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¿Cómo fue que se pasó todo este
tiempo? ¡Qué vergüenza con
ustedes!

Nicolás y los Fumadores

Why do I bother over and over again
trying the wrong way when the right
way was staring at me all the time?
I don’t know.

Herbert Robbins

—It gets easier
—Huh?
—Everyday it gets a little easier
—Yeah?
—But you gotta do it every day.
That’s the hard part, but it gets
easier
—Ok.

Bojack Horseman
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Preface

This dissertation is the culminating document of my doctoral studies at the Machine
Learning group of the Centrum Wiskunde & Informatica, in Amsterdam. It presents
a number of mathematical results on statistical methods for sequential experimenta-
tion and prediction, where the decisions about future observations depend on what
has been done before. The present-day interest in anytime-valid methods stems per-
haps from two reasons. First, these methods are an answer to modern applications
in forecasting and online experimentation that require the continuous monitoring of
data—this renders classic, fixed-sample methods inapplicable. Second, and in relation
to the first point, sequential methods offer a principled methodological alternative to
fixed-sample methods under peeking, the common practice in scientific laboratories of
checking for statistical significance during the data collection process—another barrier
posed by fixed-sample methods. The results contained in this work are crossed by
three intersecting axes: time, invariance and robustness.

Time. With the advent of the coronavirus disease (COVID-19) pandemic, large re-
search efforts were driven towards finding new treatments for it. In the early days of
the pandemic—before any disease-specific vaccines were available—multiple medical
centers around the world were carrying randomized controlled trials on the use of the
Bacillus Calmette–Guérin (BCG) vaccine, typically used against tuberculosis, to treat
COVID. Remarkably, Judith ter Schure, then also a Ph.D. student at CWI, convinced
several of these medical centers to perform a live meta-analysis of their data using
anytime-valid methods. In order to carry this task, it was needed to develop and im-
plement new sequential methodology for the analysis of time-to-event data, one of the
classic topics in statistics since the work of David A. Cox in 1972. The ensuing work
with Judith ter Schure, Alexander Ly, and Peter Grünwald is the subject Chapter 3
in this thesis; it contains methodology for the continuous montoring of time-to-event
data when the survival times of two groups are being compared. This work took place
predominantly at home, given the restrictions of the pandemic.

Invariance. Principles of invariance have turned out to be a very valuable tool in
statistics. The t-test, perhaps the most used test on Earth, is the prototypical example
of a scale-invariant test, a test that does not depend on the units of measurement of
the observations. A large part of the introductory statistical theory for the inference
of location parameters can be summed up in the single statement that the likelihood
ratio test for the t-statistic is the overall—invariant or not—most powerful fixed-sample
test. In Chapter 2, with Rianne de Heide, Tyron Lardy and Peter Grünwald, we tackle
the anytime-valid counterpart of this problem, where power maximization is no longer
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meaningful, under more general invariances. The main results in this line of work were
found during the world-wide lock-downs of 2020, but the final form of the results took
much longer to reach their present form.

Robustness Will it rain tomorrow? Prediction is at the center of many tasks of mod-
ern applied research. In this line of research it is asked whether predictors can be built
that perform well in the worst case—that are robust—, and work even better when
data is “easy”. With Wouter Koolen, we studied the simplest problem of prediction
with expert advice, one of the fundamental problems in computational learning theory.
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1. Introduction

Presently, data collection and processing costs are the lowest they have been in history.
Both public and private organizations have, through the intensive use of data, accessed
competitive advantages such as the optimization of their value chains or the capacity
to offer personalized services to their clients. These advances have also changed how
science is made; it is more common every day to make discoveries using data analysis.
To that end, models for performing statistical hypothesis testing and prediction are
crucial. This thesis presents a number of mathematical results in the theory of anytime-
valid analysis for statistical hypothesis testing and prediction. Here, “anytime-valid”
makes reference to the ability of continuing or stopping experimentation at any moment
in time.

The purpose of this introductory chapter is twofold. First, we introduce the main
topics of this thesis: hypothesis testing and prediction. To that end, in Section 1.1,
we introduce the classic problem of statistical hypothesis testing as a decision problem
between two probabilistic models for data. We will introduce anytime-valid methods by
opposing them to classic sequential methods. Our discussion will be centered around
the role played by sampling plans in experimentation: anytime-valid methods do not
require them; sequential methods do. At the risk of using nonstandard terminology, we
will refer collectively to anytime-valid and sequential methods as serial. In Section 1.2,
we recall the historical context in which the field of sequential analysis appeared, during
World War II, and we introduce the Sequential Probability Ratio and its sampling plan.
There, because of its applications to lot inspection, the objective is that of minimizing
the length of the sampling plan. In Section 2.6 we contrast the Sequential Probability
Ratio Test to anytime-valid tests. This serves as an introduction to anytime-valid
testing in general using sequential analysis as a point of entrance. As a connecting
thread, we use a simple example that has become classic in the statistical community:
testing whether a coin is biased. In Section 1.4 we briefly touch upon the issues that
arise when regarding hypothesis testing as a decision problem, and the interpretation of
serial procedures as prediction strategies; in particular, for gambling. Lastly, fulfilling
the second purpose of this chapter, Section 1.5 outlines the ensuing chapters of this
dissertation.

1.1. Statistical Hypothesis Testing

In order to illustrate the type of problems that concern us, let us first consider the
standard problem of statistical hypothesis testing. Suppose that an experiment is
designed to collect n observations X1, . . . ,Xn, and we are interested in quantifying
whether the data is consistent with one of two hypotheses, H0 or H1, about the
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1. Introduction

probabilistic distribution of the data. The hypothesis H0 may correspond to the
prediction of a scientific theory or a model of the system under consideration; the
alternative hypothesis H1, to a deviation from H0. For example, a collaboration of
scientists investigating the effect of a new treatment for a disease may formulate their
problem as that of comparing survival rates between two groups of people: a group that
received the new treatment and another that received a placebo. Such a problem can be
formulated in terms of a statistical hypothesis test between a baseline—no effect—and
a baseline-plus-effect model for the subjects’ survival rates. The process of formulating
a statistical hypothesis test may require ample deliberation, and the validity of any
ensuing statistical procedure will depend very much on the specifics of the experimental
design, the skill of the scientists in choosing the data appropriately, and their ability
to connect the observations to the principles or conceptual theories of their field.
Nevertheless, we study the abstract problem of statistical hypothesis testing. By this,
we refer to the problem of quantifying to what degree the collected data X1, . . . ,Xn

conform to the probabilistic model hypothesized by H0 in comparison to H1. The
mathematical study of such problems can be carried out with relative independence
of their deployment, but their motivation is typically driven by applications. In this
work, we study models that are used when data are collected serially, that is, when
the decision to either continue or stop making observations may depend on what has
been observed previously.
On first thought, one may try to use a fixed-sample test in a serial situation. It is

well known that if the decision to continue or stop making observations is completely
independent of the data that has been observed so far, no problems arise; in the
presence of dependencies, this idea may fail dismally [Anscombe, 1954]. We illustrate
this fact with a classic example: testing whether a coin is biased, that is, whether
a coin is not equally likely to land on “heads” or “tails” when tossing it repeatedly.
Under the null hypothesis, both outcomes are equally likely; under the alternative,
they are not—in both cases the coin tosses are assumed to be independent of each
other. In a fixed-sample experiment a coin is tossed a predetermined number n of
times and the outcome of each toss X1, . . . ,Xn is registered. In introductory statistics
courses it is shown that the decision to reject the null hypothesis whenever the fraction
p̂n =

1
n
#{heads in X1, . . . ,Xn} is outside the range 1/2 ± 0.98/

√
n falsely rejects the

null hypothesis—this is called a type-I error—with probability approximately 5%. The
type of reasoning behind this procedure is the foundation of most statistical analysis
used currently in scientific research; its correctness is important. Nevertheless, by
tossing the coin according to a sampling plan that is not accounted for, the standard
fixed-sample statistical procedure fails spectacularly. As an extreme example, when
the coin is unbiased, if the data is collected according to the sampling plan “keep
tossing the coin until p̂n is outside 1/2 ± 0.98/

√
n”, the standard fixed sample test

always rejects the null hypothesis. Consequently, the probabilistic statement that
“H0 will be falsely rejected with probability 5%” is false: the experiment executed
with this sampling plan falsely rejects the hypothesis H0 with 100% probability. In
this work, we study tests that retain type-I error control—tests that falsely reject H0

with small probability—irrespective of the sampling plan that is employed. The above
is a simplified example of a researcher sampling until significance is reached, which

2



1.1. Statistical Hypothesis Testing

is known in the literature as “sampling to reach a foregone conclusion” [Anscombe,
1954]. Relatedly, in more complicated situations, even a Bayesian approach may fail
[De Heide and Grünwald, 2021].

Currently, the standard methods for error control under serial data collection are
collectively known as sequential methods; they have become part of the statistical canon
since their inception during World War II and their ensuing development [Wald, 1947,
Siegmund, 1985, Lai, 2001]. Nevertheless, in this work, we make a distinction between
sequential methods, whose experimental designs include fixed rules for continuing or
stopping data collection, and anytime-valid methods, which do not require such rules.
Thus, instead of focusing on sequential methods, we focus on anytime-valid methods,
which are closely related and have received renewed attention during the last lustrum
[see Ramdas et al., 2022a]. As we will see, the sequential-analytic requirement of a
sampling plan is motivated by their first applications to statistical quality control.
There are, however, practical reasons why one might want to focus on anytime-valid
methods instead.

No sampling plan can be enforced. Despite the great success of sequential analysis,
there are practical situations in which no sampling plans can be enforced. A promi-
nent situation where this is commonplace is in meta-analysis, the task of aggregating
evidence from multiple studies performed with a common goal. For instance, sev-
eral small studies have been conducted on the effect of music on insomnia in adults.
Even though each of the studies may not be conclusive, after gathering their findings,
stronger conclusions may be reached [Jespersen et al., 2022]. In statistical terms, this
is the problem of combining either the observations or other summary statistics from
several studies. Crucially, the studies under analysis may not have been carried out
independently; the outcomes of the first may have caused the existence of the following
ones in ways that are impossible to know or model mathematically. For instance, a
follow-up study may have been performed only because the first one showed a signifi-
cant result. Hence, even though each study may be carefully designed and executed,
the pooled observations from multiple studies do not obey any explicit sampling plan.
Assuming erroneously that the pooled sample forms a statistically independent set of
observations may lead, similarly to the earlier coin-tossing example, to invalid con-
clusions. In the absence of a sampling plan, anytime-valid methods are necessary for
meta-analysis [Ter Schure and Grünwald, 2022]. More generally, anytime-valid meth-
ods open the possibility of performing statistical analysis on data that was gathered
with an unknown sampling plan, provided that the serial data collection model is in
accordance with how data was obtained, and that the analysis that is performed is
chosen independently of the data [see Ramdas et al., 2022a, Section 6.4].

Data is serial. Currently, there exist applications where data are streamed con-
tinously and assuming that they are collected according to some plan is unrealistic.
Data may be either monitored continously or analysis may be carried at moments
in time that are not prespecified. To name a few examples, this includes hypothe-
sis testing for online experimentation [Urban et al., 2021, Lindon and Malek, 2022],

3



1. Introduction

weather forecasting [Henzi and Ziegel, 2021], financial forecasting [Wang et al., 2022],
and, as mentioned earlier, meta-analysis of medical data [Ter Schure and Grünwald,
2019, 2022]. For instance, in weather prediction, multiple forecasts can be compared
to the ground-truth every day. Since anytime-valid procedures can be continuously
monitored in time, valuable time-domain information can be observed and acted upon
in real time without invalidating the type-I error guarantees of the tests. For instance,
using anytime-valid methods one may observe that some weather forecasts are better
than others during certain moments of the year [Choe and Ramdas, 2022].
It is with these applications in mind that the results of this dissertation are to

be understood. Sequential analysis also appeared in a concrete context, that of the
United States during World War II, were the efforts of the statistical community
were directed towards problems related to the war. The strengths and limitations of
sequential methods can only be understood in relation to those applications. In the
next section we will introduce the central test in sequential analysis, the Sequential
Probability Ratio Test, in historical context. We will then introduce its anytime-valid
counterpart with the objective of placing this dissertation in context.

1.2. Sequential analysis

The fact that sequential-analyitic methods require fixed sampling rules is not a defi-
ciency, it is part of their design. This design and subsequent success is, in turn, related
to their origin and first applications. Sequential analysis has its roots in the Statistical
Research Group (SRG), a unit of statisticians formed in 1942, during World War II,
at Columbia University in New York with the aim of working on military problems
[Wallis, 1980]. One of their most important contributions is the design and analysis
of the Sequential Probability Ratio test (SPRT). Without compromising on the prob-
ability of error, if a sequential experiment that follows the SPRT’s sampling plan is
repeated multiple times, it will require fewer observations on average than the best
possible fixed-sample test1 [Wald, 1947]. This is crucial when, as is frequently the case
in war applications, tests are destructive or the cost of testing is higher than the cost
of production [Tukey, 1947]. The main figure in the development of sequential analysis
is Abraham Wald, a Jewish mathematician born in today Romania in 1902 who had
moved to the United States before the start of the war [Wolfowitz, 1952]. One of the
most prominent uses of the SPRT is in the problem of lot inspection, where an op-
erator must accept or reject each lot of industrally manufactured parts depending on
whether or not a fraction of the lot is defective. To that end, workers are instructed to
follow a prespecified sequential sampling plan, and decide on the defectiveness of each
lot depending on their observations. In his summary after the war, in 1946, Warren

1Milton Friedman, also one of the members of the SRG recalls in an interview: “[...] we stated the
problem in such a way that statisticians found it difficult to accept. We said, ‘we know how to
construct a test that’s more powerful than the uniformly most powerful test.’ They said, ‘That’s
mathematically impossible, you can’t do that, we’ve proved that this is the most powerful test.’
And so statisticians wouldn’t have anything to do with it. Then, we talked to Abraham Wald,
and he initially had the same reaction. But then he went home and a day later he called and said,
‘you are right and I know how to do it and I know what the answer is.’” [Taylor, 2001, p.114]
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1.2. Sequential analysis

Weaver, founder of the Statistical Research Group, wrote about the importance of this
application.

In March 1945, the Quartermaster General wrote to the War Department
liaison officer for NDRC [National Defense Research Committee] a letter
containing the following statement: “[...] With thousands of contractors
producing approximately billions of dollars worth of equipment each year,
even a 1% reduction in defective merchandise would result in a great saving
to the Government. Based on our experience with sequential sampling
in the past year, it is the considered opinion of this office that savings
of this magnitude can be made through wide dissemination of sequential
sampling procedures.” [...] The Quartermaster Corps imported in October
1945 that at least 5,000 separate installations of sequential sampling plans
have been made and that in the few months prior to the end of the war
new installations were being made at the rate of 500 per month. [Office of
Scientific Research and Development, 1946]

Given their success, the developments in sequential analysis were unclassified after the
war, and their adoption became widespread in statistical quality control. The sequen-
tial methods inspired by these initial developments [see Siegmund, 1985, Tartakovsky
et al., 2014] are used routinely, for instance, in monitoring clinical trials [Proschan
et al., 2006]. A comprehensive recount of the ensuing developments and challenges
was written by Lai [2001].

A simplified version of the lot-inspection problem is equivalent to the coin-tossing
example from before; we now describe the SPRT for it. Symbolically, consider the
problem

H0 ∶Xi is heads with prob. p vs. H1 ∶Xi is heads with prob. q,

for a fixed value of q ≠ p. Here, the problem is the same as testing a very large lot: upon
testing an item of a lot with a fraction p of defective items, each observation will be
defective—analogously, each coin toss will land heads—with probability approximately
p. The coin-tossing experiment is a special case with p = 1/2. The SPRT is based on
sequentially monitoring the likelihood ratio Lk(q), that is, the ratio of the probabilities
of having observed the outcomes under H1 and H0. If Hk is the number of heads in
X1, . . . ,Xk and Tk = k−Hk is the number of tails in the same data, the likelihood ratio
Lk is

Lk(q) =
qHk(1 − q)Tk

pHk(1 − p)Tk
.

If data are more likely under the alternative model H1, Lk will take large values; lower
values in the oposite case, when data is more likely under H0. In the lot-inspection
example, there are two types of errors that can be made: either acceptable lots are
rejected (a type-I error) or faulty lots are accepted (a type-II error). The first kind of
error corresponds to a false rejection of H0; the second, to a false acceptance of H0.
Despite the confusing terminology, given two tolerable values α and γ for the type-I
and type-II errors—with α ≤ γ—the SPRT yields the shortest sampling plan on average
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1. Introduction

[Wald and Wolfowitz, 1948]. For a fixed q—we will treat the case that multiple values
of q are of interest—, the SPRT’s sampling plan monitors whether Lk(q) lies between
or outside two limits: an upper limit B = γ/α and a lower limit A = (1 − γ)/(1 − α).
These limits are chosen so that, if the procedure carried to completion—until a decision
is reached—, the target error probabilities α and γ are met. The SPRT sampling plan
is as follows: at k = 1, a first observation is made, Lk(q) is computed, and one of the
following three decisions is made

if Lk(q) ≥ B, choose H1;

if Lk(q) ≤ A, choose H0;

if Lk(q) ∈ (A,B), make one more observation and repeat.

This sequential sampling procedure can be easily implemented in a factory as the deci-
sion boundaries can be written in a table that only depends on the number of defective
items observed upon inspection. A composite alternative hypothesis H1 ∶ q ≠ p can be
handled by using a mixture of likelihood ratios with a “prior” probability distribution
π on q, that is, by using a statistic Li(π) = ∫ Li(q)dπ(q). In that case, an integrated
version of the type-II error is controlled instead [see Wald, 1945, Section 6]. We remark
that the guarantees on the average errors—over repetitions of the experiment—depend
crucially on using the specific sampling plan from previous display. As we noted ear-
lier, such sampling plans cannot always be implemented: similarly as in “sampling to
a foregone conclusion”, if data that is not gathered with the SPRT’s sampling plan is
analized as if had been, the error probabilities may be very different from what was
initially intended. To prevent that, anytime-valid methods offer type-I error control
irrespective of the sampling plan that is used.

1.3. Anytime-valid testing

There exists a canonical construction of anytime-valid tests [Ramdas et al., 2020],
which uses ideas already present in tests of power one [Darling and Robbins, 1968b].
This construction is extendable to large nonparametric tests, where no likelihood ratios
may be available. In the coin-tossing example, where the null hypothesis is a single
distribution, this canonical construction corresponds to rejecting H0 when a mixture
of likelihood ratios is large, similarly to the SPRT. The main difference with the SPRT
is that only the sequential properties of the likelihood ratio are used—not the fact that
it is a likelihood ratio. More precisely, the key fact is that, under the null hypothesis,
the mixture Li(π) = ∫ Li(q)dπ(q) with respect to the “prior” π is a nonnegative
martingale starting at one, an object called test martingale [Shafer et al., 2011]. An
anytime-valid test forH0 would, similarly to the SPRT, reject the null hypothesis when
the likelihood ratio takes large values. The difference is that uniform statistical type-I
error control over all sampling plans—anytime validity—is now obtained with standard
maximal inequalities for martingales. Indeed, an equality of Ville [1939]—also known
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as Doob’s maximal inequality—implies that, for the threshold B′,

P{sup
i
Li(π) ≥ B

′
} ≤

EP[L1(π)]

B′
=

1

B′
.

This implies with the particular choice B′ = 1/α, that, for any random time ν,

P{Lν(π) ≥ 1/α} ≤ α.

If we interpret ν to be the final sample size of an unknown sampling plan, the last
display implies that the test that rejects H0 if Lν(π) ≥ 1/α has type-I error bounded
by α. This error guarantee holds irrespective of the sampling plan used—the test is
anytime valid. This even covers the most aggressive sampling plan possible, the one
that stops as soon as the statistic Lk(π) crosses the threshold B′ = 1/α. Notice the
differences with the SPRT: by using a more conservative threshold for rejecting H0

(1/α instead of γ/α), uniform type-I error control over all sampling plans is achieved.
This construction already expands significantly the scope of application of anytime-
valid methods: test martingales may be constructed for problems in which a likelihood
ratio is not available [Shafer and Vovk, 2001, Howard et al., 2018b].

The main advances in this line of research, in which this thesis is inscribed, per-
tain the extension of this framework to more general composite statistical hypotheses
problems. These problems are written symbolically as

H0 ∶X1, . . . ,Xν ∼ P ∈ P vs. H1 ∶X1, . . . ,Xν ∼Q ∈ Q, (1.1)

where Q and P are two families of distributions, and ν is an arbitrary random sample
size. Two chapters of this dissertation are dedicated to such problems: Chapter 2,
to the case in which both families of distributions are symmetric under a group of
transformations; Chapter 3, to the nonparametric problem of comparing the survival-
time distributions of two groups of subjects. An additional challenge posed by this
family of problems is that, if type-I error control is sought over all possible sampling
plans, power maximization is no longer a meaningful criterion; an alternative theory
of optimality has to be established [Grünwald et al., 2020]. Although it is often the
case that anytime-valid tests can be built with standard techniques, their optimality
is harder to assess. This assessment is one of the main themes of the results about
anytime-valid tests contained in this dissertation.

The testing problems that are treated in this dissertation can be solved using test
martingales. As a side note—we do not treat this question in this dissertation—
a natural question that arises is whether all anytime-valid tests use necessarily the
test-martingale construction, that is, whether there is a test martingale behind every
anytime-valid test. Interestingly, this turns out not to be the case. For instance, when
the null hypothesis is “too big”, the only test martingale available is the constant one,
but anytime-valid tests still be constructed. In general, all anytime-valid tests are
constructed using a more general type of statistics called E-processes—a composite-
null generalization of test martingales—[Ramdas et al., 2022b].

Thus far, we have described the problem of statistical hypothesis testing as a decision
problem. Yet, the statistics underlying anytime-valid tests—and hence the results
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of this dissertation—can also be interpreted outside the framework of acceptance-
rejection procedures; in particular, as prediction strategies in certain games of chance.
This provides a link to the study of prediction problems in this dissertation (Chapter 4).

1.4. Decision, evidence, and prediction

In this section we establish a bridge between the three concepts in the title of the
section and serves both to interpret our results in anytime-valid testing and as a
motivation to Chapter 4. We now outline our argument. We will see that multiple
criticisms have been made to using pure decision procedures that divide results into
“significant” and “nonsignificant” in scientific practice. Thus, in some applications
the role of statisticians should not be limited to decision-making. As a response to
this criticism, an alternative role of statistics can be that of quantifying evidence—for
one model against another. This section will be centered in accepting the proposition
that prediction quality can be a surrogate to evidence quantification. In the coin-
tossing example, one could regard both alternatives H0 and H1 as models that make
predictions about the data. Under that lens, there is evidence for the alternative H1

against the null H0 if the model signified by H1 makes better predictions than that of
H0. If prediction is a worthwhile enterprise, one may take the view that absolutely no
probabilistic assumptions should be made about the origin of the data. Prediction in
this lawless setting is the subject of Chapter 4. We now develop these ideas.
The use of acceptance-rejection procedures in scientific practice in general (not only

for sequential tests), has been criticized since their very inception. Indeed, even Ronald
A. Fisher, an English biologist and statistician who is credited with laying the founda-
tions of modern statistics, was critical of the decision-theoretic approach to hypothesis
testing.

[...] Acceptance procedures are of great importance in the modern world.
[...] but the logical differences between such an operation and the work of
scientific discovery by physical or biological experimentation seems to me
so wide that the analogy between them is not helpful and the identification
of the two sorts of operation is decidedly misleading. [Fisher, 1955]

Fisher points at the fact that acceptance procedures are well suited for quality control
when one tests repeatedly batches of goods—just as in the lot-inspection problem—,
but that they were not appropriate for testing scientific hypotheses. This follows from
the fact that decision problems are crafted with very specific objectives in mind. For
instance, in the lot-inspection problem, decisions must be made while minimizing the
average length of the sampling plan—subject to error-control constraints—for eco-
nomic reasons. In contrast, scientific studies sometimes have more diffuse objectives;
a coarse classification of results into “significant” and “nonsignificant” may obscure
the interpretation of the data, the estimation of the effects, and the uncertainty of the
estimates [Greenland et al., 2016]. For example, in clinical trials, different groups may
reach diverging decisions because of factors additional to whether the new treatment
is significantly better than the previous one. Considerations such as costs, side effects,
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ease of administration and the assessment of other studies are paramount [Armitage,
1985]. Some even call for abandoning the decisional aspects of statistical testing from
scientific practice altogether [Amrhein et al., 2019]. Rather than making decisions,
we could regard the task of statisticians as that of quantifying evidence against a
specific statistical hypothesis relative to an alternative [Berger and Wolpert, 1984,
Royall, 1997]. To accommodate the view of statistics as evidence quantification, it
can be useful to consider narratives about statistical procedures that depart from pure
acceptance-rejection and its parallel with lot-inspection.

Several narratives about testing have emerged over the last decades in order to ac-
commodate the evidentiary aspects of sequential testing. Some of these narratives
place prediction instead of decision at the center of the stage. These narratives in-
clude prequential statistics [Dawid, 1984], where serial testing and probabilistic fore-
casting are identified; minimum description length [Grünwald, 2007, Grünwald and
Roos, 2019], where the identification is between prediction and data compression; and
gambling [Shafer, 2019], where the parallel is between test statistics and betting strate-
gies. Loosely speaking, a statistical model is better than another if it predicts better,
compresses data more, or makes us richer. All of these can be used as evidence that
one model describes the data better. Among these, it is the gambling narrative that
has become dominant in the anytime-valid testing community.

Many of the intuitions behind anytime-valid testing can be explained using a parallel
between the monetary gains made in a casino and evidence—there exist deep historical
connections between gambling and probability theory [Shafer, 2021]. Fundamental
results in standard courses on stochastic processes are usually interpreted through their
implications for gambling. For the purpose of anytime-valid testing, the main example
is the optional stopping theorem, a central theorem in martingale theory. It expresses
the fact that in a fair betting game there is no strategy that will consistently make a
player rich. Thus, if monetary gains—which quantify our ability to make predictions—
are viewed as a surrogate for evidence, we can picture a game whose payoffs are
determined by the observed data. If the game is fair under the null hypothesis, just
as there is no strategy that will consistently make a player rich, there is no sampling
plan that will accumulate evidence on average against the null hypothesis. Hence,
accumulating a large amount of money—evidence—is a sign that the game is not fair
or, in other words, that the null hypothesis must be disqualified.

If one accepts the idea that there is a connection—by analogy or otherwise— be-
tween hypothesis testing and prediction, one may take the extreme position that no
assumptions whatsoever can be made about the data sequence that is observed [Cesa-
Bianchi and Lugosi, 2006]. In the coin-tossing example, when comparing whether the
coins land heads or tails with probability p or q, each of these probabilities may be
viewed as the probabilistic forecast of two “experts” about the next outcome of the
coin. Accepting the absence of assumptions on the data sequence entails that the
analysis of prediction algorithms must be carried in the worst case over all possible
data sequences [Vovk, 1990, Freund and Schapire, 1997]. The goal becomes to try and
predict as well as the best expert, no matter what data sequence is observed during
experimentation. One of the contributions of this dissertation, contained in Chapter 4,
is to this game of prediction with expert advice.
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This dissertation dwells in the intersection where techniques for decision, testing
and prediction meet. In the next section we outline its contents.

1.5. Outline

The rest of this work consists of four chapters. The first two chapters are contributions
to the theory of anytime-valid testing; the third, to the theory of individual sequence
prediction; the fourth, to concentration inequalities. We now sketch each of them
briefly.

1.5.1. Group-invariant tests

When formulating models for physical observations, it is usually desirable to choose
them to be invariant under certain arbitrary choices. For instance, when measuring
a physical quantity, the choice of measurement units, frame of reference, and start-
ing time are all arbitrary. This desire translates into invariances of the probabilistic
models under consideration. For instance, if the units of the observations and of the
parameters of a model are changed simultaneously, probability assignments should re-
main unchanged. In mathematical terms, this is described as an invariance under the
action of a group of transformations. For instance, in the case of “invariance under
change of measurement units” this corresponds to an invariance under an action of
(R+, ⋅ ), the group of positive real numbers with multiplication.
Chapter 2 studies optimum—in a sense to be defined—anytime-valid tests under

general groups of transformations. We show, for testing problems, that if the families
of probability distributions are invariant under a common group of transformations,
the best overall anytime-valid test is guaranteed to reside within the family of invariant
procedures. In many interesting cases, optimal testing boils down to monitoring the
likelihood ratio for certain invariant functions of the data. Loosely speaking, these
invariant functions must loose no information about the invariant component of the
data. Our result is an anytime-valid counterpart of the celebrated theorem of Hunt
and Stein [Lehmann and Romano, 2005], which states that, when the sample size is
fixed, an overall most powerful test exists within the smaller family of invariant tests.
Applications of these results include the t-test and linear regression, among many
others.

1.5.2. Tests for survival data

A prominent topic in medical statistics is the analysis of time-to-event data. For
instance, when studying the effect of a new treatment—a vaccine, for example—, pa-
tients may be given either a placebo or the treatment. Researchers record the time
that it takes each patient to become ill from the target disease and, if vaccination
is effective, it is expected that the treatment group takes longer on average to be-
come ill. Survival-time models aim to mathematize these situations. Using these
models, the most prominent test for comparing two groups of subjects is the logrank
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test [Slud, 1984], a simple but fundamental application of the proportional hazards
model of Cox [1972], a cornerstone of statistical science. In Chapter 3, we develop
an anytime-valid counterpart of the logrank test. This test allows for the continu-
ous monitoring of medical data and the resulting statistics can be easily combined
to perform meta-analysis. The combined statistics can be themselves monitored in
real time, going beyond the realm of conventional meta-analysis. The author made a
contribution to the safestats R package [Turner et al., 2022], which is available on
the Comprehensive R Archive Network (CRAN).

1.5.3. Multiscale worst-case prediction

If we regard hypothesis testing as a problem of prediction, there is no reason to stop
at the assumption that data are generated according to a probabilistic distribution;
data might be generated adversarially. This setting is known as worst-case or individ-
ual sequence prediction [Cesa-Bianchi and Lugosi, 2006]. A simple but fundamental
problem in this line of work is that of prediction with expert advice [Vovk, 1998]. This
is a game played in rounds where we are tasked with aggregating the advice of K
experts. At each round, the quality of each expert’s advice is judged with a numerical
loss. The remarkable feature of this problem is that, aside from a range restriction
on their possible values, absolutely no assumptions are made about how these losses
are assigned. The objective is to perform, after a number of rounds, as well as the
best expert in hindsight—the one whose advice has the lowest cumulative losses. De-
spite the apparent simplicity of this problem, efficient solutions to this problem have
profound consequences to other areas in computational learning theory, which include
convex optimization [Hazan, 2021], statistical learning theory [Freund and Schapire,
1997], and probabilistic maximal inequalities [Foster et al., 2017], to name a few. In
Chapter 4, we study this problem under multiscale range restrictions on the losses
of the experts. We formulate Muscada, a multiscale and computationally efficient
algorithm that is safe in the worst case, and performs much better when data is not
completely adversarial.

1.5.4. Concentration Inequalities

In Chapter 5, we introduce a notational device, the exponential stochastic inequality
(ESI), that provides an ordering of random variables. It captures the situation when
two random variables are ordered both in expectation and with high probability—it
is possible to construct random variables that are ordered in one sense but not in the
other. This notation was originally introduced by Koolen et al. [2016] and Grünwald
and Mehta [2020]. Our interest in such statements come from arguments used to
derive excess-risk bounds for machine learning algorithms. The ESI is particularly
well suited to deriving PAC-Bayesian bounds. We show how the ESI is useful when
deriving bounds for sums and averages of random variables, and how its use can yield
improvements over conventional union bounds. We characterize the random variables
that satisfy an ESI under weak moment conditions in terms of existing tail conditions.
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2. E-statistics, Group Invariance, and
Anytime-Valid Testing1

We study worst-case-growth-rate-optimal (GROW) E-statistics for hy-
pothesis testing between two dominated group models. If the underlying
group G acts freely on the observation space, there exists a maximally in-
variant statistic of the data. We show that among all E-statistics, invariant
or not, the likelihood ratio of the maximally invariant statistic is GROW
and that an anytime-valid test can be based on it. By virtue of a repre-
sentation theorem of Wijsman, the GROW E-statistic is equivalent to a
Bayes factor with a right Haar prior on G. Such Bayes factors are known
to have good frequentist and Bayesian properties. We show that reduc-
tions through sufficiency and invariance can be made in tandem without
affecting optimality. A crucial assumption on the group G is its amenabil-
ity, a well-known group-theoretical condition, which holds, for instance, in
general scale-location families. Our results also apply to finite-dimensional
linear regression.

2.1. Introduction

Classically, hypothesis tests for group-invariant problems have been studied in great
detail both for fixed-sample-size and sequential experiments [Cox, 1952, Hall et al.,
1965, Eaton, 1989, Lehmann and Romano, 2005]. Nevertheless, due to methodological
concerns about combining evidence from multiple experiments using classical methods
[Royall, 1997, Wagenmakers, 2007, Benjamin et al., 2018, Grünwald, 2023], a theory of
testing based on E-statistics2 has been developed [Vovk and Wang, 2021, Shafer, 2019,
Grünwald et al., 2020, Ramdas et al., 2020]. The main concern that is successfully
addressed by testing with E-statistics is that of error control in two common situa-
tions: when experiments are optionally stopped, and when aggregating the evidence of
interdependent experiments that may themselves have been optionally stopped [Wang
and Ramdas, 2022, Vovk and Wang, 2021]. The latter of these situations is sometimes
referred to as optional continuation [Grünwald et al., 2020], and tests that remain
valid under optional stopping are called anytime valid. As a consequence of the ability

1This chapter is based on M. F. Pérez-Ortiz, T. Lardy, R. de Heide, and P. Grünwald. E-
Statistics, Group Invariance and Anytime Valid Testing, Aug. 2022. URL http://arxiv.org/
abs/2208.07610. arXiv:2208.07610 [math, stat], under submission

2E-statistics are mostly known as E-variables or, in analogy to p-values, E-values; we call them
E-statistics here to emphasize that they are, in fact, statistics of the data.
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to control type-I errors under both optional stopping and continuation, a wide inter-
est in E-statistics has kindled in recent years [as a small sample, we mention Shafer,
2019, Henzi and Ziegel, 2021, Ramdas et al., 2022b, Wang and Ramdas, 2022, Ren
and Barber, 2023]. As a contribution to this line of work, we characterize optimal
E-statistics in group-invariant testing problems. As we will see, such problems include
testing under linear-model and Gaussian assumptions.
We concern ourselves with testing dominated composite hypotheses where both

null and alternative models remain unchanged under a group of transformations. In
particular, we study the case where the parameter of interest is a function δ = δ(θ)
of the model parameter θ that is invariant under such transformations. For example,
in the Gaussian case, the coefficient of variation is invariant under scale changes; the
correlation coefficient, under affine transformations; and the variance of the principal
components, under rotations around the origin. Roughly speaking, by replacing the
data Xn = (X1, . . . ,Xn) by an invariant function Mn = mn(X

n), one discards all
information that is not relevant to the parameter δ. Through the lens of the invariance-
reduced data Mn, the hypotheses about the parameter of interest δ may simplify. In
particular, in the simplest but central special case, the null then expresses that the
parameter of interest is equal to some fixed δ0, and some other fixed δ1 under the
alternative. Then the test applied to the reduced data Mn becomes a simple-vs.-
simple test. One may now base a sequential test on the likelihood ratio statistics
of the Mn, an idea going back to Rushton [1952], Cox [1952] and developed by Hall
et al. [1965]. By a representation theorem due to Wijsman [1967]—we use the version
of Andersson [1982]—, under mild regularity conditions on the group, this likelihood
ratio is equivalent to the (formal) Bayes factor obtained by equipping both the null
and the alternative with a (usually improper) right Haar prior; such Bayes factors
have been studied in detail within the Bayesian community [Dawid et al., 1973, Berger
et al., 1998].
In this chapter we characterize E-statistics that are growth rate optimal in the

worst case (GROW), as defined by Grünwald et al. [2020] (GHK from now on); see
Section 2.1.2 for the definition of GROW), and we show how to use these for anytime-
valid testing. Informally, among all tests based on E-statistics, those satisfying GROW
have the fastest (in terms of sample size) expected logarithmic growth rate under
the alternative, thereby accumulating evidence against the null as fast as possible in
expectation. GROW approaches are a worst-case version of the Kelly (1956) betting
criterion, which has been advocated within information theory and economics since
the 1950s. These approaches have become central in the nascent field of e-processes,
anytime valid testing and confidence sequences.
We need to distinguish between the main statistical result (statement with direct

repercussions for statistical practice) and the main underlying technical result of this
chapter. Our main statistical result is the following: under regularity conditions,
when the test about the invariance-reduced dataMn becomes a simple-vs.-simple test,
among all E-statistics, whether a function of Mn or not, the GROW E-statistic is
simply the aforementioned likelihood ratio statistic for Mn. What is remarkable here
is the ‘whether a function ofMn or not’ part: that the GROW E-statistic is a function
of Mn (and hence itself ‘invariant’) is a consequence, rather than than input to, the
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analysis. The main consequence is that the aforementioned existing classical sequential
tests based on Mn and Bayesian tests based on Bayes factors with a right Haar prior
can be trivially modified to become ‘anytime valid’, and that they are then optimal
for the testing problem at hand.

This main statistical result arises as a corollary (Corollary 2.4.3) obtained from
combining Theorem 1 of GHK and our main technical result. Theorem 1 of GHK shows
that finding a GROW E-statistic is equivalent to performing joint minimization of the
Kullback-Leibler (KL) divergence between the convex hulls of the alternative and null
sets of distributions. The main technical contribution of this chapter is computing the
value of the joint KL divergence minimization problem: Theorem 2.4.2, shows that,
under regularity assumptions, this value coincides with the KL divergence between
the distributions, under each hypothesis, of a maximally invariant function Mn of
the data. A maximally invariant function, informally, looses as little information as
possible about the invariant component of the data. The central assumption in our
results is the amenability of the group G, a well known group-theoretical condition
[Bondar and Milnes, 1981]. This condition also plays a key role in the celebrated
theorem of Hunt and Stein [Lehmann and Romano, 2005, Section 8.5], which relates
tests that are max-min optimal for statistical power to group-invariant tests. We
show that, just as in the result of Hunt and Stein, the amenability of G is a sufficient
condition, but not a necessary one (see Section 4.7). We remark that the concepts
of power and GROW are, to some mild extent, related: one may view GROW as the
analogue of power in an optional stopping and continuation setting (Section 3.3.1).
Despite the ensuing analogy to Hunt-Stein, the proof techniques that we develop to
prove our results are significantly different (see Section 2.1.4).

Besides these main statistical and technical contributions we provide two additional
novel results: Proposition 2.4.4 and Proposition 2.8.1. Proposition 2.4.4 investigates
E-statistics that are relatively GROW (abbreviated to REGROW by GHK), an op-
timality criterion closely related to GROW (see Section 3.3.1). We show that, as
opposed to the general case (where GROW E-statistics can be very different from
relatively GROW ones), in our group invariant setting, any GROW E-statistic is also
relatively GROW. In Proposition 2.8.1 we extend the main technical result Theo-
rem 2.4.2 to settings where the parameters δ0 and δ1 may take values in sets ∆0 and
∆1, respectively, including the case when prior distributions on ∆0 and ∆1 are avail-
able, relating our work to testing with Bayes factors as in [Jeffreys and Jeffreys, 1998,
Berger et al., 1998].

Finally, we provide some results for which we do not claim novelty—they are rather
a rephrasing, within our group invariant context, of existing results. These include
Proposition 2.1.2, which shows that if data are gathered sequentially, then the sequence
of GROWE-statistics can be used for anytime-valid sequential testing, the reason being
that it becomes a test martingale, the mathematical object that forms the basis for
anytime-valid testing [Shafer, 2019, Grünwald et al., 2020]. We also describe when the
optionally stopped optimal E-statistic remains an E-statistic, which is important in
an optional continuation context. Finally, in Proposition 2.5.2 we show how data can
be further reduced if a sufficient statistic for the invariant parameter is available. For
the latter purpose, a result of C. Stein, reported by Hall et al. [1965], is instrumental.
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We illustrate all our results with several examples.
The rest of this introduction gives an overview of the whole chapter. It is organized in

the following manner. In Section 2.1.1, we introduce formally our setup for hypothesis
testing under group invariance and we introduce our running example, the t-test. In
Section 2.1.2, we define E-statistics, our main objects of study, and in Section 3.3.1 we
define our optimality criteria. In Section 2.1.4, we give an informal exposition of our
main statistical result, Corollary 2.4.3, and our main technical result, Theorem 2.4.2.
In Section 2.1.5 we highlight previous work made in group-invariant testing and in
Section 2.1.6 we introduce notation. Finally, in Section 2.1.7 we outline the rest of the
chapter.

2.1.1. Group invariance

In this section we describe the group-invariant hypotheses that are of our current
interest. Assume that a group G acts freely on both the observation space X and the
parameter space Θ. Denote the action of G on X by (g,X)↦ gX for g ∈ G and X ∈ X .
For samples of size n, we extend the action of G on X to Xn componentwise, that
is, by (g,Xn) ↦ gXn ∶= (gX1, . . . , gXn) for g ∈ G and Xn ∈ Xn. By invariance of a
probabilistic model P = {Pθ ∶ θ ∈ Θ} on Xn we understand that, for any g ∈ G and
measurable B ⊆ Xn and parameter θ ∈ Θ, the distribution Pθ satisfies

Pθ{X
n
∈ B} = Pgθ{X

n
∈ gB}, (2.1)

where gB = {gb ∶ b ∈ B} is the left translate of the set B by g. In particular, we
study situations where the parameter of interest δ = δ(θ) indexes the orbits in the
parameter space Θ under the action of G. More formally, we assume that δ is a
maximally invariant function of the parameter θ, meaning that, for any pair θ, θ′ ∈ Θ,
there exists g such that gθ = θ′ any time that δ(θ) = δ(θ′). In that case, we say that
δ is a maximally invariant parameter. We are prepared to state the main statistical
hypothesis testing problem in this work. For two possible values δ1, δ0 of δ, we consider
the composite vs. composite testing problem

H0 ∶ δ(θ) = δ0 vs. H1 ∶ δ(θ) = δ1. (2.2)

As is known, many classical parametric problems can be cast in this shape. Let us
call maximally invariant any G-invariant function Mn = mn(X

n) that indexes the
orbits of the action of G on Xn. The distribution of Mn depends on θ only through
the maximally invariant parameter δ, and, under this reduction, the problem (2.2)
becomes simple. It is with the optimality of this reduction that we are concerned. In
Section 2.8, we study cases in which, even after the invariance reduction, the problem
under study remains composite.

Example 2.1.1 (t-test under Gaussian assumptions). Consider an i.i.d. sample Xn =

(X1, . . . ,Xn) of size n from an unknown Gaussian distribution N(µ,σ), and testing
whether µ/σ = δ0 or µ/σ = δ1. The parameter space Θ consists of all pairs µ ∈ R and
σ ∈ R+ and the Gaussian model is invariant under scale transformations. The group
G = (R+, ⋅ ) of positive real numbers with multiplication acts on Θ by (c, (µ,σ)) ↦
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(cµ, cσ) for each c ∈ R+ and (µ,σ) ∈ Θ. The parameter of interest is the ratio δ = µ/σ
between the mean µ and the standard deviation σ. The parameter δ is scale-invariant
and indexes the orbits of the action of G on Θ. The group G acts on the observation
space X = Rn by coordinatewise multiplication. A maximally invariant statistic is
Mn = mn(X

n) = (X1/ ∣X1∣ , . . . ,Xn/ ∣X1∣), and its distribution only depends on the
maximally invariant parameter δ = µ/σ.

2.1.2. The family of E-statistics and their use in optional
continuation and stopping

We now define E-statistics, our measure of evidence for the alternative over the null
hypothesis. Given two subsets Θ0,Θ1 of the parameter space Θ, interpreted as the
null and an alternative hypothesis, the family of E-statistics comprises all nonnegative
functions of the data Xn ∈ Xn whose expected value is bounded by one under all
elements of the null, that is, all statistics Tn(X

n) ≥ 0 such that

sup
θ0∈Θ0

EP
θ0[Tn(X

n
)] ≤ 1. (2.3)

To make this concrete, we first remark that, as is immediately seen by evaluating
the expectation, the likelihood ratio in any simple-vs-simple testing problem is an
E-statistic (see e.g. Section 1 of GHK). In particular, in the setting above,

T ∗n =
pMn

δ1
(mn(X

n))

pMn

δ0
(mn(Xn))

, (2.4)

where, for j = 0,1, pMn

δj
are densities of any given maximally invariant function Mn =

mn(X
n) under Hj relative to a common underlying measure, is an E-statistic. The

suitability of E-statistics in optional continuation contexts is due to the following two
properties, which readily follow from (2.3):

1. The type-I error of the test that rejects the null hypothesis anytime that Tn(X
n) ≥

1/α is smaller than α, a direct consequence of Markov’s inequality and the defi-
nition of E-statistic.

2. Suppose that Xn and Xm are independent, representing the outcomes of two
subsequent experiments, and let Tn(X

n) be an E-statistic for Xn and for all
ϕ in some set Φ, let Tm(X

m;ϕ) be an E-statistic for Xm. Suppose that, after
observing the first sample Xn, the Tm(X

m;ϕ) to be used to measure evidence
for the second sample may be chosen as a function of Xn. That is, we use
Tm(X

m; ϕ̂(Xn)) where ϕ̂(Xn) is some function of Xn. Then Tn+m(X
n,Xm) ∶=

Tn(X
n)Tm(X

m; ϕ̂(Xm)) is also an E-statistic, irrespective of the definition of

ϕ̂.

Together, these two properties imply that the test based on Tn+m that rejects the
null if Tn+m(X

n+m) ≥ 1/α, has Type-I error bounded by α, no matter the definition
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2. E-statistics, Group Invariance, and Anytime-Valid Testing

of ϕ̂—the details of which definition may be unknown or even unknowable to the
statistician. For example, it may be that upon observing some Xn, it is decided not to
consider a second sample at all (this amounts to using a ϕ○ such that Tm(X

m, ϕ○) ≡ 1,
independently of data Xm). It may also be that one decides to consider a second
sample after seeing Xn but one does not really know if one would have continued as
well had Xn been different—still, one obtains a valid Type-I error guarantee. This
property can be extended recursively to more than two samples and sample sizes
depending on the past: we get the general result that, in a sequence of studies of
(say) a new medication, we can combine the results of each study as measured by
an E-statistic by multiplication; it may be decided by the statistician (or by external
factors such as availability of funding), after each study, and depending on previous
study outcomes, whether or not to consider an additional study and if so, what sample
size, what study-protocol and what E-statistics to use for the next study—the total
number of studies is unlimited in advance, and still we have Type-I error control if
we multiply the individual E-statistics: we can safely engage in optional continuation,
something which is not easily done with p-values (Section 1.3 of GHK).
The use of E-statistics in itself is sufficient to allow for optional continuation with

fixed sample size studies. Some—not all—types of E-statistics can also be used in
two additional related settings: optional stopping, when there is a single sequence of
data X1,X2, . . . and we want to do a sequential test with Type-I error guarantees
irrespective of when we stop; and optional continuation as above, but with individual
E-statistics whose sample size is itself not fixed but determined by some stopping rule.
Proposition 2.1.2 below shows that the E-statistics (2.4) are of this kind. Suppose then
that data X1,X2, . . . are gathered one by one. Here, a sequential test is a sequence
of zero-one-valued statistics ξ = (ξn)n∈N adapted to the natural filtration generated by
X1,X2, . . . . We consider the test defined by ξn = 1{T

∗
n ≥ 1/α} for some value α, whose

anytime validity we prove. Additionally, we show that, for certain stopping times
τ ≤ ∞, the optionally stopped E-statistic T ∗τ remains an E-statistic, which validates
the use of the stopped T ∗τ for optional continuation: we can multiply such that T ∗τ
across studies as explained above while retaining Type-I error control.

Proposition 2.1.2. Let T ∗ = (T ∗n)n∈N, where, for each n, T ∗n is the likelihood ratio
for the maximally invariant function Mn = mn(X

n) for the action of G on Xn. Let
ξ = (ξn)n∈N be the sequential test given by ξn = 1{T

∗
n ≥ 1/α}. Then, the following two

properties hold:

1. The sequential test ξ is anytime valid at level α, that is,

for any random time N , sup
θ0∈Θ0

Pθ0 {ξN = 1} ≤ α.

2. Suppose that τ ≤ ∞ is a stopping time with respect to M = (Mn)n∈N. Then the
optionally stopped E-statistic T ∗τ is also an E-statistic, that is,

sup
θ0∈Θ0

EP
θ0[T

∗
τ (X

τ
)] ≤ 1. (2.5)
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The mechanism of the proof of this proposition—showing that T ∗ = (T ∗n)n∈N is a
nonnegative martingale with expected value one—is, by now, standard; we perform it
in Section 2.6. The main ingredient, where invariance plays a role, pertains how the
maximally invariant statistic at step n contains all information about the invariant
component of the data at previous steps. An inequality of Ville [1939] and standard
optional stopping theorems give the desired results. It is natural to ask whether (2.5)
also holds for stopping times that are adapted to the full data (Xn)n∈N instead of the
reduced (Mn)n∈N can be allowed. In our t-test example, this could be a stopping time
τ∗ such as “τ∗ ∶= 1 if ∣X1∣ /∈ [a, b]; τ

∗ = 2 otherwise” for some 0 < a < b. The answer
is negative: in Appendix A.2, we show that, for appropriate choice of a and b, this
τ∗ provides a counterexample. This means that such nonadapted τ∗ cannot be safely
used in an optional continuation context.

2.1.3. Optimality criteria for E-statistics

The conventional optimality criterion for hypothesis tests satisfying a type-I error
guarantee is their fixed-sample-size or fixed-stopping-rule worst-case power maximiza-
tion. This criterion cannot be used in a context with unknown stopping rules because
this knowledge is required by the very definition of power. Similarly, the E-statistic
which optimizes power for a given study with given stopping time will take on value
0 with positive probability, making it useless for optional continuation by multiplica-
tion. As GHK point out, a much more sensible criterion in both optional stopping
and continuation settings is growth rate optimality in the worst case. Should it exist,
an E-statistic T ∗n is GROW if it maximizes the worst-case expected logarithmic value
under the alternative hypothesis, that is, if it maximizes

Tn ↦ inf
θ1∈Θ1

Eθ1[lnTn(X
n
)] (2.6)

over all E-statistics. The objective here is to gather evidence, measured by Tn(X
n),

as fast as possible. To this end, it is sensible to maximize expectation of f(Tn(X
n))

under the alternative, for some increasing function f . Shafer [2019] and GHK argue
extensively why it makes sense to take f as the logarithm, an idea also known as Kelly
betting [Kelly Jr., 1956]. Relatedly, this criterion produces tests with the smallest
expected sample size until the null can rejected in a specific testing setting [Breiman,
1961].

Given its worst-case nature, GHK explain that the GROW E-statistic is too con-
servative in some scenarios and cannot be used if the alternative can be arbitrarily
close to the null. For example, in the t-test this would mean that the value of δ = µ/σ
under the alternative is unknown. As a response to this issue, GHK propose to instead
maximize a relative form of (2.6) to obtain less conservative E-statistics outside the
worst-case regime (see also Turner et al. [2021] who, in their contingency table setting,
achieve good results in practice with this relative criterion, but not with the absolute
criterion). With this in mind, we say that an E-statistic T ∗n is relatively GROW if it
maximizes the gain in expected logarithmic value relative to an oracle that is given the
particular distribution in the alternative hypothesis from which data are generated,
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that is, if T ∗n maximizes, over all E-statistics,

Tn ↦ inf
θ1∈Θ1

{EQ
θ1
[lnTn(X

n
)] − sup

T ′n E-stat.
EQ

θ1
[lnT ′n(X

n
)]} . (2.7)

As we we will see and contrary to the general case, in our group-invariant setting, any
GROW E-statistic is also relatively GROW. Hence, we can avoid discussing which of
the two is more appropriate. While acknowledging that there may be situations in
which an E-statistic optimality property distinct from being GROW is more relevant,
in the remainder of this chapter we will simply take the goal of finding (relatively)
GROW E-statistics for granted, without further motivation.

2.1.4. Main results

We now informally outline the main results of this chapter. The main result of sta-
tistical interest is Corollary 2.4.3, a characterization of the GROW E-statistic for the
group-invariant problem defined in (2.2). This corollary is a consequence of Theo-
rem 2.4.2, our main technical contribution. Recall that once data are reduced through
a maximally invariant function Mn = mn(X

n) for the action of G on Xn, the testing
problem (2.2) becomes simple. We extend our results to situations when the invariance-
reduced problem is still composite in Section 2.8. Sidestepping technicalities, the main
statistical result is as follows:

Corollary 2.1.3 (Informal statement of Corollary 2.4.3). Under a number of technical
conditions on the group G, among all possible E-statistics, G-invariant or not, the
likelihood ratio T ∗n = p

Mn

δ1
/pMn

δ0
for any maximally invariant function Mn =mn(X

n) is
GROW for (2.2).

We show further in Proposition 2.4.4 that, in our group-invariant setting, any
GROW E-statistic is also relatively GROW, as defined in Section 2.1.2. With this
theorem at hand, we characterize optimal E-statistics for group-invariant problems in
fixed-sample experiments.
In Section 2.5 we further relate this result to sufficiency: we utilize the invariance and

sufficiency reductions of Hall et al. [1965] to conclude that monitoring the likelihood
ratio for M1,M2, . . . is equivalent to monitoring the likelihood ratio of a sufficient
statistic for the maximally invariant parameter δ (see Proposition 2.5.2). Besides
our running t-test example, in Section 2.7 we show two applications to testing under
multivariate Gaussian assumptions: testing whether the population mean is zero, and
testing whether a linear regression coefficient is zero. In Section 2.8 we further extend
Corollary 2.1.3 to cases where the null and alternative hypotheses are still composite
even after an invariance reduction of the data (see Proposition 2.8.1).

Technical contributions

Our main technical result is Theorem 2.4.2, a computation of the infimum value of
the Kullback-Leibler (KL) divergence between elements in the convex hulls of the null
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and alternative models in (2.2). In Section 2.2, we show in detail how our approach
operates in the simpler case when G is finite or compact. The main contribution in this
chapter is the extension of this result to a large class of noncompact groups for which
almost-right-invariant probability measures exist. The existence of such measures on
G is known as amenability [Bondar and Milnes, 1981], and it is the key assumption
in our results. The amenability condition, as will be stated Definition 2.2.1, is the
same that is used in the classical theorem of Hunt and Stein [Lehmann and Romano,
2005, Section 8.5]. The proof techniques that are needed for the results of this work
are, however, distinct. Hunt-Stein’s theorem shows that, when looking for a test
that is max-min optimal in the sense of power, it is enough to look among group-
invariant tests. At the core of the proof of the Hunt-Stein theorem lays the fact
that the power is a linear function of the test under consideration. In its proof, an
approximate symmetrization of the test is carried using almost-right-invariant priors
without affecting power guarantees. This line of reasoning cannot be directly translated
to our setting because of the nonlinearity of the objective function that characterizes
GROW E-statistics.

Besides the main technical contribution, Theorem 2.4.2, additional novel mathemat-
ical results are in Proposition 2.4.4, relating GROW to relatively GROW E-statistics,
and the propositions in Section 2.8, extending Theorem 2.4.2 to settings in which H0

and H1 refer to composite sets of δ’s and may be equipped with prior distributions.

