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A B S T R A C T   

Dinophysis acuminata produces Diarrhetic Shellfish Toxins (DST) that contaminate natural and farmed shellfish, 
leading to public health risks and economically impacting mussel farms. For this reason, there is a high interest in 
understanding and predicting D. acuminata blooms. This study assesses the environmental conditions and de
velops a sub-seasonal (7 - 28 days) forecast model to predict D. acuminata cells abundance in the Lyngen fjord 
located in northern Norway. A Support Vector Machine (SVM) model is trained to predict future D. acuminata 
cells abundance by using the past cell concentration, sea surface temperature (SST), Photosynthetic Active Ra
diation (PAR), and wind speed. Cells concentration of Dinophysis spp. are measured in-situ from 2006 to 2019, 
and SST, PAR, and surface wind speed are obtained by satellite remote sensing. D. acuminata only explains 40% 
of DST variability from 2006 to 2011, but it changes to 65% after 2011 when D. acuta prevalence reduced. The 
D. acuminata blooms can reach concentration up to 3954 cells l− 1 and are restricted to the summer during 
warmer waters, varying from 7.8 to 12.7 ◦C. The forecast model predicts with fair accuracy the seasonal 
development of the blooms and the blooms amplitude, showing a coefficient of determination varying from 0.46 
to 0.55. SST has been found to be a useful predictor for the seasonal development of the blooms, while the past 
cells abundance is needed for updating the current status and adjusting the blooms timing and amplitude. The 
calibrated model should be tested operationally in the future to provide an early warning of D. acuminata blooms 
in the Lyngen fjord. The approach can be generalized to other regions by recalibrating the model with local 
observations of D. acuminata blooms and remote sensing data.   

1. Introduction 

The Dinophysis spp. are cosmopolitan algae present in coastal waters 
of tropical, sub-tropical, sub-arctic, and arctic regions, which can pro
duce diarrhetic shellfish toxins (DST) and pectenotoxins (PTX) (Reguera 
et al., 2012). The algae toxins can be accumulated in both wild and 
aquaculture shellfish and further be consumed by humans, leading to 
diarrhetic shellfish poisoning outbreaks. Monitoring DST and PTX in 
shellfish farms helps prevent poisoning, but the loss of production and 
economic impact on the farms still occurs (Fernandes-Salvador et al., 
2021; Martino et al., 2020). For this reason, there is a high interest in 
forecasting harmful algae blooms (HAB) of Dinophysis spp. since it may 
provide early warning and support the development of mitigation ac
tions (Pettersson and Pozdnyakov, 2013). 

Dinophysis spp. are mixotrophic and can feed on other algae - e.g., 

Mesodinium rubrum (Lohmann) Leegard 1908 - and retain their plastids 
to make photosynthesis, requiring prey and light for a higher growth 
rate and long-term survival (Kim et al., 2008). When prey decreases and 
is no longer available, Dinophysis spp. continues increasing depending on 
the light availability, and it fails to grow in complete darkness even in 
the presence of prey. Little is known about the importance of grazing in 
controlling Dinophysis spp. abundance, but it has been reported in ex
periments that it may be preyed on by copepods (Jansen et al., 2006; 
Setälä et al., 2009) and other dinoflagellates (Park and Kim, 2010). In 
general, the Dinophysis spp. HAB have been associated with seasonal 
variability of thermal stratification and water column stability (Karlson 
et al., 2021; Reguera et al., 2012). 

Three main toxic Dinophysis spp. are commonly reported in Scandi
navian coastal waters, D. acuminata Claparede & Lachmann, D. acuta 
Ehrenberg, and D. norvegica Claparede & Lachmann (Karlson et al., 
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2021). A few studies have assessed the variability of those toxic species 
in the region. In the Sognefjord, on the west coast of Norway, 
D. acuminata was detected between later spring and early summer, while 
D. acuta and D. norvegica were noticed during autumn (Séchet et al., 
1990). In the Flødevigen Bay in the south of Norway, D. acuminata and 
D. norvegica were found in the highest abundance in the surface layer 
from March to December, while D. acuta was found from mid-August to 
December (Dahl and Johannessen, 2001; Naustvoll et al., 2012). In the 
Gullmar and Koljo fjords on the Swedish west coast (Lindahl et al., 
2007), D. acuminata hazardous concentrations (cells l− 1 > 1000) were 
found from August to October in the surface layer, in the pycnocline, and 
below the pycnocline down to 20 m depth. D. acuta was also found in 
hazardous concentrations (cells l− 1 > 100) for the same period but was 
more restricted in the surface layer. In the high latitudes, Dinophysis spp. 
HAB are not expected during winter, probably because of the lack of 
light. The HAB presents a threat mainly during the productivity season 
from spring to autumn. 

To ensure the healthy consumption of natural and farmed mussels in 
Norway, the Norwegian Food and Safety Authority (NSFA) monitors 
toxic algae and their respective toxins in mussels for the entire Norwe
gian coastal waters (https://www.matportalen.no/verktoy/blaskjell
varsel/). This public service, which has been in operation since 1992, is 
based on weekly sampling of mussels and seawater at 34 locations, 
forming the basis for dietetic advice on the potential risk associated with 
the consumption of mussels. One of the genera monitored is the 
Dinophysis spp. (Karlson et al., 2021; Naustvoll et al., 2012; Pettersson 
and Pozdnyakov, 2013; Reguera et al., 2012). Although the current 
monitoring system provides quality observations limiting possible 
human poisoning, a forecast method has yet to be developed in the 
region. 

