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Abstract

In the context of computer networks, decentralization is a network architecture that distributes

both workload and control of a system among a set of coequal participants. Applications based

on such networks enhance trust involved in communication by eliminating the external author-

ities with self-interests, including governments and tech companies. The decentralized model

delegates the ownership of data to individual users and thus mitigates undesirable behaviours

such as harvesting personal information by external organizations. Consequently, decentral-

ization has been adopted as the key feature in the next generation of the Internet model which

is known as Web 3.0. DIDComm is a set of abstract protocols which enables secure messaging

with decentralization and thus serves for the realization of Web 3.0 networks. It standardizes

and transforms existing network applications to enforce secure, trustful and decentralized com-

munication. Prior work on DIDComm has only been restricted to pair-wise communication and

hence it necessitates a feasible strategy for adapting the Web 3.0 concepts in group-oriented

networks.

Inspired by the demand for a group communication model inWeb 3.0, this study presents Zero-

Comm which preserves decentralization, security and trust throughout the fundamental opera-

tions of a group such as messaging and membership management. ZeroComm is built atop the

publisher-subscriber pattern which serves as a messaging architecture for enabling communi-

cation among multiple members based on the subjects of their interests. This is realized in our

implementation through ZeroMQ, a low-level network library that facilitates the construction

of advanced and distributed messaging patterns. The proposed solution leverages DIDComm

protocols to deliver safe communication among group members at the expense of performance

and efficiency. ZeroComm offers two different modes of group communication based on the

organization of relationships among members with a compromise between performance and

security. Our quantitative analysis shows that the proposed model performs efficiently for the

messaging operation whereas joining a group is a relatively exhaustive procedure due to the es-

tablishment of secure and decentralized relationships among members. ZeroComm primarily

serves as a low-level messaging framework but can be extended with advanced features such

as message ordering, crash recovery of members and secure routing of messages.
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1 Introduction

The involvement of public and private organizations as centralized intermediaries in modern

computer networks has given rise to a dispute where trust of communication is delivered by

these external parties with self-interests [1]. Despite the security guarantees of an encrypted

channel for communication, a centralized model delegates the ownership of user-sensitive data

to a tech company and further extends the ability to share traced user activities with other

interested parties [2]. Thus, existing communication frameworks fail to provide absolute digital

trust as long as they are composed of centralized entities.

The research community is working to eliminate these centralized components involved in

communication, thus resulting in more decentralized network systems. As a result of this trans-

position of fundamental elements, the ecosystem of the Internet has been remodelled as Trust

over IP (ToIP) infrastructure by including the missing trust factor in the existing network stack

[3]. The ToIP framework introduces a novel set of protocols known as DIDComm, which has

been designed such that the existing messaging models and transport protocols can be easily

integrated into the new ecosystem while enhancing digital trust of communication.

The DIDComm protocols unfold the potential of revamping the entire context of computer

networks, including but not limited to messaging patterns used for transmitting data among

the participants. However, all prior work on aligning existing transport protocols (eg: Blue-

tooth, WebSockets) with DIDComm have been primarily focused on point-to-point commu-

nication. To the best of our knowledge, no attempts have been made so far on the rest of the

messaging patterns thus restricting the applicability of DIDComm in group-oriented network

systems.

Publisher-subscriber is a widely used messaging pattern that resolves group communication ef-

fectively. Regardless of the efficiency in data transmission, security in messages has not been

entailed as a core feature of this pattern and it is currently fulfilled explicitly by the correspond-

ing applications. This unravels a possible research area to explore the possibility of combining

DIDCommwith pub-sub pattern, thus embodying trust of communication into the pattern itself

independent of the application using it.
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In addition to the trust concerns, pub-sub implementations tend to be more centralized with the

use of dedicated message-queue brokers to hold the messages being transmitted, thus conflict-

ing with DIDComm’s core properties. However, ZeroMQ1 serves as a library with low-level

network sockets which can be combined to construct high-levelmessaging patterns such as pub-

subwhile eliminating centralizedmessage-queue brokers [4]. When combinedwithDIDComm

protocols, ZeroMQ yields the potential of a truly decentralized secure pub-sub system and a

long list of use-cases waiting to be unfolded together with this powerful combination.

1.1 Problem Definition

The transport-agnostic property of DIDComm plays a vital role in adaptability as it preserves

the underlying messaging patterns and technologies in facilitating safe communication in exist-

ing software systems. A number of implementations have had success using transport protocols

such as HTTPS, WebSockets and Bluetooth while a considerable amount of research work is

invested in novel transport mechanisms [5].

Prior work on the transport layer of DIDComm is focused on the conventional client-server

pattern, thus limiting the growth of decentralized applications with group-oriented networks

where trustful communication is deemed crucial. For instance, the publisher-subscriber can

be regarded as a widely-used messaging pattern that still remains to be explored with DID-

Comm.

Our thesis demonstrates that a trustful and decentralized group-communication model can be

constructed by combining ZeroMQ and DIDComm protocols. Further, we investigate the fol-

lowing problems in the course of achieving this objective.

1. How does trust inmodern technological communication impact publisher-subscriber pat-

tern and how does it differ from bi-party models?

2. How do decentralization, trust and group communication inter-operate with each other?

(a) To what degree can contradictory factors of each element be preserved for the de-

livery of a trustful decentralized group communication model?

(b) How will these overlapping design choices result in alternative solutions with dif-

ferent trade-offs?
1Also referred to as zmq or ØMQ (more information is available at https://zguide.zeromq.org)
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3. How can the requirements of a trustful decentralized group be transformed into a tech-

nically feasible strategy? What communication protocols of trust should be considered

in the design of a solution?

4. What mechanisms should be formulated for evaluating such a model? How should ex-

periments be designed to involve an adequate set of metrics for evaluation?

1.2 Methodology

In the attempt of formulating a curriculum for the discipline of computing, Peter J. Denning et

al. have defined the core aspects which can generally be applied to any study involved with the

field [6]. This specification formally branches the discipline into three major paradigms with

the intention of distinguishing areas of competence but the processes may be intertwined with

each other in practice.

• Theory: Rooted in mathematics and provides the ability to explain in terms of definitions

and prove relationships or theorems associated with objects

• Abstraction: Scientific approach of the study which iterates through models, predictions,

experiments and analysis of data for the validation of a hypothesis

• Design: Engineering-based procedure with a repetition of requirements, specifications,

design, implementation and testing of a system

This study predominantly adheres to the design paradigm as we primarily focus on constructing

a novel solution. In particular, our proposed model is expected to deliver a functional system

by combining desirable properties of different frameworks. Hence, the workflow of our thesis

conforms to an iterative procedure of; literature review, identification of system requirements,

constraints and trade-offs, proposition of a solution, system design with a composition of com-

ponents and implementation followed by a testing process of the proposed solution. In addition,

the study also comprises an evaluation of the system with a set of befitting metrics and an anal-

ysis based on properties and design choices, thus partly including the elements of a scientific

approach as well.
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1.3 Context

ZeroComm can be regarded as a project which spans numerous dominant contexts related to

the discipline of computing such as computer security, networking, distributed systems and

software architecture. In terms of security, ToIP components have been gaining traction with

the recognition and standardization by W3C on account of its ability to provide decentralized

solutions in a trustworthy manner [7, 8]. Several applications have already been deployed and

currently are in use, mostly as digital wallets for managing verifiable credentials2. This study

serves as a lower-layer component of the overall ToIP ecosystem specifically in communication

layer with secure transmission ofmessages and it is expected to conformwithDIF3 (a governing

organization of decentralized identity) along with the rest of DIDComm community, including

Hyperledger4.

1.4 Goals and Contribution

As the major contribution of our study, we deliver a decentralized group communication model

with DIDComm while encompassing the following attributes.

• Based on only queues as the core date-structure

• Message integrity with end-to-end encryption

• Privacy with distinctive keys shared by a secure handshake

• Elimination of centralized parties in all phases of the group messaging flow

• Globally accessible by any interested party

• Resilience to ad-hoc nature of the pattern (eg: dynamic joins and leaves, decoupled re-

lationship between publishers and subscribers)

Further, comprehensive analysis alongwith an evaluation is also expected to provide a guidance

for any further development related to the specific context as well as assist in standardizing

group messaging protocols in terms of DIDComm.
2Digital wallet examples: https://docs.trinsic.id, https://www.evernym.com/solution
3Official website: https://identity.foundation
4More information is available at https://www.hyperledger.org/about
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1.5 Outline

The thesis commences with exploring the fundamentals of ToIP, DIDComm and ZeroMQ inter-

nals as initial guidance of the basic components in our study. Chapter 3 describes the minimal

set of DIDComm protocols required for constructing a secure group-oriented communication

model including their procedures and corresponding message structures. Chapter 4 discusses

design goals and possible alternatives, which is then followed by the interaction of domain-

related components, organization of message-queues, propagation of status within a group and

formation of members along with overlay networks. Chapter 5 dives into implementation-

specific details of our solution such as the system architecture, functions of a group member,

types of messages involved in the group protocol and external dependencies. Chapter 6 in-

cludes the results of conducted experiments to evaluate our proposed model preceded by a

definition of an appropriate set of metrics for a proper analysis of ZeroComm. Chapter 7 pro-

vides an extensive discussion by reflecting on internals, core features and design choices of the

solution while section 8 concludes the study with significant remarks and future work.
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2 Background

2.1 Trust Over IP

Since the late 1960’s, the fundamental concept of connecting and passing data between two

computers had been researched until it evolved into the current matured state of the Internet,

which is a highly advanced, diversified and complex network with billions of nodes. Due to

the fact that this evolution commenced with the simple objective of inter-machine communi-

cation and continued with immense growth driven by ceaseless requirements, the underlying

concepts of this technology associate more with machines rather than with people. In simple

terms, the Internet has evolved without an identity layer incorporated into its core for an ideal

representation of the participants in communication.

Figure 1: OSI network model

This contradictory dilemma has led to a number of workarounds for integrating user-related

features into existing software systems, mostly in the application layer of the OSI model (Fig-

ure 1). In addition to the burden of reforming user-related features with additional effort and

complexity, these solutions fail to provide an ideal setup where identity should technically

operate in the lower layers of the network stack and administration of an identity should be

only within its owner’s domain. The current application-based identity solutions lead to even
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more unethical consequences such as surveillance, data being shared with external parties, data

breaches and exposure of PII (Personal Identifiable Information), while several studies have

been conducted to assess this risk statistically [9]. The continuation of this architecture by

evading its core vulnerabilities and attempting service-level provisional fixes will only lead to

an escalation of thefts and deceptions while further eroding trust in the Internet. In fact, this

culprit has been addressed by the founders of the Internet despite they could not foresee it in

advance [10].

Modern network systems can be highly ‘secure’ with the adaption of encryption and user-

based security mechanisms but can not be considered ‘safe’ as long as privacy concerns are not

addressed sufficiently. It is also worthwhile to note that the former does not necessarily lead to

the latter. This situation becomes even more complicated with the introduction of IoT devices

and non-human entities in need of a web identity.

Figure 2: Existing trust models

The necessity of identification boils down to the broader subject of ‘trust’, since identity is

mandatory to establish trust between participants. As an initiative, the fundamental unit of

a new trust framework is constructed based on a peer model as analogous to the real-world

(Figure 2), representing both direct and transitive relationships (as an example of the latter,

trust can be established between A-C, if trusts between A-B and B-C already exist in the given

context). This eliminates the involvement of a 3rd party for identity management and delegates

the entire authority of identity only to its owner.

However, technology alone is insufficient for constructing a trust model since a significant por-

tion of the trust involves a psychological factor. Hence, the peer-to-peer model was extended

further by redefining the network stack with respect to human involvement and thus resulting
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Figure 3: Two-sided and four-layer ToIP stack [3]

in two distinctive but associative sets of layers. As shown in Figure 3, a governance stack

is introduced along with its technological correspondence. This includes governance author-

ities and frameworks formed to define business, legal and social terms which are applicable

for each layer and exist in either formal or informal, computer code or legal document. This

combination of technology and governance is expected to maintain adequate trust levels while

mitigating the pitfalls of the existing the Internet model.

In essence, the ToIP framework relies on 3 fundamental components, namely, Decentralized

Identifiers (DIDs), DIDComm and Distributed Ledger Technology (DLT). DIDs are used for

the unique recognition as well as representation of participants while DIDComm serves as a

secure communication channel constructed atop individual DIDs. DLT provides a single source

of truth that is globally accessible by all the parties and also resolvable through DIDs in seeking

any additional information.

Layer 1 in the ToIP stack is associated with foundational entities such as DID methods, Veri-

fiable Data Registries (VDR), Public Key Infrastructure (PKI) while layer 2 sets up the com-

munication links between individual entities via agents, digital wallets and DIDComm. Es-
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tablishing trust relationships between participants based on such constructed links is accom-

plished by layer 3 whereas the top-most layer delivers market applications with healthy trust

ecosystems built upon lower layers of the framework. In addition, authorities and frameworks

which operate at each layer are authorized and supported by their governing complements. As

briefly described here, all layers utilize elements of the lower ones to support the layers above.

Hence each technical component in every layer, including but not limited to DIDComm, plays

a vital role in fulfilling the ultimate objective of an ideal network framework embedded with

trust.

2.2 Decentralized Identifiers

For the realization of a trust framework as described in the previous section, each node in

a network should possess and be represented by a specific form of identification, which is

defined as a Decentralized Identifier (DID) in the ToIP context. In order to alleviate fraudulent

behaviour within a system, this identity should not be capable of modification (immutable) but

only creation and revocation. Further, it should be persisted in a globally accessible storage

without being impacted by any centralized authority, such that it satisfies the trust requirement

of ToIP. To this end, DLTs are preferred and heavily adopted for this specific use-case despite

distributed databases and certain web-based solutions can generally be utilized as well.

Figure 4: A sample DID with components

Due to the availability of a vast number of storage alternatives, these identifiers do not entail

a precise structure but rather a general form with constraints to be recognizable as a DID and

moderate enough to be distinguishable with respect to the storage mechanism. Figure 4 depicts

the basic components of a DID. Note that, the scheme is a section with the fixed value ‘did’

while DID method resembles the underlying storage protocol (eg: key, ethr, btcr, github).

However, to accommodate private relationships while being ledger-agnostic, it is also possible

to use DIDs without any specific external persistence (eg: peer). The rightmost segment is

unique to the corresponding DID method and its syntax can vary accordingly.
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The identifier resolves to a document known as DID Document (DIDDoc) which exists in a

storage based on the DIDmethod being used and describes a particular subject such as a person,

an organization, an IoT device or a pet. In the case of a peer DID, the construction of this

document should follow a specific procedure such that it is self-contained within the DID and

can be parsed by any subsequent recipient. The subject of a document does not necessarily need

to be the owner of the corresponding DID (eg: DID of a pet can be owned by a person).

DID resolution performs a similar service as Domain Name System (DNS) resolution but in

contrast, the former does not follow a concrete implementation due to the possible interference

of multiple ledger protocols. Hence it should rather be considered as an abstract function by the

application layer. DID is feature-wise more similar to a Uniform Resource Name (URN) and

its format can further be extended to function as a URL with query parameters and fragments.

These extended DID URLs are particularly useful in directing a recipient towards a specific

resource component, such as the exact public key to be used from multiple keys in order to

communicate with a peer.

DID Document does not impose any constraint on the content but often contains a public key

for the decryption of messages sent by the subject (or encryption of messages intended for the

subject) along with one or multiple service endpoints for further communication. However, it is

not recommended to include any PII (Personal Identifiable Information) since DID Document

is persisted and exposed to the public, mostly via distributed ledgers. Nevertheless, this implies

that DID does not simply serve as a form of identification but also serves as a commencement

of a secure communication channel via the introduction of keys and service endpoints. Despite

the similarities with real-world identifiers, DID should be treated with respect to the context

of a relationship, as it is generally not recommended to use the same DID across multiple rela-

tionships (unless it is specifically viable). This reduces the traceability of a particular subject

beyond a single relationship together with the vulnerability of exposing all messages associated

with the DID.