2.1.5. Previous work

Invariance, as data-reduction method, has a long tradition in statistics [Eaton, 1989].
Perhaps the closest result to the ones we present is the classical theorem of Hunt and
Stein [see Lehmann and Romano, 2005, Section 8.5]. It establishes that, in group-
invariant models like the ones we treat here, there is no loss in considering only group-
invariant tests when searching for most powerful tests at a fixed sample size. The
relation of data reductions based in invariance and sufficiency are well understood
[Hall et al., 1965]. In the Bayesian literature, group-invariant inference with right Haar
priors has been thoroughly studied [Dawid et al., 1973, Berger et al., 1998]. It has been
shown that, in contrast to some other improper priors, inference based on right Haar
priors yields admissible procedures in a decision-theoretical sense [Eaton and Sudderth,
2002, 1999].However, there have also been concerns in the Bayesian literature [Sun and
Berger, 2007, Berger and Sun, 2008] that in some situations, the right Haar prior is not
uniquely defined, and different choices lead to different conclusions. Interestingly, as
we discuss in Section 4.7, in our setting this issue cannot arise. Finally, we mention the
work of Liang and Barron [2004], who provide exact min-max procedures for predictive
density estimation for general location and scale families under Kullback-Leibler loss.
Although there are clearly some similarities, the precise min-max result they prove is
quite different; we provide a more detailed comparison, also in Section 4.7.
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2.1.6. Notation

We use letters P and Q to refer to distribuitions of Xn. For a measurable function
T = T (Xn), we write PT for the image measure of P under T , that is, PT {T ∈ B} =
P{T (X) ∈ B}. When writing conditional expectations, we write EP[f(X)∣Y ] , and
write PX ∣y for the conditional distribution of X given Y = y. We only deal with
situations where such conditional distributions exist. For a prior distribution Π on
some parameter space Θ—with a suitable measurable structure—, we write ΠθPθ for
the marginal distribution that assigns probability ΠθPθ{X ∈ B} = ∫ Pθ{X ∈ B}dΠ(θ)
to any measurable set B. For the posterior distribution of θ given X we write Πθ∣X .
Given two subsets H,K of a group G we write HK = {hk ∶ h ∈H,k ∈K} for the set of
all possible products between an element of H and an element of K. Similarly, for an
element g ∈ G and a subset K of G, we define gK = {gk ∶ k ∈K}, the translation of K
by g, and K−1 = {k−1 ∶ k ∈ K}, the set of inverses of K. We say that K is symmetric
if K =K−1.

2.1.7. Outline

The rest of this chapter is structured as follows. We begin by describing our approach
for finite and compact groups in Section 2.2. There, we also describe the challenges
that are encountered when dealing with general groups and introduce the main group-
theoretical condition, amenability. Next, in Section 2.3, we lay down formally the
conditions necessary for our main results. In Section 2.4, we state the main results
of this chapter in full. We continue in Section 2.5 by discussing our approach in the
presence of a sufficient statistic for the models under consideration. We show, under
regularity conditions, that there is no loss in further reducing the data through a
sufficient statistic. With regards to anytime-valid testing, the subject of Section 2.6
is to show Proposition 2.1.2. In Section 2.7 we apply our results to two examples. In
Section 2.8 we extend our results to cases in which, even after an invariance reduction
of the data, the hypotheses at hand remain composite. We end this chapter with
Section 4.7, where we discuss our results; and Section 2.10, where we give the proofs
omitted from the rest of the text.

2.2. Technical outline

This section shows our techniques in the simple case when the group G in question is
finite, and is intended to delineate our general approach. Next, we describe how we
generalize the result to noncompact amenable groups, and point at the difficulties that
are found. We start by reparametrizing the problem described in (2.2). Using that the
action of the group on the parameter space is free, we can reparametrize each orbit in
Θ/G with G. Indeed, we can pick an arbitrary but fixed element in the orbit θ0 ∈ δ0
and, for any other element θ ∈ δ0, we can identify θ with the group element g(θ) ∈ G
that transports θ0 to θ, that is, such that g(θ)θ0 = θ. Hence, with a slight abuse of
notation, we can identify θ ∈ δ0 with g = g(θ) ∈ G and identify Pθ = Pg(θ)θ0 with Pg.
With analogous definitions, for a fixed θ1 ∈ δ1, the same identification can carried in the
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alternative model by an analogous choice θ1. In order to make notation more succinct,
we use Q = {Qg}g∈G to denote the alternative hypothesis to P = {Pg}g∈G. We assume
that each member of Q is absolutely continuous with respect to each member of P.
With these remarks at hand, the starting problem (2.2) can be rewritten in the form

H0 ∶X
n
∼ Pg, for some g ∈ G, vs. H1 ∶X

n
∼Qg, for some g ∈ G. (2.8)

As will follow from our discussion, our results are insensitive to the choices of θ0 and
θ1. Using the invariance of the models, we show in Proposition 2.4.4 that, in our
setting, an E-statistic is GROW if and only if it is relatively GROW (see Section 2.1.2
for definitions).

2.2.1. Finite groups

Start by assuming that G is a finite group. For instance, a group of permutations.
Then, if Mn = mn(X

n) is a maximally invariant function of Xn—a function that
identifies in which orbit Xn is—, the distribution ofMn can be computed by averaging
over the group. Indeed, by the invariance of P and Q, a uniform distribution along
each orbit is induced and each orbit is isomorphic to G because its action on Xn is
free. In the general—possibly noncompact—case, we will use a measure-decomposition
theorem of Wijsman [Andersson, 1982, Eaton, 1989]. Since Mn is G-invariant, its
distribution does not depend on g. We call PMn and QMn the distributions of Mn

under any member of P and Q, respectively. We call pMn and qMn their respective
densities. Then, the so far hypothesized GROW E-statistic T ∗n , the likelihood ratio
for the maximal invariant Mn =mn(X

n), satisfies

T ∗n(X
n
) =

qMn(mn(X
n))

pMn(mn(Xn))
=

1
∣G∣ ∑g∈G qg(X

n)

1
∣G∣ ∑g∈G pg(X

n)
. (2.9)

For finite parameter spaces, as in our current case, Theorem 1 of GHK takes a simple
form: the value of the max-min problem that defines a GROW E-statistic coincides
with that of a KL divergence minimization problem, that is,

max
Tn E-stat.

min
g∈G

EQ
g [lnTn(X

n
)] = min

Π0,Π1

KL(Πg1
1 Qg1 ,Π

g0
0 Pg0), (2.10)

where KL(Q,P) = EQ[ln(q/p)] is the KL divergence, and the minimum on the right
hand side is taken over all pairs of distributions on the group G—we state a more
general form of their result in Section 2.4. The crucial observation is that, if ΠU(G) is
the uniform distribution on the group G, then

EQ
g [lnT

∗
n(X

n
)] = KL(Πg1

U(G)Qg1 ,Π
g0
U(G)Pg0) = KL(QMn ,PMn).

An application of the information processing inequality [Cover and Thomas, 2006,
Section 2.8] implies that, for any pair (Π0,Π1) of probability distributions on G,

KL(Πg1
1 Qg1 ,Π

g0
0 Pg0) ≥ KL(QMn ,PMn) =min

g∈G
EQ

g [lnT
∗
n(X

n
)],

23



2. E-statistics, Group Invariance, and Anytime-Valid Testing

where the last equality follows from the fact that T ∗n from (2.9) only depends on Xn

through the invariant Mn =mn(X
n) and consequently its distribution is independent

of g ∈ G. Thus, (2.9) shows that the minimum KL of the right hand side of (2.10)
is achieved for the particular choice of two uniform priors on G. Consequently, T ∗n ,
defined in (2.9), is a GROW E-statistic, that is,

min
g∈G

EQ
g [lnT

∗
n(X

n
)] = max

Tn E-stat.
min
g∈G

EQ
g [lnTn(X

n
)]. (2.11)

We now turn to the challenges encountered when dealing with infinite groups.

2.2.2. Noncompact groups

As we will see, a similar reasoning to that of the previous section can be carried
out for compact groups—where there exists an invariant probability distribution—,
but difficulties arise in the noncompact case. Luckily, these these dificulties can be
circumvented under additional assumptions; among others, the assumption that the
group G is amenable. Anytime that G is a locally compact topological group, there
exist left- and right-invariant measures λ and ρ, respectively, on G [see Bourbaki,
2004, VII, §1,no 2]. This means that, for any g ∈ G and any B ⊆ G measurable,
λ{gB} = λ{B} and ρ{Bg} = ρ{B}. The left and right Haar measures will take the
place that the uniform distribution took on finite groups. For simplicity of exposition,
let us assume that both probabilistic models are dominated by a left-invariant measure
ν on X . In that case, the invariance assumption (2.1) implies that the densities w.r.t. ν
take the form pg(X

n) = p1(g
−1Xn) and qg(X

n) = q1(g
−1Xn), where 1 makes reference

to the unit element of the group G. Using disintegration-of-measure results from
Bourbaki [2004, VIII.27], Andersson [1982] argues that, in analogy to (2.9), for any
locally compact group acting on Xn—under mild regularity conditions on the action,
which we will see—, the likelihood ratio for the maximal invariant Mn =mn(X

n) can
be computed by integration over the group G, that is,

T ∗n(X
n
) =

qMn(mn(X
n))

pMn(mn(Xn))
=
∫G qg(X

n)dρ(g)

∫G pg(X
n)dρ(g)

. (2.12)

This is known as Wijsman’s representation theorem [see also Eaton, 1989, Theorem
5.9]. If the right Haar measure ρ could always be chosen to be a probability measure, we
could carry out the same computations that we made in the finite case of Section 2.2.1
to conclude that T ∗n is indeed GROW. However, the right Haar measure ρ is finite if and
only if the group G at hand is compact [see Reiter and Stegeman, 2000, Proposition
3.3.5]. This is a severe limitation; it would not even cover our guiding example, the
t-test, because the group (R+, ⋅ ) is not compact (see Example 2.1.1). The main
technical contribution of this chapter is the extension of this result to noncompact
amenable groups, defined next, for which there exist almost-right-invariant probability
measures.

Definition 2.2.1 (Amenability). A group G is amenable if there exists a sequence of
almost-right-invariant probability distributions, that is, a sequence Π1,Π2, . . . such
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that, for any measurable set B ⊆ G and group element g ∈ G,

lim
k→∞
∣Πk {B} −Πk {Bg}∣ = 0.

Amenable groups have been thoroughly studied [Paterson, 2000] and include, among
others, all finite, compact, commutative, and solvable groups. An example of a non-
amenable group is the free group in two elements and any group containing it. A
prominent example of a nonamenable group is that of invertible d × d matrices with
matrix multiplication. Under the amenability of G and additional regularity condi-
tions, we will show that, for a sequence (Πk)k∈N of almost-right-invariant probability
distributions on G,

lim
k→∞

KL(Πg
kQg,Π

g
kPg) = KL(QMn ,PMn) =min

g∈G
EQ

g [lnT
∗
n(X

n
)],

where the last equality follows from the fact that T ∗n(X
n) depends on Xn only through

the maximal invariant Mn and, consequently, its distribution does not depend on g.
From this, via Theorem 1 of GHK, the analogue of (2.11) holds and, consequently, as
in the finite case of Section 2.2.1, T ∗n from (2.12) is GROW.

Example 2.1.1 (continued). The group G = (R+, ⋅) of the t-test setting is amenable (it
is a commutative group). The right Haar measure ρ on G is given by dρ(σ) = dσ/σ,
and the rightmost expression of (2.12) becomes, with X̄n ∶=

1
n ∑

n
i=1Xi,

T ∗n(X
n
) =
∫σ>0

1
σn exp(−n

2
[( X̄n

σ
− δ1)

2
+ 1

n ∑
n
i=1 (

Xi−X̄
σ
)
2
]) dσ

σ

∫σ>0
1
σn exp(−n

2
[( X̄n

σ
− δ0)

2
+ 1

n ∑
n
i=1 (

Xi−X̄
σ
)
2
]) dσ

σ

. (2.13)

The expression (2.13) was obtained by Cox [1952] who realized that it was equivalent
to the likelihood ratio of the maximal invariant. Lai [1976] also used it in an anytime-
valid context (essentially exploiting that it gives an E-statistic). Our results establish,
for the first time, that (2.13) is also GROW and relatively GROW. Lai also considered
placing a proper prior distribution on δ1; the same is done in Jeffreys’ Bayesian t-test
[Jeffreys and Jeffreys, 1998, Rouder et al., 2009]. We return to this idea in Section 2.8.

Consider now the sufficient statistic sn(X
n) = (µ̂n, σ̂n), where µ̂n is the maximum

likelihood estimator for the mean µ; and σ̂n, for the standard deviation σ. The t-
statistic MS,n =mS,n(X

n)∝ µ̂n/σ̂n is a maximally invariant function of the sufficient
statistic. Our results imply that T ∗n also equals the likelihood ratio for MS,n is also
relatively GROW, and that the test ξ = (ξn)n∈N given by ξn = 1{T ∗n ≥ 1/α} satisfies
the conclusions of Proposition 2.1.2.

2.3. Assumptions

In this section we describe the assumptions made in our main results, their part in the
proofs, and discuss their role for the purpose of parametric inference. We gather all
assumptions below, in Assumption 1, for ease of reference. We start by laying out the
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conditions on the spaces involved, followed by those on the probabilistic models under
consideration. Our additional assumptions on the group G, the parameter space Θ and
the observation space X are topological in nature. They have two purposes. The first,
in relation to the discussion of Section 2.2, is to ensure that (2.12), the representation
theorem of Wijsman [Eaton, 1989, Theorem 5.9], holds (see Remark 2.3.3). The second
purpose of our assumptions is to ensure that the observation space Xn can be put in
bijective and bimeasurable3 correspondence with a subset ofG×Xn/G, where the group
G acts naturally by multiplication on the first component. To this end, a theorem of
Bondar [1976] is instrumental (see Remark 2.3.2).
We assume that G is a topological group, that is, a group equipped with a topology

whose operation, seen as a function G × G → G, is continuous. We assume that all
topological spaces under consideration are equipped with their Borel σ-algebra, the
one generated by their topology. As topological spaces, we assume that both G and X
are Polish—separable and completely metrizable—and locally compact. We assume
that the action of G on Xn is continuous and proper; the latter means that the map
G ×Xn → Xn ×Xn defined by

(g, xn)↦ (gxn, xn)

is proper, that is, the inverse of compact sets is compact. Properness ensures that the
induced topology on the orbits Xn/G is Hausdorff, locally compact, and σ-finite [see
Andersson, 1982]. We further assume that both probabilistic models are dominated by
a common relatively left-invariant measure µ on Xn with some multiplier χ, that is,
a measure µ such that, for any measurable set B ⊆ Xn and any group element g ∈ G,
satisfies µ{gB} = χ(g)µ{B}. We gather these assumptions for ease of reference.

Assumption 1. Let G be a topological group acting on Xn, a topological space. The
group G, the observation space Xn, and the probabilistic models under consideration
satisfy the following three properties:

1. As topological spaces, G and Xn are Polish—separable and completely metrizable—
and locally compact.

2. The action of G on Xn is free, continuous and proper.

3. The models {Pg}g∈G and {Qg}g∈G are invariant and have densities with respect
to a common measure µ on Xn that is relatively left invariant with some multi-
plier χ.

Remark 2.3.1. Assumption 1 holds in most cases of interest for the purpose of para-
metric inference. We summarize some situations in which Assumption 1 holds, which
will be helpful in Section 2.7, where we apply our results in two examples, a test for
multivariate location and linear regression. Let X = Rd and identify Xn with set of
d×n matrices. Here we quote the properness of the action of two nonamenable groups
on Xn, which are consequences of the more general results of Wijsman [1985]. The
relevant groups to Section 2.7 are closed amenable subgroups of those presented next,
so that their actions on Xn are also proper.

3We call an invertible map bimeasurable if both the map and its inverse are measurable.
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2.3. Assumptions

1. The general linear group in d dimensions GL(d), consisting of all d×d invertible
real matrices with multiplication, acts continuously on Xn by left matrix multi-
plication. The continuous action of GL(d) on the restriction of Xn to matrices
of rank d is free and proper any time that n ≥ d. Seen as a subset of Rd×n,
the restriction of the Lebesgue measure to Xn is relatively left-invariant with
multiplier χ(g) = ∣det(g)∣n, for g ∈ GL(d).

2. The affine linear group AL(d), all pairs (A, b) with A ∈ GL(d) and b ∈ Rd with
group operation (A,v)(B,u) = (AB,Au + v), also acts continuously on Xn. An
action is given by ((A, b),Xn)↦ [Ax1 + b, . . . ,Axn + b], where x1, . . . , xn are the
columns of Xn ∈ Xn, and the square brackets make reference to the matrix with
the given columns. This action is proper on the restriction of Xn to matrices
of rank d any time that n ≥ d + 1. Seen as a subset of Rd×n, the restriction of
the Lebesgue measure to Xn is relatively left-invariant with multiplier χ(g) =
∣det(A)∣n for g = (A,v) ∈ AL(d).

Remark 2.3.2. We use in the proof of the main theorem that, under these assumptions,
the space Xn can be put in one-to-one bimeasurable correspondence with a subset of
G × Xn/G, where G acts naturally by multiplication in the first component. More
explicitly, under assumptions 1 and 2, Theorem 2 of Bondar [1976] guarantees the
existence of a one-to-one map r ∶ Xn → G×Xn/G such that both r and its inverse are
measurable, and, anytime that xn ↦ (h(xn),m(xn)), then, for any g ∈ G, the image
of gxn under r is (gh(xn),m(xn)).

Remark 2.3.3. The topological conditions under which Wijsman’s representation theo-
rem [Eaton, 1989, Theorem 5.9] holds are weaker than those presented in Assumption 1
(see also the previous remark). For the representation theorem to hold, it is only neces-
sary that Xn andG are locally compact and that the action ofG is both continuous and
proper. Notice also that this representation theorem holds for nonamenable groups.

Remark 2.3.4. In our proofs, it will be useful to use, without loss of generality, the
following modification to 3 in Assumption 1:

3’ The models {Pg}n∈N and {Qg}n∈N are invariant and have densities with respect to
a common measure ν on Xn that is left invariant.

The reason that there is no loss in generality is that from any relatively left-invariant
measure µ with multiplier χ, a left-invariant measure ν can be constructed. Indeed,
Bourbaki [2004, Chap. 7, §2 Proposition 7] shows that, under our assumptions, for
any multiplier χ there exists a function φ ∶ Xn → R with the property that φ(gx) =
χ(g)φ(x) for any x ∈ X and g ∈ G. With this function at hand, one can define
the measure dν(x) = dµ(x)/φ(x), which is left invariant. After multiplication by φ,
probability densities with respect to µ are readily transformed into probability densities
with respect to ν.

Remark 2.3.5. On any locally compact group G there exists a left-invariant measure
λ, called left Haar measure. It can be shown that λ is relatively right invariant with
a multiplier ∆, that is, for any measurable B ⊆ G and g ∈ G it holds that λh{Bg} =

27



2. E-statistics, Group Invariance, and Anytime-Valid Testing

∆(g)λh{B} for any g ∈ G. This multiplier is called the (right) modulus of the group
G. A computation shows that the measure ρ defined by ρh{B} = λh{B−1} for each
measurable B ⊆ G, is right invariant, in other words, ρ is a right Haar measure. In
the following, we always refer to right and left Haar measures that are related to each
other by that identity. In our proofs we will use that for any integrable function f
defined on G, the identities ∫ f(h)dρ(h) = ∫ f(h)/∆(h)dλ(h) and ∫ f(h

−1)dλ(h) =

∫ df(h)dρ(h) hold [see Eaton, 1989, Section 1.3].

2.4. Main Result

In this section, we state in full detail the main result of this chapter, Corollary 2.4.3, a
characterization of the GROW statistic for the statistical hypothesis testing problem
(2.8). In Corollary 2.4.5 we will show that any GROW E-statistic is also relatively
GROW in our group-invariant setting. Our main result stems from an application of
the main technical contribution of this chapter, Theorem 2.4.2, which shows that the
infimum Kullback-Leibler (KL) divergence between the elements of the convex hulls of
the null and alternative hypotheses is exactly equal to the KL divergence between the
distributions of the maximal invariant under both models. Theorem 2.4.2 will allow us
to directly apply GHK’s Theorem 1, which provides a general recipe for constructing
the GROW E-statistic in terms of the KL minimization problem (or joint information
projection in information theoretic terminology). For simplicity and completeness, we
present here a special case of GHK’s Theorem 1 that will be used in our group-invariant
setting.

Theorem 2.4.1 (Theorem 1 of GHK, most general version given in their Section 4.3).
Let P = {Pθ}θ∈Θ0 and Q = {Qθ}θ∈Θ1 be two families of probability distributions on Xn

that are dominated by a common measure. Suppose that there exists a random variable
Vn = vn(X

n) such that

inf
Π0,Π1

KL(Πθ1
1 Qθ1 ,Π

θ0
0 Pθ0) = min

Π0,Π1

KL(Πθ1
1 QVn

θ1
,Πθ0

0 PVn

θ0
) <∞, (2.14)

where the minimum and the infimum are over all pairs of proper probability distribu-
tions on Θ0 and Θ1. Let Π⋆0 and Π⋆1 be the pair of probability distributions—on Θ0

and Θ1, respectively—-where the previous minimum is achieved, that is,

min
Π0,Π1

KL(Πθ1
1 QVn

θ1
,Πθ0

0 PVn

θ0
) = KL(Π⋆θ11 QVn

θ1
,Π⋆θ00 PVn

θ0
).

Then
max

Tn E-stat.
inf

θ1∈Θ1

EQ
θ1
[lnTn(X

n
)] = KL(Π⋆θ11 QVn

θ1
,Π⋆θ00 PVn

θ0
).

In that case, the maximum on the left hand side of the previous display is achieved by
the E-statistic T ∗n given by

T ∗n(X
n
) ∶=
∫ q

Vn

θ1
(vn(X

n))dΠ⋆1(θ1)

∫ p
Vn

θ0
(vn(Xn))dΠ⋆0(θ0)

,

that is, T ∗n is GROW for testing P against Q.
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2.4. Main Result

Once the connection between GROW E-statistics and KL divergence minimization
is established, our next step is Theorem 2.4.2. In this section, we only treat the case in
which, after an invariance reduction of the data, both null and alternative hypothesis
become simple so that the minimum in (2.14) trivializes. Theorem 2.4.2 establishes
that, under our assumptions, (2.14) does indeed hold where Vn plays the role of the
maximally invariant statistic Mn and Θ0 = Θ1 = G refer to the group. In Section 2.8
we investigate the case when the hypotheses are still composite after the invariance
reduction. Theorem 2.4.2 below immediately implies that the likelihood ratio for the
maximal invariant is GROW; we delay its proof to Section 2.10.

Theorem 2.4.2 (Main technical result). Let Mn =mn(X
n) be a maximally invariant

function of the data Xn under the action of the group G on Xn. Under Assumption 1,
assume further that the group G is amenable as in Definition 2.2.1, and that there is
ε > 0 such that

EQ
1

⎡
⎢
⎢
⎢
⎢
⎣

∣ln
q1(X

n)

p1(Xn)
∣

1+ε⎤
⎥
⎥
⎥
⎥
⎦

,EQ

⎡
⎢
⎢
⎢
⎢
⎣

∣ln
qMn(Mn)

pMn(Mn)
∣

1+ε⎤
⎥
⎥
⎥
⎥
⎦

<∞, (2.15)

where the subindex in Q1 refers to the unit element of G, and the second expected value
is with respect to the distribution of Mn under any of the members of {Qg}g∈G. Then,

inf
Π0,Π1

KL(Πg
1Qg,Π

g
0Pg) = KL(QMn ,PMn),

where the infimum is taken over all pairs (Π0,Π1) probability distributions on the
group G.

From our previous discussion and with Theorem 2.4.2 at hand, the main result of
this chapter follows.

Corollary 2.4.3 (Main ‘statistical’ result). Under the assumptions of Theorem 2.4.2,
a GROW E-statistic T ∗ for (2.8) is given by

T ∗n(X
n
) =

qMn(mn(X
n))

pMn(mn(Xn))
,

the likelihood ratio for any maximally invariant statistic Mn =mn(X).

Example 2.1.1 (continued). We had already established that the group G = (R+, ⋅)
of the t-test setting is amenable and satisfies Assumption 1. The condition (2.15) is
also readily verified; we can apply Corollary 2.4.3 to conclude that (2.13) is a GROW
E-statistic.

We end by showing that, in our group-invariant setting, any statistic that is GROW
is also relatively GROW, meaning that any E-statistic that maximizes (2.7) also max-
imizes (2.6). This is not true in general; the result relies crucially on the invariant
structure of the models under consideration. For example, for contingency tables,
the two E-statistics are wildly different (GHK). We give the proof of the following
proposition at the end of the section.

29



2. E-statistics, Group Invariance, and Anytime-Valid Testing

Proposition 2.4.4. Suppose that the models {Pg}g∈G and {Qg}g∈G satisfy 3 of As-
sumption 1 and suppose that, for each g ∈ G, there exists h ∈ G such that KL(Qg,Ph)

is finite. Then the map defined by

g ↦ sup
Tn E-stat.

EQ
g [lnTn(X

n
)]

is constant. Consequently, any maximizer of (2.7) also maximizes (2.6), that is, an
E-statistic is relatively GROW if and only if it is also GROW for the hypothesis testing
problem (2.8).

After inspecting that Proposition 2.4.4 indeed applies under the assumptions of
Corollary 2.4.3, we can conclude the following corollary, the main objective of this
section.

Corollary 2.4.5. Not only is T ∗ from Corollary 2.4.3 GROW, it is also relatively
GROW.

Proof. It is only left to check that, under the assumptions of Corollary 2.4.3, Proposi-
tion 2.4.4 applies. This is indeed the case because, by the invariance of the model and
Hölder’s inequality,

KL(Qg,Pg) = KL(Q1,P1) ≤
⎛

⎝
EQ

1

⎡
⎢
⎢
⎢
⎢
⎣

∣ln
q1(X

n)

p1(Xn)
∣

1+ε⎤
⎥
⎥
⎥
⎥
⎦

⎞

⎠

1
1+ε

,

which was assumed to be finite.

Proof of Proposition 2.4.4. Let g be a fixed group element of G. Recall from Re-
mark 2.3.4 that we may assume that both models are dominated by a left invariant
measure ν on X . By Theorem 1 of GHK (its simplest instantiation in their Section
2), any time that infh∈GKL(Qg,Ph) < ∞, there exists a subprobability density p̄ on
Xn relative to the left-invariant measure ν with two key properties: first, the function
T ⋆n(X

n) = qg(X
n)/p̄(Xn) is an E-statistic; second, T ⋆n achieves the supremum in (2.7).

Moreover, the theorem implies that

sup
T E-stat.

EQ
g [lnTn(X

n
)] = EQ

g [ln
qg(X

n)

p̄(Xn)
] = inf

Π0

KL(Qg,Π
g′

0 Pg′), (2.16)

where the infimum is over all distributions Π0 on G. We will show that for any pair
g, h ∈ G and any prior Π on G, there exists a prior Π̃ such that

KL(Qg,Π
g′

0 Pg′) = KL(Qh, Π̃
g′Pg′). (2.17)

From this, our claim will follow: by symmetry, the previous display implies that
g ↦ supTn E-stat.E

Q
g [lnTn(X

n)] is constant over G because of its relation to the KL
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minimization in (2.16). Let p̄ = ∫ pgdΠ(g), use both the invariance of ν and of Q, and
compute

KL(Qg,Π
g′Pg′) = E

Q
g [ln

qg(X
n)

p̄(xn)
]

= ∫ qg(x
n
) ln

qg(x
n)

p̄(xn)
dν(xn)

= ∫ qh(hg
−1xn) ln

qh(hg
−1xn)

p̄(xn)
dν(xn).

Next, define Π̃ as the probability distribution on G that assigns Π̃{B} = Π{gh−1B}
for any measurable set B ⊆ G. Then

p̄(xn) = ∫ pg(x
n
)dΠ(g) = ∫ pgh−1g(x

n
)dΠ̃(g) = ∫ pg(hg

−1xn)dΠ̃(g).

Define p̃ = ∫ pgdΠ̃(g). The two last displays together imply that

KL(Qg,Π
g′Pg′) = ∫ qh(hg

−1xn) ln
qh(hg

−1xn)

p̃(hg−1xn)
dν(xn).

After a change of variable and using the invariance of ν, the right hand side of this
equation equals KL(Qg, Π̃

g′Pg′). Thus, this last equation is nothing but (2.17), as
was our objective. By our previous discusion, the result follows.

2.5. Invariance and Sufficiency

The relationship between invariance and sufficiency has been thoroughly investigated
[Hall et al., 1965, 1995, Berk, 1972, Nogales and Oyola, 1996]. Consider a G-invariant
hypothesis testing problem such that a sufficient statistic is available. If the action of G
on the original data space induces a free action on the sufficient statistic, there must
be a maximally invariant function of the sufficient statistic. With this structure in
mind, the results presented thus far suggest two approaches for solving the hypothesis
testing problem. The first is to reduce the data using the sufficient statistic, and to
test the problem using the maximally invariant function of the sufficient statistic. The
second approach is to use the maximally invariant function of the original data. These
two approaches yield two potentially different growth-optimal E-statistics, and one
question arises naturally: are both approaches equivalent? In this section we show
that this is indeed the case, under certain conditions.

We now introduce the setup formally. At the end of this section we revisit our
guiding example, the t-test, and show how the results of this section apply to it. Let
Θ be the parameter space, and let δ = δ(θ) be a maximally invariant function of θ for
the action of G on Θ. Let sn ∶ X

n → Sn be a sufficient statistic for θ ∈ Θ. Consider
again the hypothesis testing problem in the form presented in (2.2). Assume further
that G acts freely and continuously on the image space Sn of the sufficient statistic
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2. E-statistics, Group Invariance, and Anytime-Valid Testing

Sn = sn(X
n), and assume that sn is compatible with the action of G in the sense

that, for any Xn ∈ Xn and any g ∈ G, the identity gsn(X
n) = sn(gX

n) holds, where
(g, s) ↦ gs makes reference to the action of G on Sn. Let MX ,n = mX ,n(X

n) and
MS,n = mS,n(Sn) be two maximally invariant functions for the actions of G on Xn

and Sn, respectively. Because of their invariance, the distributions of MX ,n and MS,n
depend only on the maximally invariant parameter δ. Hall et al. [1965, Section II.3]
proved that, under regularity conditions, if SX ,n = sX ,n(X

n) is sufficient for θ ∈ Θ,
then the statistic MS,n =mS,n(sn(X

n)) is sufficient for δ. In that case, we call MS,n
invariantly sufficient. Here we state the version of their result, attributed by Hall et al.
[1965] to C. Stein, that suits best our purposes4.

Theorem 2.5.1 (C. Stein). If there exists a Haar measure on the group G, the statistic
MS,n = mS,n(sn(X

n)) is invariantly sufficient, that is, it is sufficient for the maxi-
mally invariant parameter δ.

With this theorem at hand, and the fact that the KL divergence does not decrease
by the application of sufficient transformations, we obtain the following proposition.

Proposition 2.5.2. Let sn ∶ X
n → Sn be sufficient statistic for θ ∈ Θ. Assume that G

acts freely on Sn and that sn(gX
n) = gsn(x

n) for all Xn ∈ Xn and g ∈ G. Let mS,n be
a maximal invariant for the action of G on Sn, and let MS,n =mS,n(sn(X

n)). Then,

KL (P
MX ,n

δ1
,P

MX ,n

δ0
) = KL (P

MS,n

δ1
,P

MS,n

δ0
) .

Proof. The function MS,n =mS,n(sn(X
n)) is invariant, and consequently its distribu-

tion only depends on the maximally invariant parameter δ. Since MX ,n is maximally
invariant for the action of G on Xn, there is a function f such that MS,n = f(MX ,n).
By Stein’s theorem, Theorem 2.5.1, MS,n is sufficient for δ. Consequently, f is a suffi-
cient transformation. Hence, from the invariance of the KL divergence under sufficient
transformations, the result follows.

Via the factorization theorem of Fisher and Neyman, the likelihood ratio for the
maximal invariant MX ,n coincides with that of the invariantly sufficient MS,n. As a
consequence, we obtain the answer to the motivating question of this section: per-
forming an invariance reduction on the original data and on the sufficient statistic are
equivalent.

Corollary 2.5.3. Under the assumptions of Proposition 2.5.2, if Sn = sn(X
n),

T ∗n(X
n
) =

p
MX ,n

δ1
(mX ,n(X

n))

p
MX ,n

δ0
(mX ,n(Xn))

=
p
MS,n

δ1
(mS,n(Sn))

p
MS,n

δ0
(mS,n(Sn))

.

Hence, if assumptions of Corollary 2.4.3 also hold, the likelihood ratio for the invari-
antly sufficient statistic MS,n is (relatively) GROW.

4The assumption that there exists an invariant measure on G implies what Hall et al. [1965] call
Assumption A. [see Hall et al., 1965, discussion in p. 581]
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2.6. Anytime-valid testing under group invariance

Example 2.1.1 (continued). We have seen that a maximally invariant function of the
data is MX ,n = mX ,n(X

n) = (X1/ ∣X1∣ , . . . ,Xn/ ∣X1∣) while the t-statistic MS,n =
mS,n(X

n)∝ µ̂n/σ̂n is a maximally invariant function of the sufficient statistic sn(X
n) =

(µ̂n, σ̂n). Stein’s theorem (Theorem 2.5.1) shows that the t-statistic MS,n is sufficient
for the maximally invariant parameter δ = µ/σ. Corollary 2.5.3 shows that the likeli-
hood ratio for the t-statistic is relatively GROW.

2.6. Anytime-valid testing under group invariance

The main objective of this section is to prove Proposition 2.1.2, the main consequence
of our results pertaining testing under optional stopping and continuation. We now
assume that the observations are made sequentially. At the end of the section we
describe the consequences to our main example, the t-test. We begin by defining our
working model for this scenario. Let X = (Xn)n∈N be a random process, where each
Xn is an observation that takes values on a space X . Let (Mn)n∈N be a sequence
where, for each n, Mn = mn(X

n) is a maximally invariant function for the action of
G on Xn. If, at each sample size n, the assumptions of Corollary 2.4.3 hold, we have
shown that

T ∗n(X
n
) =

qMn(mn(X
n))

pMn(mn(Xn))
, (2.18)

the likelihood ratio for the maximal invariant Mn = mn(X
n), defines a sequence

T ∗ = (T ∗n)n∈N of relatively GROW E-statistics for (2.8). With an eye towards proving
Proposition 2.1.2, in the next proposition we show that T ∗ = (T ∗n)n∈N is a martingale.

Proposition 2.6.1. If M = (Mn)n∈N is a sequence of maximally invariant statistics
Mn = mn(X

n) for the action of G on Xn, the process T ∗ = (T ∗n)n∈N given by (2.18)
is a nonnegative martingale with respect to M under any of the elements of the null
hypothesis {Pg}g∈G.

Proof. Let g ∈ G be arbitrary but fixed. We start by showing that T ∗n equals the
likelihood ratio for Mn = (M1, . . . ,Mn) between Pg and Qg. For each t > 1, the
maximally invariant statistic at n − 1, Mn−1 = mn−1(X

n−1) is invariant if seen as a
function of Xn. Hence, by the maximality of mn, Mn−1 can be written as a function
of Mn. Repeating this reasoning n − 1 times yields that Mn contains all information
about the value of Mn−1 = (M1, . . . ,Mn−1), all the maximally invariant statistics at
previous times. Two consequences fall from these observations. First, no additional
information about T ∗n is gained by knowing the value of Mn−1 = (M1, . . . ,Mn−1) with
respect to only knowing Mn−1, that is, EP

g [T
∗
n ∣Mn−1] = EP

g [T
∗
n ∣M

n−1]. Second, the
likelihood ratio between Pg and Qg for the sequence M1, . . . ,Mn equals the likelihood
ratio for Mn alone, that is,

T ∗n(X
n
) =

qM1,...,Mn(m1(X
1), . . . ,mn(X

n))

pM1,...,Mn(m1(X1), . . . ,mn(Xn))
.
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2. E-statistics, Group Invariance, and Anytime-Valid Testing

The previous two consequences, and a computation, together imply that T ∗ is an M -
martingale under Pg, that is, EP

g [T
∗
n ∣M

n−1] = T ∗n−1. Since g ∈ G was arbitrary, the
result follows.

With this result at hand, we are in the position to prove Proposition 2.1.2 from
Section 2.1.4, the main result in this work pertaining sequential testing. We end this
section with the implications to the t-test.

Proof of Proposition 2.1.2. From Proposition 2.6.1, we know that T ∗ = (Tn)n∈N is
a nonnegative martingale with expected value equal to one. Let ξ = (ξn)n be the
sequential test given by ξn = 1{T

∗
n ≥ 1/α}. The anytime-validity at level α of ξ, is a

consequence of Ville’s inequality, and the fact that the distribution of each T ∗n does
not depend on g. Indeed, these two, together, imply that

sup
g∈G

Pg{T
∗
n ≥ 1/α for some n ∈ N} ≤ α.

This implies the first statement. Now, let τ ≤ ∞ be a stopping time with respect to
M . If the stopping time τ is almost surely bounded, T ∗τ is an E-statistic by virtue
of the optional stopping theorem. However, since T ∗ is a nonnegative martingale,
Doob’s martingale convergence theorem implies the existence of an almost sure limit
T ∗∞. Even when τ might be infinite with positive probability, Theorem 4.8.4 of Durrett
[2019] implies that T ∗τ is still an E-statistic.

Example 2.1.1 (continued). In the previous section we saw that T ∗n , the likelihood ratio
for the t-statistic is a GROW E-statistic. This, in conjunction with Proposition 2.1.2
implies that the test ξ = (ξn)n∈N defined by ξn = 1{T

∗
n ≥ 1/α} is anytime-valid at level α

and that the randomly stopped E-statistic T ∗τ remain one as long as the stopping time
τ is with respect to the sequence of maximally invariant statistics. In Appendix A.2
we show a situation where the optionally stopped E-statistic is not an E-statistic if we
take a stopping time that depends on the full data.

2.7. Testing multivariate normal distributions under
group invariance

We show how the theory developed in the previous sections can be applied to hypothe-
sis testing under normality assumptions. The family of d-dimensional normal distribu-
tions carries a natural invariance under scale-location transformations. The group of
interest is the affine linear group AL(d), the group consisting of all pairs (v,A) with v ∈
Rd, and A an invertible d×d matrix, and group operation (v,A)(u,B) = (v+Au,AB).
By considering amenable subgroups of AL(d), we obtain useful examples to which our
results apply. We develop two in detail. The first is an alternative to Hotelling’s T 2 for
testing whether the mean of the distribution is identically zero, and results from the
consideration A ∈ LT+(d), the group of lower triangular matrices with positive entries
on the diagonal, and v = 0. This test is in direct relation with the step-down procedure
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2.7. Testing multivariate normal distributions under group invariance

of Roy and Bargmann [1958]5 [see also Subbaiah and Mudholkar, 1978]. The second
example that we consider is, in the setting of linear regression, a test for whether or
not a specific regression coefficient is identically zero. It results from the restriction
A = cI, a multiple of the d × d identity matrix.

2.7.1. The lower triangular group

Consider data Xn = (X1, . . . ,Xn) where Xi ∈ X = Rd. We assume each Xi to have a
Gaussian distribution N(µ,Σ) with unknown mean µ ∈ Rd and covariance matrix Σ.
We consider a test for whether the mean µ of the distribution is zero. Before stating
explicitly our hypothesis testing problem, we first reparametrize the Gaussian model
using Cholesky’s decomposition. Indeed, for a positive definite matrix Σ, its Cholesky
decomposition is Σ = ΛΛ′ for a unique Λ ∈ LT+(d). Consequently, LT+(d) can be used
to parametrize all covariance matrices. Hence, we may take the parameter space Θ
to be Θ = Rd × LT+(d). In this parametrization, the likelihood of the original data
Xn = (X1, . . . ,Xn) takes the form

pX
n

Λ,δ(X
n
) =

1

(2π)n(detΛ)n
exp(−

1

2

n

∑
i=1
∥Λ−1Xi − δ∥

2
) .

Consider the following hypothesis testing problem, which generalizes the t-test to
dimensions d ≥ 1:

H0 ∶ Λ
−1µ = δ0 vs. H1 ∶ Λ

−1µ = δ1, (2.19)

from which a test for whether µ is zero can be obtained by setting δ0 = 0. We now
apply our results to this testing problem. Recall that the group LT+(d) is amenable
and acts on Θ by

(L, (µ,Λ))↦ (Lµ,LΛ) (2.20)

for each (µ,Λ) ∈ Θ and L ∈ LT+(d), and a maximally invariant parameter is δ =
Λ−1µ. The group LT+(d) acts on Xn by componentwise matrix multiplication, and
the Gaussian model is invariant under this action. With the help of Remark 2.3.1,
the assumptions of Corollary 2.4.3 are readily checked anytime that n ≥ d, and we can
conclude that, for any maximally invariant function MX ,n = mX ,n(X

n) of the data,

the likelihood ratio T ∗n = p
MX ,n

δ1
/p

MX ,n

δ0
is GROW. However, from our discussion in

Section 2.5, this likelihood ratio coincides with that of a invariantly sufficient statistic
for δ. We now proceed to compute one such a statistic. Recall that the pair Sn =

sn(X
n) = (X̄n, V̄n), consisting of the unbiased estimators X̄n for the mean and the

covariance matrix V̄n is a sufficient statistic for (µ,Σ). We can apply to the sufficient
statistic the same considerations that we applied to the parameter space. For n ≥ d,
we can perform the Cholesky decomposition of the empirical covariance matrix V̄n =

5Even though not explicitly in group-theoretic terms, the test of Roy and Bargmann [1958] test is
based on a different maximally invariant function of the data. The fact that the test statistic of
Roy and Bargmann [1958] is maximally invariant under the action of LT+(d) is shown by Subbaiah
and Mudholkar [1978]
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LnL
′
n. The statistic MS,n = mS,n(Sn) =

√
n

n−1L
−1
n Ȳn is maximally invariant under

the action (2.20), and, by our discussion from Section 2.5, invariantly sufficient. In
other words, MS,n is sufficient for δ. Hence, the GROW E-statistic can be written

as T ∗n = p
MS,n

δ1
/p

MS,n

δ0
. For the purposes of sequential testing, Proposition 2.1.2 shows

that the sequential test (ξ∗n,α ∶ n ∈ N) with ξ∗n,α = 1{T ∗n ≥ 1/α} is anytime-valid. For
completeness, we give an explicit expression for the likelihood ratio T ∗S,n when δ0 = 0.
From this expression, the likelihood ratio for other values of δ0 can be computed. We
show the computations in Proposition A.1.1.

Lemma 2.7.1. For the maximally invariant statistic MS,n =
√

n
n−1L

−1
n Ȳn, we have

p
MS,n

δ (MS,n)

p
MS,n

0 (MS,n)
= e−

n
2 ∥δ∥

2

∫ en⟨δ,TA−1n MS,n⟩dPn,I(T ), (2.21)

where An is the lower triangular matrix resulting from the Cholesky decomposition
I+MS,nM

′
S,n = AnA

′
n, and PT

n,I is the distribution according to which nTT ′ ∼W (n, I),
a Wishart distribution.

Proof. Use Proposition A.1.1 with γ =
√
nδ, X =

√
nX̄n, m = n − 1, and S = V̄n.

2.7.2. A subset of the affine group AL(d): linear regression

Consider the problem of testing whether one of the coefficients of a linear regression is
zero under Gaussian error assumptions. Assume that the observations are of the form
(X1, Y1, Z1), . . . , (Xn, Yn, Zn), where, for each i, Xi, Yi ∈ R and Zi ∈ Rd. We consider
the the linear model given by

Yi = γXi + β
′Zi + σεi,

where γ ∈ R, β ∈ Rd and σ ∈ R+ are the parameters, and ε1, . . . , εn are i.i.d. errors with
standard Gaussian distribution N(0,1). We are interested in testing

H0 ∶ γ/σ = δ0 vs. H1 ∶ γ/σ = δ1. (2.22)

A test for whether γ = 0 is readily obtained by taking δ0 = 0. This problem is in-
variant under the action of the subgroup G of AL(d) that results from the restric-
tion to the pairs (A,v) where A = cI, a multiple of the d × d identity matrix, and
v ∈ Rd [Kariya, 1980, Eaton, 1989]. This group is amenable. On the observation
space, G acts by ((cI, v), (X,Y,Z)) ↦ (X, cY + v′Z,Z); on the parameter space, by
((cI, v), (γ, β, σ))↦ (cγ, cβ+v, cσ). A maximally invariant parameter is δ = γ/σ. With
this parametrization, the conditional density of Y becomes

pδ,β,σ(Y ∣X,Z) =
1

(2πσ2)1/2
exp(−

1

2σ2
(Y − β′Z − σδX)2) .

Define the vectors Yn = (Y1, . . . , Yn)
′ and Xn = (X1, . . . ,Xn)

′, and the n × d matrix
Zn = [Z1, . . . , Zn]

′ whose rows are the vectors Z1, . . . , Zn. Assume that Z has full
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rank. A maximally invariant function of the data is given by Mn = (
An′Yn

∥An′Yn∥ ,Xn, Zn),

where An is a (n − d) × n matrix whose columns form an orthonormal basis for the
orthogonal complement of the column space of Zn. It follows that An′An = In−d and
AnAn′ = In − Zn(Zn′Zn)−1Zn′, where and In is the n × n identity matrix [Kariya,
1980, Bhowmik and King, 2007]. In order to compute the likelihood of the maximally
invariant statistic Mn, we assume that the mechanism that generates Xn and Zn

is the same under both hypotheses. It only remains to compute the distribution of

Un =
An′Yn

∥An′Yn∥ conditionally on Xn and Zn. Bhowmik and King [2007] show that for

arbitrary effect size δ, the density of this distribution is given by

pUn

δ (u∣Xn, Z
n
) =

1

2
Γ(

k

2
)π−

k
2 ec(δ) [1F1 (

k

2
,
1

2
,
a2(u, δ)

2
) +

√
2a(u, δ)

Γ((1 + k)/2)

Γ(k/2)
1F1 (

1 + k

2
,
3

2
,
a2(u, δ)

2
)] ,

where k = n − d, u is a unit vector in Rk, a is the function a (u, δ) = δX ′
nA

nu, c (δ) =
− 1

2
δ2X ′

nA
nAn′Xn, and 1F1 is the confluent hypergeometric function. This can be used

to compute the relatively GROW E-statistic in Theorem 2.4.2 for (2.22). In fact, they
compute in more generality the density of the maximally invariant statistic when X
is allowed to have a non-linear effect on Y . This does not impact the group invariance
structure of the model, so that our results can also be used in this semilinear setting
if the hypotheses are adjusted accordingly.

2.8. Composite invariant hypotheses

Until now we have considered null and alternative hypotheses that become simple
when viewed through the lens of the maximally invariant statistic. As we saw, in the
t-test this corresponds to testing simple hypotheses about the effect size δ. However,
there are situations where it is desirable to contemplate hypotheses that are composite
in the maximally invariant parameter. Later in this section, we will revisit the t-
test, and view Hotelling’s T 2 test through this lens in Section 4.7. We also consider
problems in which a fixed prior is placed on the maximally invariant parameter δ, in
Corollary 2.8.3, thereby implementing the method of mixtures, a standard method to
combine test martingales going back to Wald [1945] and Darling and Robbins [1968a].
It was already used in the context of our t-test example by Lai [1976].

Consider, as in the previous section, Θ to be the parameter space on which G acts
freely and continuously. Let δ be a maximally invariant parameter. Suppose that the
parameter space Θ can be decomposed as Θ ≅ G×Θ/G. Consider the testing problem

H0 ∶X
n
∼ Pg,δ, δ ∈∆0, g ∈ G vs. H1 ∶X

n
∼Qg,δ, δ ∈∆1, g ∈ G, (2.23)

where ∆0,∆1 are two sets of possible values of the maximally invariant parameter δ =
δ(θ). Recall that the distribution of a maximally invariant function of the data Mn =

mn(X
n) depends on the parameter θ only through δ. Consequently, the alternatives in
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2. E-statistics, Group Invariance, and Anytime-Valid Testing

the previous hypothesis testing problem are not simple when data are reduced through
invariance. The main objective of this section is to show that when searching for a
GROW E-statistic for (2.23) it is enough to do so for the invariance-reduced problem

H0 ∶Mn ∼ P
Mn

δ , δ ∈∆0 vs. H1 ∶Mn ∼Q
Mn

δ , δ ∈∆1. (2.24)

We follow the same steps that we followed in Section 2.4, and begin by showing that
if there exists a minimizer for the KL minimization problem associated to (2.24), then
it has the same value as that associated to (2.23).

Proposition 2.8.1. Assume that there exists a pair of probability distributions Π⋆0,Π
⋆
1

on ∆0 and ∆1 that satisfy

KL(Π⋆δ1 QMn

δ ,Π⋆δ0 PMn

δ ) = min
Π0,Π1

KL(Πδ
1Q

Mn

δ ,Πδ
0P

Mn

δ ). (2.25)

For each g ∈ G, define the probability distributions P⋆g = Π
⋆δ
0 Pg,δ and Qg = Π

⋆δ
1 Qg,δ

on Xn. If the models {P⋆g}g∈G and {Q⋆g}g∈G satisfy the assumptions of Theorem 2.4.2,
then

inf
Π0,Π1

KL(Πg,δ
1 Qg,δ,Π

g,δ
0 Pg,δ) = min

Π0,Π1

KL(Πδ
1Q

Mn

δ ,Πδ
1P

Mn

δ ).

Proof. Let Πg,δ
0 ,Πg,δ

1 be two probability distributions on G ×∆0 and G ×∆1, respec-
tively. If we call Πδ

0 and Πδ
1 their respective marginals on ∆0 and ∆1, then, the

information processing inequality implies that

KL(Πg,δ
1 Qg,δ,Π

g,δ
0 Pg,δ) ≥ KL(Πδ

1Q
Mn

δ ,Πδ
0P

Mn

δ ) ≥ KL(Π⋆δ1 QMn

δ ,Π⋆δ0 PMn

δ ).

This means that the right-most member of the previous display is a lower bound on
our target infimum, that is,

inf
Π0,Π1

KL(Πg,δ
1 Qg,δΠ

g,δ
0 Pg,δ) ≥ KL(Π⋆δ1 QMn

δ ,Π⋆δ0 PMn

δ ). (2.26)

To show that this is indeed an equality, it suffices to prove it when taking the infimum
over a smaller subset of probability distributions Π0,Π1. We proceed to build such a
subset. Let P(Π⋆δ0 ) be the set of probability distributions on G ×∆0 with marginal
distribution Π⋆δ0 . Define analogously the set of probability distributions P(Π⋆δ1 ) on
G ×∆1. By our assumptions, Theorem 2.4.2 can be readily used to conclude that

inf
(Π0,Π1)∈P(Π⋆δ0 )×P(Π⋆δ1 )

KL(Πg,δ
1 Qg,δ,Π

g,δ
0 Pg,δ) = KL(Π⋆δ1 QMn

δ ,Π⋆δ0 PMn

δ ) (2.27)

holds; (2.26) and (2.27) together imply the result that we were after.

From the previous proposition, using Theorem 2.4.1 and the steps used for Corol-
laries 2.4.3 and 2.4.5, we can conclude that the ratio of the Bayes marginals for the
invariance-reduced dataMn using the optimal priors Π⋆0 and Π⋆1 is a relatively GROW
E-statistic for (2.23). We now state the corollary and apply it to to our running ex-
ample, the t-test.
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2.8. Composite invariant hypotheses

Corollary 2.8.2. Under the assumptions of Proposition 2.8.1, the statistic given by

T ⋆(Xn
) =
∫ q

Mn

δ (mn(X
n))dΠ⋆1(δ)

∫ p
Mn

δ (mn(Xn))dΠ⋆0(δ)

is a GROW E-statistic for (2.23).

Example 2.1.1 (continued). Suppose, in the t-test setting, that we are now interested
in testing

H0 ∶ δ ∈ (−∞, δ0] vs. H1 ∶ δ ∈ [δ1,∞) (2.28)

for some δ0 < δ1, where, recall, δ = µ/σ is the maximally invariant parameter. Corol-
lary 2.8.2 shows that no loss is incurred if we only look among E-statistics that are
a function of the maximally invariant function Mn, the t-statistic. Because the den-
sity of t-statistic is monotone in δ, we readily conclude that the minimum in (2.25)
is achieved by the probability distributions Π⋆0 and Π⋆1 that put all of their mass on
δ0 and δ1, respectively. Corollary 2.8.2 yields that T ∗n = p

Mn

δ1
/pMn

δ0
is GROW among

all possible E-statistics of the original data (not only the scale-invariant ones). This
result can be extended to other families with this type of monotonicity property.

A standard approach to deal with unknown parameter values, both with Bayesian
statistics and with E-statistics, is to employ proper prior distributions on the unknown
parameters. In our setting, we may want to use specific priors Π̃0 and Π̃1 on ∆0 and
∆1. If we define for each g the probability distributions P̃g = Π̃δ

0Pg,δ and Q̃g =

Π̃δ
1Qg,δ, and the resulting models {P̃g}g∈G and {Q̃g}g∈G also satisfy the conditions of

Corollary 2.4.3, the proof of Proposition 2.8.1 also shows the following corollary.

Corollary 2.8.3. Let Π̃0 and Π̃1 be two probability distributions on ∆0 and ∆1, re-
spectively. Let {P̃g}g∈G and {Q̃g}g∈G be two probability models defined by P̃g = Π̃

δ
0Pg,δ

and Q̃g = Π̃
δ
1Qg,δ. If {P̃g}g∈G and {Q̃g}g∈G satisfy the conditions of Corollary 2.4.3

(or more precisely, the conditions of Theorem 2.4.2 with P̃g in the role of Pg and Q̃g

in the role of Qg), then

T̃n(X
n
) =
∫ qδ(mn(X

n))dΠ̃1(δ)

∫ pδ(mn(Xn))dΠ̃0(δ)
(2.29)

is a (relatively) GROW E-statistic for testing {P̃g}g∈G against {Q̃g}g∈G.

Example 2.1.1 (continued). Jeffreys and Jeffreys [1998] proposed a Bayesian version of
the t-test based on Bayes factor (2.13), setting δ0 to 0 and putting a Cauchy prior on δ1
centered at 0. Popularized as the Bayesian t-test [Rouder et al., 2009], it is an instance
of (2.29) with Π̃1 set to aforementioned Cauchy prior and Π̃0 putting mass 1 on δ0 = 1.
It is itself an E-statistic (see GHK), but if we check the conditions of Theorem 2.4.2,
we see that condition (2.15) does not hold, due to the Cauchy distribution not having
any moments. Thus, we cannot verify whether (2.29) has the relative GROW property.
However, as soon as we replace the Cauchy prior by any prior centered at 0 for which,
for some ϵ > 0, the 2 + ϵth moment exists (such as e.g. a normal distribution centered
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at 0, as has also been proposed for this problem), we can use Lemma 2.7.1 (applied
with dimension d = 1) to infer that assumption (2.15) holds. Proposition 2.8.3 can
then be applied after all to conclude that the corresponding Bayes factor does have
the relative GROW property.

2.9. Discussion, Related and Future Work

In this concluding section we bring up an issue that deserves further discussion and
may inspire future work. It also highlights the differences between our work and related
work in a Bayesian and information-theoretic context.

2.9.1. Amenability is not always necessary

We have shown that if a hypothesis testing problem is invariant under a group G and
our assumptions are satisfied, then amenability of G is a sufficient condition for the
likelihood ratio of the maximal invariant to be GROW. A natural question is whether
amenability is also a necessary condition for the latter to hold. Not only is this of
theoretical relevance: some groups that are important for statistical practice are not
amenable. For instance, GL(d), the relevant group in Hotelling’s test, is nonamenable.
The setup of this test is similar to that in Section 2.7.1, except that the hypotheses
are given by

H0 ∶ ∥Λ
−1µ∥2 = 0 vs. H1 ∶ ∥Λ

−1µ∥2 = γ. (2.30)

A maximally invariant statistic is the T 2-statistic nX̄ ′nV̄
−1
n X̄n, where, as in Sec-

tion 2.7.1, X̄n and V̄n are the unbiased estimators of the mean and the covariance
matrix, respectively. Notice that this test is equivalent to (2.19) with the alternative
expanded to ∆ = {δ ∶ ∥δ∥2 = γ}, but that T 2 is not a maximal invariant under the lower
triangular group. However, Giri et al. [1963] have shown that for d = 2 and n = 3,
the likelihood ratio of the T 2-statistic can be written as an integral over the likelihood
ratio in (2.21) with a proper prior on δ ∈ ∆ as defined there. It follows as a result of
Proposition 2.8.1 that the likelihood ratio of the T 2-statistics is also GROW in the
case that d = 2 and n = 3. These results can be extended to the case that d = 2 with
arbitrary n by the work of Shalaevskii [1971]. As future work, it may be interesting to
investigate whether amenability can be more generally replaced by a weaker condition,
and/or whether a counterexample to Theorem 2.4.2 for nonamenable groups can be
given.

