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Summary 

All cells in the human body share a common genome, but cell type specific gene expression 

profiles underlie the differences in morphology, behaviour, and specialized function between 

cell types. Single cell RNA sequencing (scRNAseq) has made it possible to measure gene 

expression on an individual cell level, which has increased our understanding of the 

heterogeneity and complexity of gene expression. However, challenges remain with this 

technology, including limited read-depth, artefactual changes because of cell dissociation 

from the tissue microenvironment, difficulties in the analysis of fragile or morphologically 

complex cell types, and bias introduced from the analysis of a limited number of biological 

replicates.  

One of the aims of this thesis was to use an integrative correlation analysis to define cell type 

enriched transcripts from bulk RNAseq, to circumvent some of the problematic aspects of 

scRNAseq. RNAseq data was sourced from the Genotype-Tissue Expression portal, where 

each sample contains transcripts from all tissue constituent cell types. Our method is based 

on the selection of panels of cell type specific reference transcripts that, through correlation 

analysis, can be used identify other transcripts with the same expression profile across 

samples, thus indicating a common cell type origin.  

In Paper I we applied our method to profile all major constituent cell types in visceral (VAT) 

and subcutaneous (SAT) adipose tissue, including adipocytes, a cell type that is difficult to 

extract and process, and thus tend to be absent from scRNAseq databases. Other profiled 

cell types included adipocyte progenitors, macrophages, smooth muscle-, mast-, plasma-, T- 

and endothelial-cells. Additionally, cell types absent from SAT, mesothelial cells, and 

neutrophils, were profiled in VAT. We identified over 2300 cell type enriched coding and non-

coding transcripts in VAT, and observed similar cell type enrichment profiles in SAT. We used 

our data to identify the cell type enrichment profiles of genes that were differentially expressed 

between VAT and SAT depots – revealing that mesothelial cells in VAT were largely driving 

these differences. We performed a sex subset analysis that uncovered a panel of male-only 

cell type-enriched genes, which were identified as Y-linked.  

In paper II, we expanded our analysis to include the constituent cell types in 15 different 

human tissues to create a cell type enrichment prediction atlas for all protein coding genes. 

We classified 5979 transcripts as cell type enriched in a single tissue, of which 3141 were 
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expressed in testis. 8011 transcripts were enriched in two or more tissues, and of these, 741 

were enriched in at least seven tissues, predominantly in cell types found in all tissues, e.g., 

endothelial cells. In depth comparisons revealed a large panel of co-enriched genes in related 

cell types, such as pancreatic alpha and beta cells. For germ cells in testis, spermatogenesis 

stage-specific enrichment signatures were identified, and temporal changes over the 

developmental trajectory profiled. Skin had most profiled cell types (18 in total) with 

keratinocytes having the highest proportion of cell type enriched transcripts, although the 

minority group of hair root cells were identified as the major source of skin specific transcripts. 

A cross-tissue cell type comparison identified shared enrichment signatures between cell 

types with related functions or features, such as those with motile cilia. We defined core 

identity profiles of cell types present in all or most tissue types, including endothelial cells 

(EC), which can vary in gene enrichment profiles across different vascular beds. Data from 

Paper I and II is available on the Human Protein Atlas (HPA) website (www.proteinatlas.org) 

in the Tissue Cell Type section (www.proteinatlas.org/humanproteome/tissue+cell+type). 

The HPA receives over 150,000 unique visits per month from all over the world, primarily 

from the life science research community,   

EC play a major role in various biological processes, including the regulation of inflammatory 

responses and haemostasis. In paper I and II we identified the largely uncharacterised G 

protein-coupled receptor L4 (ADGRL4) as an EC enriched gene across tissue types. This 

suggests that ADGRL4 could have an important role in EC specific function and phenotype, 

which we sought to investigate in paper III. Mass spectrometry protein profiling revealed that 

under resting conditions ADGRL4 depletion caused an upregulation of EC proteins related to 

cell structure and morphogenesis and downregulation of cell cycle-associated proteins. To 

determine the potential role of ADGRL4 in inflammation, we treated EC with the cytokine 

tumour necrosis factor (TNF). ADGRL4 depletion was found to selectively augment TNF-

induced tissue factor expression. This increase in tissue factor, which is the initiator of the 

intrinsic pathway of the coagulation cascade, led to enhanced EC thrombin generation from 

plasma and fibrin deposition from whole blood, confirming increased EC pro-coagulant 

activity. Concurrently, ADGRL4 depletion inhibited the expression of TNF-induced interferon 

response genes. Our study indicates that ADGRL4 has a currently unappreciated role in the 

EC function, with a potential role in the regulation of coagulation during inflammation. 
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1. Introduction 

1.1 Cell specific gene expression and relation to cell phenotype and function  

The human genome consists of approximately 20000 predicted protein coding genes [1, 2]. 

Despite sharing the same genome, cells in the different organs of the human body can differ 

in appearance, function and behaviour, due to their individual transcriptome and 

corresponding protein expression profile.  

During the transition from pluripotent to differentiated cells, epigenetic changes take place, 

where chromatin regions in pluripotent cells that are found to have an open configuration, 

which causes genes to be responsive and accessible, becomes progressively and selectively 

closed during differentiation as a result of histone modifications and DNA methylation. Thus, 

accessible genes are fewer in differentiated cells relative to stem cells, where the specific 

pattern of gene silencing varies across cell lineages. Additionally, some genes that are 

inactive due to DNA methylation in early phases of differentiation, might become induced in 

a tissue specific manner in a later phase of differentiation and therefore only show expression 

in a subset of cell types [3]. This could partly explain why cell types with same developmental 

origin, or which represent a common cell lineage, can often be observed to have overlapping 

expression profiles and common functional attributes. In addition to the normal 

developmental epigenetic modulations that happens during cell differentiation, environmental 

factors can also cause an epigenetic imprint that affects the regulation of genes in germ cells 

and during embryogenesis, but also in later phases of life, and such factors might include 

various chemicals or toxins, diet habits, temperature exposure and maternal behaviour 

amongst others [4-7]. Transcriptional regulation affecting cell behaviour and morphology 

might also be a consequence of the structural properties of a tissue and the cell-cell and cell-

matrix interactions through for example mechano-transduction, along with chemical and 

physical cues of the surrounding microenvironment, that can directly and indirectly regulate 

phenotype and prime cells for various behavioural responses [8, 9].  

Many genes are tissue specific or enriched, which means their expression is unique to or 

higher in one (or few tissues) relative to others. These genes typically encode for proteins 

related to tissue specific biological functions. In cases where similar gene enrichment 

signatures extend to several tissues, it is often because the tissues share common functions 

and features [10, 11]. Highly specialized organs like testis and brain, are amongst the tissues 

with highest specific gene expression signatures, and tissues with related functions, such as 
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those belonging to the gastro-intestinal tract (e.g., stomach, colon and small intestine) share 

a common gene signatures that differ from other tissues [11]. These tissue specific genes 

are typically expressed in tissue specific cell types, with specialized functions in the tissue 

they are residing in. For example, bulk tissue gene expression profiling carried out by the 

Human Protein Atlas (HPA) [10] show that the surfactant protein A1 (SFTPA1) gene is lung 

enriched, while single cell data from HPA and the Tabula Sapiens human cell atlas [12, 13] 

identify the alveolar cell type 2, which are lung specific resident cells, as the main source of 

this protein. The protein is important for lung function as it is involved in surfactant 

homeostasis and pulmonary immunity [14, 15]. Similarly, the gene Myosin heavy chain 6 

(MYH6) is mainly expressed in the heart, where it has a functional role in cardiac muscle 

contraction [16, 17] and is predominantly expressed in cardiomyocytes. Other genes can 

have a lower tissue specificity, but still be cell type specific, when that is found in all, or most, 

tissue types. For example, cadherin 5 (CDH5), is found in many different tissues, as it is 

enriched in endothelial cells across all vascular beds. Indeed, this protein has a key functional 

role in the establishment of tight contacts between neighbouring endothelial cells [18]. In 

some instances, gene enrichment might not be limited to one specific cell type, but rather a 

group of related cell types with similar function or behaviour. Selectin L (SELL) is found 

expressed across various lymphocytes [12, 13], as it is a key protein involved in diapedesis, 

which is needed for the circulating immune cells to cross the endothelial barrier and reach 

infected tissues [19].  

Even though cell (or cell subset) specific functions are related to the expression of particular 

genes and proteins, these can be present at elevated levels there (enriched), rather than 

exclusively expressed in only one cell type, exemplified in a global protein profiling study 

carried out by HPA [20]. Here, relative levels of 4842 proteins were identified across 65 

normal cell types from various tissues and organs using immunohistochemistry images 

produced from 5934 antibodies. Unsupervised cluster analysis of protein expression pattern 

across these cell types showed that cells with similar functions exhibited similar protein 

profiles and clustered together, even if they were not from the same tissue, and cluster 

similarity coincided with the developmental origin of the cells (endoderm, ectoderm, or 

mesoderm), with few exceptions where morphological differentiation seemed to override 

developmental origin. A large proportion of the proteins were expressed at a detectable level 

across most of the cell types in the study, while only 74 proteins were specifically expressed 

in only one cell type. Even though most of the proteins were not found to be exclusively 
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expressed in one cell type. Despite this, a highly differentiated global pattern was observed 

between cell types, indicating the extent of protein expression was the main driver behind 

cellular phenotype. Thus, relatively few genes are likely to have true cell type specificity. 

1.2 Bulk and single cell sequencing 

Bulk RNA sequencing and single cell RNA sequencing (scRNAseq) are both methods that 

obtain gene expressional information in cells. Bulk RNAseq measures transcripts from a 

mixed cell population, generating average expression values [21]. scRNAseq  has the 

advantage of resolution at a cell level, where transcripts are measured on a cell-by-cell basis, 

revealing heterogeneity across cell populations and allowing the classification of cell types 

and subgroups [22]. It has proven valuable amongst others in studies of cellular development 

and in defining cellular composition and contributions in cancer [23]. Such data has 

furthermore been collated into various cell atlases, which are great public sources of 

information [12, 13, 24]. An overview of the established methods up to the sequencing point 

is described below for bulk and single cell sequencing, while the last section describing some 

important limitations in some of the processing steps that apply for scRNAseq relative, to bulk 

RNAseq. 

1.2.1 Bulk sequencing methods 

Next generation sequencing is recognized as a high throughput method to analyses the DNA 

or RNA content of many samples concurrently with high accuracy. Commonly used platforms 

for next generation sequencing are Illumina and Ion Torrent, known as “short-read” 

sequencing technologies, as the material being sequenced (DNA or RNA) is fragmented prior 

to analysis [25]. Short-read sequencing is popular for differential gene expression analysis of 

bulk samples. The alternative long-read sequencing, also known as third generation 

sequencing, can obtain information for longer sequencing stretches, and in the context of 

RNAseq, is useful to study alternative splicing, or for transcript variant discovery [26]. 

Common workflows and platforms for short-read sequencing is given in brief below. 

Sample preparation normally begins with lysis of cells, and isolation of RNA. As total RNA 

contains a high amount of ribosomal RNA (rRNA), which can affect sequencing depth and 

detection of lower abundant transcripts, it is common to either carry out rRNA depletion by 

selective removal, or by selecting for polyadenylated RNAs through use of poly(T) oligos 

targeting the poly(A)-tail and removing the remaining RNA [21]. Subsequently, fragmentation 
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is carried out to achieve an optimal fragment size for the platform and application, which 

might be done by physical, enzymatic or chemical methods [27].  Reverse transcription, end 

repair and adaptor ligation then follow, where the adaptor contains a sequence that facilitates 

recognition and binding within the instrument used. It is common for the adaptor to also have 

a barcode, which during multiplexing can be used to identify reads originating from the same 

sample during data analysis. The final step of library preparation is normally PCR 

amplification. Short read sequencing is separated in two steps, clonal amplification, and the 

sequencing itself. For the Illumina technology, the template first binds to a flow cell through 

the adaptor and clonal amplification is done by bridging PCR, which causes a cluster of 

sequencing clones that can amplify the signal. Sequencing is based on the optical readout of 

fluorescent nucleotides that are incorporated into the growing nucleic acid chain and then 

imaged. Each nucleotide has a terminator attached that blocks incorporation of more than 

one nucleotide per cycle, which along with the fluorescent dye, is cleaved of before the next 

cycle to allow further nucleotide incorporation. For the Ion torrent platform, emulsion PCR is 

used for amplification, where the templates with adaptors are captured in a water-in-oil 

emulsion droplet (micelle) along with a bead covered with complementary adapters, 

nucleotides, polymerase, and primers. The micelles are then loaded onto a semiconductor 

chip, which consists of a flow chamber and complementary metal-oxide semiconductors 

(CMOS) pH sensor. The chip is flooded with unmodified nucleotides, whereby the 

incorporation of nucleotides results in the release of hydrogen ions that are detected by the 

CMOS pH sensor [25].  

1.2.2 Single cell sequencing methods 

The main steps of single cell sequencing involve cell separation, cell lysis, nuclei acid 

amplification, cell sequencing and data analysis [22, 28]. There are many methods and 

platforms available to achieve the various steps, and the choices are often related to the 

research question and resources available. 

Cell isolation: A key factor to be able to study a cell on a single level, is the separation of 

cells found in tissues or body fluids, which is a processing step not required for bulk 

sequencing. Various methods can be used for separating cells, and they have different 

advantages and drawbacks. Manual cell picking (micromanipulation) uses an inverted 

microscope and micropipettes, which are movable through motorized mechanical stages. 

Cells in suspension can then be manually isolated by aspiration and transferred to a collection 
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vessel [29]. Advantages here are low costs, flexible and selective sampling, and a simple 

operation, but the throughput is low, and cells can sustain mechanical injury [30]. Laser 

capture microdissection (LCM) is used for isolation of cells from tissue, where cells are 

dissected by laser under visualization through a microscope. The cell is extracted by 

adhesive tapes, gravity extraction or by pressure catapulting with a defocused laser pulse 

[29]. Advantages are that cell morphology and structure can be maintained along with spatial 

location information, but the method has low throughput, high costs, can cause nuclear 

damage and RNA pollution, and requires a high skill set [30]. Fluorescence Activated Cell 

Sorting (FACS) is based on the principle of flow cytometry, where laser excitation is used to 

obtain cell property information which can be used for selection purposes. The cells can be 

automatically sorted by being assigned a charge and are thereafter guided by deflector plates 

into tubes or well plates. FACS can be very efficient in analysing and sorting cells and is 

widely used [29]. It is considered to show high specificity, accuracy and sensitivity, and high 

throughput, but have high costs, can cause mechanical injury and requires a large amount of 

input cells [30]. Microfluidics are considered as “lab on a chip” and have many different 

applications areas. They can be used for high throughput cell capture, where only very small 

volumes of sample and reagents are needed and can have flexible design to accommodate 

various needs. Multifunctional units can be integrated, to support successive preparation 

steps and automation. Droplet-based microfluidics are possibly the most relevant 

microfluidics method for sequencing and generate droplets by having one liquid phase 

breaking off another immiscible liquid, which can be used to encapsulate individual cells. 

They can then work as microreactors, which requires very low volumes and can be produced 

at high rates. The droplets can be manipulated, as in merged, split, re-loaded, incubated, and 

used for detection and sorting. The drawback here is that encapsulation is random, and 

droplets can be empty. Although the throughput is generally high for microfluidic systems, 

they can be costly [30]. 

Lysis steps: Lysis of single cells can be achieved in different ways, and might depend on 

the previous separation step, downstream analysis and the cell type studied. Physical lysis 

options include the use of mechanical force to break the membrane, heat induced 

denaturation of membrane and the use of voltage-based membrane disruption. Other options 

are the use of chemical lysis, which uses surfactants to disrupts the membrane and enzymatic 

cell lysis [30].  
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Amplification: Within a single cell, the quantity of RNA is very low, far less than what is 

required for sequencing, and amplification before sequencing is required. Before 

amplification, RNA needs to be reverse transcribed into cDNA, either by traditional PCR, 

modified PCR, T7-in vitro transcription (IVT) or Phi29 DNA polymerase-mediated RNA 

amplification [30]. The reverse transcription step normally involves the use of primers that 

targets the poly(A)-tail to achieve mRNA selection. These primers often also have a barcode 

specific for each cell prepared, which then makes multiplexing possible and can increase 

throughput. Thirdly, unique molecular identifiers (UMIs) can often be found along with primer 

and barcode to tag individual mRNAs, and can be used to distinguish between original 

molecules and amplification duplicates, in order to reduce amplification bias [31]. The 

conversion process into cDNA can be very inefficient, with as little as 10-20 % of the RNA 

being successfully converted, with some methods reported to perform better than others [30].  

Single cell RNA sequencing and considerations: Many different methods can be used for 

scRNAseq. In general, strategies either focus on obtaining transcriptome full read coverage, 

where the full length of the cDNA is sequenced, and therefore is optimal when information on 

splicing patterns are necessary, or as shorter 5’ and 3’ end reads, which only provide 

sequence information for one end of the cDNA, which are mainly is useful for studies that 

focus on relative transcript abundance. The most appropriate strategy depends on the 

research question [30]. Another factor to consider is how the data output from single cell 

sequencing is affected by different factors related to the strategies used in each step, from 

cell isolation to sequencing. Methods can vary in accuracy (how well read quantification 

corresponds to the actual concentration of mRNAs), sensitivity (the probability to capture and 

convert a particular mRNA transcript present in a single cell into a cDNA molecule present in 

the library) and precision (the technical variation of the quantification). These factors, along 

with numbers of cells analysed, will all have an impact on power to detect relative differences 

in expression levels. A practical matter is also costs and resources available, which is why 

methodical considerations are important [31].  

Challenges related to single cell sequencing: For scRNAseq analysis of cells from tissue 

samples, cells needs to be dissociated, while still maintaining cell viability and integrity [21]. 

Here, LCM can be used for dissecting cells, but cell contamination and damage is possible, 

and the method is labour intensive with low throughput [23]. Enzymes are useful to dissociate 
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cells, but the process is often carried out at 37◦C, which can create artifacts, including gene 

expression changes. The use of enzymes that can work under conditions with low 

temperatures has been suggested to counteract this [32]. The processing time between when 

cells are harvested from tissue until they are lysed can also affect the expression profile of 

cells [33], meaning that sequencing results might be subjected to an artificial imprint and not 

fully represent the native expression pattern of a cell in its natural environment. In some 

cases, cells might be very fragile, large or morphologically complex, and therefore difficult to 

isolate in a viable and intact state, such as neuronal cells [28] and cardiomyocytes [21]. Such 

problems have consequences for cell representation in datasets, for example adipocytes, 

which are hard to isolate and process for scRNAseq [34], and are often are excluded from 

scRNAseq profiling datasets [12, 13, 35, 36]. There are other workarounds for this problem, 

such as single cell nuclei sequencing, but this sequencing excludes transcripts contained in 

the cytoplasm, thus producing an incomplete profile [37, 38]. Another limiting factor of 

scRNAseq, is the low detection rate of non-coding RNAs within scRNAseq datasets. This is 

a direct result of selective enrichment of polyadenylated RNAs in the reverse transcription 

step, which mostly enriches for mRNA, and to a lower extent non-coding RNAs [22]. Unlike 

bulk sequencing, which are presented with the opportunity to deplete the rRNA, most 

commercial methods so far depend on polyadenylated RNA enrichment for library 

preparation [31].  

1.3 Endothelium 

The endothelium is a monolayer of cells that makes up the inner lining of blood vessels. 

Endothelial cells (EC) are polarized, attached to the basement membrane on the basolateral 

side, and are in direct contact with blood on the apical side. They have a flat appearance, 

with nucleus and cell body alignment in direction of blood flow. EC are positioned as a barrier 

between blood and surrounding tissues, where they govern the exchange of fluids and 

various molecules, like nutrients and metabolites. They also regulate vascular tone and blood 

supply to tissues, are involved in angiogenesis, and leukocyte recruitment and transmigration 

during inflammation. They have a role in haemostasis, expressing both pro-and anti-

coagulant factors [39]. 
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1.3.1 Endothelial heterogeneity 

The remarkable heterogeneity and plasticity of EC are prevalent already at early 

developmental stages. During vasculogenesis, cells of mesoderm origin develop into different 

angioblast pools with specific markers, expression patterns, and distinct signalling pathways, 

which affect their developmental potential. These different angioblast pools give rise to 

distinct vessel types in different organs. EC are heterogenous across tissue vascular beds, 

but also between vessel types within an organ, i.e., arteries, veins, capillaries, and lymphatic 

vessels. This is a result of both early developmental priming and adaption to tissue specific 

requirements driven by the surrounding microenvironment [40, 41]. 

1.3.2 Barrier function of endothelium 

The endothelium acts as a selective barrier, regulating the exchange of fluids and molecules 

between blood and surrounding tissues. Barrier function is important for the maintenance of 

colloid osmotic pressure, a prerequisite for retaining water within the circulatory system, 

tissue perfusion and the supply of oxygen and nutrients. Generally, the endothelium allows 

passive diffusion of gases, ions and small solutes, but blocks movement of larger molecules 

like proteins [42]. Size selectivity and extent of movement depends largely on how tightly 

adjacent EC are connected by tight junctions (near the luminal surface) and adherens 

junctions (more basally located). Tight junctions are especially important for direct barrier 

function, but both tight and adherens junctions are important for integrity and stability of 

endothelium, and disruption or low junction density can lead to increased cellular gaps, and 

permeability. Several stimulatory factors can cause junctional changes and affect 

permeability dynamics, which can occur in various diseases, leading to increased leakage of 

proteins and fluids into tissues. The presence and density of junctions vary across the 

vascular tree and can also be organ dependent. Arteries, which are exposed to high rates of 

blood flow, have many tight junctions, and low permeability, as does the blood-brain barrier. 

Capillaries and post-capillary venules, which facilitate the exchange of gases and metabolites 

with nearby tissue, are leakier with a lower tight junction density [43]. Extracellular matrix 

proteins and the basement membrane might also play a part in permeability by supporting 

EC attachment and integrity. Glycocalyx acts as a repellent towards proteins, platelets and 

cells, to block inappropriate interactions [42]. Permeability can also refer to transcellular 

exchange, which often applies to larger molecules, and might include vesicular carriers like  

transendothelial channels and caveolae, the latter of which have high density in capillaries 
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[44]. Some organs perform specific tasks that require a high capillary permeability, like the 

filtration of blood, which depends on fenestra, a type of transcellular pore, abundantly found 

in liver, kidney, endocrine glands, and intestinal mucosa. Most fenestra have specialized 

structures called diaphragms that span across the cell and repel and block larger molecules 

like proteins but allow movement of fluids and small molecules [45]. Taken together, the 

permeability of the endothelium varies across the vascular tree and depends on the tissue 

function and physiological needs. 

1.3.3 Leukocyte trafficking and inflammatory responses 

Endothelial activation in response to inflammatory cytokines, like Interleukin-1 beta (IL1B) 

and tumour necrosis factor (TNF) [46, 47] , leads to the expression of chemokines that attract 

infection-fighting leukocytes to the site of inflammation [48-50]. Activation also increases the 

expression of adhesion receptors E-selectin (SELE), intercellular adhesion molecule 1 

(ICAM1), and vascular cell adhesion protein 1 (VCAM1) [51, 52]. Concurrently, P-selectin 

(SELP), which is stored in Weibel-Palade bodies, is mobilized to the surface [53, 54]. These 

proteins are important for the process of leukocyte recruitment, which is a three-step process. 

EC initially capture leukocytes from flow via P-selectin and E-selectin binding-interactions 

with leukocyte L-selectin and P-selectin glycoprotein ligand 1 (SELPLG), which supports 

leukocyte rolling on the EC surface. Firm adhesion follows, through binding of leukocyte 

integrins to ICAM1 and VCAM1 on the EC apical surface. The leukocytes flatten and take on 

a polarized shape and crawl to the transmigration site, through integrin alpha-M (ITGAM) and 

ICAM1 interactions [55]. Then follows the extravasation from blood into tissue, via one of two 

different routes. For the paracellular route, the leukocyte crosses the endothelium by moving 

in between neighbouring cells, an action that requires disruption of adherens junctions, and 

depends on endothelial molecules like ICAM1, VCAM1, platelet endothelial cell adhesion 

molecule (PECAM1), CD99 antigen (CD99) and endothelial cell-selective adhesion molecule 

(ESAM). Alternatively, the transcellular route does not require junctional disruption, as the 

leukocyte migrates directly through EC by a channel formed from membrane fusion of the 

two cells, a process that requires many of the same protein interactions as for the paracellular 

route [55]. Several studies indicate that the route chosen for transmigration depends on the 

properties of the vascular bed, and how tight the junctions are. EC in the blood brain barrier 

have a high density of tight junctions, and here leukocytes preferentially use the transcellular 

route [56]; they seem to sense the stiffness and mechanical properties of the vascular bed 



20 

 

and take the route with least resistance [57]. In dermal microvascular endothelial cells, 

leukocytes preferably traverse by the transcellular route if caveolin-1 is abundant, while the 

paracellular route is favoured at low levels [58]. This shows that the inherent property of a 

vascular bed can affect leukocyte interactions. The presence of P-selectin, E-selectin and 

VCAM1, and their expression pattern in response to various stimuli, differs over time and in 

magnitude across tissues and vessels types,  possibly reflecting a variation in capacity for 

leukocyte recruitment [59-61]. Furthermore, although leukocyte recruitment and diapedesis 

generally happen in post-capillary venules [58, 62, 63], there are exceptions, which can be 

organ dependent. For example, leukocyte recruitment in the lungs occurs in the alveolar 

capillaries, rather than post-capillary venules, which are often narrower than the leukocyte 

itself, making the selectin-dependent rolling-capture step observed in other tissues redundant 

[64]. Similarly, leukocyte recruitment in the liver is largely independent of selectins, occurring 

in the sinusoids, rather than post-sinusoidal venules [65]. Appreciation of such endothelial 

heterogeneity can expand our understanding of inflammatory diseases, and the potential 

contribution of subgroups of EC. 

1.3.4 Regulation of haemostasis 

The coagulation cascade, driven by various proteins referred to as coagulation factors 

(abbreviated F, and proteins are traditionally referred to with roman symbols, where ‘a’ refers 

to activated form), can be initiated by two different pathways and involves a stepwise cascade 

where zymogens are processed into active serine proteases that converge on the generation 

of thrombin from prothrombin (also known as coagulation factor II (F2)), leading to fibrin 

deposition [66]. The extrinsic pathway starts with tissue factor (also known as coagulation 

factor III (F3)), which, upon exposure by vessel wall injury, complexes with FVII (F7) to create 

activated FVIIa. The FVIIa and tissue factor complex, in presence of calcium, then activates 

factor FX (F10) to yield FXa [67, 68]. FXa is a central serine protease in coagulation, which 

along with the cofactor glycoprotein FVa (F5), converts prothrombin into active thrombin, and 

is referred to as the prothrombin complex. The assembly and activity of this complex normally 

requires calcium and association with negatively charged phospholipids like 

phosphatidylserine, mainly present on the surface of activated platelets [69, 70]. The intrinsic 

pathway involves an activation cascade of serine proteases, initiated by FXII (F12), which 

can be auto activated by contact with certain negatively charged surfaces [71, 72]. FXII can 

be activated by, and cause activation of, plasma kallikrein (KLKB1), resulting in a positive 
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feedback loop [73]. Subsequentially, FXIIa can convert FXI (F11) to FXIa, which then acts on 

FIX (F9) to give FIXa [74]. FIXa, along with cofactor VIIIa (F8) [75], in presence of calcium 

and phosphatidylserine [76], can efficiently convert FX to FXa. From FXa activation, the 

intrinsic and extrinsic pathway converge into the common pathway, resulting in prothrombin 

complex formation and thrombin generation [66]. Thrombin has several essential functions, 

it drives fibrin deposition by two-step processing of fibrinogen (composed of a fibrinogen 

alpha chain (FGA), beta chain (FGB) and gamma chain (FGG)), yielding fibrin aggregates, 

and creates a positive feedback loop for the coagulation cascade. The positive feedback loop 

involves processing of FV and FVIII into their respective active forms, FVa and FVIIIa, which 

can associate with FXa and FIX, respectively, and further amplify thrombin generation. 

Furthermore, thrombin converts FXIII (composed of two alpha chains (F13A1) and 2 beta 

chains (F13B)) into FXIIIa, which can then cross-link fibrin fibres to stabilize the clot [77].  

Coagulation and clot formation does not solely depend on the coagulation cascade, but also 

on platelet activation. Activated platelets provide the negatively charged phospholipid surface 

that is required for activation of several coagulation factors and are important for creating a 

stable and dense clot. This platelet activation is initiated by weak affinity binding of platelets 

to von Willebrand factor (VWF) by platelet glycoprotein Ib alpha chain (GP1BA) and collagen 

through the platelet glycoprotein VI (GP6), which induce intracellular signalling and cellular 

changes, including exposure of high affinity receptors that causes firm adhesion of platelets 

to the exposed subendothelial matrix, and importantly, activate the high affinity integrin alpha-

IIb and integrin beta-3 complex (ITGA2B and ITGB3) that binds fibrinogen, creating 

aggregates of platelets and fibrin that result in stable clot formation [78].  

EC express the large multimeric glycoprotein VWF, which are compactly packed into storage 

organelles named Weibel Palade bodies (WPB) along with other proteins, including FVIII. 

Single WPB content can be released by basal secretion and might circulate in the blood. 

Upon endothelial stimulation or damage, WPB can fuse to large secretory pods before end-

fusion with the plasma membrane, causing massive release of VWF-bundles with platelet 

adhesive properties [79]. The subsequent platelet adhesion is dependent on conformational 

changes caused by high shear rate, leading to exposure of platelet binding sites. The release 

of VWF causes the associated FVIII to be present in the blood stream, where it can participate 

in the coagulation cascade [80]. It is interesting to note that there is a heterogenous 

expression of both VWF and FVIII (protein and/or mRNA) across vascular beds, where FVIII 
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expression has mainly been identified in liver sinusoidal, renal glomerular and lymphatic 

endothelial cells, and in some high endothelial venules and lung endothelial cells, while VWF 

has been found in capillary endothelial cells, and endothelium of larger vessels including 

aorta, in addition to co-expression of both in postcapillary high endothelial venules  [81-85].  

Fibrinolysis is driven by the conversion of the plasma zymogenic protein plasminogen (PLG) 

into activated plasmin, a process catalysed by the serine protease tissue-type plasminogen 

activator (PLAT). This process requires plasminogen to bind to its substrate fibrin, which 

causes a conformational change that exposes the cleavage site to PLAT. Plasmin will then 

cleave fibrin into various degradation products that, depending on several factors like the 

extent of plasmin activity and clot composition, either will restrict clot growth or dissolve it 

entirely [86, 87]. The PLAT activity is directly blocked by binding to the specific plasminogen 

activator inhibitor 1 (SERPINE1), and the complex will then be quickly removed from the 

circulation. Furthermore, regulation can be achieved by plasmin binding to its direct inhibitor 

Alpha-2-antiplasmin (SERPINF2), or more indirectly, as Carboxypeptidase B2 (CPB2), also 

known as thrombin activatable fibrinolytic inhibitor, can remove exposed lysin residues from 

the fibrin surface, which blocks plasminogen docking and activation [87]. EC participate in 

these important processes by secreting PLAT [88, 89] and SERPINE1 [90-92]. According to 

the Tabula Sapiens human cell atlas [13], PLAT, and especially SERPINE1, show 

heterogeneous expression across subgroups of endothelial cells.  

The anticoagulant protein C pathway plays an important role in limiting clot formation and 

procoagulant activity. Vitamin K-dependent protein C (PROC) circulates in plasma in an 

inactive form and can bind to a complex of thrombin and thrombomodulin (THBD), along with 

endothelial protein C receptor (PROCR), which induces its catalytic activation by thrombin. 

Activated protein C in complex with its cofactor Vitamin K-dependent protein S (PROS1), 

targets FVIIIa and FVa for cleavage and inactivation, thereby reducing generated thrombin 

[93]. The endothelium expresses both PROCR [94-97], and THBD [97-100], and the process 

of protein C activation occurs mainly on the endothelial surface, illustrating their important 

role in the regulation of coagulation [93]. Tissue factor pathway inhibitor (TFPI), which directly 

binds and blocks activity of the tissue factor-FVIIa complex, in addition to FXa-FVa [101], is 

expressed mainly by EC and megakaryocytes/platelets [102-104]. TFPI mRNA expression 

seems to vary depending on EC subtype and tissue location [13, 105]. Furthermore, 

antithrombin-III (SERPINC1) is an inhibitor of the serine protease coagulation factors, mainly 
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acting on thrombin, FXa and FIXa, the activity of which is greatly enhanced by endothelial 

heparin-like molecules [106]. Lastly, under resting normal conditions, the endothelium keeps 

platelets from undergoing unwanted activation by producing and secreting substances like 

nitric oxide (NO) and prostacyclin, in addition to expressing the membrane bound 

ectonucleoside triphosphate diphosphohydrolase 1 (ENTPD1) which converts the platelet 

activating molecules adenosine triphosphate (ATP) and adenosine diphosphate (ADP) into 

adenosine monophosphate [107]. Thus, EC play an extensive and intricate role in the 

regulation of haemostasis. 

 

Figure 1: Regulation of haemostasis: Overview of the network of proteins that contribute to haemostasis 

elaborated on in section 1.3.4. The intrinsic pathway and the extrinsic pathway both converge upon the common 

pathway and activation of FX to generate thrombin, and subsequently the generation of a fibrin mesh. 

Fibrinolysis and the protein C pathway are important for controlling the extent of clotting, to shut down the 

activated coagulation factors when activity is no longer needed and for clot resolving in the aftermath. 
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1.3.5 Endothelium in thrombosis 

There are three main contributing factors that can lead to thrombosis; changes in blood flow, 

blood coagulability and vascular dysfunction [108]. Thrombosis can be a heterogenous 

disease, in terms of both triggers and location. Different environmental and genetic factors 

can contribute to the development of a thrombus, which may vary between females and 

males or children and adults. Factors that can affect the location of thrombus include the 

nature and size of endothelial injury, the presence and binding of microparticles with pro-

coagulant properties, the endothelial structure and inherent properties, inflammation, drug or 

toxin exposure, changes in flow dynamics, and an imbalance in prothrombotic and 

antithrombotic factors. Diseases, treatments and genetically inherited defects can all modify 

these risk factors [109]. EC show high heterogeneity and plasticity, with functional adaptions 

to organ site and with various inherent properties affecting their response to various stimuli 

and environmental conditions, which also extends to expression of pro- and anticoagulant 

molecules. [44]. Indeed, there are substantial differences between vessel types, where high 

shear stress exposed arteries generally express high amounts of PROCR, endothelial nitric 

oxide synthase (NOS3) and thrombomodulin, but lower amounts of VWF and PLAT, while 

low shear stress exposed veins express high amounts of PROCR, PLAT and VWF but lower 

amounts of thrombomodulin, relative to arteries. Capillaries predominantly express TFPI and 

thrombomodulin [110]. This endothelial heterogeneity likely contributes to the site of 

thrombus formation [44, 109].  

The link between thrombosis and inflammation is becoming increasingly acknowledged, with 

the endothelium likely having a key role. Tissue injury results in the production of reactive 

oxygen species (ROS), cytokines, chemokines, and damage-associated molecular pattern 

(DAMP) signals from endothelial cells, platelets and leukocytes. These molecules induce a 

more pro-adhesive, pro-inflammatory and pro-coagulant endothelial phenotype. In turn, 

endothelial expression of adhesion molecules and chemokines, recruit more leukocytes to 

site of injury. Activated monocytes can express tissue factor and procoagulant microvesicles, 

potentially activating the coagulation cascade, while the presence of platelets with a negative 

phospholipid surface can further drive the cascade by activation of downstream factors. 

Neutrophils can support thrombosis by release of neutrophil extracellular traps (NETs). 

Additionally, inflamed endothelium can release WPB containing VWF and other 

procoagulants, which can cause platelet binding and activation. Platelets might then bind to 
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fibrin and endothelium and further support clot formation through the release of granules 

which can further recruit and activate platelets and neutrophils. Endothelial activation can 

increase permeability, which might cause leakage and exposure of the subendothelial layer. 

Tissue injury also causes the release of ADP and ATP, which are interpreted as danger 

signals by various cells, and can further exacerbate inflammatory and thrombotic pathway. 

These complex interactions between the various cells can amplify a thrombogenic 

environment. Endothelial activation upon inflammatory stimuli can therefore be an important 

driver of thrombosis [111].  

In vitro studies show that EC can express tissue factor in response to TNF [112], Gram-

negative bacterial lipopolysaccharide (LPS) [113], IL1B containing NETs [114], extracellular 

histones [115], uridine triphosphate (UTP) [116], disturbed flow [117, 118], thrombin [118] 

and C-reactive protein (CRP) [119]. Several of these factors could be present in sites of injury 

or inflammation, or under other pathophysiological conditions. Tissue factor can be 

expressed in an active form on the endothelial surface [114, 120], implying that endothelial 

tissue factor could contribute to thrombosis under various circumstances. Despite this, it has 

been debated if endothelial-originating tissue factor contributes to thrombosis  [121-123]; the 

consensus is that EC do not contribute much to coagulation in a resting state, but the 

contribution in a pathological state is less clear. In vitro studies indicate little to no tissue 

factor expression in resting EC [112, 113, 120, 124]; indeed, exposure of tissue factor to 

blood would be detrimental under resting conditions. However, the endothelial contribution to 

thrombus formation has gained more attention [111, 125], and inflammation activated tissue 

factor expression may well contribute to the underlying disease pathophysiology.   
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2. Aims of the thesis 

 

 

1. To perform an integrative correlation analysis of bulk RNA sequencing data of human 

visceral and subcutaneous adipose tissue and define the enriched transcriptomes of 

constituent cell types, including endothelial cells. To investigate possible differences 

between adipose depots and sexes by cross-comparison of cell type enrichment 

signatures. 

 

 

2. To perform an integrative correlation analysis of bulk RNA sequencing data from 15 

human tissue types and identify cell type enrichment profiles. To compare similarities 

and differences in cell profiles across tissue types, and to identify the core 

transcriptome signatures for cell types found in multiple tissue types, including 

endothelial cells.  

 

 

3. To investigate the role of the endothelial enriched protein Adhesion G protein-coupled 

receptor (ADGRL4) under resting and inflammatory conditions. 
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3. Methods 

3.1 Paper I and Paper II 

In paper I and paper II a bioinformatics-based approach, developed in our group, was used 

to extract information on which genes are enriched in different cell types from bulk RNAseq 

data. Additionally, some common methodologic approaches for validation and sub-analysis 

will be presented in this section. Other details specific for each paper are found under the 

corresponding method section.  

3.1.1 GTEX data 

Bulk RNAseq data was retrieved from the Genotype-Tissue Expression (GTEx) project 

(release V8), through their portal (www.gtexportal.org) [126], which is an open access public 

resource with a comprehensive sample selection from various human non-diseased tissues.  

3.1.2 Correlation analysis 

The analysis method is based on the selection of specific markers for each cell, referred to 

as ´reference transcripts´ (Ref.T.), which are used in a correlation-based analysis to identify 

other cell specific transcripts. The analysis is based on the concept that transcripts originating 

from one cell type will be expressed at approximately the same ratio within this cell type 

across samples. The Spearman correlation coefficient between the Ref.T. and all other 

sequenced transcripts are calculated; those with high correlation with Ref.T from only a single 

cell type likely have cell type restricted expression (see Figure 2 for concept overview).  Thus, 

the first aim was to define a panel of 3 Ref.T. for each constituent cell type and use these to 

identify a list of cell type enriched genes from bulk sequencing data. As the specificity of the 

Ref.T. lays the foundation for the identification of other cell enriched transcripts, it is important 

to find good and specific cell type representative transcripts. Therefore, a shortlist of 

candidates for tissue constituent cell types were selected based on literature searches, or the 

results of immunohistochemistry staining in the Human Protein Atlas. Spearman correlation 

coefficients were calculated between the expression levels of these candidates, and the rest 

of the transcriptome, and selection of cell type Ref.T. panels based on: (i) a high correlation 

between Ref.T. within each cell type panel, consistent with co-expression. (ii) a low 

correlation coefficient between Ref.T. in different cell type panels, consistent with high 

specificity and (iii) a normal distribution of Ref.T. expression across samples.  

http://www.gtexportal.org/
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Figure 2: Concept of integrative correlation analysis to identify cell-enriched transcripts: (A) (i and iii) 

Expression values for cell specific Ref.T. across samples have a high correlation, reflecting the variation in cell 

type proportion across samples and the consistent ratio between these transcripts (upper light orange or lower 

light pink plot). (ii) Unrelated transcripts will not have the same expression pattern across samples and will 

therefore not correlate (upper light blue plot). (B) RNA sequencing data from unfractionated tissue comprises a 

pooled transcriptome representative of a mixture of RNA from different constituent cell types, with adipose tissue 

used as an illustrative example. The proportion of each cell type within different samples (S1-S4) varies due to 

tissue composition and sampling variation, and cell type specific transcripts (Ref.T.) can act as a proxy for this 

variation. Other transcripts with the same expression pattern across samples are also likely to be cell enriched, 

unlike those expressed in one or several other cell types, which lack this relationship with the Ref.T. (C) Cell 

specific Ref.T. correlate (i) well with other cell type specifically expressed genes or (ii) poorly with those 

expressed in other, or multiple cell types. 

