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Before any binary classification model is taken into
practice, it is important to validate its performance on a
proper test set. Without a frame of reference given by a
baseline method, it is impossible to determine if a score
is “good” or “bad.” The goal of this paper is to examine
all baseline methods that are independent of feature
values and determine which model is the “best” and
why. By identifying which baseline models are optimal,
a crucial selection decision in the evaluation process is
simplified. We prove that the recently proposed Dutch
Draw baseline is the best input-independent classifier
(independent of feature values) for all order-invariant
measures (independent of sequence order) assuming
that the samples are randomly shuffled. This means that
the Dutch Draw baseline is the optimal baseline under
these intuitive requirements and should therefore be
used in practice.
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1 INTRODUCTION

A binary classification model is trying to answer the following question: Should the instance
be labeled as zero or one? This question might seem simple, but there are many practical
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2 PRIES et al.

applications for binary classification, ranging from predicting confirmed COVID-19 cases
(Pirouz, Shaffiee Haghshenas, Shaffiee Haghshenas, & Piro, 2020), detecting malicious intrusions
(Li, Yu, Bai, Hou, & Chen, 2018) to determining if a runner is fatigued or not (Buckley et al., 2017).
Whenever a classification model is developed for a practical application, it is important to validate
the performance on a test set. However, a baseline is necessary to put the achieved performance
in perspective. Without this frame of reference, only partial conclusions can be drawn from the
results. An accuracy of 0.9 indicates that 90% of all predictions are correct. But it could be that the
model actually did not learn anything and such a high accuracy can already be achieved by pre-
dicting only zeros. To put the performance in perspective, it should therefore be compared with
some meaningful benchmark method, preferably with a state-of-the-art model.

Nevertheless, many state-of-the-art methods are instance-specific. They can rapidly change
and often involve many fine-tuned parameters. Thus, as a necessary additional check in the devel-
opment process, van de Bijl et al. (2022) plead for a supplementary baseline that is general, simple,
and informative. This is used to test if the new model truly performs better than a simple model.
It should be considered a major warning sign when a model is outperformed by, for example, a
weighted coin flip. The model can use information about the feature values of a sample, yet it
is outperformed by a model that does not even consider these values. Is the model then actually
learning something productive?

A theoretical approach for binary classification is proposed in van de Bijl et al. (2022) based
on Dutch Draw classifiers. Such a classifier draws uniformly at random (u.a.r.) a subset out of all
samples, and labels these 1, and the rest 0. The size of the drawn subset is optimized to obtain
the optimal expected performance, which is the Dutch Draw baseline. For most commonly used
performance measures, a closed-form expression is given (van de Bijl et al., 2022).

However, there are infinitely many ways to devise a baseline method. We only investigate pre-
diction models that do not take any information from the features into account, as this will result
in a more general and simple baseline. We call these models input-independent. Irrespective of the
input, the way that such a model predicts remains the same. Any newly developed model should
at least beat the performance of these kinds of models, as an input-independent model cannot
exploit patterns in the data to predict the labels more accurately. However, sometimes a model
can get lucky by accidentally predicting the labels perfectly for a specific order of the labels. The
order of the samples should not influence the “optimality” of a model. This is why we introduce
the notion of average-permutation-optimality. Furthermore, the order of the samples should not
change the outcome of the performance measure (order-invariant). This is not a strict condition,
as most commonly used measures have this property. Under these restrictions, we prove that the
Dutch Draw baseline is average-permutation-optimal out of all input-independent classifiers for
any order-invariant measure.

To summarize, in this paper we:

• determine natural requirements for a general, informative and simple baseline;
• prove that the Dutch Draw baseline is the optimal baseline under these requirements.