One of the key characteristics of the ToIP framework is interoperability, which implies that

each service component including these identifiers should function irrespective of the under-

lying technology. This is similar to how the Internet evolved and enabled a wide variety of

technologies to communicate with each other by means of a single global network. Likewise,
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interoperability necessitates the trust framework to standardize particular fields of a DIDDocu-

ment as demonstrated in Figure 5, such that they are syntactically well-understood by different

applications once resolved.

Figure 5: A sample DID Document

2.3 DIDComm

DIDComm is a set of protocols defined within the ToIP framework to enable safe communica-

tion among the participants. However, the transport layer which is essential for the transmission

of individual messages functions only as an abstract component of these protocols, thus lead-

ing DIDComm to be transport-agnostic and utilized with the existing network infrastructure

by the systems. Therefore, it can be constructed atop any transport protocol such as HTTPS,

Bluetooth, WebSockets and Near Field Communication (NFC). In essence, DIDComm does

not operate as an entirely new technology but only standardizes and aggregates existing com-

ponents to formulate a safe messaging framework.

DIDComm is designed to be asynchronous, simplex and based on peers since this simple model

is convenient to provide interoperability across different use-cases. Specifically, these naive

design choices seem to be more applicable than the conventional client-server model, for a

world growing with ubiquitous and transient communication devices. This simple model does

not merely employ DIDComm in cases that had not been addressed adequately before, but also

provides extensibility to construct even the traditional patterns securely if needed, such as the

client-server model.
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In the networking context, DIDComm’s functionality is equivalent to how TLS protocols en-

able secure transmission of data throughout the web. However, it eliminates the centralized

intermediaries such as Certificate Authorities (CAs), thus resulting in a more decentralized

peer-to-peer communication model and displaces the associated pitfalls of CAs such as central-

ization with the vulnerability of attacks, single point of failure, additional costs and scalability

limitations [11]. Basically, DIDComm does not only provide security in communication but

also trust and self-sovereignty which are equally managed by the participants.

Each agent involved with communicating via DIDComm is represented by a unique DID. As

described in the previous section, DID resolves to a DID Document which at least contains the

subject’s public key and an endpoint. This information can be retrieved by any interested party

for setting up a secure communication channel while encrypting messages using the resolved

public key. Therefore, DID functions as an initiator of communication in this case despite that

it primarily serves as an identifier in general. Further, this functionality enables a wide range of

application-level use cases such as credential exchange, secure messaging and authentication.

In fact, these interactions are depicted in Figure 3 where DIDComm (Layer 2) utilizes the

underlyingDIDs and storage utilities (Layer 1) to deliver the corresponding application services

(Layer 3).

The agnosticism of DIDComm preserves any fundamental design pattern of communication

used along with the transport. For example, a system with producer-consumer pattern based

on HTTP can impose DIDComm conventions to enable safe communication without having to

alter the underlying network. This can further be beneficial in cases where decentralization

and safety are highly concerned factors but could not yet be accomplished due to the inherent

nature of conventional network models.

DIDComm operates in the upper layers of the OSI model while utilizing the transport layer,

but it embeds security not at the transport level but in messages themselves. This is due to its

security guarantees being derived independently from the underlying transport. This particular

attribute results in the possibility of constructing even higher-level conceptual paradigms such

as multiplexing of different transport protocols at the expense of a single initial handshake.

Thus, DIDComm provides the capability of extending globalized communication even further

in the Web 3.0 context.
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Figure 6: Delay mechanism of mediators (time axis is not to scale)

Each message of communication in modern times traverses through multiple intermediary

nodes (mediators) until it is received by the intended recipient. This imposes a risk of tracking

data maliciously even though it is mitigated by solid guarantees of encryption in TLS proto-

cols. However, DIDComm requires the message to be encrypted in a recursive manner such

that each mediator will decrypt the outermost layer to fetch the succeeding node of the route

and forward the residual BLOB accordingly. Besides the fact that core content of the message

is obscured from the mediators, this also hinders the discovery of other nodes in the link for a

given specific route, including the sender and receiver. This secure routing of DIDComm is

further extended by including intermediate delay mechanisms to obfuscate the temporal pat-

terns of communication. For example, a message can be configured to be sent by a particular

mediator with a random delay of 1-10 seconds (Figure 6). Moreover, the mediators are capable

of enforcing rewrapping for a given message, in which the decrypted residual will be extended

with an additional layer of encryption by the mediator. This will enable dynamic alterations of

the message route along with security enhancements to the message content.

2.4 ZeroMQ

2.4.1 Message-Queue model

The paradigm of client-server architecture has dominated web-based applications due to its

simplicity and applicability over a wide range of use-cases. However, this pattern fails to ad-

dress a number of concerns particularly with distributed systems while limiting its scalability.

One of the known issues can be listed as the latency cost of connection establishment in HTTPS

where an initial handshake is accomplished between the involved client and server [12]. De-

spite the improvements being made to the protocol (TLS 1.3 reduces the cost of this handshake
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in terms of round trip times [13]), this synchronous behaviour can lead to extensive utiliza-

tion of network and hardware resources, specifically where multiple sessions are established

among a set of participants. At the system level, using a client-server model may complicate

the entire architecture in terms of relationships, such as in a distributed system with numerous

micro-services in need of interacting with each other. In general, the conventional model is not

the one-size-fits-all solution for communication use-cases despite its convenience.

Figure 7: Client-server (A) vs message-queue architecture (B)

As an alternative, Message Queue (MQ) model offers a different perspective on communi-

cation patterns, in which systems are based on FIFO data structures and interaction among

components is achieved through messages instead of direct one-to-one relationships (Figure

7). Designing an MQ system may comparatively require more effort and comprehension, but

it often results in less complicated and more scalable system architectures. Further, it enables

a set of noteworthy rich design patterns such as publisher-subscriber, producer-consumer and

master-worker, which essentially exploits message queues as the core model. MQ model has

evolved to deliver a wide variety of products with their own technical, transport and archi-

tectural differences but nevertheless, this study uses only ZeroMQ as the underlying transport

protocol.

2.4.2 Properties

Generally, MQ systems comprise a centralized component (eg: Kafka [14], RabbitMQ5), which

is commonly known as a broker to manage queues and their corresponding relationships with

peers. In contrast, ZeroMQ eliminates the prerequisite of a broker and offers the capability of

a more decentralized peer-to-peer system by storing data queues within the nodes themselves.

Data transferred via ZeroMQ is structured as frames (Figure 8) to support discrete messages
5More information is available at https://www.rabbitmq.com
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but metadata in each frame can be combined to resemble a multi-part message. Transmission

of these frames is carried out adhering to a low-level specification known as ZeroMQMessage

Transport Protocol (ZMTP).

Figure 8: Frames of a multi-part message (each frame comprises size and content)

At the wire level, ZeroMQ does not constrain the necessity of a particular data format or en-

coding mechanism, thus allowing the programmer to use any serialization (eg: JSON6, Avro,

Protobuf, MessagePack) as long as the messages are transformed into BLOBs. A richer API

(Application Programming Interface) is available to handle application-level message struc-

tures, in addition to the basic send and receive functions which truncate messages with a con-

figured buffer size.

Similar to DIDComm, ZeroMQ also exhibits an agnosticism in transport layer to a certain

extent, but it is limited by the protocols which already have been defined in ZeroMQ standards

such as unicast (TCP, inter-process, intra-process) and multicast (PGM7 [15], EPGM8) trans-

ports. If TCP is used as the transport, individual nodes can communicate with each other via

default (public or private) IP addresses whereas intra-process allows defining local addresses as

required. Interactions with the transport are decoupled from the application layer as messages

are sent and received asynchronously by an I/O thread without blocking the main flow. It is

only required to use the precise socket types within the application since the underlying connec-

tion establishments and overlay networks are entirely managed by ZeroMQ. As an example,

ZeroMQ allows clients to be bootstrapped even before the server (as opposed to a conven-

tional network), establishes connections once they are reachable (thus known as disconnected

transport) and reconnects upon any failure of the connection.

Even though ZeroMQ advocates brokerless architecture, it also provides means for integrating

intermediaries such as proxies, queues, forwarders and brokers as required. This only de-
6JavaScript Object Notation (more information is available at https://www.json.org/json-en.html)
7Pragmatic General Multicast
8Encapsulated Pragmatic General Multicast (see https://linux.die.net/man/7/zmq_epgm)
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mands fundamental socket types in the implementation but yields higher-level services such as

the dynamic discovery of nodes, interconnection between multiple clients and services, bridg-

ing different transports and graceful shutdown of networks. In fact, ZeroMQ can be regarded

as a library with low-level blocks which serves multiple ways to build enormously large but

more efficient software systems.

MQ applications are generally deployed as distributed systems with servers interconnected by

a specific transport. But it is worthwhile to note that, ZeroMQ can also be used internally

within a single computer by means of threads or processes as individual nodes with inproc

(intra-process) or ipc (inter-process) as transport, respectively. This paves the way to construct

more efficient intra-node communication (eg: worker models) regardless of any programming

language or operating system. Above all, ZeroMQ maintains abstraction across the spectrum

of transports and it allows an implemented solution to be easily transformed into a different

granularity of nodes without any code modification. This can specifically be useful in simula-

tions or experiments of more complex patterns with a minimal cost of infrastructure.

2.4.3 Patterns

Regardless of all the remarkable features, the essence of ZeroMQ is entangled with its ability

to enable high-level design patterns by the mere integration of different socket types. Zero-

Comm utilizes two such design patterns to construct the group communication model, which

are described in the following sub-sections.

(a) Request-Reply

Although the core model of ZeroMQ is based on message queues, it also provides sockets to

emulate the fundamental communication pattern, i.e. request-reply relationship between two

peers. This can be achieved conveniently via the combination of built-in socket types, REQ and

REP. However, it communicates only with one peer at a time even though the socket allows

the application to bind or connect with multiple peers. Further, its message flow expects a

synchronous behaviour thus restricting peers from sending multiple messages until the entire

round-trip of a message is completed. Nevertheless, these complications can be avoided by

using ROUTER-DEALER socket pair which basically serves as an asynchronous REQ-REP

combination despite the minute differences.

Page 16 of 94



(b) Publisher-Subscriber

From passing messages within a single micro-service to being the backbone of a large-scale

distributed platform, pub-sub pattern is widely adopted by the systems in a variety of contexts.

In essence, this enables a set of interested parties to process messages continuously based on

their distinctive interests, while messages are being generated and sent by a set of publish-

ers. ZeroMQ provides built-in socket types PUB and SUB to resemble the functionality of

actors involved in this pattern, thus eliminating the necessity of a centralized component to

manage the queues of data (eg: proxy, forwarder, broker). However, different combinations

of ZeroMQ socket types can potentially be exploited to design and implement a pub-sub sys-

tem enriched with higher-level features such as message-queue brokers, fault-tolerant servers,

failure-recovery mechanisms, efficient transmission of messages and elimination of laggy sub-

scribers.
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3 DIDComm Protocols

This chapter provides an in-depth exploration of DIDComm protocols which are essential to

construct a group communication model and how they were implemented in our solution. In

particular, we start with more specific and lower-level details in section 3.1, such as pack-

ing and unpacking procedures of individual messages along with required data structures and

cryptography dependencies. Section 3.2 explains how these packed messages can be used

in a DIDComm handshake in order to establish secure connections between two standalone

agents.

3.1 Message Packing

Implementation of a proper encryption mechanism is vital to deliver secure messages via DID-

Comm while preserving data integrity and confidentiality. This can be achieved in multiple

ways but the protocol defined in Aries RFC-0019 is specifically chosen for this purpose mainly

due to the reasons of interoperability [16]. As further clarification, Hyperledger Aries plays

a leading role in the DIDComm community and hence adhering to the same encryption pro-

cess will not only guarantee the desired properties but also the communication with agents by

different vendors. This specification also defines two types of encryption as anoncrypt and

authcrypt, where former is used when the sender’s anonymity should be preserved while the

latter when the sender should be revealed. Only authcrypt is considered for our implementation

but note that packing and unpacking functions are abstracted via a generic interface such that

any customized implementation can be integrated conveniently.

A prerequisite for the encryption algorithm is that the sender should be aware of a public key

as well as an endpoint of the recipient to transmit the message. This information can be made

available to the sender via an out-of-band invitation or a DIDDoc of the recipient. In addition,

the sender must be able to access its own key pair, ideally generated for this relationship. All

the public key pairs used in this algorithm are constructed using X25519 elliptic curve function

with a length of 32 bytes [17].

The cryptography related functionalities such as key generation, encryption and decryption are

imported from the external library libsodium-go, which is essentially a cgo wrapper of its native
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C library implemented by extendingNaCl core implementation [18]. This combined tech-stack

of cgo introduces certain caveats such as performance overheads and complications in debug-

ging. However, it was decided to proceed with libsodium-go since our implementation should

adhere to the conventions of RFC-0019 and cgo library provides all the required functions as

identical to the core library. In contrast, the in-built crypto package of golang uses google’s

tink library for its underlying cryptography functions.

3.1.1 Structure

Figure 9: Authcrypt message structure

Despite the agent is solely responsible for the encoding process and messages are transmitted

as BLOBs on the wire, a definite structure is adopted from RFC-0019 in order to align with the

standards of the community as shown in Figure 9. This contains an encoded initial vector (a.k.a

nonce), the encrypted message as ciphertext and a set of protected header values which are

necessary for the decryption of the message. Additionally, it contains a tag which is commonly

known as Message Authentication Code (MAC), to be used as a proof of authenticity and data

integrity. Figure 10 shows the plaintext version of protected attribute and in this example,

recipients array contains two items resembling either two different subjects or two end-devices

of the same subject. The latter scenario intends to allow the message to be read from one of

the recipient’s multiple devices (eg: mobile phone, laptop, tablet). As a general rule of thumb

in such cases, encryption should be performed for as many recipient keys as possible.

3.1.2 Process

Sender initially generates a random non-negative integer (nonce) and its base64 encoded string

is included in the protected header iv of the recipient. A shared symmetric key is generated

afterwards, which will ultimately be used for the encryption of the underlying message. This

content encryption key (cek) is encrypted using libsodium’s crypto_box_easy function by pro-

viding the generated nonce, receiver’s public key and sender’s private key as parameters. This
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method is used as opposed to crypto_box function suggested in RFC-0019 since libsodium dis-

courages its usage and recommends crypto_box_easy function instead9. The base64 encoded

string version of the encrypted key is included as an attribute of the recipient since it varies

from one peer/device to another.

Figure 10: Protected headers of authcrypt message

The receiver’s public keys are encoded in base58 and included in the kid header of each recip-

ient section of an authcrypt message as shown in Figure 10. These keys will be used by the

recipient to further correlate with respect to the set of targeted devices or subjects, to which

the message is intended. Encoding in base58 provides more human readability compared to

base64, by eliminating visually identical (0, O, I, l) and alphanumeric characters (/, +). Sender’s

public key is encrypted using crypto_box_seal library function by providing the receiver’s pub-

lic key. In particular, this cryptography method generates an ephemeral key pair, encrypts the

sender’s public key using the ephemeral private key, attaches its corresponding public key to

ciphertext and discards the ephemeral private key. Hence, even the sender is unable to decrypt

the message once encrypted and it also preserves the sender’s anonymity despite that the mes-

sage in this case is the sender’s public key itself.

9See https://libsodium.gitbook.io/doc/public-key_cryptography/authenticated_encryption#notes
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This entire payload shown in Figure 10 is encoded in base64 to be attached as a string version in

protected attribute of the final authcrypt message. The message to be sent is encrypted using

cek along with a new initial vector. An AEAD (Authenticated Encryption with Associated

Data) algorithm known as ChaCha20-Poly1305 is used for this encryption which is essentially

a combination of a stream cipher (ChaCha20) and an authenticator (Poly1305). Apart from

encrypting the message, it demands additional data which will not be encrypted, but instead

authenticated. In this case, the set of protected header values is used for additional data and the

MAC generated in the encryption process is attached as tag of the message.