Several approaches for forecasting Dinophysis spp. HAB have been 
proposed lately (Cruz et al., 2021). Lagrangian particle tracking for 
dynamic modeling the dispersion of Dinophysis spp. cells abundance 
from contaminated farm locations to the surrounding areas (Ruiz-Vil
larreal et al., 2016). Generalized linear model fed with past environ
mental data records to forecast toxin concentration in shellfish flesh 
(Schmidt et al., 2018). Decision tree model fed with environmental data 
for predicting the risk Dinophysis spp. cell abundance and toxins above a 
hazardous concentration (Bouquet et al., 2022). Machine learning 
model fed with past Dinophysis spp. cells concentration to forecast the 
abundance evolution over time (Velo-Suárez and Gutiérrez-Estrada, 
2007). Among all those methods, the advantage of forecasting Dinoph
ysis spp. cell abundance oriented to a single farm location should be 
emphasized. A model tailored to a single farm does not rely on sur
rounding locations being contaminated beforehand, and forecasting cell 
abundance can anticipate future toxin accumulation in shellfish. 

In this study, we assess the D. acuminata bloom variability and 
environmental conditions, and use them to calibrate a statistical forecast 
model for the Lyngen fjord located in northern Norway. Located in the 
Arctic, water temperature and daylight hours have large seasonal vari
ability (Giesen et al., 2014; Jakowczyk and Stramska, 2014), and little is 
known of Dinophysis spp. in this region. Besides, long-lasting aquacul
ture activities at the location have contributed to more than a decade of 
observational data record, which machine learning methods can 
explore. A range of environmental drivers provided by remote sensing is 
used to calibrate a machine learning model — including sea surface 
temperature (SST), Photosynthetically Active Radiation (PAR), and 
surface winds. The prediction system is based on a support vector ma
chines (SVM) for predicting the D. acuminata cells abundance on a 
sub-seasonal time scale — at 7, 14, 21, and 28 lead days. The prediction 
skill is validated with data from 2014 to 2019 and compared to trivial 
predictors, such as climatological and persistence forecasts. 

2. Material and methods 

2.1. Study region 

The sampling station at a mussel aquaculture farm (20.6005◦E; 
69.7918◦N) is located in the Lyngen fjord in northern Norway and 60 km 
from Tromsø city (Fig. 1). The fjord orientation has an opening to the 
ocean at its north and steep terrain on the side. The area around the 
sampling station reaches 340 m depth and is sheltered by Uløya island 
(Hegstad, 2014; Olsen, 2015). Northern Norway presents strong sea
sonal variability in the incoming solar radiation, SST, and phyto
plankton blooms. At this latitude, the sun does not rise above the horizon 
between the 18th November and the 23rd January and there is sun all 
day between the 20th May and the 24th July, reaching up to 300 Wm− 2 

day− 1 of solar radiation (Giesen et al., al.,2014). In the adjacent sea, SST 
is on average 7 ◦C, varying from 1 ◦C to 15 ◦C between winter and 
summer (Jakowczyk and Stramska, 2014). Spring and summer phyto
plankton blooms are recurrent and their variability is mainly driven by 
nutrient supply, light availability, SST, water stratification, and wind 
speed (Silva et al., 2021; Sverdrup, 1953). 

2.2. Measurements of Dinophysis spp. and diarrhetic shellfish toxins 

D. acuminata, D. acuta, and D. norvegica, as well as DST, were pro
vided by the monitoring program of algae toxins in mussels and dietetic 
advice to the public, and can be provided on demand (www.matporta
len.no) by the Norwegian Food Safety Authority (NFSA). Algae have 

Fig. 1. Study region. Subplot a) shows the overall location of northern Norway 
and the bounding box highlighted by the red rectangle show the zoom area of 
subplot b). The aquaculture farm (sampling station) where Dinophysis spp. and 
DST are measured and geographic locations mentioned in the paper are tagged. 
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been collected at the aquaculture mussel site weekly (every Monday) 
between week 11 and 46, which is the prime algae growth season. The 
monitoring program is run continuously, and the data used in this study 
covers from 2006 to 2019, except in 2011, when data was unavailable. 
An integrated (0–3 m) water sample was collected by lowering a tube 
from the surface to 3 m depth. A subsample of 25 ml was taken from the 
integrated sample and preserved with acidic Lugol’s iodine before being 
transported to the laboratory for analysis. The sub-sample (25 ml) was 
filtered on a membrane filter, and the three Dinophysis spp. were iden
tified and counted on the whole filter under a light microscope at 200x 
magnification (Dahl and Naustvoll, 2010). The detection limit for 
Dinophysis spp. was 40 cells l− 1. Samples of blue mussels (Mytilus edulis) 
were collected monthly between depths of 0.5 to 1.5 m. According to the 
EU regulations 853/2004, 854/2004, 2074/2005, 15/2011, the mussel 
samples were analyzed and DST was estimated at the Norwegian School 
of Veterinary Science (NMBU) using high-performance liquid chroma
tography (HPLC) (European Union Reference Laboratory for marine 
biotoxins, 2015). 