These contributions improve the evaluation process of any new binary classification method.
The remainder of this paper is organized as follows. First, the necessary preliminaries and

notations are discussed in Section 2. Next, in Section 3 we determine requirements for a general,
simple and informative baseline. Furthermore, we formally define what optimality entails under
these requirements. In Section 4, an alternative definition for the Dutch Draw classifiers is given,
which is necessary for the main proof. In Section 5, we prove that the Dutch Draw baseline is
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PRIES et al. 3

optimal. Finally, Section 6 summarizes the general findings and discusses possible future research
opportunities.

2 PRELIMINARIES

Next, we introduce some concepts and notations to lay the foundation for the main proof.
Binary classifiers (Section 2.1) and performance measures (Section 2.2) for binary classification are
discussed, which will play a crucial role in the proof of the main result.

2.1 Binary classifiers

To find a good baseline for a binary classification model, we first have to discuss what a binary
classifier actually is. To this end, let be the feature space (think e.g., Rd). Normally, a binary clas-
sifier is defined as a function h ∶  ×R → {0, 1} that maps feature values to zero or one, where
the second input is used to model stochasticity. However, this classifier only classifies one sample
at a time. Instead, we are interested in classifiers that classify multiple samples simultaneously:
hM ∶ M ×R → {0, 1}M

,where M ∈ N
>0 denotes the number of samples that are classified. This

gives classifiers the ability to precisely predict k out of M samples positive. Note that a single
sample classifier h can simply be extended to classify M samples simultaneously by applying the
classifier for each sample individually using hM ∶ ((x1, … , xM), r) → (h(x1, r), … , h(xM , r)) .Note
that r ∈ R can be viewed as a random seed. LetM be the set of all binary classifiers that classify
M samples at the same time.

2.2 Performance measures for binary classification

To assess the effectiveness of a binary classification model, it is necessary to choose a performance
measure, which quantifies how much the predicted labels agree with the actual labels. Namely,
each sample indexed by i has feature values xi ∈  and a corresponding label yi ∈ {0, 1}. Let X ∶=
(x1 … xM) ∈ M be the combined feature values of M samples. Furthermore, let Y = (y1, … , yM)
denote the corresponding labels. A performance measure for binary classification is then defined
as 𝜇 ∶ {0, 1}M × {0, 1}M → R, where the first entry of 𝜇 is the predictions made by the classifier
and the second entry is the corresponding labels. The performance of classifier hM can now be
written as: 𝜇(hM(X, r),Y).

2.2.1 Undefined cases

Some measures are undefined for specific combinations of hM(X, r) and Y. Take for example
the true positive rate (Tharwat, 2021), which is the number of correctly predicted positives
divided by the total number of actual positives. When there are no actual positives, the measure
is ill-defined, as it divides by zero. Less obvious, the measure negative predictive value
(Tharwat, 2021) is undefined when no negatives are predicted, as it is defined as the number
of correctly predicted negatives divided by the total number of predicted negatives. Assigning
a constant value C to undefined cases solves many issues. However, this can make it desirable
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4 PRIES et al.

for a classifier to always predict labels that lead to a previously undefined measure in order to
minimize the measure. Therefore, we redefine 𝜇 from now on for every ̂Y,Y ∈ {0, 1}M to be equal
to a specific constant Cundef, when𝜇( ̂Y,Y)was undefined. We make a distinction for each objective
(maximizing/minimizing). Let

Cundef ∶=
⎧
⎪
⎨
⎪
⎩

max
̂Y,Y∈{0,1}M

{
𝜇( ̂Y,Y)

}
if minimizing,

min
̂Y,Y∈{0,1}M

{
𝜇( ̂Y,Y)

}
if maximizing.

It is therefore always disadvantageous for a classifier to predict a previously undefined case. By
defining Cundef in this way, we do not have to omit such classifiers from our analysis.

3 ESSENTIAL CONDITIONS

To prove that the optimal Dutch Draw classifier yields the “optimal” baseline, we first have to
define “optimality.” When is a baseline considered to be optimal? To determine this, the follow-
ing two questions must be answered: (1) which methods do we compare and (2) how do we
compare them? To this end, we define the notion of input-independent classifiers, order-invariant
measures, and average-permutation-optimality.