2.9.2. Comparison to Sun and Berger [2007] and Liang and Barron
[2004]: two families vs. one

As the above example illustrates, it is sometimes possible to represent the same H0

and H1 via (at least) two different groups, say Ga and Gb. Group Ga is combined
with parameter of interest in some space ∆a and priors Π∗δaj on ∆a achieving (2.25)
relative to group Ga, for j = 0,1; group Gb has parameter of interest in ∆b and priors
Π∗δbj achieving (2.25) relative to group Gb; yet the tuples Ta = (Ga,∆a,{Π

∗δa
j }j=0,1)
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and Tb = (Gb,∆b,{Π
∗δb
j }j=0,1) define the same hypotheses H0 and H1. That is, the

set of distributions {P∗g}g∈Ga obtained by applying Proposition 2.8.1 with group Ga

(representing H0 defined relative to group Ga) coincides with the set of distributions
{P∗g}g∈Gb

obtained by applying Proposition 2.8.1 with group Gb (representing H0

defined relative to group Gb); and analogously for the set of distributions {P∗g}g∈Ga

and the set of distributions {P∗g}g∈Gb
. In the example above, Ga was GL(d) and the

priors Π∗δa0 ,Π∗δa1 were degenerate priors on 0 and γ as in (2.30), respectively; Gb was
the lower triangular group with a specific prior as indicated above. In such a case
with multiple representations of the same H0 and H1, using the fact that the notion
of ‘GROW’ does not refer to the underlying group, Corollary 2.8.2 can be used to
identify the GROW E-statistic as soon as the assumptions of Proposition 2.8.1 hold
for at least one of the tuples Ta or Tb. Namely, if the assumptions hold for just one of
the two tuples, we use Corollary 2.8.2 with that tuple; then T ∗(Xn) as defined in the
corollary must be GROW, irrespective of whether T ∗(Xn) based on the other tuple
is the same (as it was in the example above) or different. If the assumptions hold for
both groups, then, using the fact that the GROW E-statistic is ‘essentially’ unique
(see Theorem 1 of GHK for definition and proof), it follows that T ∗(Xn) as defined
in Corollary 2.8.2 must coincide for both tuples.

Superficially, this may seem to contradict Sun and Berger [2007] who point out that
in some settings, the right Haar prior is not uniquely defined, and different choices for
right Haar prior give different posteriors. To resolve the paradox, note that, whereas
we always formulate two models H0 and H1, Sun and Berger [2007] start with a
single probabilistic model, say P, that can be written as in (2.1) for some group G.
Their example shows that the same P can sometimes arise from two different groups,
and then it is not clear what group, and hence what Haar prior to pick, and their
quantity of interest—the Bayesian posterior, i.e. a ratio between Bayes marginals for
the same model P at different sample sizes n and n − 1—can depend on the choice.
In contrast, our quantity of interest, the GROW e-statistic T ∗n(X

n), a ratio between
Bayes marginals for different models H0 and H1 at the same sample size, is uniquely
defined as soon as there exists one group G with H0 and H1 as in (2.2) for which
the assumptions of Theorem 2.4.2 hold; or more generally, as soon as there exists one
tuple T = (G,∆,{Π∗δj }j=0,1) for which the assumptions of Proposition 2.8.1 hold, even
if there exist other such tuples.

The consideration of two families H0 and H1 vs. a single P is also one of the main
differences between our setting and the one of Liang and Barron [2004], who provide ex-
act min-max procedures for predictive density estimation for general location and scale
families under Kullback-Leibler loss. Their results apply to any invariant probabilistic
model P as in (2.1) where the invariance is with respect to location or scale (and more
generally, with respect to some other groups including the subset of the affine group
that we consider in Section 2.7.2). Consider then such a P and let pMn(mn(X

n)) be
as in (2.12). As is well-known, provided that n′ is larger than some minimum value,

for all n > n′, r(Xn′+1, . . . ,Xn ∣ X1, . . . ,Xn′) ∶= p
Mn(mn(X

n))/pMn′ (mn′(X
n′)) de-

fines a conditional probability density for Xn′+1, . . . ,Xn; this is a consequence of the
formal-Bayes posterior corresponding to the right Haar prior becoming proper after
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n′ observations, a.s. under all P ∈ P. For example, in the t-test setting, n′ = 1. Liang
and Barron [2004] show that the distribution corresponding to r minimizes the Pn′ -

expected KL divergence to the conditional distribution Pn ∣ Xn′ , in the worst case
over all P ∈ P. Even though their optimal density r is defined in terms of the same
quantities as our optimal statistic T ∗n , it is, just as Berger and Sun [2008], considered
above, a ratio between likelihoods for the same model at different sample sizes, rather
than, as in our setting, between likelihoods for different models, both composite, at
the same sample sizes. Our setting requires a joint KL minimization over two families,
and therefore our proof techniques turn out quite different from their information- and
decision-theoretic ones.

2.10. Proof of the main theorem, Theorem 2.4.2

For the proof of the main result, we use an equivalent definition of amenability to
the one that was already anticipated in Section 2.2.2. We take the one that suits our
purposes best [see Bondar and Milnes, 1981, p. 109, Condition A1].

Assumption 2 (Amenability of G). There exists a increasing sequence of symmetric
compact subsets C1 ⊆ C2, ⋅ ⋅ ⋅ ⊂ G such that, for any compact set K ⊆ G,

ρh{h ∈ Ci}

ρh{h ∈ CiK}
→ 1

as i→∞.

In this formulation, amenability is the existence of almost invariant symmetric com-
pact subsets of the group G. We use these sets to build a sequence of almost invariant
probability measures when G is noncompact.

Proof of Theorem 2.4.2. Under our assumptions, Theorem 2 of Bondar [1976] implies
the existence of a bimeasurable one-to-one map Xn → G × Xn/G such that r(xn) =
(h(xn),m(xn)) and r(gxn) = (gh(xn),m(xn)) for h(xn) ∈ G and m(xn) ∈ Xn/G (see
Remark 2.3.2). Hence, by a change of variables, we can assume that the densities are
with respect to the image measure µ under r on G×Xn/G. Call the random variables
M =m(Xn) and H = h(Xn). We can therefore assume, without loss of generality, that
the data is of the form (H,M), that the group G acts canonically by multiplication on
the first component, and that the measures are with respect to a G-invariant measure
ν = λ × β where λ is the Haar measure on G and β is some measure on Xn/G (see

Remark 2.3.4). For each g ∈ G, write P
H ∣m
g and Q

H ∣m
g for the conditional probabilities

PH
g [ ⋅ ∣M = m] and QH

g [ ⋅ ∣M = m], which can be obtained through disintegration
[see Chang and Pollard, 1997], and write pg( ⋅ ∣m) and qg( ⋅ ∣m) for their respective
conditional densities with respect to the left Haar measure λ. Recall, we write P1 and
Q1 where 1 is the unit element of the group G.
We turn to our KL minimization objective. The chain rule for the KL divergence

implies that, for any probability distribution Π on G,

KL(ΠgQg,Π
gPg) = KL(QM ,PM

) + ∫ KL(ΠgQH ∣m
g ,ΠgPH ∣m

g )dQ(m). (2.31)
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In order to prove our claim, we will build a sequence {Πi}i∈N of probability distribu-
tions on G such that the term in (2.31) pertaining the conditional distributions given
M—the second term on the right hand side—goes to zero, that is, such that

∫ KL(Πg
iQ

H ∣m
g ,Πg

iP
H ∣m
g )dQ(m)→ 0 as i→∞. (2.32)

We define the distributions Πi as the normalized restriction of the right Haar measure
ρ to carefully chosen compact sets Ci ⊂ G, that we describe in brief. In other words,
for B ⊆ G measurable, we define Πi by

Πg
i {g ∈ B} ∶=

ρg{g ∈ B ∩Ci}

ρg{g ∈ Ci}
, (2.33)

Next, the choice of compact sets Ci. For technical reasons that will become apparent
later, we pick Ci = JiKiLi, where Ji, Ki, and Li are increasing compact symmetric
neighborhoods of the unity of G with the growth condition that Ji is not much bigger—
measured by ρ–than Ci. More precisely, we choose Ci according to the following
lemma.

Lemma 2.10.1. Under the amenability of G there exist sequences {Ji}i∈N, {Ki}i∈N and
{Li}i∈N of compact symmetric neighborhoods of the unity of G, each increasing to
cover G, such that

ρh{h ∈ Ji}

ρh{h ∈ JiKiLi}
→ 1

as i→∞.

There is no risk of dividing by ∞ in (2.33): by the continuity of the group operation
each Ci is compact, hence ρ{Ci} < ∞. Lemma 2.10.1 ensures that Πg

i {g ∈ Ji} → 1

as i → ∞, a fact that will be useful later in the proof. Write Q
H ∣m
i ∶= Πg

iQ
H ∣m
g , and

P
H ∣m
i ∶= Πg

iP
H ∣m
g , and qi(h∣m) and pi(h∣m) for their respective densities. We use a

change of variable and split the integral in our quantity of interest from (2.32). To
this end, notice that for any function f = f(h,m), the expted value EQ

g [f(H,M)] =

EQ
1 [f(gH,M)]. Indeed,

∫ f(h,m)qg(h,m)dλ(g)dβ(m) = ∫ f(h,m)q1(g
−1h,m)dλ(g)dβ(m)

= ∫ f(gh,m)q1(h,m)dλ(g)dβ(m).
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Use this fact to obtain that

∫ KL(Πg
iQ

H ∣m
g ,Πg

iP
H ∣m
g )dQ(m) = ∫ EQ

1 [ln
qi(gH ∣M)

pi(gH ∣M)
]dΠi(g)

= ∫ EQ
1 [1{gH ∈ JiKi} ln

qi(gH ∣M)

pi(gH ∣M)
]dΠi(g)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
A

+

∫ EQ
1 [1{gH ∉ JiKi} ln

qi(gH ∣M)

pi(gH ∣M)
]dΠi(g)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
B

.

(2.34)

We separate the rest of the proof in two steps, one for bounding each term in (2.34).
These steps use two technical lemmas whose proof we give after showing how they
help at achieving our goals.
Bound for A in (2.34): Recall that that

ln
qi(gh∣m)

pi(gh∣m)
= ln ∫

1{g′ ∈ JiKiLi} qg′(gh∣m)dρ(g
′)

∫ 1{g′ ∈ JiKiLi}pg′(gh∣m)dρ(g′)

Use N = JiKi—not necessarily symmetric—and L = Li in the following lemma.

Lemma 2.10.2. Let N and L be compact subsets of G. Assume that L is symmetric.
Then, for each m ∈M it holds that

sup
h∈N

ln ∫
1{g ∈ NL} qg(h∣m)dρ(g)

∫ 1{g ∈ NL} pg(h∣m)dρ(g)
≤ − lnP1{H ∈ L ∣ M =m}.

With this lemma at hand, conclude that, for all gh ∈ JiKi, and m ∈M

ln
qi(gh∣m)

pi(gh∣m)
≤ − lnP1{H ∈ Li ∣ M =m}.

At the same time this implies that A in (2.34) is smaller than

−∫ lnP1{H ∈ Li ∣ M =m}dQ(m).

Since the sets Li were chosen to satisfy Li ↑ G, the probability P{H ∈ Li ∣M =m}→ 1
monotonically for each value of m. Consequently the quantity in last display tends to
0 by the monotone convergence theorem, and so does A in (2.34). This ends the first
step of the proof. Now, we turn to the second term in (2.34).
Bound for B in (2.34): Our strategy at this point is to show that, as i→∞,

∫ Qh
1 {gh ∉ JiKi}dΠi(g)→ 0, (2.35)
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and to use (2.15) to show our goal, that B in (2.34) tends to zero. To show (2.35),
notice that if g ∈ Ji and h ∈Ki, then gh ∈ JiKi, which implies that

∫ Q1 {gH ∈ JiKi}dΠi(g) ≥Π
g
i {g ∈ Ji}Q1 {H ∈Ki} .

Since the sets Ki increase to cover G, we have Q{H ∈Ki} → 1 as i →∞, and by our
initial choice of sets Ji,Ki, Li, the probability Πg

i {g ∈ Ji}→ 1, as i→∞. Hence (2.35)
holds.

To bound the second term, we use the following lemma with Π =Πi.

Lemma 2.10.3. Let Π be a distribution on G. Then, for each h ∈ G and m ∈M, it
holds that

ln ∫
qg(h∣m)dΠ(g)

∫ pg(h∣m)dΠ(g)
≤ ∫ ln

qg(h∣m)

pg(h∣m)
dΠ(g∣h,m).

where dΠ(g∣h,m) =
qg(h∣m)dΠ(g)
∫g qg(h∣m)dΠ(g) .

After invoking the previous lemma, apply Hölder’s and Jensen’s inequality consec-
utively to bound B in (2.34) by

∬ [1{gh ∉ JiKi}∫ [ln
qg′(gh∣m)

pg′(gh∣m)
]dΠi(g

′
∣h,m)]dQ1(h,m)dΠi(g)

≤ (∫ Q1 {gH ∉ JiKi}dΠi(g))
1/q

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
→0 as i→∞ by (2.35)

×

(∬ ∣∫ [ln
qg′(gh∣m)

pg′(gh∣m)
]dΠi(g

′
∣h,m)∣

p

dQ1(h,m)dΠi(g))

1/p
(2.36)

where p = 1 + ε and q is p’s Hölder conjugate, that is, 1/p + 1/q = 1. Next, we show
that the second factor in (2.36) remains bounded as i → ∞. By Jensen’s inequality,
this quantity is smaller than

(∭ ∣ln
qg′(gh∣m)

pg′(gh∣m)
∣

p

dΠi(g
′
∣h,m)dQ1(h,m)dΠi(g))

1/p

.

After a series of rewritings and using our Assumption (2.15), we will show that this
quantity is bounded. Now, we use again the change of variable that we used to obtain
(2.34)—but now in the opposite direction—to deduce that

∭ ∣ln
qg′(gh∣m)

pg′(gh∣m)
∣

p

dΠi(g
′
∣h,m)dQ1(h,m)dΠi(g) =

∭ ∣ln
qg′(h∣m)

pg′(h∣m)
∣

p

dΠi(g
′
∣h,m)dQg(h,m)dΠi(g) =

∬ ∣ln
qg′(h∣m)

pg′(h∣m)
∣

p

dΠi(g
′
∣h,m)dQi(h,m).
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At this point, Bayes’ theorem implies that this last quantity is equal to

∬ ∣ln
qg′(h∣m)

pg′(h∣m)
∣

p

dQg′(h,m)dΠi(g
′
) = EQ

1 ∣ln
q1(H ∣M)

p1(H ∣M)
∣

p

Hence, as

(EQ
1 [∣ln

q(H ∣M)

p(H ∣M)
∣

p

])

1/p

≤

(EQ
1 [∣ln

q(H,M)

p(H,M)
∣

p

])

1/p

+ (EQ
[∣ln

q(M)

p(M)
∣]

p

)

1/p

<∞

by (2.15). We have shown that (2.36) tends to 0 as i→∞ and that consequently B in
(2.34) tends to 0 in the same limit.
After completing these two steps, we have shown that both A and B in (2.34) tend

to 0 as i→∞, and that consequently the claim of the theorem follows. All is left is to
prove lemmas 2.10.1, 2.10.2, and 2.10.3.

2.10.1. Proof of technical lemmas 2.10.1, 2.10.2, and 2.10.3

Proof of Lemma 2.10.1. Let {εi}i be a sequence of positive numbers decreasing to
zero. Let {Ki}i∈N and {Li}i∈N be two arbitrary sequences of compact symmetric
subsets that increase to cover G. Fix i ∈ N. The set KiLi is compact and by our
assumption there exists a sequence {Jl}l∈N and such that ρ{Jl}/ρ{JlKiLi} → 0 as
l →∞. Pick l(i) to be such that ρ{Jl(i)}/ρ{Jl(i)KiLi} ≥ 1−εi. The claim follows from
a relabeling of the sequences.

Proof of Lemma 2.10.2. Let h ∈ N . Then we can write

∫ 1{g ∈ NL} qg(h∣m)dρ(g) = ∫ 1{g ∈ NL} q1(g
−1h∣m)dρ(g)

= ∫ 1{g ∈ (NL)−1} q1(gh∣m)dλ(g)

=∆(h−1)∫ 1{g ∈ (NL)−1h} q1(g∣m)dλ(g)

=∆(h−1)Q1{H ∈ (NL)
−1h ∣ M =m}

The same computation can be carried out for p. Consequently

ln ∫
1{g ∈ NL} qg(h∣m)dρ(g)

∫ 1{g ∈ NL} pg(h∣m)dρ(g)
= ln

Q1{H ∈ (NL)
−1h ∣ M =m}

P1{H ∈ (NL)−1h ∣ M =m}

≤ − lnP1{H ∈ (NL)
−1h ∣ M =m}.

By our assumption that h ∈ N , we have that (NL)−1h = L−1N−1h ⊇ L−1 = L. This
implies that the last quantity of the previous display is smaller than − lnP1{H ∈
L ∣ M =m}. The result follows.
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Proof of Lemma 2.10.3. The result follows from a rewriting and an application of
Jensen’s inequality. Indeed,

− ln ∫
pg(h∣m)dΠ(g)

∫ qg(h∣m)dΠ(g)
= − ln

∫ qg(h∣m)
pg(h∣m)
qg(h∣m)dΠ(g)

∫ qg(h∣m)dΠ(g)

= − ln∫ [
pg(h∣m)

qg′(h∣m)
]dΠ(g∣h,m)

≤ −∫ ln
pg(h∣m)

qg(h∣m)
dΠ(g∣h,m)

= ∫ ln
qg(h∣m)

pg(h∣m)
dΠ(g∣h,m),

as it was to be shown.

2.11. Acknowledgements

Peter D. Grünwald is also affiliated with the Mathematical Institute of Leiden Uni-
versity. This work is part of the research program with project number 617.001.651,
which is financed by the Dutch Research Council (NWO). We thank Wouter Koolen
for useful conversations.

47





3. The Anytime-Valid Logrank Test:
Error Control Under Continuous
Monitoring with Unlimited Horizon1

We introduce the anytime-valid (AV) logrank test, a version of the lo-
grank test that provides type-I error guarantees under optional stopping
and optional continuation. The test is sequential without the need to spec-
ify a maximum sample size or stopping rule, and allows for cumulative
meta-analysis with type-I error control. The method can be extended to
define anytime-valid confidence intervals. The logrank test is an instance
of the martingale tests based on E-variables that have been recently de-
veloped. We demonstrate type-I error guarantees for the test in a semi-
parametric setting of proportional hazards and show how to extend it to
ties, Cox’ regression and confidence sequences. Using a Gaussian approxi-
mation on the logrank statistic, we show that the AV logrank test (which
itself is always exact) has a similar rejection region to O’Brien-Fleming
α-spending but with the potential to achieve 100% power by optional con-
tinuation. Although our approach to study design requires a larger sample
size, the expected sample size is competitive by optional stopping.

3.1. Introduction

The logrank test is arguably the most important tool for the statistical comparison of
time-to-event data between two groups of participants. Our main focus is when the
two groups refer to the treatment and control groups in a randomized controlled trial;
the outcome of interest are event times, that is, the time elapsed until an outcome of
interest. The logrank test, in turn, uses a simplified version of the proportional hazard
ratio model of Cox [1972]. For a fixed sample size and under this model, Cox gave a
simple but profound insight: inference can be performed using the partial likelihood
of having observed the events in the particular order that they were observed. To this
end, the logrank test [Mantel, 1966, Peto and Peto, 1972], the score test associated to
the Cox’ partial likelihood, is optimal for fixed sample size and a restricted alternative.
Large-sample properties of the logrank test are known in very general settings [Tsiatis,
1981, Schoenfeld, 1981, Andersen et al., 1993]. Nevertheless, even shortly after the

1This chapter is based on J. ter Schure, M. F. Pérez-Ortiz, A. Ly, and P. Grünwald. The Safe
Logrank Test: Error Control under Continuous Monitoring with Unlimited Horizon, July 2021.
URL http://arxiv.org/abs/2011.06931. arXiv:2011.06931 [math, stat], under submission
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publication of the groundbreaking article of Cox, it became clear that the fixed-sample
assumption can be overly restrictive. Indeed, due to ethical and practical constraints
in human survival-time medical trials, interim analyses may be performed to terminate
the study earlier than planned if needed. Consequently, it has been of fundamental
importance to develop methods for the sequential analysis of time-to-event data in
general; for the logrank test, in particular.
In order to legitimate the use of sequential boundary decisions, uniform asymptotic

approximations over the study period have been developed for the logrank statistic
[Tsiatis, 1982, Sellke and Siegmund, 1983, Slud, 1984]. The results in this line of
work show the convergence of the sequentially computed logrank statistic to a rescaled
Brownian motion under very general censoring and participant-arrival patterns. When
interim analyses are only performed at discrete times, the decision boundaries based
on continuously monitoring the logrank statistic are known to be overly conservative.
This deficiency is addressed by group-sequential and α-spending methods, which, using
knowledge of the interim analysis times relative to a predefined maximum number of
events, allow for tighter decision boundaries [Pocock, 1977, O’Brien and Fleming, 1979,
Kim and DeMets, 1987]. These sequential methods allow several interim looks at the
data to stop for efficacy (if the treatment shows to be beneficial) or futility (if the
study is no longer likely to reach statistical significance).
Despite the profound impact that these methods have had in statistical practice,

the requirement of a maximum sample size limits the utility of a promising but non-
significant study once the maximum sample size is reached. Because of their design,
extending such a trial makes it impossible to control their type-I error. Moreover, the
evidence gathered in new—possibly unplanned—trials cannot be added in a typical
retrospective meta-analysis, when the number of trials or timing of the meta-analysis
are dependent on the trial results. Such dependencies introduce accumulation bias and
invalidate the assumptions of conventional statistical procedures in meta-analysis [ter
Schure and Grünwald, 2019]. In order to address these deficiencies, we look for flexible
anytime-valid methods that provide type-I error control in two situations: (1) optional
stopping, which refers to halting the experiment earlier or later than planned under
arbitrary stopping rules, and (2) meta-analysis and optional continuation, which refers
to the aggregation of evidence of possibly interdependent studies. Just as the existing
methods, our approach is connected to early work by H. Robbins and collaborators
[Darling and Robbins, 1967, Lai, 1976]. Most notably, existing approaches come with
fixed stopping rules, which are not desirable in the use cases that are of our present
interest. The details of the present approach are very different, and to some extent,
as we will see, more straightforward.
The main result of this work is the anytime-valid (AV) logrank test, an anytime-

valid test for the statistical comparison of time-to-event data from two groups of par-
ticipants. The AV logrank test uses the exact ratio of the sequentially computed Cox
partial likelihood as test statistic. The advantage of having an exact test manifests, for
instance, in the case of unbalanced allocation, when both control and treatment groups
start with different numbers of participants. In this case, α-spending approaches do
not provide strong type-I error guarantees due to the approximations involved [Wu
and Xiong, 2017]. The basic version of the AV logrank test is, however, exact; unbal-
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anced allocation presents no difficulties. Additionally, the AV logrank test can be used
for meta-analysis and optional continuation while preserving the same type-I error
guarantees.

From a technical point of view, we show, under general patterns of incomplete obser-
vations, that under the composite null hypothesis our test statistic is a continuous-time
martingale with expected value equal to one. Statistics with this sequential property
are referred to as test martingales; they form the basis of anytime-valid tests [Ramdas
et al., 2020]. The AV logrank test is a concrete instance of such a test martingale de-
rived from the recent theory of anytime-valid hypothesis testing based on E-processes
[Henzi and Ziegel, 2021, Grünwald et al., 2020, Shafer, 2021, Wang and Ramdas, 2020].
In contrast to p-values, an analysis based on E-processes can extend existing trials as
well as inform the decision to start new trials and meta-analyses, while still controlling
type-I error rate. Type-I error control is retained even (i) if the E-process is monitored
continuously and the trial is stopped early whenever the evidence is convincing, (ii) if
the evidence of a promising trial is increased by extending the experiment and (iii) if
a trial result spurs a new trial with the intention to combine them in a meta-analysis.
Even with dependence between the trials, the test based on the multiplication of the
values of these E-processes retains type-I error control, as long as all trials test the
same (i.e., global) null hypothesis. This becomes especially interesting if we want
to combine the results of several trials in a bottom-up retrospective meta-analysis,
where no top-down stopping rule can be enforced. It is even possible to combine in-
terim results of ongoing trials by multiplication, stepping beyond the realm of existing
sequential approaches.

3.1.1. Contributions and outline

We begin with Section 3.2, where we review the special instance Cox’ proportional
hazards model for the two-group setting. There, we set the assumptions and notation
used in the rest of the chapter. The definitions presented there are standard. In
Section 3.3, we define and prove that the AV logrank test is indeed anytime valid.
We first do this for (a) the case with only a group indicator (no other covariates) and
without simultaneous events (ties). There, we also discuss its optimality properties
and extend it to (b) the case with ties and to (c) the case when one wants to learn
the actual effect size of the data and/or use prior knowledge about the effect size into
the method via a Bayesian prior. This presents no technical difficulties. The resulting
version of the test keeps providing nonasymptotic type-I error control even if the priors
are wildly misspecified, that is, if they predict very different data from the data we
actually observe. These results hinge on showing that the likelihood underlying Cox’
proportional hazards model can be used to define E-variables and test martingales.
In Section 3.4, we show a Gaussian approximation to the AV logrank statistic that
is useful in the common situation when only summary statistics are available. We
then provide extensive computer simulations to compare the AV logrank test to the
classic logrank test and α-spending approaches. In Section 3.4.1, we show that the
exact AV logrank test has a similar rejection region to O’Brien-Fleming α-spending
for those designs and hazard ratios where it is well-approximated by a Gaussian AV
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logrank test. While always needing a small amount of extra data in the design phase
(the price for indefinite optional continuation), the expected sample size needed for
true rejections remain very competitive. During the design phase of a study, we might
want to design for a maximum sample size in order to achieve a certain power, but
need a smaller sample size on average during the study since we can safely engage in
optional stopping. In Section 3.5, we show that AV-logrank-type tests can be combined
through multiplication to perform meta-analysis, and in Section 3.6, we show how the
test can be used to derive confidence sequences for the hazard ratio. In Section 3.7, we
compare the sample sizes that are needed during the design phase in order to achieve
a targetted power. Lastly, in Section 3.8 we make concluding remarks and discuss
future research directions.

We remark that once the definitions are in place, the technical results are mostly
straightforward consequences from earlier work; in particular, of the work of Cox
[1975], Slud [1992] and Andersen et al. [1993]. The novelty of the present work is thus
mainly in defining the AV logrank test and showing by computer simulation that,
while being substantially more flexible, it is competitive with existing approaches—
the classic logrank test with fixed design and in combination with α-spending.

Next to the main body of this chapter, we provide two appendices. We delegate to
Appendix B.1 proofs and remarks that, while important, are not needed to follow the
main development. Most importantly, the particular E-variable we design is growth-
rate optimal in the worst case, GROW (see Section 3.3.1). Grünwald et al. [2020]
provide several motivations for this criterion; we provide an additional one using an
argument of Breiman [1961], which does not seem to be widely known. This argument
shows a connection between growth-rate optimality and tests with minimal expected
stopping time. In Appendix B.2, we provide an extension to the case when covariates
other than group membership are present. This extension, based on the full Cox
model, requires solving a challenging optimization problem and its implementation is
therefore deferred to future work.

3.2. Proportional hazards model and Cox’ partial
likelihood

We begin by describing the hypothesis that is being tested, the data that are available,
and Cox’ proportional hazards model. We are interested in comparing the survival
rates between two groups of participants, Group A and Group B. In a randomized
controlled trial, Group A would signify the control group; Group B, the treatment
group. We assume that the available data about m participants are of the form
{(Xi, gi, δi) ∶ i = 1, . . . ,m}, where Xi =min{T i,Ci} is the minimum between the event
time T i and the (possibly infinite) censoring time Ci; gi is a zero-one covariate de-
pending on group membership (gi = 0 signifies that i ∈ A; gi = 1, that i ∈ B); and
δi = 1{Xi = T i} is the indicator of whether the event was witnessed before censoring

or not. Let mA be the number of members of Group A and mB the number of mem-
bers of Group B—then mA +mB = m. Define g = (g1, . . . , gn), the vector of group
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memberships. We assume that T 1, . . . , Tn,C1, . . . ,Cn are independent and have con-
tinuous distribution functions. The continuity assumption precludes tied observations;
we relax this assumption later on, in Section 3.3.3. For i = 1, . . . ,m, the survival rates
are quantified by the hazard functions λi = (λit)t≥0 for Ti, given by

λit = −
d

dt
lnP{T i

≥ t}. (3.1)

As is customary, the hazard function λi at t can be interpreted via the conditional
probability of witnessing an event in a short time span provided that the event has
not been witnessed up to t, that is,

P{t ≤ T i
< t +∆t ∣ t ≤ T i

} = λit∆t + o(∆t) as ∆t→ 0. (3.2)

Given our interest in comparing the survival rates between the two groups, suppose
that all participants i of Group A have a common hazard function λit = λ

A
t ; members i

of Group B, λit = λ
B
t . Using the data, we wish to test proportional hazards hypotheses.

Concretely, we test the hypotheses H0 that the hazard function of the members of both
groups satisfy λAt = θ0λ

B
t , against an alternative hypothesis H1 that λBt = θλ

A
t for a

θ ≠ θ0. As a first application of the methods that we develop, we consider the statistical
hypothesis testing problem between the null hypothesis that the hazard functions of
the two groups are the same against the left-sided alternative, that is,

H0 ∶ λ
B
t = θ0λ

A
t vs. H1 ∶ λ

B
t = θλ

A
t

for some θ ≤ θ1 < θ0 and all t,
(3.3)

where θ is known as the hazard ratio and is the main quantity of statistical interest, and
θ1 would be, in a clinical trial, a minimal clinically relevant effect size. The alternative
is what we hope for in case of negative events, such as death, with treatments that are
set out to lower (relative to the control condition) the hazard rate. Notice that the
hypotheses in (3.3) are, in fact, nonparametric. Similarly, if the event is positive, e.g.,
recovery from an infection, we would typically set a right-sided alternative, which can
be also be treated with the present methods.

Right-sided, two-sided and the full alternative hypothesisH′1 ∶ θ ≠ 1 are also amenable
to the methods that will follow. We remark, however, that all the methods retain their
type-I error guarantees irrespective of the specific alternative that we use. We now
turn to defining Cox’ partial likelihood PLt, which is at the center of our approach. To
that end, we need a battery of standard definitions—we lay them out to establish the
notation. Let yit = 1{X

i ≥ t} be the at-risk process, that is, the indicator of whether

participant i is still at risk at time t, and let ȳAt = ∑i∈A y
i
t and ȳ

B
t = ∑i∈B y

i
t be the num-

ber of participants at risk in each of the groups at time t. Define yt = (y
1
t , . . . , y

m
t ), the

vector of at-risk processes, and Rt = {j ∶ y
j
t = 1}, the set of participants at risk at time

t. Let T (1) < T (2) < ⋅ ⋅ ⋅ < T (N̄∞) be the set of ordered events times that were witnessed
(not censored). Note that, if all participants witness the event and censoring is absent,
N̄∞ =m. For each k = 1, . . . , N̄∞, let I(k) be the index of the individual that witnessed

the event at time T (k). This means, for example, that if participant with label three
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3. The Anytime-Valid Logrank Test

was the fifth to witness the event, then I(5) = 3. Abbreviate by yi(k), ȳ
A
(k), ȳ

B
(k),R(k)

the corresponding quantities at event time T (k), and define g(k) ∶= gI(k) . Cox’ partial
likelihood PLθ,t can be sequentially computed by

PLθ,t = ∏
k∶T (k)≤t

θg
(k)

∑l∈R
T (k)

θgl = ∏
k∶T (k)≤t

θg
(k)

ȳA(k) + θȳ
B
(k)
. (3.4)

Cox’ likelihood evaluated at the event times T (1), T (2), . . . coincides to that of a se-
quence of multinomial trials where, at event time T (k), each of the participants i ∈R(k)
witnesses the event with probability

pθ,(k)( i ) ∶= P{I(k) = i ∣ y(l),g; l = 1, . . . k},

pθ,(k)( i ) =
θg

i

ȳA(k) + θȳ
B
(k)
. (3.5)

Cox showed that, indeed, conditionally on all the information accrued strictly before
T (k), the probability that participant i observes an event at time T (k) is exactly
pθ,(k)( i ) as long as the hazard ratio is θ. With these likelihood computations at
hand, we are in place to show the main contribution of this chapter, the AV logrank
test, which uses the partial likelihood ratio as the test statistic.

3.3. The AV logrank test

In this section the AV logrank test for (3.3) is introduced; its type-I error guarantees
and optimality properties are investigated. We give a solution to the first of the
purposes laid down in the introduction: we show that the AV logrank test is anytime
valid—its type-I error guarantees are not affected by optional stopping. The fact that
it is also type-I-error-safe under optional continuation, our second purpose, is proven
in Section 3.5. Without further ado, we define the AV logrank statistic Sθ1

θ0,t
, typically,

θ0 = 1, for (3.3) as the partial likelihood ratio

Sθ1
θ0,t
=
PLθ1,t

PLθ0,t
= ∏

k∶T (k)≤t

pθ1,(k)(I(k))

pθ0,(k)(I(k))
. (3.6)

Here, pθ,(k) is as defined in (3.5); the product that defines our statistic Sθ1
θ0,t

runs over
the events that have been witnessed up to and including time t, and the empty product
is taken to be equal to one. As is conventional with likelihood ratios, high values of
Sθ1
θ0,t

are indicative that the alternative hypothesis is better than the null hypothesis
at the describing the data. Given a tolerable type-I error bound α and an arbitrary
random time τ , the AV logrank test is the test that rejects the null hypothesis if Sθ1

θ0τ

is above the threshold 1/α, that is,

ξθ1θ0,τ = 1{S
θ1
θ0,τ
≥ 1/α} ∶=

⎧⎪⎪
⎨
⎪⎪⎩

1 if Sθ1
θ0,τ
≥ 1/α

0 otherwise.
(3.7)
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3.3. The AV logrank test

As we will see, by its sequential properties, Sθ1
θ0,t

takes large values with small prob-
ability under the null hypothesis uniformly over time, which translates into type-I
error control for the test ξθ1θ0,τ . This observation is behind the any-time validity of

the AV logrank test, and of anytime-valid tests in general (more details and general
constructions to the effect of anytime-valid sequential testing can be found in the work
of Ramdas et al. [2020]). We shown in the following proposition that the test ξθ1θ0,τ has
the desired type-I error control.

Proposition 3.3.1. Let P0 be any distribution under which the hazard ratio is equal

to θ0, and let τ be any random time. The test ξθ1θ0,τ = 1{S
θ1
θ0,τ
≥ 1/α}, where Sθ1

θ0,t
is

as in (3.6), has level α, that is,

P0{ξ
θ1
θ0,τ
= 1} ≤ α.

This result can be readily obtained using the sequential-multinomial interpretation
of Cox’ likelihood ratio. As we will see, in Section 3.3.1, this result can be interpreted
in terms of E-variables and E-processes [Grünwald et al., 2020]. Define the process
(Sθ1

θ0,(k))k=1,2,... as the value of the AV logrank statistic at the event times T (k), that is,

Sθ1
θ0,(k) ∶= S

θ1
θ0,T (k)

. In this time discretization, the AV logrank statistic is the product

of random variables

Rθ1
θ0,(k) = pθ1,(k)(I(k))/pθ0,(k)(I(k)), (3.8)

the one-outcome partial likelihood ratio for the kth event, where pθ0,(k) is as in (3.5)
and k = 1,2, . . . .

Proof of Proposition 3.3.1. Under any distribution under which the hazard ratio is θ0,
the fact that the likelihood of observing I(k) conditionally on {y(l) ∶ l = 1, . . . , k} equals
pθ0,(k)(I(K)) implies that

E[Rθ1
θ0,(k) ∣ y(1), . . . ,y(k)] = ∑

j∈R(k)
pθ0,(k)(j)

pθ1,(k)(j)

pθ0,(k)(j)
= 1. (3.9)

This immediately shows that Sθ1
θ0,(k) = ∏i≤kR

θ1
θ0,(k) is a test martingale, a nonneg-

ative martingale with expected value equal to one, with respect to the filtration
F− = (F(k)−)k=1,2,... of sigma-algebras F(k)− = σ(y(k) ∶ k = 1, . . . , k). Next, the type-I

error control for the the test ξθ1θ0 follows from Ville’s inequality, which asserts that,

under the null hypothesis, the test martingale Sθ1
θ0,(k) takes large values with small

probability. Ville’s inequality [Ville, 1939] (also known as Doob’s maximal inequality)
implies that

P{ sup
k=1,2,...

Sθ1
θ0,(k) ≥ 1/α} ≤ E[S

θ1
θ0,(1)]α = α.

The previous display is a bound on ever making a type-I error when using the AV
logrank test ξθ1θ0,τ .
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3. The Anytime-Valid Logrank Test

Under general patterns of incomplete observation—like independent censoring or
independent left truncation—, the AV logrank test provides the same type-I error
guarantees. To proof this, we give an alternative proof of Proposition 3.3.1 in Ap-
pendix B.1 using the counting-process formalism [Andersen et al., 1993]. There, we
show that if the compensators of the underlying counting processes have a certain
general product structure—which is the case under complete observation—, the AV
logrank test is anytime-valid. We then refer to Andersen et al. [1993], who show that
this structure is preserved under said patterns of incomplete observation.
The AV-logrank test is optimal—in a sense to be defined in the next section—among

a large family of statistics. A second look at the proof of Proposition 3.3.1 suggests
a generalization of the AV logrank statistic given in (3.6). Let, for each k, q(k) be
a probability distribution on participants in the risk set R(k) which is only allowed
to depend on y(1), . . . ,y(k). Analogously to (3.8), we define the one-outcome ratio
Rq

θ0,(k) ∶= q(k)(I(k))/pθ0,(k)(I(k))—we now use q(k) instead of pθ1—, and

Sq
θ0,t
∶= ∏

k∶T (k)≤t
Rq

θ0,(k) = ∏
k∶T (k)≤t

q(k)(I(k))

pθ0,(k)(I(k))
. (3.10)

A modification of the previous argument shows, for any random time τ , a type-I error

guarantee for the test ξqθ0,τ based on the value of Sq
θ0,τ

, that is, ξqθ0,τ ∶= 1{S
q
θ0,τ
≥ 1/α}

(see Proposition 3.3.1). Any such test is also anytime valid as long as each q(k) depends
on the data only through y(1), . . . ,y(k). In Section 3.3.2, we use this generalization
to provide tests when no value of θ1 is available. This generalization raises a natu-
ral question about the optimality of the AV logrank test based on (3.6) among test
statistics of the form (3.10). This is the subject of the next section.

3.3.1. E-variables and optimality

The random variables {Rθ1
θ0,(k)}k=1,2... from (3.8) and {Rq

θ0,(k)}k=1,2... from (3.10) are

examples of (conditional) E-variables—nonnegative random variables whose (condi-
tional) expected value is below 1 uniformly over the null hypothesis. E-variables and
E-processes are the “correct” generalization of likelihood ratios to the case that ei-
ther or both H0 and H1 are composite and can be interpreted in terms of gambling
[Grünwald et al., 2020, Shafer, 2021, Ramdas et al., 2020]. Under this gambling inter-
pretation, a test martingale, a product of conditional E-variables, is the total profit
made in a sequential gambling game where no earnings are expected under the null hy-
pothesis. The analogy is thus between profit and evidence: no evidence can be gained
against the null hypothesis if it is true. Just as p-values, the definition of E-variables
and test martingales does not need any mention of an alternative hypothesis. However,
if a composite set of alternative distributions is available, a gambler who is skeptical
of the null distribution might want to maximize the speed of evidence accumulation
(or of capital growth) under the alternative hypothesis. The worst-case growth rate is
defined (conservatively) as the smallest expectation of the logarithm of the E-variable
under the alternative. Consequently, any E-variable achieving it is called GROW, for
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3.3. The AV logrank test

Growth-Rate Optimal in the Worst case (see the work of Grünwald et al. [2020] and
Shafer [2021] for additional reasons to use this optimality criterion).

We instantiate this reasoning to our present problem. For the left-sided alternative
(3.3), the choice Rθ1

θ0,(k) is conditionally GROW because it maximizes the worst-case

conditional growth rate

Rq
θ0,(k) ↦min

θ≤θ1
Eθ[lnR

q
θ0,(k)∣y(1), . . . ,y(k)],

over all valid choices of q(k) (which can only depend on the data through y(1), . . . ,y(k)),
that is,

min
θ≤θ1

Eθ[lnR
θ1
θ0,(k)∣y(1), . . . ,y(k)]

=max
q

min
θ≤θ1

Eθ[lnR
q
θ0,(k)∣y(1), . . . ,y(k)].

In Appendix B.1.1, we show that in the limit that the risk sets are much larger than the
number of events that are witnessed, this worst-case growth criterion yields a test that
minimizes the worst-case expected stopping time—under the alternative hypothesis—
among the tests that stop as soon as Sq

θ0,t
≥ 1/α. Thus, among all possible AV logrank

tests of the form (3.10), there are strong reasons to choose ξθ1θ0,τ .
In a similar fashion, a test can be constructed for two sided alternatives. Indeed,

consider a testing problem of the form

H0 ∶λ
B
= λA vs.

H1 ∶λ
B
= θλA for some θ ≤ θ1 or θ ≥ 1/θ1,

(3.11)

where θ1 < 1. For this problem, we can create a weighted, conditionally GROW,

E-variable by using R2−sided = 1
2
Rθ1

θ0,(k) +
1
2
R

1/θ1
θ0,(k).

3.3.2. Learning the hazard ratio from data

So far, the alternative hypotheses that we have studied are of the form H1 ∶ θ ≤ θ1 for
some value of θ1 < 1. In some cases, such a value of θ1 is available from the context
of the analysis. For instance, θ1 can correspond to a minimal clinically relevant effect
that is satisfactory in a medical trial. However, sometimes it is not clear which value
θ1 to chose. Still, statistics of the form (3.10) are useful to test a null hypothesis H0

as in (3.3). Indeed, for each k, we can use conditional probability mass functions q(k)
that depend on data observed on t < T (k) and enable us to implicitly learn the hazard
ratio θ. We describe two such alternatives: a prequential plug-in likelihood and Bayes
predictive distribution.

Prequential plugin test approach

Using only the data observed in t < T (k), let θ̂(k) be the smoothed maximum likelihood
estimator

θ̂(k) = argmax
θ≥0

⎛

⎝
pθ,0 × ∏

k∶T (k)<t
pθ,(k)(I(k))

⎞

⎠
,
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3. The Anytime-Valid Logrank Test

where pθ,0 is a smoothing based on the likelihood of having observed two “virtual” data
points prior to the observed data, that is, pθ,0 = 1/(ȳ

A
0 +1+θ(ȳ

B
0 +1))×θ/(ȳ

A
0 +θ(ȳ

B
0 +1)).

The statistic Spreq
θ0,t

is (3.10) with q(k) = pθ̂(k),(k), and it can also be used to define an

anytime-valid test. With this choice, the process q(1), q(2) . . . , is a typical instance of a
prequential plug-in likelihood [Dawid, 1984], that is often based on suitable smoothed
likelihood-based estimators [Grünwald and Roos, 2019]. The rationale behind this
method is the following. Suppose the data are actually sampled from a distribution
according to which the hazard ratio is θ. For sufficiently large initial risk sets, that is,
if ȳA0 and ȳB0 are not too small, by the law of large numbers, the smoothed maximum

likelihood estimate θ̂(k) will with high probability be close to θ. Therefore, pθ̂,(k) will
behave more and more like the real pθ,(k) from which data are sampled. Thus, the
process Spreq

θ0
, will behave more and more similarly to the “correct” partial likelihood

ratio (3.6).

Bayesian approach

Instead of q(k) based on a plug-in estimate of θ, it is also possible to use a Bayes
predictive distribution based on a prior W on θ. If W(k) =W ∣ y(1), . . . ,y(k) is the

Bayes posterior on θ based on a prior W and the data up to time t < T (k), then

q(k) = pW,(k) ∶= ∫ pθ,(k)dW(k)(θ),

where W(1) =W. Hence, pW,(k) is the Bayesian predictive distribution. The resulting

statistic SW
t is the result of multiplying the conditional probability mass functions

pW,(k), and we obtain that

SW
θ0,t =

n

∏
k∶T (k)≤t

pW,(k)(I(k))

pθ0,(k)(I(k))
(3.12)

is a Bayes factor between the Bayes marginal distribution based on W and θ0. This
technique has been employed in sequential analysis; it is known as the method of
mixtures [Darling and Robbins, 1967, Robbins and Siegmund, 1970]. We do not know
of a prior for which (3.12) or the constituent products have an analytic expression, but
it can certainly be implemented using, for example, Gibbs sampling.
As shown in Section 3.3, the use of any Sq

θ0,t
instead of Sθ1

θ,t does not compromise

on safety: a test based on monitoring Sq
θ0

is anytime-valid, whether q makes reference
to plug-in estimators or Bayes predictive distributions, no matter what prior W was
chosen. The type-I error guarantee always holds, also when the prior is “misspecified”,
putting most of its mass in a region of the parameter space far from the actual θ
from which the data were sampled. Thus, our set-up is intimately related to the
concept of luckiness in the machine learning theory literature [Grünwald and Mehta,
2019] rather than to “pure” Bayesian statistics. Indeed, given a target value θ1—a
minimal clinically relevant effect size—the worst-case logarithmic growth rate of Sq

θ0,t

will in general be smaller than that of the GROW Sθ1
θ0,t

. Nevertheless, Sq
θ0,t

can come
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3.3. The AV logrank test

close to the optimal for a whole range of potentially data-generating θ and may thus
sometimes be preferable over choosing Sθ1

θ0,t
. More precisely, the use of a prior allows

us to exploit favorable situations in which θ is even smaller (more extreme) than θ1. In
such situations, the GROW Sθ1

θ0,t
is effectively misspecified. By using Sq

θ0,t
that learn

from the data, we may actually obtain a test martingale that grows faster than the
GROW Sθ1

θ0,t
, which is fully committed to detecting the worst-case θ1.

In Figure 3.1, we illustrate such a situation where we start with 1000 participants in
both groups. We generated data using different hazard ratios, and used a ‘misspecified’
Sθ1
θ0,t

that always used θ1 = 0.8. Note that while this is still the GROW (minimax

optimal) test martingale for H1 ∶ θ ≤ θ1 ≤ 0.8. If we knew the true θ, we could use
the test martingale Sθ

θ0,t
—it grows faster. We will call the test based on this latter

martingale the oracle exact AV logrank test because it is based on inaccessible (oracle)
knowledge. We estimated the number of events needed to reject the null with 80%
power for S0.8

θ0,t
, the oracle Sθ

θ0,t
, and the prequential plug-in Spreq.

θ0,t
. In all cases, we

used the aggressive stopping rule that stops as soon as the statistic in question crosses
the threshold 1/α = 20. We see that, as the true θ gets smaller than 0.8, we need fewer
events using the GROW test S0.8

θ0,t
(the data are favorable to us), but using the oracle

exact AV logrank test we get a considerable additional reduction. The prequential
plug-in Spreq.

θ0
‘tracks’ the oracle Sθ

θ0,t
by learning the true θ from the data: for θ near

0.8, it behaves worse (more data are needed) than S0.8
θ0,t

(which knows the right θ from
the start), but for θ < 0.6 it starts to behave better. For comparison we also added
the methods discussed in Section 3.4.1. Notably, the O’Brien-Fleming procedure,
even though unsuitable for optional continuation, needs even more events than the
misspecified AV logrank test S0.8

θ0,t
as soon as θ goes below 0.8. The simulations were

performed using exactly the same algorithms as for Figure 3.4 so the y-axis at θ = 0.8
coincides with that of Figure 3.4, but now with absolute rather than relative numbers;
details are described in Appendix B.1.4.

3.3.3. Tied observations

Here, we propose a sequential test for applications where events are not monitored
continuously, but only at certain observation times. In this case, more than one event
may be witnessed in the time interval between two observation moments. Since the or-
der in which these observations are made would be unknown, our previous approaches
fail to offer a satisfactory sequential test. Assume that we make observations at times
t0 < t1 < t2 < . . . that are fixed before the start of the study. Even though we as-
sume the absence of censoring in this section, this approach can be adapted to its
presence under an additional common assumption: that the events reported between
two observation times tk−1 and tk precede any censorings, so that censored patients
contribute fully to the risk sets under consideration. We assume that the available
data are of the form (OA

1 ,O
B
1 ), (O

A
2 ,O

B
2 ), . . . , where O

A
k and OB

k are the number of
events witnessed in each group in the time interval (tk−1, tk], and Ok = O

A
k + O

B
k is

the total. Notice that since the observation times are discrete, we can index the ob-
servations by k instead of tk. For each k, let ȳ

A
k = ∑j∈A y

j
tk

the number of participants
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Conditional Mean Mean
m

B
m

A
=

 1000
1000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

10

30

100

300

True hazard ratio θ

N
um

be
r 

of
 e

ve
nt

s 
n

Oracle classic logrank test Oracle exact AV logrank test Prequential plug−in

Exact AV logrank test (0.8) Gaussian AV logrank test (0.8) O'Brien−Fleming (0.8)

Number of events for 80% power

Figure 3.1.: We show the number of events at which one can stop retaining 80% power

at α = 0.05 using the process Sθ1
θ0,t

with θ0 = 1 and θ1 = 0.80 when the true
hazard ratio θ generating the data are different from θ1. “Oracle” means
that the method is specified with knowledge of the true θ, which in reality
is unknown. Note that the y-axis is logarithmic.

at risk at time tk, define similarly ȳBk , and let ȳk = ȳ
A
k + ȳ

B
k be the total. We derive

an anytime-valid test—a test valid at any observation time—for the problem (3.3),
where the hazard ratio under the null hypothesis is θ0 = 1. The reason for this restric-
tion in the null hypothesis—only θ0 = 1 is allowed—will soon become clear. Observe
that, at time tk, conditionally on (ȳAk−1, ȳ

B
k−1) and the total number of events Ok, the

number of events OB
k in group B follows a hypergeometric distribution. This implies

that, conditionally on (ȳAk−1, ȳ
B
k−1,Ok), the conditional likelihood of observing OB

k is
pk(O

B
k ) = pHyper(O

B
k ; ȳk−1, ȳ

B
k−1,Ok), where pHyper is the probability mass function of

a hypergeometric random variable, that is,

pHyper.(o
B ; ȳ, ȳB , o) =

(
ȳB

oB
)(

ȳ−ȳB

o−oB)

(
ȳ
o
)

.

With this observation at hand, we can build, analogously to (3.10) from the continuous-
monitoring case, anytime-valid tests based on partial likelihood ratios,

Sq
1,k =∏

l≤k

ql(O
B
l )

pl(OB
l )
, (3.13)

where each qk is a conditional distribution on the possible values of OB
k that only

depends on the data up to time tk−1. Following the same steps as in Section 3.3,
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3.3. The AV logrank test

a sequential test based on monitoring whether Sq
1,k crosses the threshold 1/α is also

anytime valid at level α.

Lemma 3.3.2. Let tκ ∈ {t1, t2, . . .} be an arbitrary random time. The test ξq1,κ given

by ξq1,κ = 1{S
q
1,κ ≥ 1/α}, where S

q
1,κ is as in (3.13), has type-I error bounded by α, that

is,

P0{ξ
q
1,κ = 1} ≤ α,

under any distribution P0 such that the hazard ratio is θ = 1.

Just as in the proof of Proposition 3.3.1, this lemma is shown by a combination of
the martingale property of Sθ1

1,k and Doob’s maximal inequality. Therefore, we omit
the proof of Lemma 3.3.2.

In order to obtain an optimal test under a particular hazard ratio θ1—an alternative
hypothesis—, it is necessary to compute the partial conditional likelihood for the data
under the alternative of having observed OB given (ȳAk−1, ȳ

B
k−1, N̄k−1). This conditional

likelihood is given by Fisher’s noncentral hypergeometric distribution with parameter
ω. Unfortunately, ω depends on the baseline hazard function λ, which is assumed to
be unknown (see Appendix B.1.3 for details). It is for this reason that we restrict the
null hypothesis to θ0 = 1. Luckily, since the test based on Sq

θ0,t
remains valid even if q

is only approximately correct, this problem can be skirted. As also noted by Mehrotra
and Roth [2001], when the times between observations are short, the parameter ω
is well approximated by θ1, the hazard ratio under the alternative hypothesis—no
knowledge of λ is needed for the approximation. With this in mind, we put forward
the use of Sθ1

θ0,k

Sθ1
1,k ∶=∏

l≤k

pθ1,k(O
B
k )

p1,k(OB
k )

where Sθ1
1,k is a an instance of (3.13) with qk(O

B
k ) = pθ1,k(O

B
k ) and pθ1,k(O

B
k ) is Fisher’s

noncentral hypergeometric distribution with parameter ω = θ1, that is,

pθ1,k(o
B
) = pFNCH(o

B ; ȳ, ȳB , o, ω = θ1)

=
(
ȳB

oB
)(

ȳ−ȳB

o−oB)θ
oB

1

∑max{0,oB−ȳB}≤u≤min{ȳB ,oB} (
ȳB

u
)(

ȳ−ȳB

oB−u)θ
u
1

.

We remark that despite p(θ1),k being only approximately the correct distribution for
the observations under the alternative, type-I error guarantees are not compromised
(see the discussion on luckiness in Section 3.3.2). In any case, this approximation is
accurate when the time between two consecutive observation times is not very long
and when the number of tied observations is small. Two reassuring remarks are in
order. First, in the special case when only one observation is made in each time
interval between two consecutive observation moments, the statistic Sθ1

1,k reduces to

the continuously monitored AV logrank test (3.6) at time tk. Second, the score test
associated to Sθ1

1,k coincides with the logrank test as is conventionally computed in the
presence of ties.
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3.4. A Gaussian approximation to the AV logrank test

In this section we present an approximation to the AV logrank test introduced in the
previous section. This is based on a sequential-Gaussian approximation to the logrank
statistic. The approximation is of interest for two reasons. First, in practical situations,
only the logrank Z-statistic (a standardized form of the classic logrank statistic) and
other summary statistics may be available—and not the full risk-set process. This
is often the case in medical trials, where the full data sets are confidential. If we
also know the number of events N̄k and the initial number of participants in both
groups, mA and mB , the Gaussian approximation to the AV logrank statistic can still
be used. The second reason, which we address in Section 3.4.1, is related to the fact
that α-spending and group-sequential approaches, which we use as benchmarks, are
also based on Gaussian approximations to the classic logrank statistic. Consequently,
the behavior of the Gaussian approximation gives further insights into how the AV
logrank statistic compares to group-sequential and α-spending approaches as well. We
henceforth focus on the main case of interest, θ0 = 1.
Our general strategy is close in spirit to that followed in the construction of the

exact AV logrank statistic in Section 3.3. We build likelihood ratios using a classic
approximation for the distribution of the original logrank statistic [Schoenfeld, 1981].
If the distribution of this statistic was exactly normal, we could monitor continuously
its likelihood ratio. We show through extensive simulation in which regimes this ap-
proximation behaves similarly to the AV logrank statistic.
We begin by recalling the definition of the Z-score associated to the classic logrank

test. Let EB
i = Oip

B
i with pBi = ȳ

B
i /(ȳ

A
i + ȳ

B
i ) be the expected (under the null)

number of events witnessed in the time interval (ti−1, ti] in group B, and let V B
i =

Oi p
B
i (1−p

B
i )

ȳi−Oi

ȳi−1 be its variance. After k observations the Z-score associated to the
classic logrank statistic, Zk, is given by

Zk =
∑i≤k {O

B
i −E

B
i }

√
∑i≤k V

B
i

. (3.14)

The numerator in Zk is the classic logrank statistic Hk = ∑i≤k {O
B
i −E

B
i }, which is

typically interpreted as the cumulative difference between observed counts OB
i and the

expected counts EB
i in Group B. The factor ȳi−Oi

ȳi−1 found in V B
i can be interpreted as

a multiplicity correction, that is, a correction for ties [Klein and Moeschberger, 2003,
p. 207]. When only one event is witnessed between two consecutive observation times,
then Oi = 1, E

B
i = p

B
i , and V

B
i = p

B
i (1 − p

B
i ). We remark that the above formulation

is also found in the work of Cox [1972, (26)].
We put forward the Gaussian approximation SG

k to the logrank statistic Sθ1
1,k—we

show its derivation in Appendix B.3—, given by

SG
k ∶= exp(−

1

2
N̄kµ

2
1 +
√
N̄kµ1Zk) , (3.15)

where N̄k is the total number of observations up until time tk and

µ1 = log(θ)
√
mBmA/(mA +mB)2.
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3.4. A Gaussian approximation to the AV logrank test

For an arbitrary random observation time tK ∈ {t1, t2, . . .}, we refer to the test ξGK =
1{SG

K ≥ 1/α} as the Gaussian AV logrank test for (3.3). Recall that we test θ0 = 1,
which corresponds to the asymptotic mean of the Z-score under the null hypothesis
being µ0 = 0. In Appendix B.3.1 extensive simulations are performed to show in which
regimes the Gaussian logrank test retains type-I error guarantees. In Appendix B.3.2,
it is shown that, under continuous monitoring, the Gaussian AV logrank test tends to
be more conservative—it needs more data than the exact one. The conclusion is the
following: SG

K can be used for designs with balanced allocation, and it approximates

Sθ1
1,K well for hazard ratios between 0.5 and 2.