The raw time series of Dinophysis spp. does not correlate well with 
DST because the low detection limit of 40 cells l− 1 adds noise to the time 
series. For this reason, the time series of Dinophysis spp. were smoothed. 
Missing data during winter is filled with 0. We apply a maximum moving 
window filter and functional data analysis (Ramsay, 2006) to remove 
the noise while preserving the maximum values. The time series is 
smoothed in a β-spline function. The smoothness is controlled by knot 
spacing (or the number of knots) and the degree of the function. Here, 
we tested several knots spacing alongside the filter window size from 30 
to 90 days with a degree of 4. The optimal choice was 60 days for 
window filter and knot spacing as it preserved the maximum values and 
maximized the correlation with DST. 

2.3. Satellite data 

Satellite SST (K) from 2006 to 2019 was obtained from the ESA CCI 
SST and C3S global SST Reprocessed product level 4, available on the 
Copernicus Marine Environment Monitoring Service (CMEMS). The 
product uses the Operational Sea Surface Temperature and Sea Ice 
Analysis (OSTIA) system (Good et al., 2020) that combines satellite 
AATSR, ATSR, SLSTR, and AVHRR sensors and in-situ observations to 

produce daily average SST at 0.05◦ spatial resolution (Merchant et al., 
2019). 

PAR (Em− 2d− 1) from 2006 to 2019 was retrieved from the Glob
Colour project, which is estimated based on MODIS, SeaWiFS, and VIIRS 
sensors (Frouin et al., 2003), and binned at an 8-day interval at a 4 km of 
spatial resolution. 

Surface wind speed (ms− 1) from 2006 to 2019 was accessed from the 
IFREMER CERSAT Global Blended Mean Wind Fields reprocessed 
product retrieved from the CMEMS. Northward and Eastward surface 
wind speed is derived from scatterometers (ASCAT-A and ASCAT-B 
satellites), the SSMIS radiometers (F16, F17, F18, and F19 satellites) 
and the WindSat radiometer onboard the Coriolis satellite. All satellite 
observations are binned into a single product with a 6-hourly wind field 
at 0.25◦ spatial resolution. 

All satellite data were reprojected to stereographic projection 
centered at 65◦N, 7◦E and 4 km spatial resolution using the nearest 
neighbor interpolation method. Because of the coarse spatial resolution, 
we have averaged all unmasked grid cells within the 7 × 7 grid around 
the station. Therefore, the environmental data assessed should not be 
interpreted as the conditions on the aquaculture farm location but rather 
the conditions of the surrounding area. 

We have compared the satellite-averaged data with very few (n<20) 
in-situ observations of SST and surface wind speed and a few hundred 
observations of PAR (Fig. 2). These match-ups are far too few and spread 
over the entire observational period to justify any vicarious validation of 
the data quality used but indicate the relevance of the data selected for 
use in this study. For this validation exercise, the PAR in-situ data is 
measured at the meteorological station Holt located in Tromsø (60 km 
away), and it is obtained from the Landbruksmeteorologisk Tjeneste 
(LMT) from the Norwegian Institute of Bioeconomy Research (NIBIO). 
The in-situ SST was estimated as a 10 m deep temperature average from 
CTD casts in the Lyngen fjord, provided by the Norwegian Institute of 
Marine Research (IMR). Simultaneously with the CTD casts, in-situ wind 
speed is measured. In summary, satellite SST matches well with in-situ 
data, showing a Pearson correlation (R) of 0.96 and a mean absolute 
error (MAE) of 0.8 ◦C. Satellite PAR shows an R = 0.65 and an MAE =
12.7 Em− 2d− 1, tending to overestimate in-situ data. The eastward wind 
shows an R = 0.7 and MAE = 4.9 ms− 1, while the Northward wind shows 
no significant correlation and an MAE = 7.9 ms− 1. These differences can 

Fig. 2. Match-up between satellite estimates with in-situ data. Comparisons are shown for a) SST, b) PAR, c) Northward winds, and d) Eastward winds. Black line is 
the linear fit and the shaded area is the confidence interval. The R, MAE, and n are shown in the upper-left corner. The * denotes significant R at a 5% signifi
cance level. 

E. Silva et al.                                                                                                                                                                                                                                    



Harmful Algae 126 (2023) 102442

4

be partly explained by the orography and orientation of the fjord, as 
presented above. 

2.4. Environmental conditions assessment 

We compare the probability density function of the environmental 
conditions during bloom (above 40 cells l− 1) and no bloom periods 
(below 40 cells l− 1). This threshold corresponds to the detection limit of 
D. acuminata cells abundance. Furthermore, we only consider values 
between the 2 and 98 percentiles to avoid outliers. 