3.1 Input-independent classifier

Any binary classifier can be used as a baseline. However, any good standardized baseline should
be general, simple, and informative (van de Bijl et al., 2022). Thus, it needs to be applicable to any
domain, quick to train and clearly still beatable. To this end, we investigate all models that do not
take any feature values into account, as they meet these three requirements. Without considering
feature values, they can be applied to any domain. Furthermore, they do not require any training,
because they cannot learn the relationship between the feature values and the corresponding
labels. This makes them also clearly still beatable, as any newly developed model should leverage
the information from the feature values to make better predictions.

A binary classifier hM ∈ M is called input-independent if for all feature values Xi,Xj ∈ M

and r ∈ R it holds that hM(Xi, r) = hM(Xj, r) =∶ hM(r), where the notation of hM(r) is chosen to
visualize that the classifier hM is not dependent on the input. An example of an input-independent
classifier is a coin flip, as the feature values have no influence on the probability distribution of
the coin. Let  i.i.

M = {hM ∈ M ∶ hM is input-independent} be the set of all input-independent
binary classifiers. A newly developed model, that was optimized using the same performance
measure, should always beat the performance of an input-independent model, as it gains informa-
tion from the feature values. Otherwise, the model was not able to exploit this extra information
to make better predictions.

3.2 Order-invariant measure

To assess the performance of a method, a measure needs to be chosen. Reasonably, the
order of the samples should not change the outcome of this measure. If a measure has
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PRIES et al. 5

this property, we call it order-invariant. To define this formally, we have to introduce the
following notions. Let SM denote the set of all permutations of a set of size M by SM ∶={
𝜋 ∶ {1, … ,M}→ {1, … ,M} s.t. {𝜋(i)}M

i=1 = {1, … ,M}
}
. To apply permutations to a matrix,

we consider sample-wise permutations. For every M × K dimensional matrix X = (x1 … xM), let
X
𝜋

denote the sample-wise permutation under 𝜋. Thus, X
𝜋
∶=

(
x
𝜋(1) … x

𝜋(M)
)
, with K ∈ N

>0
the number of features. This means that the matrix X is reordered by row.

A measure 𝜇 is order-invariant if for every permutation 𝜋 ∈ SM and for all hM(X, r),Y ∈
{0, 1}M it holds that:

𝜇 (hM(X, r),Y) = 𝜇(hM(X, r)𝜋,Y𝜋
). (1)

This means that any reordering of the coupled predicted and actual labels does not affect the
performance score. This is not a hard restriction, as most measures have this property. Note for
example that the number of true positives (TP), true negatives (TN), false positives (FP), and false
negatives (FN) are all order-invariant. Most commonly used measures are a function of these four
measures (Sokolova & Lapalme, 2009), making them also order-invariant.

3.3 Defining optimality

To find the “optimal” baseline, it is first essential to specify what “optimality” entails. There are
three important factors to discuss. (1) A binary classifier can be stochastic, which is why we exam-
ine the expected performance. (2) The “optimal” classifier is the best classifier with respect to the
group of classifiers that is considered (denoted by ̃M). (3) It is the “best” for a specific dataset, but
we consider all permutations of the dataset. Otherwise, the “optimal” classifier would simply be
the deterministic classifier that produces the exact labels accidentally. This phenomenon is simi-
lar to a broken clock that gives the correct time twice a day, but should not be used to determine
the time.