3.1.3 Specifics for paper I 

Here, we analysed cell type transcriptome profiles in visceral (VAT) [n=527] and 

subcutaneous (SAT) [n=646] adipose tissue (sourced from the GTEx portal (release V8, 

www.gtexportal.org) [126]). Correlation coefficients were calculated between the selected 

Ref.T. and all other sequenced transcripts. Subsequently, transcripts with a TPM value <0.1 

in more than 50% of the samples were excluded (but are still included in data tables), prior 

to defining cell type enriched transcripts by using a correlation value threshold cut-off, which 

was either: (i) that above which >95% of transcripts reached this threshold with only that 

Ref.T. panel or (ii) ≥0.50; whichever was higher) (Figure 3A). False discovery rate (FDR) 

<0.0001 was required. To rule out potentially dual-enriched transcripts (where transcripts 

correlated with more than one cell-type reference panel), the ‘differential correlation score’ 

was calculated - defined as the difference between the highest mean correlation coefficient 

with a Ref.T. panel, and the next highest mean correlation coefficient with another Ref.T. 

panel. Transcripts with a differential correlation value >0.1 were classified as cell type 

enriched (principles are illustrated in Figure 3A). Various steps were taken to verify the 

results. Gene ontology (GO) biological process and reactome enrichment analysis was 

carried out for each cell type enriched list (Gene Ontology Consortium [127] and PANTHER 

classification resource [128, 129]), to establish if the significant over-represented terms were 

related to cell type function, which would act as support for the gene classification. For a 

selection of cell type enriched genes, the cell specificity of the corresponding protein was 

verified using immunohistochemistry [130, 131]. We also used weighted correlation network 

analysis (WGCNA) [132] to analyse the same dataset (Figure 3Bi). WGCNA is an unbiased 

method where pairwise correlation coefficients between all transcripts are calculated and 

transcripts clustered according to expression pattern similarity. As this analysis is not 

dependent on the manual selection of any input Ref.T., it can provide support for classification 

http://www.gtexportal.org/
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of our cell type predicted genes if they cluster together. Furthermore, the cell type enrichment 

profiles were validated by comparison to single cell/nuclei RNAseq data (Figure 3Bii), in the 

following ways: (i) To demonstrate that genes of interest were assigned to the correct cell 

type, gene expression data was retrieved from the Tabula Sapiens human cell atlas [13] in 

order to generate UMAP plots with the R Seurat package [133], and our classification was 

verified if the cell type annotated cluster with highest expression was the same. (ii) Data from 

scRNAseq analysis of human SAT (Tabula Sapiens [13] and Hildreth et al. [35]), scRNAseq 

of mixed depot murine adipose tissue (Tabula Muris [24]) and snRNAseq of human SAT (Sun 

et al. [134]) were processed using the R Seurat package [133] and the FindAllMarkers 

function. Cell type enriched genes in this dataset were then classified based on the use of 

three different thresholds: an average log2 fold change (FC) expression of >0.2, >0.5 or >1 

in each annotated cell type, relative to all other cell types within each study. Our cell type 

classifications were then compared to those found for each single cell/nucleus dataset, to 

identify numbers of overlapping enriched genes between this dataset and ours. (iii) A 

hypergeometric test was used to compare cell type enrichment signatures across all four 

previously mentioned studies and our data, to determine agreement between them. 

Adipose tissue depot specific differences were investigated for cell types profiled in both VAT 

and SAT by calculating the ´depot differential correlation score’ (difference between a 

transcript mean correlation with the Ref.T panel in VAT vs. SAT) for each transcript 

represented in the cell type respective VAT or SAT enrichment list (Figure 3Ci). A high 

positive or negative differential correlation score was indicative of enrichment in only one 

depot, and this was displayed by subsequent plotting against the corresponding enrichment 

ranking (defined as the position of a transcript in the respective depot enriched list(s), the 

highest correlating transcript = rank 1, second highest correlating transcript = rank 2…). 

Female and male differences were investigated within VAT and SAT after the separation of 

sample data in each depot according to sex, and subsequent generation of sex specific cell 

type enriched lists, which followed the same principal approach as for the whole VAT and 

SAT datasets (Figure 3Cii). Sex specific comparisons for a given cell type were performed 

by calculating the ´sex differential correlation score’ (difference between a transcript mean 

correlation with the Ref.T panel in female vs. male dataset) for each transcript represented 

in the cell type respective female or male enrichment list, which was then plotted against the 

corresponding enrichment ranking. 
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Figure 3: Concepts for paper 1. (A) Schematic overview of how cell type enriched transcripts were identified: 

Sequencing data for unfractionated VAT and SAT were retrieved from the GTEx portal, and Spearman 

correlation coefficients were calculated between the Ref.T. and other sequenced transcripts (I) and based on a 

given set of criteria for inclusion (ii), transcripts were included into a cell type enriched list (iii) (Differential 

correlation score = difference between a transcript mean correlation with a Ref.T panel of one cell type vs. 

another, enrichment rank = the position of a transcript in a cell type enriched list)  (B) The classification of cell 

type enriched genes were validated by: (i) weighted correlation network analysis, (ii) comparison to human 

subcutaneous scRNAseq expression data (Tabula Sapiens [13]), or (iii) by a hypergeometric test that identify 

significantly shared transcriptome signatures when cross-comparing all adipose cell type enriched profiles 

identified in human VAT and SAT bulk RNAseq data in current study (unfractionated VAT, unfractionated SAT), 

or by single cell/single nuclei profiling of human SAT sourced from Tabula Sapiens (scRNAseq SAT [TS]), 

Hildreth et al. [35] (scRNAseq SAT [Hildreth]), Sun et al. [134] (snRNAseq SAT [Sun]), or in mixed murine 

adipose tissue from Tabula Muris [24] (scRNAseq mixed [TM]). (C) Enrichment differences between adipose 

depots were investigated by comparing enrichment profiles of cell types identified in both (i) VAT and SAT, while 

sex-specific enrichment differences were defined between (ii) male and female, following male-female 

subgroup-processing of samples to acquire sex specific enriched lists. 

3.1.4 Specifics for paper II 

Cell type enrichment profiling was carried out for a total of 15 tissues, including visceral and 

adipose tissue (tissue types and sample number summarized in Figure 4A) using the same 

method as for paper I, with some minor modifications to the inclusion criteria. Classification 

of transcripts into cell type enriched lists were based on following criteria: (i) the transcript 

had a mean correlation with a given Ref.T. panel ≥0.50 (FDR <0.0001), which was (ii) higher 

than the mean correlation with any other Ref.T. panel. As given here, the correlation threshold 

cut-off value was set to a minimum of 0.50 as default but was manually adjusted down if there 

was no correlation overlap with other cell type Ref.T. panels or adjusted up if there was a 

marked overlap. (iii) For a transcript to be included into a given cell type enriched list, the 

‘differential correlation score’ - defined as the difference between the highest mean 

correlation coefficient with the corresponding Ref.T. panel, and the next highest mean 

correlation coefficient with another Ref.T. panel, was required to be >0.15. Exceptions were 

made when cell sub-types were profiled individually, where transcripts could be classified as 

selectively enriched in both, vs. other cell types e.g., pancreatic alpha and beta cells. 

Selected enriched transcripts or cell profiles in various tissues were subjected to gene 

ontology analysis, tissue profiling, and WGCNA, similarly to paper I, to verify the cell type 

classification. Tabula Sapiens [13] and Human Testis Atlas [135] scRNAseq data was used 

to generate illustrative UMAP plots for a selection of cell type classified transcripts in the 

unfractionated datasets. 
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In addition to resolving the various cell profiles in tissues, this paper focused on comparison 

of cell type profiles within a tissue, or across tissues, to identify similarities and differences. 

For example, pancreatic alpha and beta cell enrichment profiles were compared by 

calculating and plotting the differential correlation scores against the enrichment ranking of 

transcripts in their respective enriched lists (Figure 4B). Spermatogenesis related enrichment 

profiles were identified using Ref.T. transcripts selected to represent the temporal order of 

development; a germ cell expressed panel [MAGEB2, KDM1B, PIWIL4] (spermatogonia), a 

meiotic cell cycle expressed panel [ANKRD31, RBM44, TOP2A] (spermatocytes), a 

spermatid structure-related panel [CEP55, KPNA5, PBK] (round/early elongating spermatids) 

and a nuclear condensation/protamine repackaging factors panel [PRM1, PRM2, TNP1] 

(late/elongated spermatids). Enrichment profiles for the specific developmental stages could 

then be established, along with temporal changes (Figure 4C). A comparison of cell type 

enrichment signatures across all cell types in all profiled tissues was performed using a 

hypergeometric test, which can identify significant signature overlaps for various cell types 

and can therefore be used to indicate common cellular features and functions. (Figure 4E).  

This analysis makes it possible to compare core cell type enrichment profiles from various 

tissues, including endothelial cells, which are present across tissue types, to identify those 

genes that are broadly enriched in a core cell type. Such genes can be of great interest as 

they might be cell type-defining, relative to genes that are specific to a core cell type 

subgroup, which might be more related to tissue-specific function. 

RNAseq data from unfractionated human tissues can be used to identify genes with higher 

general expression in any given tissue, compared to others. We can use our our cell type 

enriched profiling data to predict the cell type from which the tissue enriched transcripts 

originate. We performed this type of analysis using lists of tissue enriched genes generated 

from the HPA [10] or GTEx material, the latter sourced from the Harmonizome database 

[136]. (see Figure 4D for details). 
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Figure 4: Concepts for paper II. (A) Bulk sequencing data for 15 different tissues were retrieved from the 

GTEx portal, and Spearman correlation coefficients were generated between all protein coding genes and all 

cell type defined Ref.T.s within each tissue datasets and based on a given set of specific criteria, transcripts 

were included into a cell type enriched list. Some of the main investigate emphasis points in the paper were (B) 

the enrichment profile overlap between the pancreatic cell types alpha and beta cells, (C) identification of 

temporal enrichment signatures during the four stages of spermatogenesis, (D) annotation of the cell source of 

tissue enriched genes, and (E) use of a hypergeometric test to cross-compare all cell type enriched genes in all 

tissues to identify significant signature similarities.  

3.2 Paper III 

All specific methods for paper III are provided under the paper method section. This section 

gives background information related to these methods, and the reasoning behind these 

choices. 

3.2.1 Background information 

Paper III focuses the investigation on the adhesion G protein-coupled receptor L4 (ADGRL4). 

The ligand, interaction partners, activation and induced signalling pathways of ADGRL4 is 

unknown [137, 138], and there is limited knowledge on its function aside from a small number 

of reports of a role in angiogenesis and proliferation [138-140]. ADGRL4 expression is largely 

restricted to endothelial cells (EC) across vascular beds [12, 141-144], indicative of a central 

role in EC specific phenotype and function. We aimed to gain a wider understanding of 

ADGRL4 function in normal and inflamed conditions, using gene silencing in primary human 

umbilical vein endothelial cells (HUVEC) and an initial screening of resultant changes in the 

proteome profile using bottom-up mass spectrometry approach. For the mass spectrometry 

analysis, a total of 5 sample sets and 10 samples were used. Three different sample sets 

from three individual donors represented an unstimulated phenotype, referred to as sample 

sets 1-3 (SS1-3), while two sample sets from two different donors were exposed to the 

inflammatory cytokine TNF used for stimulating conditions, referred to as sample set 4-5 

(SS4-5). All sample sets included one HUVEC sample receiving ADGRL4 siRNA (siRNA-

ADGRL4-EC) and one sample with scrambled siRNA (siRNA-control-EC). 

3.2.2 General overview of mass spectrometry analysis steps 

The mass spectrometry method used, referred to as bottom-up, or shotgun proteomics, is a 

well-established method which generally relies on liquid chromatography, coupled to tandem 

mass spectrometry (LC-MS/MS), and can be used to identify thousands of proteins in 

complex samples like cell lysates. Compared to top-down proteomics, where full size proteins 
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are analysed, and fewer proteins are detected in a sample, bottom-up proteomics analyses 

peptides originating from a mixture of digested proteins. The peptides are relative to proteins, 

more unified in size, shape and charge, which confers preparation and data acquisition 

advantages and gives rise to simplified fragmentation patterns that are easier to interpretate 

during data analysis [145]. 

In order to acquire pure peptides from the HUVEC samples that could be used for mass 

spectrometry analysis, sample processing steps were performed [145]. Lysis of cells and 

centrifugation steps were done to separate proteins from non-protein content in the samples.  

Dithiothreitol was added to the samples, which reduces disulphide bonds, followed by 

alkylation of cysteine with iodoacetamide, which prevents re-formation of bonds and peptide 

branching, giving linearized proteins that facilitate downstream digestion, which was carried 

out using trypsin.  

As the purpose of the project was not only to identify proteins, but also to quantify and 

compare protein content across samples to elucidate on affects from ADGRL4 depletion, 

isobaric labelling was applied after peptide digestion using the 10-plex tandem mass tag 

(TMT) isobaric labeling system (Thermo Scientific), which gives relative protein abundance 

across the samples [146]. The TMT molecules consist of a mass reporter, a cleavable linker 

region, a mass normalizer, and an amine reactive group. The 10-plex TMT system consists 

of 10 different tag variants that are created by incorporating heavy stable isotope variants of 

C12 and N13 in various configurations in the mass reporter and mass normalizer, where the 

same mass and biochemical properties are found for each resultant complete tag variant, but 

the mass reporters will upon cleavage show variation in mass. This system makes it possible 

to multiplex, where samples are chemically labelled with one out of the ten tag variants and 

then pulled together for combined analysis. As the biochemical properties of identical 

peptides with different tags are the same, they will show the same elution and ionizing pattern 

leading to more accurate detection and quantification across samples. The tags come into 

play during the second mass spectrometry measuring step where peptide ions are 

fragmented, causing release of mass reporters with unique mass that represents peptides of 

different samples, and their respective abundance can then be used for relative peptide 

quantitation. 
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Following isobaric labelling, the peptide solution was cleaned before the first fractionation 

method was applied. As the peptide mixture from cells are complex, and liquid 

chromatographic separation immediately prior to injection into the mass spectrometer is 

unlikely to separate the tens of thousands of peptides adequately, the peptides were first 

separated into 72 fractions by the aid of an immobilized pH gradient and isoelectric focusing 

(IPG-IEF) [147] on a strip, followed by peptide extraction. This results in better total peptide 

separation and increased likelihood of detecting various unique peptides. Each fraction was 

separated further by reverse phase liquid chromatography coupled to the mass spectrometer, 

which is a common step where peptides are separated and eluted in fractions and can be 

directly ionized and injected into the machine for data acquisition [145].  For tandem mass 

spectrometry, mass-to-charge ratio data for the precursor peptide ions are obtained first, 

followed by the fragmentation into smaller ions that are also analysed [145], and this was 

achieved by using the Q Exactive Hybrid Quadrupole-Orbitrap Mass Spectrometer (Thermo 

Scientific), and peptide/protein identification was done by the database search algorithm 

SequestHT under the software platform Proteome Discoverer 1.4 (Thermo Scientific) against 

the Uniprot human protein database [148]. 

3.2.3 Identification of differently regulated proteins  

To identify proteins affected by ADGRL4 depletion in HUVEC, the fold change between 

siRNA-ADGRL4-EC and siRNA-control-EC in each sample set were calculated under 

unstimulated or TNF stimulated conditions, and criteria for upregulation and downregulation 

defined as fold change ≥ 1.3, and ≤ 0.7 in each of the sample sets, respectively. To identify 

changes related to ADGRL4 amongst TNF induced proteins, induction was defined as a fold 

change ≥2 in each of the TNF stimulated siRNA-controls-EC relative to average of the three 

non-stimulated siRNA-controls-EC.  

3.2.4 Validation of data  

To validate the findings of mass spectrometry, proteins of particular interest were selected 

for further analysis and verification, and alternative siRNA sequences were tested to rule out 

off-target effects. For all selected proteins, relative qPCR was done to determine if protein 

regulatory patterns were consistent with changes in mRNA or if changes could reflect post-

translational modifications and mechanisms directly targeting protein stability and 

degradation. Western blotting was used as a second detection method to verify the mass 
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spectrometry results. Additionally, for detection of cell-surface expressed proteins, such as 

tissue factor and adhesion molecules, flow cytometry was used. This has additional 

advantages, such as showing if changes were general across the cell population or if they 

were driven by a subgroup, and it allowed for confirmation of protein external localisation, 

which could not be achieved by neither mass spectrometry nor western blot. The distinction 

between internal and external tissue factor is important, as internal tissue factor has little 

impact on coagulation, while that present on the surface facilitates procoagulant activity. 

Tissue factor upregulation alone is not synonymous with an increase in procoagulant activity, 

even if displayed on the cell surface. Tissue factor can be present in an inactive form, and 

functional in-house adapted assays were therefore performed to verify activity. A real time 

thrombin generation assay, normally used to identify inherent procoagulant properties of 

plasma, was adapted to evaluate if HUVEC cell surface tissue factor could contribute to 

thrombin activation, and to establish the impact of ADGRL4 depletion on tissue factor activity. 

The assay was performed with HUVEC seeded into 96-well plates, where plasma, 

phospholipids and thrombin substrate were added in every well. Plasma is necessary as it 

contributes with coagulation factors that drive thrombin generation, while phospholipids act 

as a cofactor for thrombin activation, along with calcium found in the thrombin substrate 

buffer. The thrombin substrate is cleaved by thrombin and generates a fluorogenic product, 

used as an indirect measure for thrombin generated in each well. Two wells also received 

thrombin calibrator reagent with known concentration of thrombin, which was used for 

calibration of thrombin in all the other wells. Tissue factor was added to control wells, to 

establish thrombin generation potential, while thrombin generation in all other wells were 

driven by the presence of cellular surface expressed tissue factor with no additional tissue 

factor added. Corn trypsin inhibitor was used in all wells to block the intrinsic pathway and to 

rule out an alternative way for thrombin activation. Tissue factor blocking antibody was used 

for the purpose of blocking tissue factor activity, and hence blocking thrombin generation, to 

verify tissue factor as the main driver behind thrombin generation. By the aid of this set-up, 

thrombin generation under various conditions could be measured, and cell surface tissue 

factor contribution could be evaluated (overview of method in Figure 5A). 
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Figure 5: Overview of functional in-house adapted assays used in paper III to study tissue factor 

activity after ADGRL4 depletion in HUVEC. (A) For a thrombin generation assay, control or ADGRL4-

depleted HUVEC were grown to confluence in a 96-well plate before treatment with or without the 

inflammatory cytokine TNF. Various reagents needed to support and measure thrombin generation was 

added in all wells, with the exception of tissue factor which was only added in control wells, and is indicated in 

the figure. CTI was used in order to block the intrinsic pathway and exclude this alternative possibility of 

thrombin activation, while tissue factor blocking antibody was added in a selection of wells to block tissue 

factor activity. Thrombin generation was indirectly measured across wells based on the signals from cleaved 

fluorogenic thrombin substrate. (B) Detailed description of a fibrin deposition assay subdivided in four main 

processes including (i) cell preparation, (ii) blood flow treatment, (iii) antibody staining and (iv) imaging. 

Fibrin deposition was measured to evaluate effects of ADGRL4 depletion on tissue factor 

activity, and indirectly, the regulatory effects on tissue factor expression. Here, pre-

transfected HUVEC were seeded and grown to confluence in Ibidi chamber slides, where 

they 48 hours post-transfection received either 24 hours of TNF treatment or no TNF 

treatment. Some samples also received tissue factor blocking antibody treatment, which was 

used to verify if tissue factor was the main driver behind fibrin deposition. Samples were 

exposed to re-calcified citrated human whole blood under continuous flow (shear stress 

approximately 1 dyn/cm²), followed by a washing step and fixation in 4% paraformaldehyde. 

For staining, an in-house produced anti-fibrin mouse monoclonal antibody and Alexa Fluor 

488 goat anti-mouse were used, and the channels of the slides were in the end infused with 

Vectashield mounting medium containing DAPI. Immunofluorescence images of fibrin 

deposition were captured using a Leica TCS SPE confocal microscope, and images were 

analysed using the image processing package Fiji/ImageJ (a detailed overview is given in 

Figure 5B) 
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4. Results 

4.1 Paper I: A human adipose tissue cell type transcriptome atlas 

Based on an integrative correlation analysis of unfractionated human adipose tissue RNAseq 

data, the enriched transcriptome profiles of the constituent cell types in visceral (VAT) and 

subcutaneous (SAT) adipose tissue were defined. In VAT 10 cell types were profiled, and 

2343 genes classified as cell type enriched, most of which were protein coding genes (87 %). 

Cell types with the most enriched genes were the tissue specific adipocytes (n=700), followed 

by mesothelial cells (n=532) and adipocyte progenitors (n=272), while the other less tissue 

specific cells; endothelial (n=157), smooth muscle (n=142), T-cells (n=200), plasma cells 

(n=114),  macrophages (n=151), neutrophils (n=56) and mast cells (n=19), had fewer 

enriched genes. 307 non-coding transcripts, mostly long-non-coding RNAs, were classified 

as cell-type enriched in VAT, with the highest number found in adipocytes (n=144) and 

mesothelial cells (n=89). T-cell receptor and immunoglobin genes, were highly represented 

in T-cells (n=28) and plasma cells (n=99), respectively. For SAT, 8 of the 10 cell types profiled 

in VAT were also profiled, but low expression and Ref.T. correlations were found for 

mesothelial cells and neutrophils, indicating low numbers or absence of these cell types in 

SAT, so these were excluded. Cell type enriched genes in SAT cell types were similar to 

those in VAT, with the highest number of classified in adipocytes (n=715) and adipocyte 

progenitors (n=722), followed by smooth muscle (n=348), macrophages (n=256), endothelial 

(n=155), T-cells (n=116), plasma cells (n=75) and mast cells (n=31). Our classifications were 

supported by weighted network correlation analysis (WGCNA), where the majority of cell type 

classified genes clustered together. Furthermore, gene ontology (GO) and reactome analysis 

resulted in significant terms that were consistent with known cell functions. The enrichment 

profiles were also compared to three scRNAseq data sets including human subcutaneous 

[13, 35] and murine [36] adipose tissue in addition to a snRNAseq data set of human 

subcutaneous adipose tissue [134]. Even though none of these studies contained all the cell 

types we profiled, and adipocytes were only present in the snRNAseq data, our cell type 

enriched gene classifications were in good agreement with one or more of these studies. Sex 

specific differences in cell profiles were investigated using a subset analysis. Cell profiles 

were similar between sexes, and when genes were classified as male or female only, the 

difference was typically driven by a gene falling marginally below the designated threshold 

for classification as enriched in one sex. However, a small number of Y-linked male only cell 
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type-enriched transcripts were identified. A comparison of enrichment profiles was also 

carried out between cell types in both VAT and SAT, to identify potential depot specific 

differences. Also here, the expression profiles were generally similar. A small number of 

genes were cell type enriched in only one depot, which also in most cases corresponded with 

a higher expression value in that same depot. The main driver of cell specific depot difference 

was related to the presence of additional cell types in VAT, especially mesothelial cells.  

4.2 Paper II: A tissue centric atlas of cell type transcriptome enrichment signatures 

Based on bulk RNAseq data from more than 6000 samples, integrative correlation analysis 

was expanded to resolve the enriched protein coding transcriptome profile of the main 

constituent cell types in 15 different human tissues. The following tissues and number of cell 

types (n) were profiled: Subcutaneous (n=8) and visceral (n=10) adipose tissue, breast - 

mammary tissue (n=10), colon - sigmoid (n=12), heart - left ventricle (n=9), kidney - cortex 

(n=9), liver (n=10), lung (n=14), pancreas (n=9), prostate (n=9), muscle - skeletal (n=7), skin 

(n=18), stomach (n=11), testis (n=9) and  thyroid (n=10). For cell type enriched lists in lung 

tissue, gene ontology analysis returned over-represented terms that corresponded with 

known cell type functions, and tissue profiling and scRNAseq data comparison [13] for 

selected genes, along with WGCNA, supported the cell type enriched classification. Across 

tissues, tissue specialized cells had the most enriched genes; of the total cell type classified 

transcripts in heart, kidney, liver, skin, stomach, and lung, cardiomyocytes represented 48%, 

proximal tubular cells 37%, hepatocytes 53%, keratinocytes 38.4%, gastric mucosal cells 

28% and respiratory ciliated cells 28%, respectively. Of the 19,634 protein coding genes 

expressed in one or more tissues, 5644 (28.7%) had no cell type enrichment in any tissue, 

and GO analysis indicated housekeeping functions for this group of genes. 5979 (30.4%) 

were classified as cell type enriched in only a single tissue, with 3141 of these in the testis. 

8011 transcripts were cell type enriched in two or more tissues, and of these, 741 (9.2%) 

were enriched in at least seven tissues. Alpha and beta cells in the pancreas had 131 co-

expressed enriched genes, with 91 and 69 transcripts specific to only alpha or beta cells, 

respectively, and these classifications were well-supported by scRNAseq data for human 

pancreas [13] and tissue protein profiling. In testis, changes in cell-type transcriptomes during 

spermatogenesis were profiled over four developmental stages: spermatogonia (S1), 

spermatocytes (S2), early spermatids (S3) and late spermatids (S4). The individual Ref.T.s 

within each respective panel clustered well together in WGCNA analysis. 6179 transcripts 
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were identified as enriched in one or more of the four developmental stages, versus non-

germ cells. It was observed that the germ cell enriched signatures could be separated into 

either stage-specific enrichment, or specific enrichment signatures common to two or more 

ensuing stages, and findings were again supported by scRNAseq data [135], GO analysis 

and tissue protein profiling. Germ cells were the main cell type source for genes identified as 

enriched in testis versus other tissues in the HPA data. Skin was the tissue type with most 

profiled cell types (n=18), and keratinocytes, separated into those found in the sub granular 

and granular layers, had the highest proportion of cell type enriched transcripts, 737 and 208 

respectively. Melanocytes had the fewest enriched transcripts of those profiled (n= 17). A list 

of transcripts identified to be enriched in skin versus other tissues in the HPA tissue section 

[10] and the GTEX dataset [126], latter sourced from the Harmonizome database [136], were 

compared to our cell type enrichment classifications. We classified 63% of the skin specific 

transcripts as cell type enriched, mostly in hair root cell types and keratinocytes. Of the skin 

enriched genes not classified as cell type enriched, most were co-enriched amongst several 

cell types in the hair root, showing that hair root cells, a minority cell group in skin, express 

most of the genes defined as skin specific. A cross-tissue analysis, performed as a 

hypergeometric test, was done to investigate similarities through shared signatures between 

all cell types in the tissues profiled. Organ specific cell types with related functions in multiple 

tissues showed a high similarity in enriched gene profiles, e.g., endocrine cells from several 

tissues (alpha and beta cells from pancreas, enteroendocrine cells from the colon and 

stomach, and parafollicular cells from the thyroid). There was a significant signature overlap 

between adipocytes (visceral, subcutaneous and breast tissue), skin sebaceous gland cells, 

liver hepatocytes, and kidney proximal tubular cells, and these genes were linked to 

metabolic processes according to GO analysis, suggestive of processes they have shared 

participation in. Other genes uniquely enriched in only one of these cell types, are more likely 

to have tissue specialised functions. Late spermatids in the testis and respiratory ciliated cells 

in the lung shared a significant signature of as many as 441 transcripts, which was indicated 

by GO analysis to be related to cilia, which are present on both cell types. A total of 8 cell 

types, defined as core cell types, were profiled in all or most tissue types, and included 

endothelial cells (n=15 tissues), smooth muscle cells (n=14), fibroblasts (n=14), 

macrophages (n=14), neutrophils (n=8), mast cells (n=5), T-cells (n=13) and plasma cells 

(n=14). All over, there was a significant and specific shared gene enrichment signature for 

the same core cell type across tissues. Liver sinusoidal endothelial cells were an interesting 

outlier of the otherwise similarly grouped endothelial cells, as more than half of the enriched 
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gene list were not enriched in endothelial cells in other tissues, which could be explained by 

highly tissue specific functions of this endothelial subgroup. The identification of defining gene 

signatures for these core cell types were based on classification in at least half of the tissues 

profiled. 

4.3 Paper III: ADGRL4 modifies endothelial cell response to TNF-induced pro-

thrombotic phenotype 

The adhesion G protein-coupled receptor L4 (ADGRL4) has previously been identified by our 

group as an endothelial enriched gene [12, 141-144], with potential importance for endothelial 

specific phenotype and function. ADGRL4 has a role in angiogenesis and proliferation [138-

140], but has no known ligand, which makes investigation of protein activation and signal-

transduction challenging [137, 138]. We carried out mass spectrometry protein profiling of 

ADGRL4 silenced endothelial cells (EC), with or without TNF stimulation, to gain insight into 

the ADGRL4 functional role in EC. Depletion of ADGRL4 in resting EC induced changes in 

the protein profile. 92 proteins, associated with cell structure and morphogenesis, were 

upregulated, while a cell-cycle related cluster of 177 proteins were downregulated. The 

inflammatory cytokine TNF, which causes EC activation [46, 47], induced a pro-inflammatory 

signature, with 70 proteins increased by at least two-fold. 5 proteins were identified as TNF-

induced and further upregulated by ADGRL4-silencing, the most highly upregulated of which 

was tissue factor – coagulation factor III (F3). Several additional assays were performed to 

validate this observation, and similar changes were observed on the mRNA level by qPCR 

and on a protein level by western blot and flow cytometry. ADGRL4 silencing had most impact 

on mRNA and protein expression in the later phase of the TNF response, indicating that the 

resolution of tissue factor expression, rather than the induction, was primarily affected. In a 

functional study, we showed that thrombin generation was augmented by tissue factor 

upregulation as a result of ADGRL4 depletion, evident by a shortened thrombin generation 

lag-time, the thrombin peak time and height. Similarly, we observed an increase in fibrin 

deposition in an in-house assay, where EC were exposed to re-calcified citrated human whole 

blood under flow. Furthermore, the mass spectrometry data identified 16 proteins that were 

TNF-induced, but inhibited following ADGRL4 silencing. These proteins were mainly linked 

to the interferon signalling pathway. Changes in selected candidates, including VCAM1, 

interferon-induced GTP-binding protein Mx1 (MX1), Interferon-stimulated gene 20 kDa 

protein (ISG20) and interferon-induced protein with tetratricopeptide repeats 1 (IFIT1) were 
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validated by qPCR and western blot. Interferon regulatory factor 1 (IRF1), which controls the 

transcription of interferon-inducible genes [145], was not affected by ADGRL4 silencing. The 

mass spectrometry data did not indicate any strong and obvious candidates that could 

connect ADGRL4 with the regulatory outcome of the various proteins, but several proteins 

involved in signalling transduction, including dual specificity mitogen-activated protein kinase 

1 and 6 (MAP2K1 and MAP2K6) and interferon-induced, double-stranded RNA-activated 

protein kinase (EIF2AK2), were identified as downregulated and could potentially be 

downstream effectors of ADGRL4. Collectively, these results indicate a currently 

unappreciated role for ADGRL4 in the EC response to inflammatory stimulation.   
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5. Discussion 

5.1 Paper I and II 

To be able to understand the complexity of the cell, and its contribution to tissue organization 

and function in health and disease, it is necessary to identify and characterize cell specifically 

expressed genes, as they control cellular phenotype. A problematic aspect of today’s 

research is the tendency to focus on a limited set of already well studied proteins, while 

thousands remain poorly characterized. This trend can limit novel discoveries and progress 

in medical science, and there have been recent attempts to address this issue [149-152]. In 

this thesis, it is demonstrated that cell specific genes can be identified from existing material, 

and we show how one can use this information to select targets for functional studies. In 

paper I and paper II, we used a bioinformatics approach to analyse bulk RNAseq data to 

identify the cell type specific transcriptome profile for tissue constituent cell types, including 

our main cell type of interest - the vascular endothelial cell (EC). Within the EC enriched gene 

lists generated from adipose visceral and subcutaneous tissue (paper I), and across 13 other 

tissues (paper II), we observed genes that were consistently found as EC enriched, indicative 

of an important role in EC phenotype or function. These genes  included ADGRL4, which was 

already identified in 2016 by our group as an uncharacterized EC enriched gene [141], using 

an earlier simplified version of the bioinformatics approach reported here. As ADGRL4 had 

high EC specificity and poorly described function, we investigate its potential role in EC, and 

identified new novel functions for this protein - of which results are presented in paper III.  

In paper I and paper II, in addition to profiling individual cell type enriched transcriptomes, we 

compared cell profiles within and across tissues to identify similarities and differences 

between enrichment signatures. We verified our findings to single cell sequencing data where 

available, which supported our classifications. The use of unfractionated tissue data to 

identify cell type profiles has several advantages; the data is free and available for public use, 

which saves time and money, as there is no need for data acquirement. There is also an 

ethical aspect of re-using data; use of existing resources should be maximized by answering 

new research questions using existing material where possible. It is also important to 

remember that patients make the research possible, and by using these data in as many 

ways as possible, we are honouring their contribution. Another advantage is that public 

repositories, like the GTEx project, accumulate data from hundreds of samples over time, 
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which allows the type of analysis carried out in paper I and II, particularly for the detection 

and classification of lowly expressed genes. Through the analysis of bulk RNAseq data in 

paper I, many non-coding transcripts were identified as cell type enriched, but a considerable 

fraction were not identified in scRNAseq data, or they were expressed in too few cells to, with 

certainty, confirm cell type enrichment. In paper II, many protein coding transcripts with 

relatively low expression values across samples were classified as cell type enriched, but 

notably, many of these were lowly represented in scRNAseq data, implying that bulk RNAseq 

could be more sensitive for the classification of lowly detected gene transcripts. Indeed, single 

cell sequencing has more zero values with a necessary compromise between number of cells 

analysed and read depth [26, 153-156]. Enrichment analysis based on unfractionated tissue 

also offers the advantage of profiling cell types that are difficult to process for single cell 

sequencing, like adipocytes [34] and cardiomyocytes [21]. Our data could be a useful source 

of input for deconvolution methods that relays on gene expression matrices to estimate the 

cell proportions in tissue, such as CIBERSORT and BayesPrism [157, 158], as our data 

includes cell types that are often difficult to profile by scRNAseq, and might additionally offer 

a wider gene coverage. Cell type profiling by integrative correlation analysis makes it possible 

to identify common enrichment signatures for cell types identified across tissues of which can 

be cell phenotype defining, and to further dissect identity gene futures for cell type subgroups, 

exemplified with the panel of genes that specifically separated liver sinusoidal EC from EC in 

other tissues, which are likely relevant for tissue specific functions and not required by other 

endothelial cells. Information like this can be particularly useful when studying disease, where 

changes in gene or protein expression can be traced to a cell type source. This could increase 

understanding of disease mechanisms, and aid treatment developments. 

Our integrative correlation analysis does have limitations: The performance and specificity of 

the analysis depends on the choice of Ref.T., which need to be specific for the cell type they 

are representing. The Ref.T. panel for each cell type were therefore carefully evaluated and 

selected for based on high intra-panel correlation and low inter-panel correlation. The use of 

reference transcripts to identify cell type enriched transcripts is limited to known cell types, 

and thus new cell types cannot be discovered. Profiling of cell sub-types, which may not have 

a large panel of uniquely expressed genes, but rather differing levels of the same genes, is 

difficult using this method. It should be further noticed that genes classified as enriched in our 

studies are based on thresholds that are guiding, and data for individual genes can give an 

indication to cell type enrichment profile, even in the absence of strict classification as such. 
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Genes that are expressed only in specific cell types, but are strongly regulated by 

environmental or hereditary factors, may not correlate with the corresponding Ref.T.s, thus 

representing a false negative. In summary, our integrative correlation analysis identified 

constituent cell type enrichment profiles across 15 different tissues, providing a resource to 

complement existing scRNAseq data, available through the Human Protein Atlas website in 

the ´Tissue Cell Type´ section (www.proteinatlas.org/humanproteome/tissue+cell+type). 

5.2 Paper III 

We selected the adhesion G protein coupled receptor ADGRL4 for functional exploration. 

This was based on its identification as a largely uncharacterized endothelial enriched gene, 

in a previous study from our group [141], with further more extensive confirmation in paper I 

and paper II in this thesis [142-144]. ADGRL4 function is largely undescribed, and thus we 

investigated its role in HUVEC, primary endothelial cells, which originate from human 

umbilical cords that do not require invasive procedures to be extracted, and are a commonly 

used endothelial model [159]. We used HUVEC at an early passage, to minimize loss of their 

phenotypic characteristics [160]. It should here be mentioned, that HUVEC are found to have 

different expression patterns relative to other EC of adult origin [161], but this is likely also 

true when comparing EC from various vascular beds, and the results extracted from the use 

of any type of EC, cannot automatically be inferred as general for all EC. 

A limiting factor for the mass spectrometry analysis, was the number of samples that could 

be analysed concurrently. The TMT 10-plex allowed for multiplexing of 10 samples, the 

addition of any more, would have required a second batch for analysis, introducing batch 

(run-to-run) variability, and also likely introduced missing values (the same precursor ions 

might not be selected for in the different runs) [162, 163]. Such analysis would also have 

required an internal reference standard for the normalization of values across batches and 

would have been more costly and resource demanding. Thus, we limited the analysis to 10 

samples in one batch. With three replicates of ADGRL4 and scrambled siRNA treated 

samples for unstimulated conditions and only two for stimulated conditions, statistical 

calculations would have had little power, and was therefore not applied. This is a weakness, 

but the aim of this part of the study was explorative in nature, designed to identify possible 

targets to study further.  

 

http://www.proteinatlas.org/humanproteome/tissue+cell+type
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Our study identified several biological processes and pathways that potentially related to 

ADGRL4 function, but further work is required to decipher the underlying mechanisms, such 

as key signalling pathways and transcription factors. Further investigation of the role of IRF1, 

which is known to transcribe several proteins identified to be downregulated by ADGRL4, 

such as ISG20, IFIT1, MX1 and VCAM1 [164-166] is warranted. Even though IRF1 

expression was not modified by ADGRL4 depletion, it is possible that other mechanisms, 

such as post translational modifications, could affect IRF1 nuclear localization or 

transcriptional capacity [167-171] and subsequent expression of interferon pathway related 

proteins. IRF1 localization could be studied using confocal microscopy imaging, or by 

measuring protein content in separated cell compartments (nucleus and cytoplasm). 

MAP2K1 and MAP2K6, kinases involved in signalling transduction [172-177], were 

downregulated by ADGRL4 deletion, along with the kinase EIF2AK2. EIF2AK2 has a role in 

viral responses, where it inhibits general translation [178, 179], in signalling responses 

through phosphorylation and activation of MAP2K6 and p38-MAPKs [180, 181] and in the 

modulation of interferon responses [182, 183] and NFKB activity [184-186]. Considering the 

potentially wide array of targets these proteins might have, and the substantial impact on 

cellular functions and responses they might elicit, they can be worth investigating further. For 

example, if knock down by siRNA for any of these proteins recapitulate any of the ADGRL4-

related findings, they could possibly be indicated as downstream effectors of ADGRL4. In the 

end, ADGRL4 has been identified as a regulator of various biological processes in EC which 

has not previously been identified, and although there are questions left to be answered, this 

information can provide useful information that might complement research done in the future 

or inspire to further investigation. 

The work carried out in this thesis shows how cell specific genes can be identified from 

existing datasets – highlighting the potential applications of publicly available resources to 

generate new knowledge. The data generated here are available on the Human Protein Atlas 

website, providing a further resource to complement existing atlas style datasets. Many 

genes in our identified cell type enriched panels were uncharacterised or not well understood, 

presenting interesting candidates for functional investigation. Thus this thesis also illustrates 

how the generation of such data can be used as a rational for the selection of proteins for 

functional characterisation in a specific context. 
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6. Conclusions 

 

1. Integrative correlation analysis identified enrichment profiles for constituent cell types 

in visceral and subcutaneous adipose tissue, and established that these depots 

broadly were similar, with mesothelial cells as the main driver of depot differences. 

Sex-specific differences, which were few, were related to Y-linked genes only enriched 

in male. 

 

2. Enrichment profiles of constituent cell types in 15 tissues were identified. Common 

and specific gene signatures for cell types across tissues were furthermore 

established, and similarities were found across cell types with related functions. Core 

signatures for cell types profiled in many tissues were defined and included endothelial 

cells, smooth muscle cells, fibroblasts, macrophages, neutrophils, mast cells, T-cells 

and plasma cells. The generated enrichment data are publicly available through the 

Human Protein Atlas. 

 

3. ADGRL4 depletion in endothelial cells caused significant changes in the protein profile 

of endothelial cells, which after TNF-induction was recognized by augmentation of the 

procoagulant activity in endothelial cells caused by upregulation of tissue factor. A 

targeted downregulation of interferon pathway proteins was observed under the same 

conditions. 

 

 

 

 

 

7. References 

 



51 

 

1. Nurk, S., et al., The complete sequence of a human genome. Science, 2022. 376(6588): p. 44-53. 
2. Arang, R., et al., The complete sequence of a human Y chromosome. bioRxiv, 2022: p. 

2022.12.01.518724. 
3. Barrero, M.J., S. Boué, and J.C. Izpisúa Belmonte, Epigenetic mechanisms that regulate cell identity. 

Cell Stem Cell, 2010. 7(5): p. 565-70. 
4. Marsit, C.J., Influence of environmental exposure on human epigenetic regulation. Journal of 

Experimental Biology, 2015. 218(1): p. 71-79. 
5. del Blanco, B. and A. Barco, Impact of environmental conditions and chemicals on the neuronal 

epigenome. Current Opinion in Chemical Biology, 2018. 45: p. 157-165. 
6. Pacchierotti, F. and M. Spanò, Environmental Impact on DNA Methylation in the Germline: State of 

the Art and Gaps of Knowledge. BioMed Research International, 2015. 2015: p. 123484. 
7. Nilsson, E., M. Ben Maamar, and M.K. Skinner, Environmental impacts on sperm and oocyte 

epigenetics affect embryo cell epigenetics and transcription to promote the epigenetic inheritance of 
pathology and phenotypic variation. Reproduction, Fertility and Development, 2021. 33(2): p. 102-
107. 

8. Bloom, A.B. and M.H. Zaman, Influence of the microenvironment on cell fate determination and 
migration. Physiological Genomics, 2014. 46(9): p. 309-314. 

9. Bhat, R. and M.J. Bissell, Of plasticity and specificity: dialectics of the micro- and macro-environment 
and the organ phenotype. Wiley Interdiscip Rev Membr Transp Signal, 2014. 3(2): p. 147-163. 

10. Uhlén, M., et al., Proteomics. Tissue-based map of the human proteome. Science, 2015. 347(6220): p. 
1260419. 

11. Robert, Y.Y., et al., A systematic survey of human tissue-specific gene expression and splicing reveals 
new opportunities for therapeutic target identification and evaluation. bioRxiv, 2018: p. 311563. 