2.5. Forecast model calibration 

The forecast model has a 2-step pre-processing: i) scaling of pre
dictors between -1 and 1, and ii) extracting the principal components 
using principal components analysis (PCA). The principal components 
are then used to calibrate a SVM model. This study does not focus on an 
exhaustive evaluation of different machine learning algorithms, 
although a few initial tests were performed with Random Forest and 
AdaBoost without much success (not shown). The SVM is chosen for two 
reasons. First, the SVM has a powerful generalization and works well 
with small databases, showing better accuracy than Random Forest, 
Nearest Neighbor, Neural Network, and CART (Shao and Lunetta, 2012; 
Thanh Noi and Kappas, 2017). Second, the SVM is simple to calibrate as 
it relies only on three hyperparameters, the kernel function (and its 
parameters such as γ or degree), the penalty factor, and the ε. An 
explanation of these hyperparameters can be found in Mountrakis et al. 
(2011). The simplicity should allow a more straightforward adaptation 
of the prediction method to other locations in the future. 

The smoothed cells abundance of D. acuminata on a log scale is used 
as the target to be predicted. The log scale is used to improve the pre
diction accuracy of the high values (e.g., cells l− 1 > 200). We performed 
several tests without log scale, which could predict the seasonal devel
opment of the blooms but not the amplitude. The lack of skill in pre
dicting the high values could be caused by the skewed distribution 
where the high values are few. SVM has high incidences of false nega
tives in unbalanced datasets for classification approaches (Wu and 
Chang, 2005; Yang et al., 2007), and it should also happen to regression 
applications. 

The past measured cells abundance, SST, PAR, northward winds, and 
eastward winds, are used as predictors. All predictors are tagged and 
averaged as lag 0 from day 0 to day − 13, lag 14 from day − 14 to day 
− 27, and lag 28 from day − 28 to day − 41, summing up 15 predictors 
(Fig. 3). Three strategies are used for training the forecast models: i) 
auto-regressive prediction, where only the past cells abundance is used 
as predictors; ii) environmental prediction, where only the environ
mental data is used as predictors; iii) combined prediction, where past 
cells abundance and environmental data are combined as predictors. 
The models are trained for predictions with lead times of 7, 14, 21, and 

28 days. 
The database was split into training (2006 - 2013) and testing (2014 - 

2019) databases. Because this period is relatively short, we have used an 
incremental database approach to calibrate the SVM models and eval
uate the accuracy of the predictions. For example, the SVM model was 
calibrated from 2006 to 2013 and tested in 2014. Then, 2014 is added to 
the training data, and the SVM model is calibrated again and tested in 
2015. The process continues until 2019. This approach is more rigorous 
than randomly splitting the data because it is closely related to an 
operational level, where past data is used for training a model to predict 
future data. 

For each SVM model and lead time, the initial training data (2006 - 
2013) is used for tuning the model parameters, including the number of 
principal components used in the pre-processing and the SVM hyper
parameters. The tuning is performed in a grid-search cross-validation 
using time series split and the coefficient of determination (R2) as 
scoring criteria. Number of components tested were from 1 to the total 
number of predictors (e.g., 15 to the combined prediction). SVM 
hyperparameters tested were the linear and radial basis function (RBF), 
penalty factor from 0.1 to 100, ε from 0.1 to 10, and γ from 0.1 to 10. In 
most approaches and lead time, the linear kernel showed better results 
than the RBF kernel, so we opted for using only the linear kernel in all 
predictions. 

2.6. Metric for assessment of forecast accuracy 

Accuracy is measured by the R2 and the MAE between the predicted 
and the reference (smoothed D. acuminata) values. They are estimated as 
follows: 

R2
X,Y = 1 −

RSS
TSS

(1)  

MAE =
1
n
∑n− 1

t=0
|Xt − Yt| (2)  

where RSS is the residual sum of squares, TSS is the total sum of squares, 
X and Y are the pairwise vectors of true and predicted values, t is the 
sampling date, and n is the sample size. For evaluating the errors of the 
interannual blooms amplitude, we computed MAE only using the data at 
the peak of the bloom, referred to as MAEp. The peak date obtained from 
the smoothed D. acuminata is used for taking the reference and predicted 
values for computing the MAEp. 

Climatological and persistence forecasts are used as the benchmark 
for evaluating the usefulness of the forecast models in beating trivial 
predictors. The climatological forecast corresponds to the mean value of 
the smoothed D. acuminata estimated in the training dataset on the day 
of the year. Because the training data set is increasing with the years, the 
climatological forecast changes slightly for each year. The persistence 

Fig. 3. Forecast model diagram. An example is given to the 7-day forecast of the combined model. The average from day 0 to lag − 13 is called lag 0, and lag 14 and 
28 follow the same method by averaging from − 14 to − 27 and from − 28 to − 41, respectively. 
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forecast is the last measured value at the start of the prediction. We 
present the skill score with respect to climatological (SSc) and persis
tence (SSp) forecasts (Murphy, 1992): 

SSc = 1 −

(
MAEf

MAEclimatology

)

(3)  

SSp = 1 −

(
MAEf

MAEpersistence

)

(4)  

where MAEf is computed using the forecast model, MAEclimatology is 
computed using the climatological predictions, and MAEpersistence is 
computed using the persistence predictions. Positive values of SSc and 
SSp indicate that the forecast model errors are lower than the clima
tology and persistence forecast. 

