 

findings. 
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7 Conclusion 

7.1 Concluding remarks 

We have successfully developed and evaluated SeaChain, a proof-of-concept product tracing 

system leveraging blockchain technology and smart contracts, specifically tailored for the 

Norwegian fishing industry. With SeaChain, we demonstrated the practical potential of 

blockchain in enhancing transparency, traceability, and security within supply chain 

management. Our research confirms our initial thesis and outlines a potential approach to 

alleviating the widespread issue of fishery crimes. 

SeaChain provides enhanced consumer confidence by offering comprehensive product 

information, provenance data, and transaction histories for seafood products. This data is easily 

accessible to consumers through a simple QR code scan. The system also helps enforce 

regulatory compliance, making illegal activities more challenging to perform without detection. 

However, we must acknowledge the limitations of our system as well. Perhaps most 

importantly, the potential issues related to data privacy and scalability that we observed during 

the research. Furthermore, our security analysis of SeaChain identified certain threats that need 

to be addressed to ensure the robustness and reliability of the system. 

Despite the limitations of SeaChain, this thesis provides a solid foundation for future research 

in this field, as well as a step towards strengthening and increasing traceability within the supply 

chain of the Norwegian fishing industry. Our findings extend beyond national context and the 

fishing industry, providing insights for global efforts to improve supply chain management. 

7.2 Future work 

Although the objectives of this thesis have been achieved, further research involving the 

deployment and use of the system in real-world scenarios is required to accurately measure its 

effectiveness in reducing fishery crimes. The issues related to data privacy need to be addressed 

and large-scale testing is necessary to reveal potential scalability issues. Furthermore, the 

mitigation strategies proposed in the security analysis should be implemented. Future work 

should aim to solve these issues and continue research in this field to extend and refine the 

findings of this thesis. The use of blockchain technology in supply chain management is a 

promising domain, and there is a lot of potential for future research. 
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