It should be noted that a different nonce is used to encrypt the message in contrast with the

one used for cek, since it minimizes the unnecessary correlation between two distinctively

encrypted ciphers. Nonce does not require it to be confidential as its primary objective is to

distinguish a particular message from any duplicates. Hence, it is only included as the base64

encoded version in iv field of the authcryptmessage. In our ZeroComm implementation, a noise

(slice of bytes) is appended to each nonce value in order to satisfy the array length required by

the underlying cgo function.

Figure 11: Authcrypt message format with functions

Figure 11 manifests a summarized version of an authcrypt message along with corresponding

encryption and encodingmechanisms for each attribute. Their counterpart methods of decoding

and decryption should be used by the recipient in a more or less inverted flow of actions. As a
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final note, ZeroComm implementation follows an RFC defined by the Hyperledger community,

which has been recentlymodified byDIF thus leading to version 2.0 of the protocol with several

changes.

3.2 DID Exchange

The essence of DIDComm heavily relies on the individual DIDs of each peer participating in

a communication channel. A DIDComm connection can be established once DIDDoc of each

peer is shared with the other participant since it provides an endpoint to communicate with, a

public key for encryption protocols and other additional information as required. Hence, the

exchange of DIDs prior to a safe messaging session is deemed crucial for any peer intending

to support DIDComm. The implementation considered in our study complies with RFC-0023

which is formulated by Hyperledger Aries in order to preserve interoperability and maintain

community standards [19]. This procedure has two major roles; a party that initiates a hand-

shake protocol (requester) and a party that responds to this initiation (responder).

3.2.1 Invitation

As it seems paradoxical to establish a DIDComm connection using DIDComm itself, the pre-

liminary phase of exchange protocol is carried out via alternative means of communication

such as email, QR code10, SMS (Short Message Service) [20] and other similar methods. To

this end, a responder may send out an invitation (at minimum with an exchange endpoint and

a public key), such that a requester’s agent can process the information and reply back with an

encrypted connection-request to the provided endpoint. RFC-0434 provides a comprehensive

description of the flow and structure of this invitation, which is known as Out-Of-Band proto-

col as the invitation is transmitted externally [21]. However, a minimal version (Figure 12) is

used for ZeroComm implementation since it only serves as a prototype in our case. Further,

RFC-0434 defines the roles involved as sender and receiver which correspond to responder

and requester in the subsequent DID-exchange protocol, respectively.

All the identifiers in DIDComm messages are generated as UUIDs and id property of the invi-

tation will be used as the parent thread ID for the rest of the messages yet to be followed in the

exchange protocol, allowing them to be correlated with a single sequence. The label attribute
10Quick Response code (more information is available at https://en.wikipedia.org/wiki/QR_code)
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Figure 12: Structure of a sample invitation

only serves as a reference of the sender to the other party, in case the receiver connects to mul-

tiple peers for communication. Despite the abundance of various DID methods (eg: did:btcr,

did:ion, did:git), ledger-agnostic peer DIDs are used as identifiers of nodes in order to reduce

the complexity and cost of resolution through external networks, as the primary objective of

our study is not impacted by the DID method being used.

The payload of the invitation includes a services property in accordance with out-of-band pro-

tocol v1.0 to ease the burden of an explicit attachment of a DIDDoc. As DIDComm v2.0 omits

this property, its corresponding receiver implementations should either refer to an attached

DIDDoc in case of a peer DID or resolve via the specific DID method for the rest of the cases

in order to fetch information about the sender’s endpoints. Service’s recipientKeys attribute

should include at least one public key encoded in base64 since it will be used by the receiver

to encrypt any further reply message. Similarly, serviceEndpoint serves as a mandatory field

to be used as an endpoint for the encrypted response and transport of this endpoint can vary

depending on the specific implementation.

This constructed invitation is finally encoded into the form of a URL before sending out via an

out-of-band mechanism, thus minimizing the data in transmission as well as obscuring infor-

mation in plain sight. However, its main purpose is to be served as a link that can be loaded

in a browser and provides instructions on using a DIDComm agent with the invitation. If the

receiver already possesses an agent, this invitation can directly be processed by the application

to proceed with establishing a connection with the sender.
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3.2.2 Exchange messages

With the reception of an invitation, a requester can use its information to construct a request

for a DIDComm connection. It initially parses the invitation which is in URL form to fetch

responder’s public key and exchange endpoint. This information along with the key pair gen-

erated by the requester specifically for this relationship is used to pack a connection-request

message and transmit it to the responder’s exchange endpoint. Ideally, exchange and data mes-

sages should be channeled via distinctive endpoints for security reasons but however, a single

endpoint is used in our prototype solely for convenience. This segregation allows the respon-

der to carry out further filtering mechanisms for selective disclosure of the messaging endpoint

and associated cryptography requisites.

Figure 13: Structure of a connection-request

The connection-request will be received and parsed by the responder using the key-pair gen-

erated for the invitation. While a single key-pair is used for all the invitations generated in

ZeroComm, it is also viable to use separate pairs for each invitation depending on the security

level required by the corresponding use-case. It is guaranteed that only the sender of the invi-

tation is capable of sending a response since the requester’s key in connection-request (which

will be used for the encryption of the response) can only be decrypted by the responder.

The responder undergoes a procedure similar to the requester, in which it will generate a new

key-pair and a DIDDoc for the relationship. Despite the possibility of re-using the same key-

pair of invitation, it is mandatory to deploy a separate pair for the connection in order to preserve
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the desirable security aspects of DIDComm. The response will be encrypted with respect to the

packing algorithm (as explained in 3.1) and transmitted to the endpoint of the requester.

Figure 14: Structure of a connection-response

Once this response is received by the requester, it will lookup the appropriate key-pair to unpack

the message and fetch the necessary fields. At this point, both agents have shared the minimal

information required for a message to be packed and sent via DIDComm protocols and hence

can be considered as the conclusion of a successful DID-exchange process. However in prac-

tice, the requester will send back a complete-message resembling an acknowledgment of the

connection-response. Figure 15 depicts the sequence of events and messages passed between

the two agents during this protocol. Thread ID of the initial message corresponding to a par-

ticular DID-exchange flow is carried out through all the intermediate messages and referenced

by each agent until a connection is established. Further, the corresponding regex validation

for a peer DID is omitted in our implementation but should be considered in more realistic

use-cases.

In the case of a peer-to-peer agent setup with this implemented prototype, the generation of

invitation by the responder and the provision of this invitation to the requester are the only

steps required to be done manually. The subsequent steps of the DID-exchange protocol are

automated in each role such that it ultimately leads to a DIDComm connection established

successfully between the agents. However, since DID-exchange is required as a prerequisite

of a pub-sub relationship for establishing connections with members in a group, the invitation

will be provided to the requester as an automated step in the relevant subscription process.
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Figure 15: Sequence diagram of DID-exchange

3.3 Discover Features

AsDIDComm expects to be widely adopted in diversified scenarios, it is beneficial for an agent

to disclose its supported protocols such that the requesting peer can be aware of the operations

in advance. As an example, a group of members can be created with a set of individual agents

only if each declares compatibility with an exact group-messaging protocol. It should be noted

that this discovery protocol was only considered as per the recommendation by DIF despite

that it does not produce any impact on our core algorithm [22, 23].

Accordingly, a separate endpoint is included in our implementation to provide supplementary

information regardingDIDCommprotocols and roles of the agent, while adhering to RFC-0031

conventions [24]. In addition, ZeroComm supports querying a specific set of protocols using

prefixes and wild-cards as shown in Table 1. However, responses to discovery queries should
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not be interpreted as negative feedback but rather a reluctance to disclose further information.

For example, missing roles in an agent’s response does not imply that no roles are supported for

the protocol but instead, agent does not prefer to provide any specific details. Further, messages

involved in this protocol are not encrypted with DIDComm since agents generally use this

service prior to setting up a DIDComm connection with the corresponding agent. Therefore,

best practices should be considered to maintain privacy while preventing any fingerprinting by

malicious agents [25].

Table 1: Sample queries of discovery protocol

Query Response

Protocol Roles

https://didcomm.org/out-of-band/1.0 Sender, Receiver

* https://didcomm.org/didexchange/1.0 Inviter, Invitee

https://didcomm.org/pub-sub/1.0 Publisher, Subscriber

https://didcomm.org/pub-sub/* https://didcomm.org/pub-sub/1.0 Publisher, Subscriber
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4 Design

Publisher-subscriber is a messaging pattern that transmits data among multiple parties effi-

ciently. In contrast to the naive approach of maintaining individual connections with each

other, pub-sub constructs indirect relationships based on the subjects of interest. Hence, two

mutually inclusive roles are involved in the pattern known as publisher and subscriber based

on the operations they perform, i.e. writing data to a subject and reading published data re-

spectively. Message-queue data structure functions both as a storage to hold these published

messages and an intermediary to connect subscribers with publishers based on their subscrip-

tions.

This communication model can be used to resolve group messaging with multiple participants

despite the lack of data security as a core feature of the pattern. In particular, Antony Rowstron

et al. extended the pub-sub pattern with application-level multicasting using Pastry to formu-

late the relevant multicast tree, which supports decentralization but lacks security at the data

layer [26, 27]. In contrast, we use ZeroMQ to establish the overlay network required by nodes

as well as to manage data transmission with underlying message queues. Further, ZeroComm

integrates data security via DIDComm while establishing trust among participants.

This chapter provides a comprehensive description of two possible solutions which entail both

security and trust in the message-level of the pub-sub communication model. The pattern

matching process of interested subjects can either be based on the content or a dedicated field

(commonly known as topic) of the message [28]. However, both varieties in ZeroComm con-

sider only topic-based subscriptions since a topic can be interchangeably referred to as a group

in the context of messaging.

4.1 Requirements

We have identified a number of requirements to be addressed initially as listed below in the

course of designing ZeroComm by combining pub-sub messaging pattern with DIDComm pro-

tocols.

1. DIDComm intends to be decentralized in terms of structural elements. This implies that

agents using DIDComm should not depend on any centralized component but however,
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existing pub-sub implementations usually involve external message-queue brokers apart

from the individual nodes, thus conflicting with our design goal of decentralization. To

this end, ZeroMQ can be used to construct a pub-sub pattern using its fundamental sock-

ets such that each publisher or subscriber can perform without relying on any centralized

module except for another peer agent.

2. DIDComm expects end-to-end encryption in all messages. Conversely, nodes in a pub-

sub system are connected with each other based on the general relationships of interests

thus being unaware of the distinctive participants. This absence of direct relationships

poses a complication with regard to the encryption of individual messages.

(a) This dilemma can be overcome by using a shared key for the encryption and de-

cryption of messages specific to a particular topic. However, this approach is only

secure as the weakest link since a single malicious node is sufficient to compromise

an entire group of nodes.

(b) Alternatively, each message can be encrypted with respect to individual relation-

ships, thus preserving adequate security aspects in accordance with DIDComm.

Nevertheless, this approach has the downside of using an excessive number of

messages since each single message now needs to be encrypted for every publisher-

subscriber relationship separately.

3. Relationship-wise encryption of messages as mentioned above, necessitates two addi-

tional requirements in a subscriber as opposed to the generic publisher-subscriber pat-

tern.

(a) Subscriber should read only the correct message. In contrast to the conven-

tional pub-sub model where a subscriber is only required to match its subscription

with the topic of a particular message, now it is also required to match with the

corresponding encryption such that the message can be successfully decrypted and

parsed.

For example, if A and B are subscribers with subscriptions to topic t1 with initial

messages {m1, m2, m3, ...}, A should only read {mA
1 , mA

2 , mA
3 , ...} and not {mB

1 ,

mB
2 ,mB

3 , ...}.

(b) For a given correct message, subscriber should know which keys to be used

for decryption.

As an example, if A is a subscriber with public key-pairsKB andKC for publishers
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B and C respectively of topic t1, A should use onlyKB (and notKC) for unpacking

messages {mB
1 ,mB

2 ,mB
3 , ...}.

This implies that each message should be identifiable with respect to its publisher

which can be accomplished by different methods.

i. Message-wise: Identification is embodied into the messages individually (eg:

HTTPS header, ZMTP frame). This approach results in more vulnerability

since it fails to provide obfuscation with respect to receivers and more re-

source utilization by a subscriber as every message now needs to be inspected

regardless of the intended member. In addition, it also imposes an unnecessary

restriction on the data format of a message.

ii. Relationship-wise: Separatemessage-queues aremaintained for each publisher-

subscriber relationship. Since performance has already been traded off against

security in DIDComm, this method is applicable in order to minimize the pro-

cessing latency of a message despite the excessive usage of queues. However,

this also results in an under-utilization of the overlay network constructed by

pub-sub pattern as separate one-to-one communication channels are used in-

stead of its inherent fan-out mechanism.

iii. Fail-and-forget: In addition to the above methods, a naive mechanism can be

implemented in the subscriber where it will discard any message which fails

to be unpacked with DIDComm protocols. This leads to an additional pro-

cessing overhead in subscribers but nevertheless, all messages are transmitted

as identical DIDComm envelopes, thus obfuscating messaging patterns along

with the targeted receivers from any malicious middle-man listeners.

4. Nodes in a decentralized group must possess more or less equal capabilities which im-

plies that each node should be able to function as any possible role in the messaging

pattern. Hence there should not be any distinction between publishers and subscribers

but instead, each should be treated as a generic member of the group in terms of the

participation. This can be achieved via two different approaches.

(a) Lazy role based approach: Each member is a subscriber by default and can per-

form publishing messages upon explicit registration as a publisher. Despite the

complexity, this approach can be considered more appropriate due to the efficient

use of relationships and resources.
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(b) Ambitiousmembership approach: Eachmember is spawned as a privileged node

with both read and write capabilities. This may lead to unnecessary and idle rela-

tionships among members, specifically in groups where at least one node remains

only as a subscriber.

4.2 Components

An individual message in a communication model generally traverses through different phases

during its end-to-end transmission process. The precise interpretation of these domain-specific

layers is essential in designing the solution with respect to requirements, extending the group

communication model as well as gaining insights into the overall ecosystem [29]. Figure 16 de-

picts the composition of ZeroComm components layered in a stack-based on such interactions

and precedence.

Figure 16: Stack of components

• Application Layer

The topmost layer of our solution serves for any application to use the abstract functions

of a group agent, particularly group communication, in order to provide higher-level

services such as messaging, data streaming and event notifications. However, the current

implementation does not include any specific application as we only focus on providing

the underlying core communication model.

• Group Agent

This layer performs as a bridge between the publisher-subscriber pattern and existing
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DIDComm protocols in order to provide an interface to higher level use-cases. Specif-

ically, key functionalities of a group member are abstracted with concrete implementa-

tions in this component such as join, leave and send amessage. Both trust and security are

preserved throughout these entire processes while exploiting the underlying DIDComm

features.

• DIDComm Protocols

A number of protocols have been introduced in the context of DIDComm but however,

only the fundamentals such as Out-Of-Band, DID-Exchange and Discovery are consid-

ered for this model to maintain both simplicity and sufficient trust levels. In addition,

our proposed solution includes v1.0 protocols despite that the v2.0 collection has already

been released by DIF [23]. Hence, any future work may consider either integrating novel

or upgrading existing DIDComm protocols as required.

• Message Packer

ZeroComm uses this layer to pack and unpack group messages adhering to DIDComm

standards as similar to the prevailing p2p implementations. However, we only focus

on authcrypt in this solution, which is the most common packing algorithm of DID-

Comm. Nevertheless, anoncrypt algorithm can also be easily plugged into ZeroComm

by satisfying our generic Packer interface. Each message from DID-exchange to group-

communication undergoes a packing procedure thus entailing security as a facet of the

message itself throughout the entire solution. This implies that higher layers in the stack

are oblivious to the encryption procedure while lower layers (excluding Encryptor) are

unaware of the message content and independent of the application being used.