For evaluating the forecast model skill in anticipating cell abundance 
above a standard level of hazardous concentration, we estimate the true 
positive rate (TPR) and false alarm rate (FAR) as follows: 

TPR =
TP

TP + FN
(5)  

FAR =
FP

TP + FP
(6)  

where TP is the true positive for values above 100 cells l− 1, FN is the 
false negative, and FP is the false positive. A TPR=1 means that all 
values above 100 cells l− 1 were correctly detected, while a TPR=0 
means that none of those values were detected. An FAR=1 means that all 
forecast values above 100 cells l− 1 were incorrect, while a value of 
0 means all forecast values were correct. Note that NFSA currently 
considers 1000 cells l− 1 as the standard level of hazardous concentration 
for banning shellfish consumption. Since we are not able to estimate a 
robust TPR and FAR for 1000 cells l− 1 because the test dataset only has 5 
of 111 samples above this level, we resorted to estimating TPR and FAR 
for 100 cells l− 1. 

The importance of all predictors was estimated by permutation 
(McGovern et al., 2019) during the testing process. Each predictor is 
separately permuted 100 times. The permutation shuffles the values so 
they correspond to the wrong dates, creating a distorted predictor 
version. The R2 of the distorted version is computed and compared to the 
R2 without being distorted. The R2 decrease after distortion shows the 
importance of the feature permuted. 

3. Results 

3.1. Dinophysis spp. blooms and DST 

In the records of Dinophysis spp. cell concentrations, the D. acuminata 
blooms once per year (Fig. 4) between the 22nd July and the 28th 
September, bearing concentrations up to 3954 cells l− 1 (Table 1). The 
D. acuminata only reaches indicative hazard limit (cells l− 1 = 1000) in 
2006 and 2017. The D. acuta blooms are less frequent and occur in 7 out 
of the 13 years assessed. The D. acuta annual peak happens between 14th 
August and the 19th of October, and concentrations higher than the 
indicative hazard limit (cells l− 1 = 100) occur in 2006, 2007, and 2019. 
After 2008 the D. acuta is less present and merely appears in low con
centrations. The D. norvegica blooms once per year and typically be
tween 10th August and the 5th of November, with one exception in 2014 
when a small rise is detected in 9th of April. For all the study period, the 
D. norvegica has not reached concentrations above the indicative hazard 
limit (cells l− 1 = 4000). 

The DST time series exhibit two distinct periods. One before 2011 
when DST is constantly detected and reaches concentrations above the 
hazard limit (μg kg− 1 = 160) five times. Another period after 2011 when 
DST is less detected and concentration beyond the hazard limit is 
observed only in 2017. Before 2011, the three Dinophysis spp. can 
significantly explain DST, where D. acuta appears to be the most 

Fig. 4. The D. acuminata (a), D. acuta (b), D. norvegica (c), and DST 
(a, b, and c) time series. The Blue dashed line is the raw cells 
abundance, the black line is the smoothed cells abundance, and the 
red dots are the DST concentration (> 20 μg kg− 1). The R2 is 
computed between each species smoothed time series and DST in a 
log scale from − 90 to +90 lag days, and the lag with the highest R2 

is shown in the top left corner of each subplot. The * denotes 
significant R2 at a 5% significance level. Note that R2 is computed 
exclusively for the summer and autumn periods because we are 
interested in the Dinophysis spp. and DST association during their 
growth. DST may still be present in the winter and spring due to 
the DST accumulation in the previous year, but such variability is 
subjected to dilution processes rather than the Dinophysis spp. 
variability.   

Table 1 
Date of the peak and the maximum cells abundance of all Dinophysis spp. blooms 
detected from 2006 to 2019 in the Lyngen fjord.  

Year D. acuminata D. acuta D. norvegica  

Date Cells l− 1 Date Cells l− 1 Date Cells l− 1 

2006 07–22 3954 09–08 1325 09–15 664 
2007 08–12 201 09–24 350 09–09 345 
2008 08–20 261 09–04 59 09–18 400 
2009 08–04 119   08–31 145 
2010 08–08 899 10–11 31 08–25 755 
2012 07–30 447   08–18 151 
2013 08–24 85   08–22 87 
2014a     04–09 60 
2014b 09–11 307   08–10 17 
2015 09–09 113   08–25 115 
2016 08–24 163 08–14 16 11–05 36 
2017 08–27 1868 10–19 21 09–01 76 
2018 09–28 155   08–28 321 
2019 08–28 549 09–27 126 08–26 110  
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meaningful species as it explains 62% of DST variability. After 2011, 
D. acuta is present in low cells concentrations and cannot explain DST 
variability. In this period, D. acuminata is the only species explaining 
DST variability, showing an R2 of 0.63 with the DST 28 days after the 
D. acuminata. 

D. acuta has been reported as the main organism causing DST risks in 
Norway (Naustvoll et al., 2012), and this is consistent with our obser
vations between 2006 and 2011. However, a substantial decline of 
D. acuta happens after this period. The same decline was also observed in 
southern Norway, although for the period between 1985 and 2009 
(Naustvoll et al., 2012). Since D. acuminata is one of the three studies 
species showing a significant variability (R2) with DST throughout the 
entire observational period, we have chosen to focus on assessing the 
environmental conditions and prediction skill of D. acuminata cells 
concentration. 

