
Faculty of Science and Technology
Department of Computer Science

Multi-site multi-synchronous support for SQLite augmented for Local-
First Software

Tabassum Khan
INF-3990 Master’s thesis in Computer Science - May 2023

This thesis document was typeset using the UiT Thesis LaTEX Template.
© 2023 – http://github.com/egraff/uit-thesis

http://github.com/egraff/uit-thesis

Abstract
At the one end of the spectrum, locally installed applications allow users to
work offline and at their convenience but do not support collaboration among
multiple users or devices. At the other end, cloud-based applications offer col-
laboration and data synchronization but require an uninterrupted internet con-
nection. To address these limitations, Local-First software was introduced to
merge the advantages of both approaches. This allows users to use applications
offline and synchronize data with peers when they are back online. This ap-
proach offers an appealing solution for users requiring both offline capabilities
and collaboration [1].

Conflict-free Replicated Data Types (CRDTs) have emerged as a promising
technology for implementing Local-First software since they address the chal-
lenge of replica convergence and multi-synchronous data access [1]. Basically,
they are abstract data types with well-defined interfaces that can be replicated
across multiple sites and allow a replica to be modified without coordination
with other replicas [2]. The replicas converge to the same state when they
receive and apply the same set of updates. If CRDTs are integrated with rela-
tional databases (RDBs), they can facilitate multi-synchronous data access and
extend RDBs with Local-First characteristics. This integration process is known
as Conflict-free Replicated Relations (CRRs) [3].

SynQLite is an implementation that augments SQLite databases with CRR to
make them Local-First software [4]. It aims to extend existing SQLite-based ap-
plications with multi-synchronous access, enabling offline usage and seamless
collaboration across multiple users and devices. However, its existing imple-
mentation has a critical limitation in its ability to support multiple sites. It
cannot manage states when multiple replicas or sites are frequently connected
and disconnected, which is a vital requirement for real-world applications and
presents a challenge that must be addressed for SynQLite to be more widely
adopted.

The goal of this Master’s thesis is to extend the existing version of SynQLite
by adding multi-site multi-synchronous support. This was achieved by imple-
menting new features and resolving existing bugs on top of the existing code-

D abstract

base. Our implementation was rigorously evaluated through various tests and
experiments, and the results demonstrate that we successfully achieved our
goal.

Acknowledgements
I would like to take this opportunity to extend my heartfelt appreciation to my
esteemed supervisor, Associate Professor Weihai Yu, for his instrumental role in
acquainting me with and enabling me to engage with an exciting topic for my
master’s thesis. Additionally, his invaluable guidance and unwavering support
throughout my research expedition have been pivotal to the successful comple-
tion of my thesis. His inspiring and motivational demeanor, coupled with his
immense knowledge in the subject matter, have contributed significantly to my
academic growth and development. Beyond his steadfast academic support, I
am grateful for his empathy and assistance in navigating personal challenges
that surfaced during the research process. I am immensely beholden to Profes-
sor Yu and acknowledge the immeasurable impact of his mentorship on both
my academic and personal spheres.

I am deeply indebted to my family, whose constant inspiration and encour-
agement have been a driving force behind my academic achievements. Their
earnest belief in my abilities to pursue and achieve my goals has been a source
of motivation and strength throughout my academic journey. I would like to
convey a special acknowledgment to my husband for his unflagging support and
for making significant sacrifices to ensure that I can focus on my thesis.

Lastly, I express my profound gratitude to all the individuals who provided me
with guidance and motivation during this research endeavor. Their invaluable
support and encouragement have played a critical role in this success, and I
am grateful for their contributions to my academic journey.

Contents
Abstract C

Acknowledgements E

List of Figures I

List of Code Snippets K

1 Introduction 1
1.1 Context . 1
1.2 Goals . 3
1.3 Achievement . 4

2 Technical Background 5
2.1 Local-First Software . 5
2.2 Strong, Eventual, and Strong Eventual Consistency 7
2.3 Conflict-free Replicated Data Type (CRDT) 8

2.3.1 Categories of CRDTs 8
2.3.2 Examples of CRDTs 10
2.3.3 How CRDT can realize the Local-First software 13

2.4 Conflict-free Replicated Relation (CRR) 13

3 SynQLite Overview 15
3.1 Design and Implementation 15

3.1.1 CRR Layer . 16
3.1.2 SynQLite Operations 19

3.2 User Manual of SynQLite 21

4 Methodology 23

5 Approach 25
5.1 Agile Software Development Model 25
5.2 Technology Choices . 28

5.2.1 Implementation . 28

G

Contents contents

5.2.2 Evaluation . 28
5.2.3 Development Environment 28

6 Design and Implementation 29
6.1 Feature Lists . 30
6.2 Implementation . 31

7 Experiments 47
7.1 Correctness Validation . 47

7.1.1 Test Case 1 . 48
7.1.2 Test Case 2 . 49
7.1.3 Test Case 3 . 50
7.1.4 Test Case 4 . 52
7.1.5 Test Case 5 . 52

7.2 Performance Evaluation . 52
7.2.1 Experiment Setup 53
7.2.2 Number of sites vs Synchronization Time 54
7.2.3 Very frequent synchronization vs long intervals of syn-

chronization . 56
7.2.4 Delta Generation time vs Merging time 56

7.3 Resource Utilization . 59

8 Discussion 61
8.1 Overcoming Challenges of this thesis 61
8.2 Unreported Technical Tasks 62
8.3 Learnings . 62
8.4 Future Work . 63

8.4.1 Handle the re-clone issue 63
8.4.2 Add support to update the database schema 64
8.4.3 SSH path is not set properly in the meta_site table . . 64
8.4.4 The initialization operation is not atomic 64
8.4.5 Handle the assumption of Synchronization issue . . . 65
8.4.6 Export and Merge delta separately 65
8.4.7 Synchronize with a particular site 65

9 Conclusion 67

Bibliography 69

List of Figures
2.1 Comparison among the traditional local app, cloud app, and

Local-First software . 6
2.2 Categories of CRDTs . 9

3.1 SynQLite Overview . 16
3.2 CRR Layer tables . 17

4.1 Research Methodology . 24

5.1 Approach overview . 27

6.1 Difference between existing SynQLite functionality and our
goal for this thesis . 30

6.2 Partition Issue . 32
6.3 Delta-generation logic issue 33
6.4 Explanation of previous Delta-generation logic 34
6.5 Updated CRR Layer tables 35
6.6 State information in meta_site_state (SS) table 36
6.7 Explanation of adapted Delta-generation logic 39
6.8 Parent site may never be converged with child’s child site . . 40
6.9 Fix Auto-incremented Primary key issue 42
6.10 Empty table clone Issue . 44
6.11 Cross-Platform support . 45

7.1 Output of Test Case 1 . 49
7.2 Sites Arrangement of Test Case 2 50
7.3 Output of Test Case 2 . 51
7.4 Experiment Setup . 54
7.5 Plot of Number of sites vs Synchronization times 55
7.6 Plot of Delta size vs Synchronization Time 57
7.7 Plot of Delta Generation time vs Merge time 58

I

List of Code Snippets
6.1 Previous Delta Generation Logic. 34
6.2 New Delta Generation Logic. 38
6.3 Previous Insert Trigger. 43
6.4 New Insert Trigger. 43

7.1 Database Schema for Test Cases 48
7.2 Design of Test Case 1 . 48
7.3 Design of Test Case 3 . 50

K

1
Introduction
1.1 Context

The emergence of the Internet has caused a groundbreaking shift in the way
people perform their tasks, shifting the paradigm from a centralized to a dis-
tributed system and from single-user to multi-user applications. Contemporary
software applications now feature collaborative capabilities that enable mul-
tiple users to engage in real-time work across several devices. Although con-
ventional cloud-based solutions provide such features, they are limited by the
requirement for uninterrupted internet connectivity. This poses a challenge
when users experience network outages or partitioning or are in offline areas.
These connectivity issues can impede system usability and result in synchro-
nization and data loss. In response to this challenge, the concept of Local-First
software has been proposed, allowing users to use the application even when
disconnected from the network or offline, as though the application were locally
installed. When online, they are synchronized with each other. This approach
facilitates seamless collaboration across multiple devices and users, much like
online collaborative applications [1].

Whatever the scenario is, managing data across multiple devices within a dis-
tributed system presents a formidable challenge. The CAP theorem, a renowned
theorem within the realm of distributed systems, outlines three desirable prop-
erties of a distributed data store or application: consistency (C), availability (A),
and tolerance to network partition (P). Consistency entails ensuring a single,
up-to-date copy of the data is available across all replicas of the data; availabil-

1

1.1 context chapter 1 introduction

ity guarantees the ability to access the data for both read and update operations,
while network partition tolerance allows the system to function despite net-
work failures. The theorem postulates that in a distributed system where data
are stored across numerous devices or sites, it is only feasible to guarantee any
two of these three properties concurrently [5]. Therefore, the simultaneous
achievement of all three properties within a distributed system is unattainable.
Moreover, network failures are ubiquitous in distributed systems, compounding
the challenge. Consequently, it is crucial to tolerate network partitioning in any
distributed system. Given this reality, when dealing with distributed systems,
one must strike a balance between consistency and availability.

Therefore, it is apparent that cloud services prioritize consistency over avail-
ability, whereas Local-First software emphasizes availability even at the cost
of consistency. This is because Local-First software is designed to remain ac-
cessible at all times, even during network outages. However, compromising
consistency in favor of availability does not negate the importance of maintain-
ing consistency across replicas. Ultimately, all replicas must possess the same
state to enable collaborative functionality among multiple users. Nevertheless,
ensuring consistency in a distributed system is complex and remains a topic of
ongoing research [6, 7].

The inventors of the concept of Local-First software have identified Conflict-
free Replicated Data Types (CRDTs) as a potential cornerstone technology
for implementing Local-First software [1]. CRDTs were developed to address
the complex issue of maintaining consistency in a distributed system where
multiple nodes or sites access data concurrently [2]. Essentially, CRDTs are
abstract data types with well-defined interfaces that can be replicated across
several nodes or sites. Each replica can be independently modified without
the need for coordination with other replicas. Consistency or convergence is
achieved when all replicas receive and apply the same updates, ensuring they
are all in an identical state.

The process of integrating CRDTs with relational databases (RDBs) to enable
multi-synchronous data access and extend RDBs with Local-First characteristics
is commonly known as Conflict-free Replicated Relations (CRRs) [3]. The intro-
duction of CRRs provides an avenue for augmenting existing RDB applications
with multi-synchronous access, requiring minimal modifications [3].

SQLite is an open-source RDB engine that has been recognized as the most
commonly used database engine worldwide [8]. It is considered an excellent
option for Local-First software due to its ability to operate independently of
network connectivity. In [4], the authors showcased their work in progress that
augments SQLite databases with CRR to make them Local-First software. This
implementation, dubbed as SynQLite, aims to extend existing SQLite-based ap-

1.2 goals 3

plications withmulti-synchronous access, facilitating offline usage and seamless
collaboration across multiple users and devices and locations or sites.

The existing SynQLite implementation serves as a seamless service that can be
accessed through simple command-line instructions and does not necessitate
any modification to the application that utilizes the database. With the aid of
SynQLite, a conventional SQLite database can be augmented with CRR support,
enabling it to be replicated or cloned across multiple sites. This allows users
to update the database and synchronize with their peers through SynQLite’s
PULL and PUSH commands, thereby facilitating multi-synchronous access and
collaboration.

However, the existing implementation of SynQLite encounters a crucial limi-
tation in its ability to support multiple sites, which is a crucial requirement
for real-world applications. Specifically, the existing synchronization program
can accurately converge the states of a database only when two sites or repli-
cas of the database are present. However, when the number of sites surpasses
two, the program fails to converge the database states to a unique state. After
[4], an attempt was made in [9] to provide the multi-site multi-synchronous
support to SynQLite. Unfortunately, these endeavors were also unsuccessful in
achieving their intended goals.

1.2 Goals

The existing version of SynQLite suffers from adequate state management capa-
bilities when multiple sites are frequently connected and disconnected within
the system. Consequently, the existing implementation fails to guarantee that
all sites reach a consistent state after performing the synchronization operation.
This Master’s thesis aims to address this limitation by providing multi-site and
multi-synchronous support for SynQLite.

To achieve the primary goal of implementing multi-site and multi-synchronous
support for SynQLite, we have identified the following sub-goals and require-
ments that must be met.

• Design and implement features on top of the existing SynQLite code-
base, ensuring consistency across multiple sites after the synchronization
operation.

• Regardless of the number of sites that have been cloned, it is essential
that any synchronization operation performed by a particular site should
receive all the updates from every other site present at that moment

1.3 achievement chapter 1 introduction

except the partitioned sites.

• In Chapter 2, we will examine how CRDTs adhere to the principle of
Strong Eventual Consistency (SEC), wherein a replica can converge with
another site’s updates without requiring any further coordination with
the sending site. Hence, it is imperative that our implementation guar-
antees the convergence of sites without necessitating additional coordi-
nation.

• Evaluate the correctness and performance of our implementation.

1.3 Achievement

Following a thorough examination of the existing SynQLite codebase and the
underlying principles of Local-First software, CRDT, and CRR, we identified
a set of new features to be implemented and existing bugs to be resolved, as
detailed in Chapter 6. These enhancements, if successfully implemented and
rectified, would render SynQLite functional for multiple sites. We proceeded to
implement and address all of the identified features and issues and subsequently
conducted numerous tests and experiments, as outlined in Chapter 7. After
confirming the accuracy and reliability of our implementation through these
tests and experiments, we can confidently affirm that we have successfully
developed a multi-site and multi-synchronous version of SynQLite.

The subsequent chapters of this thesis will provide a comprehensive discussion
of the topics introduced in this opening chapter.

2
Technical Background
This chapter presents the foundational technologies that are required for a
comprehensive understanding of the remainder of the thesis. Thus, it is advis-
able for the reader to delve into this chapter to understand these technologies
before proceeding with the reading.

2.1 Local-First Software

As we delve into our thesis topic of "Multi-site multi-synchronous support for
SQLite augmented for Local-First Software", it becomes apparent that the
first technical concept to be addressed is "Local-First software". It is, therefore,
essential to thoroughly explore this concept, including its definition, signifi-
cance, and practical implementation.