With this in mind, we introduce the notion of average-permutation-optimality. A classifier is
average-permutation-optimal if it minimizes/maximizes the expected performance for a random
permutation of the test set out of all considered binary classifiers ( ̃M). Thus,

hmin
M ∈ arg min

hM∈ ̃M

{
E
𝜋∼ (SM)

[
Er∈R

[
𝜇(hM(X𝜋

, r),Y
𝜋
)
]]}

, (2)

hmax
M ∈ arg max

hM∈ ̃M

{
E
𝜋∼ (SM)

[
Er∈R

[
𝜇(hM(X𝜋

, r),Y
𝜋
)
]]}

. (3)

4 THE DUTCH DRAW

A Dutch Draw classifier is defined in van de Bijl et al. (2022) for 𝜃 ∈ [0, 1], as

𝜎
𝜃
(X, ⋅) ∶= (1E(i))i∈{1,…M} with E ⊆ {1, … M}drawn u.a.r. such that |E| = ⌊M ⋅ 𝜃⌉. (4)

In other words, the classifier draws u.a.r. a subset E of size ⌊M ⋅ 𝜃⌉ out of all samples, which it
then labels as 1, while the rest is labeled 0. In this section, we introduce an alternative definition,
that is used in the main proof, and show that all Dutch Draw classifiers are input-independent.
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6 PRIES et al.

4.1 Alternative definition

Instead of the definition in Equation (4), we introduce an alternative definition for the Dutch
Draw classifiers to simplify the proof of the main result. Given a binary vector (y1, … , yM) ∈
{0, 1}M of length M, note that the number of ones it contains can be counted by taking the sum
∑M

i=1yi. Next, we define sets of binary vectors (of the same length) that contain the same number
of ones. For all j ∈ {0, … ,M}, define

j ∶=

{

̂Y = (y1, … , yM) ∈ {0, 1}M s.t.
M∑

i=1
yi = j

}

. (5)

In other words, j contains all binary vectors of length M with exactly j ones and M-j zeros.
A Dutch Draw classifier selects u.a.r. E out of M samples and labels these as one, and the

rest zero. Note that this is the same as taking u.a.r. a vector from E. To simplify notation, let
 (A) denote the uniform distribution over a finite set A. Thus, when X ∼  (A) it must hold that
P(X = a) = 1

|A|
for each a ∈ A. Now, a Dutch Draw classifier 𝜎

𝜃
can be rewritten as

𝜎
𝜃
(X, ⋅) ∶= ̂Y with ̂Y ∼ 

(
⌊M⋅𝜃⌉

)
. (6)

Put differently, a Dutch Draw classifier 𝜎
𝜃

chooses u.a.r. a vector with exactly ⌊M ⋅ 𝜃⌉ ones as
prediction out of all vectors with ⌊M ⋅ 𝜃⌉ ones (⌊M⋅𝜃⌉). This alternative definition simplifies the
proof of the main result.

4.2 Input-independence

Next, we discuss why all Dutch Draw classifiers are input-independent (see Section 3.1).
Note that a Dutch Draw classifier 𝜎

𝜃
is independent of feature values, as it is only depen-

dent on 𝜃 and M, see Equation (6). In other words, any Dutch Draw classifier is by
definition input-independent. Instead of 𝜎

𝜃
(X, r), we can therefore write 𝜎

𝜃
(r). To conclude,

for every 𝜃 ∈ [0, 1] it holds that 𝜎
𝜃
∈  i.i.

M , which is the set of all input-independent binary
classifiers.

4.3 Optimal Dutch Draw classifier

The optimal Dutch Draw classifier 𝜎
𝜃opt is determined by minimizing/maximizing the expected

performance for the parameter 𝜃 out of all allowed parameter values Θ (van de Bijl et al., 2022).
Note that some measures are undefined for certain predictions, thus Θ is not always equal
to [0, 1]. Take, for example, the measure precision (Tharwat, 2021), which is defined as the
number of true positives divided by the total number of predicted positives. Therefore, if no
positives are predicted, the measure becomes undefined (division by zero). By adapting each
measure according to Section 2.2.1, all undefined cases are resolved and Θ = [0, 1] always
holds.