12. Karlsson, M., et al., A single-cell type transcriptomics map of human tissues. Sci Adv, 2021. 7(31). 
13. Jones, R.C., et al., The Tabula Sapiens: A multiple-organ, single-cell transcriptomic atlas of humans. 

Science, 2022. 376(6594): p. eabl4896. 
14. Floros, J., et al., Human Surfactant Protein SP-A1 and SP-A2 Variants Differentially Affect the Alveolar 

Microenvironment, Surfactant Structure, Regulation and Function of the Alveolar Macrophage, and 
Animal and Human Survival Under Various Conditions. Frontiers in Immunology, 2021. 12. 

15. Kishore, U., et al., Surfactant proteins SP-A and SP-D: structure, function and receptors. Mol 
Immunol, 2006. 43(9): p. 1293-315. 

16. Wessels, A., et al., The Ontogenesis of Myosin Heavy Chain Isoforms in the Developing Human 
Hearta. Annals of the New York Academy of Sciences, 1990. 588(1): p. 461-464. 

17. Reiser, P.J., et al., Human cardiac myosin heavy chain isoforms in fetal and failing adult atria and 
ventricles. American Journal of Physiology-Heart and Circulatory Physiology, 2001. 280(4): p. H1814-
H1820. 

18. Komarova, Y.A., et al., Protein Interactions at Endothelial Junctions and Signaling Mechanisms 
Regulating Endothelial Permeability. Circ Res, 2017. 120(1): p. 179-206. 

19. Ivetic, A., H.L. Hoskins Green, and S.J. Hart, L-selectin: A Major Regulator of Leukocyte Adhesion, 
Migration and Signaling. Front Immunol, 2019. 10: p. 1068. 

20. Pontén, F., et al., A global view of protein expression in human cells, tissues, and organs. Molecular 
Systems Biology, 2009. 5(1): p. 337. 

21. Hegenbarth, J.-C., et al., Perspectives on Bulk-Tissue RNA Sequencing and Single-Cell RNA Sequencing 
for Cardiac Transcriptomics. Frontiers in Molecular Medicine, 2022. 2. 

22. Hedlund, E. and Q. Deng, Single-cell RNA sequencing: Technical advancements and biological 
applications. Mol Aspects Med, 2018. 59: p. 36-46. 

23. Potter, S.S., Single-cell RNA sequencing for the study of development, physiology and disease. Nature 
Reviews Nephrology, 2018. 14(8): p. 479-492. 

24. Tabula Muris, C., et al., Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. 
Nature, 2018. 562(7727): p. 367-372. 



52 

 

25. Hu, T., et al., Next-generation sequencing technologies: An overview. Human Immunology, 2021. 
82(11): p. 801-811. 

26. Stark, R., M. Grzelak, and J. Hadfield, RNA sequencing: the teenage years. Nat Rev Genet, 2019. 
20(11): p. 631-656. 

27. Head, S.R., et al., Library construction for next-generation sequencing: Overviews and challenges. 
BioTechniques, 2014. 56(2): p. 61-77. 

28. Kulkarni, A., et al., Beyond bulk: a review of single cell transcriptomics methodologies and 
applications. Curr Opin Biotechnol, 2019. 58: p. 129-136. 

29. Gross, A., et al., Technologies for Single-Cell Isolation. Int J Mol Sci, 2015. 16(8): p. 16897-919. 
30. Zhou, W.-m., et al., Microfluidics applications for high-throughput single cell sequencing. Journal of 

Nanobiotechnology, 2021. 19(1): p. 312. 
31. Ziegenhain, C., et al., Comparative Analysis of Single-Cell RNA Sequencing Methods. Molecular Cell, 

2017. 65(4): p. 631-643.e4. 
32. Adam, M., A.S. Potter, and S.S. Potter, Psychrophilic proteases dramatically reduce single-cell RNA-

seq artifacts: a molecular atlas of kidney development. Development, 2017. 144(19): p. 3625-3632. 
33. Massoni-Badosa, R., et al., Sampling time-dependent artifacts in single-cell genomics studies. 

Genome Biology, 2020. 21(1): p. 112. 
34. Deutsch, A., et al., The Impact of Single-Cell Genomics on Adipose Tissue Research. Int J Mol Sci, 

2020. 21(13). 
35. Hildreth, A.D., et al., Single-cell sequencing of human white adipose tissue identifies new cell states in 

health and obesity. Nat Immunol, 2021. 22(5): p. 639-653. 
36. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature, 2018. 562(7727): p. 

367-372. 
37. Bakken, T.E., et al., Single-nucleus and single-cell transcriptomes compared in matched cortical cell 

types. PLoS One, 2018. 13(12): p. e0209648. 
38. Thrupp, N., et al., Single-Nucleus RNA-Seq Is Not Suitable for Detection of Microglial Activation Genes 

in Humans. Cell Rep, 2020. 32(13): p. 108189. 
39. Krüger-Genge, A., et al., Vascular Endothelial Cell Biology: An Update. Int J Mol Sci, 2019. 20(18). 
40. Gurevich, D.B., et al., Endothelial Heterogeneity in Development and Wound Healing. Cells, 2021. 

10(9). 
41. Qiu, J. and K.K. Hirschi, Endothelial Cell Development and Its Application to Regenerative Medicine. 

Circ Res, 2019. 125(4): p. 489-501. 
42. Hellenthal, K.E.M., L. Brabenec, and N.M. Wagner, Regulation and Dysregulation of Endothelial 

Permeability during Systemic Inflammation. Cells, 2022. 11(12). 
43. Claesson-Welsh, L., E. Dejana, and D.M. McDonald, Permeability of the Endothelial Barrier: 

Identifying and Reconciling Controversies. Trends Mol Med, 2021. 27(4): p. 314-331. 
44. Aird, W.C., Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ 

Res, 2007. 100(2): p. 158-73. 
45. Stan, R.V., et al., The diaphragms of fenestrated endothelia: gatekeepers of vascular permeability 

and blood composition. Dev Cell, 2012. 23(6): p. 1203-18. 
46. Pober, J.S., Endothelial activation: intracellular signaling pathways. Arthritis Res, 2002. 4 Suppl 

3(Suppl 3): p. S109-16. 
47. Cotran, R.S. and J.S. Pober, Cytokine-endothelial interactions in inflammation, immunity, and 

vascular injury. J Am Soc Nephrol, 1990. 1(3): p. 225-35. 
48. Øynebråten, I., et al., Rapid chemokine secretion from endothelial cells originates from 2 distinct 

compartments. Blood, 2004. 104(2): p. 314-20. 
49. Hillyer, P., et al., Chemokines, chemokine receptors and adhesion molecules on different human 

endothelia: discriminating the tissue-specific functions that affect leucocyte migration. Clin Exp 
Immunol, 2003. 134(3): p. 431-41. 



53 

 

50. Barzilai, S., et al., M-sec regulates polarized secretion of inflammatory endothelial chemokines and 
facilitates CCL2-mediated lymphocyte transendothelial migration. Journal of Leukocyte Biology, 
2016. 99(6): p. 1045-1055. 

51. Haraldsen, G., et al., Cytokine-regulated expression of E-selectin, intercellular adhesion molecule-1 
(ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) in human microvascular endothelial cells. 
J Immunol, 1996. 156(7): p. 2558-65. 

52. Fries, J.W., et al., Expression of VCAM-1 and E-selectin in an in vivo model of endothelial activation. 
Am J Pathol, 1993. 143(3): p. 725-37. 

53. Nightingale, T.D., et al., Tuning the endothelial response: differential release of exocytic cargos from 
Weibel‐Palade bodies. Journal of Thrombosis and Haemostasis, 2018. 16(9): p. 1873-1886. 

54. Gotsch, U., et al., Expression of P-selectin on endothelial cells is upregulated by LPS and TNF-alpha in 
vivo. Cell Adhes Commun, 1994. 2(1): p. 7-14. 

55. Filippi, M.D., Mechanism of Diapedesis: Importance of the Transcellular Route. Adv Immunol, 2016. 
129: p. 25-53. 

56. Wolburg, H., K. Wolburg-Buchholz, and B. Engelhardt, Diapedesis of mononuclear cells across 
cerebral venules during experimental autoimmune encephalomyelitis leaves tight junctions intact. 
Acta Neuropathol, 2005. 109(2): p. 181-90. 

57. Martinelli, R., et al., Probing the biomechanical contribution of the endothelium to lymphocyte 
migration: diapedesis by the path of least resistance. J Cell Sci, 2014. 127(Pt 17): p. 3720-34. 

58. Marmon, S., et al., Caveolin-1 expression determines the route of neutrophil extravasation through 
skin microvasculature. Am J Pathol, 2009. 174(2): p. 684-92. 

59. Eppihimer, M.J., et al., Heterogeneity of expression of E- and P-selectins in vivo. Circ Res, 1996. 79(3): 
p. 560-9. 

60. Petzelbauer, P., et al., Heterogeneity of dermal microvascular endothelial cell antigen expression and 
cytokine responsiveness in situ and in cell culture. J Immunol, 1993. 151(9): p. 5062-72. 

61. Yano, K., et al., Vascular endothelial growth factor is an important determinant of sepsis morbidity 
and mortality. J Exp Med, 2006. 203(6): p. 1447-58. 

62. Ley, K. and P. Gaehtgens, Endothelial, not hemodynamic, differences are responsible for preferential 
leukocyte rolling in rat mesenteric venules. Circ Res, 1991. 69(4): p. 1034-41. 

63. Feng, D., et al., Neutrophils emigrate from venules by a transendothelial cell pathway in response to 
FMLP. J Exp Med, 1998. 187(6): p. 903-15. 

64. Burns, A.R., C.W. Smith, and D.C. Walker, Unique structural features that influence neutrophil 
emigration into the lung. Physiol Rev, 2003. 83(2): p. 309-36. 

65. Wong, J., et al., A minimal role for selectins in the recruitment of leukocytes into the inflamed liver 
microvasculature. J Clin Invest, 1997. 99(11): p. 2782-90. 

66. Palta, S., R. Saroa, and A. Palta, Overview of the coagulation system. Indian J Anaesth, 2014. 58(5): p. 
515-23. 

67. Mackman, N., R.E. Tilley, and N.S. Key, Role of the extrinsic pathway of blood coagulation in 
hemostasis and thrombosis. Arterioscler Thromb Vasc Biol, 2007. 27(8): p. 1687-93. 

68. Grover, S.P. and N. Mackman, Tissue Factor: An Essential Mediator of Hemostasis and Trigger of 
Thrombosis. Arterioscler Thromb Vasc Biol, 2018. 38(4): p. 709-725. 

69. Camire, R.M., Blood coagulation factor X: molecular biology, inherited disease, and engineered 
therapeutics. J Thromb Thrombolysis, 2021. 52(2): p. 383-390. 

70. Steen, M., Factor Va-factor Xa interactions: molecular sites involved in enzyme:cofactor assembly. 
Scand J Clin Lab Invest Suppl, 2002. 237: p. 5-11. 

71. Maas, C., C. Oschatz, and T. Renné, The plasma contact system 2.0. Semin Thromb Hemost, 2011. 
37(4): p. 375-81. 

72. Naudin, C., et al., Factor XII Contact Activation. Semin Thromb Hemost, 2017. 43(8): p. 814-826. 
73. Weidmann, H., et al., The plasma contact system, a protease cascade at the nexus of inflammation, 

coagulation and immunity. Biochim Biophys Acta Mol Cell Res, 2017. 1864(11 Pt B): p. 2118-2127. 



54 

 

74. Mohammed, B.M., et al., An update on factor XI structure and function. Thromb Res, 2018. 161: p. 
94-105. 

75. Mazurkiewicz-Pisarek, A., et al., The factor VIII protein and its function. Acta Biochim Pol, 2016. 
63(1): p. 11-16. 

76. Majumder, R., Phosphatidylserine Regulation of Coagulation Proteins Factor IXa and Factor VIIIa. The 
Journal of Membrane Biology, 2022. 255(6): p. 733-737. 

77. Crawley, J.T., et al., The central role of thrombin in hemostasis. J Thromb Haemost, 2007. 5 Suppl 1: 
p. 95-101. 

78. Sang, Y., et al., Interplay between platelets and coagulation. Blood Rev, 2021. 46: p. 100733. 
79. Lenting, P.J., O.D. Christophe, and C.V. Denis, von Willebrand factor biosynthesis, secretion, and 

clearance: connecting the far ends. Blood, 2015. 125(13): p. 2019-28. 
80. Kiouptsi, K. and C. Reinhardt, Physiological Roles of the von Willebrand Factor-Factor VIII Interaction. 

Subcell Biochem, 2020. 94: p. 437-464. 
81. Do, H., et al., Expression of factor VIII by murine liver sinusoidal endothelial cells. J Biol Chem, 1999. 

274(28): p. 19587-92. 
82. Shahani, T., et al., Human liver sinusoidal endothelial cells but not hepatocytes contain factor VIII. J 

Thromb Haemost, 2014. 12(1): p. 36-42. 
83. Pan, J., et al., Patterns of expression of factor VIII and von Willebrand factor by endothelial cell 

subsets in vivo. Blood, 2016. 128(1): p. 104-9. 
84. Hollestelle, M.J., et al., Tissue distribution of factor VIII gene expression in vivo--a closer look. Thromb 

Haemost, 2001. 86(3): p. 855-61. 
85. Jacquemin, M., et al., FVIII production by human lung microvascular endothelial cells. Blood, 2006. 

108(2): p. 515-7. 
86. Keragala, C.B. and R.L. Medcalf, Plasminogen: an enigmatic zymogen. Blood, 2021. 137(21): p. 2881-

2889. 
87. Chapin, J.C. and K.A. Hajjar, Fibrinolysis and the control of blood coagulation. Blood Rev, 2015. 29(1): 

p. 17-24. 
88. Kooistra, T., et al., Regulation of endothelial cell t-PA synthesis and release. Int J Hematol, 1994. 

59(4): p. 233-55. 
89. Huber, D., et al., Tissue-type plasminogen activator (t-PA) is stored in Weibel-Palade bodies in human 

endothelial cells both in vitro and in vivo. Blood, 2002. 99(10): p. 3637-45. 
90. Puy, C., et al., Endothelial PAI-1 (Plasminogen Activator Inhibitor-1) Blocks the Intrinsic Pathway of 

Coagulation, Inducing the Clearance and Degradation of FXIa (Activated Factor XI). Arterioscler 
Thromb Vasc Biol, 2019. 39(7): p. 1390-1401. 

91. Schleef, R.R. and D.J. Loskutoff, Fibrinolytic system of vascular endothelial cells. Role of plasminogen 
activator inhibitors. Haemostasis, 1988. 18(4-6): p. 328-41. 

92. Marchand, A., et al., miR-421 and miR-30c inhibit SERPINE 1 gene expression in human endothelial 
cells. PLoS One, 2012. 7(8): p. e44532. 

93. Dahlbäck, B. and B.O. Villoutreix, Regulation of blood coagulation by the protein C anticoagulant 
pathway: novel insights into structure-function relationships and molecular recognition. Arterioscler 
Thromb Vasc Biol, 2005. 25(7): p. 1311-20. 

94. Shaydakov, M.E., et al., Targeted gene expression analysis of human deep veins. J Vasc Surg Venous 
Lymphat Disord, 2021. 9(3): p. 770-780.e7. 

95. Medina, P., et al., Functional analysis of two haplotypes of the human endothelial protein C receptor 
gene. Arterioscler Thromb Vasc Biol, 2014. 34(3): p. 684-90. 

96. Fukudome, K. and C.T. Esmon, Identification, cloning, and regulation of a novel endothelial cell 
protein C/activated protein C receptor. J Biol Chem, 1994. 269(42): p. 26486-91. 

97. Laszik, Z., et al., Human protein C receptor is present primarily on endothelium of large blood vessels: 
implications for the control of the protein C pathway. Circulation, 1997. 96(10): p. 3633-40. 

98. Giri, H., et al., Thrombomodulin is essential for maintaining quiescence in vascular endothelial cells. 
Proc Natl Acad Sci U S A, 2021. 118(11). 



55 

 

99. Araujo, T.L.S., et al., Cell-surface HSP70 associates with thrombomodulin in endothelial cells. Cell 
Stress Chaperones, 2019. 24(1): p. 273-282. 

100. Faioni, E.M., et al., Expression of endothelial protein C receptor and thrombomodulin in the intestinal 
tissue of patients with inflammatory bowel disease. Crit Care Med, 2004. 32(5 Suppl): p. S266-70. 

101. Mast, A.E., Tissue Factor Pathway Inhibitor: Multiple Anticoagulant Activities for a Single Protein. 
Arterioscler Thromb Vasc Biol, 2016. 36(1): p. 9-14. 

102. Bajaj, M.S., et al., Cultured normal human hepatocytes do not synthesize lipoprotein-associated 
coagulation inhibitor: evidence that endothelium is the principal site of its synthesis. Proc Natl Acad 
Sci U S A, 1990. 87(22): p. 8869-73. 

103. Maroney, S.A. and A.E. Mast, Expression of tissue factor pathway inhibitor by endothelial cells and 
platelets. Transfus Apher Sci, 2008. 38(1): p. 9-14. 

104. Grabowski, E.F., et al., Shear stress decreases endothelial cell tissue factor activity by augmenting 
secretion of tissue factor pathway inhibitor. Arterioscler Thromb Vasc Biol, 2001. 21(1): p. 157-62. 

105. Bajaj, M.S., et al., Transcriptional expression of tissue factor pathway inhibitor, thrombomodulin and 
von Willebrand factor in normal human tissues. Thromb Haemost, 1999. 82(3): p. 1047-52. 

106. Rezaie, A.R. and H. Giri, Anticoagulant and signaling functions of antithrombin. J Thromb Haemost, 
2020. 18(12): p. 3142-3153. 

107. Neubauer, K. and B. Zieger, Endothelial cells and coagulation. Cell Tissue Res, 2022. 387(3): p. 391-
398. 

108. Wolberg, A.S., et al., Procoagulant activity in hemostasis and thrombosis: Virchow's triad revisited. 
Anesth Analg, 2012. 114(2): p. 275-85. 

109. Kwaan, H.C. and M.M. Samama, The significance of endothelial heterogeneity in thrombosis and 
hemostasis. Semin Thromb Hemost, 2010. 36(3): p. 286-300. 

110. Bochenek, M.L. and K. Schäfer, Role of Endothelial Cells in Acute and Chronic Thrombosis. 
Hamostaseologie, 2019. 39(2): p. 128-139. 

111. Pilard, M., et al., Endothelial Cell Phenotype, a Major Determinant of Venous Thrombo-Inflammation. 
Front Cardiovasc Med, 2022. 9: p. 864735. 

112. Eisenreich, A., et al., Cdc2-like kinases and DNA topoisomerase I regulate alternative splicing of tissue 
factor in human endothelial cells. Circ Res, 2009. 104(5): p. 589-99. 

113. Krikun, G., et al., Lipopolysaccharide appears to activate human endometrial endothelial cells 
through TLR-4-dependent and TLR-4-independent mechanisms. Am J Reprod Immunol, 2012. 68(3): 
p. 233-7. 

114. Folco, E.J., et al., Neutrophil Extracellular Traps Induce Endothelial Cell Activation and Tissue Factor 
Production Through Interleukin-1α and Cathepsin G. Arterioscler Thromb Vasc Biol, 2018. 38(8): p. 
1901-1912. 

115. Yang, X., et al., Extracellular histones induce tissue factor expression in vascular endothelial cells via 
TLR and activation of NF-κB and AP-1. Thromb Res, 2016. 137: p. 211-218. 

116. Liu, Y., et al., Purinergic P2Y2 Receptor Control of Tissue Factor Transcription in Human Coronary 
Artery Endothelial Cells: NEW AP-1 TRANSCRIPTION FACTOR SITE AND NEGATIVE REGULATOR. J Biol 
Chem, 2016. 291(4): p. 1553-1563. 

117. Moriguchi, T. and B.E. Sumpio, PECAM-1 phosphorylation and tissue factor expression in HUVECs 
exposed to uniform and disturbed pulsatile flow and chemical stimuli. J Vasc Surg, 2015. 61(2): p. 
481-8. 

118. Abe, R., et al., Varying effects of hemodynamic forces on tissue factor RNA expression in human 
endothelial cells. J Surg Res, 2011. 170(1): p. 150-6. 

119. Chen, Y., et al., CRP regulates the expression and activity of tissue factor as well as tissue factor 
pathway inhibitor via NF-kappaB and ERK 1/2 MAPK pathway. FEBS Lett, 2009. 583(17): p. 2811-8. 

120. Kothari, H., U.R. Pendurthi, and L.V. Rao, Analysis of tissue factor expression in various cell model 
systems: cryptic vs. active. J Thromb Haemost, 2013. 11(7): p. 1353-63. 

121. Antoniak, S. and N. Mackman, Editorial Commentary: Tissue factor expression by the endothelium: 
Coagulation or inflammation? Trends Cardiovasc Med, 2016. 26(4): p. 304-5. 



56 

 

122. Witkowski, M. and U. Rauch, Letter to the Editor: Tissue factor of endothelial origin: Just another 
brick in the wall? Trends Cardiovasc Med, 2017. 27(2): p. 155-156. 

123. Witkowski, M., U. Landmesser, and U. Rauch, Tissue factor as a link between inflammation and 
coagulation. Trends Cardiovasc Med, 2016. 26(4): p. 297-303. 

124. Bavendiek, U., et al., Induction of Tissue Factor Expression in Human Endothelial Cells by CD40 Ligand 
Is Mediated via Activator Protein 1, Nuclear Factor &#x3ba;B, and Egr-1 *. Journal of Biological 
Chemistry, 2002. 277(28): p. 25032-25039. 

125. Borgel, D., et al., Inflammation in deep vein thrombosis: a therapeutic target? Hematology, 2019. 
24(1): p. 742-750. 

126. Consortium, G.T., Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: 
multitissue gene regulation in humans. Science, 2015. 348(6235): p. 648-60. 

127. Ashburner, M., et al., Gene ontology: tool for the unification of biology. The Gene Ontology 
Consortium. Nat Genet, 2000. 25(1): p. 25-9. 

128. Mi, H., et al., Large-scale gene function analysis with the PANTHER classification system. Nat Protoc, 
2013. 8(8): p. 1551-66. 

129. Mi, H., et al., PANTHER version 10: expanded protein families and functions, and analysis tools. 
Nucleic Acids Res, 2016. 44(D1): p. D336-42. 

130. Ponten, F., K. Jirstrom, and M. Uhlen, The Human Protein Atlas - a tool for pathology. Journal of 
Pathology, 2008. 216(4): p. 387-393. 

131. Uhlen, M., et al., Proteomics. Tissue-based map of the human proteome. Science, 2015. 347(6220): p. 
1260419. 

132. Langfelder, P. and S. Horvath, WGCNA: an R package for weighted correlation network analysis. BMC 
Bioinformatics, 2008. 9: p. 559. 

133. Hao, Y., et al., Integrated analysis of multimodal single-cell data. Cell, 2021. 184(13): p. 3573-
3587.e29. 

134. Sun, W., et al., snRNA-seq reveals a subpopulation of adipocytes that regulates thermogenesis. 
Nature, 2020. 587(7832): p. 98-102. 

135. Guo, J., et al., The adult human testis transcriptional cell atlas. Cell Res, 2018. 28(12): p. 1141-1157. 
136. Rouillard, A.D., et al., The harmonizome: a collection of processed datasets gathered to serve and 

mine knowledge about genes and proteins. Database (Oxford), 2016. 2016. 
137. Hamann, J., et al., International Union of Basic and Clinical Pharmacology. XCIV. Adhesion G protein-

coupled receptors. Pharmacol Rev, 2015. 67(2): p. 338-67. 
138. Favara, D.M., et al., Elevated expression of the adhesion GPCR ADGRL4/ELTD1 promotes endothelial 

sprouting angiogenesis without activating canonical GPCR signalling. Scientific Reports, 2021. 11(1): 
p. 8870. 

139. Favara, D.M., et al., ADGRL4/ELTD1 Silencing in Endothelial Cells Induces ACLY and SLC25A1 and 
Alters the Cellular Metabolic Profile. Metabolites, 2019. 9(12). 

140. Masiero, M., et al., A core human primary tumor angiogenesis signature identifies the endothelial 
orphan receptor ELTD1 as a key regulator of angiogenesis. Cancer Cell, 2013. 24(2): p. 229-41. 

141. Butler, Lynn M., et al., Analysis of Body-wide Unfractionated Tissue Data to Identify a Core Human 
Endothelial Transcriptome. Cell Systems, 2016. 3(3): p. 287-301.e3. 

142. Dusart, P., et al., A Systems-Based Map of Human Brain Cell-Type Enriched Genes and Malignancy-
Associated Endothelial Changes. Cell Rep, 2019. 29(6): p. 1690-1706.e4. 

143. Norreen-Thorsen, M., et al., A human adipose tissue cell-type transcriptome atlas. Cell Rep, 2022. 
40(2): p. 111046. 

144. Dusart, P., et al., A tissue centric atlas of cell type transcriptome enrichment signatures. bioRxiv, 
2023: p. 2023.01.10.520698. 

145. Gao, Y. and J.R. Yates Iii, Protein Analysis by Shotgun Proteomics, in Mass Spectrometry‐Based 
Chemical Proteomics. 2019. p. 1-38. 

146. Zhang, L. and J.E. Elias, Relative Protein Quantification Using Tandem Mass Tag Mass Spectrometry. 
Methods Mol Biol, 2017. 1550: p. 185-198. 



57 

 

147. Pergande, M.R. and S.M. Cologna, Isoelectric Point Separations of Peptides and Proteins. Proteomes, 
2017. 5(1). 

148. UniProt: the Universal Protein Knowledgebase in 2023. Nucleic Acids Res, 2023. 51(D1): p. D523-
d531. 

149. Kustatscher, G., et al., Understudied proteins: opportunities and challenges for functional proteomics. 
Nature Methods, 2022. 19(7): p. 774-779. 

150. Sinha, S., et al., Darkness in the Human Gene and Protein Function Space: Widely Modest or Absent 
Illumination by the Life Science Literature and the Trend for Fewer Protein Function Discoveries Since 
2000. PROTEOMICS, 2018. 18(21-22): p. 1800093. 

151. Stoeger, T., et al., Large-scale investigation of the reasons why potentially important genes are 
ignored. PLoS Biol, 2018. 16(9): p. e2006643. 

152. Kustatscher, G., et al., An open invitation to the Understudied Proteins Initiative. Nature 
Biotechnology, 2022. 40(6): p. 815-817. 

153. Haque, A., et al., A practical guide to single-cell RNA-sequencing for biomedical research and clinical 
applications. Genome Med, 2017. 9(1): p. 75. 

154. Hicks, S.C., et al., Missing data and technical variability in single-cell RNA-sequencing experiments. 
Biostatistics, 2018. 19(4): p. 562-578. 

155. Zheng, Y., et al., SCC: an accurate imputation method for scRNA-seq dropouts based on a mixture 
model. BMC Bioinformatics, 2021. 22(1): p. 5. 

156. Jiang, R., et al., Statistics or biology: the zero-inflation controversy about scRNA-seq data. Genome 
Biology, 2022. 23(1): p. 31. 

157. Glastonbury, C.A., et al., Cell-Type Heterogeneity in Adipose Tissue Is Associated with Complex Traits 
and Reveals Disease-Relevant Cell-Specific eQTLs. The American Journal of Human Genetics, 2019. 
104(6): p. 1013-1024. 

158. Chu, T., et al., Cell type and gene expression deconvolution with BayesPrism enables Bayesian 
integrative analysis across bulk and single-cell RNA sequencing in oncology. Nature Cancer, 2022. 
3(4): p. 505-517. 

159. Medina-Leyte, D.J., et al., Use of Human Umbilical Vein Endothelial Cells (HUVEC) as a Model to 
Study Cardiovascular Disease: A Review. Applied Sciences, 2020. 10(3): p. 938. 

160. Chang, M.W., et al., Comparison of early passage, senescent and hTERT immortalized endothelial 
cells. Exp Cell Res, 2005. 309(1): p. 121-36. 

161. Viemann, D., et al., TNF induces distinct gene expression programs in microvascular and 
macrovascular human endothelial cells. J Leukoc Biol, 2006. 80(1): p. 174-85. 

162. Brenes, A., et al., Multibatch TMT Reveals False Positives, Batch Effects and Missing Values. Mol Cell 
Proteomics, 2019. 18(10): p. 1967-1980. 

163. Ohori, M., et al., Gene regulatory network analysis defines transcriptome landscape with alternative 
splicing of human umbilical vein endothelial cells during replicative senescence. BMC Genomics, 
2021. 22(1): p. 869. 

164. Feng, H., et al., Interferon regulatory factor 1 (IRF1) and anti-pathogen innate immune responses. 
PLoS Pathog, 2021. 17(1): p. e1009220. 

165. Li, Y., et al., Ataxin-10 Inhibits TNF-α-Induced Endothelial Inflammation via Suppressing Interferon 
Regulatory Factor-1. Mediators Inflamm, 2021. 2021: p. 7042148. 

166. Lechleitner, S., et al., Interferon enhances tumor necrosis factor-induced vascular cell adhesion 
molecule 1 (CD106) expression in human endothelial cells by an interferon-related factor 1-
dependent pathway. J Exp Med, 1998. 187(12): p. 2023-30. 

167. Kautz, B., et al., SHP1 protein-tyrosine phosphatase inhibits gp91PHOX and p67PHOX expression by 
inhibiting interaction of PU.1, IRF1, interferon consensus sequence-binding protein, and CREB-binding 
protein with homologous Cis elements in the CYBB and NCF2 genes. J Biol Chem, 2001. 276(41): p. 
37868-78. 

168. Park, J., et al., Elevated level of SUMOylated IRF-1 in tumor cells interferes with IRF-1-mediated 
apoptosis. Proc Natl Acad Sci U S A, 2007. 104(43): p. 17028-33. 



58 

 

169. Garvin, A.J., et al., GSK3β-SCFFBXW7α mediated phosphorylation and ubiquitination of IRF1 are 
required for its transcription-dependent turnover. Nucleic Acids Res, 2019. 47(9): p. 4476-4494. 

170. Sgarbanti, M., et al., IκB kinase ε targets interferon regulatory factor 1 in activated T lymphocytes. 
Mol Cell Biol, 2014. 34(6): p. 1054-65. 

171. Lin, R. and J. Hiscott, A role for casein kinase II phosphorylation in the regulation of IRF-1 
transcriptional activity. Mol Cell Biochem, 1999. 191(1-2): p. 169-80. 

172. Guo, Y.J., et al., ERK/MAPK signalling pathway and tumorigenesis. Exp Ther Med, 2020. 19(3): p. 
1997-2007. 

173. Smits, P.J., et al., Endothelial MAP2K1 mutations in arteriovenous malformation activate the 
RAS/MAPK pathway. Biochem Biophys Res Commun, 2020. 529(2): p. 450-454. 

174. Lu, N. and C.J. Malemud, Extracellular Signal-Regulated Kinase: A Regulator of Cell Growth, 
Inflammation, Chondrocyte and Bone Cell Receptor-Mediated Gene Expression. Int J Mol Sci, 2019. 
20(15). 

175. Goebeler, M., et al., The MKK6/p38 stress kinase cascade is critical for tumor necrosis factor-alpha-
induced expression of monocyte-chemoattractant protein-1 in endothelial cells. Blood, 1999. 93(3): p. 
857-65. 

176. Goedert, M., et al., Activation of the novel stress-activated protein kinase SAPK4 by cytokines and 
cellular stresses is mediated by SKK3 (MKK6); comparison of its substrate specificity with that of 
other SAP kinases. Embo j, 1997. 16(12): p. 3563-71. 

177. Raingeaud, J., et al., MKK3- and MKK6-regulated gene expression is mediated by the p38 mitogen-
activated protein kinase signal transduction pathway. Mol Cell Biol, 1996. 16(3): p. 1247-55. 

178. Kang, J.I., et al., PKR protein kinase is activated by hepatitis C virus and inhibits viral replication 
through translational control. Virus Res, 2009. 142(1-2): p. 51-6. 

179. Samuel, C.E., The eIF-2 alpha protein kinases, regulators of translation in eukaryotes from yeasts to 
humans. J Biol Chem, 1993. 268(11): p. 7603-6. 

180. Goh, K.C., M.J. deVeer, and B.R. Williams, The protein kinase PKR is required for p38 MAPK activation 
and the innate immune response to bacterial endotoxin. Embo j, 2000. 19(16): p. 4292-7. 

181. Silva, A.M., et al., Protein kinase R (PKR) interacts with and activates mitogen-activated protein 
kinase kinase 6 (MKK6) in response to double-stranded RNA stimulation. J Biol Chem, 2004. 279(36): 
p. 37670-6. 

182. Taghavi, N. and C.E. Samuel, Protein kinase PKR catalytic activity is required for the PKR-dependent 
activation of mitogen-activated protein kinases and amplification of interferon beta induction 
following virus infection. Virology, 2012. 427(2): p. 208-16. 

183. Pfaller, C.K., et al., Protein kinase PKR and RNA adenosine deaminase ADAR1: new roles for old 
players as modulators of the interferon response. Curr Opin Immunol, 2011. 23(5): p. 573-82. 

184. McAllister, C.S., N. Taghavi, and C.E. Samuel, Protein kinase PKR amplification of interferon β 
induction occurs through initiation factor eIF-2α-mediated translational control. J Biol Chem, 2012. 
287(43): p. 36384-92. 

185. Takada, Y., et al., Genetic deletion of PKR abrogates TNF-induced activation of IkappaBalpha kinase, 
JNK, Akt and cell proliferation but potentiates p44/p42 MAPK and p38 MAPK activation. Oncogene, 
2007. 26(8): p. 1201-12. 

186. Bonnet, M.C., et al., PKR stimulates NF-kappaB irrespective of its kinase function by interacting with 
the IkappaB kinase complex. Mol Cell Biol, 2000. 20(13): p. 4532-42. 

 

 
 
 
 
 
 



59 

 

Paper I, II, II 

 

 

 

 

 

 

 

Paper I 

 
 
 
 
 
 
 
 



60 

 

 



Resource
A human adipose tissue ce
ll-type transcriptome
atlas
Graphical abstract
Highlights
d Uses publicly available adipose tissue bulk RNA-seq data

from two human fat depots

d Enriched genes in 10 cell types profiled using an integrative

correlation analysis

d Comparative analysis identifies depot- and sex-specific cell-

type-enriched genes

d Method circumvents technical challenges with adipose

tissue scRNA-seq analysis
Norreen-Thorsen et al., 2022, Cell Reports 40, 111046
July 12, 2022 ª 2022 The Authors.
https://doi.org/10.1016/j.celrep.2022.111046
Authors

Marthe Norreen-Thorsen,

Eike Christopher Struck, Sofia Öling, ...,
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SUMMARY
The importance of defining cell-type-specific genes is well acknowledged. Technological advances facilitate
high-resolution sequencing of single cells, but practical challenges remain. Adipose tissue is composed pri-
marily of adipocytes, large buoyant cells requiring extensive, artefact-generating processing for separation
and analysis. Thus, adipocyte data are frequently absent from single-cell RNA sequencing (scRNA-seq) data-
sets, despite being the primary functional cell type. Here, we decipher cell-type-enriched transcriptomes
from unfractionated human adipose tissue RNA-seq data. We profile all major constituent cell types, using
527 visceral adipose tissue (VAT) or 646 subcutaneous adipose tissue (SAT) samples, identifying over
2,300 cell-type-enriched transcripts. Sex-subset analysis uncovers a panel of male-only cell-type-enriched
genes. By resolving expression profiles of genes differentially expressed between SAT and VAT, we identify
mesothelial cells as the primary driver of this variation. This study provides an accessible method to profile
cell-type-enriched transcriptomes using bulk RNA-seq, generating a roadmap for adipose tissue biology.
INTRODUCTION

Adipose tissue acts as an energy depot, provides insulation, and

is an important endocrine organ that communicates with other

tissues to regulate systemic metabolism (Kahn et al., 2019).

Most adipose tissue in adults is white adipose tissue, broadly

categorized as visceral adipose tissue (VAT), located deep in

the abdomen and around internal organs, or subcutaneous

adipose tissue (SAT), located under the skin. Excess VAT is

associated with metabolic disorders, e.g., diabetes and cardio-

vascular disease (Britton et al., 2013; Chait and den Hartigh,

2020; Oikonomou and Antoniades, 2019), while SAT is associ-

ated with reduced risk, possibly even protection (Lumish et al.,

2020). Recent studies have profiled differences in gene expres-

sion between adipose depots using bulk RNA sequencing

(RNA-seq) (Bradford et al., 2019; Schleinitz et al., 2020), but

the relative contribution of specific cell types to the observed

differences is not known.

Adipose tissue contains adipocytes, adipocyte progenitor

cells, endothelial cells, smooth muscle cells, stromal cells, and

immune cell types, including macrophages and T cells (Lu
This is an open access article und
et al., 2019). Single-cell RNA-seq (scRNA-seq) has been used

to profile macrophages, endothelial cells, fibroblasts, and adipo-

cyte progenitors from human VAT or SAT (Acosta et al., 2017;

Esteve et al., 2019; Vijay et al., 2020). Such studies provide

high resolution of different cell (sub)types but are limited by the

requirement for fresh tissue, low number of biological replicates,

and compromised read depth (Beliakova-Bethell et al., 2014;

Rizzetto et al., 2017; Saliba et al., 2014; Ziegenhain et al.,

2017). Furthermore, the analysis of adipocytes, the major

functional cell type in adipose tissue, is challenging; with high

buoyancy and large size, they require extensive, artefact-gener-

ating proteolytic digestion for tissue separation (Rondini and

Granneman, 2020; Viswanadha and Londos, 2006), and thus,

adipocyte data are absent from many scRNA-seq datasets

(e.g., Hildreth et al., 2021; Karlsson et al., 2021; Tabula Muris

et al., 2018; Tabula Sapiens et al., 2022; Vijay et al., 2020). Pro-

genitor cells isolated from human adipose tissue have been used

to generate adipocytes in culture for analysis (Min et al., 2019),

but potential phenotype modifications, due to induced differen-

tiation in the absence of the native microenvironment, are a lim-

itation of this model. Transgenic labeling of cell-type-specific
Cell Reports 40, 111046, July 12, 2022 ª 2022 The Authors. 1
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mRNA (Roh et al., 2017) has been used to overcome these

technical problems for analysis of murine adipocytes, but this

cannot be applied to human tissue. Adipocytes have been

analyzed using single-nuclei RNA-seq, circumventing some

scRNA-seq limitations, but transcript expression can differ be-

tween nuclei and cytoplasm (Thrupp et al., 2020). Non-coding

RNA is emerging as a novel, important class of molecules in

adipose biology (Squillaro et al., 2020; Xu and Sun, 2020), but

to date, there is no description of adipose-cell-type-specific

non-coding RNAs.

Here, using an analysis approach to circumvent technical

challenges associated with profiling individual cell types in adi-

pose tissue, we identified over 2,300 transcripts with cell-type-

enriched expression. Of all cell types profiled, adipocytes had

the highest number of enriched transcripts and the greatest pro-

portion of non-coding. Comparisons between female and male

samples revealed a panel of cell-type-enriched Y-linked tran-

scripts, of which three were adipocyte enriched in both depots.

Finally, we resolve the overall differences in gene expression

between VAT and SAT to a cell-type level, uncovering the pri-

mary driver to be cell-type composition, specifically the pres-

ence of mesothelial cells in VAT, but not SAT. Data are available

through the Human Protein Atlas portal (www.proteinatlas.org/

humanproteome/tissue+cell+type/adipose+tissue).

RESULTS

Identification of cell-type transcriptome profiles in
visceral adipose tissue
Cell-type reference transcripts correlate across

unfractionated adipose RNA-seq data

VAT is linked to the development of metabolic dysfunction and

associated disorders (Chait and den Hartigh, 2020). To identify

cell-type-enriched transcriptome profiles, we performed an

analysis based on our previously reported method (Butler

et al., 2016; Dusart et al., 2019) (concept summary, Figures 1A

and S1A), using VAT RNA-seq data (n = 527) fromGenotype-Tis-

sue Expression (GTEx) portal v.8 (www.gtexportal.org) (Con-

sortium, 2015). For each cell type, a panel of three marker genes

were selected (‘‘reference transcripts’’ [Ref.T.s]). Correlation co-

efficients (corr.) between the expression levels of the Ref.T.s and

all other sequenced transcripts were calculated across samples;

those that highly and selectively correlated with the Ref.T. panel
Figure 1. Integrative co-expression analysis of unfractionated human
type identities

(A) Overview of analysis concept; human VAT RNA-seq data (n = 527 individuals) w

cell-type-specific reference transcripts (Ref.T.s). Integrative co-expression analy

(B) Heatmap of Spearman correlation (corr.) values between Ref.T. panels selec

(MesoC), endothelial (EC), smooth muscle (SMC), macrophage (MC), neutrophil

(C) Mean corr. values between genes above designated threshold (see results s

(D) (i) For transcripts above the designated corr. threshold with macrophage (squ

(difference between mean corr. with MC and NP Ref.T.s) was plotted versus ‘‘

Corresponding colored lines indicate numbers above the designated threshold.

square symbol on the same x axis dimension). (ii) scRNA-seq data from the Huma

intermediate, and non-classical monocytes and neutrophils from whole blood.

(E and F) Comparative plots for transcripts are classified as (E) adipocyte progenito

genes) and (F) MC or AP enriched.

See also Figures S1 and S2 and Tables S1, tabs 1, 4a, and 4b, and S2, tab 1.
were classified as enriched in the corresponding cell type

(Figure S1A). We shortlisted candidate Ref.T.s for all main

constituent cell types, including (1) well-established markers

identified in older ‘‘none-omics’’ studies (e.g., Hu et al., 1996);

(2) markers identified by scRNA-seq of mouse (Tabula Muris

et al., 2018) or human (Han et al., 2020) adipose tissue; (3) marker

lists from large databases containing data frommultiple sources,

e.g., Cell Marker (Zhang et al., 2019) and PanglaoDB (Franzen

et al., 2019); and (4) commercial marker panels (e.g., https://

www.rndsystems.com/). VAT RNA-seq data were processed

to generate Spearman correlation coefficients (corr.s)

between all candidate Ref.T.s and a panel selected to represent

each cell type, based on the following criteria: (1) a high corr.