The "Local-First software" concept was first introduced in [1]. Local-First soft-
ware is a set of principles that seeks to combine the strengths of collaboration
and data ownership into software design. Collaboration can be referred to as
the ability to cooperate or work together withmultiple users and devices. At the
same time, ownership means having control over the data, including the ability
to access it offline. Cloud apps allow for collaboration across multiple users
and devices but can limit data ownership by preventing users from working
offline. On the other hand, traditional local apps provide users with authority
over their data, but they do not facilitate collaboration.

5

2.1 local-first software chapter 2 technical background

Client Application

Local DB

(a) Traditional Local App

Client Application

Request

Response

Server DB

(b) Traditional Cloud App

Server DB

Client Application

Local DB Merge

(c) Local-First software

Figure 2.1: Comparison among the traditional local app, cloud app, and Local-First
software

Local-First software aims to bridge the gap between cloud apps and traditional
local apps. Cloud applications typically adopt a client-server architecture in
which the data is kept on a server, and any interactions with the data are
performed through the server. While the client side may cache some data, any
changes to the data must be transmitted to the server to be applied. On the
other hand, Local-First applications save the primary copy of data in the local
filesystem of each device, allowing users to read and write data anytime, even
offline. The data is then synchronized with other devices whenever there is an
internet connection or when the user opts to synchronize. Figure 2.1 illustrates

2.2 strong, eventual , and strong eventual consistency 7

the comparison among the traditional local app, cloud app, and Local-First
software. It is crucial to note that the design of Local-First software prioritizes
the accessibility or availability of data over ensuring constant consistency across
all copies. This means that without constant monitoring, it is not possible to
know the exact state of all copies at any given moment, but eventually, all copies
will be in the same state.

According to [1], CRDTs have the possibility of being a fundamental technol-
ogy in implementing Local-First software. Therefore, having a thorough un-
derstanding of CRDTs is crucial in the context of Local-First software. But
before discussing CRDT, it is essential to understand the distinctions between
Strong, Eventual, and Strong-Eventual Consistency. Understanding the concept
of CRDT can be difficult if one is not aware of this knowledge. Therefore, we
will cover the differences between these types of consistency before delving
into CRDT.

2.2 Strong, Eventual, and Strong Eventual
Consistency

In a distributed system, replication and consistency go hand in hand. When
multiple copies of data or replicas are present, adhering to a consistency model
is crucial to guarantee that all replicas are in an identical state or have the
same view of the data at a particular moment in time. Strong Consistency (SC)
means that every replica will show the same data, but this results in elevated
latency and reduced availability since updates made to one replica need to be
instantaneously transferred to all other replicas, which may cause potential de-
lays in read-and-write requests while the update is taking place. Thus, in large
distributed systems where there are significant network lags or frequent parti-
tioning, Eventual Consistency is considered a more suitable option, especially
in cloud computing or peer-to-peer systems [7]. Eventual Consistency (EC) per-
mits short-term discrepancies in the data but guarantees that all replicas will
ultimately have the same data state. While modifications to one replica may not
be immediately reflected in all others, they will eventually be transmitted to all
replicas. This consistency model offers greater availability and reduced latency
but may result in conflicts when more than one replica updates the same data.
Such conflicts are usually resolved using consensus algorithms or rollbacks [10].
Despite extensive research, conflict resolution techniques in replicated systems
are still poorly established and remain a subject of ongoing research. Several
algorithms that were previously thought to be correct have been shown to be
flawed, even those backed by formal proofs of their correctness [6, 7].

2.3 conflict-free replicated data type (crdt)chapter 2 technical background

On the other hand, [2] proposed a new theoretically-sound approach to Even-
tual Consistency referred to as Strong Eventual Consistency (SEC). Unlike tra-
ditional EC, SEC guarantees that once two replicas receive the same updates,
regardless of their order, they will immediately converge. Any conflicting up-
dates will be automatically merged without the need for consensus algorithms
or rollbacks. In contrast, general EC only ensures that copies of data will eventu-
ally match after conflicting updates are resolved through consensus algorithms
or rollbacks. However, to achieve SEC, a replica object or the replica’s underly-
ing data type or data structure must possess certain mathematical properties
that ensure the absence of conflicts and, thus, convergence. That is where CRDT
comes into play.

2.3 Conflict-free Replicated Data Type (CRDT)

The origin of the CRDT concept can be traced back to the authors who created
the theory of SEC. According to their definition, CRDTs are data structures such
as sets, lists, hashmaps, graphs, or sequences that have been designed to adhere
to certain mathematical properties like commutativity1, idempotence2, asso-
ciativity3, etc. to prevent conflicts and ensure convergence. This eliminates the
need for conflict resolution through consensus algorithms and rollback, making
CRDT replicas highly resilient and accessible, even in challenging situations
such as failures, high network latency, faults, or network partitions. As a result,
CRDTs adhere to the principles of SEC by guaranteeing CRDT replicas will
eventually converge to a correct and identical state.

2.3.1 Categories of CRDTs

CRDTs can be classified into two primary categories: Operation-based and
State-based. In Operation-based CRDTs, the convergence of replicas is achieved
through the dissemination of local operations to all other replicas. Conversely,
State-based CRDTs attain convergence by the exchange of local states among
replicas. To illustrate, in the context of Operation-based CRDTs, when a replica
updates through the execution of an operation, it notifies other replicas to
carry out the same operation to guarantee the consistency of the data across

1. Commutativity refers to the property where the result of a series of operations is the same
irrespective of the sequence of their execution, i.e. 𝑥 ◦ 𝑦 = 𝑦 ◦ 𝑥

2. Idempotence refers to the property where repeating the same operation on a variable has
no cumulative effect, and the value remains the same, i.e. 𝑥 ◦ 𝑥 = 𝑥

3. Associative refers to the property of certain binary operations where changing the grouping
of the elements within an expression will not alter the final outcome, i.e. (𝑥 ◦ 𝑦) ◦ 𝑧 =

𝑥 ◦ (𝑦 ◦ 𝑧)

2.3 conflict-free replicated data type (crdt) 9

CRDTs

Operation-based
CRDTs

State-based
CRDTs

Delta State
CRDTs

transmit the difference
in the state

since the last merge to
other replicas

transmit local
operations to
other replicas

transmit entire
local state to
other replicas

Figure 2.2: Categories of CRDTs

all replicas. In contrast, in the case of State-based CRDTs, the updating replica
transmits its updated state to other replicas. The receiving replicas integrate
the received state with their local state by executing a merge function.

In a distributed system utilizing a reliable causally-ordered broadcast communi-
cation protocol⁴ , Operation-based CRDTs necessitate only the commutativity
of operations. Conversely, State-based CRDTs require not only commutativ-
ity but also idempotence. This implies that while Operation-based CRDTs may
encounter overhead from the requirement for reliable causally-ordered commu-
nication, State-based CRDTs are free from this concern due to the idempotent
property, which ensures that repeated merging of states will result in no alter-
ation. Additionally, there exist specific preconditions for the implementation of
State-based CRDTs, including partial ordering⁵ of all possible states from all
replicas and the existence of a join between any two states. The merge function
must join any pair of states to form a join-semilattice⁶, and the internal states
of State-based CRDTs must also exhibit monotonically non-decreasing behavior
across updates. This is because the elimination of any information may render
the merge function incapable of correctly merging a pair of states.

One significant disadvantage of State-based CRDTs is the communication over-
head associated with the transmission of the entire state, which can become
quite substantial in size. Delta-State CRDTs have been introduced as a solution

4. Delivers every message to every recipient exactly once and in an order consistent with
happened-before relation [2].

5. A partial order on a set is a way of ordering its elements to say that some elements precede
others, but allowing for the possibility that two elements may be incomparable without
being the same [11].

6. A join-semilattice is a partially ordered set with finite colimits, or equivalently, a partially
ordered set with finite coproducts [12].

2.3 conflict-free replicated data type (crdt)chapter 2 technical background

to tackle this problem. Instead of sending the complete state to other replicas,
Delta-State CRDTs only transmit the 𝛿 , or the subset of values that have been
changed since the last merge, to other replicas. This not only reduces commu-
nication costs but also speeds up the merge process, as the merge function
will have fewer elements to merge. However, this advantage is accompanied
by the additional effort required to generate deltas. Figure 2.2 highlights the
categories of CRDTs.

2.3.2 Examples of CRDTs

At this juncture, it is worth highlighting that we have adopted Delta-State
CRDT in SynQLite. Particularly, we have leveraged the CL-Set and LWW Reg-
ister CRDTs. On the other hand, these two CRDTs have evolved from more
fundamental CRDTs, which we will be reviewed along with the two aforemen-
tioned CRDTs in this section.

Counter CRDT

A Counter CRDT represents a particular type of CRDT where the underlying
data structure is a simple, integer-like counter that supports increment and
decrement operations to update it, and queries return the value of the given
counter. The counter can be replicated across multiple sites and updated in
a manner that guarantees SEC among the replicas. The literature on Counter
CRDTs encompasses a variety of designs and implementations, including the
G-Counter, PN-Counter, Non-negative Counter, and others [13].

Register CRDT

A Register CRDT represents a specific type of CRDT where the underlying data
structure is a memory cell that stores an opaque unit or object and supports
two operations: to update the value of the register cell and to query to retrieve
the value of the given register. Register CRDTs must resolve conflicts in updates
to remain conflict-free. This is typically achieved by considering newer updates
as correct and overwriting older ones. However, concurrent updates pose a
problem that requires resolution. The solution is either the "Last-Writer-Wins
Registers" approach or the "Multi-Value Register" approach, which determines
the order of updates to resolve conflicts [13].

The Last-Writer-Wins Register (LWW-Register) determines the correct update
by assigning a unique timestamp to each update. The latest update with the
highest timestamp is considered to be correct. Timestamps are considered to

2.3 conflict-free replicated data type (crdt) 11

be unique, totally ordered, and consistent with causal order [14]. The update
operation overrides the new value with the old one and generates a new times-
tamp. When a replica sends the state to other replicas, the merge operation
selects the value with the maximal timestamp.

SET CRDT

A SET CRDT is a specific variant of the CRDT, which utilizes a set as its un-
derlying data structure. Sets are defined by their capability to store unique
values only and their support for adding and removing elements. Importantly,
this data structure disallows any modifications to the values stored within it.
However, the non-commutative nature of sequential add and remove opera-
tions may result in conflicts when updates are made to different replicas, thus
raising the consistency issue among replicas. To address this challenge, various
approximations of sequential sets have been developed and implemented as
SET CRDTs, such as the Grow-Only Set (G-Set), Two-Phase Set (2P-Set), Last
Write Wins Element Set (LWW-element-Set), and Causal-length set (CL-Set),
with the aim of attaining SEC while avoiding conflicts [13].

Grow-Only Set (G-Set) The G-Set CRDT is designed to address consistency
issues in merging sets with both addition and deletion operations. The
idea is to avoid the removal operation altogether. It only supports add
and query operations and therefore is not a fully general-purpose CRDT.
A trivial check is carried out to confirm the existence of an element in a
G-Set. To add new elements, a subset containing the element is created
and merged into the G-Set via a union operation. By performing a union
operation on the two sets, it is possible to merge two G-Sets together
[13].

Two-Phase Set (2P-Set) Since the G-Set CRDT only allows adding elements
and not removing them, its applicability can be restricted in some sce-
narios where removing elements is a crucial operation. The 2P-Set CRDT
addresses this issue by allowing both the addition and deletion opera-
tions, but one limitation is that the deleted elements cannot be re-added.
A 2P-set comprises two G-sets; one is for added elements, and the other
is for removed elements. To be deemed as present in the set, an item
must be included in the "add-set" and not present in the "remove-set"
The process of adding elements involves adding them to the "add-set". In
contrast, removing elements requires checking if they are present in the
"add-set" and then adding them to the "remove-set". To merge two sets,
a union operation is performed on both sets [13].

Last Write Wins Element Set (LWW-element-Set) The LWW-element-Set is

2.3 conflict-free replicated data type (crdt)chapter 2 technical background

an improved version of the 2p-set that addresses its limitations by allow-
ing the re-insertion of removed elements. Each element in the add and
remove sets is recorded as a tuple with an associated timestamp, which is
used to determine its existence. The procedures of adding, removing, and
merging elements are analogous to the 2p-set. However, to determine the
existence of an element, it is necessary to verify if it has been added to
the "add-set" and if its timestamp is newer than any corresponding entry
in the "remove-set". If a newer entry exists in the latter, the element is
deemed non-existent. The limitation of this variant is that the precision
of the system clock is an essential aspect for the set to operate correctly
[15]. Another challenge is that elements are not physically deleted from
the add and remove sets; rather, newer elements are simply added with
timestamps. As a result, the sets may accumulate a significant number
of "ghost elements" [13].

Observe Remove Set(OR-Set) The OR-Set was created to address the limita-
tions of the LWW-element-Set. It is more space-efficient by eliminating
outdated elements and eliminates the issue of concurrent updates in
LWW-element-Set, which are dependent on the allocation of timestamps.
OR-Set utilizes a unique identifier instead of timestamps and adds ele-
ments by creating a new pair with a new identifier and adding it to the
"add-set." After that, all pairs with the same element in the "remove-set"
are removed. When removing an element from the OR-Set, pairs that con-
tain the element are added from the "add-set" to the "remove-set" and
then removed from the "add-set". Additionally, merging two instances of
OR-Sets involves extracting each "add-set" and eliminating the opposing
"remove-set". Afterward, the two "add-set"s are combined, and any con-
flicting "remove-set"s are reconciled using a join operation that takes the
union of the "remove-set"s. This guarantees that the merged set includes
all elements added to either set and that conflicting removals are resolved
to produce a consistent final state across all replicas [13].