3.2. Environmental conditions during D. acuminata blooms 

SST exhibits the highest difference between bloom and no bloom 
periods compared to the other selected variables in this study (Fig. 5a). 
Blooms occur during higher SST, showing an average of 10.1 ◦C and 
ranging from 7.8 to 12.7 ◦C. Periods without bloom are, on average, at 
5 ◦C and are highly widespread from 0.2 to 10.8 ◦C. 

PAR shows slight (albeit significant) differences between bloom and 
no bloom periods (Fig. 5b). During bloom, PAR is on average 22.4 
Em− 2d− 1 and ranges from 3.7 to 41.1 Em− 2d− 1, while periods without 
blooms, PAR is on average 17.3 Em− 2d− 1 and ranges from 4.3 to 42.3 
Em− 2d− 1. 

The winds show minor (albeit significant) discrepancies during 
bloom and no bloom periods, particularly with the northward compo
nent having weaker winds during high cells abundance (Fig. 5c, d). 

3.3. Prediction skill of D. acuminata variability 

The auto-regressive models have poor performances (Table 2), 
showing an R2 varying from − 0.12 to 0.3, MAE varying from 1.83 to 
1.43 ln (cells l− 1), and SSp varying from 0.23 to 0.29. Although the re
sults are better than persistence, the model prediction is worse than the 
climatological forecast (SSc is negative). The results are particularly 
poor at the start of the seasonal development of the bloom (Fig. 6a), 
when the predicted cells abundance is constant while the reference 
grows. The models show the worst results to estimate the amplitude of 
the blooms with a MAEp varying from 2.85 to 1.2 ln(cells l− 1). The 
model shows a FAR inferior of 0.14 but a very low TPR. 

The environmental forecast model (Fig. 6b) shows reasonable skill in 
predicting the cells abundance (Table 2). The R2 varies from 0.37 to 0.5, 
MAE from 1.35 to 1.19 ln(cells l− 1), SSp from 0.35 to 0.46, and SSc from 
0.05 to 0.16. However, the model presents two limitations. First, in the 

Fig. 5. SST (a), PAR (b), eastward wind (c), and northward wind (d) during D. acuminata bloom and no bloom periods. The p-value of a two-sided Mann-Whitney U 
rank test between bloom and no bloom periods is shown in the top-right corner of each subplot. 

Table 2 
Accuracy results of auto-regressive (AR), environmental (ENV.), and combined 
(COM.) predictions with respectively lead of 7, 14, 21, and 28 days.  

Model Lead days R2 MAE MAEp SSp SSc TPR FAR 

AR 7 0.3 1.43 1.2 0.29 -0.01 0.39 0 
14 0.14 1.59 1.52 0.24 -0.12 0.32 0.07 
21 0.01 1.71 2.01 0.23 -0.2 0.34 0.07 
28 -0.12 1.83 2.85 0.27 -0.29 0.29 0.14 

ENV. 7 0.4 1.31 0.99 0.35 0.08 0.54 0.35 
14 0.5 1.19 1.02 0.43 0.16 0.51 0.3 
21 0.38 1.31 1.15 0.41 0.08 0.54 0.35 
28 0.37 1.35 1.34 0.46 0.05 0.46 0.39 

COM. 7 0.55 1.13 0.62 0.44 0.2 0.56 0.04 
14 0.49 1.25 0.86 0.4 0.12 0.44 0.18 
21 0.46 1.26 0.87 0.43 0.11 0.54 0.21 
28 0.47 1.23 1.19 0.51 0.13 0.44 0.31  
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years of late D. acuminata blooms, (e.g., in 2014, 2015, and 2018; see 
Table 1), the environmental model predicts the beginning of 
D. acuminata bloom too early. Second, the environmental model has 
poor accuracy in predicting the amplitude of the peak of the bloom (i.e., 
the amplitude of the bloom predicted is similar for all years). For 
example, when D. acuminata reached hazardous concentrations in 2017, 
the environmental model predicted the peak concentration as less than 
200 cells l− 1. Compared to the auto-regressive model, the environmental 

model shows a higher TPR up to 0.54. However, the better TPR comes 
with the cost of a higher FAR of at least 0.3. 

The combined forecast model shows the best results. The R2 varies 
from 0.46 to 0.55, MAE from 1.26 to 1.13 ln (cells l− 1), SSp from 0.4 to 
0.51, and SSc from 0.11 to 0.2 (Table 2). Unlike in the environmental 
forecast, the combined model shows good skill in predicting the seasonal 
development by modulating reasonably well the bloom onset and 
amplitude (Fig. 6c). For example, the later blooms of 2014, 2015, and 

Fig. 6. SVM model forecast of D. acuminata smoothed cells abundance with 7 lead days for the a) Auto-regressive, b) Environmental, and c) Combined model. The 
gray line is the reference and the orange line is the forecast model prediction. Predictions with 14, 21, and 28 days lead time can be found in the supplemen
tary material. 

Fig. 7. The R2 reduction after permutation of the combined model predictors in 7 (a), 14 (b), 21 (c), and 28(d) lead days. The x-axis is to the features names followed 
by the lag. The NW and EW denotes the northward and eastward wind components. The black lines in each bar indicate the standard deviation over the test years. 
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2018, and the largest event in 2017. Consequently, the combined model 
shows the lowest MAEp among the three models, varying from 1.19 to 
0.62 ln(cells l− 1). Furthermore, the combined model has the best balance 
between TPR and FAR, where TPR can reach up to 0.56 with an FAR =
0.04. 