(minimum 0.70) between Ref.T.s within each cell type panel (Fig-

ure 1B; Table S1, tab 1, table A), consistent with cell type co-

expression; adipocyte panel (ADIPOQ, LIPE, and PLIN1;

mean corr. ± SD 0.91 ± 0.002), adipocyte progenitor panel

(FKBP10, COL6A1, and COL6A2; 0.86 ± 0.06), mesothelial

panel (UPK3B, MSLN, and KRT19; 0.92 ± 0.02), endothelial

panel (MMRN2, ESAM, and CDH5; 0.80 ± 0.03), smooth

muscle panel (KCNMB1, CNN1, and MYH11; 0.80 ± 0.06),

macrophage panel (CD68, C1QC, and FCER1G; 0.83 ± 0.03),

neutrophil panel (CSF3R, FCGR3B, and CXCR2; 0.81 ± 0.04),

mast cell panel (CPA3, TPSB2, and TPSAB1; 0.83 ± 0.03),

T cell panel (TRBC2, CD6, and CD3E; 0.89 ± 0.02), and plasma

cell panel (IGKC, JCHAIN, and MZB1; 0.89 ± 0.04; all p < 4.0 x

10-99); (2) a low corr. between Ref.T.s in different cell type panels

(Figure 1B; Table S1, tab 1, table A), consistent with high speci-

ficity of each panel (mean inter-panel corr. ± SD 0.05 ± 0.25); and

(3) a normal distribution of Ref.T. expression across samples

(Figure S1B). Candidate B cell Ref.T.s were lowly expressed in

VAT, with low intra-panel corr. (Table S1, tab 2, table A). In a

comparative dataset, human spleen RNA-seq, GTEx v.8 (n =

241), selected due to high B cell content, the candidate B cell

Ref.T.s were highly expressed and strongly correlated with

each other (Table S1, tab 2, table B). Thus, B cells were excluded

from subsequent profiling of VAT, due to presumed low numbers

or absence from a large proportion of VAT samples. Candidates

within the panels selected as potential Ref.T.s for pericytes,

lymphatic endothelial cells, and dendritic cells did not correlate

as well as those selected to represent other cell types

(Table S1, tab 2, tables C, D, and E, respectively), consistent

with previous reports that these cell types lack multiple highly
visceral adipose tissue (VAT) RNA-seq can resolve constituent cell-

ere retrieved fromGTEx portal v.8 and constituent cells ‘‘virtually tagged’’ using

sis was used to identify transcripts with comparable profiles.

ted for VAT cell types: adipocyte (AC), adipocyte progenitor (AP), mesothelial

(NP), mast cell (MastC), T cell (TC), and plasma cell (PlasC).

ection for criteria) and all Ref.T. panels.

ares, MC) or neutrophil (circles, NP) Ref.T. panels, the ‘‘differential corr. score’’

enrichment ranking’’ (position in each respective list; highest corr. = rank 1).

Bold text annotations show transcripts in both MC and NP lists (circular and

n Protein Blood Atlas (Uhlen et al., 2019) showing gene expression in classical,

r (AP) or mesothelial (MesoC) enriched (shaded blue box indicates co-enriched
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specific pan-markers (Armulik et al., 2011; Sichien et al., 2017;

Takeda et al., 2019). Thus, they were not included in the subse-

quent analysis.

Reference transcripts analysis can identify distinct cell-

type-associated transcripts

We generated corr.s between each Ref.T. and all sequenced

transcripts (�53,625) across VAT samples. The proportion of

constituent cell types between samples vary, due to both sam-

pling and heritability factors (Glastonbury et al., 2019), but ratios

between cell-specific co-expressed genes should remain con-

stant. Thus, a high corr. of a given transcript with all Ref.T.s in

any one panel is consistent with expression in the corresponding

cell type. For each Ref.T. panel, a list of such transcripts was

generated using a corr. value threshold cutoff, which was either

(1) that above which >95% of transcripts reached this threshold

with only that Ref.T. panel or (2) R0.50, whichever was higher

(for thresholds, see Table S1, Tab 1, Table B). Resultant

transcripts were generally well separated (Figure 1C), but some

overlap was observed between closely related cell types, e.g.,

macrophages [MCs] and neutrophils [NPs]; Figure 1C, row 2).

To compare specific transcripts in two cell-type classified

groups, e.g., MC and NP enriched (Figure 1D.i), the following

was calculated for each transcript: (1) the ‘‘differential correlation

score,’’ defined as the difference between the mean corr. with

the two sets of Ref.T.s, i.e., MC panel (CD68, C1QC, and

FCER1G) and NP panel (CSF3R, FCGR3B, and CXCR2), and

(2) the ‘‘enrichment ranking,’’ based on the mean corr. value

with the Ref.T. panel (rank 1 = highest corr.). Three transcripts

were provisionally classified as both MC and NP enriched:

LILRA2, MNDA, and FPR1 (Figure 1D.i; gene IDs in bold text).

LILRA2 had comparable corr. with both MC and NP Ref.T.

panels (mean corr. ± SD: 0.61 ± 0.07 and 0.65 ± 0.07, respec-

tively), while MNDA and FPR1, despite reaching the threshold

for both, were more highly correlated with the NP Ref.T. panel

than the MC panel (MNDA: NP 0.71 ± 0.04 versus MC 0.62 ±

0.08 and FPR1: NP 0.72 ± 0.07 versus MC 0.63 ± 0.14). We ex-

tracted expression data for these genes in monocytes (MonoC)

and neutrophils in blood (Figure 1D.ii) from scRNA-seq gener-

ated as part of our Human Protein Atlas (HPA) blood atlas (Uhlen

et al., 2019). In all three cases, these transcripts were expressed

in both MonoC and NP (Figure 1D.ii, central column). In contrast,

transcripts we classified as enriched only in MC (CD300C,CD86,

and MS4A4A) or only in NP (ARG1, PROK2, and MGAM) were

predominantly expressed in MonoC or NP in blood, respectively

(Figure 1D.ii). Although MonoC and MC are not directly compa-

rable, themajority of themonocyte transcriptional profile ismain-

tained during differentiation (Martinez et al., 2006), and so these
Figure 2. Integrative co-expression analysis of unfractionated RNA-se

adipose tissue (VAT) cell types

(A) Heatmap of protein-coding transcripts classified as cell type enriched (indica

with the corresponding Ref.T. panel versus highest mean corr. coefficient amon

(B) Human VAT RNA-seq data (n = 527 individuals) were subject toweighted corre

dendrogram (colors correspond to cell types as annotated in A). (ii) Distribution of

groups.

(C) Human adipose tissue sections were stained using antibodies targeting protei

macrophage, or T cell enriched. Scale bar, 200 mm; inset, 50 mm.

See also Table S2, tab 1, and Figure S3.
data support our annotated classifications. These annotations

were also consistent with data from scRNA-seq of macrophages

and neutrophils from human SAT (Tabula Sapiens et al., 2022;

Figure S2B). Thus, to exclude potentially dual-enriched tran-

scripts from cell-type classification, we excluded transcripts

with a differential corr. value < 0.1 versus any other Ref.T. panel.

The highest number of transcripts excluded for this reason were

those that correlated with both adipocyte progenitor cell and

mesothelial cell Ref.T. panels; 84 transcripts were excluded

from cell-type classification due to likely co-expression (Fig-

ure 1E; Table S1, tab 4a). Gene ontology (GO) and reactome

analysis of this gene list revealed over-representation of terms

related to ‘‘plasma membrane bounded cell projection

organization’’ (false discovery rate [FDR] 1.26 3 10�2) and

‘‘BBSome-mediated cargo targeting to cilium’’ (FDR

8.093 10�3), respectively (Table S1, tab 4b, with selected exam-

ples highlighted in Figure 1E), suggesting a possible link to the

importance of primary cilia in the regulation of adipose tissue

expansion (Hilgendorf, 2021; Ritter et al., 2018). In most other

cases, transcripts were well separated between cell types,

e.g., MC classified versus adipocyte progenitor (AP) classified

(Figure 1F). We classified 2,343 transcripts as cell-type enriched

in VAT (Tables S1, tab 1, table B, and S2, tab 1), the majority of

which (2,036 [87%]) were protein coding (Figure 2A).

Independent methods and datasets support cell-type
classifications
Unsupervised weighted network correlation analysis

(WGNCA) is consistent with Ref.T. analysis

As our analysis method is based on manually selected Ref.T.

panels, cell-type classification is subject to an input bias. As a

comparison, we analyzed the same dataset using an unbiased

WGCNA (Langfelder and Horvath, 2008). Corr.s between all tran-

scripts were calculated, and they were subsequently clustered

into related groups, based on expression similarity (Figure 2B.i).

Members of the same Ref.T. panels clustered into the same

WGCNA group, e.g., adipocyte Ref.T.s (ADIPOQ, LIPE, and

PLIN1; cluster 8, orange box) and mesothelial Ref.T.s (UPK3B,

MSLN, and KRT19; cluster 4, light gray box, Figure 2B.i), or

into adjacent leaves on the same clade, e.g., macrophage

Ref.T.s (CD68, C1QC, and FCER1G; group 25 and 83, blue

box, Figure 2B.i). The locations of all other Ref.T.s are indicated

by the respective colored boxes. Thus, WGCNA results were

consistent with intra-panel Ref.T.s having shared expression

profiles (i.e., in a common cell type). Protein-coding transcripts

classified as cell-type enriched (Figure 2A) predominantly clus-

tered into the same WGCNA group(s) as the corresponding
q reveals enriched protein-coding transcriptomes of human visceral

ted by horizontal colored bars), showing differential score between mean corr.

g the other Ref.T. panels.

lation network analysis (WGCNA). (i) Colored squares indicateRef.T. location on

protein-coding transcripts classified as cell type enriched across dendrogram

ns encoded by transcripts classified as adipocyte, endothelial, smooth muscle,
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Ref.T.s, e.g., mast cell enriched (lime green bar, group 137) and

macrophage enriched (blue bars, groups 25 and 83;, (Fig-

ure 2B.ii) and, in some cases, different leaves on a common

clade, e.g., adipocyte enriched (orange bars, groups 8, 16,

105, 121, 28, 44, and 38) and smooth muscle cells (purple

bars, groups 36, 127, and 115) Figure 2B.ii). Thus, protein-cod-

ing transcripts classified as cell-type enriched also clustered

together in an unbiased WGCNA, consistent with cell type co-

expression. Protein profiling of human adipose tissue is provided

for selected adipocyte-, endothelial-, smooth-muscle-cell-,

macrophage- and T-cell-enriched transcripts (Figures 2C

and S3A).

Cell-type-enriched transcripts in visceral adipose tissue
Adipocytes had the most enriched transcripts (n = 700), of which

the greatest proportion were protein coding (Figure 3A.i, light

gray circles), followed by long non-coding RNA (lncRNA) and

pseudogenes (Figure 3A.i; Vertebrate Genome Annotation

[VEGA] database; Harrow et al., 2014). Mesothelial cells (Fig-

ure 3C.i), and adipocyte progenitor cells (Figure 3B.i) also had

a relatively high number of enriched transcripts (n = 532 and

272, respectively), while immune cells, and other non-tissue-

specific cells, had fewer: endothelial (n = 157) (Figure 3D.i),

smooth muscle (n = 142) (Figure 3E.i), macrophages (n = 151)

(Figure 3F.i), neutrophils (n = 56) (Figure 3G.i), mast cells

(n = 19) (Figure 3H.i), T cells (n = 200) (Figure 3I.i), and plasma

cells (n = 114) (Figure 3J.i; Table S2, tab 1). In most cell types,

lncRNAs represented the majority of transcripts outside

those classified as protein coding (Figures 3A.i–3J.i), with the

notable exception of T cells and plasma cells, where the majority

were T cell receptor (TR) (Figure 3I.i) or immunoglobulin (IG)

genes (Figure 3J.i), respectively. GO and reactome analysis

(Ashburner et al., 2000; Gene Ontology, 2021) was performed

to identify over-represented classes and pathways in each list

of enriched transcripts (Table S2, tabs 2–11). Results were

consistent with known cell functions. For example, for adipo-

cyte-enriched transcripts, most significant GO terms included

‘‘small moleculemetabolic process’’ (FDR 2.53 10�60) and ‘‘car-

boxylic acid metabolic process’’ (FDR 1.4 3 10�57) and reac-

tome pathways included ‘‘metabolism’’ (FDR 2.9 3 10�70);

for smooth muscle-enriched transcripts, GO terms included

‘‘muscle system processes’’ (FDR 5.9 3 10�14) and reactome

pathways included ‘‘muscle contraction’’ (FDR 1.9 3 10�9); for

endothelial-cell-enriched transcripts, GO terms included ‘‘blood

vessel development’’ (FDR 8.8 3 10�10) and ‘‘angiogenesis’’

(FDR 1.1 3 10�9); and for neutrophil-enriched transcripts, GO

terms included ‘‘neutrophil activation’’ (FDR 1.93 10�18) and re-

actome pathways included ‘‘neutrophil degranulation’’ (FDR

5.6 3 10�19) (for all cell types, see Table S2, tabs 2–11, tables

Ai and Aii). We visualized the top 50 enriched protein-coding

transcripts for each cell type (Figures 3A.ii–3J.ii), ranked by high-

est mean corr. with the Ref.T. panel, to compare differential corr.
Figure 3. Core transcriptional identities of human VAT cell types

Cell-type-enriched transcripts in (A) adipocytes, (B) adipocyte progenitor c

(F) macrophages, (G) neutrophils, (H) mast cells, (I) T cells, and (J) plasma cells,

numbers below) and (ii) the top-50 protein-coding genes ranked by corr. score, wi

minus max corr. with any other Ref.T. panel) and mean TPM expression. TEC, to
values (corr. with corresponding cell type Ref.T. panel minus

max corr. with any other Ref.T. panel) and expression. Overall,

expression values for enriched genes were highest for adipo-

cytes (Figure 3A.ii), adipocyte progenitor cells (Figure 3B.ii),

endothelial cells (Figure 3D.ii), macrophages (Figure 3F.ii), and

plasma cells (Figure 3J.ii) and lowest for neutrophils, mast cells,

and T cells (Figures 3G.ii–3I.ii). However, cell-type-enriched tran-

scripts had a range of expression values, indicating variation in

regulatory mechanisms, transcript stability, or presence of cell

subtypes.

Cell-type-enriched non-coding transcripts in VAT

We classified 307 non-coding transcripts as cell-type enriched in

VAT, the highest number of which were in adipocytes (n = 144),

followed bymesothelial cells (n = 89) (Figure 4A; Table S2, tab 1).

Cell-enriched non-coding transcripts were typically expressed

at lower levels than cell-enriched protein-coding transcripts

(mean transcripts per million [TPM] ± SD, protein coding: 45.4

± 118.5 versus non-coding: 3.06 ± 5.2), with a higher frequency

of samples with low or no expression (mean % samples with

expression >0.1 TPM ± SD, coding 2.7 ± 7.8 versus non-coding

12.4 ± 14.9). Cell-type-enriched non-coding transcripts predom-

inantly clustered into the same WGCNA group(s)/clades as the

corresponding protein-coding Ref.T.s (Figures 4A.ii and 4A.iii,

Ref T. location marked by colored boxes), e.g., adipocyte en-

riched (orange ovals, groups 8, 16, 105, 121, 28, 44, and 38;

Figure 4A.iii), consistent with cell type co-expression. We visual-

ized up to the top 50 enriched non-coding transcripts for the four

cell types with the highest number (Figures 4B.i–4B.iv), ranked

by highest mean corr. with the Ref.T. panel, to compare differen-

tial corr. values (corr. with corresponding cell type Ref.T. panel

minus max corr. with any other Ref.T. panel) and expression.

Overall, expression values for non-coding enriched genes were

highest for adipocytes (Figure 4B.i). Although there is no compa-

rable existing dataset to validate these results, we used scRNA-

seq data from the analysis of human SAT (Tabula Sapiens et al.,

2022; Figure 4C.i) to make some comparisons. Although this

dataset does not include adipocytes or mesothelial cells

(those with the highest number of predicted enriched non-cod-

ing transcripts) and lacks data for many non-coding transcripts,

it provides supportive evidence for our classifications in the other

cell types (Figures 4C.ii–4C.viii). All enrichment scores for non-

coding transcripts can be searched via the web portal https://

cell-enrichment.shinyapps.io/noncoding/.

Identification of cell-type transcriptome profiles in

subcutaneous adipose tissue (SAT)

White adipose tissue is broadly classified by location; VAT is

intra-abdominal, adjacent to internal organs, while SAT lies un-

derneath the skin. The proportion of VAT to SAT increases in

obesity and is linked to metabolic dysregulation (Chait and den

Hartigh, 2020). In order to compare these two depots, SAT-

cell-type-enriched profiles were determined as described for

VAT, using human SAT RNA-seq data (n = 646) from GTEx portal
ells, (C) mesothelial cells, (D) endothelial cells, (E) smooth muscle cells,

displayed to show (i) proportional representation of transcript types (absolute

th differential expression scores (corr. with corresponding cell typeRef.T. panel

be experimentally confirmed. See also Table S2, tab 1, and Figures S4 and S5.
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v.8 (www.gtexportal.org; Consortium, 2015). Adipocyte, adipo-

cyte progenitor, endothelial, smooth muscle, macrophage,

mast cell, T cell and plasma cell Ref.T.s had high intra-panel

corr. (all >0.72; p < 9.0 3 10�98) with low inter-panel corr.

(Table S1, tab 3). However, theRef.T.s selected for themesothe-

lial cell and neutrophil panel in VAT did not correlate well with

each other in SAT (mesothelial Ref.T. panel [mean corr. ± SD]:

SAT 0.15 ± 0.04 versus VAT 0.92 ± 0.02; neutrophil Ref.T. panel:

SAT 0.62 ± 0.08 versus VAT 0.81 ± 0.04). Expression of these

genes was also much lower in SAT than VAT (mesothelial:

UPK3B [SAT versus VAT TPM] 1.4 versus 125.8, MSLN 0.3

versus 144.8, KRT19 14.1 versus 153.4; neutrophil: CSF3R

0.81 versus 37.8, FCGR3B 2.1 versus 8.8, CXCR2 0.9 versus

4.6), indicating a low number, or absence, of these cell types in

SAT, consistent with reports that mesothelial cells are absent

(Esteve et al., 2019) and neutrophils preferentially infiltrate VAT

rather than SAT (Elgazar-Carmon et al., 2008). Thus, these cell

types were excluded from subsequent profiling of SAT. As for

VAT, SAT cell-type-enriched transcripts were well separated

by designated Ref.T. panels (Figure S3B) and clustered into

related groups in WGCNA (Figure S3C), and terms identified by

GO and reactome analysis were consistent with cell identity

(Table S2, tabs 2–11, tables Bi and Bii).

Adipose tissue scRNA-seq is consistent with Ref.T.

analysis

We performed a comparison between our results and scRNA-

seq or small nuclear RNA-seq (snRNA-seq) data of human SAT

or murine adipose tissue generated by Sun et al. (2020)

(snRNA-seq), Hildreth et al. (2021), Tabula Sapiens et al.

(2022), and Tabula Muris et al. (2018) (all scRNA-seq)

(Table S1, tab 5). None of these studies contained all cell types

we profiled; adipocytes were only in the snRNA-seq study from

Sun et al. (2020) and plasma cells only in the Tabula Sapiens

et al. (2022) dataset. For some cell types, e.g., progenitors, clas-

sification and/or terminology varied between studies, as is

typical (Wang et al., 2021), and so comparisons were made be-

tween closely related cell types with common marker genes,

e.g., ‘‘adipocyte progenitor,’’ ‘‘pre-adipocytes,’’ ‘‘fibroblasts,’’

or ‘‘mesenchymal stem cells’’ (Table S1, tab 5 [row 2 states

cell-type annotation]). For cell types represented in all, or most,

of the independent studies, a high proportion of our predicted

cell-type-enriched genes were elevated in the corresponding

cell type in at least one (average Log2 fold change >1.0, >0.5,

or >0.2 versus all other cell types [p < 0.01]): adipocyte progen-
Figure 4. Integrative co-expression analysis of unfractionated RNA-s

types

(A) (i) Heatmap of all non-coding transcripts classified as cell type enriched (indica

with the correspondingRef.T. panel versus highest mean corr. coefficient among t

transcripts were subject to WGCNA. Colored squares indicate Ref.T. location on

Colored ovals indicate distribution of non-coding transcripts classified as cell typ

(B) Cell-type-enriched non-coding transcripts in (i) adipocytes, (ii) mesothelial ce

ranked by corr. score, with differential expression scores (corr. with correspondin

TPM expression.

(C) scRNA-seq data from analysis of cell types from human subcutaneous adipo

used to generate uniform manifold approximation and projection (UMAP) plots sh

non-coding genes we predicted as being (ii) T cell, (iii) smooth muscle cell, (iv)

macrophage enriched.

See also Table S2, tab 1.
itor (81%), endothelial cell (98%), smooth muscle cell (69%),

macrophage (87%), neutrophil (96%), T cell (83%), and plasma

cell (81%) enriched (Table S1, tab 5; Figures S4A and S4B).

For adipocyte-enriched genes, independent validation was

lowest of all cell types at 30%, which could be due to the limited

coverage given by comparison with only a single study (Sun

et al., 2020) or differences between the sensitivity of snRNA-

seq versus bulk RNA-seq (Pimpalwar et al., 2020). Gene

ontology and reactome analysis of the predicted adipocyte-en-

riched genes that were not consistent with data from Sun et al.

(2020), revealed significant enrichment of terms associated

with adipocyte function, e.g., "small molecule metabolic pro-

cess" (adjusted FDR 8.7 3 10�29) and "metabolism" (adjusted

FDR 4.3 3 10�29). To compare cell profiles across all datasets,

we calculated the significance of overlap using a

hypergeometric test (Figure S5). Genes predicted as cell-type

enriched in our study were over-represented in the enriched

genes in the corresponding cell types in the scRNA-seq and

snRNA-seq studies (defined as those R0.5 Log2 fold change

in expression versus all other cell types in the same study

[p < 0.01]) (Figure S5), and this overlap was comparable to,

or more significant than, that between the scRNA-seq and

snRNA-seq studies themselves.

Ref.T. analysis can predict source of adipose-tissue-

enriched genes

RNA-seq data from unfractionated human or murine tissues can

be used to identify genes with enriched expression in adipose

tissue versus other tissues. Adipocytes make up the majority

of adipose tissue, with the most specialized function. We ex-

tracted lists of the top 200 human-adipose-tissue-enriched

genes from HPA (Uhlen et al., 2015) and GTEx (Consortium,

2015), collated in the Harminozome database (Rouillard et al.,

2016; Figure S4C.i). Of those genes classified as adipose tissue

enriched in both datasets (n = 86), our analysis classified 66

(76.7%) as adipocyte enriched and one (1.2%) as endothelial en-

riched (ARHGEF15) (Figure S4C.ii). Thus, our analysis indicates

that the majority of adipose-tissue-enriched genes are

selectively expressed in adipocytes.

Sex- and depot-specific differences in adipose-cell-type
transcriptome profiles
There are sex- and depot-specific differences in accumulation,

distribution, endocrine, and metabolic function of adipose

tissue (Blaak, 2001; Chait and den Hartigh, 2020; Lumish et al.,
eq reveals enriched non-coding transcriptomes of human VAT cell

ted by horizontal colored bars), showing differential score between mean corr.

he otherRef.T. panels. (ii) Human VAT RNA-seq data (n = 527) for all sequenced

resultant dendrogram (colors correspond to cell types as annotated in A.i). (iii)

e enriched across dendrogram groups.

lls, (iii) T cells, and (iv) smooth muscle cells displayed to show up to the top 50

g cell type Ref.T. panel minus max corr. with any other Ref.T. panel) and mean

se tissue were sourced from Tabula Sapiens (Tabula Sapiens et al., 2022) and

owing (i) scRNA-seq cell-type annotations and the expression of examples of

neutrophil, (v) endothelial, (vi) adipocyte progenitor, (vii) plasma cell, or (viii)
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2020; Valencak et al., 2017), but to our knowledge, there are no

studies describing sex- and depot-specific differences in

adipose-cell-type-specific transcriptome profiles. Therefore,

we profiled SAT-cell-type-enriched transcriptomes and per-

formed a comparative sex subset analysis in VAT and SAT,

and we did a comparison between cell types found in both

depots.

Prediction of sex-specific differences in adipose-cell-

type-enriched transcripts

We performed a subset analysis of the VAT RNA-seq dataset

(female n = 165; male n = 362) to identify sex-specific, cell-

type-enriched transcriptome profiles. As in the full dataset,

intra-panel cell type Ref.T.s correlated well in female- and

male-sample subsets (all >0.83; p < 1.0 3 10�33) (Table S3,

tab 1, tables A and B). We compared transcripts classified as

male or female cell type enriched (Figure 5; Table S3, tab 2).

Cell profiles were largely comparable between sexes (Figures 5

and S6; transcripts enriched in both males and females repre-

sented by common colored circle and square symbols, respec-

tively). Some transcripts were classified as enriched only in

males or females (Figures 5 and S6; represented by differently

colored circle and square symbols, respectively); however,

most had differential corr. scores close to zero, indicating that

they fell marginally below the designated threshold for classifica-

tion as enriched in the other sex. A small number of markedly

male-only cell-type-enriched transcripts were identified in adi-

pocytes (Figure 5A.i; TBL1Y, RP11-115H13.1, LINC00278, and

GYG2P1), adipocyte progenitor cells (Figure 5B.i; NLGN4Y),

mesothelial cells (Figure 5C.i; ZNF736P9Y), and T cells (Fig-

ure 5D.i; BCORP1). In all cases, transcripts were Y linked, and

mRNA expression was only detected above background levels

in male VAT samples (Figures 5A.ii–5D.ii). There were no clear

sex-specific differences in the other cell-enriched transcriptome

profiles (Figure S6).

Comparison of predicted sex-specific VAT- and SAT-

cell-type-enriched transcripts

To establish whether these sex-specific differences also existed

in SAT, we performed an equivalent subset analysis of the SAT

RNA-seq dataset (female n = 212; male n = 434). As in the full da-

taset, intra-panel cell type Ref.T.s correlated well in female- and

male-sample subsets (all >0.71; p < 14.03 10�31) (Table S3, tab

3, tables A andB).We compared transcripts classified asmale or

female cell type enriched (Figures 5 and S7; Table S3, tab 4).

Three out of the four transcripts we identified as adipocyte en-

riched in male VAT, but not female VAT, had the same profile

in SAT (TBL1Y, RP11-115H13.1, and GYG2P1) (Figure S7A),

showing consistency between adipose depot type. The single
Figure 5. Identification of sex-specific, cell-enriched transcripts in hum

VAT RNA-seq data (n = 527 individuals) were divided into female and male subgr

transcripts. For transcripts classified as (A.i) adipocyte, (B.i) adipocyte progenitor

score’’ (difference between mean corr. with the Ref.T. panel in females versus

enriched list; highest corr. = rank 1). On each plot, transcripts enriched in both fem

respectively, and transcripts classified as enriched only in females or males are

Expression in female and male samples for transcripts identified as male-only en

T cells. See also Figure S6 and Table S3.
transcript we identified as adipocyte progenitor enriched in

male, but not female, VAT (NLGN4Y) (Figure 5B.i) was not

classified as such in SAT (Figure S7B). However, the corr. value

between NLGN4Y and the adipocyte progenitor Ref.T. panel

fell marginally below the threshold for definition as enriched

in SAT, and a clear male-female differential corr. existed

(SAT male corr. 0.46 versus SAT female corr. 0.10) (Table S3,

tab 4). The transcript we identified as mesothelial enriched

in male, but not female, VAT (ZNF736P9Y) (Figure 5C.i) was not

expressed in SAT, consistent with the absence of mesothelial

cells in this depot (Esteve et al., 2019). The male-only T cell

enriched in VAT (BCORP1) was excluded from analysis in

SAT, due to low expression in the majority of samples (>50%

with TPM < 0.1). There were no clear sex-specific differences

in the other SAT-cell-type-enriched transcriptome profiles

(Figures S7B–S7H).

Prediction of depot-specific differences in adipose-cell-

type-enriched transcripts

Previous studies have reported differential gene expression pro-

files between VAT and SAT depots, using bulk sequencing data

(Bradford et al., 2019; Schleinitz et al., 2020), but reports on dif-

ferences at the cell-type level are lacking. Here, we compared

transcripts classified as cell type enriched in VAT or SAT. As

we profiled two additional cell types in VAT, compared with

SAT (mesothelial cells and neutrophils), prior to comparison,

we excluded any SAT-cell-type-enriched transcripts that were

predicted as primarily enriched in neutrophils or mesothelial cells

in VAT (see Table S1, tab 6). This exclusion revealed that 79

genes were predominantly enriched in different cell types in

VAT and SAT, e.g., IL18 was classified as macrophage enriched

in SAT but mesothelial-enriched in VAT (Table S1, tab 6, line 74),

where its expression was higher (mean TMP ± SD; VAT 44.0 ±

41.1 versus SAT 11.8 ± 10.2). Adipocyte-enriched profiles were

similar between depots, with around 500 transcripts classified

as such in both VAT and SAT (Figure 6A; represented by com-

mon colored circle and square symbols, respectively)

(Table S2, tab 1). LINC01632 and GPAT3 were classified as

adipocyte enriched in VAT only (Figure 6A), and both were ex-

pressed at higher levels in VAT than SAT (Figures 6C.i and

6C.ii). Conversely, NRCAM, MAGI2-AS3, and SEPT11 were

classified as adipocyte enriched in SAT only (Figure 6A) and

were all expressed at higher levels in SAT than VAT

(Figures 6C.iii–6C.v). These data are consistent with these tran-

scripts having both an adipocyte-restricted and depot-restricted

profile. Glucagon-like peptide-2 receptor (GLP2R) was classified

as adipocyte enriched in SAT only (Figure 6A), but it was ex-

pressed at higher levels in VAT (mean TMP ± STD; VAT 11.2 ±

11.28 versus SAT 1.37 ± 0.85). This gene could be strongly
an VAT

oups (female n = 165; male n = 362) before classification of cell-type-enriched

, (C.i) mesothelial, or (D.i) T cell enriched, in either sex, the ‘‘sex differential corr.

males) was plotted versus ‘‘enrichment ranking’’ (position in each respective

ales andmales are represented by common colored circle and square symbols,

represented by differently colored circle and square symbols, respectively.

riched in (A.ii) adipocytes, (B.ii) adipocyte progenitor, (C.ii) mesothelial, or (D.ii)
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transcriptionally regulated by environmental factors, analogous

to regulation of the related glucagon receptor gene in response

to glucose (Svoboda et al., 1999), in VAT only and thus here

does not consistently correlate with the stably expressed adipo-

cyteRef. T. Like adipocytes, adipocyte-progenitor-enriched pro-

files were similar between depots, with 186 transcripts classified

as such in both VAT and SAT (Figure 6B; represented by com-

mon colored circle and square symbols, respectively)

(Table S2, tab 1). CPT1C was classified as adipocyte progenitor

enriched in VAT only (Figure 6B) and expressed at higher levels in

VAT than SAT (Figure 6D.i). Conversely, ADGRE5 and RP11-

38H17.1 were classified as adipocyte progenitor enriched in

SAT only (Figure 6B) and were expressed at higher levels in

SAT than VAT (Figures 6D.ii and 6D.iii). These data are consistent

with these transcripts having both an adipocyte-progenitor-

restricted and depot-restricted profile. There were no clear

depot-specific differences in the other cell-type-enriched tran-

scriptome profiles (Figures S8A–S8F).

As our analysis indicated that cell-type-enrichment profiles

did not differ substantially in VAT and SAT, we investigated

the cell-type-expression profile of genes identified as most

differentially expressed between depots. We extracted data

from a study (Schleinitz et al., 2020) where the authors analyzed

samples from 15 human-fat depots and generated a list of most

differentially expressed genes between SAT and VAT. Of the

298 transcripts identified by the authors, data for 272 were

available in our analysis. We performed lookups in our dataset

to determine whether these genes were classified cell type en-

riched and whether this expression profile differed between

VAT and SAT (Figure 6E). For transcripts with a higher expres-

sion in VAT, compared with SAT (Schleinitz et al., 2020; Fig-

ure 6E, indicated by red dashed external line), the majority

were classified as mesothelial cell enriched in VAT in our anal-

ysis (Figure 6E.i), a cell type not found in SAT (Esteve et al.,

2019). A further 25 of these transcripts were found in the list

of 84 we excluded from cell-type classification, due to likely

co-expression in both VAT mesothelial and adipocyte progeni-

tor cells (Figure 6E.i; Table S1, tab 4a). For those transcripts

with a higher expression in SAT versus VAT (Schleinitz et al.,

2020; Figure 6E, indicated by black dashed line), most were

not annotated as cell type enriched, but those that were had

similar expression profiles between depots. Classification as

depot enriched in Schleinitz et al. (2020) was broadly consistent

with corresponding TPMs in the GTEx data (Figures 6E.iii and

6E.iv). The application of our data in this way demonstrates

its usefulness for extracting cell-type information from whole-
Figure 6. Identification of depot-specific, cell-enriched transcripts in h

Human VAT (n = 527 individuals) or SAT (n = 646 individuals) RNA-seq data were

(A and B) For transcripts classified as (A) adipocyte or (B) adipocyte progenitor

betweenmean corr. with theRef.T. panel in VAT versus SAT) was plotted versus e

1). On each plot, transcripts enriched in both VAT and SAT are represented by com

as enriched only in VAT or SAT are represented by differently colored circle or s

ranking below which transcripts were classified as VAT or SAT enriched.

(C and D) Expression levels in SAT and VAT of (C) transcripts classified as adipo

enriched classified transcripts in (i) VAT only or (ii and iii) SAT only.

(E) Transcripts identified as differentially expressed between VAT and SAT depots

in our analysis of (i) VAT and (ii) SAT. Corresponding expression levels in the GT

See also Figure S8 and Tables S1, tab 6, and S2.
tissue data, allowing further understanding of observations

made in other studies, with broad applicability across datasets

and analysis platforms.

DISCUSSION

Here, we present a method to resolve unfractionated tissue

RNA-seq data, providing an alternative to scRNA-seq for the

identification of cell-type-enriched transcripts. Our approach cir-

cumvents some challenges associated with scRNA-seq, e.g.,

requirement for fresh tissue, artefact-generating sample pre-

processing, and limited read depth (Beliakova-Bethell et al.,

2014; Rizzetto et al., 2017; Saliba et al., 2014; Ziegenhain

et al., 2017). By analyzing a high number of biological replicates,

this approach allows for well-powered subgroup comparisons,

e.g., female versus male. Public repositories contain thousands

of bulk RNA-seq datasets; our method can utilize these re-

sources to profile cell types for which little or no information

currently exists.

To our knowledge, this study provides the most comprehen-

sive publicly accessible database of adipose-tissue-cell-type

coding and non-coding gene-expression-enrichment profiles,

searchable on a gene-by-gene basis. Our dataset could also

be a useful tool for the optimization of deconvolution algorithms

used to determine proportions of constituent cell types in adi-

pose tissue bulk RNA-seq, e.g., CIBERSORT (Glastonbury

et al., 2019; Newman et al., 2015). Such analyses typically use

input expression matrices generated from transcriptome anal-

ysis of isolated cell types to identify cell-type reference genes.

Various factors can reduce the accuracy of input matrices,

including contaminating cell types in input datasets, technical ar-

tefacts due to cell extraction and processing, and limited input

data availability for some cell types or for cells sourced from ad-

ipose tissue. Cross checking input matrices against our dataset

could identify the most likely highly enriched genes in vivo.

Genes classified as adipocyte enriched in VAT or SAT included

those with established roles in adipocyte development or func-

tion, e.g.,GPD1,AQP7, LPL (Rotondo et al., 2017),CIDEC (Keller

et al., 2008),GYG2, TUSC5, and PPP1R1A (Ambele et al., 2016),

but others had no known function, e.g., HEPACAM, PECR,

C19orf12, and AL845331.1. HEPACAM encodes an adhesion

molecule studied mainly in brain glial cells (Barrallo-Gimeno

and Estevez, 2014), but it was identified as a key driver in a reg-

ulatory gene network associatedwith BMI and cholesterol in VAT

from patients with coronary artery disease (Franzen et al., 2016).

HEPACAM was one of 47 genes differentially expressed in SAT
uman adipose tissue

used for classification of cell-type-enriched transcripts (see results for criteria).

enriched, in either VAT or SAT, the ‘‘depot differential corr. score’’ (difference

nrichment ranking (position in each respective enriched list; highest corr. = rank

mon colored circle and square symbols, respectively, and transcripts classified

quare symbols, respectively. Correspondingly colored threshold lines denote

cyte enriched in (i and ii) VAT only or (iii–v) SAT only; (D) adipocyte progenitor-

by Schleinitz et al. (2020) are displayed with cell-type-enrichment classification

Ex datasets are displayed for (iii) VAT and (iv) SAT.
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from twin pairs with high and low BMI and was associated with

adipocyte diameter (Kaartinen et al., 2020). PECR is involved in

chain elongation of fatty acids (Gloerich et al., 2006) and is a

candidate gene influencing fat mass in mice (Karst et al.,

2011), intramuscular fat deposition in cows (Sadkowski et al.,

2014), and pig weight (Stuczynska et al., 2018). Mutations in

C19orf12 cause neurodegeneration with brain iron accumulation

(Gagliardi et al., 2015), andC19orf12 could have a role in lipid ho-

meostasis (Hartig et al., 2011), due to high expression in adipose

tissue and co-regulation with genes involved in fatty-acid meta-

bolism. AL845331.1 has been re-classified from non-coding to

novel protein coding, on the basis of its similarity to AQP7, a

gene we also classified as adipocyte enriched, as have others

(Rotondo et al., 2017).

Non-coding RNAs are increasingly recognized as important in

adipose biology (Squillaro et al., 2020; Statello et al., 2021; Xu

and Sun, 2020), but descriptions of adipose-cell-type expression

profiles are lacking. In our analysis, adipocytes had the most en-

riched non-coding genes, including antisense transcripts to

adipocyte-enriched protein-coding genes, e.g., ALDH1L1-AS2,

ADIPOQ-AS1, LIPE-AS1, andCNTFR-AS1. Other adipocyte-en-

riched non-coding genes includedRP11-863K10.7, an antisense

transcript to ERLIN2, a gene with a role in the accumulation of

cytosolic lipid droplets (Wang et al., 2012);MIRLET7BHG, which

is important for adipocyte differentiation in mice (McGregor and

Choi, 2011; Sun et al., 2009); and MIR193BHG, which was

characterized as a cellular steroid biosynthesis pathway modu-

lator in MCF7 cells (Wu et al., 2020). Mesothelial-cell-enriched

non-coding genes included antisense transcripts to mesothe-

lial-enriched protein-coding genes, e.g., SEMA3B-AS, DPP10-

AS1, FAM83H-AS1, and WT1-AS1. Other mesothelial-enriched

non-coding genes included LINC01133, reported as having a

role in the Wnt signaling pathway (Yang et al., 2021), which is

associated with metabolic disease development, with adipose

depot-specific roles (Chen and Wang, 2018). Most non-coding

transcripts classified as T cell or plasma cell enriched in our anal-

ysis were TR genes or IG genes, respectively. Other non-coding

transcripts classified as T cell enriched included PRKCQ-AS1,

which was postulated to have a role in T cell function in a study

of lncRNAs in vaccine response (de Lima et al., 2019) and targets

the protein-coding gene PRKCQ, which was also classified as

T cell enriched in our analysis. However, themajority of non-cod-

ing transcripts we identified as cell type enriched are

uncharacterized.

Sex differences in the accumulation, distribution, and endo-

crine and metabolic function of adipose tissue is well acknowl-

edged (Blaak, 2001; Lumish et al., 2020; Valencak et al., 2017),

although studies on underlying cell-type gene-expression differ-

ences are limited. Cell-type profiles were similar between sexes,

but we did identify a small panel of transcripts with sex-depen-

dent enrichment profiles, including TBL1Y, GYG2P1, and

RP11-115H13.1, which were adipocyte enriched only in male

VAT and SAT. TBL1Y, a Y-linked gene similar to its gonosomal

homologue TBL1X, is one of 27 genes that encode distinct

male-specific Y proteins (Jeffery et al., 2013). TBL1Y has a role

in hereditary hearing loss (Di Stazio et al., 2019) and cardiac

developmental regulation (Meyfour et al., 2017), the latter of

which has been suggested to contribute to the sexual
14 Cell Reports 40, 111046, July 12, 2022
dimorphism of cardiac diseases. Although previously reported

as expressed in adipose tissue (Jeffery et al., 2013), there are

no reports of TBL1Y being adipocyte specific or its function

there. GYG2P1 is a Y-linked pseudogene of GYG2 (Meyfour

et al., 2017). GYG2 was classified as adipocyte enriched in

both males and females in our analysis; although its function in

adipocytes has not been studied, its expression coincides with

adipocyte maturation of adipose-derived stromal cells (Ambele

et al., 2016). Although pseudogenes are often assumed to

lack function, they are increasingly found to have key roles

(Cheetham et al., 2020) functioning as antisense, endogenous

small-interference or competing endogenous transcripts (Singh

et al., 2020). There are no reports of GYG2P1 function, but it

was downregulated in SAT from children with obesity versus

those without (Liu et al., 2018). A recent study used bulk RNA-

seq to analyze SAT from females and males to identify genes

with differential expression (Anderson et al., 2020). According

to our data, the identified genes had similar cell-type enrichment

profiles between sexes (majority adipocyte enriched). Thus, sex

differences in SAT are likely driven by variable gene expression

in a common cell type or differences in the proportion of this

cell type.