Causal-length set (CL-Set) The CL-set represents a specialized variant of SET
CRDT that offers a unified set containing a distinctive integer for each
attribute referred to as the causal length. The causal length feature deter-
mines the state of each element within the set, eliminating the need for
timestamps, unique identifiers, or multiple sets superfluous. Checking
for the presence of an element entails examining its value within the set
and the parity of its causal length - if odd, it exists, and if even, it does
not. Adding an element requires checking its existence and causal length,
after which the causal length is incremented by one if the element exists
with an even causal length. The element is appended to the set with a
causal length of 1 if it does not exist. When removing an element, the
opposite procedure occurs. To merge two CL-Sets, all unique elements

2.4 conflict-free replicated relation (crr) 13

within each replica are combined into a singular set, and the highest
causal length is selected in cases where conflicts arise [3].

2.3.3 How CRDT can realize the Local-First software

Since CRDT are the data types that guarantee SEC, a CRDT replica may con-
tinue to receive and serve read and write requests in case the replica gets
disconnected from other replicas through network failure or partition. The
replica can always be made available for both read and write operations re-
gardless of the network condition, thus allowing the ability to work offline,
which is the data ownership Local-First property. On the other hand, any com-
municating subset of replicas gives the guarantee to converge, thus giving the
multi-synchronous property of Local-First software.

2.4 Conflict-free Replicated Relation (CRR)

CRR is a principle that implies the integration of CRDTs with RDBs to extend
RDBs with Local-First characteristics. With CRR, it is ensured that the replicas of
RDBs will converge with each other when they apply the same updates, similar
to how the replicas of CRDTs converge. The CRR approach was developed as
RDBs are more complex and cannot guarantee SEC like CRDTs. Essentially,
CRR involves utilizing various types of CRDTs with the relations of RDBs to
extend the RDBs with Local-First characteristics.

3
SynQLite Overview
This chapter will delve into the details of SynQLite, a python-based implemen-
tation of CRR, which forms the basis of this thesis. SynQLite enhances the
capabilities of an SQLite database as a Local-First software by enabling it to be
replicated and synced across various locations or sites, allowing for individual
offline usage and later synchronization. It functions as a service that can be
easily accessed through simple command-line commands and does not require
any modifications to the application utilizing the database.

3.1 Design and Implementation

SynQLite adds a CRR layer on top of the existing database instance, generally
referred to as the Application Relation (AR) Layer. The CRR layer is nothing
but the additional tables and triggers that provide the Local-First property to
the database. Note that, SynQLite does not modify the schema of the AR layer
tables and triggers. It just adds the CRR layer tables and triggers. Users interact
directly with the AR layer and are not aware of the CRR layer. After augmenting
the CRR layer through SynQLite, the database can be cloned or replicated to
another site. Communication between sites for synchronization is done through
the CRR layer using SynQLite commands. Figure 3.1 depicts the overview of
the SynQLite.

It is worth mentioning that SynQLite was first introduced and implemented in

15

3.1 design and implementation chapter 3 synqlite overview

AR Layer

CRR Layer

Site B

AR Layer

CRR Layer

Site A

Figure 3.1: SynQLite Overview

[4] and later modified in [9]. To differentiate between these two implementa-
tions, the implementation from [4] will be referred to as the stage 1 implemen-
tation, and the implementation from [9] as the stage 2 implementation in this
thesis.

3.1.1 CRR Layer

The CRR layer can be divided into two parts: CRR layer tables and CRR layer
triggers. The following subsections will describe both of them.

CRR Layer Tables

For each table R in the AR layer, SynQLite will generate a corresponding 𝑅
table in the CRR layer. For example, if the AR layer has Department, Student,
and Subject tables, the CRR layer will have crr_Department, crr_Student, and
crr_Subject tables. If the schema of the AR layer table is R(a1, a2,...), the corre-
sponding CRR layer table schema would be 𝑅(crr_id, cl, t_a1, t_a2,...a1, a2,...).
For instance, if the Department table schema is R(DepartmentId, Department-
Name) the crr_Department table schemawould be𝑅(crr_id, cl, t_DepartmentId,
t_DepartmentName, DepartmentId, DepartmentName). 𝑅(crr_id) is a univer-
sally unique identifier (UUID) for the particular row [16]. 𝑅(cl) is the causal
length of the row and 𝑅(ti) is the timestamp for 𝑅(ai), meaning the last time
when the attribute was updated. The tuple (crr_id, cl) symbolizes the CLSet
CRDT, and tuple (t_ai, ai) symbolizes the LWW register CRDT which we dis-
cussed in Chapter 2. Please take a look at Figure 3.2 to get a clear visual
understanding of the correlation between the R and 𝑅 tables.

In addition to the 𝑅 tables, SynQLite also generates the meta_site(S) table,

3.1 design and implementation 17

R

PK id UniqueID

a1 ANY

R̃

PK crr_id TEXT

cl INT

t_id TIMESTAMP

t_a1 TIMESTAMP

id UniqueID

a1 ANY

meta_history (HR)

PK (tbl, crr_id)

tbl TEXT

crr_id TEXT

updated_at TIMESTAMP

site_id TEXT

meta_site (S)

PK site_id TEXT

path TEXT

parent TEXT

local BOOLEAN

enabled BOOLEAN

created_at TIMESTAMP

last_in TIMESTAMP

last_out TIMESTAMP

leader BOOLEAN

Figure 3.2: CRR Layer tables

which serves as a repository for the information pertaining to the sites that are
associated with this database. The schema of the meta_site(S) table is depicted
in Figure 3.2. This table comprises the site’s unique identifier S(site_id), the
location of the database S(path), an indicator for whether the site is the local
one S(local), the timestamp for when the database was augmented with CRR
support S(created_at), timestamps for when data is transferred between sites
S(last_in) and S(last_out), and a flag indicating whether the site is a leader
for continuous synchronization S(leader). Specifically, if the CRR support was
added through the initialization operation, then the value of S(local) will be set
to true. Conversely, if CRR support was acquired through the cloning process,
which we will explain later, the value of S(local) will be false. Furthermore,
the S(path) value may be either a local file path or an SSH path, contingent
on the site’s location with respect to the local site. The S(last_out) timestamp
denotes the time when the local site transferred its state to the remote site,
which can be accomplished either by the remote site pulling the state from
the local site or by the local site pushing its state to the remote site, as we will
elaborate on later. In contrast, S(last_in) designates the time when the remote
site transmitted its state to the local site. Note that the S(leader) attribute was
introduced in the stage 2 implementation process. By setting S(leader) to true,
a site role can be made as a leader for continuous synchronization, which we
will discuss later in this chapter.

The meta_history(HR) table is another crucial table in the CRR layer that keeps

3.1 design and implementation chapter 3 synqlite overview

track of all the rows of all the 𝑅 tables concerning when a row was last updated
and on which site. The HR(crr_id) and HR(tbl) are the corresponding 𝑅(crr_id)
and the table name of 𝑅 table respectively, HR(updated_at) is the timestamp
of the most recent update and HR(site_id) refers to the S(site_id) where the
update took place. The tuple (tbl, crr_id) serves as the unique identifier for
each row. By consolidating essential data from all rows of all the 𝑅 tables, the
meta_history table enables SynQLite implementation to easily access and tra-
verse the information of the 𝑅 tables. See Figure 3.2 for a better understanding
of the table structure.

There are a few other important tables, such asmeta_clock,meta_islocal, etc. To
prevent clock divergence at each site meta_clock table is used, which maintains
the local clock information at each site and updates it with the latest timestamp
during synchronization with other sites. On the other hand, the meta_islocal
is used to turn on and off the CRR layer triggers. With the help of all of these
tables, SynQLite achieves the Local-First properties.

CRR Layer Triggers

SynQLite employs several triggers in the database to aid the operation of the
CRR layer. Each table in the AR layer is associated with five triggers, namely
insert, delete, update, hist_insert, and hist_update triggers. For instance, if
the AR layer includes a Student table, SynQLite generates crr_Student_insert,
crr_Student_delete, crr_Student_update triggers, hist_crr_Student_insert and
hist_crr_Student_update triggers.

When a row is inserted into the R table, the corresponding insert trigger adds a
row to the 𝑅 table, with one as the initial value of 𝑅(cl). When a row is deleted,
the delete trigger increases the 𝑅(cl) value of the corresponding row. If a row is
reinserted, the insert trigger is invoked again, which further increases the 𝑅(cl)
value. Therefore, the cl value being odd indicates that the row is present in the
database, and an even cl value denotes that the row has been deleted. If there
is an update to R(ai), the update trigger updates 𝑅(ai) and 𝑅(t_ai) according
to the LWW-register CRDT rules. These triggers thus establish a connection
between the AR layer and the CRR layer.

On the other hand, When a new row is added to the 𝑅 table through the insert
trigger, the hist_insert trigger creates a new row in the meta_history table. The
HR(crr_id) value is set to 𝑅(crr_id), HR(tbl) is set to the name of the 𝑅 table,
HR(updated_at) is set to the current timestamp, and HR(site_id) is set to the
site id from meta_site. Furthermore, for each update, delete, or reinsertion in
the 𝑅 table, the hist_update trigger is executed, updating the corresponding
row in the meta_history table. These triggers thus connect the 𝑅 table and the

3.1 design and implementation 19

meta_history table in the CRR layer.

3.1.2 SynQLite Operations

SynQLite’s operation can be segmented into three primary stages: initialization,
cloning, and synchronization.

Initialization

Initialization is SynQLite’s first function, which entails incorporating the CRR
layer into an already existing database. This process involves not only adding
the CRR layer tables but also populating them with data taken from the AR
layer tables and the specific table logic. Moreover, SynQLite’s initialization code
includes the metadata of the site in the meta_site table.

Cloning

The subsequent function in SynQLite is the clone operation, which is relatively
straightforward. The process starts by verifying if the database to be cloned
has CRR support initialized. If it does, the entire database is copied as a file to
the intended site via SSH File Transfer Protocol (SFTP) [17]. The implemen-
tation of SynQLite employs Paramiko, a Python implementation or library for
SFTP protocol, to establish connections between the sites, transfer files, and
execute commands on the remote site [18]. Upon successfully copying the en-
tire database to the cloned site, the metadata of the cloned site is recorded in
the meta_site table of both the original and cloned sites. To clarify the cloning
process, we generally use a parent-child relationship between the original and
cloned sites, with the original site being referred to as the parent site and the
cloned site as the child site. As such, during the cloning process, the S(parent)
of the cloned site is assigned with the S(site_id) of the original site, while the
S(local) of the original site in the cloned site’s meta_site table is set to false.
Additionally, the logic for triggers on the cloned site is modified to ensure they
function correctly for the cloned site. The modifications are necessary since the
logic of triggers includes the local site id.

Synchronization

The synchronization process involves generating and transferring the deltas(𝛿)
from one site to another site, which are followed by a merging operation on the
recipient site that merges the incoming state with its local state. 𝛿 means the

3.1 design and implementation chapter 3 synqlite overview

unseen or updated rows that need to be transferred from one site to another
site so that the recipient site converges with the sender site. With the help of
the 𝑅 table, meta_history(HR) table, and S(last_in) and S(last_out) attribute of
meta_site table, the 𝛿 is generated, which is referred to as the delta generation
logic. The database’s entire set of changes or the total 𝛿 of the database is
composed of the changes to both the 𝑅 table and the meta_history table. The
𝛿 are stored in a temporary file and then transferred to the other site. Note
that a site communicates with other sites through the S(path) of the meta_site
table, which is configured during the initialization or cloning process.

Upon receiving the 𝛿 , the site initiates the merging process by adding the 𝛿
rows to the CRR layer and trickling them up to the AR layer for convergence. To
prevent the triggers from affecting the CRR layer, the meta_islocal(up) is set to
true, and the triggers only execute when meta_islocal(up) is false. During the
merging process, the site first iterates through (𝛿)HR and adds it to HR. Next, it
merges the (𝛿)𝑅 row with its 𝑅 table while adhering to the CRR rules. If there’s
already a row in 𝑅 with the same crr_id, the merge operation compares the
causal lengths and chooses the one with the highest one. The merge operation
also compares the t_ai for each attribute and selects the attribute with the most
recent timestamp. Finally, the updated row in 𝑅 is trickled up to the AR layer.
Once the merging process is complete, the triggers are reactivated by setting
meta_islocal(up) to false.

When a site wants to synchronize with other sites a site performs a pull or push
operation. If a site wants to perform a PULL operation, it sends a command to
other sites; other sites then generate the 𝛿 for this site using the delta generation
logic of SynQLite. Afterward, they transfer the 𝛿 . The former site then merges
the 𝛿 . On the other hand, PUSH is the opposite of PULL. If a site wants to
perform PUSH, it generates the 𝛿 and then pushes the changes to other sites;
other sites then merge the 𝛿 .

The SynQLite system offers discrete PULL and PUSH operations that can be
initiated at any time as required. In the stage 2 implementation, a continuous
synchronization feature was added that uses a centralized network topology,
where one site is designated as the leader. The leader site is identified by
the S(leader) attribute in the meta_site(S) table and runs an API server that
listens on a specific port. To communicate with the leader, the other sites, called
member sites, establish a TCP connection via an SSH tunnel. This tunnel is the
only means of communication between the members and the leader.

In discrete PULL and PUSH operations, a site communicates with all other
known sites through its meta_site table,whereas in continuous synchronization,
a member site communicates only with the leader site. During continuous
synchronization, a member site sees only two sites in the distributed system:

3.2 user manual of synqlite 21

itself and the leader site. After establishing a TCP connection with the leader,
the member sites continuously push and pull from the leader. When a member
site pushes or pulls, the leader locks its database and performs the necessary
operations as described earlier. The difference is that duringmerging, the leader
changes the information to make it look like the changes were made by the
leader so that members are only aware of the leader site.

3.2 User Manual of SynQLite

From a user perspective, SynQLite is not a background process that needs to
be up and running all the time for the user to access the database. Instead,
it is a service that empowers users to augment their SQLite databases with
CRR support, replicate the database to other locations, and communicate with
replicas for synchronization. To use SynQLite, the user must have the SynQLite
code on their machine and have Python3 and other necessary libraries such
as paramiko and sshtunnel installed. Users can then run various SynQLite
commands as outlined below.

Command: INIT

Functionality Augments CRR support to an existing SQLite database instance.