Using the alternative definition of the Dutch Draw classifier (see Equation 6), we obtain:

𝜃

∗
min ∈ arg min

𝜃∈[0,1]

{
E
̂Y∼ (⌊M⋅𝜃⌉)

[
𝜇( ̂Y,Y)

]}
and 𝜃

∗
max ∈ arg max

𝜃∈[0,1]

{
E
̂Y∼ (⌊M⋅𝜃⌉)

[
𝜇( ̂Y,Y)

]}
. (7)
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PRIES et al. 7

Depending on the objective, either 𝜎
𝜃

∗
min

or 𝜎
𝜃
∗
max

is an optimal Dutch Draw classifier. Observe that
the optimal Dutch Draw classifier depends on Y , thus a different dataset could lead to a different
optimal Dutch Draw classifier.

5 THEOREM AND PROOF

After defining input-independence (Section 3.1), order-invariance (Section 3.2),
average-permutation-optimality (Section 3.3), and introducing an alternative formulation for the
Dutch Draw classifier, all ingredients for the following theorem are present.

Theorem 1 (Main result). The optimal Dutch Draw classifier 𝜎
𝜃opt is

average-permutation-optimal out of all input-independent classifiers ( i.i.
M ), for any

order-invariant measure 𝜇. In other words:

𝜎
𝜃

∗
min
∈ arg min

hM∈i.i.
M

{
E
𝜋∼ (SM)

[
Er∈R

[
𝜇(hM(X𝜋

, r),Y
𝜋
)
]]}

, (8)

𝜎
𝜃
∗
max
∈ arg max

hM∈i.i.
M

{
E
𝜋∼ (SM)

[
Er∈R

[
𝜇(hM(X𝜋

, r),Y
𝜋
)
]]}

. (9)

This means that the optimal Dutch Draw classifier is the best general, simple, and informative
baseline.

5.1 Intuition behind proof

An input-independent classifier cannot learn the actual label from feature values. The pre-
dictions are therefore arbitrary. By averaging the performance over all permutations of the
dataset (average-permutation-optimal), it is only relevant how many labels are predicted to be
zero (or one) by the classifier, as the performance measure is not dependent on the order
(order-invariance). The optimal Dutch Draw classifier is determined by optimizing the number
of predicted zeros and ones, which makes this baseline average-permutation-optimal.

Proof. Let hM ∈  i.i.
M be an input-independent classifier and let 𝜇 be a order-invariant

measure, where we assume that 𝜇 needs to be maximized. The classifier is
average-permutation-optimal if it maximizes the expected performance under a
random permutation of the test set out of all input-independent classifiers (see
Equation 3).

For any input-independent classifier hM , it holds that

Er∈R

[
𝜇(hM(X𝜋

, r),Y
𝜋
)
]
= Er∈R

[
𝜇(hM(r),Y𝜋

)
]
. (10)

The input X
𝜋

is not relevant for the classification, and can thus be omitted. In total,
there are 2M unique possible predictions in {0, 1}M . Denote these distinct vectors by
̂Y1, … ,

̂Y2M such that
⋃2M

i=1
̂Yi = {0, 1}M

. Next, the expectation in Equation (10) can
be written out by:

Er∈R

[
𝜇(hM(r),Y𝜋

)
]
=

2M
∑

i=1
P(hM(⋅) = ̂Yi) ⋅ 𝜇( ̂Yi,Y𝜋

). (11)
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8 PRIES et al.

As we need to proof average-permutation-optimality, we have to take the expectation
of Equation (11) over all permutations. Using linearity of expectation gives:

E
𝜋∼ (SM)

[ 2M
∑

i=1
P(hM(⋅) = ̂Yi) ⋅ 𝜇( ̂Yi,Y𝜋

)

]

=
2M
∑

i=1
P(hM(⋅) = ̂Yi) ⋅ E

𝜋∼ (SM)
[
𝜇( ̂Yi,Y𝜋

)
]
. (12)

Instead of taking the expectation of a sum, we now take the sum of expectations.
The measure 𝜇 is order-invariant, thus using Equation (1) gives

𝜇( ̂Yi,Y𝜋
) = 𝜇(( ̂Yi)𝜋−1 , (Y

𝜋
)
𝜋
−1) = 𝜇(( ̂Yi)𝜋−1 ,Y). (13)

Applying a permutation does not change a order-invariant measure 𝜇. In this case,
we apply the inverse permutation 𝜋−1 to retrieve Y.