Previous studies have identified differences in cellular compo-

sition, adipocyte size, activity, and capacity for fat uptake be-

tween VAT and SAT (Ibrahim, 2010). Although RNA-seq has

been used to determine differences in gene expression between

VAT and SAT (Bradford et al., 2019; Schleinitz et al., 2020), to our

knowledge, there have been no studies comparing cell-type-en-

riched transcriptome profiles. We found thatNRCAM, a neuronal

cell adhesion molecule of the immunoglobulin superfamily,

mainly studied in a neuronal development (Sakurai, 2012), was

adipocyte enriched in SAT, but not VAT. NRCAM was one of

32 genes upregulated throughout the differentiation of human-

adipose-derived stromal cells isolated from SAT (Ambele et al.,

2016), and in a study of SAT from siblings with high and low

BMI, NRCAM was identified as part of an obesity-related tran-

script network (Walley et al., 2012). NRCAM was expressed in

SAT, but not VAT, from individuals with extreme obesity (Gerhard

et al., 2014). However, NRCAM function is unknown. In SAT, but

not VAT, CALB2 and PKP2 were adipocyte enriched and IL18

was macrophage enriched. In all three cases, overall expression

was higher in VAT than SAT, and these genes were predomi-

nantly expressed in mesothelial cells in VAT, consistent with

previous reports for IL18 (Darimont et al., 2008) andCALB2 (Bar-

beris et al., 1997). Indeed, our data show that mesothelial cells in

VAT drive differences in global gene expression between depots

(Bradford et al., 2019; Schleinitz et al., 2020).

In summary, our method circumvents some challenges

associated with the analysis of adipose tissue to provide an atlas

of constituent cell type defining transcriptional profiles. The data

can be used to further interpretate existing observations and to

identify candidates for functional studies to expand our knowl-

edge of adipose tissue in health and disease.

Limitations of the study
There are limitations to our study. We do not profile specific cell

subtypes; while it may be possible to resolve the data further in

this way, there is a lack of consensus regarding cell-subtype
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identity, e.g., multiple adipocyte progenitor cells subtypes have

been reported (Raajendiran et al., 2019), but others claim this

population is homogeneous (Acosta et al., 2017). Thus, selection

of subtype Ref.T.s required for input into our analysis model, or

interpretation of WGNCA, is challenging. Thus, our classification

informs about cell-type restricted expression but does not

discriminate between transcripts expressed uniformly across

all cells of a given type and those expressed in a sub-population.

Some cell types are not profiled in our analysis, due to difficulties

in the identification of cell-type-specific markers as suitable

Ref.T.s. Thus, some genes classified as cell type enriched in

our analysis may also be expressed in other (non-profiled) cell

types, a limitation that applies to existing scRNA-seq and

snRNA-seq adipose tissue datasets, which all lack data for

some constituent cell types (e.g., Hildreth et al., 2021; Tabula

Muris et al., 2018; Tabula Sapiens et al., 2022; Vijay et al.,

2020). Expression of some genes in adipose tissue can be modi-

fied by genetic, epigenetic, or environmental factors (Sun et al.,

2019). Such genes may not correlate with the Ref.T.s, due to a

variation in expression that is independent of cell-type propor-

tions. Thus, such genes could be false negatives in our analysis.

We have used high thresholds for classification of genes as cell

type enriched, likely leading to the incorrect exclusion of some.

For example, EPAS1, SHROOM4, andGPR4 are endothelial-en-

riched transcripts across tissue beds (Butler et al., 2016), but

they fall just below the threshold for classification as endothelial

enriched here. However, in these cases, the enrichment score

clearly indicates a cell-type-restricted expression; thus, our clas-

sifications are intended only as a guide, and the reader should

consider the data on a transcript-by-transcript basis.
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Adipose tissue samples Uppsala biobank

Uheln et al. (2015) Proteomics. Tissue-based

map of the human proteome . Science 347,

1260419.

https://www.proteinatlas.org/

Deposited data

All generated data (also contained in

manuscript Tables S1, S2, and S3)

This paper Butler, Lynn (2022), ‘‘A human

adipose tissue cell type

transcriptome atlas’’, Mendeley

Data, V1, https://doi.org/10.17632/

6wmbw2nt4x.1

Software and algorithms

R R Core Team (2022). R: A language and

environment for statistical computing.

https://www.R-project.org

RStudio RStudio Team (2021). RStudio: Integrated

Development Environment for R.

http://www.rstudio.com/

Code for cell type enrichment analysis This paper https://github.com/PhilipDusart/

cell-enrichment

WCGNA clustering analysis Langfelder and Horvath, (2008) WGCNA: an R

package for weighted correlation network

analysis. BMC Bioinformatics 9, 559

https://horvath.genetics.ucla.

edu/html/CoexpressionNetwork/

Rpackages/WGCNA/

Seurat single cell RNAseq analysis Hao et al., (2021). Integrated analysis of

multimodal single-cell data. Cell 184,

3573-3587 e3529

https://satijalab.org/seurat/

Circlize package, for creation

of circular plots

Gu et al., (2014) Circlize Implements and

enhances circular visualization in R.

Bioinformatics 30, 2811-2812.

https://jokergoo.github.io/

circlize_book/book/

GraphPad Prism 6 GraphPad www.graphpad.com/

Other

Adipose-visceral (omentum) RNAseq data

Adipose-subcutaneous RNAseq data

Genotype-Tissue Expression (GTEx) Project gtexportal.org; dbGaP Accession

phs000424.v8.p2

GO Biological process and Reactome

pathways analysis

Ashburner et al. (2000) Gene ontology: tool

for the unification of biology. Nat Genet.

May 25(1):25-9.

The Gene Ontology resource: enriching a

GOld mine. (2021) Nucleic Acids Res.

49(D1):D325-D334.

Gene ontology resource and

PANTHER classification

resource; http://geneontology.org/

GO Ontology database https://doi.

org/10.5281/zenodo.4081749

Released 2020-10-09

Reactome version 65.

Released 2020-11-17

scRNAseq human subcutaneous

adipose tissue

Hildreth et al. (2021). Single-cell sequencing

of human white adipose tissue identifies new

cell states in health and obesity. Nat Immunol

22, 639-653.

https://www.nature.com/articles/

s41590-021-00922-4

(https://doi.org/10.1038/s41590-

021-00922-4;)

PMID: 33907320

scRNAseq human subcutaneous

adipose tissue

Sapiens, T. (2021). The Tabula Sapiens: a

multiple organ single cell transcriptomic

atlas of humans. bioRxiv preprint

https://www.biorxiv.org/content/

10.1101/2021.07.19.452956v3

(https://doi.org/10.1101/2021.07.

19.452956)
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scRNA murine adipose tissue data Tabula Muris et al. (2018). Single-cell

transcriptomics of 20 mouse organs

creates a Tabula Muris. Nature 562,

367-372.

https://www.nature.com/articles/

s41586-018-0590-4

(https://doi.org/10.1038/s41586-

018-0590-4)

PMID: 30283141

snRNAseq human subcutaneous

adipose tissue

Sun et al. (2020). snRNA-seq reveals a

subpopulation of adipocytes that regulates

thermogenesis. Nature 587, 98-102.

https://www.nature.com/articles/

s41586-020-2856-x

(https://doi.org/10.1038/s41586-

020-2856-x)

PMID: 33116305

Website resource for protein coding

gene enrichment

This paper Human Protein Atlas https://www.

proteinatlas.org/humanproteome/

tissue+cell+type/adipose+tissue

Website resource for non-protein coding

gene enrichment

This paper https://cell-enrichment.shinyapps.

io/noncoding/
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Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact: Dr. Lynn

Marie Butler. Email: Lynn.butler@ki.se.

Materials availability
This study did not generate new unique reagents.

Data and code availability
d This paper analyses existing, publicly available data. The accession number for the datasets are listed in the key resources ta-

ble.

d All original code has been deposited at GitHub and is publicly available as of the date of publication. DOIs are listed in the key

resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Bulk RNA-seq data analyzed in this study was obtained from the Genotype-Tissue Expression (GTEx) Project (gtexportal.org)

(Consortium, 2015) accessed on 2019.11.29 (dbGaP Accession phs000424.v8.p2). Sample IDs of visceral adipose tissue (VAT)

and subcutaneous adipose tissue (SAT) samples used in the analysis can be found in Table S1. Human tissue protein profiling

was performed in house as part of the Human Protein Atlas (HPA) project (Ponten et al., 2008; Uhlen et al., 2015, 2017) (www.

proteinatlas.org). Adipose tissue samples were obtained from the Department of Pathology, Uppsala University Hospital, Uppsala,

Sweden, as part of the Uppsala Biobank. Samples were handled in accordance with Swedish laws and regulations, with approval

from the Uppsala Ethical Review Board (Uhlen et al., 2015).

METHOD DETAILS

Tissue profiling: human tissue sections
Adipose tissue sections were stained, as previously described (Ponten et al., 2008; Uhlen et al., 2015). Briefly, formalin fixed and

paraffin embedded tissue samples were sectioned, de-paraffinized in xylene, hydrated in graded alcohols and blocked for endog-

enous peroxidase in 0.3% hydrogen peroxide diluted in 95% ethanol. For antigen retrieval, a Decloaking chamber� (Biocare Med-

ical, CA) was used. Slides were boiled in Citrate buffer�, pH6 (Lab Vision, CA). Primary antibodies and a dextran polymer visualization

system (UltraVision LP HRP polymer�, Lab Vision) were incubated for 30 min each at room temperature and slides were developed

for 10 min using Diaminobenzidine (Lab Vision) as the chromogen. Slides were counterstained in Mayers hematoxylin (Histolab)

and scanned using Scanscope XT (Aperio). Primary antibodies, source, target and identifier are as follows: Atlas Antibodies:

ACSL1 (Cat#HPA011316; RRID:AB_1844536), ACO1 (Cat#HPA019371; RRID:AB_1844519), FBXO27 (Cat#HPA046800;

RRID:AB_2679813), MYH9 (Cat#HPA064783; RRID:AB_2732721), GIMAP4 (Cat#HPA019135; RRID:AB_1849670), FLNB
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(Cat#HPA004886; RRID:AB_1848600), PLN (Cat#HPA026900; RRID:AB_1855314), LMOD1 (Cat#HPA028435; RRID:AB_10602180),

DES (Cat#HPA018803; RRID:AB_1847616), TBXAS1 (Cat#HPA031257; RRID:AB_2673812), ITGB2 (Cat#HPA016894;

RRID:AB_1846257), PRKAR2B (Cat#HPA008421, RRID:AB_1855421), C19orf12 (Cat#HPA046930, RRID:AB_10962836), SHANK3

(Cat#HPA003446; RRID:AB_1079958), CASQ2 (Cat#HPA027285; RRID:AB_1845933), SLC30A3 (Cat#HPA060505; RRID:AB_

2684296), LCP1 (Cat#HPA019493; RRID:AB_1855457), IFI30 (Cat#HPA026650; RRID:AB_10602237), SP140 (Cat#HPA006162;

RRID:AB_1857403), CD247 (Cat#HPA008750; RRID:AB_1857863). Santa Cruz: TYROBP (Cat#sc-20783; RRID:AB_638987),

TBX21 (Cat#sc-21003; RRID:AB_2200557), Thermo Fisher Scientific: ZAP70 (Cat#MS-1911), Merck: KLRK1 (Cat#05-945;), R&D

Systems: CDH13 (Cat#MAB3264). All IHC images are available on the HPA website (https://www.proteinatlas.org/).

QUANTIFICATION AND STATISTICAL ANALYSIS

Reference transcript-based correlation analysis
This method was adapted and expanded from that previously developed to determine the cross-tissue pan-EC-enriched transcrip-

tome (Butler et al., 2016) and human brain cell enriched genes (Dusart et al., 2019). Pairwise Spearman correlation coefficients were

calculated between reference transcripts selected as proxy markers for: adipocytes [ADIPOQ, LIPE, PLIN1], adipocyte progenitor

cells [FKBP10, COL6A1, COL6A2], mesothelial cells [UPK3B, MSLN, KRT19], endothelial cells [MMRN2, ESAM, CDH5], smooth

muscle cells [KCNMB1, CNN1,MYH11], macrophages [CD68, C1QC, FCER1G], neutrophils [CSF3R, FCGR3B, CXCR2], mast cells

[CPA3, TPSB2, TPSAB1], T cells [TRBC2,CD6,CD3E] and plasma cells [IGKC, JCHAIN,MZB1] and all other sequenced transcripts.

Transcripts with a TPM value < 0.1 in more than 50% of samples were excluded from analysis (but are still included in data tables).

See results section for full criteria required for transcript classification of transcripts as cell-type enriched (also Table S1, tab 1,

table B). Correlation coefficients were calculated in R using the corr.test function from the psych package (v 1.8.4). In addition to cor-

relation coefficients False Discovery Rate (FDR) adjusted p-values (using Bonferroni correction) and raw p-values were calculated.

FDR <0.0001 for correlation was required for inclusion as cell type enriched, but no transcripts in either VAT or SAT required exclusion

due to this criterion.

Weighted correlation network (WGCNA) analysis
The R packageWGCNA (Langfelder and Horvath, 2008) was used to perform co-expression network analysis for gene clustering, on

log2 expression TPM values. The analysis was performed according to recommendations in the WGCNA manual. Transcripts with

toomanymissing values were excluded using the goodSamplesGenes() function. The remaining genes were used to cluster the sam-

ples, and obvious outlier samples were excluded.

Gene ontology and reactome analysis
The Gene Ontology Consortium (Ashburner et al., 2000) and PANTHER classification resource (Mi et al., 2013, 2016) were used to

identify over represented terms (biological processes) in the panel of identified cell-type-enriched transcripts from the GO ontology

(release date 2021-10-09) or reactome (release date 2021-11-17) databases.

Processing of data from adipose tissue scRNA-seq and snRNA-seq datasets
Data from scRNA-seq analysis of human SAT (Hildreth et al., 2021; Tabula Sapiens et al., 2022), scRNA-seq of murine adipose tissue

(mixed depot) (Tabula Muris et al., 2018) and snRNA-seq of human SAT (Sun et al., 2020) was downloaded or received from the

authors upon request. Cell type clustering and categorization was performed as originally described, but immune cell subtypes in

(Hildreth et al., 2021) were merged, and myofibroblasts and smooth muscle cells in (Tabula Sapiens et al., 2022) were handled

together. The R Seurat package (Hao et al., 2021) and the FindAllMarkers function was used to determine the Log2 fold change

values for each gene in all cell types versus all others within each study, and to generate illustrative UMAP plots when required.

The statistical significance of overlap between cell-type enriched genes in each study was calculated using a hypergeometric test

(Figure S5). Criteria used for comparison of our cell type-enriched datasets with expression profiles in the independent studies

are given in the relevant results sections and associated tables or figure legends.

Visualization
Circular graphs (Figures 3, 4B, and 6E) were constructed using the R package circlize (Gu et al., 2014). Some figure sections were

created with BioRender.com.

ADDITIONAL RESOURCES

Analyzed data for all protein coding genes is provided on the Human Protein Atlas website: (www.proteinatlas.org/humanproteome/

tissue+cell+type/adipose+tissue). Analyzed data for non-coding transcripts is provided on: https://cell-enrichment.shinyapps.io/

noncoding/. The published article includes all datasets generated during this study, including depot- and sex-subset analysis

(Tables S1, S2, and S3).
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Figure S1. Methodological summary and expression distribution and correlations between 

human visceral adipose tissue (VAT) cell type reference transcripts. Related to Figure 1 and 

Table S1, Tab 1. (A) Schematic of analysis concept. (B) Expression of Ref.T selected to represent: 

(i) adipocytes, (ii) adipocyte progenitors, (iii) mesothelial cells, (iv) endothelial cells, (v) smooth

muscle cells, (vi) macrophages, (vii) neutrophils, (viii) mast cells, (ix) T-cells and (x) plasma cells.
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Figure S2. scRNAseq of subcutaneous adipose tissue provides supportive evidence for cell 

type enrichment predictions from integrative co-expression analysis of unfractionated 

visceral adipose tissue (VAT). Related to Figure 1D. (A) (i) For transcripts above the designated 

correlation threshold with the macrophage (squares, MC) or neutrophil (circles, NP) Ref.T. panels, 

the ‘differential correlation score’ (difference between mean corr. with MC and NP Ref.T.) was plotted 

vs. ‘enrichment ranking’. Bold text annotations show transcripts appearing in both MC- and NP lists 

(circular and square symbol, on the same X-axis dimension). (ii) scRNAseq data from the Human 

Protein Blood Atlas (Uhlen et al., 2019) showing gene expression in classical, intermediate, and non-

classical monocytes, and neutrophils from whole blood. (B) scRNAseq data from analysis of cell 

types in human subcutaneous adipose tissue was sourced from Tabula Sapiens (Tabula Sapiens., 

2021), and used to generate UMAP plots showing (i) scRNAseq cell type annotations, and (ii) 

expression profiles of genes we predicted as macrophage (MC)-enriched [CD86, CD300C, MS4A4A] 

(blue bar), co-enriched in both MC and neutrophils (NP) [LILRA2, FPR1, MNDA] (grey bar) or 

predominantly NP-enriched [ARG1, PROK2, MGAM] (pink bar).
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Figure S3. (A) Protein profiling of transcripts identified as cell-enriched in VAT. Related to 

Figure 2. Human adipose tissue sections were stained using primary antibodies targeting proteins 

encoded by transcripts classified as adipocyte-, endothelial-, smooth muscle-, macrophage- or T-

cell-enriched. Scale bar 200m, inset 50m. See also Table S2, Tab 1. 

(B-C) Integrative co-expression analysis of unfractionated RNAseq reveals enriched 

transcriptomes of subcutaneous adipose tissue (SAT) cell types. Related to Figure 6, Figure 

S7, Figure S8. Human SAT RNAseq data (n=646), retrieved from Genotype-Tissue Expression 

(GTEx) portal V8, was used to determine correlation coefficients (corr.) between selected adipose 

cell type Ref.T and all other sequenced transcripts. (A) Heat map plot of transcripts classified as cell 

type-enriched (indicated by horizontal-coloured bars), showing differential score between mean 

correlation coefficient with the corresponding Ref.T. panel vs. highest mean correlation coefficient 

amongst the other Ref.T. panels.  (B) SAT RNAseq data was subject to weighted correlation network 

analysis (WGCNA). (i) Coloured squares indicate Ref.T. location on resultant dendrogram. (ii) 

Distribution of transcripts classified as cell type-enriched across dendrogram groups. See also Table 

S2, Tab 1.
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Figure S4. Comparison of predicted human visceral adipose tissue (VAT) and subcutaneous 

adipose tissue (SAT) cell type enriched transcriptomes with scRNAseq or snRNAseq of 

human SAT or murine adipose tissue. Related to Figure 3, Table S1 Tab 5, and Table S2, Tab 

1. (A) Data generated by single cell (scRNAseq) or single nuclear (snRNAseq) profiling of human

SAT or murine adipose tissue was sourced from (i) Tabula Sapiens (Tabula Sapiens., 2021) 

(scRNAseq SAT [TS]), (ii) Sun et al. (Sun et al., 2020) (snRNAseq SAT [Sun]), (iii) Hildreth et al. 

(Hildreth et al., 2021) (ssRNAseq SAT [Hildreth]) and (iv) Tabula Muris (Tabula Muris et al., 2018) 

(scRNAseq mixed [TM]). (B) Genes predicted as enriched in (i) adipocyte progenitor cells, (ii) 

endothelial cells or (iii) T-cells, in both VAT and SAT, were cross checked with the independent 

studies. Colour coding indicates proportion of genes that have average Log2 fold change >1.0, >0.5 

or >0.2 [p<0.01] in the corresponding cell type vs. all other cell types profiled in the independent 

study. FB: fibroblast, AP: adipocyte progenitor, Pre-AC: pre-adipocyte, MSC: mesenchymal stem 

cell, EC: endothelial cell, TC: T-cell. (C.i) The top 200 human adipose enriched genes in Human 

Protein Atlas and GTEx datasets were sourced from Harminozome database (Rouillard et al., 2016) 

and (C.ii) classification as cell type-enriched in our analysis of VAT determined. 

Figure S4
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Figure S5. A comparison of cell-type enriched genes identified in different adipose tissue cell 

type profiling studies; Related to Figure 3 and S4. Bubble heatmap showing the significance 

(indicated by dot size and colour) of shared enriched genes between adipose tissue cell types, as 

identified in the current study using integrative correlation analysis of bulk RNAseq of (A) human 

visceral adipose tissue [VAT] (Unfractionated VAT) and (B) human subcutaneous adipose tissue 

[SAT] (Unfractionated SAT), or by single cell/single nuclear profiling of human SAT, sourced from 

(C) Tabula Sapiens (Tabula Sapiens., 2021) (scRNAseq SAT [TS]) (D) Sun et al. (Sun et al., 2020) 

(snRNAseq SAT [Sun]) and (E) Hildreth et al. (Hildreth et al., 2021) (ssRNAseq SAT [Hildreth]), or in 

(F) murine adipose tissue from Tabula Muris (Tabula Muris et al., 2018) (scRNAseq mixed [TM]) 

(enriched genes defined as those ≥0.5 Log2 fold change in expression vs. all other cell types in the 

same study [p<0.01]). Cell type-enriched genes were compared across all studies (indicated by 

different coloured blocks on x-axis), N.B. not all cell types were represented in every study. When 

overlap of enriched genes was not statistically significant (hypergeometric test, P > 0.05), no dot is 

displayed. AC: adipocyte, AP: adipocyte progenitor, EC: endothelial cell, SMC: smooth muscle cell, 

MC: macrophage, NP: neutrophil, MastC: mast cell, TC: T-cell, PlasC: plasma cell, MesoC: 

mesothelial cell, FB: fibroblast, NKC: natural killer cell, BC: B-cell, LC: leukocyte, Pre-AC: pre-

adipocyte, MonoC: monocyte, DC: dendritic cell, ILC: innate lymphoid cell, MSC: mesenchymal 

stem cell.
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Figure S6. Identification of sex-specific cell type-enriched transcripts in human visceral 

adipose tissue (VAT); Related to Figure 5. VAT RNAseq data (n=527), retrieved from Genotype-

Tissue Expression (GTEx) portal V8, was divided into female and male sample subgroups (female 

n=165, male n=362) before classification of cell type-enriched transcripts (see results section for 

criteria). For transcripts classified as: (A) endothelial, (B) smooth muscle, (C) macrophage, (D) 

neutrophil, (E) mast cell, or (F) plasma cell enriched, in either female or male subsets, the ´sex 

differential correlation score’ (difference between mean corr. with the Ref.T panel in females vs. 

males) was plotted vs. ‘enrichment ranking’ (position in each respective enriched list, highest corr. = 

rank 1). On each plot, transcripts classified as enriched in both females and males are represented 

by common coloured circle and square symbols, respectively, and transcripts classified as enriched 

only in females or males are represented by differently coloured circle or square symbols, 

respectively. Correspondingly coloured threshold lines denote ranking below which transcripts were 

classified as female or male enriched. See also Table S3, Tab 2.  
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Figure S7. Identification of sex-specific cell-enriched transcripts in human subcutaneous 

adipose tissue (SAT); Related to Figure 5. Human SAT RNAseq data (n=646), retrieved from 

Genotype-Tissue Expression (GTEx) portal V8, was divided into female and male sample subgroups 

(female n=212, male n=434) before classification of cell type-enriched transcripts (see results section 

for criteria). For transcripts classified as: (A) adipocyte, (B) adipocyte progenitor, (C) endothelial, (D) 

smooth muscle, (E) macrophage (F) mast cell, (G) T-cell, or (H) plasma cell enriched, in either female 

or male subsets, the ́ sex differential correlation score’ (difference between mean corr. with the Ref.T 

panel in females vs. males) was plotted vs. ‘enrichment ranking’ (position in each respective enriched 

list, highest corr. = rank 1). On each plot, transcripts enriched in both females and males are 

represented by common coloured circle and square symbols, respectively, and transcripts classified 

as enriched only in females or males are represented by differently coloured circle or square 

symbols, respectively. Correspondingly coloured threshold lines denote ranking below which 

transcripts were classified as female or male enriched. Transcripts with differential corr. score >0.40 

are labelled with identifiers. See also Table S3, Tab 4.

Figure S7
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Figure S8. Identification of depot-specific cell-enriched transcripts in human adipose tissue; 

Related to Figure 6. Human visceral adipose tissue (VAT, n=527) or subcutaneous adipose tissue 

(SAT, n=646) RNAseq data, retrieved from Genotype-Tissue Expression (GTEx) portal V8, was used 

for classification of cell type-enriched transcripts (see results section for criteria). For transcripts 

classified as: (A) macrophage, (B) endothelial, (C) smooth muscle, (D) mast cell, (E) T-cell, or (F) 

plasma cell enriched, in either VAT or SAT, the ´depot differential correlation score’ (difference 

between mean corr. with the Ref.T panel in VAT vs. SAT) was plotted vs. ‘enrichment ranking’ 

(position in each respective enriched list, highest corr. = rank 1). On each plot, transcripts enriched 

in both VAT and SAT are represented by common coloured circle and square symbols, respectively, 

and transcripts classified as enriched only in VAT or SAT are represented by differently coloured 

circle or square symbols, respectively. Correspondingly coloured threshold lines denote ranking 

below which transcripts were classified as VAT or SAT enriched. Selected transcripts with differential 

corr. score >0.40 are labelled with identifiers. 
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SUMMARY  

Genes with cell type specific expression typically encode for proteins that have cell type 

specific functions. Single cell RNAseq (scRNAseq) has facilitated the identification of such 

genes, but various challenges limit the analysis of certain cell types and lowly expressed 

genes. Here, we performed an integrative network analysis of over 6000 bulk RNAseq datasets 

from 15 human organs, to generate a tissue-by-tissue cell type enrichment prediction atlas for 

all protein coding genes. We profile all the major constituent cell types, including several that 

are fragile or difficult to process and thus absent from existing scRNAseq-based atlases. The 

stability and read depth of bulk RNAseq data, and the high number of biological replicates 

analysed, allowed us to identify lowly expressed cell type enriched genes that are difficult to 

classify using existing methods. We identify co-enriched gene panels shared by pancreatic 

alpha and beta cells, chart temporal changes in cell enrichment signatures during 

spermatogenesis, and reveal that cells in the hair root are a major source of skin enriched 

genes. In a cross-tissue analysis, we identify shared gene enrichment signatures between 

highly metabolic and motile cell types, and core identity profiles of cell types found across 

tissue types. Our study provides the only cell type gene enrichment atlas generated 

independently of scRNAseq, representing a new addition to our existing toolbox of resources 

for the understanding of gene expression across human tissues.  
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INTRODUCTION  

Cell type can be categorised by function, origin, location, morphology and, more recently, 

global transcriptome. Transcriptional profiles depend on both intrinsic cell characteristics and 

transient states, but selective expression of genes typically required for cell type specialised 

functions currently underlie our definition of cell type. Large-scale projects, such as the Human 

Cell Atlas (www.humancellatlas.org) 1 and the Human Protein Atlas (www.proteinatlas.org/) 2,3 

contain single-cell RNA sequencing (scRNA-seq) data from thousands of cells, which can be 

used to further understand human health and disease, through, for example, targeted 

biomarker discovery 4, or elucidation of disease associated gene expression 5,6.  

However, scRNA-seq has limitations; cell processing can cause artefactual modification of 

gene expression, through induction of the stress response 7,8 or as a consequence of removal 

from the microenvironment 9. Some cell types are sensitive to extraction protocols, e.g., kidney 

podocytes 8, whilst others require extensive, damaging proteolytic digestion to isolate e.g., 

adipocytes 10,11; such cell types are absent from the major databases 3,12,13. Single nuclei 

sequencing is an alternative tool for analysing such cell types 14, but resultant expression 

profiles are incomplete 15. Compared to bulk RNA-seq, where all cell types in a tissue are 

sequenced without prior separation, scRNAseq produces less stable and more variable data, 

with a high number of zero values, particularly for lowly expressed genes 16-19, requiring 

computational imputation for interpretation 20,21, with methods remaining controversial 22. 

Typically, tissues from a limited number of donors are analysed, resulting in underestimation 

of biological variance of gene expression and potential false discoveries when analysing 

differential expression between cell types or conditions 23-25. Differentially expressed genes 

identified using scRNAseq typically have higher expression and smaller fold changes than 

those identified with bulk RNAseq 24.  

We previously developed and validated an integrative correlation analysis method to identify 

cell type-enriched transcriptome profiles from unfractionated tissue RNAseq 26-28. Our method 

circumvents some limitations of scRNAseq; hundreds of samples are analysed concurrently to 

reduce the influence of biological variation and batch effects, cell types that are technically 

challenging to process can be analysed, and lowly expressed cell enriched transcripts 

classified 28. Here, we analysed over 6000 bulk RNAseq datasets from Genotype-Tissue 

Expression (GTEx) to generate a genome-wide, tissue-by-tissue cell type enrichment 

prediction atlas for all protein coding transcripts in 15 different human tissues. We provide gene 

enrichment signatures for all major constituent cell types, including those that are fragile or 

difficult to process, such as podocytes in the kidney and adipocytes in the breast, as well as 

http://www.humancellatlas.org/
https://www.proteinatlas.org/
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for minority cell types, such as those in the hair follicles of the skin. We identify co-enriched 

genes shared by related cell types, such as pancreatic alpha and beta cells, and chart temporal 

changes in gene enrichment during spermatogenesis. In a cross-tissue analysis, we identify 

common gene enrichment signatures, e.g., between respiratory ciliated cells and spermatids, 

endocrine cells in the pancreas, colon, thyroid, and stomach, and between cell types found in 

all or most tissues, such as endothelial and immune cell types. All data is available on the 

Human Protein Atlas (HPA) (www.proteinatlas.org/humanproteome/tissue+cell+type). 

https://www.proteinatlas.org/humanproteome/tissue+cell+type
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RESULTS 

Cell type reference transcripts correlate across unfractionated tissue RNAseq data 

Bulk RNAseq datasets for 15 human tissue types were retrieved from Genotype-Tissue 

Expression (GTEx) V8 (www.gtexportal.org) 29 (Figure 1A). To identify cell type-enriched 

transcript profiles, we performed an integrative correlation analysis on each dataset, using our 

previously published method 26-28. 

As the tissue is unfractionated prior to sequencing, constituent cell types are present in 

different proportions in each sample (Figure 1 B.i [lung as an illustrative example]). Thus, each 

cell contributes mRNAs subsequently measured by RNAseq (Figure 1 B.ii), which can be: 

predominantly expressed in that cell type (cell type enriched), selectively expressed in two cell 

types (co-enriched), or expressed in several, or all, cell types within the tissue. For the main 

constituent cell types in each tissue (Figure 1 B.iii) marker ´reference transcripts´ [Ref.T.] were 

shortlisted (n=10-30), including: (i) those identified through in house tissue protein profiling 2 

(ii) established markers identified in older ´none-omics´ studies, (iii) those identified by 

scRNAseq of mouse 13 or human 30 tissue, and (iv) markers from databases containing multiple 

studies e.g., Cell Marker 31, PanglaoDB 32 (Figure 1 B.iv). Spearman correlation coefficients 

were generated between all shortlisted candidate Ref.T. across each sample set, and three 

were selected to represent each cell type (for lung see Figure 1 B.v), based on the following 

criteria: (i) a high correlation between Ref.T. within each cell type panel (FDR <0.00001), 

consistent with cell type co-expression, (ii) a low correlation coefficient between Ref.T. in 

different cell type panels, consistent with high specificity of each panel (Figure 1 B.v) and (iii) 

a normal expression distribution of Ref.T. across samples. For all cell types, corresponding 

Ref.T and intra/inter Ref.T panel correlation coefficients in each tissue see Table S1, Tab 1, 

Table A-O. 

Reference transcripts analysis can identify cell-type enriched gene signatures 

For each tissue type analysed, the proportion of constituent cell types between samples vary, 

due to sampling and genetic factors 33,34, but ratios between constitutively expressed cell-

specific genes remain relatively constant. Thus, high correlation of a given transcript with all 

Ref.T. in any one panel is consistent with selective expression in the corresponding cell type 

28. For all tissues, we generated correlation coefficients between each Ref.T. and all other 

sequenced transcripts (´test-transcripts´) and produced a list of provisional cell type-enriched 

transcripts, based on the following criteria: (i) the test-transcript had a mean correlation with a 

given Ref.T. panel ≥0.50 (FDR <0.0001), which was (ii) higher than the mean correlation with 

http://www.gtexportal.org/
http://bio-bigdata.hrbmu.edu.cn/CellMarker/
https://panglaodb.se/
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any other Ref.T. panel. Resultant transcripts for each cell type were generally well separated 

from all others e.g., for lung: respiratory ciliated cells (RCC; Figure S1 A.i) and alveolar cell 

type 1 (AT1; Figure S1 Bi). However, in some cases, test-transcripts correlated well with more 

than one Ref.T. panel; panels typically representing closely related cell types, e.g., natural 

killer and T-cells (NK and TC; Figure S1 C.i), or those with functional commonalities, e.g., 

macrophages and alveolar type 2 (AT2) cells 35 (MC and AT2; Figure S1 D.i). To more carefully 

analyse the relationship between transcripts, the following was calculated for each to compare 

cell type lists: (i) the ‘differential correlation score’, defined as the difference between the mean 

correlation of the test-transcript with the two sets of Ref.T., e.g., respiratory ciliated cell (RCC) 

type panel [ERICH3, DNAH12, SNTN] and smooth muscle cell (SMC) panel [TPM2, MYL9, 

TAGLN] (Figure S1 A.ii) and (ii) the ‘enrichment ranking’, based on the mean correlation value 

of the test-transcript with the Ref.T. panel (rank 1 = highest corr.). Transcripts that most highly 

correlated with the RCC Ref.T. panel separated well, from even the next closest cell type, SMC 

(Figure S1 A.ii), as did those most highly correlating with the alveolar cell type 1 (AT1) Ref.T. 

panel (Figure S1 B.ii). A panel of transcripts that most highly correlated with Ref.T. 

representing NK (Figure S1 C.ii, right side) or MC (Figure S1 D.ii, right side) had a low 

differential correlation score with Ref.T. for TC or AT2, respectively (Figure S1 C.ii and D.ii, left 

side), consistent with co-enrichment in both cell types, as we previously demonstrated 28. 

scRNAseq data from human lung 36 was used to verify expression profiles of selected 

transcripts with predicted enrichment in one (Figure S1 A-D.iii and v) or both cell types (Figure 

S1 A-D.iv). For classification as single cell-type enriched, any transcript with a differential 

correlation score <0.15 vs. any Ref.T. panel representing a different cell type was excluded, 

on the basis of predicted co-enrichment (e.g., Figure S1 A-D.ii, grey shaded area). Application 

of these criteria across tissues generally resulted in intra-tissue cell-enriched gene panels that 

were well separated from each other (example for lung; Figure 1 C.i-xvi). For some cell types, 

these default thresholds were decreased when overlap with other Ref.T. panels was absent 

e.g., for erythroid cells in the liver (Figure S1 E.i and ii) or increased when overlap remained 

(details provided in Table S1, Tab 3). Gene ontology (GO) analysis 37, performed to identify 

over-represented classes and pathways among genes identified as cell type enriched 

produced resultant terms consistent with expected cell type functions, e.g. for lung respiratory 

ciliated cells, significant terms included ´cilium organisation´ (FDR 4.4 x10-63) (Figure 1 C.i), 

and for plasma cells ´adaptive immune response´ (FDR 3.0 x10-189) (Figure 1C.xiv). Tissue 

profiling for selected proteins encoded by predicted cell type enriched genes had expression 

consistent with our classifications (Figure 1 C.i-xvi).  
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Figure 1. Integrative co-expression analysis of unfractionated human lung tissue RNAseq can 

resolve constituent cell type enriched genes. (A) Bulk RNAseq datasets were retrieved from GTEx 

V8 and analysed by tissue type (n=sample number). (B) Analysis concept, using lung as an illustrative 

example: (i) each sample (n=578) contained mixed cell types, contributing (ii) differing proportions of 
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mRNA to each sequenced dataset. To profile cell type-enriched transcriptomes (iii) constituent cell types 

for each tissue were identified and for each (iv) candidate reference transcripts (Ref.T.) for ´virtual 

tagging´ were shortlisted, primarily based on predicted cell specificity from existing literature and/or in 

house protein profiling. (v) Matrix of correlation coefficient values between selected Ref.T. across the 

sample set. (C) Mean correlation coefficients between genes above designated thresholds for 

classification as cell-type enriched in: (i) respiratory ciliated [RCC], (ii) alveolar type I [AT1], (iii) alveolar 

type II [AT2], (iv) endothelial [EC], (v) alveolar fibroblasts [FB1], (vi) adventitial fibroblasts [FB2], (vii) 

smooth muscle cell [SMC], (viii) macrophage [MC], (ix) mast cell [MastC], (x-xi) neutrophil [NP1 and 

NP2], (xii) T-cell [TC], (xiii) natural killer cell [NK], (xiv) plasma cell [PC], (xv) B-cell [BC], or (xvi) mitotic 

cell [MitC], and all Ref.T. panels. Total number, most significant gene ontology (GO) terms and 

illustrative protein profiling in human lung tissue are provided for each cell type. See also Table S1, 

Figure S1 and S2. 

Weighted network correlation analysis supports cell type enrichment predictions 

As our analysis method is based on manually selected Ref.T., cell type classification is subject 

to an input bias. However, we previously showed that unbiased weighted network correlation 

analysis (WGCNA) 38, where correlation coefficients between all transcripts are calculated and 

subsequently clustered into related groups (based on expression similarity), supports Ref.T. 

based analysis cell type enrichment predictions 27,28. Here, we performed WGNCA of lung and 

liver samples (Figure S2). Both Ref.T (Figure S2 A-B.i) and predicted cell-type enriched gene 

panels (Figure S2 A-B.ii-ix) clustered into the same, or closely related WGCNA groups when 

the differential correlation for exclusion was set at >0.15 (as described above) (Figure S2 A-

B.v). When the differential correlation was increased in increments of 0.05 (Figure S2 A-B.vi-

ix) the number of predicted cell type enriched genes outside the predominant WGCNA clusters 

decreased (see red dashed box), consistent with higher enrichment specificity. Gene 

enrichment could thus be categorised into very high, high or moderate, corresponding to a 

differential score vs. other profiled cell types within the tissue of >0.35, >0.25 or >0.15, 

respectively (see Table S1, Tab 3 for total number in each category for all cell types/tissues). 

Specialised cell types have the highest number of enriched genes within tissues 

The total number of genes with predicted cell type enrichment (very high, high or moderate) 

within each tissue ranged from 7041 (testis) to 829 (pancreas) (Figure 2 A) (Table S1, Tab 3). 

The number of cell types analysed in each tissue type ranged from 7-18; with the lowest 

number profiled in skeletal muscle and subcutaneous adipose tissue (n=7 and 8, respectively) 

and the highest in skin and lung (n=18 and 14, respectively) (Table S1, Tab 1).Tissue 

specialised cell types had the highest number of enriched genes, such as cardiomyocytes in 

the heart (number/total enriched in all cell types in that tissue: 916/1902 [48%]) (Figure 2 B.v), 

proximal tubular cells in the kidney (657/1778 [37%]) (Figure 2 B.vii), hepatocytes in the liver 

(1264/2393 [53%]) (Figure 2 B.xi), keratinocytes in the skin (945/2460 [38.4%]) (Figure 2 B.xiii), 
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gastric mucosal cells in the stomach (379/1361 [28%]) (Figure 2 B.xiv) and respiratory ciliated 

cells in the lung (681/2419 [28%]) (Figure 2 B.xv).  

Of the 19,634 protein coding genes expressed in one or more tissues, 5644 (28.7%) were not 

predicted to be cell type enriched in any tissue (Figure 2 C.i). GO analysis identified the most 

significant over-represented pathways among these genes as ´metabolism of RNA´ (FDR 4.6 

x10-21), ´gene expression (transcription)´ (FDR 2.3 x10-11) ´RNA polymerase II transcription´ 

(FDR 5.4 x10-10) and ´rRNA processing ´ (FDR 5.8 x10-10) (subgroups shown in Figure 2 D), 

consistent with housekeeping function. Indeed, 2893 of these 5644 genes (52.3%, p<10-15) 

had been previously categorised as members of the housekeeping proteome 2.   

5979 (30.4%) genes were classified as cell type enriched in only a single tissue (Figure 2 C.ii), 

the largest proportion of which were in testis (n=3141) (Table S1, Tab 4). GO term analysis of 

this gene group identified the most significant over-represented pathways as ´sexual 

reproduction´ (FDR 3.7 x10-32) and ´spermatogenesis´ (FDR 2.9 x10-30) (subgroups shown in 

Figure 2 E). Of the 8011 genes predicted to be cell type enriched in multiple tissues (Figure 2 

C.iii), a small number (741, 9.2%) were enriched in seven or more; the majority of which were 

predicted to be immune cell-, endothelial cell- or stromal cell- enriched (Figure 2 F), i.e., in cell 

types profiled in all, or most, tissues. Enrichment scores for all genes in cell types by tissue 

type can be found in Table S2 (summary of cell type gene enrichment across tissue in Table 

S1, Tab 4). 