Full Command python3 -m synqlite.cli init <db_file>

Command: CLONE

Functionality Copies a remote augmented database instance to a local loca-
tion

Full Command python3 -m synqlite.cli clone<source_db><destination_directory>

Command: PULL

Functionality Fetches and merges remotely applied updates to the local in-
stance

Full Command python3 -m synqlite.cli pull <db_file>

3.2 user manual of synqlite chapter 3 synqlite overview

Command: PUSH

Functionality Sends and merges locally applied updates to a remote instance

Full Command python3 -m synqlite.cli push <db_file>

Command: API

Functionality Starts a centralized leader. Other members can connect with it
for continuous synchronization.

Full Command python3 -m synqlite.cli api <db_file>

Command: SYNC

Functionality Members connect to the centralized leader for synchronization.

Full Command python3 -m synqlite.cli sync <db_file> <sync_time>

4
Methodology
In the field of Computer Science, there are three main research methodologies
that are commonly used to achieve various goals - these are theory, abstraction,
and design. Firstly, the theory is based onmathematical principles and is used to
create a logical and valid theory. Conversely, abstraction uses the experimental
scientific method to investigate a concept or phenomenon and involves creating
models of potential implementations. Lastly, design, rooted in engineering, is
used to build systems or devices to solve problems [19].

More specifically, the design methodology is a structured approach that is made
up of four distinct stages, including identifying the problem or need, outlining
the specifications, designing and implementing the system, and finally, evalu-
ating the system to confirm that it has met its intended objectives, as shown in
Figure 4.1. It is a step-by-step process that begins with recognizing the problem
and ends with verifying that the system was successful in solving it [19].

It is clear that the methodology used in this research falls under the category
of design, as we are not creating a new theory or modeling potential implemen-
tations of a Local-First database, which has already been done in reference [3].
To clarify, the primary objective of this thesis is to expand the existing version
of SynQLite to provide multi-site multi-synchronous support while maintaining
the Local-First property of the system. We have designed and implemented ad-
ditional features to meet these requirements, which have been documented in
Chapter 6. The implementation was then tested through various experiments,
the results of which are presented in Chapter 7.

23

chapter 4 methodology

State requirements

State specifications

Design and
implement the

system

Test the system

Figure 4.1: Research Methodology

5
Approach
This chapter will shed some light on the approach that has been taken to
materialize the following ultimate goal of this thesis -

Multi-site multi-synchronous support for SQLite augmented for
Local-First Software.

In this thesis, we began by utilizing SynQLite [4] as our starting point. The
initial implementation of SynQLite augments CRR with the SQLite database in
order to add the Local-First property to an existing SQLite database. Local-First
property means having the ability to work offline and then synchronize with
peers or other replicas while online. However, since the implementation was in
its early stage, it had limited support formanaging the state when multiple sites
were frequently connected and disconnected. Hence, the primary objective of
this thesis was to extend the existing implementation of SynQLite by providing
multi-site multi-synchronous support. In other words, to improve or update
SynQLite to make it practical and ready for end-user usage.

5.1 Agile Software Development Model

We decided to follow the Agile software development model which is an incre-
mental process approach that allows actualizing the system in small incremen-
tal steps [20]. In the development phase, the system is developed in Sprints,

25

5.1 agile software development model chapter 5 approach

which is an iterative cycle where a single unit of the system or a single feature
is implemented, evaluated, and corrected. My supervisor and I used to have
bi-weekly meetings throughout the entire thesis period. Since Agile is an iter-
ative design and development model with short cycles or sprints that enable
fast verification and corrections, we found it the most fitted approach for us to
leverage. In addition to that, another essential property of the Agile approach
is that it is an adaptive approach with probable emergent new risks that also
allows us flexibility during the entire period.

I employed a substantial amount of time investigating the property of the Local-
First software, CRDT, CRR, and the existing codebase, at the inception of our
thesis. This immensely helpedme to find out a bunch of potential features which
could augment the SynQLite with multi-site multi-synchronous support. With
those features in hand, I broke down our main requirements and specifications
into several small requirements and specifications for each individual feature.
After that, I started developing those features in the Agile software development
model fashion. My supervisor and I decided on two weeks as our Sprint since
we used to have bi-weekly meetings to track our progress.

At the beginning of each Sprint in our meeting, we would discuss and then
pick up the most potential feature from our remaining feature list. After that,
I would try to implement that feature. After the implementation, I would per-
form a technical evaluation test to see whether the implementation met the
requirement or not. Since we were working on a distributed system, sometimes
it became really difficult for us to test the feature because of the unpredictable
nature of the distributed system. As a result, some feature development took
more than one Sprint. During this period, I also used to find more potential
features and bugs, and if I could find any, then I would discuss them with my
supervisor in the next meeting. And after the discussion, we used to append
them to our feature list. Figure 5.1 shows the approach we have taken during
the entire thesis period. Needless to say, besides the fixed bi-weekly meeting, if
I needed to discuss something with my supervisor in the middle of a Sprint, he
would find some time to arrange a meeting. With his constant support, motiva-
tion, and guidance, and with my persistent dedication, we achieved our final
goal.

5.1 agile software development model 27

Start

Stop

Analysis of Local-First property, CRDT, CRR and the existing codebase

Break down the main requirements and specifications into small features

Feature and bug list

Pick the most potential feature or bug from the remaining list

Design and implement

Evaluate

Feature
completed

Multi-site
Multi-Synchronous

SynQLite

Got new feature or bugContinue the Sprint

Add the feature or bug in the list

YesNo

Sp
rin

ts

Figure 5.1: Approach overview

5.2 technology choices chapter 5 approach

5.2 Technology Choices

5.2.1 Implementation

Since I have added additional features on top of SynQLite, I was obliged to use
the same technologies it was implemented with, such as Python3, CRDT, CRR,
etc. Additionally, I also have employed Docker Container to simulate a remote
site, which allowed me to test the system’s ability to work with multiple sites
[21].

5.2.2 Evaluation

I have utilized Pytest, a Python testing framework, to write unit tests for a few of
our features and bugs. After the implementation of a single feature, I would run
all the test cases to test whether the new implementation has broken down the
earlier implementations or not. This approach tremendously gave me a better
control over the code. I also have utilized Python and Shell Scripts extensively
to automate and design various test case scenarios for multiple sites so that
I can verify whether we have been able to accomplish our goal to make the
SynQLite multi-site multi-synchronous [22].

5.2.3 Development Environment

We took advantage of Git version control throughout the development process
of our system [23]. I used to maintain separate separate Git branches for im-
plementing a single feature. This allowed me to experiment and modify the
existing codebase robustly without the fear of affecting previous work. Besides,
I have done all the implementation on a Windows machine. However, I have
leveraged Windows Subsystem for Linux [24] to evaluate the implementation
in both Windows and Linux environments.

6
Design and
Implementation

This chapter aims to showcase the features we have implemented on top of
the existing SynQLite codebase to enable multi-site multi-synchronous support.
In Chapter 3, we discussed the existing state of the SynQLite implementation,
which adequately handles two-site scenarios, as shown in Figure 6.1a. In other
words, when only two sites exist in the distributed system, they can work in-
dependently while offline and synchronize with each other when online to
maintain a consistent state using SynQLite commands like PULL and PUSH.
In Chapter 3, we also discussed an attempt that has been taken in [9] to ad-
dress multi-site synchronization issue with a centralized leader-based approach,
where a single site is elected as a leader in the distributed system and multiple
sites connect with this single leader for synchronization. From the member
site’s perspective, there are only two sites, the leader and the member itself.
Setting aside concerns about performance and potential single points of failure,
it should be noted that the existing implementation of the centralized leader-
based approach still falls short in terms of ensuring a consistent state when
multiple sites connect and disconnect frequently, as depicted in Figure 6.1b. Our
thesis focuses on ensuring correctness, meaning all sites should converge to a
consistent state after synchronization, a fundamental property of Local-First
software, as shown in Figure 6.1c. We want to emphasize that our approach is
intended to handle multi-site scenarios, not just two,whichwe will demonstrate
in the following sections.

29

6.1 feature lists chapter 6 design and implementation

SQLiteDB

Site A Site BSite 1 Site 2

(a) The existing implementation func-
tions correctly only for a scenario
involving two sites

Site 1

Site F Site HSite N

Site 3

Site 2 Site L

(b) States of multiple sites diverged
with Leader based existing Imple-
mentation

Site 1

Site F Site H

Site G

Site N

Site 3

Site 2

(c) The goal of this thesis is to make
SynQLite work with multiple sites

Figure 6.1: Difference between existing SynQLite functionality and our goal for this
thesis

6.1 Feature Lists

This section presents a list of features that have been identified through an
in-depth analysis of the characteristics of Local-First software, CRDT, CRR, and
the existing SynQLite codebase. These features aim to ensure state convergence
in scenarios where multiple sites are frequently connected and disconnected
to a great extent. The features will be outlined as follows:

• Partition Handling

• Adapting the delta-generation logic to support multiple sites

• Eventually, all sites should be aware of each other

• Fix the idea that the primary key is always auto-incremented

6.2 implementation 31

• Fix the idea that a table can not be empty during the clone operation

• Cross-platform Support

6.2 Implementation

This section aims to provide a comprehensive account of each feature men-
tioned in Section 6.1, detailing their implementation and functionality.

Feature: Partition Handling

Description Assuming that all nodes in a distributed system will always be
up and running is not a practical approach, and it is not sustainable to
rely on all nodes being constantly accessible. At the moment, if, for some
reason, a site that is known to another site becomes unavailable, then the
latter site will not converge with other available sites, which goes against
the principle of the Local-First nature of the service. Figure 6.2 shows
the loophole of the existing feature.

In Figure 6.2, we see that Site B, Site E, Site F have been cloned from Site
A. On the other hand, Site C has been cloned from Site B. In addition, Site
G, Site H have been cloned from Site C. With the existing implementation,
if for some reason Site B becomes unavailable, then Site A or Site C will
not be able to perform a PULL or PUSH operation. However, in order
for the Local-First property to be upheld, it is important for both sites
to continue functioning even in the event of any other site becoming
unavailable. They should get updates from other available sites such as
Site E, Site F, Site G, and Site H. We have solved this partition handling
issue. Moreover, if we now delete Site B permanently, other sites will
get updates from each other which were not possible with the previous
implementation.

Implementation Properly handling exceptions in a program is crucial to pre-
vent program execution from halting abruptly without any further pro-
gression. Unfortunately, in the existing implementation, exceptions were
not adequately managed. Specifically, during synchronization, the pro-
gram first iterates over its meta_site(S) table and attempts to establish an
SSH connection with the sites listed in the table. This connection enables
the site to exchange updates with other sites. However, an exception oc-
curs if a site is unavailable when the program tries to connect with it, and
the program terminates without attempting to connect with other avail-

6.2 implementation chapter 6 design and implementation

Site A Site C

Site E Site F Site H

Site B

Site G

Site A Site B Site C

Site HSite GSite F

SQLiteDB

Figure 6.2: Partition Issue

If Site B becomes unavailable, Site A and Site C will not be able to converge with
other available sites

able sites. We addressed this issue by enhancing exception handling in
the existing implementation, effectively resolving the partition handling
problem.

Feature: Adapting the delta-generation logic to support multiple sites

Description In Chapter 3, we learned that SynQLite’s implementation utilizes
Delta-State CRDT. A significant aspect of this approach involves the gen-
eration of deltas. However, in the previous implementation of SynQLite,
the delta-generation logic was solely designed for two sites, so it only
generates correct deltas when only two sites are involved in the system.
Suppose we clone multiple sites from one another. In that case, the delta-
generation logic does not work properly, causing the sites to not converge
after synchronization operations as depicted in Figure 6.3.

In Figure 6.3, we see the states of Department table in three different
sites. The snapshot of the states is shown after Site B and Site C have
been cloned from Site A when the Department table had a single tuple
(1, CSE). After that, Site B inserted tuple (2, ME) into the table, and
Site C inserted tuple (2, EEE) into the table. Then we performed the
synchronization operation at all the there sites. We clearly see that the
table states remained diverged after the synchronization operation. While
Site A received updates from both Site B and Site C, sites B and C did not
receive updates from each other. This is due to faulty delta-generation
logic, which we have solved in this thesis.

Implementation To solve this issue, we slightly changed the schema of the
CRR layer. We found that the S(last_in) and S(last_out) attributes of the

6.2 implementation 33

Id DepartmentName
1 CSE
2 ME
3 EEE

(a) Department Table at Site A

Id DepartmentName
1 CSE
2 ME

(b) Department Table at Site B

Id DepartmentName
1 CSE
2 EEE

(c) Department Table at Site C

Figure 6.3: Delta-generation logic issue

States of the sites are different after synchronization with one another due to the
delta-generation logic issue

meta_site(S) table from Figure 3.2 are sufficient to generate the corre-
sponding changes or deltas (𝛿) between only two sites. The previous
delta-generation logic is shown in Code Snippet 6.1 and as an example vi-
sually explained in Figure 6.4. In the example, (3) if Site A generates 𝛿 for
Site B, (4) the previous delta-generation logic gleans newly inserted, up-
dated, or deleted rows from 𝑅 andmeta_history(HR) table from Site A (5)
with a later timestamp than S(last_out) for Site B, i.e., HR(updated_at)
> S(last_out) where S(site_id) is B’s site id.

In this case, if, in the meantime, (1 & 2) Site A receives any updates
from other available sites in which HR(updated_at) are less than Site B’s
S(last_out), then (6) these rows will not be included in the 𝛿 . On the
other hand, if, in the meantime, Site B got updates from other sites, Site
A may also include the duplicate rows in the 𝛿 . The latter scenario is not
a critical issue since, during the merge operation, Site B will handle the
rows which are already in the CRR layer. However, (7, 8 & 9), because
of the former issue, the state of the sites will diverge since Site B will not
get all the unseen or modified rows.

6.2 implementation chapter 6 design and implementation

Code Snippet 6.1: Previous Delta Generation Logic.