We now compare the rejection regions defined by the Gaussian logrank test to those
of continuously monitoring using α-spending and group-sequential approaches.

3.4.1. Rejection region and α-spending

In this section we compare the rejection regions of the Z-scores for which α-spending
approaches and the AV logrank test for the null hypothesis of no effect (hazard ratio
θ0 = 1). The two main α-spending approaches discussed here are due to Pocock [1977]
and O’Brien and Fleming [1979]. We provide two reasons why the main focus of the
comparison, however, will be on the O’Brien-Fleming approach. Firstly, in retrospect,
Pocock himself believes that his approach leads to boundaries that are unsuitable
[Pocock, 2006]. One main feature of the Pocock procedure is that the rejection regions
are the same regardless of whether the (interim) analyses are conducted at the start
or the end of the trial. In practice this leads to many stopped trials for benefits based
on (too) small sample sizes and with unrealistically large treatments effects [Pocock,
2006]. In contrast, the rejection boundary of the O’Brien-Fleming is more conservative
at the start than at the end of the trial. Secondly, the Pocock procedure only allows for
a finite number of planned analyses and, therefore, cannot be monitored continuously,
whereas this is possible with the O’Brien-Fleming α-spending approach. Hence, the
fair comparison is between the two procedures (the AV logrank test and the O’Brien-
Fleming α-spending approach) that allow for continuous monitoring.

We begin by specifying the rejection regions for both the Gaussian AV logrank test
and that of the O’Brien-Fleming α-spending procedure. For the Gaussian AV logrank
we compute the region for the Z-score that rejects the null hypothesis. Indeed, using
(3.15), we can compute that whenever mA = mB , the null hypothesis is rejected as
soon as

Zn ≥

√
n

4
ln(θ1) −

2
√
n

log(α)

log(θ1)
if θ1 > 1, or

Zn ≤

√
n

4
ln(θ1) −

2
√
n

log(α)

log(θ1)
if θ1 < 1.

The O’Brien-Fleming procedure is based on a Brownian-motion approximation to
the sequentially computed logrank statistic Z-score. Indeed, for large values of nmax

and t ∈ [0,1], the process t ↦
√
⌊tnmax⌋
nmax

Z⌊tnmax⌋ can be approximated by a Brownian
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3. The Anytime-Valid Logrank Test

motion Bt. We stress the fact that nmax has to be set in advance. If Bt is a Brow-
nian motion, the reflection principle, a well-known but nontrivial application of the
symmetry of Bt, implies that

P{max
0≤t≤1

Bt ≥ c} = 2P{B1 ≥ c}

Since B1 is Gaussian with mean zero and standard deviation 1, setting c = q1−α/2, the
(1 − α/2)-quantile of a standard Gaussian distribution, then

P{max
0≤t≤1

Bt ≥ q1−α/2} = α.

This implies that
P{ max

n≤nmax

√
nZn ≥

√
nmaxq1−α/2} ≈ α,

or, in other words, the procedure that continuously monitors whether the Z-score
crosses the boundary

√
nmaxq1−α/2 guarantees approximate type-I error α. Given a

hazard ratio θ1 under the alternative hypothesis, nmax can be set to achieve a de-
sired type-II error. The left-handed procedure can be worked out similarly, and we
obtain that, for mA =mB , the continuous-monitoring version of the O’Brien-Fleming
procedure rejects as soon as

Zn ≥

√
n

nmax
q1−α/2 if θ1 > 1 (right-sided test), or

Zn ≤

√
n

nmax
q1−α/2 if θ1 < 1 (left-sided test).

The two regions of the Z-statistic values share an important feature: they are more
conservative to reject the null hypothesis at small sample sizes than at larger ones,
requiring more extreme values for the Z-statistic at the start of the trial. This sets
them apart from the Pocock spending function that requires equally extreme values
for the Z-statistic at small and large sample size. Figure 3.2 shows both the Gaussian
AV logrank and the O’Brien-Fleming α-spending rejection regions. Additionally, Fig-
ure 3.2 shows the boundary of the Pocock α-spending function for 10 interim analyses.
Note that the definition of the AV logrank test rejection region requires a very ex-
plicit value for the effect size θ1 = θmin of minimum clinical relevance, while that value
is implicit in the definition of the α-spending rejection region: To specify an maxi-
mum sample size nmax to achieve a certain power, an effect size of minimal interest
is also assumed. A fixed-sample-size analysis designed to detect a minimum hazard
ratio of 0.7 would need 195 events to achieve 80% power if the true hazard ratio is
also 0.7. A sequential analysis using α-spending requires a slightly larger maximum
number of events: 205 with the O’Brien-Fleming spending function; 245, with the
Pocock α-spending function—when we design for 10 interim analyses. We investigate
the number of events needed by the Gaussian AV logrank test in Appendix B.3.2. For
the α-spending procedures continuing beyond nmax is problematic. This is not the
case for the AV logrank test, as it allows for unlimited monitoring, then nmax is only
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3.5. Optional continuation and live meta-analysis

a soft constraint on the study—there is no penalty in type-I error for continuing after
nmax events have been witnessed.

The benefit of a sequential approach is that if there is evidence that the hazard
ratio is more extreme than it was anticipated under the alternative hypothesis, we
can detect that with fewer events than the maximum sample size. The left column
of Figure 3.3 illustrates that we benefit because the true hazard ratio could be more
extreme than we designed for (e.g. 0.5 instead of 0.7; a larger risk reduction in the
treatment group) and the data reflects that. We also benefit from a sequential analysis
if the true hazard ratio is 0.7 but by chance the values of our Z-statistics are more
extreme than expected. The major difference between α-spending approaches and the
AV logrank test is that the AV test does not require to set a maximum sample size. It
in fact allows to indefinitely increase the sample size without ever spending all α. An
α-spending approach designed to have 80% power will miss out on rejecting the null
hypothesis in 20% (the type-II error) of the cases as is illustrate in the bottom middle
plot of Figure 3.3 by the sample paths that remain (dark) green. In contrast, the
AV logrank test can potentially reject with 100% power by continue sampling. In the
sample paths of 500 events in Figure 3.3, all but one sample path of Z-statistics could
be rejected at a larger sample size by the AV logrank test. By extending the trial, the
AV logrank test can potentially have 100% power if the true hazard ratio is at least as
small as the hazard ratio set for minimum clinical relevance in the design of the test.
Still, type-I error is controlled. The bottom right plot of Figure 3.3 shows two null
sample paths with a true hazard ratio of 1 that are rejected by the O’Brien-Fleming
α-spending region, but not by the AV logrank test. Here, the AV logrank test is more
conservative.

It is known that α-spending methods behave poorly in case of unbalanced allocation
[Wu and Xiong, 2017]. In Appendix B.3.1 we showed that our Gaussian approximation
to the logrank test is also not an E-variable in case of unbalanced allocation. Our exact
AV logrank test, however, is an E-variable under any allocation since it is defined
directly on the risk-set process (3.8). This suggests that if the complete data set is
available and allocation is unbalanced, the exact logrank test should be preferred over
the Gaussian approximation and the α-spending methods.

3.5. Optional continuation and live meta-analysis

In this section, we address optional continuation and live meta-analysis—the continu-
ous aggregation of evidence from multiple experiments. For instance, data could come
from medical trials conducted in different hospitals or in different countries. In such
cases, we compare a global null hypothesis H0 that is addressed in all trials (for in-
stance, θ0 = 1) to an alternative hypothesis H1 that allows for different hazard ratios in
each experiment. The present approach covers even the case in which the decision to
start each experiment might depend on the observations made in experiments that are
already in progress. Assume that there are kE experiments, E(1), . . . ,E(kE), ordered
by their respective starting times V(1) ≤ ⋅ ⋅ ⋅ ≤ V(kE), each performed on different and
independent populations. Assume further that the starting time V(k), of experiment
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E(k) depends only on the data observed in the ongoing experiments E(1), . . . ,E(k−1).

If each experiment E(k) monitors the AV logrank statistic Sk
θ0,t

, where Sk
θ0,t
= 1 for

t ≤ V(k), then the product statistic Smeta
θ0,t

=∏i≤kE
Si
θ0,t

is a test martingale with respect
to the filtration generated by all observations. Consequently, the meta-test based on
it enjoys anytime validity.

Proposition 3.5.1. Let τ be any random time. The test ξmeta
θ0,τ

= 1{Smeta
θ0,τ

≥ 1/α},

where Smeta
θ0,t

=∏i≤kE
Si
θ0,t

, has type-I error smaller than α.

This result follows from a reduction to independent left-truncation—we refer to
left-truncation in the specific sense defined by Andersen et al. [1993]. Indeed, even in
the presence of dependencies on other studies, the observations made in E(k) can be
regarded as a left-truncated sample. Here, the time at which observation in E(k) is
started is random and only participants that have not witnessed an event are recruited
into the study. One may worry that these dependencies may alter the sequential prop-
erties of Smeta

θ0,t
, but this is not the case. Since the truncation time for E(k) is based

on data that are independent of that of experiment E(k)—it is possibly based on
the observations made in all other experiments, it follows from results of Andersen
et al. [1993] (see Appendix B.1.2) that the sequential-multinomial interpretation of
the partial likelihood for the truncated data remains valid. Consequently, so does the
sequentially computed AV logrank statistic and the product statistic Smeta

θ0,t
. By con-

tinuously monitoring Smeta
θ0,t

, we effectively perform an online, cumulative and possibly
live meta-analysis that remains valid irrespective of the order in which the events of
the different trials are observed. Importantly, unlike in α-spending approaches, the
maximum number of trials and the maximum sample size (number of events) per trial
do not have to be fixed in advance; we can always decide to start a new trial, or to
postpone to end a trial and wait for additional events.

3.6. Anytime-valid confidence sequences

Anytime-valid (AV) confidence sequences corresponds to anytime-valid tests in the
same way fixed-sample tests correspond to confidence intervals. Indeed, it is possible
to “invert” a fixed-sample test to build a confidence interval: the parameters of the null
hypothesis that are not rejected by a the test form a confidence interval. Analogously,
test martingales can be used to derive AV confidence sequences [Darling and Robbins,
1967, Lai, 1976, Howard et al., 2018a,b]. In our setting, a (1 − α)-AV confidence
sequence is a sequence of confidence intervals {CIt}t≥0, such that

Pθ{θ ∉ CIt for some t ≥ 0} ≤ α. (3.16)

A standard way to design (1 − α)-AV confidence sequences, translated to our logrank
setting, is to use a prequential plug-in test martingale Spreq

θ0,t
or the Bayesian version

SW
θ0,t

as in Section 3.3.2. At time t, one reports CIt = [θ
L
t , θ

U
t ] where CIt is the smallest

interval containing the values of θ0 such that Spreq
θ0,t
> 1/α outside this interval. Ville’s

inequality readily implies that this is indeed an AV confidence sequence. The same
construction can be made for arbitrary instances of Sq

θ0,t
as in (3.10).

66



3.7. Power and sample size

3.7. Power and sample size

In this section, we investigate the power properties of the AV logrank test—we will
study specific stopping times. We have seen that by observing arbitrarily long se-
quences of events the logrank test can achieve type-II errors that are as close to zero
as desired. However, in practice it is necessary to plan for a maximum number of
events nmax so that either the experiment is stopped as soon as the null hypothesis
is rejected or when nmax events have been observed. In the latter case, there is no
evidence to reject the null hypothesis. We assess via simulation the value of nmax

needed to guarantee 20% type-II error (80% power) for the exact and Gaussian AV
logrank tests. We compare this to the nmax needed to achieve the same power us-
ing the continuous-monitoring O’Brien-Fleming α-spending procedure introduced in
the previous section, and the fixed-sample-size classic logrank test. Figure 3.4 show
simulation results establishing three types of sample sizes. The leftmost panels (“Maxi-
mum”) shows the sample size nmax described earlier, which would be required to design
the experiment. We stress the fact that using the classic logrank test or α-spending
designs events beyond nmax cannot be analyzed. The rightmost panel of Figure 3.4
(“Mean”) shows the sample sizes that capture the expected duration of the trial. It
expresses the mean number of events, under the alternative hypothesis, that will be
observed before the trial can be stopped. Here, for the AV logrank tests, we use the
aggressive stopping rule that stops as soon as Sθ1

θ0,t
≥ 1/α = 20 or n = nmax. In case of

α-spending approaches and the AV logrank test this number of events is always smaller
than the maximum needed in the design stage. Lastly, the middle panel (“Conditional
Mean”) shows an even smaller number for those tests that have a flexible sample size:
the expected stopping time given that the trial is stopped before the maximum nmax

was reached—this only happens if the null is rejected. For comparison purposes, all
sample sizes are shown relative to (i.e., divided by) the fixed sample size needed by
the classical logrank test to obtain 80% power. Note that for small sample size (for
small hazard ratios), both the classic logrank test and O’Brien-Fleming α-spending
are not recommended due to lack of type-I error control. They are based on Schoen-
feld’s Gaussian approximation, which underestimates the number of events required
for hazard ratios far away from 1. For example, simulations show that for θ1 = 0.1,
n = 6 or 7 events will be necessary—for small sample sizes the classical logrank test
is not recommended due to lack of type-I error control. We give further details in
Appendix B.1.4 (see also Figure 3.4). In summary, at all hazard ratios at which the
Gaussian approximation to the classic logrank test is accurate (say for θ1 ≥ 0.3), the
mean number of events needed by the AV logrank tests is about the same or noticeably
smaller than that needed when using a fixed-sample-size analysis.

3.8. Discussion, Conclusion and Future Work

We introduced the AV logrank test, a version of the logrank test that retains type-
I error guarantees under optional stopping and continuation. Extensive simulations
reveal that, if we do engage in optional stopping, it is competitive with the classic lo-
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grank test (which neither allows in-trial optional stopping nor optional continuation)
and α-spending procedures (which allows forms of optional stopping but not optional
continuation). We provided an approximate test for applications in which only sum-
mary statistics are available and also showed how the AV logrank test can be used
in combination with (informative) priors and prequential learning approaches, when
no effect size of minimal clinical relevance can be specified. Two of our extensions in-
vite further research: we introduced anytime-valid confidence sequences for the hazard
ratio, and will study their performance in comparison to other approaches in future
work. We also introduced an extension to Cox’ proportional hazards regression, which
guarantees type-I error guarantees even if the alternative model is equipped with arbi-
trary priors. In future work, we plan to implement this extension—which requires the
use of sophisticated methods for estimating mixture models. The GROW AV logrank
tests (exact and Gaussian) are already available in our safestats R package [Turner
et al., 2022]. We end with two final points of discussion: staggered entries and doomed
trials.

3.8.1. Staggered entry

Earlier approaches to sequential time-to-event analysis were also studied under scenar-
ios of staggered entry, where each patient has its own event time (e.g., time to death
since surgery), but patients do not enter the follow-up simultaneously (such that the
risk set of, say, a two-day-after-surgery event changes when new participants enter and
survive two days). Sellke and Siegmund [1983] and Slud [1984] show that, in general,
martingale properties cannot be preserved under such staggered entry settings, but
that asymptotic results are hopeful [Sellke and Siegmund, 1983] as long as certain sce-
narios are excluded [Slud, 1984]. When all participants’ risk is on the same (calendar)
time scale (e.g., infection risk in a pandemic; staggered entry now amounts to left-
truncation, which we can deal with), or new patients enter in large groups (allowing
us to stratify), staggered entry poses no problem for our methods. But research is still
ongoing into those scenarios in which our inference is fully AV for patient time under
staggered entry, and those that need extra care.

3.8.2. Your trial is not doomed

In their summary of conditional power approaches in sequential analysis Proschan,
Lan, and Wittes [2006] write that low conditional power makes a trial futile. Contin-
uing a trial in such case could only be worth the effort to rule out an effect of clinical
relevance, when the effect can be estimated with enough precision. However, if “both
conditional and revised unconditional power are low, the trial is doomed because a null
result is both likely and uninformative” [Proschan et al., 2006, p. 63]. While this is
the case for all existing sequential approaches that set a maximum sample size, this is
not the case for AV tests. Any trial can be extended and possibly achieve 100% power
or in an anytime-valid confidence sequence show that the effect is too small to be of
interest. This is especially useful for time-to-event data when sample size can increase
by extending the follow-up time of the trial, without recruiting more participants.
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Moreover, new participants can always be enrolled either within the same trial or by
spurring new trials that can be combined indefinitely in a cumulative meta-analysis.
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anced (mA =mB) and α = 0.05. Also shown are the O’Brien-Fleming and
Pocock α-spending boundaries for 10 interim analyses. The α-spending
boundaries are designed to have 80% power when detecting a hazard ratio
0.7. For more details, including the values of nmax, see Section 3.4.1.
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with 80% power). Data are simulated under balanced allocation (m1 =

m0 = 5000) and as time-to-event data with possible ties. The logrank Z-
statistic does not have a value for all n; it sometimes jumps with several
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higher than that of a fixed-sample test, but lower in expectation (see
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designed to detect the hazard ratio θ1 shown on the x-axis. Data are gen-
erated using that same hazard ratio. The classical logrank test needs the
following sample sizes (number of events) n(θ1) for an 80%-power design
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These sample sizes represent the 100% line in all plots.
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4. Luckiness in Multiscale Online
Learning1

Algorithms for full-information online learning are classically tuned to
minimize their worst-case regret. Modern algorithms additionally provide
tighter guarantees outside the adversarial regime, most notably in the form
of constant pseudoregret bounds under statistical margin assumptions. We
investigate the multiscale extension of the problem where the loss ranges
of the experts are vastly different. Here, the regret with respect to each
expert needs to scale with its range, instead of the maximum overall range.
We develop new multiscale algorithms, tuning schemes and analysis tech-
niques to show that worst-case robustness and adaptation to easy data can
be combined at a negligible cost. We further develop an extension with
optimism and apply it to solve multiscale two-player zero-sum games. We
demonstrate experimentally the superior performance of our scale-adaptive
algorithm and discuss the subtle relationship of our results to Freund’s 2016
open problem.

4.1. Introduction

The abstract problem of online prediction with expert advice [Littlestone andWarmuth,
1994, Freund and Schapire, 1997] is of fundamental importance in computational learn-
ing theory. Efficient and optimal algorithms for solving it have a substantial impact
on various problems in general online convex optimization [Hazan, 2021], online model
selection [Foster et al., 2017], boosting [Freund and Schapire, 1997], and maximal
probabilistic inequalities [Rakhlin and Sridharan, 2017], to name a few. Concretely,
a decision maker chooses among experts’ advices sequentially, and the environment
assigns each advice a scalar loss. If all losses have the same numerical range [−σ,σ],
the situation is well understood. Indeed, Freund and Schapire [1997] showed that, for
K experts and t rounds, the Hedge algorithm guarantees the minimax regret (defined
below) σ

√
2t lnK. Furthermore, modern algorithms additionally guarantee lower or

even constant regret when the sequence of losses is more benign [see De Rooij et al.,
2014, Koolen and van Erven, 2015, Mourtada and Gäıffas, 2019].

1This chapter is based on M. F. Pérez-Ortiz and W. M. Koolen. Luckiness in Mul-
tiscale Online Learning. Advances in Neural Information Processing Systems, 35:
25160–25170, Dec. 2022. URL https://papers.nips.cc/paper files/paper/2022/hash/
a0d2345b43e66fa946155c98899dc03b-Abstract-Conference.html
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4. Luckiness in Multiscale Online Learning

In the multiscale setting, where the experts’ loss ranges may differ by orders of
magnitude, it is natural to ask about the existence of algorithms that guarantee an
optimal worst-case regret bound that scales with the loss range of the best expert
instead of the maximum range. This question has been answered affirmatively [Chen
et al., 2021, Bubeck et al., 2019, Cutkosky and Orabona, 2018, Foster et al., 2017].
The algorithms developed in this line of work have had a significant impact in different
areas of computational learning theory and practice. Unfortunately, as we will see, the
best known algorithms still fail to guarantee lower regret even for the simplest benign
statistical cases. Ensuring these goals poses serious technical challenges. In particular,
Bernstein’s inequality, the engine of classical same-scale luckiness arguments, has no
suitable multiscale upgrade. Moreover, intuitive candidate upgrades of same-scale
results would contradict recent lower bounds (see Section 4.7). To make things worse,
in order to obtain multiscale regret bounds, close attention needs to be paid to terms
that are conventionally insignificant but now carry the maximum scale of the problem.
This motivates our main question: can a single algorithm have multiscale worst-case
regret guarantees and, in addition, exhibit constant (pseudo)regret in stochastic lucky
cases?

We answer the previous question affirmatively. The key contribution in this chapter
is Muscada (multiscale adaptive), a computationally efficient algorithm that simul-
taneously guarantees a worst-case regret that grows with the scale of the best expert,
and constant expected pseudoregret under a stochastic margin condition. Muscada
uses a refined version of Follow the Regularized Leader based on the multiscale en-
tropy of Bubeck et al. [2019]. Its crucial improvement is a second-order variance-like
adaptation, the tightest possible for the analysis of this regularizer. This second-order
adaptation is close in spirit to, and an improvement of, that of AdaHedge by De Rooij
et al. [2014] and those of Chen et al. [2021]. As a result of careful analysis, Muscada
has the following attractive properties: it does not need knowledge of the length of the
game in advance without resorting to any doubling trick, the presence of zero-regret
rounds does not change the state of the algorithm or its regret guarantees; it is invari-
ant both under per-round, possibly unknown, translations of each expert’s losses, and
under a global known scaling common to all losses and ranges.

As an application of Muscada and its analysis techniques, we build an optimistic
variant of the algorithm and use it to solve two-person zero-sum games that have a
multiscale structure. The optimistic variant makes use of a guess of what the losses
in the next round will be, and achieves lower regret when the guesses are adequate.
This interest originates in the fact that optimistic algorithms converge to the solu-
tions of such games at faster rates than their nonoptimistic counterparts [Syrgkanis
et al., 2015]. We find experimentally that Muscada outperforms existing single-scale
algorithms when the payoff matrix of the game exhibits a multiscale structure.

In the rest of this introduction we lay out formally the multiscale experts problem,
review existing work, present a summary of the main contributions (Section 4.1.1),
and outline the rest of the chapter.
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4.1. Introduction

Full-information online learning. In its simplest form, we must decide sequentially
in rounds how to aggregate the predictions made by a fixed number K of experts. At
each round t, we choose an aggregation strategy, a probability distribution wt ∈ P(K)
over experts. After choosing wt, we assess the quality of the experts’ predictions with
a numerical loss ℓt = (ℓt,k)k∈K and judge the performance of our aggregation strategy
by the wt-weighted losses ⟨wt, ℓt⟩ = ∑k∈K wt,kℓt,k. Our objective is to minimize the
cumulative gap between the losses incurred by our aggregation strategy t ↦ wt and
the best expert in hindsight. This cumulative gap is the regret Rt = ∑

t
s=1⟨ws, ℓs⟩ −

mink∈K ∑
t
s=1 ℓt,k. Other than range restrictions on the losses, no assumptions are made

about the mechanism that generates them. More precisely, for each expert k ∈K and
all rounds t, we only assume that ℓk,t ∈ [−σk, σk] for known nonnegative scales {σk}k∈K .
We call Rt the vector of regrets with respect to each expert, that is, the vector with
entries Rt,k = ∑

t
s=1 {⟨ws, ℓs⟩ − ℓs,k}.

Existing results. Several algorithms have been proposed that achieve the worst-case
regret in the multiscale setting, but none of them achieve constant regret in stochastic
lucky cases. Motivated by the problem of online model selection, Foster et al. [2017]
used a technique of adaptive relaxations to produce randomized algorithms that guar-
antee

EP[Rt,k] = O (σk
√
t(ln t + ln(1/πk) + ln(σk/σmin))) as t→∞,

where π is a prior distribution on experts that generalizes the uniform 1/K of the
Hedge algorithm and the expectation is over the algorithm’s randomness. Bubeck
et al. [2019] first proposed a Follow-the-Regularized-Leader algorithm with a multiscale
entropy regularization that guarantees

Rt,k = O (σk
√
t(lnK + ln(σmax/σmin))) as t→∞

when the number of rounds t is known in advance. Bubeck et al. [2019, Theorem 20]
also construct an instance of the K = 2 experts problem in which there exists a time t

for which any algorithm must have Rt,k′ ≳ σk′
√
t(lnK + ln(σmax

σmin
)) for some expert k′,

shedding some light on the minimax picture. Recently, Chen et al. [2021] designed an
optimistic algorithm that uses the same regulatization as Bubeck et al. [2019] with an
additional ingredient: at each round, a second-order correction is added to the losses
before computing the next round’s weights. At every round, their algorithm makes
use of a guess vector mt that can depend on the losses up to time t − 1. The scale
of the guesses mt are assumed to be the same as that of the losses; ∣mt,k ∣ ≤ σk. For
instance, valid choices for the guess mt are 0 and the loss ℓt−1 of the previous round.
The algorithm of Chen et al. [2021] achieves

Rt,k = O (σk
√
βt,k ln t + σmax ln t) as t→∞,

now scaling with the expert-dependent “time” βt,k = ∑
t
s=1

(ℓs,k−ms,k)2
σ2
k

≤ 4t. Further-

more, they show that a different single-scale tuning of their algorithm exhibits stochas-
tic luckiness. Namely, if the losses are sampled from a distribution with a gap dmin > 0
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4. Luckiness in Multiscale Online Learning

between the expected loss of the best expert k∗ and that of any other expert, their
algorithm guarantees that

Rt,k∗ = OP (
ln t

dmin
) as t→∞,

where P is the distribution of the losses. Their technique for stochastic luckiness uses
the upcoming learner’s loss as the guess mt,k = ⟨wt, ℓt⟩. Unfortunately, this approach
cannot be extended to the multiscale case, as these guesses may violate the experts’
loss ranges.

4.1.1. Main results

In this section we present succinctly the regret guarantees for Muscada. Firstly, we
present multiscale worst-case regret guarantees. Secondly, we present the stochastic
luckiness results and Massart’s margin condition. We then prove analogs of these
results for an optimistic modification of Muscada in Section 4.4. We close this intro-
duction with an outline of the rest of the chapter.

Worst-case bounds. We propose two tunings for Muscada; they cover the cases
where there is or is not an expert with loss range equal to zero. Our results imply
Theorem 4.1.1 below; it contains the regret guarantees for Muscada, expressed in
terms of vt, an implicitly defined variance-like second-order data-dependent quantity.
The quantity vt, defined by the algorithm, is the tightest allowed by our analysis and
enables our luckiness result, Theorem 4.3.1. We interpret vt through the upper bounds
of Theorem 4.1.2, also below, as an internal scale-free measure of time, as vt ≤ 4t.

Theorem 4.1.1 (Regret Bounds). Consider Muscada, t↦ vt defined in Figure 4.1,
and any initial probability distribution π.

• If σmin =mink∈K σk > 0, Tuning 1 guarantees, for any loss sequence,

Rt,k ≤ cσk
√
vt(ln(1/πk) + ln(σk/σmin)) +O(1) as t→∞, (4.1)

where c is a constant depending only on π. The constant c is well-behaved: if
maxk∈K πk = 1 − ε, then c ≤ 4

√
2(1 + 1/(2 ln(1 + ε))).

• Even if mink∈K σk = 0, Tuning 2 ensures, for any loss sequence,

Rt,k ≤ 2σk
√
2 vt(ln(1/πk) + ln(1 + vt))(1 + o(1)) as t→∞. (4.2)

The following theorem (proven in Appendix C.7) shows that vt is bounded by a
second-order quantity. If wt,k are the weights played by Muscada at round t and
ηt−1,k are its learning rates, vt is bounded by the variance over experts of the losses
w.r.t. a tilted probability distribution w̃t,k ∝ wt,kηt−1,k. The shape of this quantity
may seem surprising, but it is not artificial; our analysis shows that it is the tightest
and, consequently, the natural second-order quantity associated to this choice of reg-
ularization. In Appendix C.7, we further motivate, via a Taylor approximation, the
shape of the resulting upper bound.
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4.2. The Muscada Multiscale Online Learning Algorithm

Theorem 4.1.2. Let w̃t,k be the probability distribution w̃t,k ∝ wt,kηt−1,k and let
∆vt = vt−vt−1. Then, with either tuning from Figure 4.2, vt, from Figure 4.1, satisfies

∆vt ≤ 4
Varw̃t(ℓt)

⟨w̃t,σ2⟩
≤ 4, where Varw̃t(ℓt) = ⟨w̃t, (ℓt − ⟨w̃t, ℓt⟩)

2
⟩.

Stochastic luckiness. We now turn to our results for stochastic easy data. Not all
stochastic scenarios are easy (in fact, worst-case regret lower bounds are proved using
stochastic data). We use Massart’s margin condition, a standard benchmark for easy
data.

Definition 4.1.3 (Massart’s easiness condition). The losses ℓ1, ℓ2, . . . satisfy Massart’s
easiness condition if they are generated i.i.d. from a distribution P with the following
property: there exists a constant cM and an expert k∗ ∈K such that

EP[(ℓt,k − ℓt,k∗)
2
] ≤ cMEP[ℓt,k − ℓt,k∗]

for all k ∈K and t ≥ 1. In that case, k∗ = argmink∈K EP[ℓt,k] for all t.

Massart’s condition is implied by a more interpretable gap condition [Koolen et al.,
2016, Lemma 3]. If there exist a gap dmin > 0 in expectation between the loss of
any expert and that of the best one k∗, that is, if, for every k ≠ k∗, EP[ℓ1,k] ≥
dmin + EP[ℓ1,k∗], Massart’s condition is satisfied with cM = 1/dmin. We show the
following theorem.

Theorem 4.1.4 (Constant regret under Massart’s condition). Under Massart’s con-
dition (Definition 4.1.3), Muscada with either Tuning 1 or 2 has constant expected
pseudoregret over time, that is,

EP[Rt,k∗] ≲ 1.

Outline. The rest of this chapter is organized as follows. In Section 4.2, we introduce
and analyzeMuscada. In Section 4.3, we state the main results on stochastic luckiness
for Muscada. In Section 4.4, we introduce an optimistic variant of Muscada, give
remarks about its numerical implementation in Section 4.5, and apply it to accelerating
the solution of multiscale games in Section 4.6. We end this chapter with a discussion
of our results in Section 4.7.

4.2. The Muscada Multiscale Online Learning Algorithm

In this section, we describe our algorithm and motivate its design. We present two
useful tunings and prove the corresponding worst-case regret guarantees. For the
sake of intuition, we specialize the algorithm to the case of same-scale experts with
uniform prior and compare its resulting closed form to AdaHedge [De Rooij et al.,
2014]. Stochastic luckiness results are found in Section 4.3. We begin by introducing
some notation.
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4. Luckiness in Multiscale Online Learning

Notation. We use boldface type for vectors in RK (Rt,Lt,µt,ηt,σ,u) and distribu-
tions on K experts (p,w,π). We number rounds so that all quantities indexed by t
depend on the information witnessed by the learner in the first t rounds. Exception-
ally, we use weights wt at round t. For two functions f and g we write “f = O(g)
as t → ∞” if there exists c > 0 such that limt→∞ f(t)/g(t) ≤ c. Similarly, we write
“f(t) ∼ g(t) as t→∞” if limt→∞ f(t)/g(t) = 1, and f ≲ g if there is c > 0 so that f ≤ cg.
We denote the simplex of probability distributions on K experts by P(K) and use K
interchangeably for a number K ∈ N and the set {1, . . . ,K}.
We define Muscada in Figure 4.1 and give its two main tunings in Figure 4.2.

At round t, after observing cumulative corrected losses Lt−1 + µt−1, Muscada plays
weights

wt,k = uke
−ηt−1,k(Lt−1,k+µt−1,k+a∗t−1),

where uk > 0 is a tuning parameter related to the prior weights, ηt−1 are learning rates
that decrease over time, µt are corrections incrementally computed at every round,
and the scalar a∗t−1 ensures normalization (see Lemma C.6.7). The weights wt are
reminiscent of those played by the Hedge algorithm, but the normalization a∗t cannot
be computed explicitly in general. The weights wt are the result of a Follow-the-
Regularized-Leader update on a vector of corrected losses Lt−1+µt−1. The regularizer
employed is the multiscale entropy: for a fixed u > 0, its Bregman divergence is

w ↦Dη(w,u) = ∑
k∈K

wk
ln(wk/uk) − (1 − uk/wk)

ηk
, w ∈ P(K) (4.3)

[see Bubeck et al., 2019, Chen et al., 2021]. The goal substracting the data-dependent
second-order corrections µt from the experts’ regrets is to keep a scalar potential
function Φt negative. Here, the potential t ↦ Φt is defined by convex conjugacy with
respect to the multiscale entropy as

Φt ∶= Φ(Rt −µt,ηt) = max
w∈P(K)

⟨w,Rt −µt⟩ −Dηt(w,u), (4.4)

for which wt+1 is the maximizer. The corrections µt and the consequent negativity
of the potential Φt are the main ingredients in the regret analysis of Muscada. We
next motivate these choices.

The shape of the corrections µt. We designed Muscada to favor experts with
low corrected regret Rt −µt. For the sake of informal discussion, our goal is to obtain
µt,k ≈ σk

√
vt ln(1/πk). The algorithm achieves this by additively correcting the regrets

in each round. Indeed, from the analysis of entropy-regularized algorithms, one would

expect learning rates of the shape ηt,k ≈
1
σk

√
ln(1/πk)

vt
to be optimal. With this learning

rates in mind, the desired correction µt can be approximated using a Riemann-sum
approximation of

√
vt = ∫

vt
0

1
2
√
v
dv. Indeed, for the conjectured learning rates, our

target µt,k satisfies µt,k ≈ σ
2
k∑s≤t ηs−1,k∆vs, where ∆vt = vt − vt−1. This implies that

the choice ∆µt,k = σ
2
kηt−1,k∆vt as our per-round additive correction is helpful for

achieving our goal. We discuss our precise choice of learning rates after the formal
statement of Proposition 4.2.2 below.
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4.2. The Muscada Multiscale Online Learning Algorithm

Parameters: A vector uk > 0 of initial weights, initial strictly positive learning
rates η0,k ≤ 1/(2σk), and real, continuous nonincreasing functions Hk ∶ R+ ↦ R
with Hk(0) = 1. Initialization: Let µ0,k = 0, v0 = 0, R0,k = 0 and L0,k = 0. For
each round t = 1,2,3, . . .

1. Play (follow the multiscale-entropy regularized leader of the corrected losses)

wt = argmin
w∈P(K)

⟨w,Lt−1 +µt−1⟩ +Dηt−1(w,u), (4.5)

where Dη is the multiscale relative entropy given in (4.3).

2. Observe loss ℓt. Update Rt,k = Rt−1,k + ⟨wt, ℓt⟩− ℓt,k and Lt,k = Lt−1,k + ℓt,k.

3. Compute ∆vt, the value ∆v ≥ 0 such that

Φ(Rt −µt−1 −σ
2ηt−1∆v,ηt−1) = Φ(Rt−1 −µt−1,ηt−1), (4.6)

where Φ is the potential function defined in (4.4).

4. Compute ∆µt,k = σ
2
kηt−1,k∆vt. Update µt,k = µt−1,k +∆µt,k and vt = vt−1 +

∆vt.

5. Set the new learning rate ηt,k = η0,kHk(vt).

Figure 4.1.: Muscada

Negativity of Φ. Our regret bounds are a direct consequence of the negativity of
the potential t ↦ Φt. Indeed, by its definition, Φ0 ≤ 0, and, because of our choice of
nonincresing learning rates and corrections, the change in potential ∆Φt = Φt − Φt−1
can be bounded by

∆Φt ≤ Φ(Rt −µt,ηt−1) −Φ(Rt−1 −µt−1,ηt−1) = 0,

where the last equality follows from (4.6), the choice of corrections ∆µt. This implies
the following lemma, of which we give a more general proof in Section C.3.1.

Lemma 4.2.1. The potential t↦ Φt starts at Φ0 ≤ 0 and is decreasing for t ≥ 0.

Once we prove that the potential Φt is negative, we are ready to derive regret guar-
antees forMuscada. The maximal nature of the potential t↦ Φt and its nonpositivity
together imply that, simultaneously for all distributions p ∈ P(K),

⟨p,Rt −µt⟩ ≤Dηt(p,u). (4.7)

We choose p concentrated on each expert k ∈K to deduce the next proposition (proof
in Section C.3.1).
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4. Luckiness in Multiscale Online Learning

Let π ∈ P(K) be a probability distribution on K experts.

Tuning 1 Requires σmin > 0. Set uk = πk
σmin

σk
, η0,k =

1
2σmax

, γk = 8
σ2
max

σ2
k

ln(1/uk)

and

H1,k(v) =
d

dv
[ v√

1+v/γk

] =
v/γk+2

2(1+v/γk)3/2 .

Tuning 2 Set uk = πk, η0,k =
1

2σmax
, αk = 32

σ2
max

σ2
k

, γk = αk ln(1/uk) and

H2,k(v) =
d

dv
[

√

α2
k {(1 + v/αk) ln (1 + v/αk) − v/αk} +

v2

2(1+v/(2γk))]

=
αk ln (1 + v/αk) +

1
2

2v+v2/(2γk)
(1+v/(2γk))2

2

√

α2
k {(1 + v/αk) ln (1 + v/αk) − v/αk} +

v2

2(1+v/(2γk))

.

If, for some k, σk = 0, define H2,k to be the limit value limσ↓0H2,k(vt) = 1.

Figure 4.2.: Tunings

Proposition 4.2.2. Assume that the learning rates t↦ ηt are decreasing. Muscada
guarantees that, for any t = 1,2,3, . . . and all k ∈K,

Rt,k ≤ µt,k +
ln(1/uk)

ηt,k
+ ∑

j∈K

uj

ηt,j
−

1

ηt,k
, (4.8)

where µt,k = σ
2
k∑s≤t ηs−1,k∆vs. Furthermore, for ηt,k = η0Hk(vt) as in Figure 4.1, µt

satisfies

µt,k ≤ σ
2
kη0,k ∫

vt

0
Hk(x)dx + σ

2
k(η0,k − ηt,k)max

s≤t
∆vs. (4.9)

Choice of learning rates. Proposition 4.2.2 guides us in choosing the learning rates
presented in Figure 4.2. The starting value of the learning rates influences our ability
to control vt in terms of the variance of the losses of the algorithm while their behavior
for large vt determines the long-term growth of the regret bounds. The learning rates
presented in Figure 4.2 interpolate smoothly between these two regimes by taking the

form η
(1)
t,k = η0,kH1,k(vt) and η

(2)
t,k = η0,kH2,k(vt). Here, the starting learning rates are

set to η0,k = 1/(2σmax). The functions H1,k,H2,k ≤ 1 decrease monotonically from
their initial values H1,k(0) =H2,k(0) = 1 in such a way that, as vt →∞,

η
(1)
t,k ∼

√
2

σk

√
ln(1/πk)

vt
and η

(2)
t,k ∼

√
2

σk

√
ln(1/πk) + ln vt

vt
.
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4.2. The Muscada Multiscale Online Learning Algorithm

The asymptotic expresion for η
(1)
t,k is reminiscent of the optimal learning rates for the

Hedge algorithm with the number of rounds t replaced by the refined vt and the
uniform lnK replaced by ln(1/πk). Finally, with the Riemann sum bound (4.9) from
Proposition 4.2.2 in mind, the learning rates were chosen as the derivatives of functions
that will become the dominant term in the regret guarantees.

Tuned regret bounds. The learning rates from Figure 4.2 can be readily used in
Proposition 4.2.2 to derive regret guarantees for Muscada. However, to facilitate
interpretation, we bound the learning rates and their reciprocals in order to obtain the
regret bounds contained in the following proposition (proof in Appendix C.3.2). After
its statement, we prove Theorem 4.1.1 from the introduction.

Proposition 4.2.3. Let π be a probability distribution on K.

• Muscada run with Tuning 1 depicted in Figure 4.2 guarantees that, for any
t = 1,2, . . . ,

Rt,k ≤ 2σk
√
2vt ln(1/uk) + cσ,πσmin

√
2vt + 8σmax ln(1/uk)+

4σmax +
σk
2

max
s≤t

∆vs, (4.10)

where the constant cσ,π = ∑k∈K πk(1/
√
ln(1/uk)) and uk = πk

σmin

σk
.

• Muscada run with Tuning 2 depicted in Figure 4.2 guarantees that, for any
t = 1,2, . . . ,

Rt,k ≤ 2σk

√

2vt (ln (1 +
σ2
kvt

32σ2
max
) + ln(1/πk)) + σk ln(1/πk)Zk+

∑
j∈K

πjσjZj +
σk

2
max
s≤t

∆vt, (4.11)

where Zk =
√

vt

2 ln(1+
σ2
kvt

32σ2
max

)

⎛
⎜
⎜
⎝

1 +

¿
Á
Á
Á
ÁÀ

min{ln(1/πk),
σ2
kvt

16σ2
max

}

ln(1+
σ2
kvt

32σ2
max

)

⎞
⎟
⎟
⎠

= O (
√

vt
lnvt
) as vt →

∞.

Proof of Main Theorem 4.1.1. With Proposition 4.2.3 at hand, we can prove the claims
made in Section 4.1.1. Use the fact that σmin ≤ σk to conclude from (4.10) that, as
t→∞,

Rt,k ≤ 2σk
√
2vt ln(1/uk) + 2cσ,πσk

√
2vt +O(1).

We can bound cσ,π/
√
ln(1/uk) ≤ 1/ ln(1/πmax), where πmax = maxk∈K πk. Conse-

quently,

Rt,k ≤ 2σk {1 + 1/(2 ln(1 + ε))}
√
2vt ln(1/uk) +O(1)

as t→∞ any time that πmax = 1−ε. This coincides with (4.1). Similarly, (4.11) implies
(4.2).
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4. Luckiness in Multiscale Online Learning

4.2.1. Closed-form solutions in the single-scale uniform-prior case

To help in the interpretation and to illustrate the challenges of the multiscale problem,
we instantiate Muscada to a situation where all calculations can be carried out in
closed form: when all scales are the same and equal to σ, and the initial weights πUnif

are uniform; πUnif,k = 1/K. This is the setting in which AdaHedge by De Rooij et al.
[2014] operates. In this case, the learning rates and corrections of Muscada are the
same for all experts; ηt,k = ηt and ∆µt,k = ∆µt. The potential Φt and the corrections
∆µt take the familiar form

Φt =
1

ηt
ln(

1

K
∑
k∈K

eηt(Rt,k−µt,k)) , and ∆µt =
1

ηt−1
ln ∑

k∈K
wt,ke

ηt−1(⟨wt,ℓt⟩−ℓt).

These two quantities play a central role in the analysis of AdaHedge, where De Rooij
et al. [2014] called ∆µt the mixability gap, the difference between the average ⟨wt, ℓt⟩
and the mixed average − 1

ηt−1
ln∑k∈K wt,ke

−ηt−1ℓt,k . The main quantity in our analysis,
∆vt, becomes

∆vt =
1

η2t−1σ
2
ln ∑

k∈K
wt,ke

ηt−1(⟨wt,ℓt⟩−ℓt,k).

Using well-known estimates for cumulant generating functions, ∆vt can be bounded by
the ratio Varwt(ℓt)/σ

2 . Indeed, Hoeffding’s inequality implies the worst-case bound
∆vt ≤

1
2
; Bernstein’s, the second-order ∆vt ≲ Varwt(ℓt)/σ

2. Since it is vt that appears
in the regret bounds in Proposition 4.2.3, they are a refinement over those of Ada-
Hegde2. Additionally, the present analysis yields improvements that are apparent in
lower-order terms. Indeed, the last two terms in the regret bound (4.8) in Proposi-
tion 4.2.2 vanish, and the analysis used in the proof of Proposition 4.2.3 with η0 =

√
2/σ

and the instantiation of H1 from Figure 4.2, H1(x) =
x/ ln(K)+2

2(1+x/ ln(K))3/2 , give the regret

bound

Rt ≤

⎧⎪⎪
⎨
⎪⎪⎩

c1σvt + c2σ lnK + σ/2 if vt ≤ lnK,

2σ
√
2vt lnK + σ/2 if vt > lnK

with c1 = 3/
√
2 and c2 = 1/

√
2. Unfortunately, multiscale analogs of Bernstein and

Hoeffding’s inequalities on ∆vt are not available; considerably more technical work
needs to be carried out to prove Theorem 4.1.2. A multiscale analog of Bernstein’s
estimate for ∆vt is only available when all the learning rates are smaller than 1/(2σmax)

(see the proof of Theorem 4.1.2 in Appendix C.7).

4.3. Multiscale Stochastic Luckiness

In this section we show, under easiness conditions, that the expected pseudoregret
of Muscada is constant. Assume that the loss vectors ℓ1, ℓ2, . . . are i.i.d. and are
generated according to a distribution P that satisfies Massart’s easiness condition (see

2Our algorithm with learning rate tuning function H(v) =
√

lnK
4v

comes closest to AdaHedge.
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4.4. Optimism

Definition 4.1.3). For Tuning 1, assume that the minimum scale among experts σmin is
strictly positive. The analysis technique in this case is similar to that of Koolen et al.
[2016] with an extra step. A use of Theorem 4.1.2 shows that ∆vt can be estimated
in terms of Varwt(ℓt). This estimate possibly incurs in a multiplicative factor that
can be as high as 1/σ2

min. There are examples for which this constant is necessary
(not shown). After this, standard arguments show that the expected pseudoregret is
constant. See Appendix C.5 for proofs.

Theorem 4.3.1. Under Massart’s condition and using Tuning 1 from Figure 4.2, the
expected pseudoregret of Muscada is bounded by a constant in the number of rounds.
Specifically, for any t ≥ 0,

EP[Rt,k∗] ≲ a
2cM + b

with a =

¿
Á
Á
ÁÀ2maxi,j∈K

⎧⎪⎪
⎨
⎪⎪⎩

1
σiσj

ln( 1
πi
)+ln( σi

σmin
)

ln( 1
πj
)+ln( σj

σmin
)

⎫⎪⎪
⎬
⎪⎪⎭

(4σk∗

√

2 ln ( 1
uk∗
) + 2
√
2cσ,πσmin) and

b = 8σmax ln(
1

uk∗
) + 4σmax + 2σk∗ .

For Tuning 2, where we do not assume that σmin > 0, still EP[Rt,k∗] ≲ 1 using a
different proof technique. Using the expression for the weights of the algorithm, we
show that they concentrate on the best expert k∗. The analysis here is similar to that
of Mourtada and Gäıffas [2019], but the lack of an expression for the normalizing a∗t
presents with an additional technical difficulty. The result is the following theorem.

Theorem 4.3.2. Let dk = EP[ℓt,k−ℓt,k∗] and assume that mink≠k∗ dk > 0. Using Tun-
ing 2 in Figure 4.2, Muscada guarantees constant expected pseudoregret. Specifically,

EP[Rt,k∗] ≤ ∑
k∈K

f(dk), where f(d) = O (
σ2
max

d
ln (

σ2
max

d2 )) as d→ 0.

Standard modifications of the arguments presented may be used to prove that the
pseudoregret is constant with P-high probability (not shown).

4.4. Optimism

In this section we show an optimistic variant of Muscada. Suppose that, before round
t, we count on guessesmt for what ℓt will be. Assume thatmt is of the same scale as ℓt,
that is, ∣mt,k ∣ ≤ σk. In particular, this entails that ∣ℓt,k −mt,k ∣ ≤ 2σk. A modification of
Muscada, presented in Figure 4.1, puts these guesses to good use. These modifications
allow for regret guarantees similar to those contained in Proposition 4.2.3, but in this
case ∆v○t ≲ Varw̃○t (ℓt −mt)/⟨w̃

○
t ,σ

2⟩, where the superscript ○ signals the optimistic
analogs of the quantities from Muscada. These modifications are shown in Figure 4.3
and the regret bounds in the following proposition (proofs in Appendix C.4).

Proposition 4.4.1. If t↦ v○t is the variance process defined by Optimistic Muscada
in Figure 4.3, the same regret bounds presented Proposition 4.2.3 hold with two modifi-
cations: v○t instead of vt and all scales doubled, that is, 2σ instead of σ. Furthermore,
for each t = 1,2, . . . , ∆v○t ≤ 4Varw̃○t (ℓt −mt)/⟨w̃

○
t ,σ

2⟩ ≤ 4t, where w̃○t,k ∝ w○t,kηt−1,k.
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4. Luckiness in Multiscale Online Learning

1’ Compute the guess mt and play

w○t = argmin
w∈P(K)

⟨w,Lt−1 +mt +µt−1⟩ −Dηt−1(w,u).

3’ Let ∆v○t be the value ∆v○ ≥ 0 such that

Φ(Rt−µt−1−ηt−1σ
2∆v○,ηt−1) = Φ(Rt−1+⟨w

○
t ,mt⟩−mt−µt−1,ηt−1). (4.12)

Tuning 1’ and Tuning 2’. As in Figure 4.2 but with halved starting learning rate
η0,k =

1
4σmax

.

Figure 4.3.: Optimistic Muscada, given as update w.r.t. Figure 4.1.

4.5. Computation

At each round, Muscada requires two computations. We now argue that both can
be executed to machine precision in O(K) time. First, computing the weights (4.5)
given the losses Lt−1 and correction terms µt−1 can be reduced, by Lemma C.6.6, to a
single scalar convex minimization problem. Cancelling the derivative of the objective
amounts to searching for the normalizing offset at. To that end, binary search to
machine precision takes O(K) time per round. Notice that this also allows us to
compute the potential value. Second, for computing the variance contribution (4.6),
we observe that the right hand side of (4.6) is decreasing in ∆vt. Since the potential
can be computed in O(K) time, we can use an outer binary search to compute ∆vt
to machine precision in O(K) time as well. Alternatively, Newton’s method may be
employed; both of the previous problems require finding a root of a convex function.
When deferring to a convex optimization library, a convenient expression is the jointly
convex minimization form (see Lemma C.6.6)

∆vt = inf
a,∆v

∆v subject to a + ∑
k∈K

wt,k
eηt−1,k(⟨wt,ℓt⟩−ℓt,k−a)−η2

t−1,kσ
2
k∆v − 1

ηt−1,k
≤ 0.

4.6. Experiments on Synthetic Data

We investigate the performance of our multiscale method on two experiments: one
for illustrating the performance of Muscada under Massart’s condition, another for
solving multiscale two-player zero-sum games.
The aim of the first experiment is to compare the performance of Muscada in

easy and hard stochastic data sequences. To this end, we compared a sequence of
hard stochastic data with no gap vs. easy data sampled i.i.d. from a distribution
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4.7. Discussion

Figure 4.4.: Left: empirical mean and quartiles of 2000 realizations of the regret
t ↦ Rt,k∗ of Muscada. For easy i.i.d. Massart distribution, the regret
is constant; for a hard distribution without a gap, Ω(

√
t). Right: opti-

mistic Muscada (solid red) achieves an iterate-average saddle-point gap
of σreal/t where σreal = σmax/100 is the relevant scale of the Nash equilib-
rium. Other methods scale as σmax/t.

satisfying Massart’s condition. We witnessed constant regret for the easy data, as
shown in Figure 4.4 (Left). We take K = 50 experts and set σk = 1/k for each k ∈ K.
To generate our data, we fix some mean λk ∈ [−σk, σk] and generate binary expert
losses ℓt,k ∈ {−σk,+σk} independently between rounds and experts, with probability

P{ℓt,k = σk} =
σk+λk

2σk
. For the hard case, we set λk = 0 for all k. For the lucky case,

we set λ2 = −1/5 instead. Generating this figure with the code in the supplementary
material takes 3 seconds on an Intel i7-7700 processor.

The aim of the second experiment is to show the performance of Muscada for
solving multiscale zero-sum games. Here, the payoff matrix is unknown, but row and
column scales are available and vastly different. As detailed in Appendix C.1, we run
two instances of appropriately tuned Optimistic Muscada against each other. As
shown in Figure 4.4 (Right), the pair of time-average iterates converges to the saddle
point with a suboptimality gap of order σreal/t instead of the worst-case σmax/t, where
σreal is the maximum range within the support of the saddle point. In Appendix C.1,
we conjecture that this rate holds for any such game and prove a weaker result: without
optimism, the slower but scale-adaptive rate σreal/

√
t is achieved.

4.7. Discussion

We developed a new algorithm for multiscale online learning that is both worst-case
safe and achieves constant pseudoregret in stochastic lucky cases. Our method is a
refinement of the Follow-the-Regularized-Leader template with a weighted entropy.
The main innovation is in the correction terms added to the losses, which are the
tightest the technique admits. This suggests that these variance-like terms are in fact
intrinsic to the problem of obtaining scale-dependent regret bounds. Lastly, we relate
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4. Luckiness in Multiscale Online Learning

this newfound variance to the variance asked for by Freund [2016], we comment on the
advantage of second-order guarantees over zeroth-order ones, and we state an open
problem.

Quantile bounds and solving Freund’s problem. Freund [2016] asked whether quan-
tile adaptivity and variance adaptivity are compatible, that is, whether one can have
⟨p,Rt⟩ ≤

√
KL(p,u)∑s≤tVarws(ℓs) for all comparator distributions p ∈ P(K) simul-

taneously. Even though our tuning of ηt does not yield quantile bounds, these can,
however, be added employing a now-standard method [Koolen and van Erven, 2015].
Namely, instead of only including every expert with a private learning rate tuned to its
prior complexity level (the typical lnK or ln(1/πk) term), we include multiple copies
of each expert, each with a learning rate tuned to a smaller complexity level. We
then start from (4.7) with comparator distribution p concentrated on the ε-quantile
of interest and carry out all future steps (from Proposition 4.2.2 on), ending up with

the quantile regret bound ⟨p,Rt⟩ ≤maxk∶pk>0 σk
√
vt(lnC +Dη0(p,u)), where C is the

number of learning rates thus created. As these learning rates can be exponentially
spaced in an interval of width lnK, C is of order ln lnK. Does this procedure answer
Freund’s question? For our notion of variance, vt, which our results suggest is a rather
useful notion, the answer is yes. However, to relate ∆vt to Varwt(ℓt), we incur a multi-
plicative ratio ηt,max/ηt,min, which, for the quantile case, is of order

√
lnK, turning the

prior-in-the-square-root bound into a prior-outside-the-square-root bound. The latter
was already achievable by not tuning η to the prior complexities at all. This problem
does not arise in the same-scale uniform-prior case; there, ∆vt is bounded by a small
multiple of Varwt(ℓt) [De Rooij et al., 2014]. Note that this problem is present even
when K is fixed while t grows, which is narrowly outside the scope of the impossibility
results of Marinov and Zimmert [2021]. This discussion sheds light from another angle
on why Freund’s problem is hard; we present a desirable multiscale alternative.