Ref.T. analysis can predict source of tissue enriched genes 

RNAseq data from unfractionated human tissues can be used to identify genes with higher 

expression in any given tissue, compared to others. For genes classified as tissue enriched in 

the Human Protein Atlas (HPA) 2, those we classified as cell type enriched were predominantly 

expressed in tissue specialised cell types, for example, heart enriched genes were 

predominantly cardiomyocyte enriched and liver-enriched genes predominantly hepatocyte 

enriched (Figure S3 A). A hypergeometric test was performed to determine similarity between 

predicted cell type enriched genes and the top 300 enriched genes in each tissue in the GTEx 

data 29 (as collated in the Harminozome database 39); similar to the comparison with the HPA 

data, the highest statistical overlap between tissue enriched genes and cell enriched genes 

were predominantly with tissue specialised cell types (Figure S3 Bi-vi). This highlights the 

usefulness of our analysis of bulk RNAseq to disentangle cell type variance across the different 

tissues in the human body, independent of scRNAseq data.  
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Figure 2. Overview of cell type enriched gene profiles across tissue types. Bulk RNAseq datasets 

were retrieved from GTEx V8 and cell type enriched transcriptome predictions made using integrative 
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correlation analysis. (A) Number of genes with predicted cell type enrichment in each analysed tissue 

type. (B) Circular plots showing broad classification of genes predicted to be cell type enriched in: (i) 

subcutaneous adipose tissue, (ii) visceral adipose tissue, (iii) breast, (iv) skeletal muscle, (v) heart, (vi) 

thyroid, (vii) kidney, (viii) prostate, (ix) pancreas, (x) testis, (xi) liver, (xii) colon, (xiii) skin, (xiv) stomach 

and (xv) lung, with majority cell types indicated in connected boxes. (C) Total number of expressed 

genes (in at least one tissue type) by respective status: (i) no cell type enrichment in any tissue, (ii) 

prediction as cell type enriched in one tissue, or (iii) predicted to be cell type enriched in two or more 

tissues. Gene ontology overrepresented terms for genes with: (D) no predicted cell type enrichment and 

(E) predicted enrichment only in testis. (F) Cell type enrichment predictions for genes classified as 

enriched in seven or more tissue types. See also Table S1 and S2 and Figure S3. 

Pancreatic alpha and beta cells have both specific and shared gene enrichment profiles  

Alpha and beta cells, the most abundant endocrine cell types in the pancreatic islet of 

Langerhans 40, are defined by their expression of the blood glucose elevating or lowering 

hormones, glucagon (GCG) and insulin (INS), respectively. As a general rule, transcripts 

predicted to be cell type enriched generally separated well from others, but analysis of 

pancreas samples (n=328) revealed that many transcripts that correlated most highly with the 

alpha cell Ref.T. panel also correlated well with the beta cell Ref.T. panel (Figure 3 A.i), and 

vice versa (Figure 3 A.ii). Analysis of individual transcripts revealed 131 genes highly and 

selectively correlated with the Ref.T. panels for both alpha and beta-cells (Figure 3B, [grey 

central panel; mean differential corr. between Ref.T panels <0.15]). GO and reactome analysis 

41 of these 131 co-enriched genes revealed over-represented classes and pathways included 

´regulation of secretion by cell´ (FDR 7.5 x10-11), ´neuronal system´ (FDR 9.9 x10-7) and 

´synapse´ (FDR 1.5 x10-15) (Table S3, Tab 1, Tables A-C). Synapse related proteins (n=44) 

included members of the synaptotagmin (SYT4, 5, 7, 13, 14), and glutamate receptor 

(GRIA2,3) families (Table S3, Tab 2), many of which are reported to be important for pancreatic 

endocrine cell function e.g., SYT4 42 and SYT13 43,44, whilst the function of others in this context 

is not currently known e.g., FRRS1L and NSG1. Alpha and beta cell co-enriched genes 

included several encoding for transcription factors involved in islet cell specification, e.g., 

NKX2-2, 45, NEUROD1 46, RFX6 47, INSM1 48, PAX6 49 and MYT1 50, as well as those with no 

currently reported function in these cell types, e.g., CELF3 and MYT1L one could speculate 

such genes likely have a role in neuroendocrine cell function. 91 genes had predicted alpha 

cell-enrichment, including GCG, TTR and KCNH6 (Figure 3 B, left side); all of which are 

involved in glucose homeostasis 51-53, and other genes with, as yet, no described function in 

this cell type e.g., SMIM24, CALY and C5orf38 (Figure 3 B, left side). 69 genes had predicted 

beta cell enrichment, including those encoding proteins with known beta cell-specific functions, 

e.g., IAPP and MAFA 54,55, as well as those with no reported function in this cell type, e.g., 

HHATL, SNCB and SLC6A17 (Figure 3 B, right side).  
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Figure 3. Pancreatic alpha and beta cells express respective cell type enriched genes and a panel 

of shared co-enriched genes. RNAseq datasets for human pancreas (n=328) were retrieved from 

GTEx V8 and correlation coefficients between selected cell type Ref T. and all others were generated. 

(A) Mean correlation values between protein coding genes that correlated most highly with (i) alpha or 

(ii) beta cell Ref.T. (above >0.50) and all Ref.T. panels. (B) For these transcripts, the ‘differential 
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correlation score’ (difference between mean correlation with alpha and beta cell Ref.T.) was plotted vs. 

‘enrichment ranking’ (position in each respective list, highest correlation = rank 1). Shaded grey box 

highlights genes with differential correlation <0.15. Genes highlighted in bold correspond to those 

featured in the lower panels. Tissue protein profiling of selected genes predicted to be (C) alpha cell-

enriched, (D) co-enriched in both alpha and beta cells, or (E) beta cell-enriched, in human pancreas 

samples. scRNAseq data from analysis of human pancreas was sourced from Tabula Sapiens (Tabula 

Sapiens et al., 2022), and used to generate UMAP plots, showing the expression profiles of example 

genes we predicted as being (C) alpha cell-enriched; (i) C5orf58, (ii) F10 (iii) NECAB2 and (iv) PLPPR1, 

(D) co-enriched in both alpha and beta cells; (i) CELF3, (ii) CPLX2, (iii) SEZ6L and (iv) RFX6, or (E) 

beta cell-enriched; (i) DACH2, (ii) HHATL, (iii) MAFA and (iv) SNCB. scRNAseq cell type annotations 

are displayed on lower central plot. AlphaC; alpha cell, BetaC; beta cell, DC1; ductal cell 1, DC2; ductal 

cell 2, EC; endothelial; FB1/2; fibroblast 1/2, SMC; smooth muscle cell, MC; macrophage, MastC; mast 

cell, NP1/2; neutrophil 1/2, TC; T-cell, PC; plasma cell. See also Table S3 and Figure S4. 

Tissue profiling for selected genes showed protein expression consistent with our 

classifications (Figure C-D top panel). We sourced data from scRNAseq of human pancreas 

36, to compare the expression profiles of selected predicted alpha- (Figure 3 C.i-iv), beta- 

(Figure 3 E.i-iv) or co- (Figure 3 D.i-iv) enriched genes; categorisation was largely consistent 

between datasets. A small number of genes we predicted to be alpha-, beta or co-enriched 

had a mean expression <0.1 TPM in the analysed bulk RNAseq dataset (gene n=11, 6 and 4, 

respectively, Figure S4 A). Despite this low expression, our predicted expression of these 

genes was consistent with the scRNAseq analysis; with most (21/22 [95%]) detected 

predominantly in the correspondingly annotated cell types (Figure S4 C-E). However, for 

several of these genes, detectable expression by scRNAseq was low, or only evident in a small 

number of cells within the cluster, e.g., GLB1L3 (Figure S4 C.ii). The interpretation of such 

scRNAseq data is challenging; thus, our classifications, based on a completely independent 

data collection and analysis method, can be used to verify that low or irregular detection of 

gene expression by scRNAseq in an annotated cell type supports a real biological 

phenomenon, as opposed to noise or imputation artefact. 

Temporal changes in gene enrichment signature underlie the process of 

spermatogenesis  

Precise definitions, markers and terminology used for the respective cell types in the different 

stages of spermatogenesis vary between studies. Our analysis was based on four Ref.T. 

panels (S1-S4) that were selected to represent the temporal order of development: S1, germ 

cell expressed [MAGEB2, KDM1B, PIWIL4] (spermatogonia), S2, meiotic cell cycle expressed 

[ANKRD31, RBM44, TOP2A] (spermatocytes), S3, spermatid structure-related [CEP55, 

KPNA5, PBK] (round/early elongating spermatids) and S4, nuclear condensation/protamine 

repackaging factors [PRM1, PRM2, TNP1] (late/elongated spermatids) (Figure 4 A and Table 

S1, Tab 1, Table N). When the sample set was analysed by WGNCA, Ref.T. within each 

respective panel were all in a common module (Figure S5 A). Principle component analysis of 
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the corr. values of cell-enriched genes vs. all Ref.T. panels revealed the greatest proportion of 

variance in enrichment, and thus uniqueness vs. other cell types, was driven by cell types S1, 

S2, S3, S4 (Figure 4 B). Tissue profiling for proteins encoded by a panel of genes predicted to 

be enriched in cell types outside those in the spermatogenesis pathway revealed expression 

consistent with our classifications (Figure 4 C). 6179 genes were enriched in one or more of 

the germ cell types representing the different stages of spermatogenesis, vs. non-germ cell 

types (Figure S5 B.i and Table S4, Tab 1 [correlation with respective Ref.T panel >0.50, 

differential correlation vs. all non-germ cell types >0.15] columns H-K and Q). GO and 

reactome analysis of this gene list revealed that the most significantly over-represented terms 

included ´sexual reproduction´ (FDR 3.1 x10-27), ´microtubule-based processes´ (FDR 2.2 x10-

26), ´male gamete generation´ (FDR 2.3 x10-26) and ´cell cycle´ (FDR 4.6 x10-19) (Table S4, Tab 

2, Tables A and B) (Figure S5 B.ii [summary plot of GO terms, made with REVIGO 56]). Genes 

that correlated with Ref.T. panels representing cells at different stages of spermatogenesis 

had two main profiles; they were enriched at a specific developmental stage, i.e., S1 (Figure 4 

D.i), S2 (Figure 4 D.ii) S3 (Figure 4 D.iii) or S4 (Figure 4 D.iv) (for all see Figure S5 C .i and ii) 

or, they were co-enriched in adjacent cell types on the developmental trajectory: i.e., S1 and 

S2 (Figure 4 D.v), S2 and S3 (Figure 4 D.vi), S3 and S4 (Figure 4 D.vii) or S2, S3 and S4 

(Figure 4 D.viii) (for all see Figure S5 D.i and ii). Each plot shows five illustrative genes for 

each enrichment profile type (Figure 5 Ei-vii), including genes encoding for proteins with a 

previously reported function at the corresponding stage of spermatogenesis e.g., for S1: 

FGFR3 57, and those with no known role in this context e.g., C19orf84( Figure 4 E.i). Protein 

profiling revealed spatial distribution for those encoded by genes classified as S1, S2, S3 or 

S4-enriched or co-enriched, with positive signals observed progressively closer to the centre 

of the seminiferous tubule with each subsequent developmental stage (Figure 4 E.i-vi). GO 

analysis revealed over-represented classes in genes predicted to be S1, S2- or S1 & S2 

enriched included developmental, cell cycle and meiotic processes (Figure 4 F.i, ii and v), 

whilst organelle assembly, microtubule processes and cilium and flagellum organisation and 

motility associated genes were over represented in S3-, S4- and S3 & S4-enriched genes 

(Figure 4 F.iii, iv and vii) (Table S4, Tab 3). No transcripts were predicted to be co-enriched in 

non-adjacent cell stages along the developmental trajectory (e.g., S1 and S3, or S2 and S4), 

consistent with a coordinated temporal modification in gene enrichment signatures between 

subsequent stages. A single gene, MEIOC, was predicted to be enriched in 3 stages - S2, S3 

and S4. MEIOC is required for germ cells to properly transition to a meiotic cell cycle program, 

together with binding partners YTHDC2 and RBM46 58; both of which we also predicted as 

enriched in cells in S2 and, to a lesser extent S3 (Table S4, Tab 1).  
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Data from scRNAseq of human adult testis 59 supported our predictions, showing MEIOC 

enrichment in cell clusters broadly corresponding to our classification of S2, S3 and S4 (Figure 

4 G.i) (cell type annotation UMAP as in the original publication in Figure S5). In contrast, we 

predicted that the related transcript MEIOB had specific enrichment at stage S2 (Figure 4 D.ii 

and E.ii), which was also verified by scRNAseq (Figure 4 G.ii). scRNAseq for selected less 

well characterised genes that we predicted as enriched in either S1, S2, S3 or S4 cells (Figure 

S5 C.iii), or gene predicted to be co-enriched in two stages (Figure S5 D.iii) also showed 

agreement with our classifications. A number of genes that were predicted to be enriched in 

one or more of the germ cell stages were lowly expressed (n=240 with mean TPM<0.1), 

several of which did not appear in the scRNAseq dataset 59, presumably due to a lack of 

detection. Of the 100 most lowly expressed genes for which scRNAseq data was available, 

most (>80%) had expression profiles consistent with our predictions in the scRNAseq data 

(examples in Figure S6), but in many cases transcripts were detected at low levels in only a 

few cells in the corresponding cluster, e.g., FZD10 (Figure S6 D), LEP (Figure S6 F) and 

SIGLEC15 (Figure S6 J), making interpretation of this scRNAseq data in isolation challenging. 

Thus, we show that analysis of bulk RNAseq can identify differentially enriched genes 

associated with one or multiple stages of the developmental trajectory during 

spermatogenesis, including genes that are likely too lowly expressed for detection or 

classification as cell type enriched by scRNAseq. 

RNAseq data from unfractionated tissue can be used to identify genes with enriched 

expression in testis vs. other tissues, as we previously described . The vast majority of genes 

with testis-enriched expression were predicted to be enriched in one or more germ cell type 

(845/871 [97%]), with a smaller number predicted to be enriched in sertoli (24/871 [2.8%]), 

Leydig (24/871 [0.1%]) or peritubular cells (24/871 [0.1%]) (Figure 4H). No testis enriched 

genes were classified as endothelial or macrophage-enriched in our analysis, reflecting their 

presence in other tissues.  
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Figure 4. Analysis of pseudo temporal changes during spermatogenesis reveals stage-specific 

and common stage-shared gene enrichment signatures. (A) Cell types at the different stages of 

spermatogenesis were defined based on Ref.T. selected to broadly represent the developmental stage 

classifications spermatogonia [S1], spermatocytes [S2], early spermatids [S3] and late spermatids [S4]. 

(B) Principal component analysis of comparative correlation profiles of cell-enriched genes in S1, S2, 

S3, S4, sertoli cells (SC), Leydig cells (LC), peritubular cells (PtC), endothelial cells (EC) or 

macrophages (MC) vs. all Ref.T. panels. (C) Tissue profiling for proteins encoded by example genes 
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we predicted to be enriched in non-germ cell types. (D) Pseudo trajectories of gene enrichment 

signatures over time, showing enrichment values for each developmental stage, using (E) illustrative 

genes predicted to be: (i) S1, (ii) S2, (iii) S3, (iv) S4, (v) S1 and S2, (vi) S2 and S3, (vii) S2, S3 and 

S4, enriched, with corresponding tissue protein profiling. (F) Over-represented gene ontology terms and 

significance corrected FDR values for all genes classified as: (i-iv) highly enriched at a specific stage, 

or (v-vii) co-enriched at one or more stages of development. (G) UMAP plots showing gene expression 

profile in the Human Testis Atlas scRNAseq data (Guo et al., 2018) of: (i) the S2, S3 and S4 predicted 

enriched gene MEIOC and (ii) the S2 predicted enriched gene MEIOB. (H) Classification of testis tissue 

enriched genes that we predicted to be cell type enriched. See also Table S4, Figure S5 and S6. 

Constituent cells of the skin hair root are the primary source of skin tissue enriched 

genes 

The skin is one of the most complex tissue types in the human, with multiple layers and diverse 

constituent cell types. We profiled 18 different cell types in the skin, many of which are not 

represented in scRNAseq data in Tabula Sapiens 36 or the Human Protein Atlas (HPA) 

(www.proteinatlas.org/) 2,3, e.g. sebaceous gland cells, eccrine sweat gland cells, adipocytes, 

hair cortex and inner/outer root cells. Keratinocytes expressed the largest proportion of 

predicted cell type-enriched genes; 737 in the sub-granular layers (Figure 5 A.i) and 208 in the 

granular layer (Figure 5 A.ii). Analysis of the sub-granular keratinocyte layers at a higher cell 

type resolution was not possible, as a Ref.T panel with high, consistent, specificity for sub-

population(s) of basal and suprabasal keratinocytes could not be identified. Similarly, when the 

dataset was analysed by WGNCA, most genes we predicted to be sub-granular keratinocyte 

enriched clustered in multiple groups on common clades (552/737 [75%]), the constituent 

groups of which contained a combination of genes considered basal e.g., COL17A1 or 

suprabasal e.g., DSG1 keratinocyte markers (Figure S7 A.i). In contrast, Ref.T. representing 

granular keratinocytes and the majority of genes predicted to be enriched in this cell type 

(181/208 [87%]), clustered in two groups on a single clade (Figure S7 A.ii). These results are 

consistent with keratinocyte development being associated with a shift in absolute gene 

expression levels, as opposed to a defined transition between highly distinct cell states that 

express many specific markers (prior to terminal differentiation in the granular layer).  

For genes identified as cell type enriched, GO analysis revealed over-represented classes 

consistent with cell type annotation, e.g. for granular keratinocytes significant terms included 

´epidermal cell differentiation´ (FDR 2.0 x10-16) (Figure 5 A.ii) and for sebaceous gland cells 

´lipid metabolic processes´ (FDR 2.3 x10-32) (Figure 5 A.vi). Of the skin-specific cell types 

profiled, melanocytes had the fewest enriched genes (n=17) (Figure 5 A.v), including highly 

expressed genes with known cell type-specific functions e.g., PMEL, DCT (mean TPM in skin 

RNAseq 58.2 and 29.6, respectively). More lowly expressed melanocyte-enriched genes 

included SLC24A5, CA14 and SLC45A (mean TPM in skin RNAseq 0.5, 1.9 and 5.7, 

https://www.proteinatlas.org/
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respectively). In skin scRNAseq data from Tabula Sapiens 36 (Figure S7 B.i) SLC24A5 was 

predominantly expressed in a sub-population of cells in melanocyte annotated cluster (Figure 

S7 B.ii), but CA14 and SLC45A2 were not as clearly enriched in this cell type (Figure S7 B.iii 

and iv). However, our classifications of these genes as melanocyte-enriched are supported by 

other studies showing that SLC45A2 has a role in deacidification of maturing melanosomes to 

support melanin synthesis 60 and that CA14 is downregulated in vitiligo skin samples, 

compared to normal, along with other genes we classified as melanocyte enriched 61. 

Furthermore, all three of these genes were clustered together with the melanocyte Ref.T when 

the dataset was analysed by WGNCA (Figure S7 A.iii). Thus, as we demonstrated for alpha 

and beta cells in the pancreas and germ cells in the testis, our analysis can identify cell-type 

enriched genes that are not always detectable as such by scRNAseq.  

RNAseq data from unfractionated tissue was used to identify 188 genes as skin enriched vs. 

other tissues in the HPA tissue section 2, of which 151 were also identified as such in a similar 

analysis of tissues in GTEx 29, collated in the Harminozome database 39. Of these, 96/151 

[63%] were predicted to be cell type enriched in our analysis (Figure 5 B.i); most frequently in 

cells of the hair root (hair cortex or inner root sheath cell), granular keratinocytes or other 

keratinocytes. Other skin enriched genes were predicted to be enriched in melanocytes, sweat 

gland or sebaceous gland cells (Figure 5 B.i). Tissue profiling of proteins encoded by selected 

genes supported our classifications (Figure 5 B.ii). No skin enriched genes were predicted to 

be cell type enriched in endothelial cells, smooth muscle cells, fibroblasts, macrophages, or 

other immune cell types - consistent with their presence in multiple tissue beds, and thus lack 

of specificality to skin. Of those cells that were skin enriched, but not classified as cell type 

enriched in our analysis (Figure S7 C.i [rows lacking an enlarged circle]) most had co-

enrichment profiles in multiple cell types in the hair root (Figure S7 C.ii). These genes included 

PSORS1C2, a member of the psoriasis susceptibility locus 62. Enrichment of this gene in cell 

types of the hair follicle is supported by studies showing that ´near naked hairless´ mice, which 

have a spontaneous mutation preventing the development of a normal coat, have significantly 

reduced expression of PSORS1C2 63, together with others highlighted here e.g., S100A3 and 

KRTAP16-1 (Figure S7 C.ii) 63. In depth skin tissue profiling showed expression of selected 

encoded proteins consistent with enrichment in the hair root (Figure S7 C.iii). Previously, 

keratinocytes, the majority cell type in the skin, have been annotated as the site of expression 

for the majority of skin enriched genes 3. However, this is likely due to the lack of hair root cells 

in the scRNAseq data on which these classifications are based. Here, we show that a minority 

cell type represents the most common source of skin enriched genes.  
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Figure 5. Constituent cells of the skin hair root are the primary source of skin tissue enriched 

genes. (A) Number of genes predicted to be cell type enriched, and corresponding over-represented 

gene ontology terms and significance corrected FDR values, for skin specialised cell types profiled: (i) 

keratinocytes, (ii) granular keratinocytes, (iii) Langerhans cells, (iv) hair cortex cells, inner and outer 



21 

 

root sheath cells, (v) melanocytes, (vi) sebaceous gland cells (vii) eccrine sweat gland cells and (viii) 

adipocytes. (B) (i) Genes enriched in skin vs. other organs, which were predicted to be cell type enriched 

in our analysis, were plotted to show the min differential values between the mean correlation 

coefficients with the Ref.T. panels for each cell type. Enlarged circles represent classification as 

predicted cell type enriched. (ii) Tissue profiling for proteins encoded by skin tissue enriched genes with 

predicted enrichment in the indicted cell type. See also Figure S7. 

Cross-tissue analysis reveals similarities in cell type gene enrichment signatures 

8011 genes were predicted to be cell type enriched in more than two tissue types. To explore 

the relationship between these cell type gene enrichment signatures, we performed a 

hypergeometric test to determine the degree of similarity between all cell types in all tissues. 

As cell type gene enrichment signatures are generated via a correlation-based analysis, 

independent of cell type absolute gene expression levels, such comparisons between tissue 

datasets can be made without correction for batch effects, the analysis platform used, or 

requirement for normalisation.  

Organ-specific cell types can have common gene enrichment signature panels 

Organ specific cell types (i.e. excluding those found in all or multiple organs, e.g., endothelial 

cells, fibroblasts and immune cell types) had gene enrichment signatures with: little or no 

similarity to other cell types e.g., hair inner root sheath cells and melanocytes (Figure 6 A.ii 

and iii), significant similarity to one other cell type, e.g., skeletal myocytes and cardiomyocytes 

(Figure 6 A.iv) or significant similarity with multiple other cell types, e.g., endocrine cells from 

several tissues; alpha and beta cells from the pancreas, enteroendocrine cells from the colon 

and stomach, and parafollicular cells from the thyroid (Figure 6 A.vi). We found a significant 

overlap between the enriched gene signatures of adipocytes (subcutaneous adipose, visceral 

adipose and breast), skin sebaceous gland cells, liver hepatocytes, and kidney proximal 

tubular cells (Figure 6 A.vii). GO analysis of the 41 genes predicted to be enriched in at least 

three of the aforementioned cell types (Figure 6 B.i  [green box]) (Table S5, Tab 1, Table A) 

revealed significant terms all related to metabolic processes, including ´carboxylic acid 

metabolic processes´ (FDR 8.8 x10-26)  and ´organic acid metabolic processes´ (FDR 9.4 x10-

26) (Table S5, Tab 1, Table B) (Figure 6 B.ii). 22 of these 41 genes were also predicted to be 

enriched in cardiomyocytes, another highly metabolically active cell type with a significant 

overlap in gene enrichment signature with both adipocytes and hepatocytes (Figure 6 A and 

Table S5, Tab 1, Table A). Illustrative protein profiling showed selective expression of ACO1 

and HADH in adipocytes in adipose tissue, sebaceous gland cells in skin, hepatocytes in liver 

and proximal tubular cells in kidney (Figure 6 B.iii). The enrichment of such genes in many 

highly metabolically active cells is consistent with a common shared function across tissue 

types. In contrast, cell type enriched genes classified as such in only one tissue are likely key 
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for highly specialised cell functions, e.g., complement and coagulation factor genes were 

predicted to be enriched only in hepatocytes (including C4B, C8A, C9, CFHR1/2/4/5 and 

others) and specific solute transporters only in proximal tubular cells (e.g., SLC13A1, 

SLC22A13, SLC22A6, SLC22A8). Tissue profiling for proteins encoded by example genes 

predicted to be enriched in only one of these four cell types; adipocytes (PRKAR2B), 

sebaceous gland cells (TMEM97), hepatocytes (OTC) or proximal tubular cells (TMEM174) 

showed positive staining in only the respective cell types (Figure 6 B.iv). In contrast to ACO1 

and HADH, which were expressed mean TMP >10 in the RNAseq datasets analysed (Figure 

6 B.v), expression values of these example genes were highest in the corresponding tissue, 

with low or no expression in the others (Figure 6 B.vi). 

Our analysis also revealed a significant overlap between the gene enrichment signatures of 

early and late spermatids in the testis and respiratory ciliated cells in the lung (Figure 6 A.v 

and C.i). GO term analysis of these 441 shared genes (Table S5, Tab 2, column A-B) revealed 

the most significant terms were related to cilia (Figure 6 C.ii), which are important for both 

clearance of fluid from the airways and movement of the sperm flagellum, including ´cilium 

organisation´ (FDR 3.6 x10-69) and ́ cilium movement´ (FDR 9.5 x10-64) (Table S5, Tab 2, Table 

1). The top 50 genes predicted to be most highly enriched in both early and late spermatids 

and RCC (Figure 6 C.iii) had variable absolute expression in the respective tissues. LMNTD1 

and MROH9 had very low expression in the lung RNAseq (mean TMP 0.42 and 0.68, 

respectively) (Figure 6 C.iii) and scRNAseq data from human lung 36 revealed highly specific, 

but variable expression (or detection) of these genes in RCC (Figure S8 A.ii and iii). Predicted 

expression in S3 and S4 cells in testis was also supported by scRNAseq from the Human 

Testis Atlas 59 (Figure S8 B.ii and iii). Despite the highly specific enrichment profiles of LMNTD1 

and MROH9; neither were predicted to be enriched in any other cell type across all tissues 

analysed (Figure 6 C.iii), there are no existing studies of these genes in this context. Some 

other genes with highly predicted enrichment in early and late spermatids and RCC were also 

predicted to be enriched in several other cell types e.g., PACRG (Figure 6 C.iii), which is well 

studied in the context of motile cilia, particularly in sperm 64, but has also been proposed to 

have other roles, such as in primary cilia 65 and even inflammatory pathway signalling 66; 

perhaps explaining its more widespread enrichment profiles in our analysis. Tissue profiling for 

proteins encoded by example genes enriched in both RCC and early and late spermatids 

(Figure 6 C.iv), or RCC only (Figure 6 C.v) showed expression consistent with our predictions. 

GO analysis of genes predicted to be highly enriched in spermatids, but not RCC, revealed the 

most significant terms were unrelated to cilia formation, including ´spermatogenesis´ (FDR 1. 

x10-25), ´multicellular organism reproduction´ (FDR 1.5 x10-19), ´spermatid development´ (FDR 

6.7 x10-14) and ´fertilisation´ (FDR 1.4 x10-10) (Table S5, Tab 3, Column A-B and Table 1); 
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reflecting an enrichment for genes with highly specialised function within the testis only, e.g., 

CALR3, LELP1 and SMCP (Figure 6 C.vi). 
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Figure 6. Organ specific cell types can have gene enrichment signature similarities. (A) Heatmap 

showing significance p-values for similarity scores between predicted cell type enriched genes, 

calculated using a hypergeometric test for: (i) all organ-specific cell type enriched gene signatures, (ii) 

skin inner root sheath hair cells, (iii) skin melanocytes, (iv) skeletal myocytes, (v) lung respiratory ciliated 

cells and testis spermatids, (vi) pancreatic alpha and beta cells, colon enteroendocrine cells, thyroid 

parafollicular and stomach gastric enteroendocrine cells and (vii) kidney proximal tubular cells, 

sebaceous gland cells, hepatocytes, and adipocytes in subcutaneous adipose tissue, visceral adipose 

tissue and breast. (B) (i) Number of individual or common enriched genes for adipocytes (in at least 2/3 

tissues profiled) kidney proximal tubular cells, sebaceous gland cells and hepatocytes. (ii) Over-

represented gene ontology terms among the 41 genes featuring in the gene enrichment signature of at 

least 3/4 cell types, displayed in tree map format, generated using REVIGO (areas proportional to Log10 

significance values). Tissue profiling for proteins encoded by genes that were: (iii) part of the shared 

gene enrichment signature [ACO1, HADH] or (iv) classified as cell type enriched only in one cell type 

[PRKAR2B, TMEM97, OTC, TMEM174] and corresponding mean TMP expression in the corresponding 

tissue RNAseq datasets (v) and (vi), respectively. (C) (i) Number of genes that featured in gene 

enrichment signatures for respiratory ciliated cells, early and late spermatids and (ii) the over-

represented gene ontology terms among these shared enriched genes. (iii) Circular plot showing up to 

the top 50 most enriched genes in respiratory ciliated cells and spermatids, displaying the mean TMP 

values in the lung and testis RNAseq datasets, the number of mentions in Pubmed of gene and 

corresponding tissue (´Pubmed + lung/testis´) or the gene alone (´Pubmed all´), and the number of other 

cell types in which the gene was also predicted to be enriched (´enriched other cell type´). Tissue 

profiling for proteins encoded by genes with predicted enrichment in: (iv) both respiratory ciliated cells 

and spermatids, (v) respiratory ciliated cells only and (vi) spermatids only and corresponding mean TMP 

values in the tissue RNAseq. See also Table S5 and Figure S8. 

Core cell types have common gene enrichment signature panels across tissues 

Eight cell types were profiled in all, or most, tissue types (termed “core cell types”); endothelial 

cells [n=15 tissues], smooth muscle cells [n=10], fibroblasts (including hepatic stellate cells 

(HSC) in the liver, and adipose progenitor cells (APC) in adipose tissue) [n=14], macrophages 

(including Kupffer cells in the liver) [n=15], neutrophils [n=8], mast cells [n=5], T-cells [n=13] 

and plasma cells [n=14] (Figure 7 A.i). Gene enrichment signatures of the same core cell type 

in different tissues had high similarity, with little, or no, crossover between different cell types 

(Figure 7A). Notable exceptions included hepatic stellate cells (HSC) and fibroblasts in liver 

and kidney, respectively, which had some commonality with smooth muscle cell gene 

enrichment signatures in other tissues (Figure 7 A.ii), in line with reports that liver HSC can 

have contractile properties 67 and potentially  reflecting the presence of a kidney myofibroblast-

like population, and lung neutrophils, which had some similarity to macrophages in several 

other tissues (Figure 7 A.iii). Enrichment signatures of core cell types had little or no cross over 

with those of organ specific cell types (Figure S8 C.i), except for lung macrophages, which had 

a significant similarity with the cell type group we previously identified as having shared gene 

enrichment signatures related to metabolic processes (Figure 6 B), including adipocytes, 

hepatocytes, proximal tubular cells (Figure S8 C.ii). One could speculate that this indicates 

macrophages in the lung have specific metabolic characteristics, in keeping with recent studies 
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indicating that their metabolic responses to infectious pathogens or other insults may be 

distinct from other macrophage subtypes 68. 

Endothelial cells had strong gene enrichment signature similarities across tissues (Figure 7 A), 

with the exception of liver sinusoidal endothelial cells (LSEC), where over half of the enriched 

genes (19/34 [56%]) were not enriched in endothelial cells in any other tissue, consistent with 

their unique structural and phenotypic features, and highly specialised function 69. Despite this, 

overall, they did have greatest similarity with vascular endothelial cells vs. any other core cell 

type (Figure 7 A.iv). Tissue profiling for proteins encoded by CLEC4G (Figure 7 B.i) and CD36 

(Figure 7 B.ii) showed expression consistent with our predictions of LSEC enrichment only, or 

vascular endothelial and LSEC enrichment, respectively.  

To define key components of the gene enrichment signature for each core cell type, we 

identified genes predicted to enriched in at least half of the tissues profiled (Table S6), e.g., in 

at least 8/15 tissues for EC and MC (Figure 7 C-Gi and ii and Table S6, Tab 1). To assess 

existing reports for each gene in each given cell type, we used PubMed to search for the 

number of studies citing both gene name and cell type together (Figure 7C-G.iii), or gene name 

alone (Figure 7 C-G.iv). Many were well characterised genes on which a plethora of studies 

have been performed, e.g., CD3E and CD2 in T-cells (Figure 7 C.iii and iv), others were poorly 

studied in the cell type context. For example, SHANK3, predicted to be endothelial cell 

enriched in 10 tissues (Figure 7 D), has been researched predominantly in the context of 

neurons and autism 70. TSPAN7 (Figure 7D), predicted to be endothelial cell enriched in 8 

tissues, has only been identified in endothelial cells in the context of tumour associated 

vasculature and metastasis 71. There is little information in the literature about the function of 

LRRN4CL (Figure 7 E), a gene we predicted to be fibroblast enriched in 7 tissues, except for 

its elevated expression in skin melanoma metastases and breast cancer samples 72,73. In 

contrast, MFAP4 (Figure 7 E) is a well-known gene in this cell context 74. TBXAS1 was 

identified as a macrophage core enriched gene, and its enzymatic product, thromboxane A2, 

is linked to vasoconstriction and platelet aggregation, with links to innate immunity 75, but little 

knowledge exists in the macrophage context. Tissue profiling for proteins encoded by 

predicted endothelial enriched genes SHANK3 (Figure 7 D.v) and TSPAN7 (Figure 7 D.vi), 

fibroblast enriched genes LRRN4CL (Figure 7 E.v) and MFAP4 (Figure 7 E.vi) and the 

macrophage enriched gene TBXAS1 (Figure 7 G.vi), revealed selective expression consistent 

with our predictions. 



26 

 

 

Figure 7. Core cell types share gene enrichment signatures across organs. (A) Heatmap showing 

significance p-values for similarity scores in cell type gene enrichment signatures, calculated using a 

hypergeometric test, between (i) plasma cells (PC), T-cells (TC), endothelial cells (EC), fibroblasts (FB), 
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smooth muscle cells (SMC), mast cells (MastC), macrophages (MC) and neutrophils (NP) in different 

tissues. (B) Tissue profiling for proteins encoded by (i) the sinusoidal EC enriched gene CLEC4G and 

(ii) the vascular and sinusoidal EC enriched gene CD36, in different tissue beds. Circular plots showing 

up to the top 50 genes most frequently predicted as enriched in (C) TC, (D) EC, (E) FB, (F) SMC and 

(G) MC in different organs, displaying (i) the percentage of tissues in which the gene was classified as 

enriched in the given cell type (´% tissues´), the number of mentions in Pubmed of (ii) gene and 

corresponding core cell type (´Pubmed + cell type´) together or (iii) the gene alone (´Pubmed all´), and 

(iv) the number of other cell types (including non-core cell types) in which the gene was also predicted 

as enriched (´enriched non-cell type´). (v-vi) Tissue profiling of proteins encoded by selected genes 

predicted to be core cell type enriched. See also Table S6 and Figure S8. 

 

Whereas most core endothelial and fibroblast enriched genes were not predicted to be 

enriched in any other cell types in our analysis (Figure 7 D-E.v), several T-cell (Figure 7 C.v) 

smooth muscle cell (Figure 7 F.v), and macrophage (Figure G.v) enriched genes where 

predicted to be enriched in an additional cell type(s). BCL11B, a gene we predicted to be T-

cell enriched gene in 10 tissues (Figure 7 C) with a known role in T-cell development 76, was 

also predicted to be enriched in skin keratinocytes, consistent with its role in dermal 

development in mice 77, and unexpectedly, in the absence of any existing reports, in 

spermatogonia in the testis; expression profiles we verified by protein profiling (Figure 7 C.vii). 

AIF1, predicted to be macrophage enriched in 12 tissues (Figure 7 G.i and viii), consistent with 

its known expression in this cell type 78, was also classified as kidney podocyte enriched; 

previously reported in only a single study 79, a prediction we again verified with tissue protein 

profiling (Figure 7 G.vi). Of all the core cell types, smooth muscle cell enriched genes were 

most likely to have predicted enrichment in another cell type, most frequently cardiomyocytes, 

skeletal myocytes or breast myoepithelial cells, e.g., SYNM (Figure 7 F.v) and TPM1 (Figure 

7 F.vi).   
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DISCUSSION 

Here we present a tissue-centric, cell type gene enrichment atlas, generated from the analysis 

of hundreds of biological replicates. Although it is frequently stated that cell-type gene 

expression profiles cannot be extracted from bulk RNAseq, e.g., 80,81, here we have identified 

cell type enriched or co-enriched genes, and charted temporal transcriptome changes 

underlying cell type differentiation. We made comparisons between cell type enrichment 

signatures across tissues, without the requirement for normalisation or batch effect 

adjustments, a significant issue when handling scRNAseq datasets, for which currently no 

universal solution 82,83. Our analysis included cell types that are difficult to extract from tissue, 

e.g., adipocytes, and those that are sensitive to processing, e.g., kidney podocytes; issues that 

can hinder analysis 8,10, but are circumvented here as cell removal from tissue was not 

required. We identify lowly expressed transcripts as cell type enriched, many of which can be 

detected only in a small minority of cells annotated as a given type by scRNAseq, possibly due 

to limited read depth and high number of drop-out events 18. Transcript level alone is not 

sufficient to predict protein levels 84 and so potential function of proteins encoded by such 

genes may have been overlooked. 

Our study is the only cell type gene enrichment atlas generated independently of scRNAseq. 

Comparison of scRNAseq datasets generated from analysis of the same tissue type can reveal 

surprisingly low agreement between studies 22,23, possibly due to the low number of samples 

typically analysed, and the associated lack of biological varience. For top cell type enriched 

genes in adipose tissue, agreement between data generated using our analysis method and 

several scRNAseq studies was equivalent or greater than between the scRNAseq studies 

themselves 28. This could reflect the large sample set analysed and the associated biological 

variance represented. Our method also has scope for well-powered comparisons of cell type 

enrichment profiles between healthy and disease states, sexes 28, ages, developmental 

stages, or metabolic states, using existing RNAseq resources for which phenotypic data is 

available, such as GTEx 33 or TCGA (https://www.cancer.gov/tcga) . 

Various deconvolution algorithms have been developed to determine proportions of constituent 

cell types in bulk RNAseq, e.g., CIBERSORT and others 85-87. Such analyses typically depend 

on input expression matrices of cell type reference genes, generated from transcriptome 

analysis of isolated cells or cell types. The accuracy of input matrices can be affected by 

various factors, such as technical artifacts due to cell extraction and processing, the presence 

of contaminating cell types, and limited input data availability for some cell types. Cross 

checking input matrices against our dataset could optimise such analysis, by identifying the 

most likely highly enriched genes in vivo.  

https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
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Limitations of the study 

There are limitations to our study. In some tissues, we do not profile specific cell subtypes, 

e.g., basal and suprabasal keratinocytes in the skin, which were handled as one cell type in 

our analysis. In such cases, we failed to identify genes that fulfilled the criteria for use as input 

Ref.T.. In keeping with our observations, scRNAseq analysis of skin showed that genes 

considered to be basal keratinocyte markers e.g., COL17A1 and KRT5, were indeed most 

highly expressed in this cell type, but were also co-enriched within the tissue in suprabasal 

keratinocytes 3. Thus, such cell subtype definitions are likely primarily governed by variation in 

absolute mRNA expression levels, rather that the presence or absence of a large number of 

uniquely enriched genes.  

As our analysis end point is a gene enrichment score, we do not provide information on 

absolute mRNA expression profiles on a cell type basis, such as that generated by scRNAseq 

analysis.  

As the prediction of cell type enriched genes is dependent on known input Ref.T., we cannot 

identify novel cell (sub)types for which Ref.T. have not yet been described.  

We analysed samples from a total of 933 individuals from the GTEx portal 33, with diverse 

health status, whose ages skewed older (ages 20-29: 8.5%, 30-39: 8.1%, 40-49: 15.6%, 50-

59: 31.9%, 60-69: 32.4%, 70-79: 3.4%). Thus, the input dataset represents a limited age 

demographic, and a health status that may not represent the general population.  

Expression of certain genes are strongly modified by environmental (e.g., eating, exercise, 

inflammation etc.), or genetic factors 88. Such genes may therefore lack correlation with the 

constitutively expressed Ref.T. selected to represent the cell type in which they are 

predominantly transcribed, and thus could be considered a type of false negative in our 

analysis. One such example is SELE, an endothelial cell specific gene that is highly 

upregulated during inflammation and expressed at very low levels, if at all, in resting state 89. 

SELE, despite its highly endothelial cell restricted expression profile, is not classified as EC 

enriched in our analysis, due to the variable nature of its expression.  

We used relatively high thresholds for classification of cell type enriched genes. It is likely that 

some cell type enriched genes may be false negatives in our analysis, as they fall just below 

the thresholds required for classification as such. For example, the gene KANK3 is classified 

as endothelial cell enriched in 9 tissue types, in the remaining 6 the highest enrichment score 

is also in endothelial cells, vs. all other types profiled, although it did not reach classification 
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threshold. Thus, our classifications are intended only as a guide, and the reader should 

consider the data on a transcript-by-transcript basis. 

All data generated in this study is available on the Human Protein Atlas in the ´Tissue Cell 

Type´ section (www.proteinatlas.org/humanproteome/tissue+cell+type), and can be used 

alongside data generated from scRNAseq in the ´Single Cell Type Section´ 3, and the antibody 

based tissue protein profiling in the ´Tissue Section´ 2. 

  

https://www.proteinatlas.org/humanproteome/tissue+cell+type
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METHODS AND RESOURCES 

LEAD CONTACT AND MATERIALS AVAILABILITY 

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact: Dr. Lynn Marie Butler. Email: Lynn.butler@ki.se 

This study did not generate new unique reagents. 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Bulk RNAseq data analysed in this study was obtained from the Genotype-Tissue Expression 

(GTEx) Project (gtexportal.org) V8 29 on 2021/04/26 (dbGaP Accession phs000424.v8.p2). 

Protein coding genes were categorised according to Biotype definitions in ENSEMBL release 

102 90 inclusive of those defined as “protein_coding”, “IG_C_gene”, “IG_D_gene”, 

“IG_J_gene”, “IG_V_gene”, “TR_C_gene”,“TR_D_gene” ,“TR_J_gene” and “TR_V_gene”. All 

other categorisations were classified as “non-protein coding” and were excluded from the 

analysis. Human tissue protein profiling was performed in house as part of the Human Protein 

Atlas project 2,91,92 (www.proteinatlas.org). Normal tissue samples were obtained from the 

Department of Pathology, Uppsala University Hospital, Uppsala, Sweden, as part of the 

Uppsala Biobank. Samples were handled in accordance with Swedish laws and regulations, 

with approval from the Uppsala Ethical Review Board (Uhlen et al., 2015).  