Because of Equation (13), it therefore also holds that

E
𝜋∼ (SM)

[
𝜇( ̂Yi,Y𝜋

)
]
= E

𝜋∼ (SM)
[
𝜇(( ̂Yi)𝜋−1 ,Y)

]
. (14)

SM is a group, which is why the set of all inverse permutations is the same as the set of
all permutations (Artin, 2011; Dixon & Mortimer, 1996). Given that the permutations
are drawn u.a.r., taking the expectation over all the inverse permutations is the same
as taking the expectation over all permutations. When permutation 𝜋 is drawn u.a.r.,
it namely holds that P(𝜋 = s) = P(𝜋 = s−1) = 1

|SM |
for all s ∈ SM . Therefore,

E
𝜋∼ (SM)

[
𝜇(( ̂Yi)𝜋−1 ,Y)

]
=

∑

s∈SM

(
𝜇(( ̂Yi)s−1 ,Y) ⋅ P(𝜋 = s)

)
=

∑

s∈SM

(
𝜇(( ̂Yi)s−1 ,Y) ⋅ P(𝜋 = s−1)

)

= E
𝜋∼ (SM)

[
𝜇(( ̂Yi)𝜋,Y)

]
. (15)

Thus, 𝜋−1 can be replaced with 𝜋 in Equation (14).
Recall that j is the set of all binary vectors of length M with j ones (see

Equation 5). Furthermore, note that applying a u.a.r. chosen permutation 𝜋 ∈ SM on
̂Yi ∈ j is the same as selecting u.a.r. ̂Y ∈ j as outcome, because for every ̂Y⋆ ∈ j it
holds that

P
(
̂Y = ̂Y⋆

)
= 1

|j|
with ̂Y ∼ 

(
j
)

and P
(
( ̂Yi)𝜋 = ̂Y⋆

)
= 1

|j|
with 𝜋 ∼  (SM).

The latter follows, as for each ̂Y⋆,
̂Y△ ∈ j there are exactly as many permutations to

go from ̂Yi to ̂Y⋆ as permutations to go from ̂Yi to ̂Y△.
Let | ̂Yi| denote the number of ones in ̂Yi. Now, we can rewrite the expectation

E
𝜋∼ (SM) [⋅] over all permutations into an expectation over a u.a.r. drawn vector with

the same number of ones, by

E
𝜋∼ (SM)

[
𝜇(( ̂Yi)𝜋,Y)

]
= E

̂Y∼
(
| ̂Yi |

)
[
𝜇( ̂Y,Y)

]
. (16)

Using Equations (14), (15), and (16) in combination with Equation (12) gives

2M
∑

i=1
P(hM(⋅) = ̂Yi) ⋅ E

𝜋∼ (SM)
[
𝜇( ̂Yi,Y𝜋

)
]
=

2M
∑

i=1
P(hM(⋅) = ̂Yi) ⋅ E

̂Y∼
(
| ̂Yi |

)
[
𝜇( ̂Y,Y)

]
.
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PRIES et al. 9

We have now eliminated all permutations from the equation. Note that the expecta-
tion in the right-hand side is the same for each ̂Yi ∈ j. In other words, the expectation
is the same for two vectors, when they have the same number of ones. Grouping the
vectors with the same number of ones, gives

2M
∑

i=1
P(hM(⋅) = ̂Yi) ⋅ E

̂Y∼
(
| ̂Yi |

)
[
𝜇( ̂Y,Y)

]
=

M∑

j=0
P(hM(⋅) ∈ j) ⋅ E ̂Y∼ (j)

[
𝜇( ̂Y,Y)

]
.