Luckiness, gap, and Massart’s condition. We now address the advantage of Mus-
cada’s refined second-order measure of time vt over the zeroth-order number of rounds
t. Multiscale zeroth-order regret bounds (growing with t) can be guaranteed either
by tuning Muscada crudely to a constant multiple of t or by building an any-time
improvement of the algorithm of Bubeck et al. [2019], also tuned to t. Both t-tuned
and vt-tuned algorithms have constant expected pseudoregret in stochastic lucky cases,
but the constant can be widely different. Indeed, the constant for t-tuned algorithms
scales with the inverse 1/dmin of the gap dmin = mink≠k∗ E[ℓt,k − ℓt,k∗], while the con-
stant for vt-tuned algorithms scales with the constant cM from Massart’s condition
(see Definition 4.1.3). The difference stems from the fact that cM is at most 1/dmin,
but it can be arbitrarily smaller. This separation appears to be fundamental. In
the single-scale uniform-prior case, the above t-tuned algorithms are closely related to
Decreasing Hedge [Mourtada and Gäıffas, 2019], just as Muscada is related to Ada-
Hedge (see Section 4.2.1). Mourtada and Gäıffas [2019] show that, in the single-scale
case, even under Massart’s condition with cM = 1, Decreasing Hedge and, consequently,
Bubeck et al.’s algorithm with decreasing learning rates, has expected pseudoregret
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4.7. Discussion

E[RB
t,k] ≳ 1/dmin. If the smallest scale σmin > 0, by taking dmin small, this lower bound

can be made arbitrarily worse than the guarantee of Muscada, E[RMuscada
t,k∗ ] ≲ cM+1,

from Theorem 4.3.1.

Open problem. Our ability to incorporate an arbitrary prior suggests that the results
should extend to countably many experts. However, the current techniques do break
down. When maxk∈N σk < ∞ Muscada with Tuning 1 (if infk∈N σk > 0) or Tuning 2
would still deliver the worst-case bound. Yet our luckiness result currently requires
maxk,l,t

ηt,k

ηt,lσ2
l

< ∞. Even with a common scale σ, this is never the case due to the

dependence of ηt on the prior π, which is necessarily decreasing. Is luckiness actually
possible, for example, in the online learning analog of the elegant challenge example
presented by Talagrand [2014, Chapter 2]?
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5. Exponential Stochastic Inequality1

We develop the concept of exponential stochastic inequality (ESI), a novel
notation that simultaneously captures high-probability and in-expectation
statements. It is especially well suited to succinctly state, prove, and reason
about excess-risk and generalization bounds in statistical learning; specifi-
cally, but not restricted to, the PAC-Bayesian type. We show that the ESI
satisfies transitivity and other properties which allow us to use it like stan-
dard, nonstochastic inequalities. We extend to a large degree the original
definition from 2016 and show that general ESIs satisfy a host of useful ad-
ditional properties, including a novel Markov-like inequality. We show how
ESIs relate to, and clarify, PAC-Bayesian bounds, subcentered subgamma
random variables and fast-rate conditions such as the central and Bern-
stein conditions. We also show how the ideas can be extended to random
scaling factors (learning rates).

5.1. Introduction

Let X,Y be two random variables. For fixed η > 0, we define

X ⊴η Y if and only if E[eη(X−Y )] ≤ 1. (5.1)

If X ⊴η Y we say that X is stochastically exponentially smaller than Y , and we call a
statement of the form X ⊴η Y an Exponential Stochastic Inequality or ESI (pronounce
as “easy”).

The ESI is a useful tool to express certain nonasymptotic probabilistic concentra-
tion inequalities, and generalization and excess risk bounds in statistical learning,
especially but not exclusively of the PAC-Bayesian kind—it allows theorems to be
stated more succinctly and their proofs to be simultaneously streamlined, clarified
and shortened. This is enabled by the ESI’s two main characteristics: first, the ESI
simultaneously expresses that random variables are ordered both in expectation and
with high probability—consequences of Jensen’s and Markov’s inequality, respectively.
Indeed, if X ⊴η Y then both

(a) E[X] ≤ E[Y ] and (b), with probability at least 1 − δ,X ≤ Y +
ln(1/δ)

η
, (5.2)

1This chapter is based on P. D. Grünwald, M. F. Pérez-Ortiz, and Z. Mhammedi. Exponential
Stochastic Inequality, Apr. 2023. URL http://arxiv.org/abs/2304.14217. arXiv: 2304.14217
[math, stat]
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5. Exponential Stochastic Inequality

for all 0 < δ ≤ 1—this is formalized more generally in Proposition 5.2.3. These simul-
taneous inequalities are in contrast with considering either ordering in probability or
in expectation separately: it is easy to construct random variables that are ordered
in expectation but not with high probability and vice versa. The second main char-
acteristic of the ESI is that it satisfies a useful transitivity-like property. As shown
in Section 5.2.4 below, if separately and with high probability X ≤ Y and Y ≤ Z, the
common technique of applying the union bound to obtain a high-probability statement
for X ≤ Z would lead to slightly worse bounds than using ESI transitivity. ESI nota-
tion was originally introduced by Koolen et al. [2016] and Grünwald and Mehta [2020]
(the first arXiv version of which came out in 2016) to improve precisely such chained
bounds and to avoid stating essentially the same statement twice, once in probability
and once in expectation—both statements were highly relevant in the context of the
latter article. A third reason was that the bounds from Grünwald and Mehta [2020] of-
ten involved annealed expectations (normalized log-moment generating functions, see
the next section), and writing them out explicitly would require unwieldy nested state-
ments like E[exp(E(exp(η(...))))] ≤ 1, as can be found in for instance the pioneering
work of Zhang [2006a]. ESI notation makes such expressions much more readable by
expressing the outer expectation as an ESI, and the inner one as an annealed expec-
tation (as defined in the next section). The ESI was later used in several follow-up
articles [Mhammedi et al., 2019, Grünwald and Mehta, 2019, Grünwald et al., 2021],
but its properties were never spelled out fully and in much detail.
This chapter gives a detailed development of the ESI. We extend its definition and

notation to cover many more cases, making a novel distinction between “weak” and
“strong” ESI. We provide a list of useful properties—a calculus as it were—that can be
used for manipulating ESIs. Our purpose is twofold: first, we want to showcase the ease
and advantages of working with the ESI; second, we derive some new technical results—
that are very conveniently expressed using the ESI—that provide a characterization of
classical subcentered random variables that are subgamma on the right (which have been
well studied before, e.g. Boucheron et al. [2013]) and of the main fast-rate conditions
in statistical learning theory, the Bernstein and central conditions, extending results of
Van Erven et al. [2015] to unbounded random variables. We find that such conditions
only require exponential-moment control on one tail; only minimal control—of the first
and second moments—for the other tail.
In the remainder of this introduction, we give a brief overview of what is to come,

starting with the generalized definition of ESI. As a running example, we use the
determination of stochastic bounds on averages of i.i.d. random variables. We say
that u ∶ R+ → R+ is an ESI function if it is continuous, nondecreasing, and strictly
positive.

Definition 5.1.1 (ESI). Let u be an ESI function u—continuous, nondecreasing and
strictly positive. We define

X ⊴u Y if and only if for all ϵ > 0, E[eu(ϵ)⋅(X−Y )] ≤ eu(ϵ)⋅ϵ. (5.3)

This definition entails that, using the original ESI notation (5.1), for all ϵ > 0, if
η = u(ϵ), then X ⊴η Y + ϵ. Henceforth, we shall refer to the original type of ESI
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(5.2) as strong ESI and to the new form (5.3) simply as ESI. The strong ESI is a
special instance of the ESI, as can be seen by taking the constant function u(ϵ) ≡ η
in (5.3). In the special case that limϵ↓0 u(ϵ) = 0, we shall refer to X ⊴u 0 as a weak
ESI. The main reason for introducing a general ESI is that it allows us to extend all
major useful properties of the strong ESI to the weak ESI, which provides a weaker
exponential right-tail control than the strong ESI and thus hold more often in practice.
We will consistently use Greek letters (usually η) to refer to constants, i.e. strong ESIs,
and Latin letters (usually u) to refer to functions, i.e. general ESIs. The most basic
properties of the general ESI as well as fully precise definitions of all notations are
given in Section 5.2.

Transitivity, summation and averaging. As we mentioned earlier, a key property of
the strong ESI is its transitivity-like property, which leads to sharper bounds than
those obtained through the union bound. This property is a consequence of the fact
that strong ESIs are preserved under summation, and general ESIs under averaging
(Section 5.2.4, Proposition 5.2.6, Corollary 5.2.7). To demonstrate the latter property,
let {Xf ∶ f ∈ F} be a family of random variables and let Xf,1, . . . ,Xf,n be i.i.d. copies
of each Xf . Suppose we are given the ESIs

Xf,i ⊴u 0 for all f ∈ F and i ∈ [n]. (5.4)

Then, we can conclude via Corollary 5.2.7, for all f ∈ F , that

1

n

n

∑
i=1
Xf,i ⊴n⋅u 0. (5.5)

This does not only imply that E[∑Xf,i] ≤ 0, but also the high-probability statement
that for all 0 < δ ≤ 1,

1

n

n

∑
i=1
Xf,i ≤ inf

ϵ>0
(ϵ +

ln(1/δ)

n ⋅ u(ϵ)
) . (5.6)

Additionally, the ESI (5.4) implies that all the moments of the right tail of each Xf,i

are finite. Under the quite weak condition that the Xf,i also have uniformly bounded
second moment on the left tail, we can infer via Proposition 5.3.1 in Section 5.3.1—
under the assumption that (5.4) holds for some common ESI function u—that they also
satisfy a (weak) ESI for a function u(ϵ) = C∗ϵ∧ η∗ for some C∗, η∗ > 0. Thus, without
loss of generality, we can take a u that is linear near the origin. We can then see that
for large enough n, the minimum in (5.6) is achieved at an ϵ with u(ϵ) = C∗ϵ < η∗. In
that case, the infimum can be computed through differentiation and (5.6) becomes

1

n

n

∑
i=1
Xf,i ≤ c ⋅ (

ln(1/δ)

n
)

α

(5.7)

for some c > 0 and α = 1/2, a standard bound in statistical learning theory [Vapnik,
1998, Shalev-Shwartz and Ben-David, 2014]. In Section 5.3.1 (Proposition 5.3.1), we
give a number of equivalent characterizations of the general ESI in terms of subcentered,
subgamma random variables of which the result that “u can be taken linear near the
origin” is just one instance.
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From weak to strong ESI: excess risk bounds. The transitivity property also allows
us to prove fast rates of convergence of empirical averages to their expected value. This
is of particular interest, as we will recall, for proving excess risk bounds of Machine
Learning algorithms. Now we consider {Xf ∶ f ∈ F} that all satisfy the ESI Xf ⊴u 0
for a common ESI function u of the form u(ϵ) = C∗ϵγ ∧ η∗ with 0 ≤ γ ≤ 1 and C∗, η∗

positive constants. Again, for large enough n, the minimum in (5.6) is achieved at an
ϵ with u(ϵ) < η∗, and differentiation gives that (5.7) now holds with α = 1/(1 + γ). If
γ < 1, we say that the average satisfies a fast-rate statement. To see why, we briefly
need to explain one of the most important applications of the ESI, namely, providing
excess-risk bounds in statistical learning theory [Zhang, 2006b,a, Grünwald and Mehta,
2020]. Here, we assume that there is an underlying sequence of i.i.d. data Z1, . . . , Zn,
each Zi having the same distribution as Z. Each f ∈ F represents a predictor , and
there is a loss function ℓf(Z) ∈ R quantifying the loss that the predictor f makes on Z.
Often, Z is of the form Z = (U,Y ), and f represents a function mapping covariates—or
features—U to Y ⊂ R. An example of this setup is regression with the squared error
loss ℓf((U,Y )) =

1
2
(Y − f(U))2. One can fit other prediction and inference problems

such as classification and density estimation into this framework as well [Van Erven
et al., 2015, Grünwald and Mehta, 2020]. We now define the excess loss that the
predictor f makes on the outcome Z as Lf = Lf(Z) = ℓf(Z) − ℓf∗(Z) where f

∗ is
the minimizer of f ↦ E[ℓf(Z)] over Z—for simplicity, we assume f∗ to exist and be
unique. Thus, Lf measures how much better or worse f performs compared to the
theoretically optimal f∗ on a particular Z. Based on a sample Zn = (Z1, . . . , Zn),

learning algorithms output an “estimate” or “learned predictor” f̂ ∶= f̂ ∣Zn, the latter

notation indicating the dependence of f̂ on Zn. Sometimes, e.g. in Bayesian and PAC-
Bayesian inference (see below), they output, more generally, a learned distribution Π̂ =
Π̂∣Zn on f ∈ F . The goal is to design an algorithm whose excess risk EZ∼P[Lf̂ ∣Zn(Z)]

(or Ef̄∼Π̂EZ∼P[Lf̄ ∣Zn(Z)] if the algorithm outputs a distribution) converges to zero

fast, with high probability and/or in expectation. To this end, it is crucial to control
how fast the empirical excess risk n−1∑

n
i=1Lf,i (where Lf,i = ℓf(Zi) − ℓf∗(Zi)) of

each fixed f ∈ F converges to its expectation E[Lf ]. In practice, in simple cases
(e.g. bounded losses) the collection of negative excess risks {Xf ∶ f ∈ F} with Xf =

−Lf satisfies a weak ESI, so that (5.7) holds with α = 1/2—in line with what one
might expect from the central limit theorem. However, in many interesting cases (e.g.
bounded squared error loss), something better (larger α) can be attained, because
(5.6) holds, for all f ∈ F , with u(ϵ) = C∗ϵγ ∧ η∗ for a γ < 1 (in the specific case of
bounded squared error loss it even holds with γ = 0). Then (5.7) implies that, for each
individual f , n−1∑

n
i=1Lf,i = O(n

−α) with α = 1/(1 + γ), and this usually translates
into learning algorithms that also converge at this fast (i.e., faster than 1/

√
n, since

γ > 0) rate; an example for empirical risk minimization (ERM) is given below.

Using different terminology and notation (not ESI), Van Erven et al. [2015] already
identified that collections {Lf ∶ f ∈ F} such that allXf = −Lf satisfyXf ⊴u 0 for u(ϵ) =
C∗ϵγ ∧ η∗—as above—allow for fast rates; in their terminology, such a family satisfies
the u-central fast-rate condition. They showed that, for bounded loss functions (and
hence uniformly bounded Lf ), satisfying this property for some γ is equivalent to F
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satisfying the celebrated β-Bernstein condition, with β = 1−γ. The Bernstein condition
[Audibert, 2004, Bartlett and Mendelson, 2006, Audibert, 2009] is a more standard,
well-known condition for fast rates. Van Erven et al. [2015] left open the nagging
question whether the Bernstein and central fast-rate conditions remain equivalent for
unbounded loss functions. As one of the main results in this chapter, we show in
Theorem 5.3.11 (Section 5.3.2) that this is indeed the case as long as the left tail of
the excess risk is exponentially small, and the right tail satisfies a mild condition on
its second moment.

PAC-Bayesian bounds. The ESI is particularly well suited to PAC-Bayesian analysis.
To demonstrate this, we continue to assume that there are i.i.d. random variables
Z1, Z2 . . . , Zn such that, for all f ∈ F , Xf,i = gf(Zi), that is, Xf,i can be written as a
function of Zi for some function gf which may, but does need to be a negative excess
loss (in fact, in many applications it will be an expected loss minus an absolute, non-
excess empirical loss; see e.g. Grünwald et al. [2021]). We can easily combine the ESIs
as (5.4) into a statement that simultaneously involves all f ∈ F by using PAC-Bayesian
bounds [see Catoni, 2007, McAllester, 1998, Van Erven, 2014, Guedj, 2019, Alquier,
2023]. As we show in Section 5.4, in ESI notation such bounds take a simple form,
and become easy to manipulate and combine. By Proposition 5.4.1, Part 2, from (5.5)
we immediately get the ESI

Ef̄∼Π̂ [
1

n

n

∑
i=1
Xf̄ ,i] ⊴nu

KL(Π̂,Π0)

nu
(5.8)

—the notation is explained in more detail in the next section. Here, KL is the Kullback-
Leibler divergence; Π0 is a distribution on F called a “prior” in analogy to prior
distributions in Bayesian statistics; and Π̂ is allowed to be any distribution on F that
may depend on data Zn and that represents the learning algorithm of interest. If we
write E without subscript, we refer to the expectation of Z and hence to that of Xf ;

with subscript f̄ ∼ Π̂, the expectation is taken over Π̂. In simple cases, Π̂ will be a
degenerate distribution with mass one on an estimator (learning algorithm) f̂ = f̂∣Zn ,
as above, and Π0 will have a probability mass function π0 on a countable subset of
F , and then KL(Π̂,Π0) = − lnπ0(f̂). Now, Lemma 5.3.7 in Section 5.3.2, adapted
from Grünwald and Mehta [2020] but receiving a very different interpretation in the
present ESI context, shows that, if the ESI (5.4) holds with u(ϵ) = C∗ϵγ∧η∗ (providing
right-tail control of the Xf ), then under a weak additional condition on the left tail,
the so-called witness condition, there exists a constant c > 0 such that, for all f ∈ F ,
i ∈ [n],

Xf,i − cE[Xf,i] ⊴u/2 0 (5.9)

((5.9) is not a trivial consequence of (5.4) because we have E[Xf,i] ≤ 0). Using again
Corollary 5.2.7 about ESI averages and PAC-Bayes Proposition 5.4.1, Part 2, from
(5.9) we immediately get the ESI

Ef̄∼Π̂ [
1

n

n

∑
i=1
Xf̄ ,i − cE[Xf̄ ]] ⊴nu/2

2KL(Π̂,Π0)

nu
,
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which, barring suboptimal constant factors, coincides with the main excess risk bound
of Grünwald and Mehta [2020]. Indeed, in the case with Lf = −Xf , an excess loss, the
above can be rewritten as

cEf̄∼Π̂EZ∼P[Lf̄ ] ⊴nu/2 Ef̄∼Π̂ [
1

n

n

∑
i=1
Lf̄ ,i] +

2KL(Π̂,Π0)

nu
,

which provides an excess risk bound for the learning algorithm embodied by Π̂. It
says that the expected performance on future data—if we use the randomized predictor
obtained by sampling from Π̂—is in expectation as good as it performed on the sample
Zn itself, up to a KL/n complexity term. If Π̂ implements empirical risk minimization,

placing mass 1 on the f̂ ∈ F that minimizes the loss on Zn, then the empirical excess
loss Ef̄∼Π̂ [

1
n ∑

n
i=1Lf̄ ,i] =

1
n ∑

n
i=1Lf̂ ,i must be ≤ 0; if further F is finite and Π0 is

uniform on F , this implies, following a minimization analogous to (5.6) but now with
ln(1/δ)+2KL(Π̂,Π0) in the numerator, that depending on γ, a rate of O((ln ∣F ∣)1/(1+γ))
is achieved both in expectation and in probability. Grünwald and Mehta [2020] show
variations of this bound (with discretized infinite F) to be minimax optimal in some
situations.

Further developments: partial order, ESI Markov, Random η, non-i.i.d. Besides
the properties needed for the above-illustrated applications to fast-rate, PAC-Bayesian,
excess-risk bounds, we provide some further properties of the ESI that are of general
interest. We start in Section 5.2 with basic properties of the ESI, including an extensive
treatment of transitivity. We show that the strong ESI formally defines a partial
order relation. We also provide answers to natural questions such as “does the ESI
characterization (5.3) admit a converse?” and we show that ESIs imply some other
curious stochastic inequalities. In particular, we show an ESI Markov inequality ,
which we find intriguing—whether it will prove useful in applications remains to be
seen, though.

Section 5.3 gives detailed characterization of strong and general ESI, and contains,
besides new notation, also some truly novel results. Section 5.4 revamps existing
results to provide the connection to PAC-Bayes; its main result, Proposition 5.4.1,
was already illustrated above. While strictly speaking not containing anything new,
it reorganizes and disentangles existing PAC-Bayesian proof techniques, showing that
there really are at least three inherently different basic PAC-Bayesian results that
are used as building blocks in other works. Section 5.5 contains some new results
again, concerning the situation that the η in strong ESIs itself is not fixed but itself
a random, i.e. data-dependent, variable. The chapter ends with Section 5.6 that
extends ESIs to the non-i.i.d. case, connecting them to random processes, showing
that ESIs defined on a sequence of random variables remain valid under optional
stopping. Example 5.6.4 in that section lays out an intriguing connection between
Zhang’s PAC-Bayesian inequality and the Wald identity, a classic result in sequential
analysis. All longer proofs are deferred to appendices.
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ESI, Annealed expectation and log-moment generating function Of course, it has
always been common to abbreviate notations for moment and cumulant moment gen-
erating functions in order to get more compact representations and proofs of con-
centration inequalities. For example, the classic work of Boucheron et al. [2013]
uses ψX(η) = lnE[eηX] for the cumulant moment generating function. Instead of
this, we use ESI and, as will become useful later, the annealed expectation (5.10)
Aη
[X] = η−1 lnE[eηX], i.e. ψX(η) = ηA

η
(X). We stress that we do not claim that

our notations are inherently better or more useful. Rather, we think that in some con-
texts uses of unnormalized ψX(η) together with high-probability statements may be
preferable; in other—especially related to excess- and generalization risk bounds—the
normalized version Aη

[X] and the ESIs are more convenient. These new notations
are meant to complement, not replace, the existing.

5.2. Basic ESI Properties

In this section, we show the properties of the ESI that were anticipated in the intro-
duction. We start with Section 5.2.1, where we lay down the notation that will be used
in the rest of the chapter; in particular, for the annealed expectation. In Section 5.2.2,
we show basic properties of the ESI. There, we show the main implications of a ran-
dom variable satisfying an ESI, and layout useful properties that will be used in the
next sections. In Section 5.2.3 we show a partial converse to definition of the ESI: if a
random variable has a subexponential right tail, it satisfies an ESI—we show a more
definitive converse in Section 5.3. In Section 5.2.4 we show the main properties of the
ESI in relation to its transitivity and its use to bounding sums of independent random
variables. In Section 5.2.5, we show that the ESI defines a partial order on random
variables. We end with Section 5.2.6 with a curiosity, a Markov-like inequality that
replaces the requirement of positivity in Markov’s inequality with the weaker 0 ⊴η X.

5.2.1. Preliminaries: additional definitions and notation

Throughout the chapter, we fix some probability space (Ω,Σ, P ). Whenever we speak
of random variables or a class of random variables without indicating their distribution,
we assume that they are all defined relative to this triple, and that their expectation
is well-defined. To be more precise, we call a function X ∶ Ω → R a random variable
if it is measurable; we may have E[X+] = ∞ (then E[X] = ∞) or E[X−] = ∞ (then
E[X] = −∞), but not both. Here and in the sequel, E denotes expectation under P
and X+ = 0 ∨X;X− = 0 ∨ (−X).

Definition 5.2.1 (Subcentered and regular). We call a random variableX subcentered if
E[X] ≤ 0 and regular if E[X2] <∞. We call a family of random variables {Xf ∶ f ∈ F}
regular if supf∈F E[X2

f ] <∞.

The reason for reserving the grand word “regular” for this simple property is that, as
we will see in Section 5.3, as long as it holds everything works out nicely; in particular,
we obtain an equivalence between random variables satisfying an ESI beingsubcentered,
uniformly subgamma random variables.
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Definition 5.2.2 (Annealed expectation). Let η > 0 and let X be a random variable.
We define the annealed expectation as

Aη
[X] =

1

η
lnE[eηX]. (5.10)

The annealed expectation is a rescaling of the cumulant generating function, “a well-
known provider of nonasymptotic bounds”[Catoni, 2007]; we remark that in some other
works, “annealed expectation of X” refers to what is −Aη

[−X] in our notation. Of
course, the definition of the ESI could have been written using the annealed expectation
as

X ⊴η Y if and only if Aη
[X − Y ] ≤ 0. (5.11)

We need one more, final extension of the ESI notation. Let u be an ESI function—a
continuous, positive, increasing function. For any random variables X and Y and
function f ∶ R+ ×R→ R, we write

X ⊴u f(u,Y ) as shorthand for: for all ϵ > 0, with η = u(ϵ), E[eη(X−f(η,Y ))] ≤ eηϵ.
(5.12)

Notice that we already used this notation implicitly in (5.8).

5.2.2. Basic Properties of the ESI

In the following proposition, we state the main consequences of two random variables
X,Y satisfying an ESI X ⊴η Y ; namely, that they are ordered both in expectation and
with high probability. In the next section we give a partial converse to this definition: if
two random variables X,Y are ordered with high probability, they satisfy an ESI with
modified constants. A more definitive characterization is the subject of Section 5.3.

Proposition 5.2.3 (ESI characterization). Let X,Y be two random variables such
that X ⊴u Y for some ESI function u. Then

1. E[X] ≤ E[Y ]. If u ≡ η is constant (strong ESI), then the inequality is strict
unless X = Y a.s.

2. X and Y are ordered with high probability, that is, for all ϵ > 0, P{X ≥ Y +ϵ+K} ≤
e−u(ϵ)K , or equivalently, for any δ ∈ [0,1]

X ≤ Y + inf
ϵ>0
(

1

u(ϵ)
ln

1

δ
+ ϵ) , (5.13)

with probability higher than 1 − δ. In the special case of u ≡ η constant, i.e. a
strong ESI, P{X ≥ Y +K} ≤ e−ηK or, for any 0 < δ ≤ 1,

X ≤ Y +
1

η
ln

1

δ
, (5.14)

with probability higher than 1 − δ.
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Proof. Jensen’s inequality and the fact that the function x ↦ e−ηx is strictly convex
yields Part 1 (including strictness for the strong ESI case). For Part 2, apply Markov’s
inequality to eu(ϵ)(X−Y −ϵ) to give P{X ≥ Y + ϵ + (ln(1/δ)/u(ϵ))} ≤ δ. Since this holds
simultaneously for all δ > 0, the result follows.

For simplicity, we did not spell out the consequences of an ESI of the form X ⊴u
f(u,Y ) asdefined above in (5.12); the extension of Proposition 5.2.3 to this case is
entirely straightforward.

Remark If the ESI X ⊴u Y is not strong, then it is possible that the inequality in
Part 1 of the proposition is not strict, i.e. that E[X] = E[Y ]. An example is given by
P{X = 1} = P{X = −1} = 1/2, P{Y = 0} = 1. By the cosh inequality we have X ⊴u Y
for u(ϵ) = ϵ/2, yet obviously E[X] = E[Y ].
We now introduce some very basic useful properties of ESIs that we will freely use

in the remainder of the chapter.

Proposition 5.2.4 (Useful Properties). Let X,Y,Z be three random variables and let
u and u∗ be ESI functions. The following hold:

1. If X ⊴u Y and Y ≤ Z almost surely then X ⊴u Z.

2. X ≤ Y almost surely if and only if X ⊴η Y (strong ESI) for every η > 0.

3. If X ⊴u∗ Y , then X ⊴u○ Y for each ESI function u○ with u○ ≤ u∗ (by which we
mean: for all ϵ > 0, u○(ϵ) ≤ u∗(ϵ)).

4. Suppose that Z ⊴u 0. Then Z+ −E[Z+] ≤ Z+ ⊴u (ln 2)/u and similarly, for every
c > 0, we have Z1{Z ≥ c} ≤ Z+ ⊴u (ln 2)/u.

5. For η > 0, it holds that
X −Aη

[X] ⊴η 0. (5.15)

and hence
E[X] ≤Aη

[X]. (5.16)

Proof. We only give the proofs for strong ESIs with constant u; the generalizations
to general ESI functions u = η are immediate. For 1, notice that if Y ≤ Z, then
X − Y ≥ X − Z. This in turn implies 0 ≥ Aη

[X − Y ] ≥ Aη
[X − Z] so that X ⊴η Z.

For 2 it is clear that if X − Y ≤ 0, then Aη
[X − Y ] ≤ 0 for each η. For the converse

recall that if the p−norm ∥X∥p = (E[∣X ∣
p])1/p of a random variable X is finite for all

p > 0, then, as p → ∞, ∥X∥p → ess sup ∣X ∣, the essential supremum2 of X. Note that

by assumption Aη
[X − Y ] = ln ∥eX−Y ∥

η
≤ 0 for all η > 0, and thus taking η → ∞ we

can conclude that ln(ess sup eX−Y ) ≤ 0, that is, X −Y ≤ 0 almost surely. 3 follows from
the convexity of the function x↦ eηx. 4 follows since

E[eηZ] = E[eηZ+] +E[e−ηZ−] − 1, (5.17)

2The essential supremum of a random variable X is the smallest constant c such that X ≤ c almost
surely.
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so that

E [eη(Z++(ln 2)/η)] =
1

2
E [eηZ+] ≤

1

2
(E [eηZ] + 1) ≤ 1,

where the final inequality follows by assumption. 5 follows from Jensen’s inequality
and (5.15) is just definition chasing.

5.2.3. A partial converse to the basic ESI characterization

Proposition 5.2.5. Let Z be a random variable. If there exist a, b > 0 such that

P{Z ≥ ϵ} ≤ ae−bϵ (5.18)

for each ϵ > 0, then, for each 0 < η′ < b, there is a constant c > 0 such that Z ⊴η′ c,
where

c =
1

η′
ln(1 +

aη′

b − η′
) . (5.19)

In particular, if for some η the precise statement (5.14) holds for all 0 < δ ≤ 1 with
probability at least 1 − δ, then by taking a = 1, b = η, η′ = η/2, Z = X − Y , we find that
X ⊴η/2 Y + (2/η) ln 2.

This proposition shows that if we have an exponentially small right-tail probability
for Z, then an ESI statement with a C∗ > 0 on the right must already hold; in
particular, if we weaken an ESI to its high-probability implication and then convert
back to an ESI, we loose both a factor of 2 in the scale factor η and an additive constant.
If we can additionally assume that E[Z] ≤ 0, then both main ESI implications from
Proposition 5.2.3 hold and indeed, if additionally Z is regular—if its second moment
is bounded—, we get a more complete converse of Proposition 5.2.3 (allowing ESI
functions u rather than just fixed η); this is done in Proposition 5.3.1 later on.

5.2.4. Sums of random variables and transitivity

In this subsection we show how ESIs are useful when proving probabilistic bounds for
sums ∑

n
i=1Xi of random variables—not necessarily independent—, and how this leads

to a transitivity-like property. All our results are stated, and valid for, strong ESIs; in
Corollary 5.2.7 we look at averages rather than sums and, as stated there, the results
become valid for general ESIs.

Thus, consider the sum Sn = ∑
n
i=1Xn. In the case that strong ESI bounds are

available for each of them individually, that is, when Xi ⊴ηi 0 for some ηi > 0 and
i = 1, . . . , n, then we seek to obtain a similar statement for Sn—in analogy to the
sum of negative numbers remaining negative. In order for Sn to remain negative with
large probability, independence or, more generally, association assumptions need to
be made. We discuss this fact after the statement of the bounds. A set of random
variables X1, . . . ,Xn is said to be negatively associated [cf. Joag-Dev and Proschan,
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1983, Dubhashi and Ranjan, 1998] if for any two disjoint index sets I, J ⊂ {1, . . . , n}
it holds that Cov(f(Xi, i ∈ I), g(Xj , j ∈ J)) ≤ 0, or more succinctly, if

E[f(Xi, i ∈ I)g(Xj , j ∈ J)] ≤ E[f(Xi, i ∈ I)]E[g(Xj , j ∈ J)]

for any choice of monotone increasing functions3 f and g. Examples of negatively
associated random variables include independent random variables, but also include
negatively correlated jointly Gaussian random variables, and permutation distribu-
tions. The following proposition can be obtained.

Proposition 5.2.6. Let X1, . . . ,Xn be random variables such that Xi ⊴ηi
0 for some

η1, . . . , ηn > 0. Then

1. Under no additional assumptions, Sn ⊴η 0 with η = (∑
n
i=1

1
ηi
)
−1
.

2. If X1, . . . ,Xn are negatively associated random variables—in particular, if they
are independent—, then Sn ⊴η 0 with η =mini ηi.

Proof. We prove the case n = 2; its generalization is straightforward. Note that

Aη
[X] = ln ∣∣eX ∣∣η, where ∣∣ ⋅ ∣∣η denotes the p-norm at p = η given by ∣∣Y ∣∣η = (E∣Y ∣

η)
1/η

.
Using Hölder’s inequality we get

Aη
[X1 +X2] ≤A

ηp
[X1] +A

ηq
[X2], (5.20)

where p, q ≥ 1 are Hölder conjugates related by p−1 + q−1 = 1. Replacing p = 1 + η1

η2

and η as in 1, the result follows. For Part 2, note that for independent or negatively
associated random variables it holds that Aη

[Sn] ≤ ∑
n
i=1A

η
[Xi] ≤ 0 with η = mini ηi,

from which the result follows.

With an eye towards the PAC-Bayesian bounds anticipated in the introduction, we
now present a corollary of the previous proposition which holds for averages instead
of sums. Its proof is omitted as it is a direct application of the previous proposition.
Under this modification, the results hold for arbitrary ESI functions u instead of
constants η; thus, it is this corollary that allows for the ESI treatment of PAC-Bayesian
bounds. As above, consider random variables X1, . . . ,Xn and let X̄ = n−1Sn be their
average. We obtain:

Corollary 5.2.7. Suppose that Xi ⊴ui for ESI functions u1, . . . , un. Then

1. Under no additional assumptions, X̄ ⊴nu 0 with u = (∑
n
i=1

1
ui
)
−1
.

2. If X1, . . . ,Xn are i.i.d. and u = u1 = u2 = . . . = un, then X̄ ⊴nu 0.

The results obtained in Part 1 and 2 of the Proposition 5.2.6 above have very different
quantitative consequences because of the difference in their association assumptions. In
the case that for some fixed η > 0 it holds that Xi ⊴η 0 for i = 1, . . . , n, then Proposition

3We mean that the functions are increasing in each argument when the others are held fixed.
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5.2.6 implies that Sn ⊴η/n 0. Through Proposition 5.2.3 this in turn implies that with
probability higher than 1 − δ it holds that

Sn ≤
n

η
ln

1

δ
.

This does not rule out the possibility that, even if all of theXi are with large probability
negative, their sum might still grow linearly with the number of terms n—for instance
under complete dependency, when all Xi = X1. On the other hand, when Xi, . . . ,Xn

are independent or negatively associated, this cannot be the case. Indeed, Proposition
5.2.6 implies Sn ⊴η 0 which after using again Proposition 5.2.3, implies that with
probability higher than 1 − δ

Sn ≤
1

η
ln

1

δ
.

As a corollary, the anticipated property that is reminiscent of transitivity holds for
⊴η.

Corollary 5.2.8 (Transitivity). If X ⊴η1
Y and Y ⊴η2

Z, then

1. X ⊴η Z with η = (1/η1 + 1/η2)
−1.

2. If X,Y and Z are negatively associated, then X ⊴η Z with η =min{η1, η2}.

Proof. Use that X −Z = (X − Y ) + (Y −Z) and Proposition 5.2.6.

We close this subsection with an observation about the common practice of using
probabilistic union bounds. Even though in general the union bound is tight, in the
presence of ESIs it is loose.

Remark 5.2.9 (Chaining ESI bounds improves on union bound). Suppose X,Y ,Z are
random variables such that X ⊴η Y , and Y ⊴η Z. For each a > 0, Proposition 5.2.3
implies both that P{X ≥ Y + a} ≤ e−ηa and that P{Y ≥ Z + a} ≤ e−ηa. Using directly
the union bound on these two events, one would obtain that P{X ≥ Z + 2a} ≤ 2e−ηa,
or equivalently that with probability higher than 1 − δ

X ≤ Z +
2

η
ln

2

δ
(5.21)

while using Proposition 5.2.8 one obtains thatX ⊴η/2 Z, which, again using Proposition
5.2.3 implies that with probability higher than 1 − δ

X ≤ Z +
2

η
ln

1

δ
. (5.22)

This is better than the previous bound because of the factor appearing in the logarithm.
This seems like a minor difference, but the effect adds up when chaining n inequalities
of this type. Indeed, in that case one obtains (by using ESI) in-probability bounds
that tighter than the union bound by a lnn factor.
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5.2.5. ESI as a stochastic ordering

ESIs are different from standard ordering relations in that they depend on the pa-
rameter u. We may view them as such standard ordering relations simply by adding
existential quantifiers. Thus we may set

X ⊴general Y if and only if there exists an ESI function u s.t. X ⊴u Y

X ⊴strong Y if and only if there exists η∗ ∈ R+ s.t. X ⊴η∗ Y

Proposition 5.2.10. Let {Xf ∶ f ∈ F} be a set of random variables. Then ⊴strong
defines a partial order on this set.

We note that ⊴general does not define a partial order. Indeed, if P{X = 1} = P{X =
−1} = 1/2 and P{Y = 0} = 1 we have, as a consequence of a small computation, both
X ⊴general Y and Y ⊴general X. However, X ≠ Y a.s.

Proposition 5.2.10. We need to check whether the order is reflexive, transitive and an-
tisymmetric. Reflexivity is immediate, transitivity follows from Corollary 5.2.8 above,
and antisymmetry from Proposition 5.2.3, Part 1.

In light of this proposition, it might be of interest to compare this partial order to
the usual order of stochastic dominance, and its generalization, kth order stochastic
dominance.

5.2.6. ESI-positive random variables: a curious Markov-like
inequality

In this section we deal with random variables X that are positive in the strong ESI
sense, that is, 0 ⊴η X for some η > 0. Notice that by Proposition 5.2.3, we know that
for each a > 0, we can bound the probability that X is smaller than −a—a left-tail
bound—by P{X ≤ −a} ≤ e−a. Additionally, we can obtain a Markov-style inequality
for the probability that X is large—a right-tail bound.

Proposition 5.2.11. Let X be a random variable such that 0 ⊴η X. Then, for any
a > 0,

P{X ≥ a} ≤
E[X]

a
+
p ln(1/p)

ηa
≤
E[X]

a
+

1

eηa
,

where p = P{X < 0}

Remark 5.2.12. Notice that the first inequality reduces to Markov’s inequality in the
case that p = P{X < 0} = 0, that is, when X is a nonnegative random variable, the
requirement for the standard Markov’s inequality to hold. Thus, the intuition behind
the proposition is that, since 0 ⊴η X expresses X is “highly likely almost positive”, it
allows us to get something close to Markov after all.
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Notice that for any increasing real-valued function f it holds that

P{X ≥ a} = P{f(X) ≥ f(a)}

and consequently if f(X) is positive in the ESI sense, that is, 0 ⊴η f(X) for some η > 0,
our version of Markov’s inequality can be used in the same spirit in which Chebyshev’s
inequality follows from Markov’s inequality.

Corollary 5.2.13. If f is increasing and X is a random variable such that 0 ⊴η f(X),
then

P{X ≥ a} ≤
E[f(X)]

f(a)
+
p ln(1/p)

ηf(a)
≤
E[f(X)]

f(a)
+

1

eηf(a)
(5.23)

where p = P{f(X) < 0}.

5.3. When does a family of RVs satisfy an ESI?

In this section, we show a converse to the definition of the ESI. A special role will be
payed by regular, subgamma, subcentered random variabes. As we will see, subgamma
makes reference to random variables whose (right tail) is lighter than that of a gamma
distribution. Recall from Section 5.2 that we call a family of random variables regular if
its second moment is uniformly bounded; subcentered, if their expectation is negative.

5.3.1. General ESIs and subcentered subgamma random variables

We say that a random variable X has a (c, v)-subgamma right tail if it satisfies

X −E[X] ⊴η
1

2

vη

1 − cη
(5.24)

for some c, v > 0 and all η with 0 ≤ cη ≤ 1 [see Boucheron et al., 2013, Section 2.4].
This name is in relation to the fact that random variables that are gamma distributed
satisfy it. Subgamma random variables are well-studied: Van de Geer and Lederer
[2013] studied empirical processes of random variables that satisfy a tail condition
implied by (5.24). Sufficient conditions for (possibly unbounded) random variables
to satisfy a subgamma bound have been known for a long time [cf. Uspensky, 1937,
p. 202-204]. This topic has been also treated by Van der Vaart and Wellner [1996,
Section 2.2.2] and by Boucheron et al. [2013, Section 2.8].
The following proposition shows that for a regular family, that is, a family satisfying

supf∈F E[X2
f ] <∞, ESI families—families that satisfy Xf ⊴u 0 for all f and some u—

can be equivalently characterized in a number of ways. Its most important implications
are that a regular family of random variables satisfies an ESI, i.e. for all f ∈ F , Xf ⊴u 0,

(a) if and only if its elements are all subcentered and uniformly subgamma on the
right, and

(b) if and only if it satisfies an ESI for a function h that is linear near 0.
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We also note that the first converse that we presented to the main ESI implications,
Proposition 5.2.5, was still relatively weak, in the sense that if we have an ESI of the
form Z ⊴u 0, we apply the central Proposition 5.2.3 to calculate that for all ϵ > 0, (a)
P{Z ≥K + ϵ} ≤ e−u(ϵ)K and (b) E[Z] ≤ 0, and we “back-transform” (a) to an ESI via
the converse in Proposition 5.2.5 (which only uses (a)), we obtain Z ⊴u′ c for some
ESI function u′ and some c > 0, i.e. we loose a additive constant term. With the help
of the proposition below, we can use (a) jointly with (b) to conclude (using 6. below)
that Z ⊴u′ 0 for an ESI function u′, i.e. we can “back-transform” without loosing any
additive terms in the ESI.

Proposition 5.3.1. Let {Xf}f∈F be a regular family, i.e. supf∈F E[X2
f ] <∞. Then,

the following statements are equivalent:

1. There is an ESI function u such that for all f ∈ F , Xf ⊴u 0.

2. There is a constant C∗ > 0 and a constant η∗ > 0 such that, uniformly over all
f ∈ F , Xf ≤Xf −E[Xf ] ⊴η∗ C

∗.

3. There exist c, v > 0 such that, for all f ∈ F , the Xf are subcentered and have a
(c, v)-subgamma right tail.

4. There is an ESI function h such that, for all f ∈ F , we have Xf ≤Xf−E[Xf ] ⊴h 0
where h is of the form h(ϵ) = Cϵ ∧ η∗.

5. There exists c, v > 0 such that, for all f ∈ F , the Xf are subcentered and, for
each f ∈ F and 0 < δ ≤1, with probability at least 1 − δ,

Xf ≤
√
2v ln(1/δ) + c ln(1/δ). (5.25)

6. There exists a > 0 and a differentiable function h ∶ R+0 → R+0 with h(ϵ) > 0,
h′(ϵ) ≥ 0 for ϵ > 0, such that for all f ∈ F , the Xf are subcentered and P{X ≥
ϵ} ≤ a exp(−h(ϵ)) (in particular h may be a positive constant or a linear function
of ϵ).

In Appendix D.2, we state and prove an extended version of this result, Proposi-
tion D.2.1, which shows that if (3) holds for some pair (c, v), then (5) holds for the
same (c, v) and (4) holds for η∗ = 1/(2c) and C = 1/(2v). It also shows that regularity
is only required for some of the implications between the four statements above. In
particular, it is not needed for (3)⇒ (4), (3)⇒ (5) and (4)⇒ (1), and for (1)⇒ (2);
a strictly weaker condition—control of the first rather then second moment of the
Xf—is sufficient. However, Example 5.3.3 below shows that, in general, some sort of
minimal control of the supremum of the second moment, and hence of the left tails
of the Xf , is needed (note though that higher moments of ∣Xf ∣ need not exist) to get
(2) ⇒ (3) and hence the full range of equivalences. Indeed, the only difficult part in
the proposition above is the implication (2)⇒ (3). It is a direct consequence of The-
orem 5.3.2 below (again proved in Appendix D.2), which shows that we can actually
directly relate the constants (c, v) in “right subgamma” to the constants C∗ and η∗.
The proof extends an argument from [Boucheron et al., 2013, Theorem 2.10].
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Theorem 5.3.2. Let U be a random variable such that U − E[U] ⊴η∗ C for some
fixed constants C and η∗ > 0. Then for 0 < η ≤ η∗, we have U − E[U] ⊴η

1
2

vη
1−cη for

v = Var(U) + 2 exp(η∗C) and c = 1/η∗.

Example 5.3.3. Let U be a random variable with, for U ≤ −1, density p(u) = 1/∣u∣ν

for some ν with 5/2 < ν < 3. Then P{U ≤ −1} = ∫
−1
−∞ p(u) = 1/(ν − 1). We set

xν = (ν − 1)/(ν − 2)
2 and P{U = xν} = 1 − P{U ≤ −1} so that P{−1 < U < xν} =

P{U > xν} = 0. Then E[U ⋅ 1{U ≤ −1}] = −1/(ν − 2) and hence E[U] = 0, and an easy
calculation shows that U = U − E[U] ⊴1 C

∗ with C∗ = ln(1 + exp(xν)). Hence the
premise inside (3) of Proposition 5.3.1 is satisfied for family {U}, but Var(U) =∞ so
that {U} is not regular so that the general precondition of Proposition 5.3.1 does not
hold. And indeed (proof in Appendix D.2) we find that (E[exp(ηU)] − 1)/η2 →∞ as
η ↓ 0, showing that the right-subgamma property is not satisfied.

5.3.2. Interpolating between weak and strong ESIs

We may think of a weak and a strong ESI as two extremes in a hierarchy of possible
tail bounds—the strong ESI given the lightest tails; the weak, the heaviest. We now
define ESI families and γ-strong ESI family, where γ ∈ [0,1] is the interpolating factor.

Definition 5.3.4. We say that a family of random variables {Xf ∶ f ∈ F} is an ESI
family if there exists an ESI function u such that for all f ∈ F , Xf ⊴u 0. For 0 ≤ γ ≤ 1,
we say that the family is a γ-strong ESI family if there exist C∗ > 0, η∗ > 0 and a
function u(ϵ) = C∗ϵγ ∧ η∗ such that for all f ∈ F , Xf ⊴u 0. For an interval I ⊆ [0,1],
we say that the family is an I-strong ESI family if for all γ ∈ I, it is a γ-strong ESI
family.

Note that if for some η > 0, all Xf satisfy the strong ESI Xf ⊴η 0, then in this
terminology they form a 0-strong ESI family.

Proposition 5.3.5. Fix γ ∈ [0,1]. A regular family {Xf ∶ f ∈ F} is a γ-strong ESI
family if and only if there exists C○ > 0,0 < η○ < 1 such that for all f ∈ F ,

for all 0 < η ≤ η○: Xf ⊴η C
○η

1
γ (5.26)

where we set η1/0 ∶= limγ↓0 η
1/γ = 0.

Proof. Let u(ϵ) = C∗ϵγ ∧ η∗ as in the definition of γ-strong. Set ϵ∗ > 0 to be such that
C∗e∗γ = η∗, i.e. the value of ϵ at which u(ϵ) starts to become a horizontal line. By
definition, we have

(5.26)⇔ ∀η ∈ (0, η○]: E[eηXf ] ≤ eη⋅C
○η1/γ

and Xf ⊴u 0⇔

∀ϵ ∈ (0, ϵ∗]: E[eC
∗ϵγXf ] ≤ eC

∗ϵγ ⋅ϵ

If we set C○ = 1/C∗γ and for each ϵ ∈ (0, ϵ∗], we set η = C∗ϵγ then both expressions
coincide for each such ϵ and for each η ∈ (0, η∗]; the result follows.
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The importance and motivation of γ-strong ESI families comes from their application
in fast-rate results as already indicated in the introduction. As there, let {Lf ∶ f ∈ F}
be a collection of excess-loss random variables, Lf being the excess loss of predictor f ,
and let Xf = −Lf be the negative excess loss. Then {Xf ∶ f ∈ F} being a γ-strong ESI
family coincides with, under the definitions of Van Erven et al. [2015], F satisfying the
u-central fast rate condition for u(ϵ) = C∗ϵγ ∧ η∗. They showed that, for bounded loss
functions (implying that the Lf are uniformly bounded), under the u-central fast-rate
condition with u as above, and with a suitable notion of complexity comp, one can
get an excess risk rate of order O((comp/n)1/(1+γ), as was illustrated for the special
case of ERM with finite F in the introduction. Grünwald and Mehta [2020] (GM from
now on) extended their result to the case that the Lf are unbounded, and only have
minimal tail control on the right tail, the tail satisfying a condition they called the
witness-of-badness or just witness condition. They showed that both this condition and
a u-central fast-rate condition hold in many practically interesting learning situations.
We state the witness-of-badness condition here in terms of Xf = −Lf rather than Lf ,
since it can then also be used for collections {Xf}f∈F that simply satisfy an ESI and
have no excess-loss interpretation.

Definition 5.3.6 (Witness-of-Badness Condition). There exists 0 < c < 1 and C > 0
such that for all f ∈ F ,

E[(−Xf)1{−Xf ≥ C}] ≤ cE[−Xf ]. (5.27)

Note that this condition only makes sense for random variables with E[Xf ] ≤ 0
(which automatically holds if Xf ⊴u 0). It then automatically holds whenever the
Xf have uniformly bounded left tail; GM show that it holds in many other cases as
well, with the caveat that the constant C often scales linearly in the (suitably defined)
dimension, making the resulting bounds not always optimal in terms of this dimension.

GM’s Lemma 21, translated into ESI notation, now says the following:

Lemma 5.3.7 (GM’s Lemma 21, rephrased as ESI). Suppose that {Xf ∶ f ∈ F} is an
ESI family, i.e. Xf ⊴u 0, such that supϵ>0 u(ϵ) <∞ (in particular, any ESI family can
be expressed as such if it is regular) and suppose that the witness-of-badness condition
as above holds. Then, there is a c∗ > 0 such that, for all f ∈ F ,

Xf − c
∗E[Xf ] ⊴u/2 0. (5.28)

GM go out of their way to optimize for the constant c∗; our interest being in the
big picture here, we will not provide details about the constant. It can be seen from
the proof that their result does not rely on the Lf having an interpretation as excess
risks: it holds for general families {Xf ∶ f ∈ F}.
It was already discussed in the introduction how GM’s Lemma (Lemma 5.3.7) can

lead to fast rates. Essentially, to design learning algorithms that attain fast rates
within this framework one needs that {Xf}f∈F is a γ-strong ESI family for γ < 1,
which gives exponential control of the Xf ’s right tail, ensuring that empirical losses
converge to their mean faster than 1/

√
n, and on top of that one needs witness-of-

badness, which gives a very different kind of control of the potentially heavy-tailed left
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tail, to ensure that this convengence also holds for empirical losses with a constant
times their expectation, the empirical risk, subtracted; finally one uses a PAC-Bayesian
combination of all f ∈ F to get the desired excess risk bound.

5.3.3. The Bernstein conditions and the γ-strong ESI

In their general treatment of fast rate conditions, Van Erven et al. [2015] showed how
the u-central condition for {Lf ∶ f ∈ F} with u(ϵ) = C∗ϵγ ∧ η∗ is equivalent to the
β-Bernstein condition, with β = 1 − γ. The β-Bernstein condition is a better known
condition for obtaining fast rates in excess risk bounds [see Bartlett and Mendelson,
2006, Van Erven et al., 2015, Audibert, 2009]. Their equivalence result only holds for
uniformly bounded Lf ; extending it to general—unbounded—excess risks remained a
nagging open question. In Theorem 5.3.11 below, we fully resolve this issue for abstract
families of random variables that do not require an excess risk interpretation. As a
by-product, the theorem implies an analogue to Lemma 5.3.7 that relates γ-strong
ESIs to strengthenings thereof with cE[X] subtracted as in (5.28).
We first recall the standard definition of the Bernstein condition:

Definition 5.3.8 (β-Bernstein Condition). Let β ∈ [0,1]. We say that a family of
random variables {Lf}f∈F satisfies the β-Bernstein condition if, for all f ∈ F , E[Lf ] ≥ 0
and there is some B > 0 such that

for all f ∈ F , E[L2
f ] ≤ B(E[Lf ])

β . (5.29)

The 1-Bernstein condition is also known as the strong Bernstein condition.

Suppose that {Lf}f∈F is a regular family. Then, it is straightforward to show that
the family satisfies β-Bernstein if and only if satisfies β′-Bernstein for all β′ ∈ [0, β].
Motivated by this equivalence, we may start considering half-open intervals [0, β)— it
turns out that this gives a version of Bernstein that is much better suited for comparing
with ESI families for unbounded random variables. Formally:

Definition 5.3.9. Let I ⊆ [0,1] be an interval. We say that a family of random variables
{Lf}f∈F satisfies the I-Bernstein condition if for all f ∈ F , E[Lf ] ≥ 0 and for all β′ ∈ I,
there is some B > 0 such that

for all f ∈ F , E[L2
f ] ≤ B(E[Lf ])

β′ .

It is immediately verified that every family that satisfies the I-Bernstein for nonempty
I automatically has uniformly bounded second moment, i.e. it is regular.
The following theorem shows that for regular families of random variables, the no-

tions of (b,1]-strong ESI and [0, b)-strong Bernstein coincide (with for the Bernstein
condition, Xf replaced by −Xf ), under a “squared version” of the witness condition
defined below; this condition has not been proposed before in the literature, as far as
we know.
In Appendix D.3 we state and prove an extended version of the theorem, in which

the various conditions on {Xf}f∈F needed for the various implications in the theorem
below are spelled out; these conditions are all implied by regularity but are in some
cases weaker.
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5.3. When does a family of RVs satisfy an ESI?

Definition 5.3.10 (Squared-Witness Condition). We consider the following condition
for a family of random variables {Uf ∶ f ∈ F}: there exists 0 < c < 1 and C > 0 such
that for all f ∈ F ,

E[U2
f1{U

2
f ≥ C}] ≤ cE[U

2
f ]. (5.30)

The original witness-of-badness condition (Definition 5.3.6) is just (5.30) with −Xf

in the role of U2
f , where −Xf represents, as in this section, the excess risk. Below we

use the equation with U2
f =X

2
f = (−Xf)

2 and also with U2
f = ((Xf)−)

2.
Special cases of parts of the following theorem for uniformly bounded Xf , for which

regularity and squared witness automatically hold, were stated and proven by Koolen
et al. [2016], and earlier by Gaillard et al. [2014].

Theorem 5.3.11. Let {Xf ∶ f ∈ F} be a regular family of random variables that
satisfies the squared-witness condition above for Uf =Xf or for Uf = (Xf)−. Then the
following statements are equivalent:

1. {−Xf ∶ f ∈ F} satisfies the [0, b)-Bernstein condition for some 0 < b < 1 and
{Xf ∶ f ∈ F} is an ESI family.

2. For all β ∈ [0, b), for all c ≥ 0, all 0 ≤ c∗ < 1, there exists η○ > 0 and C○ > 0 such
that for all f ∈ F , all 0 < η ≤ η○,

Xf + c ⋅ η ⋅X
2
f − c

∗
⋅E[Xf ] ⊴η C

○
⋅ η

1
1−β , (5.31)

or equivalently, by Proposition 5.3.5, there exists η∗,C∗ > 0 such that

Xf + c ⋅ η ⋅X
2
f − c

∗
⋅E[Xf ] ⊴u 0,

where u(ϵ) = C∗ϵ1−β ∧ η∗.

3. For all β ∈ [0, b), there exists η○ > 0 and C○ > 0 such that for all f ∈ F , all
0 < η ≤ η○, we have

Xf ⊴η C
○η

1
1−β ,

i.e. {Xf ∶ f ∈ F} is a (b,1]-strong ESI family. Equivalently, by Proposition 5.3.5,
there exists η∗,C∗ > 0 such that for all f ∈ F , Xf ⊴u 0, where u(ϵ) = C∗ϵ1−β ∧η∗.