METHOD DETAILS 

Sample inclusion  

All samples in each GTEx tissue type dataset were included in the analyses, with the exception 

of: (i) Skin-not Sun Exposed (suprapubic): Ref.T. selected to represent hair root cells were 

absent or very lowly expressed in a large number of samples, presumably due to the lack of 

such structures in the selected region of tissue analysed. Thus, only samples with mean TPM 

>0.1 for hair follicle expressed transcripts trichohyalin (TCHH), keratins 25 (KRT25) and 71 

(KRT71) were included for in the analysis (n=177). (ii) Breast – Mammary Tissue: The GTEx 

breast dataset contains samples from both male and female donors, we analysed those from 

only from females. In both cases, sample IDs included in the analysis can be found in Table 

S2, Tab ´Sample IDs´. 

mailto:Lynn.butler@ki.se
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QUANTIFICATION AND STATISTICAL ANALYSIS 

Reference transcript-based correlation analysis  

This method was based on that we previously developed 26-28. Pairwise Spearman correlation 

coefficients between reference transcripts (Ref.T.), selected as proxy markers for each cell 

type (see Table S1, Tab 1, Table A-O), and all other transcripts were calculated in R using the 

corr.test function from the psych package (v 1.8.4). False Discovery Rate (FDR) adjusted p-

values (using Bonferroni correction) <0.0001 were considered significant. Genes were 

predicted to be cell type enriched if they fulfilled the criteria as described in the results section. 

In cases where a given cell type was represented by more than one Ref.T panel, or they could 

be considered related sub-cell types, the minimum differential score required vs. other Ref.T. 

panels was calculated excluding each the other (i.e., genes that correlated highly with both 

Ref.T. panels representing the same (sub)cell type were not excluded from classification as 

cell type enriched, but included in both – see Table S1, Tab 2).  

Weighted correlation network (WGCNA) analysis 

The R package WGCNA 38 was used to perform co-expression network analysis for gene 

clustering, on log2 expression TPM values. The analysis was performed according to 

recommended conditions in the WGCNA manual. Non-protein coding transcripts and 

transcripts with too many missing values were excluded using the goodSamplesGenes() 

function.  

Gene Ontology 

The Gene Ontology Consortium 41 and PANTHER classification resource 93,94 were used to 

identify over represented terms in gene lists from the GO ontology (release date 2022-07-01) 

or reactome (release date 2021-10-01) databases. Plots of GO terms were created using the 

Clusterprofiler package in R 95 or REVIGO 56, as specified. 

Additional datasets and analysis 

Single cell RNAseq data from Tabula Sapiens 36 was downloaded and UMAP plots created 

using the Seurat package in R 96. Human testis scRNAseq data was sourced from the human 

testis atlas 59. Tissue enriched genes were downloaded from the Human Protein Atlas (HPA) 

tissue atlas 2 or GTEx database 29, as collated in the Harminozome database 39. 
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Tissue Profiling: Human tissue sections 

Immunohistochemistry (IHC) stained tissue sections were stained, as previously described 2,91. 

Briefly, formalin fixed and paraffin embedded tissue samples were sectioned, de-paraffinised 

in xylene, hydrated in graded alcohols and blocked for endogenous peroxidase in 0.3% 

hydrogen peroxide diluted in 95% ethanol. For antigen retrieval, a Decloaking chamber® 

(Biocare Medical, CA) was used. Slides were boiled in Citrate buffer®, pH6 (Lab Vision, CA). 

Primary antibodies and a dextran polymer visualization system (UltraVision LP HRP polymer®, 

Lab Vision) were incubated for 30 min each at room temperature and slides were developed 

for 10 minutes using Diaminobenzidine (Lab Vision) as the chromogen. Slides were 

counterstained in Mayers hematoxylin (Histolab) and scanned using Scanscope XT 

(Aperio). Primary antibodies used for IHC staining are listed in Table S7. 

Other visualisation and analysis tools 

Graphs and plots were made using Graphpad prism or the ggplot2 package in R 97, unless 

otherwise specified. Circular plots were constructed using the R package circlize 98 and 

pubmed data was extracted using the easyPubMed package in R (https://CRAN.R-

project.org/package=easyPubMed). Some figure illustrations were created using 

BioRender.com. 

DATA AVAILABILITY 

Data for all protein coding genes and antibody-based protein profiling is provided on the 

Human Protein Atlas (Tissue Cell Type section) 

(www.proteinatlas.org/humanproteome/tissue+cell+type). This article also includes all 

individual tissue datasets generated (Table S2) and cell type enrichment categorisations 

(Table S1, Tab 4). 

https://cran.r-project.org/package=easyPubMed
https://cran.r-project.org/package=easyPubMed
http://www.proteinatlas.org/humanproteome/tissue+cell+type
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SUPPLEMENTAL TABLE LEGENDS 

Table S1. Reference transcript selection and analysis summary 

[Tab 1]: Correlation coefficient values between selected Ref.T. in each tissue. [Tab 2]: Cell 

subtypes represented by different Ref.T. panels within a single tissue and corresponding 

annotations in the Tabula Sapiens and HPA databases. [Tab 3]: Analysis criteria and totals for 

very high, high and moderately enriched genes within each cell type. [Tab 4]: Cell type 

enrichment predictions for all protein coding genes. 

Table S2. Sample IDs and tissue-by-tissue data 

[Tab: Sample IDs]: Analysed sample IDs (GTEx). [Other tabs]: Details for each tissue type 

(see key). 

Table S3. Gene ontology (GO) terms in alpha and beta cells of pancreas 

[Tab 1]: GO biological process, reactome, and cellular component analysis for genes predicted 

to be co-enriched in alpha and beta cells of the pancreas. [Tab 2]: Synapse-linked genes with 

predicted co-enrichment in alpha and beta cells of the pancreas. 

Table S4. Values and gene ontology (GO) analysis of germ cell enriched genes 

[Tab 1]: Genes predicted to be enriched in germ cells of the testis (see key). [Tab 2]: GO 

biological process and reactome analysis of germ cell enriched genes. [Tab 3]: GO biological 

process analysis for germ cell subtype predicted enriched genes. 

Table S5. GO analysis of genes enriched in multiple cell types 

[Tab 1]: Table A: Genes predicted to be enriched in 3 or more of: adipocytes, sebaceous gland 

cells, hepatocytes, and proximal tubular cells. Table B: GO Biological Process analysis for 

genes in Table A. [Tab 2]: Table A: Genes predicted to be enriched in respiratory ciliated cells 

of the lung and S3 and/or S4 cells (early or late spermatids) of the testis. Table B: Enriched 

GO biological process anaysis for genes listed in Table A. [Tab 3]: Table A: Genes predicted 

to be enriched in S3 and/or S4 cells (early/late Spermatids) of the testis, but not in respiratory 

ciliated cells of the lung. Table B: GO biological process analysis for genes listed in Table A. 
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Table S6. Core cell type predicted enriched genes 

Genes predicted to be enriched in the same cell type in at least half of the tissues where 

profiled. 

Table S7. Primary antibodies 

IDs for all primary antibodies used to stain all immunohistochemistry images used in this study.  
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Figure S1. Integrative co-expression analysis of unfractionated human tissue RNAseq can 

resolve constituent cell type enriched genes. Related to Figure 1.RNAseq datasets for human lung 

(n=578) were retrieved from GTEx V8 and correlation coefficients between selected cell type Ref. T. 

and all other sequenced transcripts generated. Correlation values vs. all other cell type Ref.T. panels 

for transcripts reaching the designated threshold with Ref. T. for (A) (i) respiratory ciliated cells (RCC) 

(B) (i) alveolar type I cells (AT1), (C) (i) natural killer cells (NK) or (D) (i) macrophages (MC). The 

‘differential correlation score’ and respective enrichment rankings for transcripts reaching the designated 

threshold with Ref. T. for (A) (ii) RCC or SMC, (B) (ii) AT1 or AT2, (C) (ii) NK or TC and (D) (ii) MC and 

AT2. scRNAseq data from analysis of human lung was sourced from Tabula Sapiens (Tabula Sapiens 

et al., 2022) and used to generate UMAP plots, showing the expression profiles of example genes we 

predicted as being enriched in (A) (iii) RCC only, (iv) RCC and SMC or (v) SMC only, (B) (iii) AT1 only, 

(iv) AT1 and AT2 or (v) AT2 only, (C) (iii) TC only, (iv) TC and NK or (v) NK only, or (D) (iii) AT2 only, 

(iv) AT2 and MC or (v) MC only. (E). RNAseq datasets for human liver (n=226) were retrieved from 

GTEx V8 and analysed as described for lung. Correlation values vs. all cell type Ref.T. panels for 

transcripts reaching the (i) designated or (ii) modified threshold for classification as erythroid cell 

enriched. EC; Endothelial cell, FB1/FB2; fibroblast, MC; macrophage, MastC; mast cell, NP1/NP2; 

neutrophil, TC; T-cell, NK; natural killer cell, PC; plasma cell, BC; B-cell. 
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Figure S2. Unsupervised weighted network correlation analysis (WGNCA) is consistent with 

Ref.T. analysis. Related to Figure 1. RNAseq data from human (A) lung (n=578 individuals) or (B) 

pancreas (n=328) was subject to weighted correlation network analysis (WGCNA). In the resultant 

dendrograms, the position of (i) Ref.T. selected to represent each cell type and (ii) the % of the cluster 

containing transcripts that had a correlation with any Ref.T. panel above the designated threshold, are 

indicated; colour representing the cell type classification (see bottom panel) (Table S1, Tab 5 for 

thresholds). Distribution of transcripts for each cell type classification when the highest correlation with 

any given Ref.T. panel was a minimum of (ii) 0, (iii) 0.05, (iv) 0.10, (v) 0.15 [moderately enriched], (vi) 

0.20, (vii) 0.25 [highly enriched] or (viii) 0.30 or (ix) 0.35 [very highly enriched] greater that the next 

highest with a different Ref.T. panel (´differential correlation score´). 
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Figure S3. Integrative co-expression analysis of unfractionated human tissue RNAseq can 

resolve tissue enriched genes into single cell type expression source. Related to Figure 2. (A) 

Bar plot showing the fraction of predicted cell type enriched genes among the tissue, or tissue-group, 

enriched genes in Human Protein Atlas (HPA). Colour indicates cell type group. The cell type with the 

most shared enriched genes with tissues are labelled. (B) Bubble plots showing the significance 

(indicated by dot size and colour) of similarity between the top 300 tissue enriched genes in GTEx and 

the predicted cell type enrichment signatures Where overlap is not statistically significant 

(hypergeometric test, P > 0.05), the corresponding dot is removed. EC; endothelial cell, SMC; Smooth 

muscle cell, MC; macrophage, MastC; mast cell, TC; T-cell, PC; Plasma cell, NP; Neutrophil, MI; Mitotic 

cell, NK; Natural killer cell. 
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Figure S4. Reference transcript-based identification of lowly expressed pancreatic alpha and 

beta cell type enriched and co-enriched genes. Related to Figure 3. RNAseq datasets for human 

pancreas (n=328) were analysed to generate correlation coefficient values between all protein coding 

genes and Ref T. (A) For genes that correlated most highly with alpha (dark blue) or beta cell (turquoise) 

Ref.T (above >0.50), the ‘differential correlation score’ (difference between mean corr. with alpha and 

beta cell Ref.T.) was plotted vs. ‘enrichment ranking’ (position in each respective list, highest corr. = 

rank 1). Shaded grey box highlights genes enriched in both cell types (co-enriched). Genes highlighted 

in bold correspond to those featured in the lower panels. scRNAseq data from analysis of human 

pancreas was sourced from Tabula Sapiens (Tabula Sapiens et al., 2022), and used to generate UMAP 

plots showing (B) scRNAseq cell type annotations, and the expression profiles of genes we predicted 

as being (C) alpha cell-enriched; (i) DSCAM, (ii) GLB1L3, (iii) UPB1 and (iv) SPOCK3, (D) co-enriched 

in both alpha and beta cells; (i) ADGRA1, (ii) FAM135B, (iii) GPR158 and (iv) SCRT2, or (E) beta cell-

enriched; (i) BEST3, (ii) EIF4E1B, (iii) TRPM3 and (iv) UNC5D.
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Figure S5. Analysis of pseudo temporal changes during spermatogenesis reveals stage-specific 

and common stage-shared gene enrichment signatures. Related to Figure 4. (A) weighted network 

correlation analysis of human testis RNAseq data (n=361) annotated to show position of genes in Ref.T. 

panels (each indicated with single circle) selected to represent cell types at the different stages of 

spermatogenesis: S1 (spermatogonia), S2 (spermatocytes), S3 and S4 (early and late spermatids, 

respectively). (B) For genes with predicted cell-type enrichment in S1, S2, S3 or S4 (i) mean correlation 

coefficients with Ref.T. for S1, S2, S3, S4 and sertoli cells (SC), Leydig cells (LC), peritubular cells (PtC), 

endothelial cells (EC) or macrophages (MC) and (ii) over-represented gene ontology terms, summarised 

and visualised using REVIGO. For all genes predicted to be: (C) highly cell type enriched at one stage 

of spermatogenesis or (D) co-enriched at two or more stages of spermatogenesis (category indicated 

in top left of each plot): (i) mean correlation coefficients with Ref.T. for S1, S2, S3, S4, SC, LC, PtC, EC 

or MC, (ii) mean correlation coefficients with Ref.T. for S1, S2, S3, S4 with linkage lines connecting 

each individual gene (iii) expression profiles in Human Testis Atlas scRNAseq data (Guo et al., 2018) 

for selected lesser known genes appearing in each respective category. UMAP from the Human Testis 

Atlas shows original cell type annotations (bottom left), with arrows to indicating the broad equivalence 

classifications in our analysis. 
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Figure S6. Reference transcript-based identification of lowly expressed germ cell enriched genes 

in the human testis. Related to Figure 4. (A) UMAP and cell type annotations as defined in the 

scRNAseq Human Testis Atlas (Guo et al., 2018), with arrows to indicate the broad equivalence 

classifications in our analysis. (i) Enrichment scores in all cell types profiled for genes predicted to be 

(B-F) S1 enriched, (H-N) S3 and S4 enriched or (O-Q) S4 enriched, with (ii) corresponding UMAP 

expression plots from the scRNAseq Human Testis Atlas (Guo et al., 2018). 
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Figure S7. Constituent cells of the skin hair root are the primary source of skin tissue enriched 

genes. Related to Figure 5. (A) Weighted network correlation analysis (WGNCA) of human skin 

samples (n=210) with coloured coded bars showing distribution of genes predicted to be cell type 

enriched. Position of Ref.T. and example cell-type enriched genes are highlighted for: (i) supra-basal 

keratinocytes, (ii) granular keratinocytes and (iii) melanocytes. (B) scRNAseq data and cell type 

definitions were sourced for human skin from Tabula Sapiens (Tabula Sapiens et al., 2022) and used 

to generate UMPA plots showing: (i) cell type annotations or expression profiles for genes we predicted 

to be melanocyte enriched (ii) SLC24A5, (iii) CA14 and (iv) SLC45A2. (C) Skin enriched genes (vs. 

other tissue types) were identified and (i) corresponding cell type enrichment profiles in skin plotted, a 

panel of which (ii) did not reach the threshold for classification as enriched in a single cell type but had 

highest enrichment scores in one or more hair cell types. (iii) Expression of proteins encoded by selected 

examples were profiled in human skin tissue containing hair roots.   
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Figure S8. Cell type enriched signature comparisons. Related to Figure 6 and 7. scRNAseq data 

was sourced for human (A) lung from Tabula Sapiens (Tabula Sapiens et al., 2022) or (B) testis from 

the Human Testis Atlas (Guo et al., 2018), and used to generate UMAP plots to show (i) cell type 

annotation as according to the original studies, or expression profiles of (ii) LMNTD1 or (iii) MROH9. 

(C) Heatmap showing significance p-values for similarity scores, calculated using a hypergeometric test, 

between: (i) all predicted cell type enriched genes, and (ii) lung macrophages vs. other non-macrophage 

cell types. 
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SUMMARY 

Endothelial cells (EC), which form a monolayer lining the lumen of all blood vessels, have a 

key role in the regulation of haemostasis, blood pressure, inflammatory responses, the 

transportation of fluids and molecules across tissues, and angiogenesis. The endothelial-

restricted expression of the highly conserved adhesion G protein-coupled receptor L4 

(ADGRL4) indicates it likely has an important role in EC specific function. Previous reports 

indicate a role for ADGRL4 in EC angiogenesis and proliferation, but studies have failed to 

show any activation or coupling to canonical GPCR signalling pathways. Here, using a global 

proteomics profiling approach, we show that ADGRL4 depletion modifies the EC response to 

the inflammatory cytokine tumour necrosis factor (TNF), specifically augmenting TNF-induced 

tissue factor expression. Time course analysis indicated that initial transcription of tissue factor 

mRNA was not affected by ADGRL4 depletion, but subsequent resolution to baseline was 

inhibited. Both thrombin formation and fibrin deposition from plasma and whole blood, 

respectively, was correspondingly potentiated following ADGRL4-depletion, demonstrating an 

associated increase in pro-coagulant activity. Concurrently, expression of a panel of TNF-

induced interferon stimulated genes were selectively inhibited by ADGRL4-depletion. Our 

results indicate that ADGRL4 has a currently unappreciated and potentially complex role in the 

EC response during inflammation. 
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INTRODUCTION 

The endothelium, a cellular monolayer lining the lumen of all blood vessels, has a key role in 

the regulation of haemostasis, blood pressure, inflammatory responses, the transportation of 

fluids and molecules across tissues, and angiogenesis [1-3]. We previously identified a panel 

of human endothelial cell (EC) enriched genes in multiple tissue types [4-9], and these genes 

are likely important for EC specific phenotype and function. Proteins coded by such genes 

include cadherin-5 (CDH5), claudin-5 (CLDN5) and endothelial cell-selective adhesion 

molecule (ESAM), which play established roles in EC integrity, polarity and shape, vessel 

permeability and signalling [10-13], von Willebrand factor (VWF) which is important for 

haemostasis [14], and the vascular endothelial growth factor receptor 1 (FLT1) and 2 (KDR), 

which are central to angiogenesis [15]. However, we also identified many endothelial enriched 

genes that encoded for currently poorly characterised proteins [4-8], including the adhesion G 

protein-coupled receptor L4 (ADGRL4). ADGRL4, formerly known as ELTD1, belongs to the 

latrophilin group that, along with eight other subfamilies, make up the adhesion G protein-

coupled receptor (aGPCR) family. The topological compartmentation of ADGRL4 separates 

into a canonical 7-transmembrane domain, shared by all GPCRs, a short intracellular C-

terminal domain and an extracellular domain consisting of an epidermal growth factor (EGF)-

like domain, a calcium binding EGF-like domain and the aGPCR specific GPCR 

autoproteolysis-inducing domain. The latter contains a GPCR proteolytic site where cleavage 

is predicted to create a N-terminal and C-terminal fragment that associates non-covalently [16]. 

ADGRL4 is well conserved amongst vertebrates [17], implying an important functional role. No 

binding partner for ADGRL4 has been identified, rendering investigation of protein activation 

and signal-transduction challenging [16], with previous studies failing to show any activation or 

coupling to any canonical GPCR signalling pathway, even though similar methods have proven 

successful for other aGPCRs [18]. Despite this, studies have identified a potential role for 

ADGRL4 in EC angiogenesis and proliferation. ADGRL4 likely has a role in the NOTCH 

signalling pathway; silencing in cultured EC causes upregulation of DLL4 and downregulation 

of JAG1, while the opposite is true for ADGRL4 overexpression [18, 19]. ADGRL4 itself is 

upregulated by VEGF and downregulated by DLL4 [20]. Overexpression of ADGRL4 in EC 

leads to induction of sprouting angiogenesis and reduced proliferation [18], while silencing 

reduced sprouting and tip-formation [20]. Another study found that EC overexpression of 

ADGRL4 induced endothelial-mesenchymal transition [21], with a loss of cell-cell contacts, 

increased network formation, stress-fibre production and endothelial sprouting. A role for 

ADGRL4 has been implicated in several cancer types, with upregulation in tumour cells or the 

surrounding vessels, with contrasting associations to prognosis and survival [20, 22-27].  
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Here, we investigated the effect of EC ADGRL4-depletion on the global protein expression 

profile. We observed a modest increase in the expression of EC proteins associated with 

cellular morphology and structure and marked suppression of cell-cycle associated proteins. 

When EC were treated with the inflammatory cytokine tumour necrosis factor (TNF), the 

associated increase in tissue factor expression was strongly potentiated by ADGRL4-

depletion, and cellular coagulability correspondingly elevated, as measured by real-time 

thrombin formation and fibrin deposition. Concurrently, expression of a panel of TNF-induced 

interferon stimulated genes were selectively inhibited by ADGRL4-depletion. Our results 

indicate that ADGRL4 has a currently unappreciated and potentially complex role in the EC 

response during inflammation. 
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RESULTS 

ADGRL4 is an endothelial enriched gene across human tissue types  

Using a bioinformatics based integrative correlation analysis of bulk RNA sequencing samples, 

we predicted ADGRL4 to be an EC enriched gene across tissue types [4-7, 9]. To verify our 

predictions, we sourced single cell transcriptomics (scRNAseq) data from the analysis of 24 

human organs in Tabula Sapiens [28], where cells from all organs were grouped into the major 

cell type compartments (Figure 1A). ADGRL4 transcripts were consistently detected in the EC 

compartment (Figure 1Aiv), but not in the immune- (Figure 1Ai), epithelial- (Figure 1Aii)- or 

stromal- (Figure 1Aiii) cell compartments. Thus, scRNAseq data supports our predictions that 

ADGRL4 has an EC enriched expression profile, indicating a potential role for ADGRL4 in cell 

type specific function. 

Mass spectrometry-based analysis of ADGRL4-depleted unstimulated EC  

Primary EC were isolated from human umbilical cords and transfected with siRNA (Assay ID: 

6325) targeting ADGRL4 (siRNA-ADGRL4-EC), or a scrambled control (siRNA-control-EC), 

before collection for subsequent analysis 72h later (n=3 biological replicates, annotated as 

sample sets [SS] 1,2,3). We used shotgun mass spectrometry to measure global EC protein 

profiles and to calculate the fold change (FC) in detected proteins between siRNA-ADGRL4-

EC and siRNA-control-EC.  

ADGRL4 silencing modifies the EC expression of structural and mitosis-associated 

proteins 

A total of 92 proteins were upregulated in unstimulated (´resting´) siRNA-ADGRL4-EC 

(threshold FC ≥ 1.3 in all sample sets) vs. siRNA-control-EC (Figure 1Bi; Figure S2Ai-ii; Table 

S1, Tab 3). Among the most consistently up regulated proteins were transgelin (TAGLN) (FC 

[siRNA-ADGRL4-EC vs. siRNA-control-EC, SS 1,2,3]: 3.99, 3.54, and 4.06), protein 

phosphatase 1 regulatory subunit 14A (PPP1R14A) (FC: 4.82, 2.67, and 3.40) and 

tetraspanin-2 (TSPAN2) (FC: 2.61, 2.24 and 3.01). We performed gene ontology (GO) 

enrichment analysis [29-31] (biological processes) to identify overrepresented terms among 

these upregulated proteins, which included ‘cell adhesion’ (p=1.5x10-10), ‘wound healing’ 

(p=1.3x10-7), ‘actin filament bundle assembly’ (p=8.0x10-7), ‘blood vessel morphogenesis’ (p = 

4.2x10-6) and ‘regulation of cell motility’ (p = 9.1x10-6) (Figure 1Ci) (for full list, see Table S1, 

Tab 4). 
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Figure 1. Endothelial ADGRL4 depletion causes changes in structural and cell cycle related 

proteins. (A) scRNAseq data from analysis of cell types from 24 human tissues was sourced from 

Tabula Sapiens (Tabula Sapiens., 2021 [28]) and used to generate UMAP plots to show ADGRL4 
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expression in (i) immune-, (ii) epithelial-, (iii) stromal, and (iv) endothelial cell compartments (See Figure 

S1 for cluster annotations). (B-C) Human umbilical vein endothelial cells (HUVEC, n=3 independent 

sample sets [SS 1,2,3]) were transfected with siRNA targeting ADGRL4 (siRNA-ADGRL4-EC) or a 

scrambled-control sequence (siRNA-control-EC) and analysed after 72 hours, using mass spectrometry. 

(B) Plots showing (i) upregulated or (ii) downregulated proteins in siRNA-ADGRL4-EC (displayed on 

the plot as a fold change (FC) vs. siRNA-control-EC, for 2 biological replicates - sample set [SS] 1 and 

2). Proteins with ratio >1.3 (upregulated) or <0.7 (downregulated) across all sample sets are displayed. 

(C) Gene ontology (biological processes) overrepresented terms for the: (i) upregulated or (ii) 

downregulated proteins. 

A total of 177 proteins were downregulated in unstimulated (´resting´) siRNA-ADGRL4-EC 

(threshold FC ≤ 0.7 in all sample sets) vs. siRNA-control-EC (Figure 1 Bii; Figure S2 Aiii-iv; 

Table S1, Tab 5). Among the most consistently down regulated proteins were timeless 

homolog (TIMELESS) (FC [siRNA-ADGRL4-EC vs. siRNA-control-EC, SS 1,2,3]: 0.21, 0.34 

and 0.32), DNA-binding protein inhibitor ID-1 (ID1) (FC: 0.16, 0.31 and 0.40), serine/threonine-

protein kinase greatwall (MASTL) (FC; 0.16, 0.37 and 0.35), cyclin-dependent kinases 

regulatory subunit 1 (CKS1B) (FC: 0.25, 0.39 and 0.35), cytoskeleton-associated protein 2 

(CKAP2) (FC: 0.24, 0.42 and 0.34), nucleolar and spindle-associated protein 1 (NUSAP1) (FC: 

0.26, 0.42 and 0.37), cyclin-dependent kinase 1 (CDK1) (FC: 0.32, 0.37 and 0.35) and Rac 

GTPase-activating protein 1 (RACGAP1) (FC: 0.35, 0.34 and 0.37). We performed GO 

enrichment analysis (biological processes) to identify over represented terms among the down 

regulated proteins, which included ‘mitotic cell cycle’ (p=6.2x10-36), ‘chromosome 

organization’ (p=3.9x10-27), ‘nuclear division’ (p=1.1x10-25), ‘chromosome segregation’ 

(p=1.1x10-24) and ‘DNA replication’ (p = 5.4x10-17) (Figure 1Cii; full list in Table S1, Tab 6). 

These results indicate a potential role for ADGRL4 in EC cell-cycle regulation. 

Mass spectrometry-based analysis of ADGRL4-depleted inflammatory cytokine-

stimulated EC  

EC play a key role in inflammation and haemostasis and a variety of cytokines can induce EC 

activation in response to tissue damage or infection, leading to changes in the transcriptome 

and proteome profile [32-37]. To investigate if ADGRL4 has a potential role in these processes, 

we analysed global EC protein profiles in siRNA-ADGRL4-EC and siRNA-control-EC, following 

stimulation with the inflammatory cytokine tumour necrosis factor (TNF) for 24 hours (n=2 

biological replicates, annotated as sample sets [SS] 4 and 5). As above, we used shotgun 

mass spectrometry to measure global EC protein profiles and to calculate the fold change (FC) 

in detected proteins between TNF-stimulated siRNA-control-EC and siRNA-ADGRL4-EC. 
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Figure 2. Endothelial ADGRL4 depletion potentiates TNF-induced tissue factor expression. 

siRNA-ADGRL4-EC or siRNA-control-EC were treated with or without TNF for 24 hours before analysis 

by mass spectrometry. (A) Plots showing proteins: (i) induced by TNF (siRNA-control-EC + TNF vs. 

siRNA-control-EC unstimulated = >2 fold change) or (ii) upregulated by TNF and potentiated in siRNA-

ADGRL4-EC (fold change siRNA-ADGRL4-EC + TNF vs. siRNA-control-EC + TNF = >1.3 fold). (B) 

Venn-diagram showing overlap between (i) the number of proteins induced by TNF and (ii) the number 
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of proteins potentiated by ADGRL4 siRNA. The five proteins that were induced by TNF and potentiated 

in siRNA-ADGRL4-EC are labelled in bold on plots in (A), and data points for expression in individual 

samples shown in (C). Error bars represent standard error of the mean.  

TNF-induced tissue factor expression is potentiated by ADGRL4 silencing 

TNF treatment of siRNA-control-EC induced the expression of 70 proteins, which included 

vascular cell adhesion protein 1 (VCAM1) and E-selectin (SELE) (Figure 2Ai and Table S1, 

Tab 7), both leukocyte adhesion receptor proteins known to be induced by TNF [38, 39]. GO 

enrichment analysis was performed to identify overrepresented terms among TNF-induced 

proteins (FC ≥ 2, TNF siRNA-control-EC vs. unstimulated siRNA-control-EC ), which included 

‘immune response’ (p=1.2x10-29), ‘response to cytokine’ (p=5.8x10-28), ‘defense response’ 

(p=1.3x10-22) and ‘cytokine-mediated signaling pathway’ (p=4.2x10-16) (Table S1, Tab 8). We 

identified 174 proteins expressed at higher levels in TNF-stimulated siRNA-ADGRL4-EC, 

compared to TNF-stimulated siRNA-control-EC (FC ≥1.3 in both sample sets [SS] 4 and 5) 

(Figure 2Aii and Table S1, Tab 9), the majority of which were not TNF-responsive. Indeed, GO 

enrichment analysis returned overrepresented terms including ‘cell migration’ (p=2.1x10-17), 

‘cell motility’ (p=1.3x10-16), ‘cell adhesion’ (p=6.1x10-16) and ‘wound healing’ (p=1.6x10-14) 

(Table S1, Tab 10), similar to that reported for proteins upregulated in unstimulated siRNA-

ADGRL4-EC vs. siRNA-control-EC (Figure 1Ci). Only five TNF-induced proteins were 

upregulated in siRNA-ADGRL4-EC vs. siRNA-control-EC (Figure 2B); with the most markedly 

being tissue factor, the initiator of the extrinsic pathway of coagulation (FC [TNF-treated siRNA-

ADGRL4-EC vs. TNF-treated siRNA-control-EC, SS 4 and 5]: 5.23 and 7.24). The others were 

more modestly potentiated - NUAK family SNF1-like kinase 2 (NUAK2) (FC: 1.37 and 1.44), 

cationic amino acid transporter 2 (SLC7A2) (FC: 2.13 and 2.73), ankyrin repeat and BTB/POZ 

domain-containing protein 2 (ABTB2) (FC: 1.94 and 2.24) and extracellular matrix protein 1 

(ECM1) (FC:1.45 and 1.55) (Figure 2Aii and 2C; Table S1, Tab 9). Thus, of all TNF-induced 

proteins, EC tissue factor expression was most significantly and selectively potentiated by 

ADGRL4 depletion.  

ADGRL4 silencing inhibits the resolution of tissue factor after TNF-induction 

To further explore the effect of ADGRL4 silencing on EC tissue factor expression, we 

measured mRNA and surface protein expression, using an alternative sequence ADGRL4 

siRNA (Assay ID: s34480, referred to as siRNA-ADGRL41-EC), in addition to the original (here 

referred to as siRNA2-ADGRL4-EC), to rule out potential off target effects. Non-transfected 

EC, siRNA-control-EC, siRNA-ADGRL41-EC, or siRNA2-ADGRL4-EC were treated with or 

without TNF for 4, 24 or 48 hours. Knock-down of ADGRL4 in siRNA-ADGRL41-EC and 



10 
 

siRNA2-ADGRL4-EC was confirmed on both the mRNA (Figure S2B) and protein level (Figure 

S2C).  

 

Figure 3. Endothelial ADGRL4 depletion leads to reduced levels of TNF-induced tissue factor 

during the later phase of the response. Non-transfected EC, siRNA-control-EC, siRNA-ADGRL41-
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EC, or siRNA2-ADGRL4-EC were treated with or without TNF for 4, 24, and 48 hours, before samples 

before collection and measurement of (A) relative F3 mRNA (fold change (FC) vs. unstimulated siRNA-

control-EC)) or tissue factor protein (B) on the cell surface by flow cytometry, displayed as mean 

fluorescence intensity (MFI) relative to untreated siRNA-control-EC or (C) in the entire cell lysate by 

western blot analysis. Mean values with SEM are indicated on graphs *p<0.05, **p<0.01, ***p<0.001 by 

one-way ANOVA for each time-point.  

Relative qPCR showed tissue factor mRNA expression in non-transfected and siRNA-control-

EC was strongly induced by 4 hours post-TNF stimulation, with levels dropping by 24h, and 

further again by 48 hours (Figure 3A). Relative qPCR  showed significant upregulation of tissue 

factor mRNA expression in both siRNA1-ADGRL4-EC and siRNA2-ADGRL4-EC relative to 

siRNA-control-EC at baseline only (siRNA1-ADGRL4-EC p=0.0017, siRNA2-ADGRL4-EC 

p=0.0458), although a clear downregulatory trend also was observed for 24 and 48 hours of 

TNF stimulation. Little or no difference in upregulation was observed at 4 hours post TNF-

treatment (Figure 3A).  

TNF-induced EC surface tissue factor expression, measured by flow cytometry, was 

significantly elevated following ADGRL4 silencing at 24 hours (siRNA-ADGRL41-EC p=0.001, 

siRNA2-ADGRL4-EC p=0.009) (Figure 3B; Figure S3A). Under baseline conditions, and at 4 

hours post TNF-stimulation, similar trends were observed, but differences were not 

consistently statistically significant in both siRNA-ADGRL41-EC and siRNA2-ADGRL4-EC. 

Tissue factor protein measurement in whole cell lysates (Figure 3C, Figure S3B) showed 

results consistent with cell surface levels. Taken together, these results suggest that initial 

transcription of tissue factor mRNA was not affected by ADGRL4 depletion, but subsequent 

resolution to baseline levels was inhibited. 

Silencing of endothelial ADGRL4 enhances tissue factor induced thrombin generation 

To test for functional effects of elevated TNF-induced tissue factor expression we observed on 

siRNA-ADGRL41-EC and siRNA2-ADGRL4-EC, we used an in-house developed assay to 

measure real time thrombin generation in plasma (Figure 4, and Figure S4 Ai-iv for assay 

description). Recombinant tissue factor was used as an internal reference and positive control, 

which strongly induced thrombin generation (Figure 4 Ai-iii).  



12 
 

 

 

 



13 
 

Figure 4. Endothelial ADGRL4 depletion enhances tissue factor induced thrombin generation. 

Non-transfected EC, siRNA-control-EC, siRNA-ADGRL41-EC, or siRNA2-ADGRL4-EC were treated with 

or without TNF for 4 or 24 hours. Tissue factor blocking antibody or recombinant tissue factor were 

added to some wells prior to assay. (A) Thrombin generation in human plasma was measured after (i) 

0, (ii) 4 or (iii) 24 hours of TNF stimulation (plots representative of 3 experiments). (B) Individual data 

points for each experiment showing (i) endogenous thrombin potential (ETP), (ii) lag-time, (iii) peak-

time and (iv) peak for all conditions. Mean values with SEM are indicated on graphs *p<0.05, **p<0.01, 

***p<0.001, ****p<00001 by one-way ANOVA for each time-point.  

The resultant thrombin generation curve was used for comparison of thrombin generation 

efficiency in the absence (Figure 4Ai), or presence, of prior TNF-stimulation, for 4 or 24 hours 

(Figure 4Aii-iii) (Figure S4Bi-iii for other replicates). Under unstimulated conditions, thrombin 

generation was modestly enhanced on siRNA1-ADGRL4-EC and siRNA2-ADGRL4-EC, 

compared to siRNA-control-EC, measured by lag-time (mean ± SEM; siRNA-control-EC 

[10.17±0.48 mins] vs. siRNA1-ADGRL4-EC [5.39±0.15 mins, p<0.0001], or vs. siRNA2-

ADGRL4-EC [6.11±0.43 mins, p=0.0001])  (Figure 4Bii) and peak-time (mean ± SEM; siRNA-

control-EC [20.61±0.39 mins] vs. siRNA1-ADGRL4-EC [15.67±0.84 mins, p<0.0001], or vs. 

siRNA2-ADGRL4-EC [16.72±0.66 mins, p=0.0005]) (Figure 4Biii). Thrombin generation under 

all conditions was enhanced following 4 hours of TNF-stimulation (Figure 4Aii), with no 

significant difference in endogenous thrombin potential (ETP), lag-time, peak-time or peak 

hight (Figure 4B) between siRNA-control-EC and siRNA1-ADGRL4-EC or siRNA2-ADGRL4-

EC. Following 24 hours of TNF-stimulation, thrombin generation for both siRNA1-ADGRL4-EC 

and siRNA2-ADGRL4-EC was markedly enhanced, compared to siRNA-control-EC (Figure 

4Aiii) as indicated for peak-time (mean ± SEM; siRNA-control-EC [9.83±2.09 mins] vs. siRNA1-

ADGRL4-EC [3.77±0.19 mins, p=0.0019], or vs. siRNA2-ADGRL4-EC [4.33±0.33 mins, 

p=0.0036]) (Figure 4Bii) and peak hight (mean ± SEM; siRNA-control-EC [127.00±39.82 nM] 

vs. siRNA1-ADGRL4-EC [298.70±17.46 nM, p<0.0001), or vs. siRNA2-ADGRL4-EC 

[258.90±23.81 nM, p<0.0001]) (Figure 4Biv). When siRNA1-ADGRL4-EC or siRNA2-ADGRL4-

EC were pre-treated with tissue factor function blocking antibodies, these effects were largely 

abolished (Figure 4Aiii and 4Bi-iv and Figure S3B), consistent with tissue factor being the driver 

behind the increased thrombin generation on siRNA-ADGRL41-EC and siRNA2-ADGRL4-EC. 

Silencing of endothelial ADGRL4 enhances tissue factor induced fibrin deposition 

As the observed increase in tissue factor corresponded with an increase in thrombin 

generation, we went on to investigate the impact on downstream fibrin deposition, which occurs 

as a result of activated thrombin cleaving fibrinogen into fibrin, whilst concurrently activating 

coagulation factor XIII, which cross-links fibrin fibres to create a stable mesh [40].  
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Figure 5: Endothelial ADGRL4 depletion enhances tissue factor-induced fibrin deposition. 

siRNA2-ADGRL4-EC or siRNA-control-EC were grown to confluence in Ibidi chamber slides and treated 
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with or without TNF for 24 hours. Re-calcified citrated human whole blood was flowed over the EC 

surface at a shear rate of 1 dyn/cm2 for 10 minutes. (A) Representative immunofluorescence images of 

fibrin deposition on unstimulated: (i) siRNA-control-EC and (ii) siRNA2-ADGRL4-EC, and TNF 

stimulated: (iii) siRNA-control-EC, (iv) siRNA2-ADGRL4-EC and (v) siRNA2-ADGRL4-EC pre-treated 

with tissue factor blocking antibody. Fibrin (B) surface area coverage and (C) depth was measured (i) 

with and without TNF stimulation and (ii) with and without tissue factor function blocking antibody 

treatment, prior to assay. Mean values with SEM are indicated on graphs *p<0.05, **p<0.01, by paired 

two-tailed t-test. 

We used an in-house developed fibrin deposition assay. Briefly, siRNA-control-EC or siRNA2-

ADGRL4-EC were cultured in narrow channelled chamber slides before treatment with or 

without TNF for 24 hours. The channel was connected, via silicon tubing, to a syringe pump 

containing anticoagulated whole human blood, which was passed over the cell surface at a 

consistent flow rate. Recalcification buffer was injected and mixed into the blood just prior to 

entry into the channel (to remove the anticoagulant induced inhibition of the coagulation 

cascade). Under non-TNF stimulated conditions, fibrin deposition was low on both siRNA-

control-EC (Figure 5Ai) and siRNA2-ADGRL4-EC (Figure 5Ai), with no difference in surface 

area coverage (Figure 5Bi) or depth (Figure 5Ci). 24 hr post TNF stimulation, fibrin deposition 

under both conditions was increased (Figure 5Aiii and iv), but fibrin surface area (mean ± SEM; 

siRNA-control-EC [40.89±5.05 %] vs. siRNA2-ADGRL4-EC [66.75±5.70 %, p=0.019]) and 

depth (mean ± SEM; siRNA-control-EC [16.53±1.74 µm] vs. siRNA2-ADGRL4-EC [34.54±4.25 

µm, p=0.0094]) was significantly enhanced on  siRNA2-ADGRL4-EC (Figure 5 Bi and Ci). Pre-

treatment of  siRNA2-ADGRL4-EC with tissue factor blocking antibody (TF-ab) caused a 

significant reduction in fibrin surface area (mean ± SEM; siRNA2-ADGRL4-EC  [49.52±3.86 %] 

vs. siRNA2-ADGRL4-EC +TF-ab [13.87±5.41 %, p=0.0015]) (Figure 5Bii) and depth 

(mean±SEM; siRNA2-ADGRL4-EC [39.39±4.87 µm] vs. siRNA2-ADGRL4-EC +TF-ab 

[18.56±1.29 µm, p=0.0164]) (Figure 5Cii). 