• Encryptor

This serves as an abstract layer ofNaCl cryptography functions with respect to v1.0 DID-

Comm protocols for any encryption or decryption of data required by the packing algo-

rithm. Specifically, our implemented solution supports crypto_box_easy, crypto_box_seal

and chacha_detached functionalities exposed through this component.

• Key Manager

The message packing process uses distinctive keys per each relationship for encryption

of messages. Hence the necessity of a key-manager is vital with capabilities such as
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generation of Curve25519 key pairs to proceed with NaCl functions, storage of the gen-

erated keys and querying by the relationship whenever required to proceed with packing

and unpacking functions.

• Transporter

Since we intend to construct a group-communication model atop the desirable trust as-

pects of DIDComm protocols, ZeroComm consists of both publisher-subscriber and

client-server patterns where the latter will be used only for the initial setup of DID-

Comm connections between members in a group. However, we also exposed explicit

peer-to-peer communication to assist with any future work related to the underlying Ze-

roMQ transport. Transporter is agnostic of the higher layers and exploits the underlying

messaging pattern for transmission of binary-encoded data.

• ZMTP Layer

This layer functions as a network interface in our proposed solution where lower-level

tasks such as connection establishment, transmission of individual messages, construc-

tion of overlay networks and management of message-queues are handled by ZeroMQ

Message Transport Protocol [30].

4.3 Message Queues

In addition to the ordinary messages in our communication model, it also involves a separate

set of messages for the propagation of state, thus coping with dynamic memberships of the

group (eg: ongoing joins and leaves). Hence ZeroComm maintains a separate queue per each

group to communicate these state changes of members, apart from the rest of internal queues

used for the transmission of usual data messages.

Semantics of UniformResourceName (URN) is usedwith correspondingNamespace Identifier

and Namespace Specific String to distinguish all queues uniquely based on the message type

and relationship if applicable [31]. Thus, the syntax of a state-queue is defined as follows.

urn:didcomm-queue:<topic>:state

Based on the identified caveats in section 4.1, two different solutions can be derived in terms

of the data-queue relationship constructed between publisher and subscriber. Following sub-
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sections describe the fundamental differences between these adopted approaches, which will be

referred to as modes of our solution in subsequent sections. However, the distinction between

two modes does not apply to state messages as we assumed group-view changes are relatively

infrequent when compared to data messages and thus maintained a consistent algorithm for

state changes across the two approaches.

(a) Single-mode

A single queue is used in this method in order to hold all the data messages of a group. Ac-

cordingly, the internals of pub-sub pattern including its overlay network are preserved such

that all the individual messages encrypted for distinctive subscribers are published to the same

topic. Further, the fail-and-forget mechanism described in section 4.1 is adopted instead of

using separate recipient identifiers in message headers, to maintain obfuscation of messages to

both internal and external parties in terms of network traffic and message content. This solution

will be referred to as single-mode approach throughout the rest of this document. In this case,

the data-queue should only be recognized with respect to the group and therefore, the syntax

of a data-queue in single-mode can be formulated as follows.

urn:didcomm-queue:<topic>:data

Despite the simplicity of the architecture, this leads tomore processing overheads in subscribers

as they are required to read and attempt with unpacking all the messages conforming to DID-

Comm protocols, even if the message is intended for a different subscriber. Figure 17 depicts

how queues are constructed in single-mode with proper naming syntax where P1, P2 are pub-

lishers and S1, S2 are subscribers of topic T1.

Figure 17: Single-mode queues

(b) Multi-mode

In this alternative approach which is known asmulti-mode, the generic structure of pub-sub pat-

tern is slightly altered to maintain separate queues per each publisher-subscriber relationship.
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Furthermore, these associations are retained as simplex due to the reasons such as simplicity

and efficient usage of resources in the absence of full-members (eg: a group with at least one

read-only member). In essence, this requires the syntax of a data-queue to include both the

direction and participants of a specific relationship in addition to the type of message.

urn:didcomm-queue:<topic>:data:<publisher>:<subscriber>

Figure 18 illustrates an example of constructing message-queues with proper naming conven-

tions where P1, P2 are publishers and S1, S2 are subscribers of topic T1. In terms of data

messages, multi-mode uses a fan-out mechanism in which each individual message is packed

and sent n times where n is the number of members in the group excluding the publisher. This

decouples relationships even within the same group and preserves data privacy from the en-

cryption process to the dissemination of messages. In contrast, a single message queue is used

for the propagation of state updates as it is infeasible and unnecessarily complicated to maintain

relationship-wise data structures for infrequent state changes.

Figure 18: Multi-mode queues

4.4 State Dissemination

As ZeroComm relates to a group of members, state management is deemed crucial to support its

ongoing operations efficiently, securely and without any disruption. The decentralized nature

of our solution necessitates each state of a member node to be disseminated among all the

rest of the members in contrast to a regular group model, where it is managed by a dedicated

external component. Similar to datamessages, states should also adhere to a fan-outmechanism

by which each single status update is encrypted separately for every member thus imposing

granular-level security even within the same group. The propagation of status can be achieved
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via gossip protocols but however, multicast was used instead since the solution’s core model is

already devised with pub-sub pattern and delayed state-changes by gossiping can often lead to

more complexity, unreliability, resource over-utilization and security vulnerabilities. Thus, we

considered several approaches as described below in order to achieve this state dissemination

via multicasting.

1. Separate messages with a single status topic

This approach encrypts status updates separately for each member and publishes the re-

sultingm*(n-1) messages to a single status topic wherem is the number of status updates

and n is the group size including the publisher. Since all messages are published to the

same topic, an identification mechanism to correlate each message to its intended recipi-

ent is hence required. To this end, the receiver’s DID can be used in a dedicated ZeroMQ

frame such that a recipient does not need to decrypt the content-frame if the correspond-

ing DID is not matched. However, as peer DIDs are used as identifiers in our solution,

this can lead to an exposure of service information in addition to the excessive number of

bytes caused by including peer DIDs in each message. Alternatively, a separate UUID

which is known only to the parties involved such as exchange-ID in DID-Exchange pro-

tocol, can be used for message correlation thus preserving both security and efficiency.

Nevertheless, this still leads to an excessive number of messages in a single state-queue.

2. Separate state-queues per each relationship

In contrast to publishing all distinctively-encrypted messages to the same status topic,

this approach transmits messages to separate queues. During the design phase, we based

our model on an assumption which implies that realistic systems will incur less-frequent

state-changes relative to data messages. Hence this approach may construct numerous

message-queues unnecessarily solely for the transmission of infrequent status updates.

However, this will also reduce the processing overhead of a member due to retrieving

only relevant messages and thus eliminating the validation process and any redundant

unpacking invocation.

3. Encrypt using a shared-key and publish to a single status topic

This can be considered as the simplest as well as the most-efficient approach in terms

of both resource utilization and latency. Specifically, status updates can be encrypted
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via a symmetric-key as opposed to the DIDComm packing algorithm thus using only

one message per update. Regardless of the reduction in processing overhead of both

subscriber and publisher, this can potentially lead to insecure circumstances by exposing

group information as the entire metadata will now only be secure as the weakest member.

Any rectification on such cases will relatively be burdensome as well, due to the use of

a shared-key and complication in isolating the malicious member.

4. Single message with sub-sections for each member

In this approach, a state-change will still be packed distinctively per each intended mem-

ber but however, all the DIDComm messages corresponding to a single update will be

transmitted using only one message. In particular, a state message is now composed of

a map object indexed by an identifier of the recipient (eg: exchange-ID) followed by

the encrypted content of the status-change. This results in less number of messages but

the size of a single message will be relatively high. However, network traffic can be

expected to be lower than sending individual DIDComm messages even if they sum up

to the same size as in this approach.

5. Publish state messages to data topics

Additionally, a naive approach of publishing individual DIDComm state messages to

the corresponding recipients’ data topics can also be considered. As opposed to all the

other alternatives, this entirely eliminates the necessity of a separate state-queue while

preventing the redundant unpacking invocations at the recipient as well. This however

leads all data relationships to be duplex by default regardless of the role involved, due

to the bi-directional nature of state updates between two participants. Furthermore, it

requires data and state messages to be coupled and thus may impose unnecessary com-

plications in tracing and debugging separate event logs.

Regardless of the numerous alternatives, we have considered using the sub-section method in

both single and multi mode approaches of ZeroComm. Particularly, the content of a status

message is packed separately for individual members and then composed together in a single

map object. These authcrypt sub-messages are indexed by the exchange ID used to establish

distinctive DIDComm connections, thus preserving the privacy of the intended member.
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4.5 Overlay Network

The network structure of a decentralized group varies along with the connectivity among mem-

bers which is established based on the message type and composition of roles involved. Table

2 categorizes different possible types of graphs along with the example groups and constrained

scenarios where they can occur. Read-write capability is omitted in state-queue cases as each

member will operate both as a publisher and a subscriber. In addition, this analysis assumes

that a group is consisted of at least 2 members.
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Table 2: Categories of group networks (S=Number of read-only members, PS=Number of
read-write members, M=Number of group members)

Message type Constraint Type of graph Example

S=0 and PS>1 Bidirected complete

S>0 and PS=0 Null graph

Data S>0 and PS=1 Unidirected acyclic disconnected

S>0 and PS=2 Directed acyclic disconnected

S>0 and PS>2 Directed cyclic disconnected

State M>0 Bidirected complete
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5 Implementation

5.1 Architecture

The proposed solution is implemented in Golang11 which is a high-level open-source program-

ming language with inherent accommodation for concurrent and high-performant software sys-

tems. In addition, Python12 and Shell13 scripts are used together for automation, testing, data-

processing and visualization purposes. ZeroMQ v4.0 is used as the transport provider and to

fulfill its underlying network requirements via TCP socket connections. The final version of

the implementation can be found at the Github repository14 with 9000+ lines of code.

Figure 19: Software architecture

11Also referred to as Go (more information is available at https://go.dev/doc)
12An interpreted, object-oriented and high-level programming language
13A scripting language for Unix-based operating systems
14Source code is available at https://github.com/YasiruR/didcomm-prober
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The core functionalities of the solution with respect to group member, DIDComm agent, mes-

sage packer, transport service, key-manager and other vital services are abstracted through in-

terfaces to serve both as a convenient guidance of the implementation and a decoupling mech-

anism for any modification of the code. Figure 19 provides an abstract view of the internal

architecture and how components interact with each other. A short description of each key

element is given below along with dependent sub-components.

• Group agent

This can be regarded as the most significant component of ZeroComm as it includes all

the concrete flows of a group member to support the basic operations, which will be

described in section 5.2. As shown in Figure 16, group agent utilizes a number of DID-

Comm protocols that are provided by the DIDComm layer such as invitation-related

functions and individual connection establishments. In addition, three localized com-

ponents are used in a group agent known as compactor, validator and syncer in order

to compress group-state messages, carry out checksum validation upon joining a group

and maintain Lamport timestamps in data-messages, respectively. In essence, these are

supplementary services of ZeroComm that enhance the core algorithm’s desirable prop-

erties such as performance, consistency and ordering of messages.

The transport requirements of a group member are satisfied by ZeroMQ, through which

multiple listeners are initiated to process the different types of messages involved in

our solution. Further, an authenticator is used at the transport-level in order to provide

authenticity and restrict any unnecessary socket connections which have not been estab-

lished through an initial DIDComm handshake. In order to both preserve simplicity in

our Proof-of-Concept as well as to enhance security aspects, we used in-memory stor-

age instead of persistence. Hence two thread-safe stores are initialized as subscriber

and group, to assist with unpacking messages of subscribed topics and retrieval of group

information whenever required.

• DIDComm agent

This component serves as an individual agent which uses DIDComm to establish secure

connections and transmit messages with connected peer agents. As described in section

4.2, this resides in a lower level than the group agent and should not be impacted by the

higher layers. In fact, a group member is an individual DIDComm agent with extended
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functionalities and multiple peer-to-peer relationships to support group communication.

Hence this layer interacts with other internal components such as DIDComm protocols,

message-packer including a wrapped encryptor around NaCl cryptography library and

multiple stores for peer information, DIDs and DIDDocs. However, it only exploits the

client and server sockets of ZeroMQ for all the underlying functionalities, since this layer

is not aware of any higher-level applications such as group messaging.

• Key Manager

Both generation and storage of cryptography key-pairs in ZeroComm are carried out by

a separate component along with the capability of queries. This is a vital dependency to

provide secure communication in our solution as each message will be encrypted differ-

ently based on the recipient. We only considered a naive implementationwith in-memory

stores but however appropriate security measures with best practices should be followed

to enforce further restrictions on the end device, which will be discussed in section 7.1.4.

5.2 Functionality

This section describes higher-level abstractions of a group agent which were implemented in

ZeroComm to support secure communication among multiple parties and hence each message

of this layer is transmitted only through DIDComm. Both single andmultimodes adhere to the

same set of algorithms apart from the variations in topic names and subscriptions as described

in section 4.3. We will further discuss the design choices of ZeroComm in section 7 with a

comprehensive reflection on the corresponding trade-offs.

Since our solution is a Proof-of-Concept, we assumed that the network is reliable and hence

acknowledgments can be ignored in order to spotlight the core algorithm as well as to keep the

implementation less complicated. Therefore, the functions described below may omit the final

round-trip of messages which should be considered in more realistic scenarios with unreliable

networks.

5.2.1 Create

This function constructs a new group uniquely identified by a group-name which is analogous

to a topic in the pub-sub messaging pattern and members are not allowed to create multiple
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groups with an identical name. In order to preserve decentralized sovereignty, ZeroComm

does not permit privileged users including the creator of a group. During the create process,

the respective node will store itself as a member along with attributes such as label, status

(active/inactive), role in the group (read-only/read-write), an invitation for DID-exchange, the

publishing endpoint of messages and a generated checksum for the group. All this information

is mandatory for operating as a member of the group and hence fetched in both create and

join functions. The generated checksum value will be updated regularly per every subsequent

group-view change and also maintained by each successive member separately.

5.2.2 Join

The joining process can be regarded as the crux of ZeroComm due to the majority of threats

and vulnerabilities of a group can be exploited if this functionality is not properly designed.

The flow will be initiated by a joiner (requester) requesting from an existing member of the

group (acceptor) via a DIDComm message. Hence, a DIDComm connection should prevail in

advance between requester and acceptor as the only prerequisite of the flow. Subsequent DID-

Comm connections with the rest of the group will be established in the course of the procedure,

if not already established.

Figure 20 depicts the flow of events that occur during a join process. Acceptor’s DIDDocwhich

is shared with the joiner should contain a group-join service endpoint through which the joiner

will be validated and receive further contact information of the residual members to establish

individual DIDComm connections (prerequisites of DID-Exchange protocol as described in

section 3.2). This retrieved group-view will be stored and updated in joiner to become an ac-

ceptor and accommodate any future requests by new members to join the group. Each member

possesses the ability to act either with read-only or read-write privileges upon registration as a

member (both when creating and joining a group).

A subscribe request is transmitted to each member separately via DIDComm once a connection

is established with the member. This particular subscription serves as a higher-level abstrac-

tion of all the underlying steps to create a secure pub-sub relationship including connecting

and binding network sockets, subscribing via ZeroMQ topics, exchange of public keys, setting

up authentication at the transport layer and storing peer information for the retrieval of future

messages. When this subscription process terminates successfully, the requester will be con-
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Figure 20: Flow chart of join process (G=Group, R=Requester, A=Acceptor,M=Member)
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cluded as a member in the adjacent peer’s local view of the group along with the relationship

required between the two peers for group communication.

In the context of ZeroMQ, transmission of data messages is handled in the background with

an asynchronous I/O model whereas a subscription takes non-zero latency for setting up the

connection through a TCP handshake. This overlap between connection and transmission leads

to a possibility of missing an initial set of messages sent by the publisher until the subscriber is

connected successfully. The aforementioned dilemma can be resolved naively by delaying the

publisher with a defined latency buffer such that all socket connections are established prior

to the transmission of any message by the publisher. However, our solution consists of a more

adequate approach in which it publishes a stream of encrypted hellomessages with a configured

time interval and proceeds with publishing ordinary messages only after the corresponding

acknowledgements from all group members are received.