Note that, if {−Xf ∶ f ∈ F} satisfies [0,1)-Bernstein, then E[Xf ] ≤ 0 for all f ∈ F ;
also, X2

f ≥ 0. Therefore, the implication (2) ⇒ (3) is trivial. The proof of The-
orem 5.3.11 is based on Theorem D.3.1 and Lemma D.3.2 in the appendix, which,
taken together, are a bit stronger than Theorem 5.3.11, which comes at the price of
a more complicated statement. In a nutshell, on one hand, the implication (1) ⇒ (2)
still holds even if the witness-type condition does not hold. On the other hand, the
implication (2) ⇒ (3) ⇒ (1) still holds if the right-hand side of (5.31) is replaced by
0 (strong ESI family) and then the conclusion in (3) also becomes that (a) Xf ⊴η∗ 0
and, in (1), that (b) {−Xf ∶ f ∈ F} satisfies [0,1]-Bernstein. Thus, the implication
(3) ⇒ (2) can be seen as a second-order analogue of Lemma 5.3.7, allowing not just
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c∗E[Xf ] but also cηX
2
f to be added toXf , at the price of requiring the witness-squared

rather than the standard witness condition.

Having an ESI with X2 outside of the expectation is not needed for the excess-risk
bound discussed in the introduction, but it is crucial for several other PAC-Bayesian
generalization bounds that also achieve faster rates if the data are sampled from a
distribution such that a Bernstein condition holds [see Mhammedi et al., 2019].

5.4. PAC-Bayes

In this section we prove and write the PAC-Bayesian bounds [see McAllester, 1998,
Van Erven, 2014, Catoni, 2007, Guedj, 2019, Alquier, 2023] in ESI notation, under
which they take a pleasant look. Importantly, we find that in the existing literature,
“applying the PAC-Bayesian” or “Donsker-Varadhan change-of-measure” technique
can really mean at least three different things. Using the annealed expectation no-
tation together with ESI can disentangle these different uses, appearing as the three
different parts in Proposition 5.4.1 below. We let {Xf}f∈F again be a family of random

variables. Let Π and Π̂ be two equivalent probability measures (two probability mea-
sures with the same null sets) on F such that their mutual Radon-Nykodim derivatives
exist. Define the Kulback-Leibler divergence KL(Π̂,Π) as

KL(Π̂,Π) = EΠ̂ [ln
dΠ̂

dΠ
] .

PAC-Bayesian theorems are based on the relation of convex duality that exists between
the Kullback-Leibler divergence and the cumulant generating function—the logarith-
mic moment generating function. We state them here as strong ESIs but, since the
following results hold for all η > 0, it also follows that they also hold with η replaced
by any ESI function u.

We continue to assume that there are i.i.d. Z,Z1, . . . , Zn such that, for all f ∈ F ,
Xf = gf(Z) and Xf,i = gf(Zi) can be written as a function of Z and Zi respectively
for some function gf . Hence the distribution of Z determines the distribution of Xf

and Xf,i for all i ∈ [n], f ∈ F . In this section we need to pay special attention to the
notation; P is not the only measure that plays a role. We will write the relevant mea-
sure in subscript of E and A. Thus, E(Z,f)∼P ⊗Π[Xf ] = ∬ gf(Z)dΠ(f)dP(Z)—notice
that Π might depend on Z. With this in mind, we state the following proposition.

Proposition 5.4.1. Let {Xf}f∈F be a family of random variables and let η > 0. Then

for any two equivalent distributions Π0 and Π̂ on F we have:

1. The following ESI holds:

Ef̄∼Π̂[Xf̄ ] −A
η

(Z,f̄)∼P⊗Π0
[Xf̄ ] ⊴η

KL(Π̂,Π0)

η
. (5.32)
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2. Suppose further that for each f ∈ F , Xf ⊴η 0. Then we have:

Ef̄∼Π̂[Xf̄ ] ⊴η
KL(Π̂,Π0)

η
. (5.33)

3. Now let again {Xf}f∈F be an arbitrary family. We have:

Ef̄∼Π̂[Xf̄ −A
η
Z∼P[Xf̄ ]] ⊴η

KL(Π̂,Π0)

η
. (5.34)

In case the family {Xf}f∈F satisfies Xf ⊴η 0 for all f ∈ F , then Aη
[Xf ] is negative

and the third result is a “boosted” version of the second, and therefore should usually
give stronger consequences.

Proof. For Part 1: the variational formula for the KL divergence (which appeared
already in the work of Gibbs [1902]) states that

lnEf̄∼Π[e
ηXf̄ ] ≥ ηEf̄∼Π̂[Xf̄ ] −KL(Π̂,Π)

Taking exponentials, P -expected value on both sides, and using Fubini’s theorem,

Ef̄∼ΠEZ∼P[e
ηXf ] ≥ EZ∼P [exp (ηEf̄∼Π̂[Xf̄ ] −KL(Π̂,Π))] ,

which is a rewriting of the result. Part 2 follows from Part 1 by noting that in this
case we further have 1 ≥ Ef̄∼ΠEZ∼P[e

ηXf̄ ]. Part 3 follows from using Part 2 with Xf̄

replaced by Xf̄ −A
η
Z∼P[Xf ]; for this new random variable, ESI is guaranteed by the

simple observation (5.15) in Proposition 5.2.4 so that Part 3 follows.

The second result is the most straightforward one and has been used to derive many
PAC-Bayesian results, e.g. Seldin et al. [2012], Tolstikhin and Seldin [2013], Wu and
Seldin [2022], Mhammedi et al. [2019]. The third result, illustrated in Example 5.4.2
below, has been (implicitly) used to get PAC-Bayesian excess-risk bounds such as
those by Zhang [2006a,b] and Grünwald and Mehta [2020]. The first result, illustrated
in Example 5.4.3, can be used to derive a whole class of PAC-Bayesian bounds that in-
clude one of the strongest and best-known early bounds, the Langford-Seeger-Maurer
bound [Seeger, 2002, Langford and Shawe-Taylor, 2002, Maurer, 2004, Alquier, 2023].
It would be interesting to see how recent articles establishing bounds based on con-
ditional mutual information (which can be thought of as an in-expectation version of
a specific PAC-Bayesian bound) fit in. For example, Grünwald et al. [2021] uses the
second result, but this is not so clear for recent bounds such as those by Hellström
and Durisi [2022].

Example 5.4.2 (Zhang’s Inequality). Zhang’s inequality [Zhang, 2006b,a] provides one
of the strongest PAC-Bayesian-type excess-risk bounds in the literature; more precisely,
it gives a “proto-bound” which can then be further specialized to a wide variety of
settings. For i = 1, . . . , n and each f ∈ F , let Xf,i be i.i.d. copies of Xf . By (5.15)
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in Proposition 5.2.4 combined with Proposition 5.2.6 we automatically have that, for
all η > 0, for all f ∈ F , ∑

n
i=1Xf,i − nA

η
[Xf ] ⊴η 0 for every ESI function η. Zhang’s

bound, which using ESI notation we can give simultaneously in its expectation and
in-probability version, is quite simply the result of applying the PAC-Bayes bound of
Part 3 in Proposition 5.4.1 to these ESIs, and then dividing everything by n:

Ef̄∼Π̂ [
1

n

n

∑
i=1
Xf̄ ,i −A

η
Z∼P[Xf̄ ]] ⊴nη

KL(Π̂,Π0)

nη
, (5.35)

where we note that, as defined in the introduction, in Zhang’s work the Xf represent
minus excess risks, Xf = Lf with Lf = Lf(Z) = ℓf(Z) − ℓf∗(Z). The basic bound
can then further be refined by bounding Aη. In the setting of well-specified density
estimation (in which f∗ is the density of the underlying P ) the f ’s represent densities

and ℓf(z) = − ln f(z) is the log-score. For fixed η = 1/2, the annealed expectation A1/2

is the Rényi divergence of order 1/2 [Van Erven and Harremoes, 2014], which is an
upper bound on the Hellinger distance. In that case, Zhang’s bound becomes a risk
bound for density estimation. For other loss functions we proceed as follows: since the
bound holds under no further conditions at all, for every η > 0, it still holds if we replace
η by an arbitrary ESI u. Au

Z∼P[Xf ] can then be bounded in terms of EZ∼P[Xf ] for
appropriate γ-strong ESI function u. This is what was done in Grünwald and Mehta
[2020, Lemma 21] which we restated here in ESI language as Proposition 5.3.7—we
essentially followed their reasoning in the introduction while avoiding the explicit use
of Au there.

Example 5.4.3 (Bégin et al.’s unified derivation). Bégin et al. [2016] implicitly used the
first result (Part 1 of the proposition above) to unify several PAC-Bayesian generaliza-
tion bounds. They work in the same statistical learning setup as in the introduction,
so ℓf(Z) represents the loss predictor f makes on outcome Z, and the aim is to
bound, with high probability, the expected loss Ef̄∼Π̂EZ∼P[ℓf̄(Z)] of the learned dis-

tribution on classifiers Π̂, when applied by drawing a f̄ randomly from Π̂, in terms
of the behaviour of Π̂ on the training sample, Ef̄∼Π̂ [

1
n ∑

n
i=1 ℓf̄(Zi)]. In our (signifi-

cantly compressed) language, they reason as follows: let a ∈ R+ ∪ {∞} and suppose
we have a jointly convex divergence ∆ ∶ [0, a] × [0, a]→ R+0 , where by “divergence” we
mean that ∆(c, c′) ≥ 0 for all c, c′ ∈ [0, a]2 and ∆(c, c′) = 0 iff c = c′. Upon defining
Xf =∆(n

−1
∑

n
i=1 ℓf(Zi),EP [ℓf ]), we get, using Jensen’s inequality,

∆(Ef∼Π̂ [
1

n

n

∑
i=1
ℓf(Zi)] ,Ef∼Π̂EZ∼P[ℓf(Z)])

≤Ef∼Π̂ [∆(
1

n

n

∑
i=1
ℓf(Zi),EZ∼P[ℓf(Z)])]

=
1

n
Ef∼Π̂ [n ⋅∆(

1

n

n

∑
i=1
ℓf(Zi),EZ∼P[ℓf(Z)])]

⊴η
1

n
(Aη

(Zi,f)∼P⊗Π0
[n∆(

1

n

n

∑
i=1
ℓf(Zi),EZ∼P[ℓf(Z)])] +

KL(Π̂,Π0)

η
) ,
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where Aη
(Zi,f)∼P⊗Π0

[∆(n−1∑
n
i=1 ℓf(Zi),EP [ℓf ])] can be further bounded to get some

well-known existing PAC-Bayes bounds such as the Langford-Seeger-Maurer bound
[Alquier, 2023]. The latter is obtained by taking ∆ as the KL divergence and letting
η depend on n−1∑ ℓf(Zi) in a clever way.

5.5. ESI with random η

In some applications, we will want η to be estimated itself in terms of underlying data,
i.e. it becomes a random variable η̂; trying to learn η from the data is a recurring theme
in one of the author’s work, starting with his first learning theory article [Grünwald,
1999], and shown to be possible in some situations using the safe-Bayesian algorithm
[Grünwald, 2012] while leading to gross problems in others [Grünwald and van Ommen,
2017]. Also, the fine-tuning of parameters in several PAC-Bayes bounds (e.g. Catoni’s
[2007] or the one in Mhammedi et al. [2019]) can be reinterpreted in terms of an η
determined by the data. The goal of the present section is to extend the ESI definition
to this case, allowing us to get a more general idea of what is possible with random
η than in the specific cases treated in the aforementioned articles. In this section we
only consider strong ESIs, i.e. X ⊴η Y rather than X ⊴u Y .
Interestingly, many properties still go through for ESI with random η, but the in-

expectation implication gets weakened—and its proof is not trivial any more.

Definition 5.5.1 (ESI with random η). Let η̂ be a random variable with range H ⊂ R+
such that infH > 0. Let {Xη ∶ η ∈ H} and {Yη ∶ η ∈ H} be two collections of random
variables. We will write

Xη̂ ⊴η̂ Yη̂ as shorthand for η̂(Xη̂ − Yη̂) ⊴1 0 (5.36)

We can still get an in-expectation result from random-η-ESI with a small correction.
It is trivial to give bounds for the expectation with 1/ηmin—with ηmin the largest lower
bound of H— as a leading constant. However, since we want to work with η̂ that are
very small in “unlucky” cases but large in lucky cases, and we want to exploit lucky
cases, this is not good enough. The following result, which extends Proposition 5.2.3
and 5.2.5 to the random η case and, in contrast to those propositions, is far from
trivial, shows that we can instead get a dependence of the form 1/η̂, which is of the
same order as what we lose anyway, even for fixed η, if we want our results to hold
with high probability.

We let {Xη ∶ η ∈ G} and {Yη ∶ η ∈ G} be any two collections of random variables.

Theorem 5.5.2. Let G, Xη and Yη be as above, with H finite. We have:

1. If Xη̂ ⊴η̂ Yη̂, then for any δ ∈]0,1[,

P{Xη̂ ≤ Yη̂ +
ln 1

δ

η̂
} ≥ 1 − δ, (5.37)

and E [Xη̂] ≤ E [Yη̂ +
1

η̂
] . (5.38)
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2. As a partial converse, if (5.37) holds, then we have

Xη̂ ⊴ η̂
2
Yη̂ +

2 ln 2

η̂
. (5.39)

Remark 5.5.3. The following simple example shows that even though E[eη̂Wη̂ ] ≤ 1 it
can happen that E[Wη̂] is unbounded, showing that in general one cannot get rid of
the additive 1/η̂ on the right-hand side of (5.38): Let H = {η1, η2} and Wη1 ≡ C1 < 0
and Wη2 ≡ C2 > 0. We then set η1 =

1
−C1

and η2 =
1
C2

; note that η1, η2 > 0 as required.

The term E[eη̂Wη̂ ] does then not depend on C1 and C2 and computes to

E[eη̂Wη̂ ] = p(η1)e
−1
+ p(η2)e

1

This term is smaller than 1 if we set for example p(η1) =
3
4
. But for C2 →∞ we observe

that E[Wη̂]→∞.

5.5.1. Additional properties for random ESI: transitivity, PAC-Bayes
on η̂

Having established that the basic interpretation of an ESI as simultaneously expressing
inequality in expectation and in probability still holds for the random η case, we may
next ask whether the additional properties we showed for strong ESIs still hold in the
random case, or even with random variablesXη indexed by η rather than f . We do this
for the summation and transitivity properties of Section 5.2.4 and the PAC-Bayesian
results of Section 5.4.

Random η ESI Sums and Transitivity In what follows, given random variables
Z1, . . . , Zn, n ∈ N, in some set Z, we denote

Zn∖i ∶= (Z1, . . . , Zi−1, Zi+1, . . . , Zn) ∈ Z
n−1.

The following is a result analogous to Proposition 5.2.6, Part 2, with “negative corre-
lation” replaced by “ESI holding conditionally given all variables except 1”. Of course,
it would be interesting to extend both results to make them more similar; whether this
can be done will be left for future work.

Proposition 5.5.4 (ESI for sums and transitivity with random η). Let G be a finite
subset of R+, and let Z1, . . . , Zn be Z-valued i.i.d random variables distributed according
to P. For every η ∈ G and i ∈ [n], let Xi,η ∶ Z

n → R be a measurable function such that

for all i ∈ [n] and zn∖i ∈ Zn−1, Xi,η(z1, . . . , zi−1, Z, zi+1, . . . , zn) ⊴η 0. (5.40)

Then, for any random η̂ ∈ G, we have

E [
n

∑
i=1
Xi,η̂(Z

n
)] ≤ E [

ln ∣G∣ + 1

η̂
] . (5.41)
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Random η and PAC-Bayes We now investigate whether strong ESIs for individual
fixed η’s are as easily combined into an ESI involving all η’s, the particular η chosen
in a data-dependent manner, as they are for individual Xf ’s. There we used general

PAC-Bayesian combinations with arbitrary ‘posterior’ (data-dependent) Π̂ on f ∈ F .
Here we consider the analogue with a data-dependent distribution Π̂ on η̂. We find
that the resulting bound is slightly different, involving the likelihood ratio between
posterior and prior for the chosen η̂ ∼ Π̂ rather than in expectation over Π̂ (which
would be the direct analogue of the PAC-Bayesian result Proposition 5.4.1) Still, if
we focus on the special but important case with Π̂ a degenerate distribution, almost
surely putting all its mass on a single estimator η̂, then we get a precise analogy to
the PAC-Bayes result.

Proposition 5.5.5 (PAC-Bayes on Random η). Let Π0 be any prior distribution on
G, and Π̂ ∶ Ω→∆(G) be any random estimator such that Π̂(ω) is absolutely continuous
with respect to Π0, for all ω ∈ Ω. If Xη ⊴η 0, for all η ∈ G, then for η̂ ∼ Π̂, we have:

Xη̂ ⊴η̂

ln dΠ̂
dΠ0
∣
η̂

η̂
. (5.42)

Proof. For η ∈ G, let Wη be the random variable defined by Wη ∶=Xη −
1
η
ln dΠ̂

dΠ0
∣
η
. We

have

E [eη̂Wη̂] = EZ∼PEη̂∼Π̂ [e
η̂Wη̂] =

EZ∼PEη̂∼Π̂ [e
ηXη̂−ln dΠ̂

dΠ0
∣
η] = EZ∼PEη∼Π0

[eηXη] ≤ 1, (5.43)

where the last step follows from the fact that Xη ⊴η 0, for all η ∈ G. This completes
the proof.

Corollary 5.5.6. Let Π0 be any prior distribution on G, and Π̂ ∶ Ω → ∆(G) be any
random estimator such that Π̂(ω) is absolutely continuous with respect to Π0, for all
ω ∈ Ω. If Xη ⊴η 0, for all η ∈ G, then for any 0 < δ1 and η̂ ∼ Π̂:

P

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

Xη̂ ≤

ln dΠ̂
dΠ0
∣
η̂
+ ln 1

δ

η̂

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

≥ 1 − δ, (5.44)

and EZ∼P

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Xη̂ −

ln dΠ̂
dΠ0
∣
η̂
+ 1

η̂

⎤
⎥
⎥
⎥
⎥
⎥
⎦

≤ 0. (5.45)

In particular, if Π̂ a.s. puts mass 1 on a particular η̂, where η̂ is a random variable
taking values in G, and G is a countable set, Π0 having probability mass function π0,

then the ln dΠ̂
dΠ0
∣
η̂
term is equal to − lnπ0(η̂).

Proof. The result follows by applying Propositions 5.5.5 and Theorem 5.5.2 to the

random variable Wη ∶=Xη −
1
η
ln dΠ̂

dΠ0
∣
η
, η ∈ G.
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5.6. Non-iid Sequences

Here we extend our previous results to sequences of random variables X1,X2, . . . that
might not be independent and identically distributed. We find that, if an ESI hold for
each Xi conditionally on the past, ESI statements about the sums of the Xi’s remain
valid under optional stopping, thereby connecting ESIs to the recent surge of work
in anytime-valid confidence sequences, e-values, e-variables and e-processes [Grünwald
et al., 2020, Ramdas et al., 2022a]. As a consequence, we reprove Wald’s identity, a
well-known result in sequential analysis dating back to the 1950s, and show that it
is related to Zhang’s inequality treated before, and implies that Zhang’s inequality
remains valid under optional stopping. Relatedly, it has recently been noted that
PAC-Bayesian inequalities are closely related to e-processes as well [Jang et al., 2023,
Chugg et al., 2023]. Let us clarify the straightforward connection between e-variables
as defined in the above references and strong ESIs. Formally, e-variables S are defined
relative to some random variable Y and a null hypothesis H0, a set of distributions
on Y . We call nonnegative random variable S an e-variable relative to Y and H0 if it
can be written as a function S = S(Y ) of Y and, for all P ∈ H0, EP[S(Y )] ≤ 1. To
clarify the connection to ESIs, let {Xf ∶ f ∈ F} be a family of random variables with
Pf the marginal distribution of Xf as induced by P, and suppose that {Xf ∶ f ∈ F}
all satisfy Xf ⊴η∗ 0. Suppose that we observe random variable Y . Under the null
hypothesis, Y = Xf for some f ∈ F (they take on the same values). Equivalently,
under the null hypothesis, Y ∼ Pf for some f ∈ F , i.e. H0 = {Pf ∶ f ∈ F}. Then,
clearly, S(Y ) ∶= exp(η∗Y ) is an e-variable. We will not further exploit or dwell on this
fact below, but rather concentrate on the development of ESI for random processes.

Definition 5.6.1 (Conditional ESI). Let let X and Y be two random variables defined
on the same probability space (Ω,F ,P) and let G ⊆ F be a σ-algebra. Define

X ⊴η,G Y if and only if Aη
[X − Y ∣G] ≤ 0 almost surely,

where we call Aη
[X − Y ∣G] = 1

η
lnE[eη(X−Y )∣G] the conditional annealed expectation

of X − Y given G.

The following properties can be checked; they follow from the standard properties
of the conditional expectation—“pulling out known factors”, and the tower property.

Proposition 5.6.2. Let let X be an F-measurable random variable and let H ⊆ G ⊆ F
be σ-algebras. The following hold:

1. If X ⊴η,G 0 and X is G-measurable, then X ≤ 0 almost surely.

2. If X ⊴η,G 0, then X ⊴η 0.

3. If X ⊴η,G 0, then X ⊴η,H 0.

Proof. 1 follows from the fact that if X is G-measurable, then Aη
[X ∣G] =X. 2 follows

from the fact thatAη
[X ∣G] ≤ 0 implies that Aη

[X] =Aη
[Aη
[X ∣G]] ≤ 0. 3 follows from

the tower property of conditional expectations because Aη
[X ∣H] =Aη

[Aη
[X ∣G]∣H] ≤

0.
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Let (Ω,F = (Ft)t∈N, P ) be a filtered probability space. Let (Xt)t∈N be a sequence of
random variables adapted to F and assume thatXt ⊴η,t−1 0 (where we writeXt ⊴η,t−1 0
instead of Xt ⊴η,Ft−1 0 to avoid double subindexes). This statement expresses the fact
that (∏s≤t e

ηXs)t∈N is a supermartingale.

Proposition 5.6.3. Let (Xt)t∈N be an adapted sequence such that Xt ⊴η,t−1 0 for each
t and for some η > 0. Let τ be an almost surely bounded stopping time with respect to
(Xt)t∈N. Then, if St = ∑s≤tXs,

Sτ ⊴η 0.

Proof. The result is an application of the Optional Stopping Theorem.

We now present two applications of this result, Example 5.6.4 and Proposition 5.6.5.

Example 5.6.4. [Zhang meets Wald] Let X1,X2, . . . be i.i.d. copies of some random
variable X, fix arbitrary η > 0 and let Zi = Xi −A

η
[X]. Then the Zi are also i.i.d.,

hence (Zt)t∈N is adapted, and by (5.15 in Proposition 5.2.4, they satisfy Zt ⊴η,t−1 0.
Therefore we can use Proposition 5.6.3 to infer that for any a.s. bounded stopping
time τ , with St ∶= ∑

t
i=1Zi that Sτ ⊴η 0, i.e.

τ

∑
i=1
Xi − τ ⋅A

η
[X] ⊴η 0, (5.46)

which must hold for all η > 0 and thus also if η is replaced by any ESI function u.
But (5.46) is just the celebrated Wald identity [Skorokhod, 2012] as expressed in ESI
notation, which we have thus reproved. (the Wald identity is not to be confused with
the more well-known basic Wald’s equation, which says that E[Sτ ] = E[τ] ⋅ E[X]).
We may now, just as in Example 5.4.2, combine this with a PAC-Bayes bound and
then divide everything by τ to get, for a family of random variables {Xf ∶ f ∈ F} with
Xf,1,Xf,2, . . . i.i.d. copies of Xf as in the introduction,

Ef̄∼Π̂ [
1

τ

τ

∑
i=1
Xf̄ ,i −A

η
[Xf̄ ]] ⊴τη

KL(Π̂,Π0)

τη
.

We see that this is identical to Zhang’s inequality (5.35), which we have therefore
shown to be “anytime valid” (it holds for any stopping time τ), something that, it
seems, has not been noted before. Since the scaling τη is now data-dependent, we
have to use Theorem 5.5.2 rather than Proposition 5.2.3 if we want to turn this in an
in-probability or in-expectation bound though.

Finally, we note that using Ville’s maximal inequality4 [Ville, 1939, p.35] we can
obtain the following proposition.

Proposition 5.6.5. Let (Xt)t∈N be a sequence of random variables such that Xt ⊴η∗,t−1
0 for each t and some η∗ > 0. Let 0 < η < η∗. Then, there is a fixed constant c such
that

sup
t∈N

Xt ⊴η c.

4This inequality is also commonly attributed to J.L. Doob.

115



5. Exponential Stochastic Inequality

Proof. By Ville’s maximal inequality,

P{sup
t∈N

Xt ≥ x} = P{sup
t∈N

eη
∗Xt ≥ eη

∗x
} ≤ E[eη

∗X1]e−η
∗x
≤ e−η

∗x.

The result follows from Proposition 5.2.5.

5.7. Discusion

It is sometimes the case that half the way to solving a problem is finding the correct
notation to state it. We have emphasized that many results in probability theory and
statistical learning theory—especially PAC-Bayesian bounds—are obtained through
bounds for cumulant generating functions. In this chapter we have have introduced
a notational device with the goal of systematizing such bounds. The result is the
Exponential Stochastic Inequality (ESI), which the authors have found helpful—we
do not claim its absolute superiority, though. The strong ESI X ⊴η 0 can be thought
of as an interpolation between positivity in expectation (the case that η ↓ 0) and
almost-sure positivity (η → ∞). Its main properties, shown in Section 5.2, allow for
the derivation of high-probability and in-expectation bounds, and its transitivity-like
property allows for chaining such bounds in a way that is superior to a straightforward
union bound.
Inventing new notation is, however, a contentious affair. We have found the com-

munity to be rather conservative about notational changes. Like many things, this has
two sides. On the positive side, it allows for easy understanding of a wide variety of
articles at a low overhead. Standard notation serves as a lingua franca for conveying
mathematical ideas. On the other side, sometimes good ideas are obscured for the
sole reason that they are awkward to write in standard notation. We believe that in
these cases—such as, we argue, PAC-Bayesian bounds—, new notation can help clarify
and systematize the key techniques of the field. This is not a new idea; for instance,
mathematicians (sometimes) and physicists (more often) have been inventing new no-
tation for the better part of last century—think of Feynman diagrams or Einstein’s
summation convention. Hopefully, as it has already happened in other areas, new no-
tation will help easier communication, provide a deeper understanding of the present
techniques, and help the rise of new ones.
Having said that, we note once more that the ESI does have limitations. Of course,

not all tails are exponential, and not all bounds are obtained through the analysis
of cumulant generating functions. The arguments that we have presented using the
ESI are consequences of the use of a particular convex duality relation—the one that
exists between the cumulant generating function and the Kulback-Leibler divergence.
A particular and interesting extension of the ESI might come from applying the same
reasoning to other convex duality relationships. For example, Lugosi and Neu [2022]
provide PAC-Bayesian-like bounds based on other convex dualities; their work might
be considered a first step in this direction. This enterprise is worthwhile because
convex duality arguments are the bread and butter of statistical learning theory, online
learning and optimization.
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6. Discussion

As a word of warning, almost any
set of summary statistics can have a
story woven about them—we are
good at making up stories.

Persi Diaconis

In this dissertation we have shown optimal AV tests for group-invariant problems; an
AV test that replaces the logrank test for two-group survival-time data; we formulated
strategies for online prediction under multiscale range constraints; and proposed a new
notation device to reason about probabilistic inequalities that hold in expectation and
with high probability. In this discussion we review the main results of this dissertation,
and point at open problems and future lines of research.

6.1. Anytime-valid methods

In this dissertation we have considered E-statistics that are growth rate optimal in
the worst case (GROW), as proposed by [Grünwald et al., 2020]. One might wonder
about the necessity of using this specific optimality criterion; at first sight it might
seem rather arbitrary. The main goal that is achieved by using GROW E-statistics
is that the evidence of consecutive experiments, as measured using E-statistics, can
be combined through multiplying their respective E-values—the observed value of the
E-statistic after the experiment is conducted. GROW E-statistics maximize their
worst-case expected logarithmic value under the alternative hypothesis. This criterion
has nothing to do with the value of evidence—as could be measured with other func-
tions rather than with the logarithm—, but with the fact that the logarithm is additive
over repetitions of the experiment and the law of large numbers applies to it. This
optimality criterion can be understood using the metaphor of a repeated gambling
game where the player is allowed to reinvest their revenue. Under this interpretation,
the E-value is the payout of the game after betting one monetary unit; for example
€1. An observed E-value of 20 would correspond to a payout of €20 after having
bet €1. GROW E-statistics maximize the worst-case growth rate of the capital of a
gambler in this imaginary game when the odds of the outcomes are given by an un-
known distribution in the alternative hypothesis. In turn, this capital growth rate is
the reinterpretation of Kelly Jr. [1956] of the rate information transmission in commu-
nication channels when they can be used repeatedly with the goal of error correction
[Shannon, 1948]. Shannon used the logarithm because (1) it is practically useful, (2) it
is intuitive, and (3) it is mathematically more suitable than other functions. Further-
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more, they provide a plausibility argument based on an axiomatic derivation of the
logarithmic criterion [see Shannon, 1948, Theorem 2]. Even though GROW criterion
has the notion of “repeated experimentation” built in its definition, using it is not
a mathematical necessity—but neither is using power maximization for fixed-sample
size experiments.
In the examples studied in this dissertation—group-invariant problems in Chapter 2

and time-to-event data in Chapter 3—, this criterion yielded optimal tests statistics
that coincided with either a conventional likelihood ratio or a partial likelihood ratio.
There are, however, problems for which this GROW criterion yields nonstandard E-
statistics. Although being nonstandard is not a problem in itself—being GROW is,
we believe, a good property to satisfy—, their computation can be challenging. This
is the case of the extension to the full proportional hazards ratio model of the results
from Chapter 3.
In Chapter 3, we proposed the AV logrank test, an anytime-valid upgrade of the

classic logrank test, when the comparison is between the event times of two groups
of subjects. The AV logrank test is anytime-valid in the sense that given an initial
design where a fixed number of subjects is followed, the events can be monitored
continuously in time. We devised a test that guarantees a type-I error guarantee
under any stopping decision in the duration of the study. Furthermore, the resulting
test statistic can be multiplied with that of other studies that are evaluating the
same null hypothesis concurrently. The resulting meta-analytic E-statistic can also
be monitored continuously in time and decisions can be made based on it, going
beyond the realm of conventional meta-analysis. Given its importance in statistical
practice (see Chapter 3), designing an anytime-valid treatment of the full proportional
hazards model of Cox [1972] is an interesting line of research. This is a hard problem
because there exists no closed-form GROW E-statistic and computing one numerically
is a formidable computational problem. Either finding an efficient KL minimization
algorithm for this task or finding near-optimal E-statistic is a worthwhile project. The
results of this chapter, as we will see, can be reinterpreted in terms of the results of
Chapter 2.
In Chapter 2, we investigated group-invariant problems. The problems covered by

these results include dominated models that are invariant under the action of fairly
general groups—many groups of interest for parametric estimation are included—
with certain geometric properties. The main result of that chapter is that the overall
GROW E-statistic for group-invariant problems resides within the family of group-
invariant E-statistics. When the invariance-reduced problem is a simple-vs.-simple
test, an anytime-valid test can be constructed using the GROW E-statistic. This
result draws a parallel with the theory of most powerful tests for group-invariant
problems, where the main result is that of Hunt and Stein [Lehmann and Romano,
2005]. An abridged and informal version of main assumptions for the main results of
Chapter 2—in addition to invariance of the model—are the following:

1. The models under consideration are both dominated by a common measure.

2. The group under which the problem is invariant is, roughly speaking “not too
big”—it is a locally compact Hausdorff amenable group.
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In relation to the second item above, we saw in Chapter 2 that there exist nona-
menable groups for which a group-invariant GROW E-statistic exists. On the other
hand, the first item above excludes the application of our results to nonparametric
infinite-dimensional models where no densities with respect a common measure are
available. As we will see, relaxing these assumptions would open the door to proving
the conjecture that the AV logrank test statistic—Cox’ partial likelihood ratio—from
Chapter 3 is GROW for the proportional hazards alternative.

The results of Chapter 3 about the AV logrank test can be understood in terms of
a group-invariant structure. Indeed, Kalbfleisch and Prentice [1973] showed that, in
the fixed-sample case, Cox’ partial likelihood used for the AV logrank test can also
be interpreted as a partial likelihood ratio of the rank vector of the survival times.
This follows from a more general fact about rank statistics shown by Savage [1956]. In
this case, the partial likelihood ratio is between the null hypothesis under which the
distribution of the survival times of all subjects is the same against the proportional
hazards alternative [see Kalbfleisch and Prentice, 1973]. In this case, the rank statistic
can be seen as an invariant statistic under the action of the group of all increasing
functions of the survival times—all time changes that preserve the order of the events—
with composition as the group operation. Needless to say, this group is not even locally
compact—no Haar measure exists on it, and our techinques do not apply. A natural
question is whether our group-invariance results also extend to Cox’ model, that is,
whether the partial likelihood employed in the AV logrank test is a GROW E-statistic
for this problem.

6.2. Individual-sequence prediction

In Chapter 4, we introduced a multiscale adaptive algorithm, Muscada, for the game
of prediction with expert advice [Cesa-Bianchi and Lugosi, 2006]. This algorithm
is computationally efficient and provides a regret guarantee with the following two
desirable properties:

1. If the ranges of the losses of the experts vary by orders of magnitude, the regret
of the algorithm scales with the range of the best expert, not with the largest
one—which would result from naively using a single-scale experts algorithm.

2. If the losses are samples from an easy distribution—a distribution according
to which the best expert is better than any other bay a constant margin in
expectation—, then the regret incurred by the algorithm assured to be constant.

The first property refers to the multiscale adaptiveness; the second one, to luckiness.
Existing algorithms achieved either of these objectives, but not both. The proof ideas
and techniques that were developed in designing and analyzing Muscada are broadly
applicable to the family of Follow-the-Leader algorithms, and have the potential to
motivate a general theory of second-order parameter-free procedures. For example, an
instantiation of these techniques to gradient descent yield guarantees such as those of
AdaGrad [Duchi et al., 2011] (not shown). The crux of the algorithm is a subtle use of
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convex duality, where a potential function of the experts’ corrected regrets—the dual
of the regularizer—is kept negative.
At least two problems are left open in this line of research by this dissertation. The

first one is related to the application of Muscada to the solution of two-player zero-
sum games. We have shown in Section C.1.1 convinvincing numerical evidence that
if two instances of an optimistic version of Muscada play against each other, their
strategies will converge to the saddle point of the game. An open problem is to provide
a proof that this in fact is the case. The second one, already mentioned in Section 4.7,
is the extension of the algortithm to infinitely many experts. This would open the
possibility of formulating improved online learning algorithms for nonparametric online
regression [Cesa-Bianchi et al., 2017, Gaillard and Gerchinovitz, 2015, Kuzborskij and
Cesa-Bianchi, 2020].

6.3. Concentration Inequalities

In Chapter 5, we studied the exponential stochastic inequality, a new notational de-
vice designed to reason about random variables that are ordered both in expecta-
tion and with high probability. This notation is specially well suited to the study of
PAC-Bayesian bounds, and has been useful to reason about excess risk bounds for
machine learning algorithms. This chapter also serves as a nonextensive survey on
PAC-Bayesian bounds. These bounds can be understood through the convex duality
that exists between the cumulant generating function and the Kulback-Leibler diver-
gence. The notational device is a tool simplify and hopefuly derive new results in this
area.
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A. Appendix to Chapter 2

A.1. Computations

Proposition A.1.1. Let X ∼ N(γ, I), and let mS ∼W (m,I) be independent random
variables. Let LL′ = S be the Cholesky decomposition of S, and let M = 1√

m
L−1X.

If P0,n is the probability distribution under which X ∼ N(0, I), then, the likelihood
pMγ,m/p

M
0,m ratio is given by

pMγ,m(M)

pM0,m(M)
= e−

1
2 ∥γ∥

2

∫ e⟨γ,TA−1M⟩dPm+1,I(T )

where A ∈ L+ is the Cholesky factor AA′ = I +MM ′, and PT
m+1,I is the probability

distribution on L+ such that TT ′ ∼W (m + 1, I).

Proof. Let Σ = ΛΛ′ be the Cholesky decomposition of Σ. The density pXγ,Λ of X with

respect to the Lebesgue measure on Rd is

pXγ,Λ(X) =
1

(2π)d/2 det(Λ)
etr(−

1

2
(Λ−1X − γ)(Λ−1X − γ)′) ,

where, for a square matrix A, we define etr(A) to be the exponential of the trace of
A. Let W = mS. Then, the density pWγ,Λ of W with respect to the Lebesgue measure

on Rd(d−1)/2 is

pWγ,Λ(W ) =
1

2md/2Γd(n/2)det(Λ)m
det(S)(m−d−1)/2etr(−

1

2
(ΛΛ′)−1W) .

Now, let W = TT ′ be the Cholesky decomposition of W . We seek to compute the
distribution of the random lower lower triangular matrix T . To this end, the change of
variables W ↦ T is one-to-one, and has Jacobian determinant equal to 2d∏

d
i=1 t

d−i+1
ii .

Consequently, the density pTγ,Λ(T ) of T with respect to the Lebesgue measure is

pTγ,Λ(T ) =
2d

2md/2Γd(m/2)
det(Λ−1T )metr(−

1

2
(Λ−1T )(Λ−1T )′)

d

∏
i=1
t−iii .

We recognize dν(T ) =∏
d
i=1 t

−i
ii dT to be a left Haar measure on L+, and consequently

p̃Tγ,Λ(T ) =
2d

2md/2Γd(m/2)
det(Λ−1T )metr(−

1

2
(Λ−1T )(Λ−1T )′)
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is the density of T with respect to dν(T ). After this, the density p̃X,T
γ,Λ (X,T ) of the

pair (X,T ) with respect to dX × dν(T ) is given by

p̃X,T
γ,Λ (X,T ) =

2d

K

det(Λ−1T )m

det(Λ)
etr(−

1

2
(Λ−1T )(Λ−1T )′ −

1

2
(Λ−1X − γ)(Λ−1X − γ)′)

with K = (2π)d/22md/2Γd(n/2). The change of variables (X,T ) ↦ (T −1X,T ) has

Jacobian determinant equal to det(T ). If M = T −1X, then, the density p̃M,T
γ,Λ of

(M,T ) with respect to dM × dν(T ) is given by

p̃M,T
γ,Λ (M,T ) =

det(Λ−1T )m+1

K ′′
etr(−

1

2
(Λ−1T )(Λ−1T )′ −

1

2
(Λ−1TM − γ)(Λ−1TM − γ)′) .

We now marginalize T to obtain the distribution of the maximal invariant M . Since
the integral is with respect to the left Haar measure dν(T ), we have that

∫
T ∈L+

p̃M,T
γ,Λ (M,T )dν(T ) = ∫

T ∈L+
p̃M,T
γ,I (M,Λ−1T )dν(T ) =

∫
T ∈L+

p̃M,T
γ,I (M,T )dν(T ),

and consequently,

pMγ,Λ(M) =
2d

K
∫
T ∈L+

det(T )m+1etr(−
1

2
TT ′ −

1

2
(TM − γ)(TM − γ)′)dν(T )

=
2d

K
e−

1
2 ∥γ∥

2

∫
T ∈L+

det(T )m+1etr(−
1

2
T (I +MM ′

)T ′ + γ(TM)′)dν(T ).

The matrix I +MM ′ is positive definite and symmetric. It is then possible to perform
its Cholesky decomposition (I +MM ′) = AA′. With this at hand, the previous display
can be written as

pMγ,Λ(M) =
e−

1
2 ∥γ∥

2

K
∫
T ∈L+

det(T )m+1etr(−
1

2
(TA)(TA)′ + γ(TM)′)dν(T ).

We now perform the change of variable T ↦ TA−1. To this end, notice that dν(A−1) =

dν(T )∏
d
i=1 a

−(d−2i+1)
ii , and consequently

pMγ,Λ(M) =
2d

K

e−
1
2 ∥γ∥

2

∏
d
i=1 a

2i
ii

det(A)m+d+2 ∫T ∈L+
det(T )m+1etr(−

1

2
TT ′ + γ(TA−1M)′)dν(T )

=
Γd (

m+1
2
)

πd/2Γd (
m
2
)

∏
d
i=1 a

2i
ii

det(A)m+d+2
e−

1
2 ∥γ∥

2

PT
m+1 [e

⟨γ,TA−1M⟩
] ,
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so that that at γ = 0 the density pM0,Λ(M) takes the form

pM0,Λ(M) =
Γd (

m+1
2
)

πd/2Γd (
m
2
)

∏
d
i=1 a

2i
ii

det(A)m+d+2
,

and consequently the likelihood ratio is

pMγ,Λ(M)

pM0,Λ(M)
= e−

1
2 ∥γ∥

2

∫ e⟨γ,TA−1M⟩dPm+1(T ).

Remark A.1.2 (Numerical computation). Computing the optimal E-value is feasible
numerically. We are interested in computing

∫ e⟨x,Ty⟩dPm+1(T ),

where T is a L+-valued random lower triangular matrix such that TT ′ ∼W (m + 1, I),
and x, y ∈ Rd. Define, for i ≥ j, the numbers aij = xiyj . Then ⟨x,Ty⟩ = ∑i≥j aijTij .
By Bartlett’s decomposition, the entries of the matrix T are independent and T 2

ii ∼

χ2((m + 1) − i + 1), and Tij ∼ N(0,1) for i > j. Hence, our target quantity satisfies

∫ [e
⟨x,Ty⟩

]Pm+1(T ) = ∫ e∑i≥j aijTijdPm+1(T ) = ∫ ∏
i≥j

eaijTijdPm+1(T ).

On the one hand, for the off-diagonal elements satisfy, using the expression for the
moment generating function of a standard normal random variable,

EP
m+1[e

aijTij ] = exp(
1

2
a2ij) .

For the diagonal elements the situation is not as simple, but a numerical solution is
possible. Indeed, for aii ≥ 0, and ki = (m + 1) − i + 1

EP
m[e

aiiTii] =
1

2
ki
2 Γ (ki

2
)
∫

∞

0
x

ki
2 −1 exp(−

1

2
x + aii

√
x)dx

= 1F1 (
ki
2
,
1

2
,
a2ii
2
) +

√
2aiiΓ (

ki+1
2
)

Γ (ki

2
)

1F1 (
ki + 1

2
,
3

2
,
a2ii
2
) ,

where 1F1(a, b, z) is the Kummer confluent hypergeometric function. For aii < 0,

1

2ki/2Γ (ki

2
)
∫

∞

0
xki/2−1 exp(−

1

2
x + aii

√
x)dx =

Γ (ki)

2ki−1Γ (ki

2
)
U (

ki
2
,
1

2
,
a2ii
2
) ,

and U is Kummer’s U function.
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A.2. Importance of the filtration for randomly stopped
E-Statistics

Consider the the t-test as in Example 2.1.1. Fix some 0 < a < b, and define the
stopping time τ∗ ∶= 1 if ∣X1∣ /∈ [a, b]. τ

∗ = 2 otherwise. Then clearly τ∗ is not adapted
to (hence not a stopping time relative to) (Mn)n as defined in that example, since
M1 ∈ {−1,1} coarsens out all information in X1 except its sign. Now let δ0 ∶= 0 (so
that H0 represents the normal distributions with mean µ = 0 and arbitrary variance).
Let T ∗,δ1n (Xn) be equal to the GROW E-statistic T ∗n(X

n) as in (2.13); here we make
explicit its dependence on δ1. For H1, to simplify computations, we put a prior Π̃δ

1 on
∆1 ∶= R. We take Π̃δ

1 to be a normal distribution with mean 0 and variance κ. We can
now apply Corollary 2.8.3 (with prior Π̃δ

0 putting mass 1 on δ = δ0 = 0), which gives
that T̃n(X

n) is an E-statistic, where

T̃n(x
n
) = ∫

1
√
2πκ2

exp(−
δ21
2κ2
) ⋅ T ∗,δ1n (xn)dδ1

coincides with a standard type of Bayes factor used in Bayesian statistics. By exchang-
ing the integrals in the numerator, this expression can be calculated analytically. The
Bayes factor T̃1(x1) for x

1 = x1 is found to be equal to 1 for all x1 ≠ 0, and the Bayes
factor for (x1, x2) is given by:

T̃2(x1, x2) =

√
2κ2 + 1 ⋅ (x21 + x

2
2)

κ2(x1 − x2)2 + (x21 + x
2
2)
.

Now we consider the function

f(x) ∶= EX2∼N(0,1)[T̃2(x,X2)].

f(x) is continuous and even. We want to show that, with τ∗ as above, T̃τ∗(X
τ∗) is

not an E-variable for some specific choices of a, b and κ. Since, for any σ > 0, the null
contains the distribution under which the Xi are i.i.d. N(0, σ), the data may, under
the null, in particular be sampled from N(0,1). It thus suffices to show that

EX1,X2∼N(0,1)[T̃τ∗(X
τ∗
)] =

PX1∼N(0,1){∣X1∣ /∈ [a, b]} +EX1∼N(0,1)[1{∣X1∣ ∈ [a, b]} f(X1)] > 1.

But from numerical integration we find that f(x) > 1 on [a, b] and [−b,−a] if we take
κ = 200, a ≈ 0.44 and b ≈ 1.70. Using again numerical integration, we find that the
above expectation is then approximately equal to 1.19, which shows that, even though
T̃n is an E-statistic at each n by Corollary 2.8.3 (it is even a GROW one), T̃τ∗ is not an
E-statistic (its expectation is 0.19 too large), providing the desired counterexample.
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B.1. Omitted Proofs and Details

In this section we provide proofs and remarks omitted from previous sections. In
Appendix B.1.1 we relate growth-rate optimality to the minimum expected stopping
time. In Appendix B.1.2, we show that the AV logrank statistic is a continuous-
time martingale, and show that this is also true for general patterns of incomplete
observation, such as left truncation and filtering as a consequence of the results of
Andersen et al. [1993]. In Appendix B.1.3, we proof the claims made in Section 3.3.3
about the martingale structure of the AV logrank test under the presence of ties.
Lastly, in Appendix B.1.4, we give further details on the simulations used to compute
the planned maximum sample sizes for a given targeted power. Under the alternative
and optional stopping, the observed sample size is in many cases lower.

B.1.1. Expected Stopping Time, GROW and Wald’s Identity

Here we motivate the GROW criterion by showing that it minimizes, in a worst-case
sense, the expected number of events needed before there is sufficient evidence to
stop. Let P0 represent our null model, and let, as before, the alternative hypothesis
be H1 ∶ θ ≤ θ1 for some θ1 < θ0. Suppose we perform a level-α test based on a test
martingale Sq

θ0,t
using the stopping rule τ that stops as soon as Sq

θ0,t
exceeds the

threshold 1/α, that is, τ q = inft{t ∶ S
q
θ0,t
≥ 1/α}. In the main text we elaborated on

how Sθ1
θ0,t

is optimal with respect to the GROW criterion. We now show that the

problem of minimizing the worst-case, the expected number of events Eθ[N̄τq ] over q
is approximately equivalent to finding the GROW test martingale. To do so, we make
simplifying assumptions that reduce the problem to an i.i.d. experiment. This allows
us to employ a standard argument based on an identity of Wald [1947], originally due
to Breiman [1961]. For this we assume that the initial risk sets (i.e., ȳA0 and ȳB0 ) are
large enough so that, for all sample sizes we will ever encounter, ȳAt /ȳ

B
t ≈ ȳ

A
0 /ȳ

B
0 . This

allows us to treat the likelihood of the participant(s) I(k) having witnessed the event

at time T (k) to be independent of t, that is, as an i.i.d. experiment.

The argument of Breiman [1961] relates the expected number of events to the ex-
pected value of our stopped AV logrank statistic. Suppose first that we happen to
know that the data come from a specific θ in the alternative hypothesis. Then Sq

θ0,τ

is the product of N̄τ factors of ratios Rq
θ0,(i) = q(i)(I(i))/pθ0,(i)(I(i)) at the ith event.
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Wald’s identity applied to its logarithm implies

Eθ[N̄τ ] =
Eθ[lnS

q
θ0,τq ]

Eθ[lnR
q
θ0,(1)].

. (B.1)

For simplicity we will further assume that the number of participants at risk is large
enough so that the probability that we run out of data before we can reject is negligible.
Because of the choice of the stopping rule τ q, the right-hand side of the last display
can then be further rewritten as

Eθ[lnS
q
θ0,τq ]

Eθ[lnR
q
θ0,(1)]

=
ln(1/α) + very small

Eθ [ln (q(1)(I(1))/p(1),θ0(I(1)))]
,

where very small between 0 and log ∣θ1/θ0∣. The equality follows because we reject
as soon as Sq

θ0,t
≥ 1/α, so Sq

θ0,τ
cannot be smaller than 1/α, and it cannot be larger by

more than a factor equal to the maximum likelihood ratio at a single outcome (if we
would not ignore the probability of stopping because we run out of data, there would
be an additional small term in the numerator).
With (B.1) at hand, we can relate our choice of q to the expected number of events

witnessed before stopping. If, for a fixed θ, we try find the q that minimizes the
expected number of events Eθ[N̄τq ], and, as is customary in sequential analysis, we
approximate the minimum by ignoring the very small part, we see that the ex-
pression is minimized by maximizing the numerator Eθ [ln (Q(1)/Pθ0,(1))] over q. The
maximum is achieved by Q(1) = Pθ,(1); the expression in the denominator then becomes
the Kulback-Leibler divergence between two Bernoulli distributions. It follows that,
under θ, the expected number of outcomes until rejection is minimized by Q(1) = Pθ.

Thus, in this case, we use the GROW Sθ
θ0,t

as test statistic. However, we still need to
consider the fact that the real H1 is composite: as statisticians, we do not know the
actual θ; we only know 0 < θ ≤ θ1. A worst-case approach uses the q achieving

max
q

min
θ≤θ1

Eθ [ln (p(1)(I(1))/q(1),θ0(I(1)))]

since, repeating the reasoning leading to (B.1), this q should be close to achieving the
min-max number of events until rejection, given by

min
q

max
θ≤θ1

Eθ[N̄τq ]

But this just tells us to use the GROW E-variable relative to H1, which is what we
were arguing for.

B.1.2. Continuous time and anytime validity

In this section, we show the anytime validity of the AV logrank test. This is done via
Ville’s inequality for which it suffices to show that Sq

θ0
= (Sq

θ0,t
)t≥0 is a nonnegative

(super) martingale. To do so, we use the counting process formalism. A few definitions
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are in order. Only in this section, we assume knowledge of counting process theory
[see Andersen et al., 1993, Fleming and Harrington, 2011]. Denote, for i = 1, . . . ,m,
Ñ i

t = 1{t ≤ T i} the counting processes associated to each participant, and let yit be

the at-risk process. For each participant, the censored process N i
t , which is observed,

is given by dN i
t = y

i
tdÑ

i
t—we use this convention to signify that N i

t = ∫
t
0 y

i
sdÑ

i
s. We

define the sigma-algebra Ft ∶= σ(N
j
s ∶ 0 ≤ s ≤ t, j = 1, . . . , n), which, as usual, can be

interpreted as the information in the study up to time t.
One of the results of the counting process theory is that the processes dN i

t −y
i
tdλ

i
t are

martingales, where, recall, yit = 1{X
i ≥ t} is the at-risk process, and λit is the hazard

function associated to T i. In that case, yitdλ
i
t is called the compensator of N i

t . The
result that the AV logrank test is a martingale hinges specifically on this structure.
Thus, any pattern that preserves this martingale structure also preserves the martin-
gale property for the AV logrank test, and consequently its type-I error guarantees.
Andersen et al. [1993, III.4] show exactly this under general patterns of incomplete
observation provided that the mechanisms are independent of the observations. With
this in mind, in the following, we only assume that the counting processes N i

t have
compensators Ai

t given by dAi
t = y

i
tdλ

i
t.

The filtration F = (Fs)s≥0 is right-continuous and we can safely identify predictable
processes with left-continuous process. For some θ0, denote by P0 the distribution

under which, for each i = 1, . . . ,m, the hazard function for T i is λit = θ
zi

0 λ
A
t , where g

i = 0
if i ∈ A and gi = 1 if i ∈ B. Recall from Section 3.2, if participant i belongs to Group
B, λit = θ0λ

B
t = θ0λ

A
t ; otherwise, λ

i
t = λ

A
t . Let q

1
t , . . . , q

m
t be predictable processes such

that ∑i≤m qity
i
t = 1 a.s. for all t, that is, {qit}i∈Rt

at each t is a probability distribution
over the participants at risk at time t. Define rit to be each of the ratios rit = q

i
t/p

i
θ0,t

.
Define the predictable process Sq

θ0,t−
= lims↑t S

q
θ0,t−

. As such, at each t, the change

dSq
θ0,t
= Sq

θ0,t
− Sq

θ0,t−
of the AV logrank statistic Sq

θ1
at time t, given in (3.10), can be

computed as
dSq

θ0,t
= ∑

i≤m
Sq
θ0,t−
(rit − 1)dN

i
t ,

because no two events happen simultaneously with positive probability. Since Sq
θ0,t−

is

predictable, it is enough to prove that the processMt defined by dMt = ∑i≤m(1−r
i
t)dN

i
t

is a martingale [see Fleming and Harrington, 2011, Theorem 1.5.1]. Recall that ȳAt =

∑i∈A y
i
t and ȳ

B
t = ∑i∈B y

i
t. Then both ȳA and ȳB are left-continuous processes.

Lemma B.1.1. Let {qit}i≤m be a collection of nonnegative left-continuous processes
qi = (qit)t≥0 such that ∑i≤m yitq

i
t = 1 for all t. Let {piθ0,t}i≤m be the collection of

processes given by

piθ0,t =
θg

i

0 y
i
t

ȳAt + θ0ȳ
B
t

.

The process M = (Mt)t≥0 given by dMt = ∑i≤m(1 − r
i
t)dN

i
t is a martingale under P0

with respect to the filtration F = (Ft)t≥0.

Proof. It suffices to show that the compensatorAt ofMt, given by dAt = ∑i≤m∑i≤m(r
i
t−

1)yitλ
i
tdt is zero. Define q̄At = ∑i∈A y

i
tq

i
t and q̄

B
t = ∑i∈B y

i
tq

i
t. Notice that by assumption
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q̄At + q̄
B
t = 1., and recall that, under the null λBt = θ0λ

A
t . We can compute

∑
i≤m
(rit − 1)y

i
tλ

i
t = ∑

i∈A
yitλ

A
t (r

i
t − 1) +∑

i∈B
yitλ

B
t (r

i
t − 1)

=
λAt [(ȳ

A
t + θ0ȳ

B
t )q̄

A
t − ȳ

A
t +

(ȳAt + θ0ȳ
B
t )q̄

B
t − θ0ȳ

B
t ]

= λAt [(ȳ
A
t + θ0ȳ

B
t )

=1
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

(q̄At + q̄
B
t )−

(ȳAt + θȳ
B
t )]

= 0,

where we used the assumption that ∑i≤m yitq
i
t = ȳ

A
t q

A
t + ȳ

B
t q

B
t = 1. As the compensator

At ofMt is zero at each t, we conclude thatMt is a martingale, as was to be shown.

Our previous discussion and the preceding lemma have the following corollary as a
consequence.

Corollary B.1.2. Sq
θ0
= (Sq

θ0,t
)t≥0 is a nonnegative martingale with expected value

equal to one.

Hence, Ville’s inequality holds for Sq
θ0
, which implies that

P0{S
q
θ0,t
≥ 1/α for some t ≥ 0} ≤ α.

This implies the anytime validity of the test ξqθ0 = (ξ
q
θ0,t
)t≥0 given by the AV logrank

test ξqθ0,t = 1{S
q
θ0,t
≥ 1/α}.