Among all predictors used in the combined model, the past 
D. acuminata cells abundance (referred to as Bio.-lag) has the highest 
importance (Fig. 7). After permutation, the Bio.− 0 causes an R2 drop 
from 0.1 to 0.2, while Bio.− 14 and Bio.− 28 have little importance and 
causes a drop in R2 lower than 0.05. SST is the second most important 
predictor, causing an R2 drop higher than 0.05 in most of the lag and 
lead times. The only exception is the SST-28 at leads 21 and 28. PAR 
influence increases with lead days and show high influence on leads 21 
and 28, where PAR-14 and PAR-28 cause a drop in R2 of 0.09 and 0.12. 
Last, both wind components have not shown any importance to the 
predictions. The permutation importance analysis confirms that the 
model used effectively both environmental factors and past cells abun
dance to compute its prediction. 

4. Discussion 

4.1. SST influence on D. acuminata and prediction skill 

From the Skagerrak strait to the west coast of southern Norway, the 
D. acuminata has been characterized as a species that can grow for the 
whole productive season from March to early December (Dahl and 
Johannessen, 2001; Lindahl et al., 2007; Naustvoll et al., 2012; Séchet 
et al., 1990). Although D. acuminata is mixotrophic and can grow by 
preying on other organisms, it cannot grow in darkness (Kim et al., 
2008). In the Lyngen fjord, the polar night (i.e., without any daylight) is 
from the 18th November to the 23rd January, which would make the 
theoretical growing season last 10 months. However, from our obser
vations, the D. acuminata blooms have been restricted to a shorter period 
from July to September in the region over the past 14 years. This may 
relate to water temperature. D. acuminata only grows in waters warmer 
than 8 ◦C, both in laboratory experiments (Basti et al., 2018) and field 
observations (Alves-de-Souza et al., 2019; Boivin-Rioux et al., 2022; 
Hattenrath-Lehmann et al., 2015; Hoshiai et al., 2003). In the Lyngen 
fjord, waters warmer than 8 ◦C typically occur from early June to 
mid-October. Seasonal temperature variability entails the favorable 
growth period of D. acuminata blooms and modulates its seasonal cycle. 
As a result, the SST variability shows the highest importance among all 
environmental factors in the combined forecasting model. 

4.2. Using past cell abundance to mitigate the lack of critical predictors 

Although the statistical model fed with environmental data (i.e., SST, 
PAR, and surface wind speed) outperforms climatological predictors 
(see Table 2), it fails to predict the interannual variability of the bloom 
onset and its amplitude. No environmental parameters assessed corre
late to the amplitude of interannual variability of D. acuminata (e.g., 
higher summer SST does not correlate significantly to more intense 
blooms of D. acuminata). Other environmental factors not assessed in 
this study (because good quality time series are unavailable) may help 
condition the interannual variability of bloom onset and amplitude. 

D. acuminata is often associated with water stratification (Reguera 
et al., 2012). The surface wind speed controls the mixed layer depth and 
the water stratification, so we use satellite winds. However, the winds 
show no importance in forecasting D. acuminata cells abundance. It may 
be that D. acuminata is influenced by local wind occurring in the closed, 
north-south oriented narrow fjord system rather than by the large-scale 
flow estimated in the averaged 7 × 7 grid cells. The poor relationship 
between the satellite and in-situ wind speeds indicates the disagreement 

between local and large-scale data (see Section 2.3). Furthermore, river 
runoff can influence the local water stratification in the fjord, but data is 
unavailable near the study region. Therefore, water stratification could 
be a critical predictor for D. acuminata in the Lyngen fjord, and the ac
curacy of the forecast should improve if local observations were 
available. 

Another essential predictor is predator and prey interactions, for 
which observations are also lacking. On the one hand, prey availability 
can allow D. acuminata to grow 5 times faster than in the absence of prey 
(Kim et al., 2008). On the other hand, D. acuminata growth can be 
reduced by grazing, such as by copepods that can prey on D. acuminata at 
a rate of up to 47 cells female− 1 h− 1 (Jansen et al., 2006). In this regard, 
prey availability and grazing pressure could explain part of the inter
annual variability (onset and amplitude) of the blooms. We have no 
information about predator and prey interactions of D. acuminata in the 
Lyngen fjord, and such estimations may enhance predictions of cell 
abundance. 

While the lack of aforementioned potential predictors reduces the 
environmental model accuracy, combining the past cells abundance 
with the available environmental factors may alleviate this issue. A few 
studies have demonstrated that auto-regressive models of HAB (e.g., chl- 
a or cells l− 1) can have acceptable accuracy (Chen et al., 2015; Cruz 
et al., 2021; Velo-Suárez and Gutiérrez-Estrada, 2007). Although our 
auto-regressive model is insufficient to forecast D. acuminata in the 
Lyngen fjord, we could improve the forecast of bloom onset and 
amplitude, as well as R2, MAE, MAEp, SSc, and SSp, when the measured 
cell abundance is combined with SST, PAR, and winds observations (the 
combined model). The combined model gives the past cell abundance 
(Bio.− 0) the highest importance among all predictors. The Bio.− 0 
should correct the present cell abundance conditions and help predict 
the bloom onset and amplitude. 