A joiner undergoes a series of validations at three different stages: during the initial DID-

Exchange with acceptor, when processing the group-join request and during DID-Exchanges

with other members. This final set of individual validations allows any particular member to

prevent from connecting with a distrustful joiner even if the joiner is connected with the rest of

the group. Hence, it enables a granular level of connections within a group, possibly leading

to inconsistent views among members. In particular, a joiner will gather group-checksum val-

ues from each member during the join process and validates them when there are at least two

members excluding the joiner. This poses a complication in distinguishing byzantine nodes

from trustful members with only conflicting views but nevertheless, it was designed to allow

any subsequent joiner to also proceed with a warning as our work focuses on preserving de-

centralization with possible intruder detection and not on recovering from byzantine members.

However, a group can also be configured to restrict joins when the virtual synchrony across the

group seems to be inconsistent.

5.2.3 Leave

As ZeroComm is decentralized and group states are maintained in all individual nodes, any

update to the group should be notified to all the members. This implies that leaving of mem-

bers from the group should be carried out in a graceful manner such that each local state in

members is updated accurately. To this end, a notification is published to the status topic and
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subsequently, the corresponding ZeroMQ subscriptions are discontinued. Finally, the local

storage of leaver will be discarded apart from the individual DIDComm connections as they

operate at a lower peer-to-peer level in our component stack and should not be impacted by a

group action.

5.3 Messages

ZeroComm transmits different message types among members in order to fulfill the basic re-

quirements of a group communication model. Accordingly, each agent initiates a number of

listeners by means of ZeroMQ sockets to retrieve and process these messages independently

from each other. This section provides a description of such listeners with respect to the in-

volved message type.

5.3.1 Join requests

Since existing members should support adding newcomers to the group, a listener is initial-

ized in an agent to process any future join request. The information about this listener is con-

veyed through the agent’s DIDDoc with a separate service endpoint named group-join. Once

a join-request is received by the endpoint, sending agent’s role will be defined as the joiner

or requester while the receiver will be known as acceptor. This handler uses a REP socket

and should include a validation to verify if the joiner is eligible to be aware of the group in-

formation. Our current implementation contains only a dummy validation but however, more

adequate and complicated procedures should be followed as necessary.

5.3.2 Subscriptions

Any subscribe request transmitted between the members of a group is handled by a separate

listener. As similar to the join-request handler, this also utilizes a REP socket and includes a

validation to provide the granular-level choice of connection establishment with the sender of

a subscribe message. In addition, this paves the way to initiate a pub-sub relationship using the

corresponding ZeroMQ sockets as well as enables transport-level authentication between the

two parties involved.
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5.3.3 Status

In order to facilitate the necessity of transient memberships, a separate listener is initialized for

updating local view of the group individually in members per each state-change. These updates

may include alterations to invitation, label, publish-endpoint, active status or role of a member.

A SUB socket is used for the retrieval of messages and this resultant fan-out mechanism lessens

the complexity of disseminating member-updates to the entire group.

Figure 21: Status message with 2 members

A single state-message consists of sub-sections for each member in the group (Figure 21) with

respect to DIDComm protocols as described in section 4.4. Therefore, a validation is included

in the handler to extract the exact sub-section which is relevant to the recipient. Privacy of the

intended member is preserved in this case, as it is only indexed by the exchange ID which does

not provide any insight to an outsider except for the 2 peers involved.

Regardless of the security and simplicity, this composed data structure leads to a scalability is-

sue where message size grows with the number of recipients. A lossless compression algorithm

can be used in order to reduce the overall message size, which can potentially be noteworthy for

larger group sizes. To this end, zstd seems applicable as it is currently known for lower latency

and higher compression ratio compared to other existing algorithms such as zlib and brotli [32].

For example, state-message of a newmember joining a group-size of 25 induces amessage with

an average size of 41.268kB which is then compressed into an average of 26.654kB using zstd

algorithm, thus reducing the memory required per single message by 35.41%.

Page 47 of 94



5.3.4 Data

A data handler is bound to a separate SUB socket to accommodate the regular messages pub-

lished to a group. However, the number of messages received by this listener may vary de-

pending on the mode (single/multi) used in our solution. Upon retrieval of a message, it will be

parsed and unpacked per DIDComm protocols since group messages in ZeroComm are con-

structed atop the fundamental DIDComm layer.

5.4 External dependencies

Table 3 consists of the external libraries and their corresponding versions which were used in

the implementation of our proposed communication model while omitting the builtin golang

packages.

Table 3: Libraries and versions

Library Version Description

pebbe/zmq415 v1.2.9 Go interface to ZeroMQ version 4.0 with CGo bind-
ings around the core-implementation

klauspost/compress16 v1.15.14 Optimized Go compression packages including zstd
compression algorithm

google/uuid17 v1.1.1 Go package for UUIDs based on RFC 4122 [33] and
DCE18 1.1: Authentication and Security Services

btcsuite/btcutil19 v1.0.3 Provides bitcoin-specific convenience functions in-
clduing a base-58 encoder for DIDComm message-
packaging

GoKillers/libsodium-go20 v0.0.0 A complete overhaul of the Go wrapper for NaCl
cryptography functions

15ZeroMQ library (available at https://github.com/pebbe/zmq4)
16Compression library (available at https://github.com/klauspost/compress)
17UUID generator (available at https://github.com/google/uuid)
18Distributed Computing Environment
19Encoder (available at https://github.com/btcsuite/btcd)
20Cryptography library (available at https://github.com/GoKillers/libsodium-go)
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6 Evaluation

This chapter provides a comprehensive description of the experiments carried out to evalu-

ate the performance of ZeroComm. In particular, first sub-section discusses the metrics and

experiments required for assessing key-design choices of our implementation while the latter

sections include the measured results of experiments, followed by an extensive rationale for

the observed patterns and deviations.

6.1 Metrics and Operations

6.1.1 Joining

In the course of our implementation, we identified that the joining process of a group member

plays the most significant part of the solution in terms of vulnerabilities, processing overhead

and complexity. During the design phase of the join algorithm, we traded off performance

to provide a highly-secure system by using exhausting packing algorithms for every message

preceded by a number of DIDComm handshakes each with multiple round-trips of messages.

Hence our primary objective is to evaluate how well the model performs against an impactive

set of independent variables with the designed join algorithm. To this end, we identified a

number of possible experimental variables as given below.

• Initial group size: Due to the fact that the joining process involves several DIDComm

messages transmitted back and forth by a joiner with all the individual members, initial

size of the group at the time of join can be regarded as a highly significant factor.

• Initial connectivity with members: As part of the joining procedure requires members

to be connected via DIDComm, the existence of individual DIDComm connections prior

to a group-join may influence the overall latency of the algorithm. For a particular group,

this will result in n number of additional test cases with respect to the number of already

connected members, where n is the initial group size excluding the joiner. Nevertheless,

our evaluation will focus only on the two extreme cases to recognize the impact of the

parameter, i.e. when the joiner is initially connected with every member vs when it is

only connected with the acceptor.
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• Join consistency: Our model provides a configurable attribute to support virtual syn-

chrony with consistent group views via a checksum validation during the joining process.

However, as the implementation only provides a mechanism for inconsistency detection

and does not include any subsequent action on recovery, the configurable variable of

consistent joins will not contribute any impact on the algorithm’s performance.

Since our experiments should focus on measuring the performance, time consumed for the

successful completion of a single joiner against varying constraints as listed above can be con-

sidered as a key-metric of the assessment. Moreover, it can be extended with a set of throughput

experiments where concurrent join-requests are initialized by distinctive members simultane-

ously, in order to simulate a more realistic scenario and examine the model’s execution in such

cases. However, for the latter experiment, requesters were allowed to join groups with incon-

sistent views due to the inherent nature of parallelism in the experiments. Thus throughput and

latency can be regarded as two key metrics of our solution as analogous to the evaluation of

prior work related to pub-sub systems [34].

6.1.2 Messaging

Despite our major contribution being fixated on the join algorithm, sending group messages

among members can still be considered as the key feature of a group communication model.

Further, our proposed solution partakes in a computationally-intensive packing procedure per

each message, after which they are transmitted differently through queues depending on the

configured mode of the solution (single or multi). Hence, this necessitates a set of experi-

ments to investigate the processing overheads incurred by cryptography functions as well as

the model’s performance in terms of publishing group messages with respect to the two imple-

mented modes.

Similar to the join operation, we defined latency and throughput as the key metrics of group-

message experiments. However, in addition to the group size to which a message will be pub-

lished, the configured mode of the group also serves as an independent variable in this set of

experiments. Since ZeroMQ does not guarantee a reliable message delivery by default, we also

considered the success rate of published messages as an affirmation of our results as well as to

gain further insights on any fluctuations. As discussed in section 7.3, ZeroComm only provides

the data infrastructure required to enforce ordering amongmessages by maintaining and attach-
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ing Lamport timestamps in each message. Specifically, we assumed that our core messaging

model should not be influenced by concrete ordering mechanisms but rather be defined within

the application layer by means of the attached timestamps. Hence, the ordering of messages

can be neglected in this evaluation as it does not impact the performance of ZeroComm.

In addition to the performance-related metrics, it is worthwhile to evaluate the resource uti-

lization as we traded off efficiency in ZeroComm to achieve our security goals. To this end,

transformation in number of bytes due to the imposition of DIDComm packing protocols can

be regarded as applicable since it reflects the additional resources as well as network overhead

bound with each message. In contrast to a data message, ZeroComm executes a compression

algorithm on a status to overcome the inherent issue of oversized messages with sub-sections.

Therefore, it can be beneficial to experiment with statemessages separately such that it provides

insights into the effectiveness of the compression algorithm.

6.2 Experiments

6.2.1 Environmental setup

The experiments were set up in Microsoft Azure Cloud Platform with general-purpose server

nodes configured as shown below in Table 4. Each VM (Virtual Machine) was installed with

Linux Ubuntu 20.04 Operating System and equipped with a standard SSD (Solid State Drive)

hard-disk.

The server instances were located in 6 different time zones (Figure 22) in order to simulate

the experiments as identical to a real-world scenario resembling the dispersed individual DID-

Comm members of a group. Each experiment was triggered by one or few test agents hosted

in the same virtual machine while 5 distinctive server nodes were spawned in every other time

zone. However, multiple peer instances were bootstrapped uniformly among the existing vir-

tual machines for test cases with initial group sizes larger than 25. For example, alice, alice-1

and alice-2 belonged to the same geographical location while alice-1, alice-12 and alice-13

were initialized in the same virtual machine.

Peerings were enabled between each pair of virtual networks such that individual nodes were

capable of communicating via internal IP addresses. Such peered channels route directly
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Table 4: Specification of server nodes

Agents Location CPUs RAM Archi. Max. IOPS

tester-1, tester-2, .... Washington, USA 4 16GiB x64 2880

alice, alice-1, ..., alice-
4, alice-02, ..., alice-42,
alice-03, ..., alice-23

Amsterdam, Netherlands

bob, bob-1, ..., bob-4,
bob-02, ..., bob-42, bob-
03, ..., bob-23

Hong-Kong

carol, carol-1, ..., carol-
4, carol-02, ..., carol-42,
carol-03, ..., carol-23

Johannesburg, South Africa 2 4GiB x64 1280

david, david-1, ..., david-
4, david-02, ..., david-42,
david-03, ..., david-23

Virginia, USA

eve, eve-1, ..., eve-4, eve-
02, ..., eve-42, eve-03, ...,
eve-13

San Antonio, TX

Figure 22: Geo-locations of server nodes

through the Microsoft backbone infrastructure, thus eliminating the influence of the public

Internet in our experiments. Hence, the model’s performance on heterogeneous networks is

disregarded in the evaluation but can be considered in any related future work [35, 36].
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A couple of additional modifications were also applied to the system configuration of tester

agents in order to carry out experiments with larger group sizes as well as higher throughput.

Specifically, the SSH connection limit was raised to 65 along with the file descriptor limit to

100,000. Moreover, libzmq was installed in each server node via apt package repository as the

only prerequisite for executing the implemented Golang binary of ZeroComm.

6.2.2 Results

Following tables contain the observed measurements of the metrics and experiments defined in

section 6.1. We also calculated the average values of time measurements in cases where all 3

test attempts were successful. In subsequent tables, Initial size refers to the number of members

when the test attempt was initiated while Yes in the Connected column resembles the testers

were connected to all groupmembers in advance. It should also be noted that logging operations

of each node might have a relatively minor but non-zero influence on the results.

A separate pinger script was used tomeasure the network latency for a basic message originated

by the test agent. To be more specific, three separate HTTP requests were transmitted to each

node server used in the experiments and complete round-trip latency was measured by the

initiator, i.e. tester node. An average value per each geographical location was then calculated

using all the individual latency measurements as listed in Table 5.

Table 5: Ping round-trip latency results

Node prefix Average ping latency (ms)

alice 193.00

bob 185.67

carol 406.67

david 94.33

eve 58.00
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Table 6: Join latency results

Initial size Connected Latency (ms)

Attempt 1 Attempt 2 Attempt 3 Average

1 Yes 1243.0 1238.0 1224.0 1235.0

2 Yes 1229.0 1228.0 1243.0 1233.3

2 No 2211.0 2208.0 2206.0 2208.3

4 Yes 2516.0 2523.0 2513.0 2517.3

4 No 4710.0 4725.0 4705.0 4713.3

8 Yes 2538.0 2551.0 2548.0 2545.7

8 No 4746.0 4746.0 4752.0 4748.0

16 Yes 2703.0 2721.0 2721.0 2715.0

16 No 4945.0 4913.0 4911.0 4923.0

32 Yes 2676.0 2656.0 2699.0 2677.0

32 No 4853.0 4869.0 4930.0 4884.0

64 Yes 3192.0 3194.0 3170.0 3185.3

64 No 5388.0 5375.0 5396.0 5386.3

Table 7: Join throughout results

Initial size Connected Test batch size Latency (ms)