Instead of summing over all possible binary vectors ̂Yi ∈ {0, 1}M , all vectors with the
same number of ones are grouped together, as they have the same expectation. All
probability mass of the grouped vectors is also added up. Note, that it is thus only
relevant for a classifier in which group j the prediction hM(⋅) belongs.

For any j ∈ {0, … ,M} it holds that E
̂Y∼ (j)

[
𝜇( ̂Y,Y)

]
is bounded by maximizing

over all possible values of j. Thus,

E
̂Y∼ (j)

[
𝜇( ̂Y,Y)

]
≤ max

j′∈{0,… ,M}
E
̂Y∼ (j′ )

[
𝜇( ̂Y,Y)

]
. (17)

Observe that
∑M

j=0P(hM(⋅) ∈ j) = 1 and P(hM(⋅) ∈ j) ≥ 0 hold for each j, therefore
it follows using Equation (17) that

M∑

j=0
P(hM(⋅) ∈ j) ⋅ E ̂Y∼ (j)

[
𝜇( ̂Y,Y)

]
≤ max

j′∈{0,… ,M}
E
̂Y∼ (j′ )

[
𝜇( ̂Y,Y)

]
.

Consequently, we have found an upper bound for Equation (9). Namely,

max
hM∈i.i.

M

{
E
𝜋∼ (SM)

[
Er∈R

[
𝜇(hM(X𝜋

, r),Y
𝜋
)
]]}
≤ max

j∈{0,… ,M}

{
E
̂Y∼ (j)𝜇( ̂Y,Y)

}
. (18)

Equality only holds for any classifier hM ∈  i.i.
M , when all probability mass is given

to arg maxj∈{0,… ,M}

{
E
̂Y∼ (j)𝜇( ̂Y,Y)

}
. In other words, the maximum can only be

attained if
∑

jmax∈arg maxj∈{0,… ,M}

{

E
̂Y∼(j)𝜇( ̂Y,Y)

}
P(hM(⋅) ∈ jmax ) = 1. (19)

A classifier hM ∈  i.i.
M can therefore only attain the maximum if all predictions belong

to a group j or possibly multiple groups that all maximize the expectation.
Remember that the Dutch Draw selects the optimal classifier based on

Equation (7), which leads to

⌊M ⋅ 𝜃∗max⌉ ∈ arg max
j∈{0,… ,M}

{
E
̂Y∼ (j)

[
𝜇( ̂Y,Y)

]}
.

Combining this with the alternative definition of the Dutch Draw (Equation 6) directly
gives that

∑

jmax∈arg maxj∈{0,… ,M}

{

E
̂Y∼(j)𝜇( ̂Y,Y)

}
P(𝜎

𝜃
∗
max
(⋅) ∈ jmax ) = 1.
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10 PRIES et al.

This shows in combination with Equation (19) that the optimal Dutch Draw classifier
actually attains the bound given in Equation (18). It now follows that,

𝜎
𝜃
∗
max
∈ arg max

hM∈i.i.
M

{
E
𝜋∼ (SM)

[
Er∈R

[
𝜇(hM(X𝜋

, r),Y
𝜋
)
]]}

.

Similarly, we also find that when 𝜇 needs to be minimized, it follows that

𝜎
𝜃

∗
min
∈ arg min

hM∈i.i.
M

{
E
𝜋∼ (SM)

[
Er∈R

[
𝜇(hM(X𝜋

, r),Y
𝜋
)
]]}

.