ADGRL4 depletion inhibits TNF-induced interferon pathway protein expression 

When EC were stimulated with TNF, a total of 145 proteins were detected at lower levels in 

EC-siRNA-ADGRL4, relative to EC-siRNA-control (threshold FC ≤ 0.7 in all biological 

replicates) by mass spectrometry (Figure 6Ai; Table S1, Tab 11). By cross-comparison with 

the previously identified TNF-induced proteins (Figure 6Aii), 129 were non-TNF responsive 

proteins and, as for unstimulated siRNA-ADGRL4-EC vs. siRNA-control-EC, these were 

associated predominantly with cell cycle (Figure 6B) (Table S1, Tab 12). 16 were TNF-induced 

proteins that were inhibited in siRNA-ADGRL4-EC vs. siRNA-control-EC (Figure 6B; Table S1, 

Tab 11), which included  interferon-induced GTP-binding protein Mx2 (MX2) (FC [siRNA-

ADGRL4-EC vs. siRNA-control-EC, SS 4 and 5]: 0.44 and 0.31), interferon-induced protein 

with tetratricopeptide repeats 2 (IFIT2) (FC: 0.42 and 0.34), interferon-induced protein with 
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tetratricopeptide repeats 3 (IFIT3) (FC: 0.46 and 0.34), 2'-5'-oligoadenylate synthase 2 (OAS2) 

(FC 0.46 and 0.35) and interferon-induced protein with tetratricopeptide repeats 1 (IFIT1) (FC: 

0.48 and 0.34) (Figure 6B and 6C; Table S1, Tab 11). Corresponding overrepresented GO 

terms included ‘response to virus’ (p = 4.96x10-10), ‘response to other organism’ (p = 3.19x10-

9), ‘negative regulation of viral genome replication’ (p = 1.32x10-7) and ‘response to interferon-

alpha’ (p = 5.62x10-7) (Figure 6D; Table S1, Tab 13). An automated PubMed search 

(performed using easypubmed package in R) for these 16 proteins revealed that, for 7 the 

majority of published papers were linked to interferon (search: ‘gene name’ + ‘interferon’), and 

all had some existing reports in this context (Figure S5A).  

To further verify the effect of ADGRL4 silencing on interferon response gene (ISG) expression, 

we measured mRNA levels of MX1, IFIT1, Interferon-stimulated gene 20 kDa protein (ISG20) 

and interferon regulatory factor 1 (IRF1), a transcription factor that can induce the 

aforementioned candidates [41], in non-transfected EC, siRNA1-ADGRL4-EC, siRNA2-

ADGRL4-EC or siRNA-control-EC with or without pre-treatment with TNF for 2, 4, 24 or 48 

hours. Selected stimulation time points for investigation were based on previously reported 

peak times for IRF1 (2hr) and ISGs (24hr)  [42]. 

ISG20 mRNA was inhibited in both siRNA1-ADGRL4-EC and siRNA2-ADGRL4-EC, relative to 

siRNA-control-EC under unstimulated conditions (siRNA1-ADGRL4-EC p=0.0014, siRNA2-

ADGRL4-EC p=0.0006) and at 24 (siRNA1-ADGRL4-EC p=0.0004, siRNA2-ADGRL4-EC 

p=0.018)  and 48 hours (siRNA1-ADGRL4-EC p=0.0068, siRNA2-ADGRL4-EC p=0.018) post 

TNF-treatment (Figure 7Ai) Significant inhibition at 48 hours were found for TNF-induced MX1 

(siRNA1-ADGRL4-EC p=0.022, siRNA2-ADGRL4-EC p=0.018) and IFIT1 (siRNA1-ADGRL4-

EC p=0.028, siRNA2-ADGRL4-EC p=0.03), although 24 hours indicated the same trend 

(Figure 8Aii-iii). 

There was no significant difference in IRF1 mRNA expression for siRNA1-ADGRL4-EC and 

siRNA2-ADGRL4-EC relative to siRNA-control-EC at any time point (Figure 8Aiv). Consistent 

with the mass spectrometry and gene expression data, western blotting showed reduced TNF-

induced MX1 and IFIT1 protein in both siRNA1-ADGRL4-EC and siRNA2-ADGRL4-EC, vs. 

siRNA-control-EC at later time points (Figure 7B), but no such observation was made for IRF1 

protein (Figure 7C). These data indicate that ADGRL4 has a currently unappreciated role in 

EC TNF-induced interferon response gene regulation. 
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Figure 6. Endothelial ADGRL4 depletion inhibits TNF-induced expression of interferon-related 

proteins. siRNA-ADGRL4-EC or siRNA-control-EC were treated with or without TNF for 24 hours before 
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analysis by mass spectrometry.  (A) Plots showing proteins: (i) induced by TNF but downregulated in 

siRNA-ADGRL4-EC (fold change siRNA-ADGRL4-EC + TNF vs. siRNA-control-EC + TNF =<0.7 fold) 

or (ii) induced by TNF (siRNA-control-EC + TNF vs. siRNA-control-EC unstimulated = >2 fold change) 

The most outstanding proteins on each plot are labeled, the 16 proteins that were induced by TNF and 

downregulated in siRNA-ADGRL4-EC are labeled in bold and ADGRL4 is shown with a red dot for 

convenience. (B) Venn-diagram showing overlap between (i) the number of proteins downregulated by 

TNF and (ii) the number of proteins induced by ADGRL4 siRNA. (C) Data for individual samples, error 

bars represent standard error of the mean. (D) Gene ontology (biological processes) overrepresented 

terms for the 16 downregulated proteins. Mean values with SEM for various conditions are indicated on 

graph.  

 

 

Figure 7. Endothelial ADGRL4 depletion inhibits TNF-induced expression of interferon-related 

genes. Non-transfected EC, siRNA-control-EC, siRNA-ADGRL41-EC, or siRNA2-ADGRL4-EC were 
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treated with or without TNF. Samples were collected at 2, 4, 24 and 48 hours before measurement of 

(A) relative mRNA ((fold change [FC] vs. unstimulated siRNA-control-EC) for (i) ISG20, (ii) MX1, (iii) 

IFIT1 and (iv) IRF1, or protein content of (B) MX1 and IFIT1 or (C) IRF1 in entire cell lysates by western 

blot analysis. Mean values with SEM are indicated on graphs *p<0.05, **p<0.01, ***p<0.001 by one-way 

ANOVA for each time-point. 

ADGRL4 depletion inhibits TNF-induced leukocyte adhesion receptor expression 

Following cytokine exposure EC enter an activated state, marked by induction of adhesion 

molecules important for leukocyte recruitment, such as VCAM1, ICAM1, and ESEL [32, 38, 

39, 43]. As described above, mass spectrometry analysis showed a downregulation of VCAM1 

protein expression after ADGRL4 silencing (Figure 6Ai). Here, we measured the effect of 

ADGRL4 silencing on mRNA levels and EC surface expression of VCAM1, together with E-

selectin and ICAM1, which are similarly regulated by TNF-induced nuclear factor NF-kappa-B 

(NFKB) activation [44]. Non-transfected EC, siRNA1-ADGRL4-EC, siRNA2-ADGRL4-EC or 

siRNA-control-EC were treated with or without TNF for 4, 24 or 48 hours. TNF-induced VCAM1 

mRNA tended to be lower in siRNA1-ADGRL4-EC and siRNA2-ADGRL4-EC vs. siRNA-control-

EC, although the observed differences were not statistically significant (Figure 8Ai).However, 

flow cytometry analysis (measured in unit of FC mean fluorescent intensity relative to 

unstimulated siRNA-control-EC) confirmed a pronounced and significant downregulation of 

VCAM1 following 24 hours of TNF-stimulation for both siRNA1-ADGRL4-EC and siRNA2-

ADGRL4-EC (siRNA1-ADGRL4-EC p=0.026, siRNA2-ADGRL4-EC p=0.007) (Figure 8 Bi). 

Western blot analysis of whole cell lysates also showed consistent results (Figure 8C, Figure 

S5B) 

There was no statistically significant difference in TNF-induced SELE mRNA expression 

across conditions (Figure 8Aii), but protein levels were downregulated in both siRNA1-

ADGRL4-EC and siRNA2-ADGRL4-EC at baseline (siRNA1-ADGRL4-EC p=0.001, siRNA2-

ADGRL4-EC p=0.0026), following TNF-stimulation for 4 hours (siRNA1-ADGRL4-EC p=0.007, 

siRNA2-ADGRL4-EC p=0.036)  and 24 hours (siRNA1-ADGRL4-EC p=0.006, siRNA2-

ADGRL4-EC p=0.015) (Figure 7Bii).  

TNF-induced ICAM1 mRNA (indicated in unit of FC relative to unstimulated siRNA-control-EC) 

was significantly downregulated in siRNA1-ADGRL4-EC and siRNA2-ADGRL4-EC following 24 

hours of TNF-stimulation (siRNA1-ADGRL4-EC p=0.014, siRNA2-ADGRL4-EC p=0.004) and 

48 hours (siRNA1-ADGRL4-EC p=0.03, siRNA2-ADGRL4-EC, p=0.008) (Figure 8Aiii). ICAM1 

protein expression was not consistently affected by ADGRL4 depletion (Figure 8Biii). The 

observation that these adhesion molecules to a variable degree are affected by ADGRL4 

silencing, and that their downregulatory effects are present earlier in the TNF-response, 
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relative to tissue factor which is also NFKB transcribed [45, 46], can indicate a regulatory 

pattern that might extend beyond changes in NFKB activation. 

  

Figure 8. Endothelial ADGRL4 depletion inhibits TNF-induced leukocyte adhesion receptor 

expression. Non-transfected EC, siRNA-control-EC, siRNA-ADGRL41-EC, or siRNA2-ADGRL4-EC 
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were treated with or without TNF. Samples were collected at 2, 4, 24 and 48 hours before measurement 

of (A) relative mRNA (fold change (FC) vs. unstimulated siRNA-control-EC) for (i) VCAM1, (ii) SELE 

and (iii) ICAM1 or (B) on the cell surface by flow cytometry, displayed as mean fluorescence intensity 

(MFI) relative to untreated siRNA-control-EC for (i) VCAM1, (ii) E-selectin) or (iii) ICAM1 or (C) protein 

content of VCAM1 in entire cell lysates by western blot analysis. Mean values with SEM are indicated 

on graphs *p<0.05, **p<0.01 by one-way ANOVA for each time-point. 

Investigation of ADGRL4 modulation of the TNF pathway  

As ADGRL4 silencing seemed to cause a complex regulatory pattern with bidirectional effects, 

which is observed to different degrees along the TNF induction trajectory, it seemed less likely 

that these events solely resulted from modification in the early TNF signalling pathway. Indeed, 

the mass spectrometry data showed that ADGRL4 depletion did not affect the expression of 

tumour necrosis factor receptor superfamily member 1A and 1B (TNFRSF1A and TNFRSF1B), 

various receptor accessory proteins, or nuclear factor NF-kappa-B (NFKB) proteins with 

associated regulators (Figure 8A). 28 mitogen activated protein kinases (MAPKs), which are 

potential regulators of the TNF signalling pathway, were detected by mass spectrometry and 

of these 26 were not affected by ADGRL4 depletion (Figure S6 B). The remaining two were 

downregulated - dual specificity mitogen-activated protein kinase 1 (MAP2K1) (FC [siRNA-

ADGRL4-EC vs. siRNA-control-EC, SS 1,2,3]: 0.49, 0.56 and 0.56) and dual specificity 

mitogen-activated protein kinase 6 (MAP2K6) (FC: 0.65, 0.50 and 0.51) (Figure S6B). 13 other 

kinases were upregulated or downregulated by ADGRL4 depletion (Figure S6C), including 

EIF2AK2. MAP2K1, MAP2K6 and EIF2AK2 have been previously reported as being involved 

in ERK-signalling (MAPK1 and MAPK3) [47] or the p38 MAPK pathway (MAPK11, MAPK12, 

MAPK13 and MAPK14) [48-50], but Western blot analysis showed no clear difference in 

phosphorylation status of p38 or ERK1/2 between siRNA1-ADGRL4-EC and siRNA2-ADGRL4-

EC, relative to siRNA-control-EC, at 15- or 30-minutes post TNF-stimulation (Figure S6D). 

Although these results did not indicate changes, downregulation of the MAPKs could 

potentially have a broad spectre of cellular effects, which remains to be elucidated on. 
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DISCUSSION:  

Here, we investigate the role of ADGRL4 in EC and identify a previously unappreciated 

potential role in the EC response to inflammatory stimulation. ADGRL4 has been reported to 

have a role in EC angiogenesis and proliferation [18-20], but studies have failed to show any 

activation or coupling of ADGRL4 to any canonical GPCR signalling pathway [18]. One of the 

main functions of EC is the regulation of inflammatory processes [3, 51], such as the 

recruitment of leukocytes to sites of inflammation [52]. If ADGRL4, as an EC enriched gene, 

has a key role in aspects of the EC response to cytokine stimulation, it is possible that prior 

failure to identify its associated signalling pathways could be linked to the absence of such 

conditions in previous studies. 

Under unstimulated conditions, we identified a panel of proteins that were upregulated when 

ADGRL4 in EC was silenced, which were prominently linked to biological processes centred 

around cell migration, adhesion, structure organization and angiogenesis. These findings are 

consistent with previous studies that showed a role for ADGRL4 in angiogenesis and vascular 

development [18, 20, 53], processes that depend on cellular structural rearrangements. Other 

aGPCR family members can affect cell size, shape, polarity, adhesion and migration, through 

cytoskeletal modifications, such as actin reorganization [16]. Indeed, among the most 

upregulated proteins in our dataset were the actin-crosslinking protein TAGLN, which has been 

linked to angiogenesis and EC elongation [54], and the cytoskeleton protein PALLD, which is 

involved in actin polymerization and organization [55-57], affecting cell motility and 

phagocytosis. ADGRL4 silencing in unstimulated EC also downregulated a group of proteins 

involved in proliferation, cell growth and cell cycle progression. These included NUSAP1, 

which associates with microtubules during mitosis and is important for proper chromosome 

segregation [58-60], CDK1, which is amongst the main drivers of the cell cycle [61-63], CKS1B, 

which is important for CDK function [64-67] and MASTL, which is important in DNA damage 

response and mitotic entry [68-71]. ADGRL4 overexpression has been reported to reduce 

proliferation [18], assessed by imaging and cell counting - results that appear potentially 

contradictory to our findings. However, we did not measure the effects of ADGRL4 on cell 

proliferation and the changes in cell cycle associated proteins could reflect various feedback 

effects or these may have negative regulatory functions on cell cycle progression. 

Nonetheless, our results also indicate that ADGRL4 is involved in proliferation in EC. 

When treated with the inflammatory cytokine TNF, a variety of EC proteins are induced [32, 

33, 38, 39, 43, 72]. When ADGRL4 was silenced, TNF-induced tissue factor protein was 

significantly and relatively specifically elevated. EC tissue factor is upregulated by many 

factors, including TNF, IL1, LPS, and shear stress ([46, 73-79]), and induction is fast, with 
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mRNA and protein peaking within 1-6 hours post stimulation [79-81]. At earlier time points post 

TNF stimulation, tissue factor mRNA and protein induction were comparable between control 

cells and those where ADGRL4 was silenced, indicating that the absence of ADGRL4 

maintained or stabilized tissue factor mRNA and/or protein, prolonging the resolution phase 

after TNF induction, as opposed to increasing initial transcription or translation. The half-life of 

tissue factor is short, reported to be between 1-2 hours [82, 83], which suggest that tissue 

factor levels will decrease as soon as transcription is shut down. An ADGRL4 involvement in 

this turnover, in which ADGRL4 depletion would increase mRNA stability, could potentially give 

rise to our observed results. Tissue factor regulatory mechanisms have been reported, like for 

Vascular miR-181b that regulates the tissue factor induction, but this would not be consistent 

with our results. Another study identified Protein mono-ADP-ribosyltransferase PARP14 

(PARP14), which in concert with the mRNA-destabilizing protein tristetraprolin (TTP), caused 

destabilization of tissue factor mRNA, and where PARP14 deficiency stabilized mRNA for a 

long period of time. It is therefore possible that ADGRL4 is involved in a similar destabilizing 

mechanism. 

ADGRL4 depletion was found to selectively downregulate 16 TNF-induced interferon 

associated proteins, including MX1, IFIT1 and ISG20. The regulation of such proteins by 

inflammatory cytokines in EC under normal conditions is generally not well understood, but our 

observations of their induction in control EC at 24 hour post TNF-stimulation is consistent with 

a recent study which reported a late stage interferon response in EC, following TNF stimulation 

[42]. Expression of such genes is considered primarily driven by the production and 

subsequent signaling of interferon [84], via canonical (JAK-STAT) or non-canonical pathways 

[85], with IRF1 as a central driver, but we failed to detect any de novo production of interferon-

beta or alpha in our system (data not shown). As IRF1 transcription is induced by NFKB, and 

IRF1 is a known ISG transcription factor [41], the increase in interferon associated gene 

expression following TNF stimulation could be driven by IRF1 directly. The potential link 

between ADGRL4 and the regulation of TNF-induced interferon related genes is currently 

unclear, but it is thus possible that IRF1 could be involved. Indeed, the expression of VCAM1, 

the transcription of which is also induced by IRF1 ([86, 87], was downregulated by ADGRL4 

silencing. No change in IRF1 expression was induced when ADGRL4 was silenced, but IRF1 

activity could be affected by post-translational modifications [88-92], which we did not 

measure.  

In our data, we observed the downregulation of MAP2K1 and MAP2K6 after ADGRL4 

silencing, irrespectively of TNF-influence. MAP2K1 belongs to the prototypical RAS-RAF-

MEK-ERK signalling pathway and is activated by various stimuli and associated with 
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proliferation and growth [47, 93, 94], suggesting a link to the observed downregulation of cell 

cycle proteins, but no marked changes in phosphorylation of downstream targets MAPK1 or 

MAPK3 were indicated. MAP2K6 is activated in response to environmental stress and pro-

inflammatory cytokines and activates p38-MAPKs (MAPK11-14), which subsequentially can 

affect cellular responses by targeting specific transcription factors [48, 95, 96]. Activated p38-

MAPKs were detected in our samples with no indication of phosphorylation changes resulting 

from ADGRL4 silencing. A third downregulated kinase, EIF2AK2, plays a vital role in viral 

infection by inhibiting general translation [97, 98]. EIF2AK2 has been found to regulate 

signalling responses through regulation of IRF3, MAP2K6, p38-MAPKs and NFKB activity, with 

subsequent impact on gene transcription [49, 50, 99-103]. Considering all the possible targets 

and interactions for mentioned kinases, it is plausible that at least one could be linked to 

ADGRL4 through some for now undefined mechanism. Regardless, it appears ADGRL4 

activation and subsequent signalling is complex, and the potential links between the different 

modulatory effects reported here warrant further exploration.  

Four our study, we have utilized human umbilical cord endothelial cells (HUVEC), which are 

used at low passage, to avoid significant culture-related alteration of EC phenotype that can 

happen over time [104-106]. Even though HUVEC are a widely used model with several 

advantages [107], they are of foetal origin, and some studies report they have gene expression 

pattern that differ from other adult human EC [108]. Also, HUVEC in our study have not been 

cultured under flow, or in combination with other cell types, which can affect endothelial 

characteristics [109-111]. The study of ADGRL4 function in EC from adult tissue and in co-

culture with other cells types could provide further insights. The sample size in this study is 

relatively low, and so we focussed only the most clearly modified proteins; it is possible that 

others could be of functional importance.  

Taken together, we have uncovered some interesting new aspects of ADGRL4 function in EC, 

and by contributing with an extended list of proteins modulated by ADGRL4 silencing, we hope 

to contribute to future research and possibly narrow down the many pathways and interactions 

that could be interesting to investigate. 
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METHODS 

Endothelial cell culture and treatments 

For the mass spectrometry experiments, human umbilical vein endothelial cells (HUVEC) were 

isolated from human umbilical cords, collected from Karolinska University Hospital, Stockholm, 

Sweden, as previously described [112]. Ethical approval was granted by Regionala 

etikprövningsnämnden i Stockholm (2015/1294-31/2). For other experiments, EndoGRO 

HUVEC (Millipore) were used. HUVEC were cultured Medium 199 Earle's Salts (Gibco) 

supplemented with 20 % Fetal Bovine Serum (Sigma), 1x Penicillin-Streptomycin (Sigma), 1 

μg/ml Hydrocortisone (Sigma), 1.25 µg/ml Amphotericin B (Gibco), 1 ng/ml murine Epidermal 

Growth Factor (Sigma).  

siRNA transfection: Medium was exchanged with Opti-MEM Reduced Serum Medium 

(Gibco) before Lipofectamine RNAiMAX transfection reagent (Invitrogen) was mixed with 

either scrambled control siRNA (Silencer™ Select Negative Control No. 1 siRNA) (Invitrogen), 

ADGRL4 siRNA 1 (Silencer® Select Pre-designed siRNA, Assay ID: s34480) (Invitrogen) or 

ADGRL4 siRNA 2 (Silencer® Pre-designed siRNA, Assay ID: 6325) (Invitrogen) and HUVEC 

transfected according to manufacturers instruction. Cells were cultured for an additional 48 

hours post-transfection in standard medium., prior to further treatment/assay. Cytokine 

stimulation: In some experiments, HUVEC were stimulated with 10 ng/ml human Tumour 

Necrosis Factor (TNF; Sigma) for time periods as stated in the results. Tissue factor function 

blocking: In some experiments, HUVEC were pre-incubated with mouse monoclonal tissue 

factor antibody (final concentration = 12.5μg/ml) (BD Pharmingen, Cat# 550252, RRID: 

AB_393557) for 1 hour prior to assay. 

qPCR 

Samples for relative qPCR were prepared using TaqMan Fast Advanced Cells-to-CT Kit 

(Invitrogen) according to manufactures instructions. TaqMan primer/probes targeting F3 

(Hs01076029_m1), ICAM1 (Hs00164932_m1), VCAM1 (Hs01003372_m1), SELE 

(Hs00174057_m1), MX1 (Hs00895608_m1), IFIT1 (Hs03027069_s1), ISG20 

(Hs00158122_m1), IRF1 (Hs00971965_m1) and ADGRL4 (Hs00223377_m1) were used 

along with Eukaryotic 18S rRNA Endogenous Control (all Applied Biosystems). The 

LightCycler 96 Instrument (Roche) with software version1.1, was used and all results are given 

as ∆∆Ct log10, with values are calculated relative to 18S and normalized to the non-stimulated 

scrambled control to give fold change measurements. 
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Western blotting 

HUVEC lysates were mixed with Laemmli Sample Buffer containing 10 % DTT and heat 

denatured before separation by SDS-PAGE, and semi-dry transfer onto PVDF membranes. 

The following primary antibodies were used: tissue factor (dilution 1:1000) (Cell Signaling 

Technology, Cat# 55147, RRID:AB_2799478), VCAM1 (dilution 1:750) (Atlas Antibodies, Cat# 

HPA069867, RRID:AB_2686215), ICAM1 (1:1000) (Cell Signaling Technology, Cat# 67836, 

RRID:AB_2799738), IRF1 (1:750) (Atlas Antibodies, Cat# HPA063131, RRID:AB_2684945), 

MX1 (1:1000) (Cell Signaling Technology Cat# 37849, RRID:AB_2799122), IFIT1 (1:1000) 

(Cell Signaling Technology Cat# 14769, RRID:AB_2783869), ADGRL4 (1:1000) (Invitrogen, 

Cat# MA5-24705, RRID:AB_2664834), Phospho-p38 MAPK (Thr180/Tyr182) (1:1000) (Cell 

Signaling Technology, Cat#4511, RRID:AB_2139682) and Phospho-p44/42 MAPK (Erk1/2) 

(Thr202/Tyr204) (1:1000) (Cell Signaling Technology, Cat#9101, RRID:AB_331646), GAPDH 

(dilution 3 µg/mL) (Invitrogen, Cat# AM4300, RRID: AB_2536381) followed by secondary 

antibody staining with horseradish peroxidase (HRP)-conjugated goat anti-mouse (diluted 

1:5000) (Bio-Rad Cat# 1706516, RRID: AB_11125547) or goat anti-rabbit (diluted 1:4000) 

(Bio-Rad Cat# 1706515, RRID: AB_11125142), and chemiluminescent detection was 

achieved using Clarity Western ECL Substrate (BioRAD) and iBrightCL1000 (Thermo 

Scientific). Stripping of blots was carried out after detection of protein of interest, followed by 

re-probing and detection of GAPDH which acted as loading control. Stripping and re-probing 

also applied in instances where several proteins of interest were investigated using the same 

blot, like for MX1 (first) and IFIT1 (second), and Phospho-MAPK11-14 (first) and Phospho-

MAPK1+MAPK3 (second). PageRuler Prestained Protein Ladder (10 to 180 kD) (Thermo 

Scientific) was used for protein weight estimation purposes.  

Flow cytometry 

HUVEC viability was measured using LIVE/DEAD Fixable Near-IR Dead Cell Stain Kit for 633 

or 635 nm excitation (Invitrogen), followed by incubation with fluorophore conjugated 

antibodies targeting tissue factor (BioLegend, Cat# 365204, RRID: AB_2564566) or VCAM1 

(BioLegend, Cat# 305808, RRID:AB_2214227), ICAM1 (BioLegend, Cat# 353110, RRID: 

AB_10900234) and E-selectin (BioLegend, Cat# 336016, RRID:AB_2800891) combined. 

CytoFLEX flow cytometer (Beckman Coulter) and data was analysed using CytExpert 2.0. 

software. All values are based on the selection of live cells and singlets only, where mean 

fluorescence intensity of cell population for each sample was calculated, followed by 

conversion to fold change relative to non-stimulated scrambled control. 
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Real-time thrombin generation assay 

Cells were washed in PBS and blocked for 30 minutes using PBS with 1% BSA before thrombin 

generation was initiated in 120 µl reaction volume containing human citrated plasma, MP-

reagent [final concentration =4μM phospholipids] (Thrombinoscope BV), and FluCa-kit 

buffer/substrate [final concentration =16.6 mM Ca2+ and 2.5 mM fluorogenic substrate (Z-Gly-

Gly-Arg-AMC)] (Thrombinoscope BV), in addition to corn trypsin inhibitor (Final concentration 

= 2 μM) (Haematologic Technologies) for purposes of blocking intrinsic pathway. Some 

samples received either thrombin calibrator (Thrombinoscope BV), or Dade Innovin reagent 

containing tissue factor (final concentration 2 pM) (Dade Innovin), the latter as a positive control 

for thrombin generation potential. Thrombin generation was measured by a Thrombinoscope 

and quantified using the Thrombinoscope software package (Version 5.0.0.742) that reported 

means of duplicates ± SD. Results are based on three separate experiments with individual 

donors. See Figure S4 for more details on experimental set-up.  

Mass spectrometry 

Sample preparation: Cell pellets were lysed in 4% SDS, 25 mM HEPES, 1 mM DTT and 

heated to 95°C for 5 minutes followed by sonication for 1 minute and centrifugation at 14000 

x g for 15 minutes. The supernatant was mixed with 1 mM DTT, 8 M urea, 25 mM HEPES, pH 

7.6, and transferred to a 10-kDa cut-off centrifugation filtering unit (Pall, Nanosep), and 

centrifuged at 14000 x g for 15 minutes. Proteins were alkylated by 50 mM iodoacetamide 

(IAA) in 8 M urea, 25 mM HEPES for 10 minutes. The proteins were then centrifuged at 14000 

x g for 15 minutes followed by 2 more additions and centrifugations with 8 M urea, 25 mM 

HEPES. Trypsin (Promega) in 250 mM urea, 50 mM HEPES was added to the proteins at a 

ratio of 1:50 trypsin:protein and incubated overnight at 37°C with gentle shaking. The filter units 

were centrifuged at 14000 x g for 15 min followed by another centrifugation with ultra-pure 

water (Milli-Q, Millipore) and the flow-through was collected. Peptides were labelled with 

TMT10-plex reagent according to the manufacturer’s protocol (Thermo Scientific) and cleaned 

by a strata-X-C-cartridge (Phenomenex).  

IPG-IEF of peptides: The TMT labelled peptides, 500 µg per TMT-10plex, were separated by 

immobilized pH gradient - isoelectric focusing (IPG-IEF) on a 3-10 strip. Peptides were 

extracted from the strips into 72 fractions by a prototype liquid handling robot, supplied by GE 

Healthcare Bio-Sciences AB. A plastic device with 72 wells was put onto each strip and 50 µl 

of ultra-pure water (Milli-Q, Millipore) was added to each well. After 30 minutes incubation, the 

liquid was transferred to a 96 well plate and the extraction was repeated 2 more times. The 
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extracted peptides were dried in a SpeedVac vacuum concentrator and dissolved in 3% 

acetronitrile (ACN), 0.1 % formic acid. 

Q Exactive analysis: Before analysis on the Q Exactive Hybrid Quadrupole-Orbitrap Mass 

Spectrometer (Thermo Scientific), peptides were separated using an Ultimate 3000 RSLCnano 

system. Samples were trapped on an Acclaim PepMap nanotrap column (C18, 3 µm, 100Å, 

75 µm x 20 mm), and separated on an Acclaim PepMap RSLC column (C18, 2 µm, 100Å, 75 

µm x 50 cm), (Thermo Scientific). Peptides were separated using a gradient of A (5% DMSO, 

0.1% FA) and B (90% ACN, 5% DMSO, 0.1% FA), ranging from 6 % to 37 % B in 30-90 min 

(depending on IPG-IEF fraction complexity) with a flow of 0.25 µl/min. The Q Exactive was 

operated in a data dependent manner, selecting top 10 precursors for fragmentation by HCD. 

The survey scan was performed at 70000 resolutions from 400-1600 m/z, with a max injection 

time of 100 ms and target of 1 x 106 ions. For generation of HCD fragmentation spectra, a max 

ion injection time of 140 ms and AGC of 1 x 105 were used before fragmentation at 30 % 

normalized collision energy, 35000 resolution. Precursors were isolated with a width of 2 m/z 

and put on the exclusion list for 70 s. Single and unassigned charge states were rejected from 

precursor selection. 

Peptide and protein identification: All Orbitrap data was searched by SequestHT under the 

software platform Proteome Discoverer 1.4 (Thermo) against the Uniprot human protein 

database (canonical and isoforms, downloaded 20150406) and filtered to a 1% false discovery 

rate (FDR). A precursor mass tolerance of 10 ppm, and product mass tolerances of 0.02 Da 

for HCD-FTMS were used. Further settings used were: Trypsin with 2 missed cleavage; 

iodoacetamide on cysteine and TMT on lysine and N-terminal as fixed modifications; and 

oxidation of methionine as variable modification. Quantification of TMT-10plex reporter ions 

was done by Proteome Discoverer on HCD-FTMS tandem mass spectra using an integration 

window tolerance of 10 ppm. Only peptides unique to a protein group were used for 

quantitation.  

Identification of differently regulated proteins: To identify differently regulated proteins 

within the dataset, the fold change between each ADGRL4- and scrambled siRNA sample set 

were calculated, and criteria for upregulation and downregulation was defined as fold change 

≥ 1.3, and ≤ 0.7, respectively, and applied to each sample set representing non-stimulatory or 

stimulatory conditions. TNF induced proteins were defined based on changes in TNF 

stimulated relative to non-stimulated scrambled samples only, and criteria was given as fold 

change ≥ 2 for both TNF stimulated samples relative to average of the three non-stimulated 

samples. 
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Go ontology enrichment analysis  

Go ontology enrichment analysis was performed using the ClusterProfiler package, version 

4.6.0 [113]  and annotation data from org.Hs.eg.db with the human genome annotation 

package, version 3.16.0, with mappings based on data provided by the Gene Ontology 

Consortium (2022-07-01) [29-31]. Default settings were used, including p-value correction by 

the Benjamin Hochberg adjustment method, with maxGSSize set to 2500. 

PubMed search 

For PubMed counts, the search was carried out in R using the easypubmed package, with 

results retrieved on 2023-02-13, and search was done using gene name alone or combined 

with interferon. 

Fibrin deposition assay 

HUVEC were grown in µ-Slide VI 0.4 channels (Ibidi) and connect via silicon tubing to a syringe 

pump containing freshly drawn citrated human blood and a re-calcification solution containing 

0.1 % glucose, 75 mM CaCl2, 37.5 mM MgCl2 in Tyrone HEPES Buffer (126 mM NaCl, 2.7 

mM KCl, 0.42 mM NaH2PO4H2O, 5 mM HEPES, pH 7.45). Solutions were infused at a 10:1 

ratio respectively for 10 min at a continuous flow corresponding to a shear stress of 1 dyn/cm². 

The channels were washed (shear stress of 0.5 dyn/cm²) for 8 min with a solution containing 

0.1 % glucose, 0.1 % BSA, 2 mM MgCl2 in Tyrone HEPES Buffer, then infused with 4 % 

paraformaldehyde in PBS and left to fixate for 10 min. The channels were blocked with 1% 

BSA in PBS. Deposited fibrin was stained using an in-house produced anti-fibrin mouse 

monoclonal antibody at 4°C overnight in 1% BSA in PBS. A secondary Alexa Fluor 488 goat 

anti-mouse antibody in 1% BSA in PBS was used for detection and cells treated with 

Vectashield mounting medium with DAPI (Vector Laboratories) before imaging using a Leica 

TCS SPE confocal microscope, equipped with a 63x oil immersion objective (Leica 

Microsystems GmbH), and images were analyzed using the image processing package 

Fiji/ImageJ.  

UMAP plots for ADGRL4 expression 

Data from scRNAseq analysis of cell types from 24 human tissues subdivided into the- 

immune-, epithelial-, stromal-, and endothelial compartment was downloaded from 

https://figshare.com/projects/Tabula_Sapiens/100973 [28], and cell type clustering and 

categorization was performed as originally described. The R Seurat package [114] and the 

FindAllMarkers function was used to generate illustrative UMAP plots to show ADGRL4 

https://figshare.com/projects/Tabula_Sapiens/100973
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expression pattern. The Tabula Sapiens cell atlas website https://tabula-sapiens-

portal.ds.czbiohub.org/  can be accessed for more detailed information and visualization of cell 

type expression patterns.  

Use of protein names and abbreviation in text and figures  

For simplicity and to avoid confusion, protein abbreviations are given as non-italic HGNC-

approved gene symbols [115] in most text-situations and also used in figures and tables, but 

for contextualization, the full protein name recommended by UniProt [116] is also given the 

first time a protein is mentioned in the main text. 
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SUPPLEMENTAL TABLE LEGENDS 

Table S1. Mass spectrometry protein profiling data. Related to Figure 1, 2, 6, S2. Human 

umbilical vein endothelial cells (HUVEC, n=3 independent biological replicates; divided into 

sample sets [SS 1,2,3,4,5]) were transfected with siRNA targeting ADGRL4 (siRNA-ADGRL4-

EC) or a scrambled-control sequence (siRNA-control-EC) and 48 hours post transfection were 

either non-stimulated or stimulated with TNF for 24 hours (SS1-3 no TNF, SS4-5 with TNF)  

before collection and analysis by mass spectrometry. [Tab 1] Key notes for mass spectrometry 

data. [Tab 2] Final list of all proteins identified in the analysis. [Tab 3] List of proteins identified 

as upregulated after ADGRL4 silenced, with no TNF treatment (fold change siRNA-ADGRL4-

EC vs. siRNA-control-EC = >1.3 fold). [Tab 4] List with gene ontology overrepresented terms 

(biological processes) for proteins in Tab 3. [Tab 5] List of proteins identified as downregulated 

after ADGRL4 silencing, with no TNF treatment (fold change siRNA-ADGRL4-EC vs. siRNA-

control-EC = <0.7 fold). [Tab 6] List with gene ontology overrepresented terms (biological 

processes) for proteins in Tab 5. [Tab 7] List of proteins identified as TNF-induced in control 

samples (siRNA-control-EC + TNF vs. siRNA-control-EC unstimulated = >2 fold change). [Tab 

8] List with gene ontology overrepresented terms (biological processes) for proteins in Tab 7. 

[Tab 9] List of proteins identified as upregulated after ADGRL4 silencing, with TNF treatment 

(fold change siRNA-ADGRL4-EC + TNF vs. siRNA-control-EC + TNF = >1.3 fold). [Tab 10] 

List with gene ontology overrepresented terms (biological processes) for proteins in Tab 9. 

[Tab 11] List of proteins identified as downregulated after ADGRL4 silencing, with TNF 

treatment (fold change siRNA-ADGRL4-EC + TNF vs. siRNA-control-EC + TNF = <0.7 fold). 

[Tab 12] List with gene ontology overrepresented terms (biological processes) for proteins in 

Tab 11. [Tab 13] List with gene ontology overrepresented terms (biological processes) for 16 

proteins in Tab 11 identified as TNF-induced but downregulated by ADGRL4 silencing.  
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Figure S1. UMAP plot overview of cell types. Related to Figure 1. (A) scRNAseq data from analysis 

of cell types from 24 human tissues subdivided into (A) immune-, (B) epithelial-, (C) stromal-, and (D) 

endothelial compartments was sourced from Tabula Sapiens (Tabula Sapiens., 2021), and used to 

generate UMAP plots. Plots display the cell type cluster annotations in each compartment: (i) at the 

same scale as in Figure 1A or (ii) with specific focus on of cell clusters that showed some ADGRL4 

expression, outside the endothelial compartment.   

.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure S2 

41 
 

 

Figure S2. Protein profiling by mass spectometry: other biological replicates and evaluation of 

ADGRL4 silencing. Related to Figure 1 and 3 and Table S1. Human umbilical vein endothelial cells 

(HUVEC, n=3 independent sample sets [SS 1,2,3]) were transfected with siRNA targeting ADGRL4 
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(siRNA-ADGRL4-EC) or a scrambled-control sequence (siRNA-control-EC) and analysed after 72 

hours, using mass spectrometry. (A) Plots showing (i) upregulated proteins SS3 vs SS1 (ii) upregulated 

proteins SS2 vs SS3 or (iii) downregulated proteins SS3 vs SS1 (iv) downregulated proteins SS2 vs 

SS3 in siRNA-ADGRL4-EC (plots display fold change (FC) vs. siRNA-control-EC). Only proteins with 

ratio >1.3 (upregulated) or <0.7 (downregulated) across all sample sets are displayed (Related to Figure 

2B). (B-C) Non-transfected EC, siRNA-control-EC, siRNA-ADGRL41-EC, or siRNA2-ADGRL4-EC (n=3 

biological replicates) were collected post-transfection at indicated time points before measurement of 

(B) relative ADGRL4 mRNA (fold change (FC) vs. siRNA-control-EC) or (C) protein content of ADGRL4 

in entire cell lysates by western blot analysis (n=3 biological replicates). Mean values with SEM are 

indicated on graph ***p<0.001 by one-way ANOVA.  
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Figure S3. Endothelial ADGRL4 depletion leads to reduced levels of TNF-induced tissue factor 

during the later phase of the response. Related to Figure 3. Non-transfected EC, siRNA-control-EC, 

siRNA-ADGRL41-EC, or siRNA2-ADGRL4-EC were treated with or without TNF for 4 and 24 before 

samples before collection and measurement of (A) tissue factor protein (PE-conjugated antibody) where 

signal intensity distribution for cells is plotted on x-axis (log-scale) and cell numbers on y-axis for various 

time points (Relates to Figure 3B), or (B) tissue factor protein in the entire cell lysate by western blot 

analysis (n=3 biological replicates) (Relates to Figure 3C).  
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Figure S4. Thrombin generation assay. Related to Figure 4. (A) (i) Non-transfected EC, siRNA-control-

EC, siRNA-ADGRL41-EC, or siRNA2-ADGRL4-EC were seeded into 96-wells in duplicates and treated 

(ii) without (blue) or with TNF for 4 hours (orange) or 24 hours (brown). Selected wells were treated with 

tissue factor blocking antibody (black circles). (iii) Platelet poor plasma, negatively charged 

phospholipids and corn trypsin inhibitor (to block the intrinsic pathway) were added to all wells,. Two 

wells received thrombin calibrator reagent (purple circles) with a known concentration of thrombin, 

as to be used for calculating thrombin generated in all the other wells. Four wells with unstimulated 

siRNA-control-EC, acting as positive controls, received additional tissue factor (two with and two 

without tissue factor blocking antibody) to show the thrombin generation potential (yellow circles). 

(iv) Thrombin substrate was added and the fluorescent signal generated from the cleavage of thrombin 

substrate was measured can used to calculate thrombin generated in each sample. (B) Thrombin 

generation curves for biological replicates not presented in Figure 4 on: (i) unstimulated cells or cells 

receiving TNF-treatment for (ii) 4 hours and (iii) 24 hours. 
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Figure S5: Endothelial ADGRL4 depletion modifies TNF-stimulated interferon pathway proteins. 

Related to Figure 6 and 8. (A) An automated PubMed search was carried out to identify number of 

published hits for each of the individual 16 proteins identified as TNF-induced and downregulated in 

response to ADGRL4 silencing. The graph shows proteins ranked according to percentage of interferon-

related hits (search: ‘protein name’ and ‘interferon’) out of the total hits- (‘protein name’) for an individual 

protein (Relates to Figure 6B-C). (B) Non-transfected EC, siRNA-control-EC, siRNA-ADGRL41-EC, or 

siRNA2-ADGRL4-EC were treated with or without TNF. Samples were collected at 4 and 24 hours before 

measurement of protein content of VCAM1 in entire cell lysates by western blot analysis (n=3 biological 

replicates) (Related to Figure 8C). 
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Figure S6: Effect of endothelial ADGRL4 depletion on proteins related to the TNF-signaling 

pathway/kinases. Related to Figure 1,2,6. Human umbilical vein endothelial cells (HUVEC, n=3 independent 

sample sets [SS 1,2,3]) were transfected with siRNA targeting ADGRL4 (siRNA-ADGRL4-EC) or a scrambled-

control sequence (siRNA-control-EC) and analysed after 72 hours, using mass spectrometry. Each graph 

shows the fold change (FC) of siRNA-ADGRL4-EC relative to siRNA-control-EC. (A) Proteins involved in the 

TNF signaling pathway (B) All detected mitogen-activated protein kinases. (C) All kinases classified as 

regulated by ADGRL4 silencing. The dotted lines in green and red represent the ratio threshold for 

classification as up- (FC >1.3) or down- (FC <0.7) regulated, respectively, with each grey dot representing a 

biological replicate. (D) Protein levels of phosphorylated mitogen-activated protein kinase (MAPK) 11-14 

(known as p38) and MAPK1 and MAPK3 (known as ERK1/2) assessed by western blot after ADGRL4 

silencing and TNF treatment. (B-C) *Indicate same pattern of regulation upon TNF stimulation as for the 

ground state. 
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