4 Yes 4 2608.0

4 Yes 16 2725.0

4 No 4 8381.0

4 No 16 23022.0

16 Yes 4 2966.0

16 Yes 16 3134.0

16 No 4 8573.0

16 No 16 23596.0

64 Yes 4 3711.0

64 Yes 16 5412.0

64 No 4 9293.0
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Table 8: Group-message experiment results

Mode Initial Test batch Success Latency (ms)

size size (%) Attempt 1 Attempt 2 Attempt 3 Average

single 1 1 100.0 76.0 76.0 75.0 75.7

single 1 10 100.0 77.0 77.0 77.0 77.0

single 1 50 100.0 362.0 354.0 353.0 356.3

single 1 100 100.0 359.0 360.0 360.0 359.7

multi 1 1 100.0 72.0 72.0 72.0 72.0

multi 1 10 100.0 74.0 73.0 72.0 73.0

multi 1 50 100.0 358.0 356.0 353.0 355.7

multi 1 100 100.0 368.0 362.0 395.0 375.0

single 2 1 100.0 78.0 77.0 79.0 78.0

single 2 10 100.0 233.0 231.0 233.0 232.3

single 2 50 100.0 376.0 374.0 377.0 375.7

single 2 100 100.0 523.0 526.0 525.0 524.7

multi 2 1 100.0 74.0 76.0 75.0 75.0

multi 2 10 100.0 77.0 76.0 77.0 76.7

multi 2 50 100.0 370.0 367.0 370.0 369.0

multi 2 100 100.0 376.0 379.0 379.0 378.0

single 4 1 100.0 157.0 156.0 156.0 156.3

single 4 10 100.0 467.0 468.0 467.0 467.3

single 4 50 100.0 1088.0 1091.0 1093.0 1090.7

single 4 100 100.0 1406.0 1409.0 1406.0 1407.0

multi 4 1 100.0 156.0 156.0 156.0 156.0

multi 4 10 100.0 159.0 159.0 159.0 159.0

multi 4 50 100.0 778.0 778.0 775.0 777.0

multi 4 100 100.0 792.0 792.0 789.0 791.0

single 8 1 100.0 167.0 160.0 160.0 162.3

single 8 10 100.0 794.0 792.0 793.0 793.0

single 8 50 100.0 1435.0 1433.0 1439.0 1435.7

single 8 100 100.0 1760.0 1758.0 1754.0 1757.3

multi 8 1 100.0 160.0 159.0 159.0 159.3

multi 8 10 100.0 464.0 463.0 463.0 463.3
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multi 8 50 100.0 794.0 795.0 797.0 795.3

multi 8 100 100.0 1100.0 1099.0 1095.0 1098.0

single 16 1 100.0 786.0 465.0 473.0 574.7

single 16 10 100.0 1108.0 1105.0 1106.0 1106.3

single 16 50 100.0 1738.0 1741.0 1741.0 1740.0

single 16 100 91.47 1842.0 1841.0 1350.0 -

multi 16 1 100.0 477.0 160.0 161.0 266.0

multi 16 10 100.0 480.0 473.0 471.0 474.0

multi 16 50 100.0 1099.0 1099.0 1097.0 1098.3

multi 16 100 100.0 1419.0 1409.0 1416.0 1414.7

single 32 1 100.0 789.0 470.0 473.0 577.3

single 32 10 100.0 1717.0 1419.0 1420.0 1518.7

single 32 50 77.88 1842.0 1843.0 1837.0 -

single 32 100 58.65 1517.0 1518.0 1518.0 -

multi 32 1 100.0 475.0 158.0 166.0 266.3

multi 32 10 100.0 784.0 783.0 781.0 782.7

multi 32 50 100.0 1408.0 1411.0 1414.0 1411.0

multi 32 100 100.0 1732.0 1722.0 1730.0 1728.0

single 64 1 100.0 1114.0 769.0 780.0 887.7

single 64 10 100.0 1757.0 1761.0 1757.0 1758.3

single 64 50 57.02 1838.0 1840.0 1841.0 -

single 64 100 42.38 1840.0 1841.0 1842.0 -

multi 64 1 100.0 490.0 466.0 167.0 374.3

multi 64 10 100.0 1093.0 1091.0 1093.0 1092.3

multi 64 50 100.0 1727.0 1726.0 1725.0 1726.0

multi 64 100 99.31 1828.0 1448.0 1442.0 -

6.3 Analysis

This section intends to provide an overview regarding the performance and efficiency of Zero-

Comm by analysing the observed results based on both internal and external characteristics of

our implemented solution.
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6.3.1 Join algorithm

(a) Latency

Figure 23 illustrates the latency results of a group-join experiment with respect to the attempts

of a single new node. The first test case (group-size=1) has only the connected scenario as a

joiner should at least have one initial DIDComm connection with an existing member of the

group. Small-scale error bars imply that all attempts in each test scenario had resulted in the

same measurements thus revealing the stability of the proposed solution.

Figure 23: Latency graph of join

If the joiner is not initially connected with the entire group, the missing DIDComm connections

with the rest of the members will be established in parallel as these operations do not depend

on each other (Figure 24). Despite the concurrent execution, these DIDComm formations still

induce a higher latency overhead due to the transmission of multiple DID-exchange messages

with each unconnected member as explained previously with Figure 15. This clarifies the gap

between 2 lines in the resultant graph in which not-connected line shows high latency values

but exactly with the similar pattern as connected, due to the fact that the only difference be-

tween identical test cases being the transmission of DID-exchange messages. However, the

different phases mentioned in Figure 24 should execute sequentially, after which the status of

a joiner will be published to the group indicating the conclusion of a join procedure.

Page 57 of 94



Figure 24: Messages exchanged during a join process

During the probing phase, joiner will publish a continuous stream of hello packets with a con-

figured time interval (eg: 100ms), until acknowledgements from all the group members are

received. This also provides an explanation to why the latency values are almost equal for the

initial group size 1 and 2 in the connected test scenario. Specifically, tester in this case is prob-

ing alice and bob nodes which are located within approximately the same distance in terms of

network latency (Table 5) while the rest of the messages are identical in both these cases, thus

resulting in similar latency values for group-join operations.

Both connected and not-connected graph lines show a sudden increase in latency when the

group size is changed from 2 to 4. This is due to the inclusion of two newmembers where carol

located in South Africa shows a contrasting high network latency as shown in Table 5. Both

lines then maintain approximately consistent latency values up to the group size of 32, since all

members in these cases are uniformly distributed across the 5 different geographical locations.

The overall latency is dominantly influenced by the upper bound latency value of each phase.

This observation along with the time taken for a general join operation can theoretically be

deduced from the equation given below where tc(ui) and th(ui) are round-trip latency values

with peer ui for connection messages and hello acknowledgements respectively.

tjoin = tjoin-req + tstate-res + max({tc(u1), ..., tc(u1)}) + max({th(u1), ..., tc(u1)}) + tstatus
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However, our results do not include the time taken for a state message to be received by group

members as we assumed that dispatch of the subsequent status from a publisher can be regarded

as the conclusion of the corresponding join process.

Both connected and not-connected graph lines show a gradual rise in latency when the initial

group size is increased up to 64. In both these cases, the joiner is waiting for acknowledgements

from all 64 members for a successful termination of the experiment. Due to the variation in

network latency among members, this may possibly lead to the transmission of multiple hello

messages as well as retrieval of multiple acknowledgements from the same set of members

continuously until an acknowledgement is received from the last member. Subsequently, un-

derlying ZeroMQ sockets and message-queues can be overwhelmed with network traffic and

therefore, the overall latency of join operation for cases with higher cardinality of group mem-

bers can be expected to be directly proportional to the group size with a slightly increasing

gradient.

(b) Throughput

In this experiment, a burst of join requests defined by batch was sent out to the members of a

group by distinctive test agents and the aggregated time taken for the successful termination

of all join processes was measured. Acceptors in each test attempt were defined in advance

such that the set of join requests was transmitted uniformly among the group. The experiment

was carried out for initial group sizes of 4, 16 and 64 with both connected and not-connected

scenarios, except for batch=16 since its group-size=64 and not-connected test case resulted in

an over-utilization of resources along with an excessive latency.

As shown in Figure 25, the overall time taken in each case has a linear relationship with the

initial group size. If we consider batch=4 and connected test scenario, only the probing phase

(Figure 24) is impacted by the initial group size. More specifically, requesting information

phase has hardly any influence due to the fact that group-join requests and responses involve

mutually exclusive member sets (eg: tester-1 requests from alice-1, tester-2 requests from bob-

1...) while they are transmitted and processed concurrently as well.

However, there exist several other factors within a single agent which can possibly lead to a la-

tency increment in cases of concurrent joiners. Synchronization withmutexes, atomic-counters
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Figure 25: Throughput graph of join

and thread-safe data structures can be regarded as one such factor since the implementation

includes critical sections where local stores should be updated accordingly. Further, messages

can be queued up in both ZeroMQ and internal channels due to the fact that ZeroMQ sockets

are not thread-safe and hence messages are processed by each socket sequentially by a single

dedicated thread. Therefore, overall latency for a given test-batch constraint can be expected to

increase more or less linearly with a slight gradient along with initial group sizes. In addition,

the slope of the not-connected line can also be anticipated to be higher than a connected line,

as the connecting phase will also have an impact due to the rise in DID-exchange messages

transmitted corresponding to the adjustments in group sizes.

The connecting phase has even more influence on the latency when a connected test case is

compared against its identical not-connected scenario, due to the requirement of additional (n-

1)*2m number of messages where n is the initial group size and m is the number of concurrent

joiners. This difference between two identical graph lines can be expected to increase even

further with the test-batch size as m in this case is not a constant. For example, {batch=4,

not-connected, group-size=4} test case only requires 24 additional messages when compared

to its identical connected scenario whereas {batch=16, not-connected, group-size=4} requires

96 additional messages over its connected test-case.
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6.3.2 Group messaging

(a) Performance

This experiment focuses on evaluating the performance of ZeroComm in terms of publishing

DIDComm group messages. Each relevant group member in this experiment is registered for a

callback such that it notifies the tester once it receives the exact number of a particular message

as defined in the registration. Tester carries out these registrations prior to the experiment, then

publishes a test batch of messages concurrently and finally measures the time taken until all

registered callbacks are received. In order to capture the transport failures, we also defined

a timeout such that a member will return the number of successfully retrieved messages in

case of a failure. Hence it should be noted that the time measurements of this experiment may

also include the cost of parsing an HTTP response body and processing the content, which

can be regarded as a trivial overhead against the network latency. However, average latency

values were calculated by deducting the ping latency measured for a half round-trip at each

test attempt, thus eliminating the impact of callback responses. As both pub-sub and callback

connections were already established in advance, any initial overhead related to the transport

handshake and routing procedures were excluded in this experiment, thus resulting in latency

values slightly lower than in the ping experiment.

In contrast to the previous experiments, an additional independent variable is defined as mode,

since our proposedmodel consists of two different flows (single andmulti) based on the number

of queues used for transmission of datamessages. Moreover, we only considered cases in which

all three attempts were 100% successful for the throughput graph due to the uncertain behaviour

of failed test attempts with a possibility of skewed and unreliable results.

As shown in Figure 26, two different modes of the solution result in dissimilar latency values

when the rest of the conditions are constant across the two scenarios. The cause for this vari-

ation lies within subscribers as the publisher does not incur any distinction between the two

modes, except for the impotent difference in namespaces of the topic to which messages are

published. As described in section 5.2, messages of a specific group in single mode are pub-

lished to the same queue and subscribers are required to attempt with unpacking each message

regardless of the intended recipient. Despite all the advantages, this will prompt an additional

overhead in terms of resources and processing latency due to the unnecessary invocations to
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Figure 26: Results of group-message tests

expensive cryptography functions wrapped in cgo. In contrast, subscribers in multi mode can

be expected to be more efficient as they only interact with the relevant messages and do not

consume any latency or resources for unnecessary decryptions. Hence, single mode latency

measurements are anticipated to be higher than the values of equivalent multi mode test-cases.

This also explains the cause for steeper gradients of single mode graph lines as opposed to

their counterparts in multi mode due to the increase of irrelevant unpacking operations with

respect to the number of group members. This overhead consumes even more latency when

the number of messages is raised simultaneously since each subscriber is required to unpack

m*(n-1) messages in single mode where m is the number of original messages and n is the

group size.

Despitemessages in this experiment are packed and published concurrently, a number of critical

sections and latency overheads are still involved in the procedure. This includes interferingwith

synchronized in-memorymaps related to group, key or subscriber, buffering latency in internal

channels, cgowrapped cryptography functions, usage of a single-threaded publisher socket and

underlying polling mechanisms within the ZeroMQ context. Thus, latency can be expected to

rise also at the publisher side when either batch-size or group-size is increased.

It is worthwhile to note that all the graph lines in this experiment intersect at two different

points when the initial group size is one. In order to further investigate this behaviour, an addi-

tional experiment was carried out for the specific case of group-size=1 using granular message
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batch sizes as the only independent variable. Single mode was used as a constraint since all

the messages in this scenario will be only intended for one member and thus the number of

invocations to the unpacking process will be consistent regardless of the mode.

Figures 27 and 28 manifest that latency values are composed of step-wise increments with

respect to the number of messages published to a single-member group. Further, all these in-

crements belong to the range of 110ms-140ms thus indicating a periodic behaviour of the entire

operation. One possible cause for this observation is Nagle’s algorithm which is often imple-

mented by TCP-oriented applications in order to improve efficiency over network resources

by aggregating data bounded by an MTU (Maximum Transmission Unit) size and reducing the

number of packets sent over a TCP channel. However, Nagle’s algorithm is disabled by default

within ZeroMQ transport layer in order to eliminate unnecessary idle times and reduce latency

overheads [4].

Figure 27: Latency of group-message when size=1, batch=(0,100]

Nevertheless, the transmission of ZeroMQ message frames seems to involve a data batching

process at a higher level in which an intelligent queuing mechanism is carried out depending on

the data flow and Network Card Interface’s (NIC) performance [37]. This implies that if the in-

ternal network buffer is sparse, ZeroMQdoes not proceedwith batching but dequeuesmessages

until it is empty. However if otherwise, background IO threads of ZeroMQ dequeue the buffers

for accumulation of data into a batch bounded by the configuration ZMQ_OUT_BATCH_SIZE,

in contrast to Nagle’s algorithm where it waits until acknowledgements are received within the

network layer [38]. Thus, the continuous stream of data fed in our experiment enables this
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Figure 28: Latency of group-message when size=1, batch=(100,1000]

specific batching algorithm and hence the latency values can be expected to be in step-wise

increments. In addition to the efficiency in network overheads, this process also reduces the

number of traversals through the entire stack of “Application-ZeroMQ-TCP-IP-NIC” per each

message as shown in Figure 29 [39].

Figure 29: Stack traversals per each message (a) without batching (b) with batching

(b) Efficacy

ZeroMQ is an unreliable messaging protocol that focuses on high throughput and hence fol-

lows an all-or-none delivery mechanism in terms of multi-part messages. We encountered this

symptom during the group-message experiment, specifically when both batch and group sizes

were high. Therefore, additional metrics were collected such as successful operations in order

to demonstrate how this unreliable delivery of messages affects our proposed solution.
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Figure 30: Success rates of group-message

Figure 30 depicts that multi mode of our solution produced 100% message delivery except for

the case {group-size=64 and batch=100} in which the average success rate was 99.31%. In

this particular scenario, the tester is publishing 6400 messages concurrently intended for 64

different members. At any given point in time, messages can reside in subscriber’s or pub-

lisher’s network buffers, subscriber’s memory or even on the wire itself. In order to handle

overflowing of ZeroMQ message queues due to such reasons, a configurable parameter is in-

troduced within ZeroMQ parlor known as High-water mark (HWM). If this quota is reached

by a particular internal pipe, any further message will be blocked or dropped depending on the

socket type. Since our publisher socket used the default HWMvalue which is set to 1000, some

messages can be expected to drop for cases with intensive streams of messages.

In cases of single mode, a considerable portion of the overall latency is consumed by sub-

scribers for unpacking a substantial number of messages unnecessarily, thus leading to the de-

fect of slow subscribers. This potentially causes the publisher to drop messages beyond HWM

as subscriber’s inefficiency is passed upstream to the internal buffers of the corresponding pub-

lisher. Further, TCP channels can also be expected to be overwhelmed with a higher number

of network packets caused by the oversized state messages with composed sub-sections. In ad-

dition, processing latency by ZeroMQ can vary depending on the message size (as described in

section 7.4.1) and this can also impact our solution specifically when state-messages are size-

able. Hence success-rates can be expected to drop immensely in singlemode even for relatively

smaller group sizes when the number of messages published is increased (Figure 30).
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(c) Message size

As security is provided at the data layer, messages conveyed via DIDComm can generally be

anticipated to be larger in size. However, we conducted separate experiment in order to provide

a statistical insight into the expense of ZeroComm in terms of memory occupied by individual

group messages.

Figure 31: Message sizes with DIDComm

As shown in Figure 31, DIDComm message sizes begin with a fixed overhead even when the

original content is only a single byte, thus minimizing any correlation between message size

and content. This is caused by the use of a predefined structure in DIDComm regardless of

the original text as well as by the encryption algorithms enforced on the primary content. It

can also be observed that resultant DIDComm sizes exhibit a linear relationship with the initial

size of the message. This can be argued by the increase in size of the ciphertext field (Figure

9) with respect to the original message, whereas the rest of DIDComm message attributes are

not impacted by the initial size of the content.

During the design phase, we assumed that state changes are relatively infrequent compared to

the datamessages. Hence, we used a single statusmessagewith subsections which comprise the

identical message but are packed per each member in accordance with DIDComm protocols.