4.3. Making the D. acuminata forecast operational 

A forecast model of D. acuminata can provide improved public rec
ommendations and early warning to the end users. Here we propose a 
forecast model of D. acuminata cell abundance that could be integrated 
into a so called “ready-set-go” framework (Vitart and Robertson, 2018). 
For example, the forecast model can allow monitoring authorities to 
tailor the observational strategy, such as frequency and eventual more 
rapid analysis turnover to detect and follow hazardous conditions 
earlier. 

For using our model operationally, a few considerations regarding 
the predictors variables should be addressed. The SST data used are 
reprocessed and unavailable in near real-time, making it necessary to 
change the dataset. We foresee that as a minor limitation because sat
ellite SST data is available with a one-day lag, and the quantity evolves 
slowly at the spatial scale used. Furthermore, the cost of installing a 
weather station that measures in-situ SST is marginal compared to the 
potential gain. 

The main limitation of the combined model is the dependence on in- 
situ cell abundance being available to be used in the predictions. 
Counting cells includes the time for water sampling, transport to the 
laboratory, filtration, species identification, actual counting and quality 
control. The whole process may take a few days and make the sub- 
seasonal forecasts less feasible. The current logistic process of the 
NFSA monitoring is sampling and sending it to specialized laboratories 
on Mondays. The laboratories report the data back on the following 
Thursdays, creating a delay of 3 days in an eventual operational fore
casting service. This delay is not substantial to the forecasts from 14 to 
28 days, but it decreases the 7 days forecast to 4 days. In order to provide 
operational forecasts for the coming week, the time for analyzing algae 
cell abundance should be improved. Depending on methods for 

E. Silva et al.                                                                                                                                                                                                                                    



Harmful Algae 126 (2023) 102442

9

analyzing, available expertise, and equipment, the results of 
D. acuminata can be available in at least 12 h. 

4.4. Adapting the forecast model to other regions 

The statistical forecasting model is only valid for the Lyngen fjord 
aquaculture site since it is calibrated to the local measurements of 
D. acuminata and environmental conditions. The behavior of the vari
ables used can vary strongly from one location to the other. Nonetheless, 
our method can be re-calibrated to other regions, which would be of 
great interest due to the widespread presence of D. acuminata and its 
severe impact on shellfish (Reguera et al., 2012). Thanks to the 
continuous public monitoring of HAB and an increasing number of 
aquaculture farm sites in northern Norway, we anticipate that the data 
needed to make the method applicable to several other locations will 
increase in the coming years. 

This study shows that coarse remote sensing observations can be 
used to forecast the abundance of D. acuminata cells. Satellite remote 
sensing observations are quasi-homogeneous worldwide and could be 
considered in other regions where in-situ observations are limited. 
Which remote sensing variables should be used may depend on the re
gion. For example, we foresee SST being of great relevance in high- 
latitude regions where it can limit the growing season of D. acuminata. 
However, its relevance may diminish in regions where temperatures are 
constantly above 8 ◦C or have low variability. Different regions may 
consider other features, such as salinity (Godhe et al., 2002) and chl-a 
(Hattenrath-Lehmann et al., 2013). It could also be considered data 
from models such as water stratification and nutrients (Ajani et al., 
2016). 

Statistical modeling methods such as machine learning are data- 
driven, which limits their general applicability. Even though SVM is 
known for having good performance with small databases (Shao and 
Lunetta, 2012; Thanh Noi and Kappas, 2017), the model calibration still 
needs enough data representing different ranges of D. acuminata cell 
abundance in both training and test datasets. For example, Lyngen fjord 
has years of weak and strong blooms in both datasets, so the model can 
learn how to forecast both conditions and have its performance evalu
ated in both situations. We have adapted the method to three other 
farms in northern Norway (not shown). While one farm showed similar 
results to the Lyngen fjord, the other two locations could not be well 
calibrated because high cell abundance was only present in the most 
recent years (the test dataset). Thus, our proposed method is most useful 
for farm locations with long time series undergoing different 
D. acuminata bloom conditions. 

5. Conclusion 

This study shows that DST in the Lyngen fjord in northern Norway is 
controlled mostly by D. acuminata, which peaks every year during the 
summer when the surface temperature is above 7.8 ◦C. A forecast ma
chine learning model, based on SVM, is trained with in-situ D. acuminata 
data and environmental data derived from satellite measurements (SST, 
PAR, and wind speed). The model can predict reasonable well the 
D. acuminata blooms’ seasonal development and amplitude up to 28 
days ahead. In the future, the calibrated model could contribute to a 
ready-set-go framework of D. acuminata HAB in the aquaculture farm 
located in the Lyngen fjord. For example, the model could be used for 
delineating periods of increased observation frequency to monitor the 
development of local HAB events. Finally, how the model can be 
adapted and calibrated to other aquaculture locations remains to be 
tested. Such adaptation will depend on the local D. acuminata variability 
and the environmental parameters available from satellite observations. 
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