B.1.3. Ties

The purpose of this section is twofold. Firstly, we prove Lemma 3.3.2. Secondly, we
show that the conditional likelihood given in Section 3.3.3 indeed approximates the
true conditional partial likelihood ratio under any distribution such that the hazard
ratio is θ1.
Our general strategy in this case is similar to the one undertaken in the continuous-

monitoring case: we build a test martingale with respect to a filtration G⋆, and use
Ville’s inequality to derive anytime-valid type-I error guarantees. Define, for each
k = 1,2, . . . , the sigma-algebra Gk generated by all observations made in times t1, . . . , tk,
that is, Gk = σ(N

i
tl
, Ñ i

tl
∶ i = 1, . . . ,m; l = 1, . . . , k), and the corresponding filtration

G = (Gk)k=1,2,.... Under Cox’s proportional hazard model, conditionally on Gk−1, our
observations ∆N̄A

k and ∆N̄B
k are binomially distributed with parameters depending on

the hazard function (see Lemma B.1.3 below). By conditioning both on Gk−1 and on the
total number of events ∆N̄k =∆N̄

A
k +∆N̄

B
k , we use the likelihood of having observed

∆N̄B
k , which follows Fisher’s noncentral hypergeometric distribution, as detailed in

Corollary B.1.4. We gather these observations in the following two lemmas.
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Lemma B.1.3. Conditionally on Gk−1, the following hold:

1. The number of events ∆N̄A
k has a binomial distribution with parameters ȳAk and

pAk where pAk = 1 − exp (− ∫
tk
tk−1

λAs ds).

2. The number of events ∆N̄B
k has a binomial distribution with parameters ȳBk and

pBk where pBk = 1 − exp (−θ ∫
tk
tk−1

λAs ds) and θ is the hazard ratio.

Proof. The result is standard, and it follows from explicitly solving for λ in (3.1) and
computing the conditional probability in (3.2) for each group.

Next, we use a standard result: given two binomially distributed random variables
X and Y , the distribution of X conditionally on X +Y is Fisher’s noncentral hyperge-
ometric distribution. We apply this to ∆N̄A

k and ∆N̄B
k from the previous lemma and

spell out the corresponding parameters in the following corollary.

Corollary B.1.4. Let G⋆k−1 = Gk−1∨σ(∆N̄k), and let pAk and pBk be as in Lemma B.1.3.
Define the odd ratios ωA

k = p
A
k /(1 − p

A
k ), ω

B
k = p

B
k /(1 − p

B
k ) and the ratio ωk = ω

B
k /ω

A
k .

Then, conditionally on G⋆k−1, the likelihood of having observed ∆N̄B
k events in group

B is given by Fisher’s noncentral hypergeometric distribution with probability mass
function pFNCH(∆N̄

B
k ; ȳBk−1, ȳ

A
k−1,∆N̄k, ωk) given by

pFNCH(n
B ; ȳB , ȳA, n, ω) =

(
ȳB

nB)(
ȳA

n−nB)ω
nB

∑max{0,nB−ȳB}≤u≤min{ȳB ,nB} (
ȳB

u
)(

ȳA

nB−u)ω
u
.

Naively, one could use a partial likelihood ratio just as in the absence of ties to
derive a sequential test. This, however, is not satisfactory, because, in general, the
parameter ωk depends heavily on the unknown baseline hazard function λA. Contrary
to the general case, when the hazard ratio θ is one, the parameter ωk = 1, and Fisher’s
noncentral hypergeometric distribution reduces to the conventional hypergeometric
distribution. With this observation at hand, if {qk}k=1,2,... is a sequence of conditional
distributions qk( ⋅ ) on the possible values of ∆N̄B

k , we can build a sequential tests
for (3.3), with its corresponding type-I error guarantee. We give the details in the
following corollary, and subsequently point at a useful choice for q that approximates
the real likelihood.

The choice of q for our statistic presented in Section 3.3.3 follows from an approx-
imation of the parameter ω for small ∆tk = tk − tk−1. As noted by Mehrotra and
Roth [2001], if ∫

tk
tk−1

λ1(s)ds is small, then pAk ≈ λtk−1∆tk and pAk ≈ θp
A
k . With these

two approximations, ωk ≈ θ. This means that the choice qk(∆N̄
B
k ) = pθ1,k(∆N̄

B
k ) ∶=

pFNCH(∆N̄
B
k ; ȳBk , ȳ

A
k , ∆N̄k, ω = θ1) approximates the real conditional likelihood

under any alternative for which the true hazard ratio is θ1. Hence, the sequentially
computed statistic

Sθ1
k =∏

l≤k

pθ1,k(∆N̄
B
k )

p1,k(∆N̄B
k )
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approximates the true partial likelihood ratio of the data observed up to time tk in
the presence of ties, and we recommend its use.

B.1.4. Details of sample size comparison simulations

In this section we lay out the procedure that we used to estimate the expected and
maximum number of events required to achieve a predefined power as shown in Fig-
ure 3.4 and Figure 3.1 in Section 3.7. First we describe how we sampled the survival
processes under a specific hazard ratio. We then describe how we estimated the maxi-
mum and expected sample size required to achieve a predefined power (80% in our case)
for any of the test martingales that we considered (that of the exact AV logrank, its
Gaussian approximation, and the prequential plugin variant). Finally, we explain how
the same quantitiees for the classical logrank test and the O’Brien-Fleming procedure
were obtained.
In order to simulate the order in which the events in a survival processes happens,

we used the sequential-multinomial risk-set process from Section 3.3. As before, we
consider the general testing problem with θ0 = 1 and a minimal clinically relevant
effect size θ1 < 1, and we denote the true data generating parameter by θ, typically,
θ ≤ θ1. Under θ, the odds of the next event at the ith event time happening in Group
B are θȳB(i) ∶ ȳ

A
(i)—the odds change at each time step. Thus, simulating in which

group the next event happens only takes a biased coin flip. For the problem of testing
(3.11) with θ0 we fix the tolerate a type-I error to α = 0.05 and the type-II error to
β = 0.2. For each test martingale Sq

θ0
of interest we first consider the stopping rule

τ q = inf{k ∶ Sq
θ0,(k) ≥ 1/α}, that is, we stop as soon as Sq

θ0,(i) crosses the threshold 1/α.

Recall that in the worst case, θ = θ1 the expected stopping time τ q is lowest when we
use Sθ1

θ0,(k), see Appendix B.1.1.

To estimate the maximum number of events needed to achieve a predefined power
with a given test martingale, we turned our attention to a modified stopping rule τ̃ q.
Under τ̃ q we stop at the first of two moments: either when our test martingale Sq

θ0,(k)
crosses the threshold 1/α (i.e., at τ) or once we have witnessed a predefined maximum
number of events nmax. More compactly, this means using the stopping rule τ̃ q given
by τ̃ q = min(τ q, nmax). In those cases in which the test based on the stopping rule τ q

achieves a power higher than 1 − β, a maximum number of events nmax smaller than
the initial size of the combined risk groups can be selected to achieve approximate
power 1 − β using the rule τ̃ q.
A quick computation shows that nmax has the following property: it is the smallest

number of events n such that stopping after n events has probability smaller than 1−β
under the alternative hypothesis, that is,

Pθ{τ
q
≥ n} ≤ 1 − β.

More succinctly, nmax is the (approximate) (1 − β)-quantile of the stopping time τ q,
which can be estimated experimentally in a straightforward manner.
To estimate nmax for an initial risk set sizes m1,m0, we sampled 104 realizations

of the survival process (under θ) using the method described at the beginning of this
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section. This allowed us to obtain the same number of realizations of the stopping
time τ q. We then computed the (1 − β)-quantile of the simulated first passage time
distribution of τ q, and reported it as an estimate of the number of events nmax in the
‘maximum’ column in Figure 3.4.

We assessed the uncertainty in the estimation nmax using the bootstrap. We per-
formed 1000 bootstrap rounds on the sampled empirical distribution of τ q, and found
that the number of realizations that we sampled (104) was high enough so that plotting
the uncertainty estimates was not meaningful relative to the scale of our plots. For
this reason we omitted the error bars in Figure 3.4 and Figure 3.1.

In the “mean” column of Figure 3.4 and Figure 3.1 we plot an estimate of the
expected number of events τ̃ q = min(τ q, nmax). For this, we used the empirical mean
of the stopping times that were smaller than nmax on the sample that we obtained
by simulation, with 20% of the stopping times being nmax itself. In the “conditional
mean” column, we plot an estimate of τ̃ q ∣ τ̃ q < nmax, i.e., the stopping time given that
we stop early (and hence reject the null).

For comparison, we also show the number of events that one would need under the
Gaussian non-sequential approximation of Schoenfeld [1981], and under the continuous
monitoring version of the O’Brien-Fleming procedure. In order to judge Schoenfeld’s
approximation, we report the number of events required to achieve 80% power. This
is equivalent to treating the logrank statistic as if it were normally distributed, and
rejecting the null hypothesis using a z-test for a fixed number of events. The power
analysis of this procedure is classic, and the number of events required is nSmax =

4(zα + zβ)
2/ log2 θ1, where zα, and zβ are the α, and β-quantiles of the standard

normal distribution. In the case of the continuous monitoring version of O’Brien-
Fleming’s procedure, we estimated the number of events nOF

max needed to achieve 80%
as follows. For each experimental setting (mA,mB , θ), we generated 104 realizations
of the survival process under θ and computed the corresponding trajectories of the
logrank statistic. For each possible value n of nOF

max, we computed the fraction of
trajectories for which the O’Brien-Fleming procedure correctly stopped when used
with the maximum number of events set to n. We report as an estimate of the true
nOF
max the first value of n for which this fraction is higher than 80%, our predefined

power.

B.2. Covariates: the full Cox Proportional Hazards
E-Variable

We extend the AV logrank test to the situation when time-dependent covariates are
present, as done in Section 3.3 with the same notation used there. Assume now
the presence of d covariates and let, for each participant i, zit = (z

i
t,1, . . . , z

i
t,d) be

the covariate vector consisting left-continuous time-dependent covariates zit,1, . . . , z
i
t,d.

Denote by zi(k) the value of the covariates of participant i at the time T(k) when the
kth event is witnessed. We let random variable I(k) denote the index of the patient to
which the kth event happens, and consider the extended process I(1), I(2), . . . where
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the information that is available at time T(k) is, I(1), I(2), . . . , I(k), and z(1), . . . , z(k).
The conditional partial likelihood underlying the process is now denoted Pβ,θ with
θ > 0, β ∈ Rd, and βθ = ln θ ∈ R, defined as follows:

Pβ,θ{I(k) = i ∣ z
j
(l), y

j
(l); j = 1, . . . , n; l = 1, . . . , k} ∶=

Pβ,θ{I(k) ∣ z
i
(k), y

i
(k); i = 1, . . . , n}, and

Pβ,θ{I(k) = i ∣ z
i
(k), y

i
(k); i = 1, . . . , n} ∶=

pβ,θ,(k)( i ) ∶=
yi(k) exp (⟨β,z

i
(k)⟩ + g

iβθ)

∑j∈R(k) exp (⟨β,z
j
(k)⟩ + g

iβθ)
,

This is consistent with Cox’ (1972) proportional hazards regression model: the prob-
ability that the ith participant witnesses an event, assuming he/she is still at risk, is
proportional to the exponentiated weighted covariates, with group membership being
one of the covariates. In case β = 0, this is easily seen to coincide with the definition
of Pθ via (3.5) with θ = eβθ .

B.2.1. E-Variables and Martingales

Let W be a prior distribution on β ∈ Rd for some d > 0. (W may be degenerate, i.e.,
put mass one on a specific parameter vector β1). For each such W, we let qW,θ,(k) be
the probability distribution on R(k) defined by

qW,θ,(k)( i ) ∶= ∫ pβ,θ,(k)( i )dW(β).

Consider a measure ρ on Rd (e.g., Lebesgue or some counting measure) and we letW be
the set of all distributions on Rd which have a density relative to ρ, andW○ ⊂W be any
convex subset of W (we may take W○ =W, for example). We define q̃←W,θ0 to be the
reverse information projection [Li, 1999] (RIPr) of qW,θ,(k) on {qW,θ0,(k) ∶W ∈W○},
defined as the probability distribution on R(k) such that

KL(qW,θ1,(k)∥q̃←W,θ0,(k)) = inf
W○∈W○

KL(qW,θ1,(k)∥qW○,θ0,(k)).

We know from Li [1999] and Grünwald et al. [2020] that q̃←W,θ0,(k) exists for each
k. Grünwald et al. [2020] show, in the context of E-variables for 2 × 2 contingency
tables, that the infimum in the previous display is in fact achieved by some distribution
W⋆ with finite support on Rd if the random variables y1(k), . . . , y

m
(k) constituting our

random process have a finite range. For given hazard ratios θ0, θ1 > 0, let

Rθ1
W,θ0,(k) =

qW,θ1,(k)(I(k))

q←W,θ0,(k)(I(k))
(B.2)

be our analogue of (3.8).
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Theorem B.2.1 (Corollary of Theorem 1 from Grünwald et al. [2020]). For every
prior W on Rd, for all β ∈ Rd,

Eβ,θ0[R
θ1
W,θ0,(k) ∣ z

i
(l), y

i
(l); i = 1, . . . ,m; l = 1, . . . , k] =

∑
i∈R(k)

qβ,θ0,(k)(i)
qW,θ1,(k)(i)

q←W,θ0,(k)(i)
≤ 1

so that Rθ1
W,θ0,(k) is an E-variable conditionally on zi(l), y

i
(l) with i = 1, . . . ,m; l =

1, . . . , k.

Note that the result does not require the prior W to be well specified in any way:
under any (β, θ0) in the null distribution, even if β is completely disconnected to W,
Rθ1

W,θ0,(k) is an E-variable conditional on past data.

In particular, since the result holds for arbitrary priors, it holds, at the kth event
time, for the Bayesian posterior Wk+1 =W1 ∣ z

i
(l), y

i
(l); i = 1, . . . ,m; l = 1, . . . , k, based

on arbitrary prior W1 with density w1, i.e., the density of Wk+1 is given by

wk+1(β)∝∏
l≤k
qβ,θ,(l)(I(l))w1(β).

In parallel to the discussion in Section 3.3.1, we can therefore, for each prior W1,
construct a test martingale Sk ∶=∏l≤kR

θ1
Wl,θ0,(l) that “learns” β from the data, anal-

ogously to (3.12), and computes a new RIPr at each event time k.

B.2.2. Finding the RIPr

While it is not clear how to calculate the RIPr q←W,θ0,(k) in general, it can be well
approximated with the efficient algorithm design by Li [1999] and Li and Barron [1999].
Their algorithm is computationally feasible as long as we restrict W○

δ to be the set of
all priors W for which mini∈R(k) qW,θ0,(k)(i) ≥ δ, for some δ > 0. In that case, when run
for M steps, the algorithm achieves an approximation error of O(ln(1/δ)/M), where
each step is linear in the dimension d. Since the approximation error is logarithmic in
1/δ, we can take a very small value of δ, which makes the requirement less restrictive.
Exploring whether the Li-Barron algorithm really allows us to compute the RIPr for
the Cox model, and hence Rθ1

Wk,θ0,(k) in practice, is a major goal for future work.

B.2.3. Ties

Without covariates, our E-variables allow for ties correspond to a likelihood ratio
of Fisher’s noncentral hypergeometric distributions (see Section 3.3.3), the situation
is not so simple in the presence of covariates. Although deriving the appropriate
extension of the noncentral hypergeometric partial likelihood is possible, one ends
up with a hard-to-calculate formula [Peto, 1972]. Various approximations have been
proposed in the literature [Cox, 1972, Efron, 1977]. In case these preserve the E-
variable and martingale properties, they would retain type-I error probabilities under
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optional stopping and we could use them without problems. We do not know whether
this is the case however; for the time being, we recommend handling ties by putting
the events in a worst-case order, leading to the smallest values of the E-variable of
interest, as this is bound to preserve the type-I error guarantees.

B.3. Gaussian AV logrank test

In this section we derive the Gaussian AV logrank test of Section 3.4, and investigate
the validity of the Gaussian approximation. In Appendix B.3.1, we show that this
approximation is only valid when the allocation of participants to each group under
investigation is balanced, that is, when mA = mB . In Appendix B.3.2 we investigate
numerically the sample size needed to reject the null hypothesis under both the exact
AV logrank test and its Gaussian approximation.
We start with the derivation of (3.15). For this we use (local) asymptotic normality

of the Z-score (3.14). Under the null distribution, Zk from (3.14) has an asymptotic
standard Gaussian distribution. Under any alternative distribution under which the
hazard ratio is θ, Schoenfeld [1981] showed that, in the absence of ties, the Z-statistic
also follows a Gaussian distribution with unit variance, but this time with mean µ⋆1
given by

µ⋆1 =
∑i≤kE

B
i (1 −E

B
i )√

∑i≤kE
B
i (1 −E

B
i )

log(θ).

Note that µ⋆1 depends on more than the summary statistic Zk. In the case that the
number of observed events is much smaller than the initial risk set sizes, the mean µ⋆1
under the alternative can be further approximated by

µ⋆1 ≈
√
N̄kµ1 =

√
N̄k

¿
Á
ÁÀ mBmA

(mB +mA)2
log(θ), (B.3)

where N̄k is the total number of observations up until time tk, and the resulting
approximation only depends on summary statistics. It is exactly this value µ1 that
we use in the Gaussian AV logrank test. The asymptotic result of Schoenfeld relies
on two conditions: (1) that the hazard ratio θ1 under the alternative is close enough
to one so that a first-order Taylor approximation around θ0 = 1 is adequate; (2) that
the expected number of events EB

k stays approximately constant over time, that is,
close to the initial allocation proportion EB

1 = m
B/(mB +mA). This indicates that

the asymptotic approximation is reasonable for values of θ1 close to 1 and the initial
risk sets are both large in comparison to the number of events witnessed. Notice that
in this regime of large risk sets the multiplicity correction in Vk is also negligible.

This raises the question whether a sequential Gaussian approximation is sensible for
the logrank statistic— a priori it is not at all clear whether Schoenfeld’s asymptotic
fixed-sample result has a nonasymptotic counterpart. Define the the logrank statistic
per observation time

Zi =
OB

i −E
B
i√

V B
i

.
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Figure B.1.: For balanced allocation (mA = mB) S′G1 is very similar to S(1) when
0.5 ≤ θ1 ≤ 2. Here θ0 = 1, µ0 = 0, and µ1 = µ1(θ1) as in in (B.3). Note that
both axis are logarithmic.

We investigate whether the exact AV logrank statistic behaves similarly to the Gaus-
sian likelihood ratio

S
′G
k =∏

i≤k

ϕµ1

√
Oi
(Zi)

ϕµ0(Zi)
= exp(−

1

2
∑
i≤k
{Oiµ

2
1 − 2µ1

√
OiZi})

for θ0 = 1 we have µ0 = 0, µ1 = log(θ)
√
mBmA/(mA +mB)2, and ϕµ is the Gaussian

density with unit variance and mean µ. Note that the statistic still depends on elements
of the full data set; more approximations are needed. Write the Gaussian densities,
and use that in the limit of large risk sets pBi ≈m

B/(mA +mB) and that consequently

Vi ≈
√
Oi

mAmB

(mA+mB)2 . This approximations valid under Schoenfeld’s second assumption.

With these approximations at hand, the Z-statistic is approximated by

Zk ≈
∑i≤k {O

B
i −E

B
i }

√
Oi

mAmB

(mA+mB)2

and consequently

S′
G
k ≈ S

G
k ≈ S

G
k = exp(−

1

2
N̄kµ

2
1 +
√
N̄kµ1Zk) ,

where SG
k is as in (3.15). In Figure B.1 we show, in case of balanced allocation, that

the Gaussian approximation SG
k a single event time from the Gaussian approximation

are very similar to the exact Sθ1
θ0,(k) for alternative hazard ratios θ1 between 0.5 and

2.
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Figure B.2.: Expected value of the increments of the Gaussian AV logrank statistic

as a function of the hazard ratio θ1. For balanced allocation RG
i is an

E-variable, but it is not for unbalanced allocation. The risk set can also
start out balanced but become unbalanced; this is unlikely under the null
hypothesis (see Appendix B.3.1). Note that the x-axis is logarithmic.

B.3.1. Safety only for balanced allocation

In order to assess whether the Gaussian AV logrank test is indeed AV, that is, whether
the type-I error guarantees holds, we inspect whether the expected value of each of
its multiplicative increments is bellow 1. In relation to our discussion in Section 3.3.1,
this would imply that all multiplicative increments are conditional E-variables and
that the resulting test is, at least approximately, a test martingale. Figure B.2 shows
the expectation of these increments as a function of the hazard ratio for several initial
allocation ratios. In case of balanced 1:1 allocation SG

k is an E-variable, since its
expectation is 1 or smaller. However, in case of unbalanced 2:1 or 3:1 allocation and
designs with hazard ratio θ1 < 1, SG

k is not an E-variable. Of course, even if the
initial allocation is balanced, it can become unbalanced. Figure B.2 shows that in
case of designs outside the range 0.5 ≤ θ1 ≤ 2 the deviations from expectation 1 can
be problematic. Hence we do not recommend to use the Gaussian approximation on
the logrank statistic for unbalanced designs and designs for θ1 < 0.5 or θ1 > 2. For
balanced designs with 0.5 ≤ θ1 ≤ 2, we found that in practice they are safe to use, the
reason being that scenarios in which the allocation becomes highly unbalanced after
some time (e.g. yBi = 80, y

A
i = 20) are extremely unlikely to occur under the null.
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B.3.2. Sample size

In this section we compare the stopping time distribution τG ∶= inf{k ∶ ξGk = 1} of the
Gaussian approximation to that of τ = inf{k ∶ ξk = 1}. We use tests with tolerable
type I error α = 0.05, thus, the threshold 1/α = 20 for both tests. In the previous
section we showed that the Gaussian approximation to the AV logrank statistic is
valid when the initial allocation is 1:1 and for values 0.5 ≤ θ1 ≤ 2, where θ1 is the
hazard ratio under the alternative. In these scenarios, we simulate a survival process
from a distribution according to which the true data generating hazard ratio is θ = θ1
and sampled realizations τG and τ for the same data set. The results of the simulation
are shown in Figure B.3, where we plot the realizations of τG against those of τ .
We see that in most cases both tests reject at the same time τG = τ , and that the
approximation becomes better as θ1 moves closer to θ0 = 1 (Schoenfeld’s assumption
1). When both tests do not reject at the same time, the Gaussian approximation errs
on the conservative side. The deviations from the constant large and balanced risk
set do not seem to occur often for this range of hazard ratios. After all, the risk set
needs to be large to observe the number of events to detect hazard ratios in the range
0.5 ≤ θ1 ≤ 2.
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Figure B.3.: Stopping times for the Gaussian and exact AV logrank tests under con-
tinuous monitoring (no ties) with threshold 1/α = 20. The stopping times
under the Gaussian approximation often coincide with the exact ones,
and are often more conservative (see Appendix B.3.2). Note that both
axes are logarithmic.
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C.1. Saddle-Point Computation in Multiscale Games

One application of online learning is computing approximate mixed-strategy Nash
equilibria in finite two-player zero-sum games (and more generally, to approximate
saddle points of convex-concave functions). Here, we investigate a multiscale version
of that problem. Our main focus is to find methods whose performance does not
depend on the maximum scale, but on the relevant scale to the problem instance at
hand. In this case, this means the scale of the payoffs in the subset of rows and columns
in the support of the Nash equilibrium. In Section C.1.1 we lay out the setup of two-
player zero-sum finite games. In Section C.1.2 we define the suboptimality gap, the
main measure of performance in judging the solution to these games. In Section C.1.3
we define the payoff matrices used in the experiments that produced Figure 4.4. We
conjecture that Muscada achieves fast scale-dependent convergence in Section C.1.5
and provide the additional details of the experiments that produced Figure 4.4(right)
in Section C.1.6.

C.1.1. Two-player zero-sum finite games

Given a payoff matrix A ∈ RK×M (specifying losses for the row player and gains for the
column player) we are looking for the mixed-strategy saddle point (p∗,q∗) ∈ P(K) ×
P(M) such that

min
i

e⊺iAq∗ ≥ max
j

p⊺∗Aej .

Our approach will be based on oracle access to the matrix-vector products q ↦ Aq and
p ↦ A⊺p. We will use the scheme of running two online learners against each other,
with loss vectors ℓrowt = Aqt and ℓcolt = −A⊺pt and optimistic estimates given by the

past loss vector m
row/col
t = ℓ

row/col
t−1 . For the same-scale case, Rakhlin and Sridharan

[2013] show that uncoupled adaptive schemes benefit from convergence of the gap of
the pair of iterate averages at rate O(σmax

lnK+lnM
T

), while recently Hsieh et al. [2021]
showed last iterate convergence as well. Here we investigate the advantage of using
adaptive multiscale learners to improve the dependence in σmax.

C.1.2. The metric of success: suboptimality gap

We are looking for the equilibrium in mixed strategies, i.e. minpmaxq p
⊺Aq. The

social exploitability of a candidate saddle point pair p,q is defined as the gap

gap(p,q) = max
j

p⊺Aej −min
i

e⊺iAq.
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We use the common technique of employing online learning with linear loss functions
p↦ Aqt and q ↦ −A⊺pt. A standard analysis [Freund and Schapire, 1997] bounds the
gap of the iterate averages p̄t =

1
t ∑s≤t ps and q̄t =

1
t ∑s≤t qs from above by the social

(sum-of) regret

gap(p̄t, q̄t) = max
j

p̄⊺tAej −min
i

e⊺iAq̄t =
1

t
(max

j
∑
s≤t

p⊺sAej −min
i
∑
s≤t

e⊺iAqs)

=
1

t
max
i,j
(∑
s≤t

p⊺sAej −∑
s≤t

p⊺Aps

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Rq

t (j)

+∑
s≤t

p⊺Aps −∑
s≤t

e⊺iAqs

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Rp

t (i)

).

Having multiscale regret bounds at our disposal, it is natural to look at multiscale
payoff matrices.

C.1.3. Multiscale structure

We will assume that our payoff matrix is multiscale in the sense that we are given row
and column range vectors σrow and σcol such that ∣Aij ∣ ≤ min{σrow

i , σcol
j }. The main

point is to learn the saddle point faster if the maximum range is much larger than
the range in the support of the saddle point, i.e. σrow

max ≫ σrow
real ∶= max{σrow

i ∣e⊺i p∗ > 0}
and/or σcol

max ≫ σcol
real ∶= max{σcol

j ∣e
⊺
jq∗ > 0}. We will denote that largest relevant scale

by σreal = max{σrow
real, σ

col
real}. Our aim is to get gap bounds that scale with σreal, not

σmax.

Example C.1.1 (Simple multiscale Game). For the purpose of our experiment, we will
construct our multiscale payoff matrices following the template

A = [
B −11⊺

11⊺ C
]

where Bij are i.i.d. Rademacher {±1} and Cij are i.i.d. Rademacher {±σmax} for some
pre-specified σmax ≫ 1. By construction, any saddle point for the submatrix B is (upon
padding with zeros) also a saddle point for the full matrix A. Moreover, it is a strict
saddle point for A if it is a strict saddle point for B with value minpmaxq p

⊺Bq ∈ (±1).
We will assume throughout that we are in this latter strict case. Here σreal = 1
regardless of σmax.

C.1.4. What can one hope to achieve?

Throughout the remainder we assume for simplicity that the saddle point p∗,q∗ of the
payoff matrix A is unique (a common situation). We define the optimality gap of row
i by δrow(i) = (ei − p∗)

⊺Aq∗ ≥ 0 and of column j by δcol(j) = p⊺∗A(q∗ − ej) ≥ 0. We
are interested in scenarios where at least one player has strictly positive optimality
gap on the action(s) of largest scale. We will show that multiscale regret bounds allow
the learning to accelerate. Moreover, the learner does not need to know about this
structure and will adapt automatically.
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Let us assume without loss of generality that δrow(k) > 0 while σrow
k = maxi σ

row
i

where σrow
i = maxj ∣Ai,j ∣. The general idea now is to use that p̄T → p∗. This means

that from some point t on,

max
j

p̄⊺tAej = max
j∶q∗(j)>0

p̄⊺tAej =

1

t
max

j∶q∗(j)>0
∑
s≤t

p⊺sAej ≤
1

t
∑
s≤t

p⊺sAqs + max
j∶q∗(j)>0

1

t
Rcol

t (j)

A similar argument for the row player then allows us to conclude

gap(p̄t, q̄t) ≤
1

t
(∑
s≤t

p⊺sAqs + max
j∶q∗(j)>0

Rcol
t (j) −∑

s≤t
p⊺sAqs + max

i∶p∗(i)>0
Rrow

t (i))

=
1

t
( max
j∶q∗(j)>0

Rcol
t (j) + max

i∶p∗(i)>0
Rrow

t (i)).

The main point is that this bound scales with maxi∶p∗(i)>0 σ
row
i +maxj∶q∗(j)>0 σ

col
j and

not with the respective unconstrained maxima.

Proposition C.1.2. Any pair of multiscale online learning algorithms with bounds of
order Ri

t ≤ O(σi
√
T ) ensures iterate average gap

gap(p̄t, q̄t) = O(σreal/
√
t)

as t→∞. In particular, this holds for Muscada with Tuning 3 (see Lemma C.2.1).

Note that single-scale algorithms would only deliver gap(p̄t, q̄t) = O(σmax/
√
t); a

weaker guarantee.

C.1.5. Why our approach may achieve the hope optimistically

Rakhlin and Sridharan [2013] show that using optimism in saddle point interactions
can improve the rate to O(σmax/t). We first show that this is true for Muscada
as well, after which we will investigate achieving O(σreal/t). The mechanism for this
proof is to show that the social regret is constant. Technically, one would explicitly
keep track of the slack in (C.5) and (C.6), and use these harvested slacks to cancel the√
t term of the regret bound. Only the constant-order term measuring the entropy

of the initial weights remains. For this to be a constant, we further need that the
learning rate stops decreasing once the regret stabilizes. Following exactly the steps
of Rakhlin and Sridharan [2013], we can prove the following proposition.

Proposition C.1.3. For same-scale games, the optimistic version (see Figure 4.3)
of Muscada with Tuning 3 and uniform prior (see Lemma C.2.1) achieves average
iterate gap gap(p̄t, q̄t) = O(σmax/t) as t→∞.

The same-scale assumption makes all σ equal, while the uniform-prior assumption
in addition makes all η equal. This makes the standard argument from the literature
apply.

We further forward the natural conjecture that we state next.
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Conjecture C.1.4. For the multiscale case, the optimistic version (see Figure 4.3) of
Muscada with Tuning 3 (see Lemma C.2.1) and any nondegenerate prior achieves
average iterate gap bounded by gap(p̄t, q̄t) = O(σreal/t).

The reason that our Tuning 3 has any chance here is that no terms (not even
the additive constant) in the regret bound scale with σmax. This in contrast to the
algorithms of Foster et al. [2017], Cutkosky and Orabona [2018], Bubeck et al. [2019],
Chen et al. [2021], whose existing multiscale analyses all result in a lower-order term
scaling with σmax.

1 We next provide empirical support for our conjecture.

C.1.6. Numerical results

We investigate three algorithms: Hedge with classic time-decreasing learning rate ηt =√
ln(K)
σ2
maxt

, Muscada with all scales set to σmax and Muscada with actual knowledge

of the multiscale vectors. All algorithms are run in optimistic mode with guesses
mt = ℓt−1, the loss vector of the previous round (and m1,k = 0). We choose a matrix of
structure given in Example C.1.1, with B and C of size 10 × 10, and pick σmax = 100.
We give all algorithms the uniform prior πk = 1/20. The results are displayed in
Figure C.1, where we show the saddle point gap for the average iterate, the last iterate
and the theoretical regret bounds that we obtain from the analysis. In the main text,
Figure 4.4(right) shows only the saddle point gap for the average iterate of optimistic
Muscada with the optimistic modification of Tuning 3 from Figure C.2. Generating
this figure with the code from the supplementary material takes 30 minutes on an Intel
i7-7700 processor. Memory usage is negligible.
We see in Figure C.1 that the gap of optimistic Hedge decays at the slow rate

O(σmax/
√
t). This means that optimism alone is insufficient to obtain a fasterO(σmax/t)

convergence rate; it is also necessary that the learning rates stop decreasing when the
regret plateaus. It is also apparent that Muscada tuned to σmax has the fast O(1/t)
rate, but at the σmax scale. Finally, the numerical experiments show evidence that
our multiscale algorithm does exploit the small scale of the actions in the support
of the saddle point, exhibiting the desired O(σreal/t) regret conjectured above. The
plot also includes the quality of the last iterate. Hsieh et al. [2021] prove convergence
of the last iterate for the common scale, common prior case. In our experiment the
iterate average can be seen to converge quickly in the multiscale case, but convergence
is terribly slow in the same-scale case. This is not inconsistent; no rates are currently
known for the last iterate.

C.2. Tuning 3

In this section we describe a third tuning, defined in Figure C.2. In contrast to
Tunings 1 and 2, the learning rates in Tuning 3 start higher, namely at 1/(2σk) instead
of 1/(2σmax). The downside of this aggressive tuning is that the variance bound is
not available (though the weaker, uncentered second-moment analog is). The upside

1Which is hard to spot in some of the literature because of a global σmax = 1 convention.
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Figure C.1.: Quality of average iterate (solid) and last iterate (dotted) for three op-
timistic algorithms, compared to their relevant bounds (dashed). The
multiscale-aware algorithm (red) outperforms the non-scale-aware com-
petitors by the factor σmax/σreal = 100. See Section C.1.6 for further
discussion.

Tuning 3 u = π σmin

σk
, η0,k =

1
2σk

, γ = 8 ln(1/uk), and

H1,k(vt) =
d

dvt

⎡
⎢
⎢
⎢
⎣

vt
√
1 + vt/γk

⎤
⎥
⎥
⎥
⎦
=

vt/γk + 2

2(1 + vt/γk)3/2
.

Figure C.2.: Tuning 3 for Muscada

is that the resulting regret bound compared to expert k features only σk and has no
occurrence of σmax whatsoever, not even in the additive constants.

Lemma C.2.1. Let π be a probability distribution on K experts. Muscada run with
Tuning 3 depicted in Figure C.2 guarantees that, for any t = 1,2, . . . ,

Rt,k ≤ 2σk
√
2vt ln(1/uk) + cσ,πσmin

√
2vt + 8σk ln(1/uk) + 4σmin +

σk
2

max
s≤t

∆vs, (C.1)

where cσ,π = ∑k∈K πk(1/
√
ln(1/uk)) and uk = πk

σmin

σk
. Additionally, we have that

vt ≤ 4∑s≤t
⟨w̃s,ℓ

2
s⟩

⟨w̃s,σ2⟩ ≤ 4t, where, for each t = 1,2, . . . , the weights are w̃t,k ∝ wt,kηt−1,k.

Proof. Follow the same steps as in the proof of the regret bound for Tuning 1 in
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Lemma 4.2.3. Obtain that

µt,k ≤ σk
√
2vt ln(1/uk) + 4σk ln(1/uk) (C.2)

ln(1/uk)

ηt,k
≤ σk
√
2vt ln(1/uk) + 4σk ln(1/uk), and (C.3)

∑
k∈K

uk
ηk
≤ cσ,πσmin

√
2vt + 4σmin (C.4)

with cσ,π = ∑k∈K πk (
1√

ln(1/uk)
). Use Proposition 4.2.3 to conclude the first claim.

For the additional claim, use Lemma C.7.2 with λ = 0.

C.3. Algorithm Analysis

The only step in the algorithm that may be problematic is the definition of ∆vt at every
round, which one might think can take infinite values. We show in Proposition C.7.1
that this is not the case and that consequently t↦ vt is well defined.

C.3.1. Untuned regret bound, proof of Proposition 4.2.2

We prove that the potential t↦ Φt is decreasing for optimistic Muscada. The result
for the nonoptimistic version follows by setting the guesses mt to 0. Recall from (4.4)
in Section 4.2 that the potential Φt is defined by

Φt = Φ(Rt −µt,ηt) = max
w∈P(K)

⟨w,Rt −µt⟩ −Dηt(w,u).

Proof of Lemma 4.2.1. We prove the result in the optimistic case. The nonoptimistic
case is recovered for mt = 0 and replacing 4σ2

k, which is a bound on ∣mt,k − ℓt,k ∣
2, by

σ2
k, which bounds ∣ℓt,k ∣

2. The result is a consequence of the following inequalities:

Φt ≤ Φ(Rt −µt,ηt−1) η ↦Dη decr. (C.5)

= Φ(Rt −µt−1 − 4ηt−1σ
2∆vt,ηt−1) by def. of µt

= Φ(Rt−1 + ⟨wt,µt⟩ −mt −µt−1,ηt−1) by def. of ∆vt

= max
w∈P(K)

⟨w,Rt−1 + ⟨wt,mt⟩ −mt −µt−1⟩ −Dηt−1(w,u) by def. of Φ

= ⟨wt,Rt−1 + ⟨wt,mt⟩ −mt −µt−1⟩ −Dηt−1(wt,u) by def. of wt

= ⟨wt,Rt−1 −µt−1⟩ −Dηt−1(wt,u) ⟨wt,mt⟩ cancels

≤ max
w∈P(K)

⟨w,Rt−1 −µt−1⟩ −Dηt−1(w,u) since wt ∈ P(K)

(C.6)

= Φ(Rt−1 −µt−1,ηt−1) = Φt−1 by def. of Φ, Φt.

Hence, Φt ≤ Φt−1, as we were to show.
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Proof of Proposition 4.2.2. Lemma 4.2.1 shows that the potential t↦ Φ(Rt−µt,ηt) is
decreasing in t and that consequently Φ(Rt −µt,ηt) ≤ Φ(R0 −µ0,η0) = −Dη0(w1,u).
The maximal nature of the definition of Φ implies that, for any probability distribution
p ∈ P(K),

⟨p,Rt⟩ ≤ ⟨p,µt⟩ +Dηt
(p,u) −Dη0(w1,u). (C.7)

The second claim contained in (4.8) follows from the special case where p = δk, the
probability distribution that puts all of its mass on expert k, and by bounding the last
term in (C.7) by zero. The last statement contained in (4.9) is proven in Lemma C.6.3.
This is all that we had set ourselves to prove.

C.3.2. Tuning, proof of Proposition 4.2.3

Proof of Proposition 4.2.3. The main tool that is employed here to derive the regret
bounds is Proposition 4.2.2. The fact that the learning rates at hand are decreasing is a
consequence of Lemma C.6.4; we give more details in the following. A slightly stronger
result than what we claim could be obtained by replacing directly the learning rates
in Proposition 4.2.2. However, the result is not amenable to an easy interpretation,
and we use upper bounds on the learning rates and their reciprocals. Recall that

γk = 8
σ2
max

σ2
k

ln(1/uk). The learning rate is of the form ηt,k = η0,kH1,k(vt) = η0,kh(vt/γk)

with h(x) = d
dx
[

√
x2

1+x] =
x+2

2(1+x)3/2 and η0,k = 1/(2σmax). That this choice of learning

rate is indeed nondecreasing can be proven using Lemma C.6.4. We use the following
two elementary inequalities in relation to this specific choice of function h.

Lemma C.3.1. Let x ≥ 0. The function h(x) = x+2
2(1+x)3/2 satisfies

∫

x

0
h(x′)dx′ ≤min{x,

√
x} ≤max{1,

√
x} , and (C.8)

1

h(x)
≤ {

1 + x if x ≤ 1

2
√
x if x > 1

} ≤ 2max{1,
√
x} , (C.9)

where the first minimum is equalized at x = 1.

Using these upper bounds and the choice uk = πk
σmin

σk
in Proposition 4.2.2 gives the

claimed result. Indeed, recall that Proposition 4.2.2 implies that

Rt,k ≤ σ
2
kη0,k ∫

vt

0
h(x/γk)dx +

ln(1/uk)

ηt,k
+ ∑

j∈K

uj

ηt,j
+ σ2

kη0,k max
s≤t

∆vs. (C.10)

We now focus on bounding each term. First,

∫

vt

0
h(x/γk)dx = γk ∫

vt/γk

0
h(x′)dx′ ≤max{γk,

√
vtγk} .

Consequently,

σ2
kη0,k ∫

vt

0
h(x/γk)dx ≤ σk

√
2vt ln(1/uk) + 4σmax ln(1/uk). (C.11)
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Next,

1

ηk
=

2σmax

h(v/γk)
≤ 4σmaxmax{1,

√
vt
γk
} ≤ 4σmax + σk

√
2vt

ln(1/uk)
.

With this at hand, the second and third term on the right hand side of (C.10) can be
bounded by

ln(1/uk)

ηt,k
≤ σk
√
2vt ln(1/uk) + 4σmax ln(1/uk), and (C.12)

∑
j∈K

uj

ηj
≤ cσ,πσmin

√
2vt + 4σmax (C.13)

with cσ,π = ∑k∈K πk (
1√

ln(1/uk)
). Replace (C.11), (C.12), and (C.13) in the the regret

bound (C.10) to obtain the result. In order to prove the second claim we follow a
similar path; we use Proposition 4.2.2 as our main tool. Recall that in this case the
learning rate is of the form ηt,k = η0,kH2,k(vt) with η0,k = 1/(2σmax) and

H2,k(x) =
d

dx

⎡
⎢
⎢
⎢
⎢
⎣

¿
Á
ÁÀα2

k {(1 +
x

αk
) ln(1 +

x

αk
) −

x

αk
} +

x2

2(1 + x/(2γk))

⎤
⎥
⎥
⎥
⎥
⎦

with αk = 32
σ2
max

σ2
k

and γk = αk ln(1/πk). The fact that k ↦ H2,k(x) is decreasing

follows from Lemma C.6.4 after performing the change of variable x′ = x/αk. We use
the inequalities for H2,k that are proven in the following lemma.

Lemma C.3.2. Let βk = ln(1/πk). The function H2,k satisfies

∫

x

0
H2,k(x

′
)dx′ ≤

√
αkx(ln(1 + x/αk) + βk), and (C.14)

1

H2,k(x)
≤ 2

¿
Á
ÁÀ x/αk

ln(1 + x/αk)

¿
Á
ÁÀ1 +

min{βk,
1
2

x
αk
}

ln(1 + x/αk)
. (C.15)

We can now compute the analogs of (C.11), (C.12), and (C.13) to obtain that

σ2
kη0,k ∫

vt

0
H2,k(x)dx ≤ 2σk

√

2vt (ln (1 +
σ2
k

32σ2
max

vt) + ln(1/πk)),

ln(1/πk)

ηt,k
≤ σk ln(1/πk)

¿
Á
ÁÀ

vt

2 ln (1 +
σ2
k

32σ2
max

vt)

⎛
⎜
⎜
⎝

1 +

¿
Á
Á
Á
ÁÀ

min{ln ( 1
πk
) ,

σ2
k

16σ2
max

vt}

ln (1 +
σ2
k

32σ2
max

vt)

⎞
⎟
⎟
⎠

,

∑
j∈K

uj

ηj
≤ ∑

j∈K
πj

⎛
⎜
⎜
⎜
⎜
⎝

σj

¿
Á
Á
ÁÀ

vt

2 ln(1 +
σ2
j

32σ2
max

vt)

⎛
⎜
⎜
⎜
⎜
⎝

1 +

√

min{ln ( 1
πj
) ,

σ2
j

16σ2
max

vt}
√

ln(1 +
σ2
j

32σ2
max

vt)

⎞
⎟
⎟
⎟
⎟
⎠

⎞
⎟
⎟
⎟
⎟
⎠

,

and employ them in Proposition 4.2.2 to obtain the result.
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Proof of Lemma C.3.1. The relations are clear for x = 0. Let x > 0. Recall that

∫
x
0 h(x′)dx′ = x√

1+x . We start by proving (C.8). The fact that x√
1+x ≤ x is clear. The

inequality x√
1+x ≤

√
x follows from dividing both sides of the inequality x ≤

√
x2 + x

by
√
1 + x. Thus, the first inequality in (C.8) follows, and the second is direct after

observing that x ≤
√
x ≤ 1 for x ≤ 1. We now turn to proving (C.9). Recall that

1/h(x) = 2(1+x)3/2
2+x . We start by showing that 1/h(x) ≤ 1 + x for all x > 0. Note that

2(1+x)3/2
2+x = (1 + x) 2

√
1+x

2+x . Thus, the claim holds if and only if 2
√
1 + x ≤ 2 + x, which

is easily checked to be the case. Now let x > 1. Observe that the second claim in the
first inequality holds if and only if 2(1 + x)3/2 ≤ 2

√
x(2 + x). Square both members

and rearrange to conclude that the sought relation holds if and only if 0 ≤ 4x2 +4x−4,
which is the case as x > 1. The second inequality in (C.9) is clear.

Proof of Lemma C.3.2. The inequalities contained in (C.14) and (C.15) are a conse-
quence of the fact that

∫

x

0
H2(x

′
)dx′ =

¿
Á
ÁÀα2 {(1 +

x

α
) ln(1 +

x

α
) −

x

α
} +

x2

2(1 + x/(2γ))

and the inequalities

(1 + x′) ln(1 + x′) − x′ ≤ x′ ln(1 + x′) and
a2x′2

2(1 + x′/(2b))
≤min{bx′, 1

2
a2x′2},

that hold for x′, a, b ≥ 0. From this, (C.14) is immediate once we use the substitutions
x′ = x/α, a = α, and b = β. To prove (C.15), use the same substitution and estimate

1

H(x′)
= 2

√
(1 + x′) ln(1 + x′) − x′ + x′2

2(1+x′/(2b))

ln(1 + x′) + 1
2
2x′+x′2/(2b)
(1+x′/(2b))2

≤ 2

√
x′ ln(1 + x′) +min{bx′, 1

2
x′2}

ln(1 + x′)

= 2

√
x′

ln(1 + x′)

¿
Á
ÁÀ1 +

min{b, 1
2
x′}

ln(1 + x′)

≤ 2

√
x′

ln(1 + x′)

⎛
⎜
⎝
1 +

¿
Á
ÁÀmin{b, 1

2
x′}

ln(1 + x′)

⎞
⎟
⎠
.

This is all we set ourselves to prove.

C.4. Optimism, proof of Proposition 4.4.1

Proof of Proposition 4.4.1. In Lemma 4.2.1 we show that the potential t ↦ Φt is de-
creasesing. The rest of the proof is identical to that of Proposition 4.2.3 after multi-
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plying all scales by 2. The “furthermore” claim follows from a direct modification of
Proposition C.7.1.

C.5. Luckiness

This appendix contains the proofs of the luckiness results in Section 4.3.

C.5.1. Proof of Theorem 4.3.1

Proof of Theorem 4.3.1. Let st = ∑s≤t
Varw̃s(ℓt)
⟨w̃s,σ2⟩ . It is shown in Proposition C.7.1 that

vt can be bounded in terms of st. Indeed, in any case vt ≤ 4, and because the learning
rates are low enough at the start of the protocol, namely ηt,k ≤ 1/(2σmax), the upper
bound vt ≤ 4st also holds. A verification of the regret bound obtained in Proposi-
tion 4.2.2 shows that it is increasing in vt, and consequently the same regret bound
holds once we replace vt with the larger quantity 4st, and the proof of Proposition 4.2.3
can be repeated with no problems. Consequently the regret bounds in Proposition 4.2.3
are available with 4st occupying the place of vt. The next step that we follow is to
show that EP[st] ≲ EP[Rt,k∗], which is done in the following lemma.

Lemma C.5.1. Under Massart’s condition (see Definition 4.1.3),

EP[st] ≤ kMEP[Rt,k∗],

where kM = cMmaxi,j∈K supv≥0 {
η0,iHi(v)

η0,jHj(v)σ2
j
} satisfies

kM ≤ 2cM max
i,j∈K

{
1

σiσj

ln(1/πi) + ln(σi/σmin)

ln(1/πj) + ln(σj/σmin)
} .

From the previous discussion, a small modification of Proposition 4.2.3 shows that
this tuning guarantees a regret bound of the form

Rt,k∗ ≤ a
′√st + b (C.16)

with a′ = 4σk∗
√
2 ln(1/uk∗)+2

√
2cσ,πσmin and b = 8σmax ln(1/uk∗)+4σmax+2σk∗ . Take

P-expectations in the last display, use the concavity of x ↦
√
x to invoke Jensen’s

inequality, and use Lemma C.5.1 to obtain that

EP[Rt,k∗] ≤ a
′√kMEP[Rt,k∗] + b. (C.17)

This implies that the expected regret satisfies EP[Rt,k∗] ≲ 1, that is, it is constant.
Indeed, using Lemma C.5.2 yields that

EP[Rt,k∗] ≤ a
′2kM + b. (C.18)

The upper bound for kM is contained in Lemma C.5.3. Given the definition of a in
the claim, this is what we set ourselves to prove.
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Proof of Lemma C.5.1. Recall that st = ∑s≤t∆ss = ∑s≤t
Varw̃s(ℓs)
⟨w̃s,σ2⟩ with the weights

w̃t,k ∝ wt,kηt−1,k. Define ℓ∗s = ℓs,k∗ to be the loss of the best expert k∗, and use that
the variance Varw̃s(ℓs) satisfies Varw̃s(ℓs) ≤ ⟨w̃s, (ℓs − ℓ

∗
s)

2⟩ to obtain the estimate

∆ss ≤
⟨w̃s, (ℓs − ℓ

∗
s)

2⟩

⟨w̃s,σ2⟩
.

Recall that, under P, the loss vector ℓs is assumed to be independent of ℓs−1. This
implies that

EP[∆ss] ≤ ∑
k∈K
(EP [

w̃s,k

⟨w̃s,σ2⟩
]EP [(ℓs,k − ℓ

∗
s)

2])

≤ cM ∑
k∈K
(EP [

w̃s,k

⟨w̃s,σ2⟩
]EP [ℓs,k − ℓ

∗
s]) .

Sum the last display over rounds, and use the fact that the weights w̃t,k ∝ wt,kηt−1,k
to deduce that

EP [st] ≤ cM ∥max
s≤t
{

maxk∈K ηs−1,k
mink∈K ηs−1,kσ2

k

}∥

∞
EP [Rt,k∗] ,

where ∥⋅∥∞ is the infinity norm w.r.t. P (recall that ηt−1,k depend on the random
losses ℓt−1). Since, for any s = 1, . . . , and k ∈ K, the learning rate ηs−1,k = η0,kHk(v),

we can deduce that cM ∥maxs≤t {
maxk∈K ηs−1,k

mink∈K ηs−1,kσ2
k

}∥
∞
≤ kM, where kM is as defined in the

claim of the proposition. This implies what we set ourselves to prove.

Lemma C.5.2. Let y, a, b ≥ 0. If y2 ≤ ay + b then y ≤ b +
√
a.

Proof. The quadratic polynomial y2 − ay − b has a zero at y∗ = b+
√
b2+4a
2

≤ b +
√
a.

Hence, if y2 ≤ ay + b, then y ≤ y∗, and the result follows.

C.5.2. Proof of Theorem 4.3.2

Proof of Theorem 4.3.2. Call ∆t,k = Ls,k −Ls,k∗ , and dk = EP[∆t,k]. Since ℓs and ℓs−1
are independent, the expected value of the increment of the regret Rt,k∗ is

EP[∆Rt,k∗] = ∑
k≠k∗

EP[wt,k]EP[ℓt,k − ℓt,k∗] (C.19)

= ∑
k≠k∗

EP[wt,k]dk. (C.20)

We seek to prove that for k ≠ k∗, in an event Ωt,k which we define next, the weight
wt,k is small. Define, for each k ≠ k∗ and t ≥ 1, the event Ωt,k by

Ωt,k = {Lt,k∗ −Lt,k ≤ µt,k − µt,k∗ −
1

ηt,k∗
ln (1/πk∗) −

1

ηt,k
ln(

1

πkεt
)} ,
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for deterministic constants εt = 1/t2. Recall that the weights have the form wt,k =

πke
−ηt,k(Lt,k+µt,k+a∗t ), where a∗t is such that ∑k wt,k = 1. Next, we show that, in each

event Ωt,k, for carefully chosen ãt = −
1

ηt,k∗
ln (1/πk∗)−Lt,k∗−µt,k∗ , it holds that a

∗
t ≥ ãt.

Indeed, this follows because, by design πk∗e
−ηt,k(Lt,k+µt,k+ãt) = 1, and consequently,

∑
k∈K

πk(e
−ηt,k(Lt+µt,k+ãt,k)) ≥ 1 = ∑

k∈K
πk(e

−ηt,k(Lt+µt,k+a∗t,k)),

which implies a∗t ≥ ãt. We use this in the weight wt,k of expert k to conclude that

EP[wt,k1{Ωt,k}] ≤ πk(e
−ηt,k(Lt+µt,k+ãt,k)) = πkεt,

hence
EP[wt,k] ≤ πkεt +P{Ω

c
t,k} .

Consequently, using (C.20),

EP[Rt,k∗] =∑
s≤t
∑
k≠k∗

dkEP[wt,k]dk (C.21)

≤∑
s≤t
∑
k≠k∗
{πkdkεs + dkP{Ωs,k}} (C.22)

≤ 2 ∑
k∈K

πkdk +∑
s≤t
∑
k≠k∗

dkP{Ω
c
s,k}, (C.23)

where we used that ∑s εs ≤ π
2/6 ≤ 2. We now focus on bounding the probabilities

P{Ωc
s,k}. We use that ∆µt,k ≥ 0 to deduce that

P{Ωc
t,k} = P{Lt,k∗ −Lt,k > µt,k − µt,k∗ −

1

ηt,k∗
ln (1/πk∗) −

1

ηt,k
ln (1/εt)}

≤ P{Lt,k∗ −Lt,k > −µt,k∗ −
1

ηt,k∗
ln(1/πk∗) −

1

ηt,k
ln(1/εt)} .

In order to continue, we derive an upper bound on µt,k∗ , and a lower bound on ηt,k,
and ηt,k∗ consisting of deterministic functions of time. Recall from Lemma C.7.1 that
vt ≤ 4t, and that Lemma C.3.2 can be used to bound µt,k∗ in terms of the integral of
the function x↦H2,k∗(x) (see proof of Proposition 4.2.3) to obtain that

µt,k∗ ≤ σ
2
k∗η0,k∗ ∫

4t

0
H2,k∗(v)dv + 4σ

2
k∗η0,k∗

≤ 4σk∗
√
2t(ln(1 + t/8) + ln(1/π∗)) + 4σk∗

Now fix k ∈ K, and use again that vt ≤ 4t and that x ↦ H2,k(x) is decreasing (see
Lemma C.6.4) to deduce that ηt,k = η0,kHk(vt) ≥ η0,kHk(4t). From these observations,
P{Ωc

t,k} can be further bounded by

P{Ωc
t,k} ≤ P{Lt,k∗ −Lt,k > −Fk(t)} ,
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where Fk(t) = 4σk∗
√
2t(ln(1 + t/8) + ln(1/πk∗)) + 4σk∗ +

ln(1/πk∗)
η0,k∗H2,k∗(4t)

+
ln(1/εt)

η0,kH2,k(4t) is

a deterministic function of time. Recall that the gap dmin was defined as dmin =

mink≠k∗ dk and that is assumed to be strictly positive. Recall that ∆t,k = Lt,k − Lt,k∗

is the gap in losses between expert k and the best expert k∗. Hoeffding’s inequality
implies that

P{Lt,k∗ −Lt,k > Fk(t)} = P{tdk −∆t,k > tdk − Fk(t)}

≤ exp(−
t

2σ2
max

((dk − Fk(t)/t)+)
2
)

= exp(−
td2k

2σ2
max

((1 − Fk(t)/(dkt))+)
2
) ,

where x↦ (x)+ =max{0, x}. We now seek a bound on the point t⋆k at which Fk(t
⋆
k)/t

⋆
k =

dk/2. For these values t⋆k, we have, using (C.23), that

EP[Rt,k∗] ≤ 2 ∑
k∈K

πkdk + ∑
k≠k∗
(t⋆kdk + ∑

s≥t⋆
dkP{Ω

c
t,k}). (C.24)

We now concentrate on bounding t⋆k and the probability of the event Ωc
t,k for each k.

In the limit that dk → 0, the time t⋆k →∞. A quick computation shows that, as t→∞,

H2,k(t) ∼
√

2 ln t
t

, and, in the same limit, 4σk∗
√
2t(ln(1 + t/8) + ln(1/π∗)) + 4σk∗ ∼

4σk∗
√
2t ln t. Hence, as t→∞, the function Fk satisfies Fk(t) ∼ (4σk∗ +2σmax)

√
2t ln t.