This however poses a notifiable hindrance in terms of the message size as it increases with

the cardinality of members. Specifically, this growth can be expected to be linear since the

number of subsections is directly proportional to the group size while each segment results
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Figure 32: State messages in ZeroComm

in an approximately equal number of bytes (Figure 32). This impact is minimized with zstd

compression algorithm used in our solution but still, this can be regarded as a potential future

work to further improve state propagation with respect to the alternatives mentioned in section

4.4.
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7 Discussion

This chapter reflects on the qualitative attributes of ZeroCommwhile investigating the internals

and design choices. Accordingly, we dive into the specifics of resultant trust and security,

prevalence of multiple group views, ordering of data messages and key features of messaging

at both transport and protocol levels.

7.1 Trust and Security

7.1.1 End-to-end encryption

The main objective of our study is to incorporate desirable safety properties of communication

into the core model of pub-sub messaging pattern via exploiting DIDComm protocols. Despite

the fact that current pub-sub based systems exhibit adequate security levels through sophis-

ticated cryptography measures, they still fail to satisfy the requirements of an ideally trustful

environment due to the involvement of an external component. For example, Internet Relay

Chat (IRC) serves as a decentralized group communication model but however, it still poses a

vulnerability with security since messages are not end-to-end encrypted by default and even if

it is enabled by add-ons, messages will be encrypted by the server and not by the client [40].

In contrast, our solution eliminates external components by using ZeroMQ-based individual

agents and entails security at the data-level via DIDComm protocols thus preserving both de-

centralization and end-to-end encryption.

7.1.2 Transport authentication

Once DIDComm connections are successfully established, every single message used in all

subsequent processes (e.g. joining groups, updating member information, peer-to-peer and

group communication) adheres to DIDComm protocols. This does not only provide confiden-

tiality via encryption but also the authenticity which boils down to the initial DID-Exchange

between the two peers. For instance, encrypting sender’s verification key with receiver’s public

key in a message, allows the intended recipient to correlate a message with the sender. How-

ever, these securities only exist in the data layer of the stack.
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ZeroMQ’s inter-node communication is based on TCP connections and their corresponding

PUB sockets allow any node to connect with the port to which it is bound, thus creating a

communication channel as long as the requested socket type is compatible with PUB (Figure

33). Despite that content of messages is protected with DIDComm and endpoints are only

conveyed to the validated DIDComm agents, this still poses a threat with obfuscating network

traffic. Particularly, if the endpoint is somehow exposed, a malicious node can then connect and

monitor the messages continuously along with any pattern of messaging involved. To this end,

topic names can be generated such that they are unique and known to other groupmembers only

via DIDComm, thus restraining disclosure of messages by resolving a transport-level defect at

the group protocol layer.

Figure 33: Intruder connecting via ZeroMQ sockets

However, ZeroMQ allows subscribing to all topics via an empty string (“”), thereby enabling

unknown subscribers to read all the messages without any interference from the publisher [41].

This implies that the issue should be resolved at the transport layer itself rather than by a

higher-level protocol and hence we used ZeroMQ’s inbuilt authenticator in our solution [42].

Although it provides several options such as filtering IP addresses, username-password valida-

tion and curve-based authentication, the latter was chosen for our solution due to security being

the highest priority among requirements. Specifically, this authentication uses curve25519 el-

liptic curve for generating permanent and transient (for each session) key pairs to authenticate

both publisher and subscriber as well as to enforce Perfect Forward Secrecy [43].

Nevertheless, using an authenticator still causes a complication due to the absence of a ZeroMQ

key-exchange mechanism which requires the generated permanent key pairs to be transferred

manually. To this end, we used the high-level subscribe message of a member to securely
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communicate the ZeroMQ key-pairs via DIDComm, thus eliminating both the necessity of

additional messages and the vulnerability of an external key-exchange. In essence, ZeroComm

only uses a single initial out-of-band message and all the subsequent processes are securely

achieved via DIDComm, including group memberships and transport authentication.

7.1.3 Network security

A number of vulnerabilities can still exist in a communication system as given below, despite

that messages are transmitted with end-to-end encryption.

• Session information: Single mode in our solution minimizes network obfuscation via

publishing all group messages to a single topic. Nevertheless, the mere presence or

absence of traffic may still be used by malicious parties to collect information regarding

the sessions. To this end, agents can be implemented to send random garbage datawhen

there is no traffic among the group members.

• Versioning: Our solution uses a curve authentication which is provided by ZeroMQ

v4.0 implementation. The initial handshake of two ZeroMQ peers includes a version

negotiation in their greeting messages which results in a vulnerability of disabling the

enforced security mechanism with a lower version. However, the corresponding ZMTP

implementation used in ZeroComm eliminates any attempt with such downgrade attacks

[30].

• Message size correlation: Attackers use the length of messages to extract insights about

the content even if they are encrypted. As we described in section 6.3.2, DIDComm

messages in our solution exhibit a linear relationship with the original size thus providing

a susceptible correlation. Nonetheless, this can be resolved by padding the encrypted

data in each message to a randomized size.

• Repeated requests: If service endpoints of a ZeroComm agent is somehow exposed,

an attacker may continuously endeavour to connect with the agent such as in DDoS

(Distributed Denial of Service) attacks [44]. This issue can be minimized by maintaining

an access log in order to detect and block repeatedly failed connections that have been

originated from the same IP address.

• Oversized messages: As DIDComm protocols result in sizeable messages, a malicious

agent can attempt amplification attacks by sending requests to generate large responses
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in return. This should be handled by the application layer depending on the use-case as

our study only focuses on enabling secure group communication.

7.1.4 Key management

The essential security aspects of our solution are delivered through the use of symmetric and

asymmetric cryptography key pairs. Hence proper measures should be considered for the con-

struction of a well-established Public-Key Infrastructure (PKI) which may result in malevolent

consequences if not carefully designed [45]. To this end, ZeroComm adheres to a set of design

choices but however, a number of assumptions were also made to maintain simplicity and give

prominence to the core algorithm of the solution as described below.

• Separate key pairs are used in invitation and DID-exchange protocols even if they are

related to the same recipient. This minimizes the correlation between two protocols, en-

hances security and proves authenticity during the handshake and subsequent messages.

However, our model does not provide any assurance on the out-of-band transmission of

the invitation as it is out-of-scope for this study.

• Same key pair is used for all the invitations generated by a single member to lessen the

burden of complexity in our solution. But ideal implementations should use a new key-

pair for each invitation such that it decouples the relationshipsmaintainedwith distinctive

users by a particular agent.

• All key pairs used in an agent are stored only in memory (no persistence) and as a slice

of bytes (not human-readable) for both better security and efficiency. In addition, key-

manager service of ZeroComm is separated and abstracted such that further mechanisms

can be applied in more practical scenarios. As an example, peer public keys and agent’s

own key pairs can be stored separately to decouple and enforce granular security such as

splitting agent’s keys when not in-use.

• A single key pair is used by an agent in our proof-of-concept implementation for all the

services and topics maintained with a specific peer which is identified uniquely by a

label (eg: Alice uses only KAB
pub and KAB

prv key-pair with Bob regardless of the service).

Nevertheless, multiple key pairs should be used for each distinctive use-case even within

the same relationship to achieve better privacy.
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• As described in section 7.1.2, additional keys are required to enable transport-level au-

thentication and exchange of this underlying key-pair is accomplished through the sub-

scribe message in ZeroComm.

It should also be noted that due to the evolution of quantum computers, the existing systems

including our solution may inherit vulnerabilities with unraveling protected messages, com-

monly known as ”store now decrypt later” attacks. As an example, 20 qubits can represent over

a million superimposed states thus leading to at least one-million simultaneous computations

including cracking public key pairs with Shor’s algorithm [46]. However, quantum-resistant

key generation mechanisms are currently being researched by the community specifically with

lattice-based algorithms which still preserve the difficulty of deciphering keys regardless of the

computational power [47]. Due to the abstraction of key manager and packing interfaces in our

solution, corresponding cryptography functions can therefore be replaced as necessary without

impacting the core functionalities, thus making the entire model quantum-secure.

7.2 Group views

Due to the replication and maintenance of state by individual members, inconsistent views may

exist within the same group which can be caused either by network delays or byzantine nodes.

The latter may possibly result in security vulnerabilities as it enables an existing member to in-

clude an intruder in its local view and subsequently share it with newcomers. This however can

be resolved by enforcing consensus with Virtual Synchrony into our solution (eg: Paxos) such

that it does not only maintain a consistent view across a process group but also provides atomic

multicasting mechanisms [48]. However, we presume that this approach may result in unneces-

sary complications and overhead in our solution, since we primarily focus on providing secure

group communication within DIDComm context. Accordingly, ZeroComm is constructed atop

individual DIDComm agents, which implies that trust should prevail explicitly between each

pair of agents even though they belong to the same group since technological reliability alone

is insufficient to provide communication safety as described in section 2.1.

Nevertheless, we investigated how inconsistent group views may influence our solution along

with an approach to mitigate such adverse impacts. In particular, the join algorithm of our

solution is susceptible to byzantine nodes since a newcomer connected to a malicious acceptor
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may possibly receive an incorrect group view, thus joiner initiating imprudent connections with

members outside the group. Given below is a list of example scenarios that may have an impact

by the existence of such different group views.

Scenario 1: Alice creates a group. Bob sends a join request to Alice. Alice sends group-state

with an intruder (Eve).

Scenario 2: Alice and Bob are members with inconsistent views such that Alice has an intruder

(Eve) in her local view. Carol then sends a join request to Alice (Figure 34).

Scenario 3: Alice and Bob are members with inconsistent views such that Alice has an intruder

(Eve) in her local view. Carol then sends a join request to Bob.

Scenario 4: Alice and Bob are members with valid inconsistent views. Carol sends a join

request to Alice.

Figure 34: Join process via a byzantine acceptor

Alice acts as a byzantine member in the first two scenarios, leading newcomers to connect

with an intruder and even include Eve in their local views of the group. Since scenario 1

should ideally consist of only one member (Alice), it will be straightforward for the second

member (Bob) to reject connecting with any other member than Alice. However, scenario 2

results in a vulnerability as Carol may likely connect with Eve in cases where Carol is unaware

of the actual group size. In the third scenario, Alice does not act as an acceptor and hence her

flawed local view of the group will not be shared with Carol. Since both Alice and Bob are
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valid members with only inconsistent views in the last scenario, Carol may have an impact by

Alice but the root cause in this case is unintentional.

In general, newcomers connecting to a group with multiple members should be capable of

validating the initial view provided by an acceptor, with respect to the other members. To this

end, every member in our solution maintains a checksum value per each distinctive group based

on their connected members. This hash is calculated by the validator component (Figure 19)

with a consistent algorithm such that the resultant value will be identical given the same set of

group members. Each existing member will convey the most recent checksum value to a joiner

via subscribe-response during the connecting phase (Figure 24), which will then be validated

by the joiner once all the individual DIDComm connections are completed. Hence this can be

regarded as a reactive approach to recognize byzantine nodes in a group and thus avoids the

additional overheads incurred by proactive measures.

Nevertheless, our solution only focuses on recognizing whether each member maintains an

identical view of the group and thus ZeroComm does not provide any further rectification

on resolving byzantine failures. Distinguishing and sorting out byzantine nodes against valid

members with only partial views should therefore be investigated as a separate study. However,

a parameter is introduced in our model such that a group can be configured to terminate any

join procedure when the group views received by members are incompatible.

7.3 Consistency

The degree of consistency can be regarded as a highly concerning factor in our solution due

to the inherent asynchronous behaviour of a distributed group. Particularly, the transmission

of messages in parallel by multiple members may lead to inconsistent ordering of messages

across different members. This section provides a review of how consistency can be enforced

in ZeroComm by considering such possible scenarios and constructing a model based on the

alternatives.

1. As the most naive approach, ordering of messages can be maintained via a centralized

component, thus requiring a message to be submitted initially for the ordering process

and then published to the group with a defined sequential index. Despite the simplic-

ity, this consumes a higher latency overhead due to the synchronization and additional
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round-trip of each message. Moreover, the model may possibly suffer from single point

of failure and a network bottleneck with respect to the centralized component. The coor-

dinating node can be replicated to overcome this issue but it results in further complica-

tions such as management and load-balancing of the resultant replicas. In addition, this

centralized approach also contradicts our primary design goal of decentralization and

hence can be justifiably discarded as infeasible for ZeroComm.

2. As an alternative, ordering of messages can be achieved via totally ordered multicas-

ting, thus entirely eliminating the need for a centralized component. However, this ap-

proach can possibly lead to even higher latency overhead and network congestion due to

the involvement of an additional multicasting round, multiple acknowledgements, pro-

cessing with more queues and a waiting time bound with each message. As a result, we

omitted this strategy in our solution but still can be considered in future extensions of

ZeroComm, specifically where ordering is favoured at the expense of performance and

complexity.

3. In practice, not every application requires to be strictly ordered but rather settles for hy-

brid modelswith respect to data integrity and constraints of the system, thus minimizing

unnecessary complications and latency overheads [49]. We explored a number of scenar-

ios where consistency may possibly impact the solution and constructed a hybrid model

accordingly with partial ordering based on the assumptions as described below.

(a) Messages published by a single member should be strictly ordered across the en-

tire group via sequential consistency and should preservemonotonic-writes with

respect to the client-centric consistency model (however, it should be noted that

client-server paradigm only exists as momentary roles in our model given a partic-

ular message transmission). For example, if member A publishes messages {m1,

m2, m3, ...} in group G, all the other members of G should read A’s messages in

the exact same order (Figure 35). This requirement is satisfied through the FIFO

property of message-queues used in the core of our solution.

However, it often results in complications with ordering messages when multiple

publishers are involved, which can be resolved in several ways.

(b) Since it is technically infeasible to maintain an absolute global time in Wide Area

Networks, ordering among concurrent events incurs additional overheads and com-
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Figure 35: Message ordering by a single publisher

plexity. In cases where they are causally unrelated, we assumed that the messages

are parallel and independent events that do not require to be ordered. For instance,

Figure 36 depicts a scenario where Bob receives m1 after m2 despite that m1 was in

fact published ahead of m2. This also implies that our solution may not be applica-

ble to all the use-cases, specifically where strong consistency is mandatory such as

financial applications which use monetary transactions as messages.

Figure 36: Ordering with multiple publishers

(c) When messages are causally related, granular mechanisms can be considered and

applied since our model involves two types of messages. In particular, ordering of

state messages can be segregated from data, leading to the assumption that causally

related but context-wise unrelated messages can still be in different orders and thus

do not necessitate any ordering mechanism.

As an example, Figure 37 shows a case where Alice receives m1 before join-status

of Carol even though it was published prior to m1. Consequently, Alice publishes

m2 only to Bob despite that it should ideally be transmitted to Carol as well, due
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to Alice being unaware of Carol’s existence at the time of dispatch. This however

can be improved by attaching a notion of the group state in each message, thus

even contextually unrelated but causally related messages provide insights to other

members on publishing a future message. In our given example, m1 thus may carry

information including that either a member has joined or group-state has been up-

dated since it is causally related to the join-status of Carol. Upon retrieval of m1,

Alice can then proceed with a reaction such as waiting until the recent group-state

is restored in its local view. Nevertheless, this mechanism may become overly

complicated in the presence of multiple ephemeral members and hence assumed

that state can be disseminated eventually throughout the group. Consequently, this

restricts ZeroComm to use-cases where delayed propagation of memberships can

be tolerated.

Figure 37: Ordering among different contexts

(d) In contrast, causal order should be preserved if messages are causally as well as

contextually related such that no data message published as a response of another

will be received ahead of its predecessor as shown in Figure 38. However, it should

also be noted that m2 and m3 in this example are received by Carol in a different

order as they are not causally related to each other.

In essence, our hybrid model will be based on both parallelism and type of the message in

which states will be eventually consistent whereas data will be causally consistent among

multiple publishers. In addition, both state and data messages of a single publisher will be

sequentially consistent. We presume that any rectification on consistency (eg: re-ordering
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Figure 38: Causally ordered data messages

messages) should be implemented in higher layers of the stack depending on the use-case (i.e.

application-layer in Figure 16), without impacting the core algorithm of the ZeroCommmodel.