1 def _select_delta_sql(site_id):
2 sql_query = f"""
3 SELECT *
4 FROM ~R as crr
5 inner join HR as hist
6 on (crr.crr_id == hist.crr_id)
7 WHERE hist.updated_at >
8 (SELECT last_out FROM S as site
9 WHERE site.site_id = { site_id })
10 AND hist.site_id != { site_id }"""
11 # site_id is the id of the site that the deltas are for

Site A Site B
A Genera

tin
g δ

for B

Delta-generation

OPERATIONS

Fetch rows from R̃
and HR table

3

Condition:
HR(updated_at) >

S(last_out) of B

5

Site C
C pushed its

updates
 to A

 Now, A may
contains rows
from C which

HR(updated_at)
may be less than
S(last_out) of B

1

2

4

A transfers δ to B

7

δ will not contain
the rows of Site

C

6

B gets
inadequate δ

from A

8

B merges δ
from A

9

Figure 6.4: Explanation of previous Delta-generation logic

Therefore, the former delta-generation logic can be considered faulty
for multiple sites. In fact, we have discarded S(last_in) and S(last_out)
variables from the table S and added a completely new table named

6.2 implementation 35

meta_site_state(SS) in the CRR layer. In Figure 6.5, SS(site_at) indi-
cates the S(site_id) where an update has occurred, SS(site) specifies the
S(site_id) who is responsible for the update, and SS(last_update) is the
timestamp when SS(site) last updated the SS(site_at).

R

PK id UniqueID

a1

R̃

PK crr_id TEXT

cl INT

a1

t_a1 TIMESTAMP

id UniqueID

meta_history (HR)

PK (tbl, crr_id)

tbl TEXT

crr_id TEXT

updated_at TIMESTAMP

site_id TEXT

meta_site (S)

PK site_id TEXT

path TEXT

parent TEXT

local BOOLEAN

enabled BOOLEAN

created_at TIMESTAMP

leader BOOLEANmeta_site_state (SS)

PK (site_at, site)

site_at TEXT

site TEXT

last_update TIMESTAMP

Figure 6.5: Updated CRR Layer tables

In fact, the SS table is a way of implementing the state vector in the
distributed systems [25]. A state vector is actually a data structure that
keeps track of the overall state of the entire system and stores information
about the state of each node or process in the system. State vectors are
generally used to detect and resolve conflicts that arise when several
nodes update the same data at the same time since state vectors are
causally ordered, meaning they retain the sequence of events inside the
system. To maintain a consistent and up-to-date representation of the
system’s overall state, each node retains and updates its state information
in the state vector and then propagates it to all other nodes. As shown
in Figure 6.6 and described in the subsequent paras, we record all of
the update information for all possible combinations of sites in the SS
table using the format (site_at, site, last_update). As a result, this table
serves as a representation of the global state of the entire system and
aids in generating the correct 𝛿 when there are more than two sites in
the distributed system.

6.2 implementation chapter 6 design and implementation

site_at site last_update
A A NULL
(a) When initialized at Site A

site_at site last_update
A A 1.5
(b) When Updated at Site A at 1.5

site_at site last_update
A A 1.5
B A 1.5
A B NULL
B B NULL

(c) When Cloned at Site B

site_at site last_update
A A 1.5
B A 1.5
A B NULL
B B NULL
C A 1.5
C B NULL
A C NULL
C C NULL

(d) When Cloned at Site C

site_at site last_update
A A 1.5
B A 1.5
A B NULL
B B NULL
C A 1.5
C B NULL
A C 2.5
C C 2.5

(e) When updated at Site C at 2.5 by
Site C and then PULLED by Site A

site_at site last_update
A A 1.5
B A 1.5
A B NULL
B B NULL
C A 1.5
C B NULL
A C 2.5
C C 2.5
B C 2.5

(f) When PULLED By Site B

Figure 6.6: State information in meta_site_state (SS) table

6.2 implementation 37

How the SS table is populated During the initialization process, SynQLite in-
serts a single row into the SS table, where both the SS(site_at) and
SS(site) are set to the site_id of the initialized site, and the SS(last_update)
field is initially left as NULL and then updated when the site is updated
as shown in Figure 6.6a and Figure 6.6b.

During the cloning process, the SS table is also updated along with the S
table as mentioned in Chapter 3. SynQLite inserts all tuples of the form
(cloned_site_id, site, last_update) into the cloned SS table, where the
"site" value is extracted from all tuples of the form (original_site_id, site,
last_update) that exist in the SS table during the cloning time. Addition-
ally, it appends two more tuples to the cloned SS table, which are (orig-
inal_site_id, cloned_site_id, NULL) and (cloned_site_id, cloned_site_id,
NULL). In the original site’s SS table, SynQLite also inserts the same
tuples. The state information after the cloning process is depicted in
Figure 6.6c and Figure 6.6d.

During the Synchronization operation, if Site A generates 𝛿 for Site B,
at first SynQLite inserts all possible tuples of the form (B’s site id, site,
last_update) in Site A’s SS table. The tuples are gleaned from existing
rows in the table of the form (A’s site id, site, last_update). If (B’s site id,
site, last_update) is not already in the table, then the last_update is set
to NULL. Then SynQLite runs the adapted delta generation logic at Site
A, which we are going to describe in the following para, aggregating all
newly inserted, deleted, or updated rows from all the sites in the 𝛿 for Site
B. Afterward, SS is again updated for the tuples of the form (B’s site id,
site, last_update), this time the last_update is set to max(last_update of A,
last_update of B) since after generating the 𝛿 , Site B now will have all the
updates. Similarly, after merging the 𝛿 , at Site B, we update the SS table
with the same tuples. The state information after the synchronization
process is shown in Figure 6.6e and Figure 6.6f.

The adapted delta-generation logic is presented in the Code Snippet 6.2
and, as an example, has been explained visually in Figure 6.7. In this
case, (2) if Site A generates 𝛿 for Site B, (4) at site Site A, we extracted
rows from 𝑅 and HR table and then (5) join the rows with SS table
using the condition that SS(site_at) matches B’s site id. Subsequently,
(6) we filter the resulting rows using the condition: HR(updated_at) >
SS(last_update). We also prune out the rows if the update has been
solely done by Site B. Since (3) we update the SS table in such a way to
include all possible tuples of the form (B’s site id, site, last_update) as
discussed in the previous paras, (7) the 𝛿 will contain all the updated
rows performed by any site, (9, 10, 11, & 12) which need to be sent to and
merged at site Site B in order to ensure that it is consistent with all other

6.2 implementation chapter 6 design and implementation

sites. Therefore, using the SS table as a state vector assures that all the
rows will be included in the deltas, and thus the sites will converge to
the identical state.

Code Snippet 6.2: New Delta Generation Logic.

1 def _select_delta_sql(site_id):
2 sql_query = f"""
3 SELECT *
4 FROM ~R as crr
5 inner join HR as hist
6 ON (crr.crr_id == hist.crr_id)
7 INNER JOIN
8 (SELECT site, last_update
9 FROM SS
10 WHERE site_at = {site_id})
11 AS state
12 WHERE state.site != {site_id} AND
13 hist.updated_at > state.last_update
14 ORDER BY hist.updated_at"""
15 # site_id is the id of the site that the deltas are for

Feature: Eventually, all sites should be aware of each other

Description As previously mentioned, the existing approach is effective when
only two sites exist. This thesis aims to create multiple copies of databases
in a distributed manner and ensure that all replicas have the same in-
formation when updates are exchanged between them. However, the
existing system only allows for synchronization between sites that have a
direct parent-child relationship. This limitation prevents the convergence
of sites if an intermediate site stops updating its state.

Consider an example, as shown in Figure 6.8, we see that Site B has been
cloned from Site A and Site C has been cloned from Site B. Now if we
update Site C and then, we do Pull A, then Site A will not get the updates
from Site C since Site A is not the direct parent of Site C. But after that, if
we do Pull B, then Site B will get the updates from Site C since Site B is
the parent of Site C. Afterward, if we do Pull A, then Site A will finally get
the updates and will converge since now Site B contains the updates of
Site C. But if, for some reason, the user who uses Site B stops using Site B
and never do PULL B, then the updates of Site C will never be propagated
to Site A.

Therefore to ensure consistency across all sites in a distributed system,
each site must have knowledge of the meta information of all other sites.

6.2 implementation 39

Site A Site B
A Genera

tin
g δ

for B

Delta-generation

OPERATIONS

Fetch rows from R̃
and HR table

2

Filter rows
Condition:

HR(updated_at) >
SS(last_update)

6

Site C
C pushed its

updates
 to A

 A inserts in its
SS table all

possible rows of
the form (B,

site, last_update)
gleaned from the

rows (A, site,
last_update)

1

3

4

A transfers δ to B

9

δ will now contain
the rows of Site C
since SS contains

(B, C, 0)

7

B gets the
correct δ from

A

10

B merges δ
from A

11

Join (site,
last_update) of SS

table
Condition:

SS(site_at) = B

5

Update the
(B, C, 0)

to
(B, C,

last_update of A)

8

B updates SS
table

12

Figure 6.7: Explanation of adapted Delta-generation logic

6.2 implementation chapter 6 design and implementation

Site A Site CSite BSite A Site B Site C SQLiteDB

UPDATE C
1

PULL A
2

PULL B
3

PULL A
4

UPDATE C

PULL A
6

NEVER PULL B

5

OPERATIONS

A will n
ot

converg
e

B will

converg
e

A will

converg
e

A will n
ot

converg
e

Figure 6.8: Parent site may never be converged with child’s child site

Implementation We know that in the CRR layer of a database, themeta_site(S)
table serves as the repository for all the pertinent information about all
known sites. With the previous implementation of SynQLite, the S table is
only updated when a site is cloned from another site. After the database
of a site has been successfully copied to another site through the cloning
process, the cloned site would inherit all the information from the parent
site’s S table, and then both the cloned and parent’s S table would be
updated with the newly created site’s information. However, with this
approach, the S table of other sites in the distributed system would not
receive information about the newly created site. We have solved this
issue with two approaches.

• Once the database is successfully copied to a new site, we will
inform not only the parent site but also all the sites listed in the
parent’s S table about the creation of the new site. This way, all sites
will be aware of the new site. However, if some sites are offline or
there is a partition between certain pairs of sites during the cloning
process, those sites will not receive the information about the new
site. To address this potential problem, we have implemented a
logic to ensure that all sites are informed about the creation of the
new site during the synchronization process.

6.2 implementation 41

• During the process of synchronization in SynQLite, 𝛿 are prepared
and transmitted to other sites to achieve convergence through PULL
or PUSH operations. These 𝛿 are typically composed of updated or
unseen rows from the 𝑅 and HR tables, limiting the convergence
to only these tables. However, in our implementation, we have also
generated 𝛿 of S table and combined them with the previous 𝛿 .
After transmitting the 𝛿 to the other sites, it receives information
about the new sites and proceeds to perform the corresponding
PULL or PUSH operations for these new sites by iterating through
them.

Note that we not only update the S table of all the sites present in the
distributed system during the cloning or synchronization process as de-
scribed above but also the SS table with the logic described in the imple-
mentation part of the previous feature. Through this, we guarantee state
convergence for multiple sites.

Feature: Fix the idea that the primary key is always auto-incremented

Description We know that whenever any modifications are made to relations
in the AR layer table, identified as R, the CRR layer triggers will automat-
ically make corresponding changes in the 𝑅 tables of the CRR layer. The
previous implementation assumed that the R tables would always have
auto-incremented primary keys. After inserting a relation into the R table,
the insert trigger will check if the corresponding row is already present
in the 𝑅 table by looking at the primary key. If it is present, the trigger
will simply increase the 𝑅(cl) or causal length and no other changes will
be made.

In a scenario where the user does not define the primary key in the R
table as an auto-incremented primary key; after a row is deleted and a
new row is inserted, the new row will have the same primary key as the
deleted row in the R table, as illustrated in Figure 6.9a. In this case, since
the primary key already exists in the 𝑅 table, the insert trigger will not
insert the new relation into the 𝑅 table. Instead, it will only update the
𝑅(cl) and not update any other column values as shown in Figure 6.9b
and Figure 6.9c in the 𝑅 table.

In the scenario outlined above, the R table on the local site may have the
most recent information. However, because the 𝑅 table is not updated
correctly, if the local site pushes its updates to other sites or if other sites
perform a pull operation, they will not receive the most recent informa-
tion. This is because, when updates are sent to other remote sites, the 𝛿

6.2 implementation chapter 6 design and implementation

pk a1 a2
1 DS INF-3200
2 PP INF-3201
2 ADS INF-3203

(a) R table

crr_id cl t_a1 t_a2 a1 a2
- 1 - - DS INF-3200
- 2 - - PP INF-3201

(b) 𝑅 table after the first deletion

crr_id cl t_a1 t_a2 a1 a2
- 1 - - DS INF-3200
- 3 - - PP INF-3201

(c) 𝑅 table after the following insertion

Figure 6.9: Fix Auto-incremented Primary key issue

rows in the 𝑅 table are sent and merged with 𝑅 table of the remote site,
and then the relations trickle up to the R table of the remote site. In this
case, the new row in the R table of the remote site will have outdated in-
formation since the 𝑅 table does not contain the new information; it just
has an increased 𝑅(cl). This will cause the states of the sites to diverge
from each other.

Implementation The easiest solution to this problem would be to impose a re-
striction on SynQLite users that their tablesmust have an auto-incremented
primary key. However, this would limit the functionality and usability of
our SynQLite service. Therefore, to avoid limiting the functionality and
usability of SynQLite, we have modified the insert trigger logic from Code
Snippet 6.3 to Code Snippet 6.4. Note that a simplified version has been
presented to simplify the trigger logic for easy understanding.

The previous logic has been explained in the description section. Under
the new logic, when an insert trigger is invoked, it checks whether the
primary key of the R table already exists in the 𝑅 table. If it does, the
trigger uses the earlier crr_id and causal length instead of generating
new ones. Note that we have employed the SQL COALESCE function for
this, which returns the first non-null value. To guarantee the insertion of
a new row into the 𝑅 table, a "REPLACE INTO" command is utilized. This
command deletes the previous row with the same primary key, which is
the crr_id in this case, and inserts the new row with updated information.

6.2 implementation 43

On the other hand, using the INSERT command would result in failure
to insert a new row with an already existing primary or unique key.

Code Snippet 6.3: Previous Insert Trigger.