Thus, we can conclude that the optimal Dutch Draw classifier attains the mini-
mum/maximum expected performance and is therefore average-permutation-optimal
for all input-independent classifiers with a order-invariant measure. ▪

6 DISCUSSION AND CONCLUSION

A baseline is crucial to assess the performance of a prediction model. However, there are infinitely
many ways to construct a baseline. As a necessary check in the development process, van de Bijl
et al. (2022) plead for a supplementary baseline that is general, simple, and informative. In this
paper, we have therefore examined all baselines that are independent of feature values, which
makes them general and relatively simple. Additionally, these baselines are also informative, as it
should be considered a major warning sign when a newly developed model is outperformed by a
model that does not take any feature values into account. In this paper, we have shown that, out of
all input-independent binary classifiers, the Dutch Draw baseline is average-permutation-optimal
for any order-invariant measure. Our findings improve the evaluation process of any new binary
classification method, as we have proven that the Dutch Draw baseline is ideal to gauge the
performance score of a newly developed model.

Next, we discuss two points that could be considered an “unfair” advantage for the Dutch
Draw baseline. Firstly, we have considered in this paper classifiers that predict M labels simulta-
neously. This gives classifiers a potential advantage over classifying each sample sequentially, as
for example, exactly k out of M samples can be labeled positive. This can only be done sequen-
tially when a classifier is allowed to track previous predictions or to change based on the number
of classifications it has made. Even with this advantage, we believe that all input-independent
models still remain clearly beatable by a newly developed model.

Secondly, the Dutch Draw baseline can be derived for most commonly used measures with-
out any additional knowledge about the number of positive labels P. Nonetheless, it was shown
in van de Bijl et al. (2022) that the Dutch Draw baseline can only be calculated for the measure
accuracy when it is known if P ≥ M∕2 holds. If the distribution of the training set is the same as
the test set, the training set can be used to determine whether P ≥ M∕2 is likely to hold. Further-
more, a domain expert could estimate whether it is likely that a dataset contains more positives
than negatives. Take for example a cybersecurity dataset, where there are often significantly less
harmful instances and more normal instances (Wheelus, Bou-Harb, & Zhu, 2018). There are thus
many ways to estimate if P ≥ M∕2 holds. Nevertheless, even if the Dutch Draw baseline uses this
information (only for the accuracy), we believe that any newly developed model should still beat
the Dutch Draw baseline, as it does not use any feature values to improve prediction.
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PRIES et al. 11

F I G U R E 1 Nontrivial Dutch Draw (DD) baseline. For every 𝜃∗ ∈ Θ∗, the expected G-mean 2 of the DD
classifier 𝜎

𝜃
∗ is determined for a dataset with P = 5 and N = 45. The maximum (≈ 0.4877) is attained when

𝜃

∗ = 0.54.

Finally, we address future research opportunities. In this paper, we have only considered
binary classification. A natural extension would be to also consider multiclass classification (Gran-
dini, Bagli, & Visani, 2020), probabilistic classification, or regression (between [0, 1]). Is a strategy
similar to the Dutch Draw optimal in these cases? Can a closed-form expression of the optimal
baseline be derived? We believe that the three introduced properties (namely, input-independent,
order-invariant, and average-permutation-optimal) are still relevant for these problems. This
could help identify what kind of classifier is considered to be optimal. van de Bijl et al. (2022)
stated that the Dutch Draw baseline could be used to scale existing measures. This paper provides
more motivation to scale measures with the Dutch Draw baseline and not by using any other
input-independent classifier. Yet, it could still be investigated how each measure should be scaled
in order to maximize the explainability behind a performance score. Most performance measures
reduce to a linear function of TP, which makes a Dutch Draw classifier that predicts as many pos-
itives/negatives (without making the performance measure undefined) optimal. However, there
are nonlinear cases, such as the G-mean 2, that lead to a non-trivial baseline. Take, for example,
P = 5 and N = 45, which leads to a Dutch Draw baseline of approximately 0.4877 with 𝜃∗max = 0.54
(see Figure 1).

Nonlinear cases could perhaps also lead to situations where multiple (not all) j groups are
optimal (see Equation 19). We have not encountered this behavior for common performance
measures, but it would be interesting to identify performance measures that do have this property.
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