However, lower layers of the model should facilitate any underlying framework required by

applications in order to maintain such consistency levels. To this end, an additional tuple {lam-

port_ts, id} is attached with each message, where lamport_ts is a logical timestamp maintained

by each agent with respect to a Lamport clock as follows [50].

if current_ts < last_read_ts:

lamport_ts = last_read_ts + 1

else:

lamport_ts = current_ts

In this case, current_ts refers to the present UTC (Universal Time Coordinated) timestamp

maintained locally by amember while last_read_ts refers to themost recent timestamp attached

in a message processed by the same member. Further, an id attribute is generated randomly

during the bootstrap phase of a publisher which can be used to sort messages in cases where

lamport_ts values are equal across multiple messages read by a subscriber. Accordingly, this id

together with lamport_ts can be used by an application to execute the ordering of data messages

(eg: buffer messages and sort based on the tuple values).
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7.4 Messaging

7.4.1 Transport

ZeroMQ plays a vital role in our solution despite that the transport layer is abstracted via inter-

faces and this section explores a number of design choices specifically related to the internals

of ZeroMQ.

1. ZeroMQ sockets are not thread-safe: This results in undefined behaviour when sockets

are invoked concurrently by event flows. Thus, the internal architecture of our group-

agent is entirely based on message-passing such that no socket is shared between multi-

ple threads. To this end, a group-agent uses both inbuilt go-channels as well as internal

endpoints bound with inproc ZeroMQ sockets. The latter enables the same SUB socket

which is exposed externally for group messages, to be also used for the internal com-

munication since multiple connections are allowed by the underlying ZeroMQ socket

regardless of the transport being used.

2. Missingmessage syndrome: ZeroMQ favours throughput over reliability and thus sock-

ets are asynchronously connected with each other. This leads to a possibility of missing

the initial messages published by a member even if the PUB-SUB socket connections

were invoked in advance. This syndrome affects our solution since a new member in

ZeroComm publishes its active status to the group as soon as the individual DIDComm

connections are established with all the members. We identified a number of possible

methods to overcome this issue as listed below.

(a) As a naive approach, the newcomer can sleep before publishing its status, thus

allowing underlying socket connections and ZeroMQ handshake to be completed

in time. However, this can be regarded as an inefficient mechanism due to the

additional latency overhead as well as manual sleep configuration required in each

agent based on the network traffic.

(b) Alternatively, callbacks provided by the core library can be used such that it no-

tifies any update on the transport layer including connection establishments. This

was also disregarded in our solution due to the lack of adjacent peer information in

a callback, which is necessary when multiple peers are involved in our model.
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(c) As a more robust solution, a newcomer can publish a stream of hellomessages prior

to the real data and its active status. A subscriber responds back with an acknowl-

edgment which consists of a specific identifier upon the retrieval of this multi-part

hello message. The newcomer will publish any subsequent message (eg: active

status) only after the acknowledgements are received from all the members since

it verifies the successful connection with each group member. Hence we adopted

this method in ZeroComm which enables the group protocol to dynamically adapt

depending on the network traffic while improving efficiency.

3. Message size: Messages are processed differently by ZeroMQ based on the size, where

small messages are stored on the stack while large messages are stored on the heap. It

minimizes unnecessary memory allocations while improving the overall latency [51].

This specific behaviour can possibly impact our solution in cases where state messages

are oversized due to the higher number of members in a group. Message-size constraint

is configured by ZMQ_MAX_VSM_SIZE variable which is set to 30 bytes by default

but can be overridden as required [52].

4. Bi-directional flow: In terms of state messages, every individual relationship in a group

can be considered as duplex. To achieve this two-way communication, we used the

fundamental socket types PUB and SUB thus creating two uni-directional data streams.

However, the solution can be redesigned to use ZeroMQ’s extended socket types instead,

such asXPUB andXSUBwhich enable bi-directional data flowwithin a single connection

by maintaining a double queue internally for incoming and outgoing messages [53].

5. Property frame: As our solution was required to handle messages differently based on

the type, we attached a metadata object in each message to convey any additional infor-

mation. The current implementation uses only a type attribute with encoded and implic-

itly defined integer values such that they are incomprehensible outside the ZeroComm

context. We also formulated our multi-part message structure to include these properties

in an additional ZeroMQ frame thus preserving the compatibility of ZeroComm with

different versions. However, this still poses a vulnerability by partially revealing the

context of a message and hence should be eliminated in future implementations such as

by encrypting the metadata frame as well.
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7.4.2 Protocol

DIDComm serves as the most crucial component in ZeroComm as our key requirements such

as trust and security rely entirely on the underlying protocols. Nonetheless, a number of de-

sign choices were considered during the implementation phase as described below, in order to

diminish any further complication apart from the core algorithm while maintaining sufficient

security throughout the process.

1. Peer DIDs: DIDComm supports a variety of DID methods (eg: key, ethr, btcr, github)

each with different properties and storage mechanisms. Nevertheless, Peer DIDs are

used in our solution resulting in a ledger-agnostic communication model since interop-

erability is not a primary objective of this study. However, integration of other DID

methods can be considered as required by any future implementation of ZeroComm.

2. Synchronous and duplex messaging: In order to capture all messaging use-cases and

to support ubiquitous devices with unpredictable intervals of stable connections, DID-

Comm recommends the use of asynchronous and simplex communication [23]. This

does not only provide obfuscation but also interoperability as any advanced communica-

tion system can be constructed atop this basic messaging pattern. However, peer-to-peer

messages involved in our group-join protocol are synchronous and duplex such that re-

sponses are transmitted through ZeroMQ REP sockets for the corresponding requests,

thus leading to a simpler and more efficient model.

3. Service endpoints: A DIDComm agent conveys its functionalities through service end-

points of a DIDDoc. Each service ideally consists of a separate key pair and a network

port to provide granular security and decoupling between multiple endpoints. However,

these attributes were implemented to be identical across the services of a single agent in

this proof-of-concept model.

4. Unique and consistent labels: In practice, agents may use different labels for indepen-

dent peers, groups as well as service endpoints to achieve better privacy through minimal

cross-references. Conversely, our prototype naively assumes that labels are unique and

consistent across each scenario.
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5. Invitations: Distinctive invitations should preferably be used in setting up DIDComm

connections to maintain both traceability and decoupling between relationships. How-

ever, the same invitation is used by a group member to join with newcomers in Zero-

Comm for simplicity reasons.

6. Secure group protocol: The proposed group communication model operates on top of

the DIDComm layer. In particular, each message between a pair of agents is transmitted

only via DIDComm preceded by a secure DID-Exchange procedure. This implies that

all the messages used in our group protocol (eg: requesting information, subscribing a

member, leaving the group) can be regarded as secure and trustful.

7. Idempotent state transactions: Agents in our solution were implemented to cope with

state-message duplicates thus allowing members to republish a status in case of a failure.

7.5 Application Layer

ZeroComm can be expected to provide the fundamental structure of communication for numer-

ous use-cases and it is worthwhile to explore the model from the perspective of an application.

To this end, a group-chat service can be regarded as an ideal use-case since we adopted a hy-

brid model with assumptions to loosen consistency levels while prioritizing security and trust

of individual messages. Hence, this section provides a detailed analysis of our solution with

respect to a de facto Instant Messaging (IM) model.

• Our model is a synchronous system as opposed to generic chat applications. For exam-

ple, Whatsapp is an asynchronous system where intermediate servers store and deliver

messages later if the recipient is not online at the time of transmission. It is possible for a

member in our solution to stay offline by publishing an inactive status but however, any

published group-message during this inactive period can not be retrieved by the member.

• As the solution is based on the ToIP framework, trust is embedded at different layers of

the network stack, including messages themselves. Hence secure-routing can be con-

sidered as non-compulsory compared to Internet Relay Chat (IRC) where messages are

transmitted in plain-text by default. Nevertheless, mediators in DIDComm can be used

to further enhance network security by encrypting a message with multiple envelopes per
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each intermediary as similar to Onion Routing [54, 55]. Additionally, DIDComm medi-

ator nodes can autonomously enforce rewrapping and delayed transmission as described

in section 2.3.

• Acknowledgements of messages are ignored in the current implementation as this only

serves as a Proof-of-Concept. However, they should be considered in real-world sce-

narios and encrypted as per DIDComm protocols for a reliable and secure messaging

system. It should also be noted that sending acks in plain-text often results in undesir-

able consequences, as experienced with existing IM applications [56].

• In contrast to the conventional chat systems, decentralization is preserved throughout our

entire solution. This implies that the model should maintain a flat hierarchical structure

within the group in terms of sovereignty. To this end, admin privileges including the

removal of a group member were neglected in ZeroComm and therefore, a consensus

algorithm should be integrated with the solution in order to facilitate removing members,

specifically in case of a byzantine failure.

• In this Proof-of-Concept, we only considered text messages to maintain the simplicity of

the solution despite that existing IM applications support Rich Communication Services

(RCS) by default. Nevertheless, messages in our solution can be easily modified to

include DIDComm attachments in order to transmitmultimediamessageswith arbitrary

data formats such as images, videos and documents [57].

• ZeroComm does not currently support referencing to a previously published message.

However, it can be achieved in our solution by maintaining a unique ID attribute in each

single message and storing both content as well as ID securely in the application layer

for any future reference.

• Retention of messages can also be implemented in the application layer in order to de-

liver message history, such that it preserves data security both when in motion and at

rest. In particular, the implementation should maintain and transmit snapshots of data

via ROUTER and DEALER sockets established in publisher and subscriber respectively.

Consequently, when a subscriber is initialized or recovered after a failure, it should

request for the snapshot while buffering current data messages in the underlying SUB
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queue. Once the response is received and message history is restored, all the buffered

messages up to the snapshot can be discarded while the rest should be processed accord-

ingly.

Figure 39: Restoration of message history

For efficient usage of resources, every member does not necessarily need to provide

ROUTER sockets or maintain message history. Instead, few members can be chosen

to deliver this service with a desirable replication factor to avoid single point of failure

(Figure 39). This set of members should be flagged and recognizable in the initial state-

response shared during the join process of a newcomer.

• Existing messaging applications including TLS 1.3 implementations, use Perfect For-

ward Secrecy (PFS) to maintain session-specific keys and preserve the confidentiality

of historical communication in cases where session keys are compromised. Signal

achieves this viaDouble Ratchet AlgorithmwhileWhatsapp only exploits the Symmetric

Ratcheting process [56]. However, DIDComm perceives PFS from a different viewpoint

which is currently accomplished through the rotation of DIDs themselves as the defini-

tion of a session is slightly altered in the DIDComm context. Thus, DID rotation should

also be considered in a real-world use-case of our solution.
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• As ZeroComm provides two dynamic roles based on the member’s preference (read-

only or read-write), transitions between these roles should also be feasible. Currently,

this can only be achieved by leaving a group and rejoining with the preferred role again

since switching between roles is out of the scope for this study. Hence, any future

implementation can include this functionality as well in order to enhance the overall

user experience.
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8 Conclusion

This study was focused on the successive step of technological communication known as web

3.0 which prioritizes decentralization, proper data ownership, ubiquitous connectivity and self-

sovereign identity. We identified that DIDComm delivers secure and trustful communication

in this paradigm which still needed to be explored with group messaging, as all the prior work

of DIDComm was only restricted to peer-to-peer models.

To this end, we investigated the requirements of a decentralized and safe group communica-

tion model along with its key features, alternatives and trade-offs. Accordingly, we designed

and implemented ZeroComm using publisher-subscriber pattern of ZeroMQ while embodying

trust and security in messages via DIDComm. We also introduced two different modes of Zero-

Comm which were then experimented to evaluate the performance trade-off carried out during

the design phase against security and decentralization. Section 8.1 includes the concluding re-

marks of our study followed by a brief description of future work related to ZeroComm.

8.1 Remarks

We identified that combining group communication with decentralization and end-to-end en-

cryption leads to conflicting conditions as opposed to the generic bi-party models. When defin-

ing the system specifications, we traded off performance and efficiency for higher security by

exploiting hardware and network resources with supplementary cryptography computations,

demultiplexed DIDComm messages and granular pub-sub relationships among the members.

ZeroComm copes with dynamic group memberships by decoupling state messages from reg-

ular data and enforcing different mechanisms based on the message type but still utilizing the

publisher-subscriber pattern. As DIDComm entails security at the data layer, sizes of individual

messages involved with ZeroComm can be considered to be relatively high. This specifically

becomes noteworthy for state updates in large groups but can be overcome with alternatives as

we investigated in this study. Our model also incurs additional entry and exit costs per each

group member with DID-Exchange protocol and graceful shutdown, respectively.

In essence, ZeroComm serves as a group-messaging protocol that is constructed atop DID-

Comm peer-to-peer layer by only preserving and extending its desirable properties. This im-
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plies that all the subsequent processes involved in ZeroComm are accomplished through DID-

Commmessages. The join algorithm of a member can be regarded as the crux of our solution in

which security and trust are derived from the underlyingDIDCommprotocols. ZeroCommpro-

vides a mechanism to recognize potential byzantine members but recovering from such failures

should be handled separately. In addition, our proposed model supports a hybrid consistency

model for group messages but any imposition with ordering messages should be implemented

in the application layer.

Further, ZeroComm offers two varieties of achieving group communication based on the or-

ganization of message-queues among the participants. Specifically, single mode in which all

group messages are published to the same topic, offers higher security through obfuscating

network traffic and simplicity via using the default overlay network constructed by ZeroMQ.

Nevertheless, this approach produces low reliability and high latency overhead in cases where

both group size and number of messages are sizeable. In contrast, Multi mode maintains dis-

tinctive relationships among members within the same group and thus under-utilizes the pub-

sub pattern as messages are decoupled with a dedicated message-queue per each relationship.

This method however provides reliable delivery of messages with lower latency and processing

overhead.

8.2 Future work

A number of alternative design choices were considered in the course of constructing Zero-

Comm model in order to satisfy the defined set of system requirements. In each design choice,

we prioritized security over performance and therefore, alterations in such cases can result

in different flavours of our solution, which may be more applicable in certain scenarios. For

example, the state of a member can naively be propagated via a shared key mechanism thus im-

proving performance and resource utilization at the expense of security. This can even extend

our comparison of two modes (single andmulti) by experimenting with other possible varieties

of ZeroComm corresponding to the different combinations of design choices.

This study primarily focused on group communication despite that ZeroComm uses a novel

transport protocol for peer-to-peer communication. Therefore, the current implementation pro-

vides the potential for a separate study regarding how ZeroMQ performs as a transport with
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respect to individual agents. Similarly, the proposed model for group functionality can be eval-

uated with other pub-sub frameworks apart from ZeroMQ, by integrating the corresponding

libraries via abstracted interfaces but still preserving the decentralization.

ZeroCommonly offers the backbone of a communicationmodel and hence application-oriented

features were disregarded in its core algorithm. This leads to the possibility of extending the

implementation to fit better with specific service-level requirements. For instance, the adopted

consistency model can be changed accordingly depending on the degree of message-ordering

required. Moreover, granular mechanisms to cope with byzantine members can be imple-

mented even though we provided a configuration to restrict joining groups with inconsistent

views. ZeroComm can further be extended with more specific requirements such as support-

ing late joiners by restoring message history, asynchronous group members, crash recovery,

reliable delivery with slow subscribers and perfect forward secrecy.

On a final note, the current implementation serves only as a Proof-of-Concept and should not

be used in production without any rectification. As an example, we used a dummy validation

in the acceptor to approve a newcomer during the join process, prior to sharing the correspond-

ing group information. The exclusion of message acknowledgements in our prototype can be

regarded as another instance that should be considered in a real-world application. In addition,

interoperability of ZeroComm must be assessed using community standards due to the abun-

dance of agents developed by multiple vendors on DIDCommwhich will be ultimately in need

of communicating with each other.
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