1 def insert_trigger():
2 sql_query = f"""
3 INSERT INTO ~R
4 (crr_id, cl, id, t_id, ...)
5 VALUES
6 (new_crr_id, 1, new.id, timestamp, ...)
7 WHERE NOT EXISTS
8 (SELECT * FROM ~R
9 WHERE new.id = ~R.id)"""

Code Snippet 6.4: New Insert Trigger.

1 def insert_trigger():
2 sql_query = f"""
3 REPLACE INTO ~R
4 (crr_id, cl, id, t_id, ...)
5 VALUES
6 (COALESCE(
7 (SELECT crr_id FROM ~R
8 WHERE new.id = ~R.id),
9 new_crr_id),
10 COALESCE(
11 (SELECT cl FROM ~R
12 WHERE new.id = ~R.id)
13 , 1),
14 new.id, timestamp, ...);"""

Feature: Fix the idea that a table can not be empty during the clone
operation

Description There is another issue in the earlier implementation of SynQLite.
If a table of a database is empty while it is being cloned, then after the
clone operation, the state of the table will not converge with one another
during the synchronization operation when multiple sites exist.

Consider Figure 6.10, where Site B has been cloned from Site A while the
Department table was empty. Then Site C has been cloned from Site B.
Afterward, we inserted a row in Department table both at Site A and Site
C. Therefore, both the local site will have the row with the primary key
one, as shown in the figure (1 & 2). Following that, if we perform the
PULL operation on Site B, we will see that Site B will not converge with

6.2 implementation chapter 6 design and implementation

Site A or Site C. Let’s take a close look at the corresponding 𝑅 table of
Department table at Site B (3). We will notice that it has got the update
from both the sites, but due to the same primary key issue, the update
will not trickle up to the R table or the Department table. If Site A or Site
C also perform PULL operation or PUSH operation, they will also not
converge with one another.

Just like the problemwith the auto-incremented primary key, the simplest
solution is to restrict SynQLite users from inserting at least one row before
making a copy of the database on a remote site with CLONE operation.
However, it would negatively impact the usability of the SynQLite service.
Therefore we have solved the issue in this thesis.

Site A Site CSite BSite A Site B Site C SQLiteDB

INSERT in C
2

PULL B
3

OPERATIONS

A will n
ot

converg
e

Department Table

Id DepartmentName

1 EEE

INSERT in A
1

Department Table

Id DepartmentName

1 CS
pk is

1pk is
1

PULL C
5C will n

ot

converg
e

CRR Department Table

CRR_ID CL Id DepartmentName

1 1 CS

1 1 EEE

PULL A
4

B will n
ot

converg
e

Figure 6.10: Empty table clone Issue

The tables must not be empty during the clone operation, as doing so sites states will
diverge

6.2 implementation 45

Implementation After investigating the cause of the issue, we found that in
the merge function, there was an assumption that the 𝑅 table in the
merging site would not be null. The function fetches the primary key
information from the existing rows from 𝑅 and takes the necessary steps
to merge based on the information. If the 𝑅 table is initially empty, it will
not get the necessary information and thus will fail to merge the rows.
We removed that assumption from the implementation.

Feature: Cross-platform Support

Description Since we are developing a system or service for a distributed and
diverse environment, we want to give users the flexibility to use any
platform on their site. Previously, SynQLite was only compatible with
Linux, but we have added support for Windows so that users on both
operating systems can use the service simultaneously. When multiple
sites are connected, regardless of the environment at each site, they will
all reach a consistent state after performing PULL or PUSH operations
with other sites. Figure 6.11 highlights the feature.

Linux Linux

Linux/WindowsLinux/WindowsLinux/Windows

Before

Now

Figure 6.11: Cross-Platform support

Implementation During the cloning or synchronization process of a remote
database file to a local system, SynQLite requires a temporary directory
to store the file temporarily. However, the existing implementation of
SynQLite assumes a Linux directory structure when creating the tempo-
rary directory to store the file. This can cause issues when attempting to
clone a remote database onto a Windows machine, as the directory struc-
ture is completely different and may cause the temporary file creation to
fail, resulting in SynQLite not functioning properly. Previously, the tem-
porary files were stored in the "/root/tmp" directory. However, with the

6.2 implementation chapter 6 design and implementation

updated implementation, the system environment is first checked, and
the temporary path is then calculated based on this environment. We
know from Section 3.2 that the user specifies the local path where they
want to clone the database using the SynQLite CLONE command, and
then SynQLite creates a temporary directory based on this path to store
the file, ensuring that the cloning process is successful regardless of the
system environment.

To sum up, implementing multi-site multi-synchronous support on top of Syn-
QLite required us to address the key features and bugs mentioned earlier in this
chapter. However, we didn’t stop there and also made additional modifications
to enhance the performance and functionality of the system. One noteworthy
modification we made was adding a feature that allows temporary files to be
wiped out after they have served their purpose. This optimization helps to free
up storage space and contributes to an overall enhancement of the system’s
performance. Aside from this, we also refactored the codebase to enhance its
readability and ease of maintenance. Overall, our efforts have helped to make
SynQLite a more capable and efficient system for multi-site multi-synchronous
support. These modifications have improved the performance and function-
ality of the system, making it a more reliable tool for managing data across
distributed sites.

7
Experiments
This chapter outlines the experiments we conducted to justify our implementa-
tion of SynQLite. Our primary focus was on ensuring the accuracy and correct-
ness of SynQLite, rather than optimizing its performance. The previous version
of SynQLite was unable to function effectively in a distributed system with mul-
tiple sites. To adhere to the Local-First property, SynQLite should allow offline
work and ensure that the states of the different sites converge when online.
SynQLite is a service that provides the Local-First property to SQLite databases,
so working offline is not a significant concern. However, the previous imple-
mentation of SynQLite failed to handle synchronization issues, which limited
its effectiveness to only two sites. This is not practical in real-life scenarios
where a service may be used by numerous users. Therefore, we implemented
new features and addressed existing bugs to ensure that SynQLite functions
appropriately for multiple sites. We have categorized our experiments into two
types: the first type validates the accuracy and correctness of SynQLite, which
is our primary goal, and the second type evaluates the overall performance of
SynQLite after implementing our features.

7.1 Correctness Validation

In order to ensure the accuracy and correctness of our system, we developed
several test cases. The purpose of these test cases was to demonstrate that
when multiple sites are present in a distributed system, all sites converge to

47

7.1 correctness validation chapter 7 experiments

an identical state following the synchronization operation. The test cases were
written in both Bash and Python scripts. With the help of these test cases, we
automatically simulate sites, create databases on a site using a database schema
shown in Code Snippet 7.1, augment the CRR support to the database, clone
the database to several other sites, randomly insert, update, and delete rows in
database tables and then perform the synchronization operation. We ran these
scripts on both the previous implementation and our updated implementation
and then observed the state of the databases by outputting the states to a text
file. To do this, We leveraged SQL SELECT operation to output the entire table
state of a site and then write the output in a text file. We then compared the
states to determine if they were identical. In this section,We will highlight some
of our test cases that validate the correctness of our implementation.

Code Snippet 7.1: Database Schema for Test Cases

1 CREATE TABLE [Departments] (
2 [DepartmentId] INTEGER NOT NULL PRIMARY KEY,
3 [DepartmentName] NVARCHAR(50) NOT NULL
4);
5 CREATE TABLE [Students] (
6 [StudentId] INTEGER PRIMARY KEY NOT NULL,
7 [StudentName] NVARCHAR(50) NOT NULL,
8 [DepartmentId] INTEGER NULL,
9 [DateOfBirth] DATE NULL
10);

7.1.1 Test Case 1

The design of Test Case 1 is shown in Code Snippet 7.2. Following the design,
we developed a script to execute the test case. A simple output obtained from
executing the test case on both the previous and updated implementations is
illustrated in Figure 7.1. After Step 6, we notice that the Department table’s
states are not consistent across all sites when the test case is executed on the
previous implementation. Regardless of the number of PULL operations per-
formed and the number of times the script is executed from Step 4 to Step 6,
the table’s state did not converge after the PULL operation with the previous
implementation. Upon close inspection, we observed that Site A was receiving
the newly inserted rows from all other sites, while Site B, Site C, and Site D
were receiving the newly inserted rows of Site A but not from each other. In
contrast, our updated implementation produced an output that showed all the
sites having all the newly inserted rows from each other, confirming the cor-
rectness of our implementation. Therefore, this test case successfully validates
the accuracy and correctness of our updated implementation.

7.1 correctness validation 49

Code Snippet 7.2: Design of Test Case 1

1 Step 1: Create and initialize a database at Site A
2 Step 2: Insert rows in the Department table at Site A
3 Step 3: Consecutively Clone Site B, Site C, and Site D from Site A
4 Step 4: Insert a row in the Department table at all the sites
5 Step 5: Perform PULL operation at all the sites
6 Step 6: Output the state of the Department table of all the sites
7 Step 7: Perform Step 4 to Step 6 several times

"Site A: Before Pull"
1|CS
2|AA
"Site B: Before Pull"
1|CS
2|BB
"Site C: Before Pull"
1|CS
2|CC
"Site D: Before Pull"
1|CS
2|DD

"Site A: After Pull"
1|CS
2|AA
3|BB
4|CC
5|DD
"------------------------------------"
"Site B: After Pull"
1|CS
2|BB
3|AA
"------------------------------------"
"Site C: After Pull"
1|CS
2|CC
3|AA
"------------------------------------"
"Site D: After Pull"
1|CS
2|DD
3|AA

Output After Step 4

Output After Step 6
of Previous

implementation

"Site A: After Pull"
1|CS
2|AA
3|BB
4|CC
5|DD
"------------------------------------"
"Site B: After Pull"
1|CS
2|BB
3|AA
4|CC
5|DD
"------------------------------------"
"Site C: After Pull"
1|CS
2|CC
3|AA
4|BB
5|DD
"------------------------------------"
"Site D: After Pull"
1|CS
2|DD
3|AA
4|BB
5|CC
"------------------------------------"

Output After Step 6
of our

implementation

Figure 7.1: Output of Test Case 1

7.1.2 Test Case 2

Test Case 1 involved the examination of four different sites, three of which were
created through the process of cloning from a single site. Test Case 2 was de-
signed to present a more complex scenario, utilizing a total of seven sites as

7.1 correctness validation chapter 7 experiments

illustrated in Figure 7.2. The process began by initializing a database at Site
A and cloning Site B from it, followed by cloning Site C from Site B. Sites D
and E were then cloned from Site A, while Sites F and G were cloned from
Site B. Subsequently, rows were inserted in all sites, and a PULL operation was
performed at each site. The state of all the sites was then observed, as depicted
in Figure 7.3. The previous implementation resulted in states of the sites that
were inconsistent with one another, while our updated implementation pro-
vided consistent states across all sites. Thus, the accuracy and correctness of
our updated implementation were confirmed by Test Case 2.

Site A Site B Site C

Site D

Site E

Site F

Site G

Figure 7.2: Sites Arrangement of Test Case 2

7.1.3 Test Case 3

Once we had tested our implementation with SQL insert operations and various
site configurations, we proceeded to evaluate it with both insert and update
operations using the same site arrangements. The design for Test Case 3 is
presented in Code Snippet 7.3. The output of our test case successfully demon-
strated that our implementation ensures the convergence of site states after
synchronization operations.

Code Snippet 7.3: Design of Test Case 3

1 Step 1: Create and initialize a database
2 Step 2: Clone databases from each other
3 Step 3: Insert rows in a particular table at all the sites
4 Step 4: Perform PULL operation at all the sites
5 Step 5: Output the state of the table of all the sites
6 Step 6: UPDATE rows in that particular table at all the sites
7 Step 7: Perform PULL operation at all the sites
8 Step 8: Output the state of the table of all the sites
9 Step 9: Perform Step 3 to Step 8 several times

7.1 correctness validation 51

"Site A: Before Pull"
1|CS
2|AA
"Site B: Before Pull"
1|CS
2|BB
"Site C: Before Pull"
1|CS
2|CC
"Site D: Before Pull"
1|CS
2|DD
"Site E: Before Pull"
1|CS
2|EE
"Site F: Before Pull"
1|CS
2|FF
"Site G: Before Pull"
1|CS
2|GG

"Site A: After Pull"
1|CS
2|AA
3|BB
4|DD
5|EE
"------------------------------------"
"Site B: After Pull"
1|CS
2|BB
3|AA
4|CC
5|FF
6|GG
"------------------------------------"
"Site C: After Pull"
1|CS
2|CC
3|AA
4|BB
"------------------------------------"
"Site D: After Pull"
1|CS
2|DD
3|AA
"------------------------------------"
"Site E: After Pull"
1|CS
2|EE
3|AA
"------------------------------------"
"Site F: After Pull"
1|CS
2|FF
3|AA
4|BB
"------------------------------------"
"Site G: After Pull"
1|CS
2|GG
3|AA
4|BB

"Site A: After Pull"
1|CS
2|AA
3|BB
4|DD
5|EE
6|FF
7|GG
8|CC
"------------------------------------"
"Site B: After Pull"
1|CS
2|BB
3|AA
4|CC
5|DD
6|EE
7|FF
8|GG
"------------------------------------"
"Site C: After Pull"
1|CS
2|CC
3|AA
4|BB
5|DD
6|EE
7|FF
8|GG
"------------------------------------"
"Site D: After Pull"
1|CS
2|DD
3|AA
4|BB
5|CC
6|EE
7|FF
8|GG
"------------------------------------"
"Site E: After Pull"

Output Before PULL

Output After PULL
of previous

implementation

Output After PULL
of our

implementation

Figure 7.3: Output of Test Case 2

7.2 performance evaluation chapter 7 experiments

7.1.4 Test Case 4

Our implementation underwent comprehensive testing with all SQL operations,
including the delete operation, as we evaluated the behavior of our system. For
this test case, following the site arrangement used in previous test cases, we
inserted data into the table at each site, performed a PULL operation, and ex-
amined the state of the database. We then deleted rows from each database
and repeated the PULL operation to observe the states of the sites. However,
we discovered that our previous implementation, which successfully converged
the databases to a unique state for Test Case 1, Test Case 2, and Test Case 3, did
not work when deleting rows and attempting to synchronize the database. An
extensive investigation led us to identify the root cause of the issue, which was
the assumption of a fixed auto-incremented primary key described in Chap-
ter 6. We addressed the issue and tested our solution on Test Case 4, where we
found that the sites converged after the synchronization operation. We retested
the previous test cases and confirmed that our implementation effectively con-
verged the states of the sites, even with multiple sites involved.

7.1.5 Test Case 5

During Test Case 5, we executed SQL insert, update, and delete operations
across various sites and found that our implementation was able to converge
the sites regardless of the operation type. However, we encountered an issue
where simultaneous update and deletion of a row from different sites caused a
divergence in the site states. We identified and resolved the root cause of the
problem, and after rerunning the test case, we were able to achieve successful
site convergence.

To conclude, as we conducted our research on distributed multi-site multi-
synchronous databases, we made an effort to consider every possible corner
case. However, it is conceivable that some corner cases were overlooked. Despite
this, we can confidently report that our implementation achieved complete
accuracy and correctness for both general and specific corner cases discussed
in this thesis.

7.2 Performance Evaluation

Our primary objective was to extend the existing SynQLite implementation by
providing multi-site multi-synchronous support, ensuring that the states of all
sites would converge to a unified state after synchronization. To validate the
correctness of our implementation, we conducted several test cases, as outlined

7.2 performance evaluation 53

in the preceding section. However, during the implementation process, we
not only focused on ensuring that the features worked but also on evaluating
their efficiency. To this end, we carried out a series of performance tests on
our implementation. In this section, we will discuss the performance tests we
performed on our implementation. The specification of the machine on which
all the performance tests were executed is:

Processor Processor 12thGen Intel(R) Core(TM) i7-1255U, 1700Mhz, 10 Core(s),
12 Logical Processor(s)

RAM 16 GB

Disk SAMSUNG MZVLQ512HBLU-00B 512 GB SSD

OS Microsoft Windows 11 Home

7.2.1 Experiment Setup

We set up our experiment as depicted in Figure 7.4. (1) At first, we utilized a
cloning process to set up our experiment, where the first site was initialized,
and the subsequent sites were cloned from the preceding site in a sequence,
i.e., the second site was cloned from the first, the third from the second, and
so on. We set the initial size of the database to zero. (2) Following site cre-
ation, we inserted an identical number of rows to each site. (3) After that, we
sequentially performed a pull operation at each site. (4) We then timed how
long it took for each site to synchronize. We averaged the synchronization time
and incorporated the standard deviation as an error bar on the plotted results.
This allowed us to assess the variability in our data and better understand the
consistency and reliability of our experimental findings.

It is also important to note that we measured both the Wall time1 and the
CPU time2 when evaluating execution or elapsed time [26]. This allowed us to
distinguish the amount of time the CPU spent executing our program versus
the total time taken to complete the program.

1. When discussing computer processing time, Wall time is used to refer to the actual time
taken to complete a task. This includes the total duration of three primary elements: CPU
time, I/O time, and communication channel delay

2. The CPU time refers to the length of time the CPU is actively engaged in executing a
program. It quantifies the duration during which the CPU executes program instructions.

7.2 performance evaluation chapter 7 experiments

Site 2 Site 3 Site n

OPERATIONS

Time
Initialize Site 1

Clone Site 2 from Site 1
Clone Site 3 from Site 2

.

.
Clone Site n from Site (n-1)

1

Sequentially insert
N number of rows
in a table in each

DB

2

Time

Site 1

Initial DB size = 0

Sequentially
perform PULL

operation at each
site and record the

time

3

Time

Plot average
Synchronization

time with standard
deviation

4

Insert Insert Insert Insert

PULL PULL PULL PULL

Figure 7.4: Experiment Setup

7.2.2 Number of sites vs Synchronization Time

Our primary focus in expanding SynQLite to function with multiple sites in-
volved conducting an experiment to measure the time it takes for a site to
synchronize with other sites and to determine how much this duration varies
depending on the number of sites involved in the distributed system.

The result of this experiment is presented in Figure 7.5. We investigated the
synchronization process with different numbers of sites, ranging from 10 to 100,
with increments of 10. Following the site creation as described in Figure 7.4,
we inserted a single row to each site for this particular test. We limited the
row count to one to ensure that the number of sites and the synchronization
time were not affected by other factors. However, then we performed the PULL
operation at each site and recorded the time it took to synchronize with other
sites. Our findings indicate that the synchronization time increased steadily
and predictably for site numbers between 10 to 60, with each site taking less
than 5 seconds to synchronize. However, beyond 70 sites, the synchronization
time increased significantly for each site and became less predictable, taking
much longer to complete. Specifically, when the system consisted of 100 sites,
synchronization varied between 15 to 25 seconds for each site in the system.
Overall, our experiment demonstrates that synchronizing with a large number
of sites can be challenging and can result in unpredictable and time-consuming
synchronization times.

7.2 performance evaluation 55

10 20 30 40 50 60 70 80 90 100
Number of sites

0

5

10

15

20

25

Ti
m

e
in

 se
co

nd
s

Number of sites vs Synchronization times

Elapsed Wall Time
Elapsed CPU Time

Figure 7.5: Plot of Number of sites vs Synchronization times

7.2 performance evaluation chapter 7 experiments

7.2.3 Very frequent synchronization vs long intervals of
synchronization

If synchronization operations are performed frequently, there will be a higher
number of synchronization operations but a lower number of updated rows in
the delta during each operation. Conversely, if synchronization operations are
performed after a long interval, there will be a lower number of synchronization
operations, but the delta will contain more updated rows. The frequency of
synchronization operations and the number of delta rows being synchronized
must have a great impact on the time required for a site to synchronize with
other sites. To investigate this issue, we conducted an experiment where we
inserted different numbers of rows into a database and performed synchro-
nization operations on each site in the system, and recorded how long it takes
for a site to synchronize with other sites. Figure 7.6 depicts the result of this
experiment.

We used different numbers of sites in this experiment to see the effect of the
experiment and the effect of the number of sites on this experiment. We in-
serted 200, 400, 600, 800, and 1000 rows in each site and performed the PULL
operation at each site, recording the time it took to synchronize. Our observa-
tion indicates that the time taken to synchronize increases nearly linearly with
the number of rows that exist in the delta regardless of the number of sites
presented in the system. We found that when there are five sites in the system
as portrayed in Figure 7.6b, then for approximately 1000 rows in the delta at
each site, the synchronization time was around 10 to 14 seconds (Wall time),
whereas, for 200 rows, it only took about 1 to 2 seconds. On the other hand, We
see that when only two sites are present in the system, as shown in Figure 7.6a,
then the synchronization is around 1.5 to 2.5 seconds for 1000 rows, and for
200 rows, it is notably insignificant.

7.2.4 Delta Generation time vs Merging time

Synchronization time can be divided into two parts. One is the time to generate
the delta at one site, and the other is to merge the delta at the other site. We also
experimented to see which sub-part of the synchronization operation consumes
the most time in the process. It will help future endeavors to focus particularly
on this part to optimize its performance.

The graph shown in Figure 7.7a clearly indicates that the merging process is
responsible for consuming most of the synchronization time. In this experiment,
we have leveraged five sites where Site 2 generates the delta for Site 1, and
then Site 1 merges the delta; similarly, Site 3 generates and Site 2 merges
the deltas, and this process continues. We see that as the number of rows in

7.2 performance evaluation 57

200 400 600 800 1000
Number of rows in delta

0.0

0.5

1.0

1.5

2.0

2.5

Ti
m

e
in

 se
co

nd
s

Delta size vs Synchronization time

Elapsed Wall Time
Elapsed CPU Time

(a) Two sites are present in the system

200 400 600 800 1000
Number of rows in delta

0

2

4

6

8

10

12

14

Ti
m

e
in

 se
co

nd
s

Delta size vs Synchronization time

Elapsed Wall Time
Elapsed CPU Time

(b) Five sites are present in the system

Figure 7.6: Plot of Delta size vs Synchronization Time

7.2 performance evaluation chapter 7 experiments

200 400 600 800 1000
Number of rows in delta

0.0

0.2

0.4

0.6

0.8

1.0
(W

al
l)

Ti
m

e
in

 se
co

nd
s

Delta Generation time vs Merge time

Elapsed Total Time
Elapsed Delta Generation Time
Elapsed Merge Time

(a) Plot of Delta Generation time vs Merge time

1 2 3 4 5
Site Number

0.05

0.10

0.15

0.20

0.25

(W
al

l)
Ti

m
e

in
 se

co
nd

s

Delta Generation time vs Merge time for each Site (For 400 rows)

Elapsed Total Time
Elapsed Delta Generation Time
Elapsed Merge Time

(b) Plot of Delta Generation time vs Merge time for each site (For 400 rows)

Figure 7.7: Plot of Delta Generation time vs Merge time

7.3 resource util ization 59

the delta increases, the merging time also increases significantly. In contrast,
the time taken to generate the delta remains so insignificant, and though it is
increasing, the rate of increase is remarkably slow. Consequently, it is evident
that optimizing the merging process should be our primary focus in order to
reduce the overall synchronization time.

We have also fixed the number of rows in deltas (400 rows), and then, for each
site, we have plotted the delta generation and merge time along with the total
time in Figure 7.7b. We see that the plot is aligned with the plot Figure 7.7a.
Merging time is much larger than the delta generation time, and for 400 rows,
each site takes approximately 0.20 seconds.

7.3 Resource Utilization

During our observation of SynQLite operations, we monitored the system’s
resource utilization, including CPU, memory, and disk, using the Task Manager.
Our observation showed that the CPU utilization varied between 1.0 to 29.0%
for most of the operations. In contrast, the memory utilization ranged from 100
MB to 2000 MB. In comparison, disk usage is not a significant concern.

To conclude, the performance experiment carried out as part of this thesis un-
derscores the need to focus on enhancing the performance of SynQLite. While
our main focus was on ensuring accuracy and correctness, we recognized the
importance of performance but were limited in our ability to address this is-
sue. Therefore, we recommend that future researchers allocate sufficient time
and resources to improve the performance of SynQLite. By doing so, they can
optimize its performance and make it more efficient for a broader range of
applications.

8
Discussion
At this juncture, we will discuss how we have carried out our entire thesis work
from the very beginning to the end. We will shed some light on the discussion of
how well we have achieved our primary goal. Moreover, we will also discuss the
potential improvements that can be further made on top of our implementation
of SynQLite.

8.1 Overcoming Challenges of this thesis

We began our work by taking the already implemented version of SynQLite as
our base and then tried to extend it to handle scenarios when multiple sites
frequently connect and disconnect with the system. When we started, there
were already thousands of lines of code, and we all know that it is really a
difficult task to debug someone else code and find out the existing loophole. It
took a substantial amount of time to understand the existing logic and to find
out the bug in the logic. Side by side, we had to learn the technology and their
implication that are being used in SynQLite as well as the fundamental tech-
nology for Local-First software, i.e., CRDT, CRR, etc. While learning these new
technologies was not particularly difficult, it was initially challenging to corre-
late them with the existing SynQLite implementation. However, we overcame
this challenge by breaking down the problem into smaller parts and gradually
building our understanding of the system.

61

8.2 unreported technical tasks chapter 8 discussion

Though in research, we can not plan everything in advance, and we also had
difficult times when we predicted to solve features within a timeline, but it
took far more than that timeline. Sometimes, it took more time to understand
a concept and also to understand the existing bug. Still, in the end, we are
glad that with perseverance and a willingness to learn new technologies, we
overcome all the obstacles and have been able to achieve our goal to make the
SynQLite multi-site multi-synchronous.

8.2 Unreported Technical Tasks

To completely solve our issue, we had to learn and leverage a few other tools
and technologies other than the properties of Local-First software, CRDT, and
CRR, such as Docker, WSL, etc. We used Docker image to containerize and
simulate a remote computer to which we have SSH access so that we can clone
to and from it and then synchronize with the remote site. It took almost an
entire month from our entire thesis period to become familiarized with it and
to successfully create the remote site with the Docker container and access it
through the local system or another Docker container. Though it snatches away
a significant amount of time from our entire thesis work, to be honest, when it
comes to thesis writing, it does not carry that much significance so that we can
include the work in the writing separately. Not only technology-related things,
but there are a few feature-related issues also on which we spent a substantial
amount of time, but we did not find a way to include the work separately in
the thesis writing. For instance, when we were simultaneously updating and
deleting the same row from two different sites and then tried to synchronize
them with each other, they were diverging from each other. It took a lot of time
to find out the bug, but we did not find a way to include it separately in the
thesis writing.

8.3 Learnings

The research process has been a transformative and valuable experience, as
it has provided me with extensive knowledge, practical skills, and valuable in-
sights. Throughout the process, I have gained a deeper understanding of new
theories, technologies, and tools and learned how to apply them in practical set-
tings. For instance, concerning theories and technologies, I learned Local-First
software, how cloud application work, how CRDT can realize Local-First soft-
ware, state-vector, andmany more concepts of Distributed Systems. Concerning
tools, I have learned Python, Pytest, SQL, Docker, WSL, etc. The addition of
the meta_site_state (SS) table was an application of state vector in a practical

8.4 future work 63

setting. The SynQLite implementation itself is a practical application of CRDT,
CRR, and Local-First software for SQLite databases.

Moreover, this journey has enabled me to develop my research abilities and
provided a substantial opportunity for personal and professional growth. I am
immensely grateful to my thesis supervisor for his exceptional guidance and
support throughout the research process. He helped me to focus on the most
critical aspects of the research and taught me how to break down complex tasks
into manageable steps, which enabled me to remain focused and productive
throughout the process. For instance, breaking down the main goal of providing
multi-site multi-synchronous support to existing SynQLite implementation into
small achievable features and bugs that would materialize the main goal and
then prioritize the features and bugs.

Through my research, I learned how to approach problem-solving and anal-
ysis from multiple perspectives, gaining exposure to different methods and
techniques for resolving issues. My supervisor’s mentorship was invaluable
in navigating the uncertainties and risks inherent in research and enabled
me to develop essential skills such as top-down and bottom-up approaches to
problem-solving.

Going forward, I am confident that the knowledge, skills, and confidence I
have developed through this experience will enable me to make meaningful
contributions to my field and beyond.

8.4 Future Work

During the initial investigation of the SynQLite codebase and throughout the
entire research journey, we identified a number of potential features and bugs
that we could not incorporate into this thesis due to time and scope constraints.
These features are listed in this section for the benefit of future efforts to work
on SynQLite, providing insight into its current limitations and presenting pos-
sibilities for enhancement.

8.4.1 Handle the re-clone issue

It is crucial to understand that the complete SQLite database is saved in one
file, making it possible to delete a cloned database unintentionally. If this oc-
curs and an attempt is made to re-clone the mistakenly deleted database using
SynQLite, an exception will be thrown. As a result, the database will be unable
to transmit updates to and receive updates from other sites during the synchro-

8.4 future work chapter 8 discussion

nization process. This can cause a divergence in the database’s state, which is a
significant concern that must be resolved in future versions of SynQLite.

8.4.2 Add support to update the database schema

It is important to note that the current implementation of the SynQLite only
permits the addition, deletion, and modification of rows within tables. However,
it is common for users to introduce new tables, remove existing ones, or update
table structures that are not currently supported. If a user performs any of
these actions on the database, SynQLite will not update the corresponding
CRR layer, resulting in an unstable database that cannot be further cloned
and will not synchronize properly with other sites during the synchronization
process. Therefore, it is essential for future versions of SynQLite to handle these
events to ensure database stability and proper synchronization.

8.4.3 SSH path is not set properly in the meta_site table

This is an extremely critical issue as SynQLite does not accurately set the path of
cloned databases in the meta_site table of other sites. After cloning a database
from a remote site to a local site, SynQLite sets the original remote site’s path
properly in the cloned site’s meta_site table since, during cloning, we specify
the path from which we want to clone. After the database has been successfully
cloned, SynQLite sets the cloned database path in the meta_site table of all
other sites presented in the distributed system along with the original remote
site. However, SynQLite mistakenly sets the local path of the cloned database
to other sites’ meta_site table instead of the required ssh path in the format
"user@host:port:local_path". This results in communication issues between
sites as they don’t have the remote ssh path of each other. Since, during our
implementation, we used to simulate the remotes in just a single PC, which
means we used to perform all the operations in the same PC with different
folders or paths, it worked properly. But this issue should be solved so that
SynQLite actually works with remote sites. A potential solution may involve
utilizing Python’s socket library to calculate the username and host, then de-
termining the path based on that. Future researchers should investigate ways
to resolve this issue.

8.4.4 The initialization operation is not atomic

If an exception occurs during initialization, the CRR support will not be cor-
rectly augmented to the database. This makes it impossible to clone and syn-
chronize the database to other sites, and there is no way to re-initialize it. As

8.4 future work 65

a result, the database will become permanently unusable. To prevent this, it is
crucial to roll back the initialization operation and display an error message
explaining why the initialization failed when any exception occurs during the
initialization process.

8.4.5 Handle the assumption of Synchronization issue

During the synchronization process, one site sends a delta to another site and
then updates its own state. However, it is possible that the recipient site may
not receive the delta due to various reasons such as a dropped update or net-
work partition. In such cases, the first site assumes that the second site has
received the update, while in reality, it has not. This issue can have serious
consequences, as the first site may not resend the update during the next syn-
chronization, assuming that the second site has already received it. Therefore,
this issue requires careful consideration and should be addressed by future
researchers.

8.4.6 Export and Merge delta separately

In order to provide users with greater flexibility, SynQLite should offer the abil-
ity to export a database’s deltas as a separate file using a command. This delta
file can be shared via email, USB, or other methods. Furthermore, SynQLite
should have the functionality to merge this delta file with an existing database
as a separate operation, providing users with greater control over their database
management.

8.4.7 Synchronize with a particular site

Currently, synchronization operations, namely PULL and PUSH, cannot be exe-
cuted for a specific site. Instead, when a PULL or PUSH operation is initiated
on a site, it retrieves updates from or sends updates to all other sites within
the system. It is recommended that a separate option be implemented in the
future to allow for PULL from ALL or PUSH to ALL, as well as the ability to
PULL from or PUSH to a specific site.

9
Conclusion
Our principal research challenge focuses on the insufficient level of support
provided by the existing SynQLite implementation for state management in
situations where multiple sites are connected and disconnected frequently to
the system. More specifically, the existing implementation fails to guarantee
consistency among replicas when there exist more than two replicas or sites of
a database, thereby limiting its practical applicability in collaborative scenarios
that require multi-site and multi-synchronous access.

The limitation poses a significant challenge as it impedes the scalability and
effectiveness of the SynQLite system. Therefore, the primary goal of this re-
search was to address this limitation of the existing SynQLite implementation
by fine-tuning the existing implementation so that it provides multi-site multi-
synchronous access to SQLite databases while ensuring consistency among
replicas.

For this endeavor, we conducted an extensive study of the existing codebase
and the properties of Local-First software, CRDTs, CRR, and other relevant
factors. Our analysis exposed several flaws in the existing code base, which
were causing problems when we attempted to add more than two sites to the
system. Furthermore, we also identified specific features that, if integrated into
the existing version of SynQLite, would enable it to function for multiple sites.
After compiling a comprehensive list of these features and bugs, we commenced
the development process.

67

chapter 9 conclusion

A significant accomplishment of this thesis was the implementation of an adap-
tive delta-generation logic feature. The previous logic was only designed for
systems with two sites, causing incorrect delta generation during synchroniza-
tion for systems with more than two sites. This led to incorrect delta state
merging, resulting in failure to converge. Also, existing issues like partitioning
were not handled, leading SynQLite not to uphold the Local-First properties.
We handle the partitioning issue. Additionally,making all sites eventually aware
of each other, eliminating the fixed idea of the auto-incremented primary key,
etc., mentioned in Chapter 6 also helped us to extend SynQLite with multi-site
multi-synchronous support.

We designed various test cases using both bash and python scripts to experi-
ment with our implementation to verify whether it converges the site states to
a unified state when multiple sites are presented in the system as mentioned
in Chapter 7. All tests and experiments were successful in demonstrating the
convergence of site states, which proves the multi-site multi-synchronous capa-
bilities of SynQLite. We believe that we have considered almost all the corner
cases that can arise in a distributed system during our experiment. Still, it is true
that in our limited humanmind, some of the farthest corner cases can be missed.
Though our main concern was not on enhancing the system’s performance but
instead on making it correct, we also did some performance tests. These tests
show that future researchers should consider the performance enhancement
of SynQLite.

Finally, We can delightedly announce that we have successfully accomplished
the goal that we had set up during the inception of our thesis. Our implemen-
tation guarantees that even if multiple sites frequently connect and disconnect
to the system, SynQLite will still ensure that they converge to the same state
after performing the synchronization operation. We look forward to future re-
search on SynQLite, building upon the resilience and robustness of our thesis
implementation, and focusing on enhancing its performance.

Bibliography
[1] Martin Kleppmann, Adam Wiggins, Peter van Hardenberg, and Mark Mc-
Granaghan. Local-first software: You own your data, in spite of the cloud.
In Proceedings of the 2019 ACM SIGPLAN International Symposium on New
Ideas, New Paradigms, and Reflections on Programming and Software, On-
ward! 2019, page 154–178, New York, NY, USA, 2019. Association for Com-
puting Machinery.

[2] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski.
Conflict-free replicated data types. In Stabilization, Safety, and Security
of Distributed Systems: 13th International Symposium, SSS 2011, Grenoble,
France, October 10-12, 2011. Proceedings 13, pages 386–400. Springer, 2011.

[3] Weihai Yu and Claudia-Lavinia Ignat. Conflict-free replicated relations
for multi-synchronous database management at edge. In 2020 IEEE Inter-
national Conference on Smart Data Services (SMDS), pages 113–121. IEEE,
2020.

[4] Iver Toft Tomter andWeihai Yu. Augmenting sqlite for local-first software.
In European Conference on Advances in Databases and Information Systems,
pages 247–257. Springer, 2021.

[5] Armando Fox and Eric A Brewer. Harvest, yield, and scalable tolerant
systems. In Proceedings of the SeventhWorkshop on Hot Topics in Operating
Systems, pages 174–178. IEEE, 1999.

[6] Victor B. F. Gomes, Martin Kleppmann, Dominic P. Mulligan, and Alas-
tair R. Beresford. Verifying strong eventual consistency in distributed
systems. 1(OOPSLA), oct 2017.

[7] Werner Vogels. Eventually consistent: Building reliable distributed sys-
tems at a worldwide scale demands trade-offs? between consistency and
availability. Queue, 6(6):14–19, 2008.

[8] Sqlite home page, 2023. URL https://sqlite.org/index.html.

69

https://sqlite.org/index.html

Bibliography bibl iography

[9] Gustav Heide Iversen. Continious synchronization of conflict-free repli-
cated relations. Master’s thesis, UiT Norges arktiske universitet, 2022.

[10] Douglas B Terry,MarvinM Theimer, Karin Petersen,Alan J Demers,Mike J
Spreitzer, and Carl H Hauser. Managing update conflicts in bayou, a
weakly connected replicated storage system. ACM SIGOPS Operating
Systems Review, 29(5):172–182, 1995.

[11] partial order in nlab, 2023. URL https://ncatlab.org/nlab/show/
partial+order#definitions.

[12] semilattice in nlab, 2023. URL https://ncatlab.org/nlab/show/
semilattice.

[13] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. A
comprehensive study of convergent and commutative replicated data types.
PhD thesis, Inria–Centre Paris-Rocquencourt; INRIA, 2011.

[14] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. In Concurrency: the Works of Leslie Lamport, pages 179–196. 2019.

[15] Hicham Marouani and Michel R Dagenais. Internal clock drift estima-
tion in computer clusters. Journal of Computer Systems, Networks, and
Communications, 2008, 2008.

[16] Universally unique identifier - wikipedia, 2023. URL https://en.

wikipedia.org/wiki/Universally_unique_identifier.

[17] Ssh file transfer protocol - wikipedia, 2023. URL https://en.

wikipedia.org/wiki/SSH_File_Transfer_Protocol.

[18] Welcome to paramiko! — paramiko documentation, 2023. URL https:
//www.paramiko.org/.

[19] Peter Denning, Douglas Comer, David Gries,Michael Mulder, Allen Tucker,
Joe Turner, and Paul Young. Computing as a discipline. Computer, 22:
63–70, 03 1989. doi: 10.1109/2.19833.

[20] Pekka Abrahamsson,Outi Salo, Jussi Ronkainen, and JuhaniWarsta. Agile
software development methods: Review and analysis. arXiv preprint
arXiv:1709.08439, 2017.

[21] Docker: Accelerated, containerized application development, 2022. URL
https://www.docker.com/.

https://ncatlab.org/nlab/show/partial+order#definitions
https://ncatlab.org/nlab/show/partial+order#definitions
https://ncatlab.org/nlab/show/semilattice
https://ncatlab.org/nlab/show/semilattice
https://en.wikipedia.org/wiki/Universally_unique_identifier
https://en.wikipedia.org/wiki/Universally_unique_identifier
https://en.wikipedia.org/wiki/SSH_File_Transfer_Protocol
https://en.wikipedia.org/wiki/SSH_File_Transfer_Protocol
https://www.paramiko.org/
https://www.paramiko.org/
https://www.docker.com/

Bibliography 71

[22] Shell script - wikipedia, 2023. URL https://en.wikipedia.org/

wiki/Shell_script.

[23] Git, 2023. URL https://git-scm.com/.

[24] Windows subsystem for linux - wikipedia, 2023. URL https://en.

wikipedia.org/wiki/Windows_Subsystem_for_Linux.

[25] Maarten Van Steen and Andrew S Tanenbaum. Distributed systems.
Maarten van Steen Leiden, The Netherlands, 2017.

[26] Vishal. Python get execution time of a program [5 ways] – pynative,
2022. URL https://pynative.com/python-get-execution-time-
of-program/.

https://en.wikipedia.org/wiki/Shell_script
https://en.wikipedia.org/wiki/Shell_script
https://git-scm.com/
https://en.wikipedia.org/wiki/Windows_Subsystem_for_Linux
https://en.wikipedia.org/wiki/Windows_Subsystem_for_Linux
https://pynative.com/python-get-execution-time-of-program/
https://pynative.com/python-get-execution-time-of-program/

	Abstract
	Acknowledgements
	List of Figures
	List of Code Snippets
	1 Introduction
	1.1 Context
	1.2 Goals
	1.3 Achievement

	2 Technical Background
	2.1 Local-First Software
	2.2 Strong, Eventual, and Strong Eventual Consistency
	2.3 Conflict-free Replicated Data Type (CRDT)
	2.3.1 Categories of CRDTs
	2.3.2 Examples of CRDTs
	2.3.3 How CRDT can realize the Local-First software

	2.4 Conﬂict-free Replicated Relation (CRR)

	3 SynQLite Overview
	3.1 Design and Implementation
	3.1.1 CRR Layer
	3.1.2 SynQLite Operations

	3.2 User Manual of SynQLite

	4 Methodology
	5 Approach
	5.1 Agile Software Development Model
	5.2 Technology Choices
	5.2.1 Implementation
	5.2.2 Evaluation
	5.2.3 Development Environment

	6 Design and Implementation
	6.1 Feature Lists
	6.2 Implementation

	7 Experiments
	7.1 Correctness Validation
	7.1.1 Test Case 1
	7.1.2 Test Case 2
	7.1.3 Test Case 3
	7.1.4 Test Case 4
	7.1.5 Test Case 5

	7.2 Performance Evaluation
	7.2.1 Experiment Setup
	7.2.2 Number of sites vs Synchronization Time
	7.2.3 Very frequent synchronization vs long intervals of synchronization
	7.2.4 Delta Generation time vs Merging time

	7.3 Resource Utilization

	8 Discussion
	8.1 Overcoming Challenges of this thesis
	8.2 Unreported Technical Tasks
	8.3 Learnings
	8.4 Future Work
	8.4.1 Handle the re-clone issue
	8.4.2 Add support to update the database schema
	8.4.3 SSH path is not set properly in the meta_site table
	8.4.4 The initialization operation is not atomic
	8.4.5 Handle the assumption of Synchronization issue
	8.4.6 Export and Merge delta separately
	8.4.7 Synchronize with a particular site

	9 Conclusion
	Bibliography