We now give a bound on the solution x⋆k to the equation xdk/2 = (4σk∗+2σmax)
√
2x lnx

that holds asymptotically as dk → 0. Call c = dk/(2
√
2(4σk∗ + 2σmax)). Our equation

of interest can be rewritten as xc2 = lnx. Linearize x lnx around x = 2/c2, and use
its concavity to obtain that ln(x) ≤ ln(2/c2) + (c2/2)(x − 2/c2). With this estimate at
hand, the solution to the simpler, linear equation xc2 = ln(2/c2) + (c2/2)(x − 2/c2) is
an upper bound on x⋆k. From this discussion it follows that the point t⋆k of interest

satisfies t⋆k ≤ 2
ln(1/c2)

c2
− 2

c2
. Hence, as dk → 0,

dkt
⋆
k ≤

2(4σk∗ + 2σmax)
2

dk
{ln(

8(4σk∗ + 2σmax)
2

d2k
) − 1} = O (

σ2
max

dk
ln(

σ2
max

d2k
)) . (C.25)

We deduce that, as dk → 0, for t ≥ t⋆k and any k ≠ k∗, the probability P{Ωc
t,k} ≤

exp (− t
8σ2

max
d2k). We sum P{Ωc

t,k} over rounds to conclude that

EP[Rt,k∗] ≤ 2 ∑
k∈K

πkdk + ∑
k≠k∗
(t⋆kdk + ∑

s≥t⋆
dkP{Ω

c
t,k}). (C.26)

We now concentrate on bounding t⋆k and the probability of the event Ωc
t,k for each

k. In the limit that dk → 0, the time tk → ∞. A quick computation shows that, as

t → ∞, H2,k(t) ∼
√

2 ln t
t

, and, in the same limit, 4σk∗
√
2t(ln(1 + t/8) + ln(1/π∗)) +

4σk∗ ∼ 4σk∗
√
2t ln t. Hence, as t → ∞, the function Fk satisfies Fk(t) ∼ (4σk∗ +

2σmax)
√
2t ln t. We know give a bound on the solution x⋆k to the equation xdk/2 =
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(4σk∗ + 2σmax)
√
2x lnx that holds asymptotically as dk → 0. Call c = dk/(2

√
2(4σk∗ +

2σmax)). Our equation of interest can be rewritten as xc2 = lnx. Linearize x lnx
around x = 2/c2, and use its concavity to obtain that ln(x) ≤ ln(2/c2)+(c2/2)(x−2/c2).
With this estimate at hand, the solution to the simpler, linear equation xc2 = ln(2/c2)+
(c2/2)(x−2/c2) is an upper bound on x⋆k. From this discussion it follows that the point
t⋆k of interest satisfies

t⋆k ≤ 2
ln(1/c2)

c2
−

2

c2
= O (

σmax

d2k
ln
σ2
max

d2k
) , (C.27)

as dk → 0. Hence, again, as dk → 0,

∑
t≥t⋆

dkP{Ω
c
t,k} ≤ ∑

t≥t⋆
dke

−td2
k/(8σ

2
max) ≤

dk

1 − e−d
2
k
/(8σ2

max)
. (C.28)

We use (C.27) and (C.28) in (C.26), and the fact that d/(1 + ed
2/σ2

) = O(σ2/d) as
d→ 0 to conclude the proof.

C.5.3. In Lemma C.5.1, kM is bounded

Lemma C.5.3. In Lemma C.5.1, the constant kM is bounded for Tuning 1, shown in
Figure 4.2. More precisely,

kM ≤ 2max
i,j∈K

{
1

σiσj

ln(1/πi) + ln(σi/σmin)

ln(1/πj) + ln(σj/σmin)
} .

Proof. Recall that in both tunings of the algorithm we use the starting learning rate
η0,k = 1/(2σmax), a constant over the experts. As long as this is the case, the constant
of interest kM can be bounded by

kM ≤ max
i,j∈K

sup
v

Hi(v)

σ2
jHj(v)

. (C.29)

Recall from Figure 4.2 that H1,k(v) is defined as H1,k(v) =
v/γk+2

2(1+v/γk)3/2 with γk =

8
σ2
max

σ2
k

(ln(1/πk) + ln(σk/σmin)). We can estimate the ratio

Hi(v)

Hj(v)
=

v/γi + 2

(1 + v/γi)3/2
(1 + v/γj)

3/2

v/γj + 2

≤
2v/γi + 2

(1 + v/γi)3/2
(1 + v/γj)

3/2

v/γj + 1

= 2

¿
Á
ÁÀ1 + v/γj

1 + v/γi

≤ 2max{1,

√
γi
γj
} .
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Hence

kM ≤ 2max
i,j∈K

{
1

σiσj

ln(1/πi) + ln(σi/σmin)

ln(1/πj) + ln(σj/σmin)
} ,

as it was to be shown.

C.6. Technical Lemmas

In this appendix we gather technical results used in previous sections.

C.6.1. For showing that the potential decreases

Lemma C.6.1. For fixed X, the function η ↦ Φ(X,η) is increasing, that is, if ηk ≤ η
′
k,

then, for fixed X, it holds that Φ(X,η) ≤ Φ(X,η′).

Proof. It follows from the definition of Φ and the fact that, for all x ≥ 0, the function
x↦ − ln(x) − 1 + x is nonnegative. Indeed, for any w ∈ P(K), it holds that

Dη(w,u) = ∑
k∈K

wk (
ln(wk/uk) − (1 − uk/wk)

ηk
)

≥ ∑
k∈K

wk (
ln(wk/uk) − (1 − uk/wk)

η′k
)

=Dη′(w,u).

The result follows from the definition of Φ contained in (4.4).

Lemma C.6.2. Fix vectors X,m ∈ RK and u,η ∈ RK
+ . Let w be the optimum value

w = argmaxp∈P(K)⟨p,X +m⟩ −Dη(p,u). Then,

Φ(X +m − ⟨w,m⟩,η) ≤ Φ(X,η)

Proof. The result follows from the chain of inequalities

Φ(X +m − ⟨w,m⟩,u) = ⟨w,X +m − ⟨w,m⟩⟩ −Dη(w,u)

= ⟨w,X⟩ −Dη(w,u)

≤ Φ(X,η).

C.6.2. For bounding µ with v

The following is the consequence of a standard result in the theory of Riemann inte-
gration.
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Lemma C.6.3. Let x ↦ H(x) be a decreasing, positive, real, and continuous function
such that H(x) <∞ on 0 ≤ x <∞. If ∆vs ≥ 0 for s = 1,2, . . . , t then

∑
s≤t
H(vs−1)∆vs ≤ ∫

vt

0
H(x)dx + (H(0) −H(vt))max

s≤t
∆vt,

where vt = ∑s≤t∆vs.

Proof. Because H is decreasing and t↦ vt = ∑s≤t∆vt is nondecreasing,

∫

vt

0
H(x)dx ≥∑

s≤t
H(vs)∆vs.

Use this observation to deduce that

∑
s=1

H(vs)∆vs − ∫
vt

0
H(x)dx ≤∑

s≤t
(H(vs−1) −H(vs))∆vs

≤ (H(0) −H(vs))max
s≤t

∆vs,

which is what we set ourselves to prove.

C.6.3. The learning rates decrease

Lemma C.6.4. The functions f(x) = x+2
2(1+x)3/2 and g(x) =

ln(1+x)+ 2x+x2
/a

(1+x/a)2√
(1+x) ln(1+x)−x+ x2

2(1+x/a)

are

decreasing in x ≥ 0 for any fixed a > 0 .

Proof. The function f is differentiable in x ≥ 0, and its derivative is f ′(x) = − x+4
(1+x)5/2 , a

negative function. Thus, f is decreasing. We turn our attention to the function g. Let

h1(x) = ln(1 + x), h2(x) =
2x+x2/a
(1+x/a)2 , and let H1(x) = ∫

x
0 h1(s)ds = (1 + x) ln(1 + x) − x,

and H2(x) = ∫
x
0 h2(s)ds =

x2

2(1+x/a) . Then, the function g is of the form h/(2
√
H) with

h = h1+h2, and H =H1+H2. Since g(x) is differentiable in x ≥ 0, it is enough to prove

that g′ ≤ 0. We compute the derivative g′ =
h′(x)

√
H(x)−h2(x)/(2

√
H(x))

H(x) and conclude

that g′ ≤ 0 if and only if

h′(x)H(x) ≤
1

2
h2(x). (C.30)

Since h1/
√
H1 =

√
2
2
f(x/a), the analog of the last display holds for the pair h1,H1.

We will show that the same holds true for the pair h2,H2 at the end of the proof.
For now, use that (C.30) holds for both pairs, replace the definition of h and H, and
conclude that it is enough to show that

h′1H2 + h
′
2H1 ≤ h1h2.
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We now focus on showing that δ⋆ = h1h2 − h
′
1H2 − h

′
2H1 is nonnegative. Define δ(x) =

(1 + x/a)3(x + 1)2a3δ⋆(x). It is clear that it is sufficient to our purposes to show that
δ(x) ≥ 0 for x ≥ 0. Computation shows that

δ(x) = a3x2 − 2a2x3 − ax4 + 2a3x+

((4a + 1)x4 + x5 − 2a3x + 5a2x2 + (5a2 + 4a)x3 − 2a3) ln (x + 1) .

Since δ(0) = 0, it is enough to show that its derivative is positive; that δ′(x) ≥ 0 for
x ≥ 0. Computation shows that

δ′(x) = 2a3x − a2x2 + x4+

(4 (4a + 1)x3 + 5x4 − 2a3 + 10a2x + 3 (5a2 + 4a)x2) ln (x + 1) .

We now pay attention to the first three summands of the previous display. We use
that 2a3x−a2x2 +x4 = x(2a3 −a2x+x3) ≥ ln(1+x)(2a3 −a2x+x3), which follows from
the fact that last factor of the last equation is a depressed cubic that is nonnegative
for x, a ≥ 0. This fact, the previous display, and a short computation together imply
that

δ′(x)

ln(1 + x)
≥ (16a + 5)x3 + 5x4 + 9a2x + 3 (5a2 + 4a)x2,

which shows that δ′(x) ≥ 0 for x ≥ 0. This in turn shows that the function δ is positive,
that consequently the relation (C.30) holds, and finally, that the original function of
interest g is decreasing.

C.6.4. For bounding ∆v in terms of ∆s

Lemma C.6.5. Let y, x, b ∈ R be such that b ≥ 0, x ≤ b, and y > 0. Let φ = eb−1−b
1
2 b

2 ≥ 1.

Then the following statements hold.

1. For g(y) =
φ−1−

√
(φ−1)2+2φy

φ
− ln (φ −

√
(φ − 1)2 + 2φy), we have

ex−g(y) − 1 − x ≤
1

2
φx2 − y

any time that y ≤ 2φ−1
φ

.

2. Let c = φ/(φ − 1). For any 0 < s < 1/c it holds that

ex−s−h(cs) − 1 − x ≤
1

2
φx2 − s,

where

h(u) = −u − ln (1 − u) ≤
1

2

u2

1 − u

for 0 < u < 1.
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Proof. Proving our claim is equivalent to proving that

g(z) ≥ x − ln(1 − z + x +
1

2
φx2) .

The condition that z < 2φ−1
2φ

ensures that the logarithm is well defined. The first claim
follows because g was chosen as the maximizer over x ≤ b of the right hand side of the

previous display. Indeed, the maximizer is −x⋆(z) with x⋆(z) = −
φ−1−

√
(φ−1)2+2φz

φ
≥ 0.

Now we turn to proving the second claim, which will follow from a series of rewritings
of the first claim. The previous display can be rewritten as

g(z) = −x⋆(z) − ln(1 − φx⋆(z)).

Let s′ = x⋆(z) so that z = 1
2
φs′

2
+(φ−1)s′. If we let h(u) = −u− ln(1−u), the previous

display can be rewritten as

g(z) = (φ − 1)s′ + h(φs′).

In these terms, the first claim that we already proved takes the shape

ex−(φ−1)s
′−h(φs′)

− 1 − x ≤
1

2
φx2 − (φ − 1)s′ −

1

2
φs′

2

any time that s′ ≤ 1/φ. Define s = (φ−1)s′. Replace this in the last display and bound
the last, negative term by 0 to obtain that, as long as s ≤ φ−1

φ
,

ex−s−h(cs) − 1 − x ≤
1

2
φx2 − s.

This is our claim. The additional bound on h is well known and can be proven with
a term-wise bound on the Taylor expansion of u↦ −u − ln(1 − u).

C.6.5. Dual formulation of ∆Φ

Recall from the definitions in Section 4.2 that the Bregman divergence Dη(p,u) be-
tween p and u, two vectors in RK

+ , was defined in (4.3) as

Dη(p,u) = ∑
k∈K

pk (
ln(pk/uk) − (pk − uk)

ηk
) ;

and the corresponding potential Φ, in (4.4) as

Φ(X,η) = sup
p∈P(K)

⟨p,X⟩ −Dη(p,u).

In the implementation of the algorithm, we rely on the dual formulation of the potential
Φ and its change ∆Φ between rounds. We compute these in the following two lemmas.
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Lemma C.6.6 (Potential difference in dual form). Let X,∆X ∈ RK and u,η ∈ RK
+ ,

∆Φ = Φ(X +∆X,η) −Φ(X,η), and w = argmaxp∈P(K)⟨p,X⟩ −Dη(p,u). Then

∆Φ = inf
∆a∈R

∑
k∈K

wk (
eηk(∆Xk−∆a) + ηk∆a − 1

ηk
) .

Proof. From Lemma C.6.7 we know that

wk = uke
ηk(Xk−a∗),

where a∗ is such that ∑k∈K wk = 1, and that

Φ(X,η) = a∗ + ∑
k∈K

uk (
eηk(Xk−a∗) − 1

ηk
) .

Use the same lemma and the change of variable a = a∗ +∆a to obtain that

Φ(X +∆X,η) = inf
∆a∈R

{a∗ +∆a + ∑
k∈K

uk (
eηk(Xk−a∗+∆Xk−∆a) − 1

ηk
)} .

Substract these two displays and use the explicit expresion for w. In this way, we
obtain the result.

Lemma C.6.7 (Potential Dual). Let X ∈ RK be a vector, and let u,η ∈ RK
+ be positive

vectors. Then

1. The potential Φ satisfies

Φ(X,η) = ⟨p∗,X⟩ −Dη(p
∗,u),

where p∗k = uke
ηk(Xk−a∗), and a∗ is such that ∑k∈K p∗k = 1.

2. The potential Φ satisfies the identity

Φ(X,η) = inf
a∈R
{a + ∑

k∈K
uk (

eη(Xk−a) − 1

ηk
)} .

Proof. Consider the optimization problem

sup
p∈P(K)

⟨p,X⟩ −Dη(p,u).

Its Lagrangian function is

L(a,p) = ⟨p,X⟩ −Dη(p,u) − a(∑
k∈K

pk − 1) .

The strong duality relation

sup
p∈P(K)

⟨p,X⟩ +Dη(p,u) = inf
a∈R

sup
p∈RK

L(a,p) (C.31)
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holds, and the maximum on the right hand side can be computed by diferentiation.
The gradient with respect to p is

∇pLk =Xk − a −
ln(pk/uk)

ηk
,

which is zero at
p∗k = uke

ηk(Xk−a).

Replace p∗ in the Lagrangian L to conclude that

L(a,p∗) = a + ∑
k∈K

uk (
eηk(Xk−a) − 1

ηk
) .

Replace this in (C.31) to obtain the second claim. For the first claim, differentiate
infa∈RL(a, p

∗) with respect to a and equate to 0.

C.7. Proof of Theorem 4.1.2

Recall that ∆vt is implicitly specified in the definition of Muscada, in Figure 4.1.
The main intuition driving the result contained in Theorem 4.1.2 stems from a Taylor
approximation of the increment of the potential function at round t for small learning
rates. The duality computation for the potential increment ∆Φ of Lemma C.6.6 implies
that, at round t, ∆vt is the value of ∆v that satisfies

inf
λ∈R
∑
k∈K

wt,k

⎛

⎝

e−ηt−1,k(ℓt,k−λ)−η2
t−1,kσ

2
k∆v + ηt−1,k(ℓt,k − λ) − 1

ηt−1,k

⎞

⎠
= 0, (C.32)

where, in the notation of Lemma C.6.6, we used ∆X = ∆Rt and reparametrized by

λ = ⟨wt, ℓt⟩ −∆a. For small values of η, the Taylor approximation eηx−η
2b = 1 + ηx +

1
2
η2(x2 − 2b) +O(η3) gives that, if all the learning rates are small, the quantity being

minimized in the previous display can be approximated as

∑
k∈K

wt,k

⎛

⎝

e−ηt−1,k(ℓt,k−λ)−η2
t−1,kσ

2
k∆v + ηt−1,k(ℓt,k − λ) − 1

ηt−1,k

⎞

⎠
≈

1

2
∑
k∈K

wt,kηt−1,k(ℓt,k − λ)
2
−∆v ∑

k∈K
wt,kηt−1,kσ

2
k.

(C.33)

If this approximate expression could be plugged into (C.32), we could solve the infimum
and obtain that

∆vt ≈
1

2

Varw̃(ℓt)

⟨w̃,σ2⟩

with w̃t,k ∝ wt,kηt−1,k. However, this approximation is only valid under range restric-
tions in the values of λ. This is the subject of Lemma C.7.2, whose main technical
ingredient is the inequality obtained in Lemma C.6.5, which contains an estimate that
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makes (C.33) precise. We gather theses results in the following proposition. Used
with b = 1, it implies Theorem 4.1.2 because the learning rates from Figure 4.2 are all
smaller than 1/(2σmax).

Proposition C.7.1. Fix t ≥ 1. Let w̃t,k ∝ wt,kηt−1,k, where wt are the weights played
by Muscada at round t, and ηt−1 its learning rates. The following statements hold.

1. If maxk 2ηt−1,kσk ≤ b and b ≤ 1, then

∆vt ≤ c0
⟨w̃t, ℓ

2
t ⟩

⟨w̃t,σ2⟩
≤ c0, (C.34)

where the constant c0 satisfies c0 ≤ 3.1 and depends only on b.

2. If maxk 2ηt−1,kσmax ≤ b for some b ≤ 1, and

∆st =
Varw̃t(ℓt)

⟨w̃t,σ2⟩
,

then
∆vt ≤ c1∆st + c2∆s

2
t , (C.35)

and consequently
vt ≤ c3st,

where c1 ≤ 0.72, c2 ≤ 2.4, and c3 = c1 + c2 ≤ 3.1 depend on b only.

Proof of Proposition C.7.1. First, we prove 1. Assume that maxk 2ηt−1,kσk ≤ b
′ and

that b′ ≤ 1. Our objective is to use Lemma C.7.2 with λ = 0. To this end, let

φ′ = eb
′

−b′−1
1
2 b
′2 ≥ 1, c′1 =

b′
2
φ′

2

8(φ′−1) , and c
′
2 =

φ′
4
b′

2

8(φ′−1)2 −
φ′

3
b′

2

8(φ′−1) be as in Lemma C.7.2. Since

we assumed that b ≤ 1, we have that c′1 ≤ 1/2, and we can conclude that

∆vt ≤
φ′

2
∆st,0 +

1

2

c′2∆s
2
t,0

1 − c′1∆st,0

with ∆st,0 =
⟨w̃t,ℓ

2
t ⟩

⟨w̃t,σ2⟩ ≤ 1. Use this to conclude that

∆vt ≤
φ′

2
+
1

2

c′2
1 − c′1

.

This last display is exactly our first claim once we set c0 =
φ′

2
+ 1

2

c′2
1−c′1

. The value of

c′0 depends monotonically on that of b′. Compute the value of c′0 for b′ = 1 to confirm
that c′0 ≤ 3.1.
We now turn our attention to the second claim. We proceed in a similar fashion as

before. Assume that maxk 2ηt−1,kσmax ≤ b for some b ≥ 1. Let φ, c1, c2 be defined as
before but now in terms of b. Use Lemma C.7.2 to obtain that

∆vt ≤
φ

2
∆st +

1

2

c2∆s
2
t

1 − c1∆st
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with ∆st =
Varw̃t(ℓt)
⟨w̃t,σ2⟩ ≤ 1. Use this to conclude that

∆vt ≤
φ

2
∆st +

1

2

c2
1 − c1

∆s2t .

This is exactly the second claim up to a redefinition of constants. The “consequenlty”
part of the claim follows from the observation that ∆s2t ≤ ∆st and a summation over
time. The computation of the upper bound on the constants is similar as before.

Lemma C.7.2. Let t ≥ 1, λ ∈ R, and let

∆st =∆st(λ) =
⟨w̃t, (ℓt − λ)

2⟩

⟨w̃t,σ2⟩
(C.36)

with w̃t,k ∝ wt,kηt−1,k. Then, if maxk ηt−1,k(ℓk,t − λ) ≤ b and maxk(2ηt−1,kσk) ≤ b for
some b ≥ 0, we have that

∆vt ≤
φ

2
∆st + c1∆vt∆st +

1

2
c2∆s

2
t , (C.37)

where φ = eb−b−1
1
2 b

2 ≥ 1, c1 =
b2φ2

8(φ−1) , and c2 =
φ4b2

8(φ−1)2 −
φ3b2

8(φ−1) . If additionally c1∆vt < 1,

then

∆vt ≤
φ

2
∆st +

1

2

c2∆s
2

1 − c1∆st
. (C.38)

Proof. Let t ≥ 1. First note that if c1∆st ≥ 1, our claim becomes trivial. We can safely
assume that that c1∆st < 1. We proceed in the following steps. Use Lemma C.6.6 to
express the increase in the potential function ∆Φt(∆v) = Φ(Rt−µt−1−ησ

2∆v,ηt−1)−
Φ(Rt −µt,ηt−1) in dual form as

∆Φt(∆v) = inf
λ∈R
∑
k∈K

wt,k

⎛

⎝

e−ηt−1,k(ℓt,k−λ)−η2
t−1,kσ

2
k∆v + ηt−1,k(ℓt,k − λ) − 1

ηt−1,k

⎞

⎠
.

From now and until the end of the proof, omit the time indexes for readability.
Because of our assumption that ηk ∣ℓk − λ∣ ≤ b, Lemma C.6.5 can be used to obtain

that

∆Φ(∆v) ≤
1

2
φ ∑

k∈K
wk[ηk(ℓk − λ)

2
] − ∑

k∈K
wk (

g−1(η2kσ
2
k∆v)

ηk
)

where g(x) = x + h(cx), h(u) = 1
2

u2

1−u and c = φ/(φ − 1). Use the concavity of x ↦
g−1(∆vx)/x and Jensen’s inequality to deduce that

∑
k∈K

wk (
g−1(η2kσ

2
k∆v)

ηk
) = ∑

k∈K
wk (ηkσ

2
k

g−1(η2kσ
2
k∆v)

η2kσ
2
k

)

≥ ⟨w,ησ2
⟩
g−1 (∆v⟨ŵ,η2σ2⟩)

⟨ŵ,η2σ2⟩
,
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where we defined ŵk ∝ wkηkσ
2
k. This is useful for obtaining the bound

∆Φ(∆v) ≤
1

2
φ ∑

k∈K
wk (ηk(ℓk − λ)

2) − ⟨w,ησ2
⟩
g−1 (∆v⟨ŵ,η2σ2⟩)

⟨ŵ,η2σ2⟩
.

Consequenlty, ∆Φ(∆v⋆) ≤ 0 for

∆v⋆ =
1

⟨ŵ,η2σ2⟩
g (

1

2
φ⟨ŵ,η2σ2

⟩
⟨w̃, (ℓ − λ)2⟩

⟨w̃,σ2⟩
) ,

where w̃k ∝ wkηk. Use the definition of ∆v and the continuity of ∆Φ to conclude that
∆v ≤∆v⋆. Unpack the definition of g to obtain that

∆v ≤
1

2
φ∆s +

1

2

⟨ŵ,η2σ2⟩ (c′∆s)
2

1 − c′⟨ŵ,η2σ2⟩∆s

with c′ = 1
2

φ2

φ−1 . Next, we will use use that ⟨ŵ,η2σ2⟩ ≤ 1
4
b2 to bound further ∆v.

Use this observation and the definition of c1 to deduce the inequality ⟨ŵ,η2σ2⟩c′∆s ≤
c1∆s < 1. Plug this in the previous display and rearrange to obtain the result:

∆v ≤
1

2
φ∆s +

1

2
∆s2 (

1

4
c′

2
b2 −

1

4
φc′b2) +

1

4
c′b2∆v∆s,

exactly what we claimed.
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D.1. Proofs for Section 5.2

of Proposition 5.2.5. Since exp(ηZ) ≤ exp(ηZ+), we have for each 0 < η < b, using also
Fubini’s theorem and the tail condition on Z

E[eηZ − 1] ≤ E[eηZ+ − 1] = E[∫
Z+

0
ηeηZdz] = η∫

∞

0
P{Z ≥ z}eηzdz ≤

aη∫
∞

0
e−(b−η)zdz =

aη

b − η
,

which means that

Z ⊴η
1

η
ln(1 +

aη

b − η
) (D.1)

For the first claim, pick 0 ≤ η∗ < b and call c the right hand side of (D.1) when
evaluated at η = η∗. The result follows by item 3 in Proposition 5.2.4, ahead. The
converse follows from

P{X ≥ Y + ϵ} ≤ eη(A
η[X−Y ]−ϵ)

≤ eη(c−ϵ)

with a = eηc, and b = η.

of Proposition 5.2.11. We can write

E[X] = E[X ∣ X ≥ 0]P{X ≥ 0} +E[X ∣ X < 0]P{X < 0}.

We will bound both terms on the right hand side from bellow. For the first one, use
Markov’s inequality and the definition of conditional expectation to obtain that

E[X ∣ X ≥ 0]P{X ≥ 0} = E[[X]+] ≥ aP{X ≥ a}. (D.2)

For the second term, use the conditional version of Jensen’s inequality to obtain that

E[X ∣ X < 0] ≥ −
1

η
lnE[e−ηX ∣ X < 0],

≥ −
1

η
ln

1

P{X < 0}
. (D.3)

where the last inequality holds because by the assumption that 0 ⊴η X, which implies

1 ≥ E[e−ηX] = E[e−ηX ∣ X ≥ 0]P{X ≥ 0} +E[e−ηX ∣ X < 0]P{X < 0},

≥ E[e−ηX ∣ X < 0]P{X < 0}.
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Gathering (D.2) and (D.3) together implies

E[X] ≥ aP{X ≥ a} −
1

η
P{X < 0} ln

1

P{X < 0}
,

which after rearrangement implies the first inequality. The second inequality follows
from maximizing the function x ↦ x ln(1/x), which is a concave function that attains
its maximum value 1/e at x∗ = 1/e.

D.2. Proofs for Section 5.3.1

Proposition D.2.1 below strictly strengthens Proposition 5.3.1. To see how, note that
(1)⇒ (2) in Proposition 5.3.1 is implied by 1. below, noting that in Proposition 5.3.1
we assume that {Xf}f∈F is regular, which implies the condition of (1). (2)⇒ (3) in
Proposition 5.3.1 is implied by 2. below, again since in Proposition 5.3.1 we assume
that {Xf}f∈F is regular, together with the fact that (2) in Proposition 5.3.1 already
implies that for all f ∈ F , the Xf are subcentered. (3) ⇒ (4) in Proposition 5.3.1 is
directly implied by 3. below and again the fact that (3) in Proposition 5.3.1 already
implies that for all f ∈ F , the Xf are subcentered, so that Xf ≤X − f −E[Xf ] for all
f ∈ F . (4) ⇒ (1) in Proposition 5.3.1 is directly implied by 4. below. (3) ⇒ (5) is
implied by 5. below and (5)⇒ (3) is implied by 6. below.

Proposition D.2.1. 1. Let {Xf}f∈F be a family of random variables such that
inff∈F E[Xf ] > −∞. Suppose there is an ESI function u such that for all f ∈ F ,
Xf ⊴u 0. Then there are constants C∗ > 0 and η∗ > 0 such that uniformly for all
f ∈ F , Xf ≤ Xf −E[Xf ] ⊴η∗ C

∗ (in particular, for all f ∈ F , Xf is subcentered,
i.e. E[Xf ] ≤ 0).

2. Suppose supf∈F Var(Xf) <∞. Suppose there is a constant C∗ > 0 and a constant
η∗ > 0 such that uniformly for all f ∈ F , Xf −E[Xf ] ⊴η∗ C

∗. Then there exists
c, v > 0 such that for all f ∈ F , the Xf are (c, v)-subgamma on the right, i.e.
they satisfy (5.24).

3. Suppose there exists c, v > 0 such that for all f ∈ F , the Xf are (c, v)-subgamma
on the right. Then there is an ESI function h such that for all f ∈ F , we have
Xf − E[Xf ] ⊴h 0 where h is of the form h(ϵ) = Cϵ ∧ η∗ for some constants
C > 0, η∗ > 0.

4. Suppose that for all f ∈ F , we have Xf ≤ Xf −E[Xf ] ⊴h 0 where h(ϵ) = Cϵ ∧ η∗

for some C,η∗ > 0. Then there is an ESI function u such that for all f ∈ F ,
Xf ⊴u 0.

5. Suppose there exists c, v > 0 such that for all f ∈ F , the Xf are (c, v)-subgamma
on the right. Then for all 0 < δ ≤ 1, all f ∈ F , (5.25) holds with probability at
least 1 − δ.
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6. Suppose there exists c, v > 0 such that for all f ∈ F , the Xf are subcentered and,
for each f ∈ F , for each 0 < δ ≤1, with probability at least 1 − δ, (5.25) holds.
Then:
there exists a > 0 and a differentiable function h ∶ R+0 → R+0 with h(ϵ) > 0 and
h′(ϵ) ≥ 0 for ϵ > 0, such that for all f ∈ F , the Xf are subcentered and P{X ≥
ϵ} ≤ a exp(−h(ϵ)).

7. Suppose the condition above holds. Then there is C∗ > 0, η∗ > 0 such that uni-
formly for all f ∈ F , Xf ≤Xf −E[Xf ] ⊴η∗ C

∗.

Proof. Part 1. Let C ′ ∶= − inff∈F E[Xf ] <∞. Take C ′′ > 0 such that η∗ ∶= u(C ′′) > 0.
Then Xf ⊴η∗ C

′′ and Xf −E[Xf ] ⊴η∗ C
′′ +C ′ ∶= C∗. Also E[Xf ] ≤ ϵ for all ϵ > 0 and

hence E[Xf ] ≤ 0, which implies subcenteredness.

Part 2. see Theorem 5.3.2 and its proof below.

Part 3. Let Uf =Xf −E[Xf ]. The assumption of right subgammaness implies that
for all 0 < η ≤ η∗ with η∗ = 1/(2c) and C ′ = 2v, we have

E[eηUf ] ≤ exp(η2 ⋅
v

1 − cη
) ≤ exp(η2 ⋅

v

1 − (1/2)
) = exp (η2 ⋅C ′) .

Now take h(ϵ) = ϵ/C ′ if ϵ ≤ C ′/2c and h(ϵ) = 1/2c for ϵ > C ′/2c. Then the above
display implies that E[Uf ] ⊴h 0, and h is seen to be equal to the h in the proposition
statement.

Part 4. The premise implies that E[Xf ] ≤ 0 for all f ∈ F and Xf ⊴h 0, so we can
(trivially) take u = h.

Part 5. (5.25) be rewritten as: for every t > 0,

P{Xf >
√
2vt + ct} ≤ exp(−t), (D.4)

which is shown to be implied by (c, v)-subgammaness on the right in [Boucheron et al.,
2013, Section 2.4].

Part 6. [Boucheron et al., 2013, Section 2.4]. shows that (D.4) is equivalent to
P{Xf > t} ≤ exp(−h(t)) where h(t) = (v/c

2)h1(ct/v)), with h1(u) = 1 + u −
√
1 + 2u;

this is of the required form.

Part 7. If h(0) > 0, then we can simply apply Proposition 5.2.5 to get the desired
result; if h(0) = 0, apply the proposition with a set in the proposition to 2a.

of Theorem 5.3.2. Suppose that U − E[U] ⊴η∗ C holds and suppose without loss of

generality that U is centered. LetM = eη
∗Aη∗ [U] = eη

∗C , which is finite by assumption.
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We bound the moments of the right part of U .

E[(Uf)
n
+] = E[∫

(Uf )+

0
nun−1du]

= E[∫
∞

0
P{Uf ≥ u}nu

n−1du]

≤ eη
∗Aη∗ [Uf ]n∫

∞

0
e−η

∗uun−1du

= n!
M

η∗n

Now let v = Var(U) + 2M
η∗2

and c = 1
η∗
. This means that E[(U)n+] ≤ n!

v
2
cn−2 for n ≥ 3

and E[U2] ≤ v uniformly over F . The rest of the proof follows that of Boucheron et al.
[2013, Theorem 2.10]: note that ex ≤ 1 + x + 1

2
x2 for x ≤ 0 so that

ex ≤ 1 + x +
1

2
x2 + ∑

n≥3

xn+
n!

for all x. With this in mind, we obtain a bound on the moment generating function
of U :

E[eηU ] ≤ 1 +E[U] +
1

2
η2Var(U) + ∑

n≥3

ηnE[(U)n+]

n!

≤ 1 +
1

2
vη2 ∑

n≥2
(cη)n−2

= 1 +
1

2

vη2

1 − cη

for 0 < cη < 1. Taking logarithms on both sides, using that ln(1 + x) ≤ x for x ≥ 0 and
rewriting leads to

Aη
[U] ≤

1

2

vη

1 − cη
,

which is exactly what we were after.

Proof of the Claim in Example 5.3.3 Let η < 1. Using P{−1/η ≤ U < −1} =

∫
−1
−1/η p(u)du = (1 − η

v−1)/(v − 1) and E[U2 ⋅ 1{−1/η < U < 0}] = ∫
−1
−1/η u

2p(u)du =
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(1 − ην−3)/(ν − 3) we find:

E[exp(ηU)] ≥ E[exp(ηU) ⋅ 1{−1/η < U < 0}] +E[exp(ηU) ⋅ 1{U ≥ 0}]

≥ E[(1 + ηU +U2η2/4) ⋅ 1{−1/η < U < 0}] +E[(1 + ηU) ⋅ 1{U ≥ 0}]

≥ P{U > −1/η} + ηE[U] + (η2 ⋅ exp(−1) ⋅E[U2
⋅ 1{−1/η < U < 0}]

= P{−1/η ≤ U < −1} + (1 −P{U ≤ −1})+

ηE[U] + η2 ⋅ exp(−1) ⋅E[U2
⋅ 1{−1/η < U < 0}]

=
1 − ην−1

ν − 1
+ (1 −

1

ν − 1
) + ηE[U] + η2 ⋅ exp(−1) ⋅

ην−3 − 1

3 − ν

= 1 −
1

ν − 1
ην−1 +

exp(−1)

(3 − ν)
⋅ (ην−1 − η2).

Since for 5/2 < ν < 3, we have exp(−1)/(3 − ν) > 1/(ν − 1), we find that, as η ↓ 0,
(E[exp(ηU)] − 1)/η2 →∞, showing that right subgamma-ness is violated.

D.3. Proofs for Section 5.3.2

Below we first state Theorem D.3.1 and then Lemma D.3.2. We then show how, taken
together, these two results imply the result in the main text, Theorem 5.3.11, as an
almost direct corollary. After that, we provide first the proof of Lemma D.3.2 and then
the proof of Theorem D.3.1 itself, followed by the statement and proof of Lemma D.3.3,
a slight extension of the standard second-order Taylor approximation of the moment
generating function that is crucial for proving Lemma D.3.2.

Theorem D.3.1. 1. Suppose {−Xf ∶ f ∈ F} satisfies the [0, b)-Bernstein condition
for some 0 < b ≤ 1 and the conclusion C1 of Lemma D.3.2, Part 1 holds. Then
for all β ∈ [0, b), all c ≥ 0, all 0 < c∗ < 1, there exists η○ > 0 and C○ > 0 such that
for all f ∈ F , all 0 < η ≤ η∗,

Xf + cηX
2
f − c

∗E[Xf ] ⊴η C
○η1/(1−β).

2. Suppose there exists η○ > 0,C○ > 0 such that, for some 0 < β ≤ 1, for all f ∈
F , Xf ⊴η○ C

○η1/(1−β) and the conclusion C2 of Lemma D.3.2, Part 2 holds.
Then, (a) {−Xf ∶ f ∈ F} satisfies the β-Bernstein condition. If furthermore
supf∈F E[−Xf ] < ∞ then (b), {−Xf ∶ f ∈ F} also satisfies the [0, β]-Bernstein

condition and also supf∈F E[X2
f ] is bounded, so that the family is regular.

Lemma D.3.2. Let {Xf ∶ f ∈ F} be an ESI family.

1. Suppose that the family is regular. Then C1 holds, with:
C1: for each k ≥ 0, for all 0 < δ ≤ 1, there exist C∗,C○ > 0 and η○ > 0 (that may
depend on δ) such that for all 0 < η ≤ η○, all f ∈ F , Xf ⊴η○ C

∗ and

E[∣Xf ∣
2+k exp(ηXf)]≤C

○
(E[X2

f ])
1−δ (D.5)
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2. Suppose that the witness-type condition (5.30) holds for the family {Xf ∶ f ∈ F}
or for the family {(Xf)− ∶ f ∈ F}. Then C2 holds, with:
C2: there exist C > 0 and an η○ > 0 such that for all 0 < η ≤ η○, all f ∈ F ,

E[X2
f ] ≤ C ⋅E[X

2
f exp(ηXf)]. (D.6)

To see how the above two results together imply Theorem 5.3.11 in the main text,
note that the implication (1) ⇒ (2) in that theorem is a direct consequence of the fact
that C1 in Lemma D.3.2 holds for regular ESI families for δ = 1 − β, any 0 ≤ β < 1, as
expressed by Part 1 of that lemma, combined with Theorem D.3.1, Part 1.
Implication (2) ⇒ (3) of Theorem 5.3.11 is trivial. Implication (3) ⇒ (1) follows

by the fact that C2 in Lemma D.3.2 holds for families satisfying the witness-type
condition, as expressed by Part 2 of that lemma, combined with Theorem D.3.1, Part
2.

of Lemma D.3.2. Part 1. Let s = supf∈F E[X2
f ] and set X = Xf for arbitrary f ∈ F .

Since we assume the family is regular, we can use Proposition 5.3.1 to infer that there
exists η∗ > 0, C∗ > 0 such that X ⊴η C

∗ for all 0 < η ≤ η∗.
For all η′ > 0, η > 0, all 0 < γ < 2 there must be constants C,C ′ > 0, such that for all

p > 0, q > 0 with 1/p + 1/q = 1, it holds that :

E[∣X ∣2+k exp(ηX)]

= E[1{X ≤ −1} ∣X ∣2 ⋅ (∣X ∣k exp(ηX))]+

E[1{−1 <X < 1} ∣X ∣2+k exp(ηX)] +E[1{X ≥ 1} ∣X ∣2+k exp(ηX)]

≤ C ′E[1{X ≤ −1}X2
] + exp(η)E[1{−1 <X < 1}X2

]+

E[1{X ≥ 1} ∣X ∣2−γ ⋅ (∣X ∣k+γ exp(ηX))]

≤ (C ′ + exp(η))s(E[X2
]/s)1−δ +CE[1{X ≥ 1}X2−γ exp((η′ + η)X)]

≤ (C ′ + exp(η)sδ ⋅ (E[X2
])

1−δ
+

C (E[(1{X ≥ 1}X2−γ
)
p
])

1/p
(E[exp(q(η′ + η)X)])

1/q
,

where we in the first inequality we used that ∣X ∣k exp(ηX) is bounded onX ≤ −1 and in
the second we used that ∣X ∣k+γ exp(ηX) is bounded by a constant times exp((η′+η)X)
on X ≥ 1. Then we used Hölder’s inequality and the fact that E[X2]/s ≤ 1. We now
take 0 < δ ≤ 1 as in the theorem statement and bound the second term further setting
1/p = 1 − δ, 1/q = δ and γ = 2δ (so that 1/p + 1/q = 1 as required and (2 − γ)p = 2):

(E[(1{X ≥ 1}X2−γ
)
p
])

1/p
(E[exp(q(η′ + η)X)])

1/q

= (E[(1{X ≥ 1}X2−γ
)
p
])

1−δ
(E[exp(δ−1(η′ + η)X)])

δ

≤ (E[1{X ≥ 1}X2
])

1−δ
(E[exp(δ−1(η′ + η)X)])

δ
≤ (E[X2

])
1−δ

C∗

where the final equation follows for the specific choice η′ = η∗/(2δ) and any η with
0 < η ≤ η○ ∶= η∗/(2δ). Combining the two equations we find that for any such η, using
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that the constants C and C∗ do not depend on the f with X = Xf , the result (D.5)
follows.
Part 2. LetX =Xf for arbitrary f ∈ F . First assume (5.30) for the family {Xf ∶ f ∈ F}.
We have:

E[X2
] = E[X21{X ≥ 0}] +E[X21{X < 0;X2

≤ C}] +E[X21{X < 0;X2
> C}]

(D.7)

≤ E[X2 exp(ηX)1{X ≥ 0}] +E[X21{X < 0;X2
≤ C}] +E[X21{X2

> C}] (D.8)

≤ E[X2 exp(ηX)1{X ≥ 0}] + exp(η○
√
C)E[X21{X < 0;X2

≤ C} eηX] + cE[X2
]

for some 0 < c < 1. Moving the rightmost term to the left-hand side and dividing both
sides by 1 − c, we find that

E[X2
] ≤

1

1 − c
(exp(η○

√
C)E[X2 exp(ηX)]) ,

which is what we had to prove. In case that (5.30) holds the family {(Xf)− ∶ f ∈ F},
the result follows by a minor variation of the above argument: the rightmost term in
(D.7) can then be bounded by cE[X2

−], so the rightmost term in (D.8) can be replaced
by cE[X2

−], and then the final inequality still holds.

of Theorem D.3.1. Part 1. A short calculation using Jensen’s inequality shows that
for all c, c∗, η > 0, we have

(Xf − c
∗
⋅E[Xf ] + ηcX

2
f )

2
≤ 3X2

f + 3c
∗2
(E[Xf ])

2
+ 3η2c2X4

f . (D.9)

Take 0 < c∗ < 1 and β ∈ [0, b) as in the theorem statement. Set δ ∶= 1−β and choose η○

for this δ as in Lemma D.3.2, Part 1 (which we can use because 0 < δ ≤ 1). Without
loss of generality let η○ ≤ 1. We find for all 0 < η < η○, that for some η′ with 0 < η′ < η○,
and for some constants C0,C1,C2,C3,C4,C

○ > 0, for δ′ = 2δ − δ2 that

E[exp(η(Xf − c
∗
⋅E[Xf ] + ηcX

2
f )]

≤ 1 + ηE[Xf − c
∗
⋅E[Xf ] + ηcX

2
f ] +

1

2
η2E[(Xf − c

∗
⋅E[Xf ] + ηcX

2
f )

2eη
′Xf ]

≤ 1 + η(1 − c∗) ⋅E[Xf ] + η
2cE[X2

f ]+

3

2
η2 (c∗2E[X2

f ]E[e
η′Xf ] +E[X2

fe
η′Xf ] + 3c2E[X4

f e
η′Xf ])

≤ 1 + η(1 − c∗) ⋅E[Xf ] + η
2cE[X2

f ] +
3

2
c∗2η2C∗E[X2

f ] +
3

2
(1 + c2)η2C○(E[X2

f ])
1−δ

≤ 1 + η(1 − c∗) ⋅E[Xf ] + η
2C1BE[−Xf ]

1−δ
+ η2C2B

1−δ
(E[−Xf ])

(1−δ)2

≤ 1 + η(1 − c∗) ⋅E[Xf ] + η
2C3E[−Xf ]

1−δ′
+ η2C4(E[−Xf ])

(1−δ′)

≤ 1 + η ((1 − c∗) ⋅E[Xf ] + η
C3 +C4

(1 − c∗)1−δ′
((1 − c∗)E[−Xf ])

1−δ′
)

≤ 1 + η ((1 − c∗) ⋅E[Xf ] +C
○η1/δ + (1 − c∗)E[−Xf ]) ≤ 1 + η ⋅C

○η1/δ ≤ eηC
○η1/δ

.
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Here the first inequality is our extended Taylor approximation from Lemma D.3.3,
stated and proved further below. For the second we used (D.9). The third follows by
Lemma D.3.2, Part 1, applied with k = 0 (for the first and second term within the
rightmost brackets, and for determining C∗) and k = 2, for the third term within those
brackets, and with constant C0 taken to be the maximum of the two corresponding
constants C○ in that lemma obtained with k = 0 and k = 2. The fourth follows from
the β-Bernstein condition (applied to the two final terms) for β = 1 − δ, which holds
by assumption. The fifth follows because by Cauchy-Schwarz,

E[−Xf ]
1−δ
= E[−Xf ]

1−δ′
⋅E[Xf ]

δ′−δ
≤ E[−Xf ]

1−δ′
⋅E[X2

f ]
(δ′−δ)/2

and the latter factor is bounded since we assume the {Xf} to be regular. The sixth
inequality above is just rearranging, and the seventh inequality is a ‘linearization’ step.
To see how it follows, note first that, for p, q > 0 with 1/p+1/q = 1, Young’s inequality,
xy ≤ ∣x∣p/p + ∣y∣q/q, implies that for 0 < β < 1,

abβ ≤
1 − β

β
(βa)

1
1−β + b (D.10)

which follows for a, b > 0 by taking β = 1/p, a = xp, and b = y. We apply this with

β = 1 − δ′, b = (1 − c∗)E[−Xf ], a = η(C3 + C4)/(1 − c
∗)1−δ

′

. The final inequality then
gives the desired result.
Part 2 is similar to 1 but much easier; we omit the details.

We end the section with the statement and proof of the validity of the second order
Taylor approximation of the moment generating function, as used in the proof of
Lemma D.3.2.

Lemma D.3.3 (“Extended Taylor”). Suppose that E[X2] < ∞ and also E[eηX] < ∞
for all η ∈ [0, ηmax] and let η∗ be any number with 0 < η∗ < ηmax. Then for all 0 < η < η∗

we have:

E[eηX] = 1 + ηE[X] +
1

2
η2E[X2eη

′X
] (D.11)

for some η′ with η ≤ η′ < η∗.

This is just the standard Taylor approximation of the moment generating function
for random variable X at η = 0. However, in this chapter we need this approximation
also for the case that E[eηX] = ∞ for all η < 0 (e.g. if X has polynomial left tail),
in which the standard Taylor’s theorem does not apply any more, since the standard
(two-sided) derivative at η = 0 is undefined. The lemma shows that nevertheless,
everything still works as one would expect.

Proof. Fix η0 ∈ (0, η
∗). Then all derivatives of E[exp(ηX)] exist at η with η0 ≤ η ≤ η

∗,
so that:

E[eηX] = E[eη0X] + (η − η0)E[Xeη0X] +
1

2
(η − η0)

2E[X2es(η0,η)X] (D.12)
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with s some function s ∶ [0, η∗]2 → [η0, η]. Since

∣eηXX ∣ ≤ ∣eηX+X ∣ ≤ ∣eη
∗X+X ∣ ≤ ∣X−∣ + ∣1{X ≥ 0} e

η∗X+X ∣ ≤ ∣X−∣ + ∣e
η∗XX ∣

and we know E[∣eη
∗XX ∣] <∞, we can use the dominated convergence theorem to con-

clude that limη0↓0E[Xeη0X] = E[X]. Analogously one shows that limη0↓0E[X
2es(η0,η)X] =

E[X2eη
′X] for an η′ ∈ [η0, η]. The result now follows by using these two limiting results

in taking the limit for η0 ↓ 0 in (D.12).

D.4. Proofs for Section 5.5

of Theorem 5.5.2. Inequality (5.37) follows from Proposition 5.2.3, applied with X =
η̂Xη̂, Y = η̂Yη̂, η = 1. (5.39) follows from Proposition 5.2.5, with X,Y and η set in the
same way (see the remark at the end of the proposition statement).

Now we prove (5.38). Define the random variable Wη̂ ∶= Xη̂ − Zη̂, and for (a, k) ∈
(0,∞)×N define the event Ea,k ∶= {a ⋅ (k − 1) ≤ η̂Wη̂ ≤ ak}. With Z = η̂Wη̂, we will first
show that

lim sup
a↓0

∞
∑
k=1

ak ⋅P{Ea,k} ≤ ∫
∞

0
P{Z ≥ z}dz. (D.13)

For a, b > 0 and ka,b ∶= ⌊b/a⌋, we have

ka,b

∑
k=1

ak ⋅P{Ea,k} =
ka,b

∑
k=1

ak ⋅ (P{Z > a ⋅ (k − 1)} −P{Z ≥ ak}) ,

≤

ka,b

∑
k=1

ak ⋅ (P{Z ≥ a ⋅ (k − 1)} −P{Z ≥ ak}) ,

≤

ka,b−1
∑
k=0

a ⋅P{Z ≥ ak},

≤ aP{Z ≥ 0} + ∫
ka,b

0
aP{Z ≥ at}dt, (t↦ a ⋅P{Z ≥ at} nonincr.)

= aP{Z ≥ 0} + ∫
aka,b

0
P{Z ≥ z}dz, (change of variable y = at)

≤ a + ∫
b

0
P{Z ≥ z}dz. (D.14)

Since (D.14) holds for all a, b > 0, we have

lim sup
a↓0

∞
∑
k=1

ak ⋅P{Ea,k} = lim sup
a↓0

⎧⎪⎪
⎨
⎪⎪⎩

sup
b>0

ka,b

∑
k=1

ak ⋅P{Ea,k}

⎫⎪⎪
⎬
⎪⎪⎭

(D.14)
≤ ∫

∞

0
P{Z ≥ z}dz,

(D.15)
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and thus, the desired inequality (D.13) follows. We now have, for all a > 0,

E [Wη̂] ≤
∞
∑
k=1

P{Ea,k} ⋅E [Wη̂ ∣Ea,k] ,

≤
∞
∑
k=1

P{Ea,k} ⋅E [
ak

η̂
] (by the definition of Ea,k)

= (
∞
∑
k=1

P{Ea,k} ⋅ ak) ⋅E [
1

η̂
] .

Since this inequality holds for all a > 0, using (D.13) implies that

E [Wη̂] ≤ E [
1

η̂
] ⋅ ∫

∞

0
P{η̂Wη̂ ≥ t}dt

≤ E [
1

η̂
] ⋅E [eη̂Wη̂]∫

∞

0
e−tdt, (Markov’s Inequality)

≤ E [
1

η̂
] , (D.16)

where the last step follows from the fact that Wη̂ ⊴η̂ 0.

of Proposition 5.5.4. Let’s denoteXi,η(Z; z
n∖i) ∶=Xi,η(z1, . . . , zi−1, Z, zi+1, . . . , zn), for

all η ∈ G, i ∈ [n], zn∖i ∈ Zn−1, and Z ∈ Z. In this way, (5.40) can be written as

Xi,η(Zi; z
n∖i
) ⊴η 0, for all i ∈ [n] and zn∖i ∈ Zn−1. (D.17)

In particular, since this holds for all zn∖i ∈ Zn−1, we can also write

Xi,η(Zi;Z
n∖i
) ⊴η 0. (D.18)

Now let Zn
1 , . . . , Z

n
n ∈ Z

n be n i.i.d copies of Zn. From (D.18), we have, for each i ∈ [n],

Yi,η ∶=Xi,η(Zi,i;Z
n∖i
i ) ⊴η 0. (D.19)

Since (Yi,η)i∈[n] are i.i.d, we can chain (D.19), for i = 1, . . . , n, using Proposition 5.2.6
to get

n

∑
i=1
Yi,η ⊴η 0. (D.20)

By applying Proposition 5.5.5, we have, for any random η̂ in G,

E [
ln ∣G∣ + 1

η̂
] ≥ E [

n

∑
i=1
Yi,η̂] ,

= E [
n

∑
i=1
Xi,η̂(Zi,i, Z

n∖i
i )] ,

= E [
n

∑
i=1
Xi,η̂(Z

n
)] , (D.21)

the last equality follows from the fact that (Zn
i )i∈[n] are i.i.d copies of Zn.
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Samenvatting

Deze dissertatie gaat, in grote lijnen, over statistische hypothesetoetsen. Dit onder-
werp is belangrijk omdat wetenschappelijke vraagstukken vaak worden uitgedrukt in
termen van statistische hypothesetoetsen. Bij het bestuderen van het effect van een
medische behandeling vergelijken onderzoekers bijvoorbeeld de klinische resultaten van
een groep mensen die de behandeling hebben ontvangen met die van een controlegroep
die deze niet heeft ontvangen. Als de behandeling effectief is, worden betere klinis-
che resultaten verwacht bij de behandelingsgroep dan bij de controlegroep. Daarom
kan de wetenschappelijke hypothese over de werkzaamheid van de behandeling worden
bestudeerd door middel van een statistische vergelijking van de resultaten van de twee
groepen patiënten.

Deze dissertatie is gericht op flexibele methoden voor statistische monitoring. Om
een idee te krijgen van het soort flexibiliteit waar we naar verwijzen, vergelijken we de
methoden die het onderwerp van onze studie zijn met klassieke steekproefmethoden.
De meeste klassieke methoden die worden onderwezen in inleidende statistiekvakken
vereisen dat onderzoekers de experimenten van tevoren plannen. In het bijzonder
vereisen klassieke methoden dat onderzoekers een vaste hoeveelheid data verzamelen
voordat ze enige analyse uitvoeren. Deze vereisten zijn nodig om fouten die kunnen
optreden als gevolg van toeval te beperken. In het medische voorbeeld betekent dit
dat onderzoekers de klinische resultaten van een vast aantal patiënten - een vaste
steekproefgrootte - moeten waarnemen voordat ze hun bevindingen analyseren. De
aanname van een vaste steekproefgrootte kan echter beperkend zijn in bepaalde situ-
aties. Onderzoekers kunnen bijvoorbeeld gëınteresseerd zijn in het analyseren van de
data terwijl deze worden verzameld om het experiment eerder te stoppen indien nodig.
Dit is bijvoorbeeld het geval bij menselijke overlevingstijd-experimenten. Sterker nog,
vroegtijdig stoppen kan zelfs een ethische plicht zijn wanneer een behandeling leven-
sreddend blijkt te zijn. Er zijn krachtige methoden ontworpen om deze beperking te
overwinnen. De methoden die de meeste flexibiliteit bieden worden altijd-geldig ge-
noemd (“anytime-valid”). Deze methoden stellen onderzoekers in staat om een lopend
experiment voort te zetten of te stoppen, of zelfs op elk moment een nieuw experi-
ment te starten zonder de statistische geldigheid van hun analyse te bëınvloeden. Deze
flexibele, altijd-geldige methoden zijn het hoofdonderwerp van deze dissertatie.

In dit werk worden verschillende wiskundige resultaten getoond met betrekking
tot de theorie van altijd-geldige toetsen en voorspellingen. Zoals vaak het geval is
bij wiskundige werken, kunnen de resultaten in deze dissertatie worden toegepast in
meerdere contexten. De inhoud van deze dissertatie heeft betrekking op het ontwerp
van - in een specifieke zin - optimale, altijd-geldige toetsen in abstracte settings die
relevante toepassingen omvatten.

Hoofdstuk 3 toont een altijd-geldige toets voor tijd-tot-gebeurtenisgegevens. Dit is
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nuttig bij het monitoren van experimenten waarbij de focus ligt op de verstreken tijd tot
een uitkomst van belang wordt waargenomen. Bijvoorbeeld de tijd die het kost voordat
iemand ziek wordt na een behandeling, de bedrijfstijd van een mechanisch apparaat
nadat een onderdeel is vervangen, of de tijd die een persoon besteedt aan het kijken
naar een video. In het bijzonder ontwikkelen we een altijd-geldige tegenhanger van de
logrank toets, wellicht de belangrijkste toets die wordt gebruikt voor de vergelijking
van de overlevingstijden van twee groepen patiënten in medische onderzoeken. Deze
toets is met succes gebruikt door enkele van de medeauteurs van het hoofdstuk bij
het beoordelen van de werkzaamheid van het Bacillus Calmette-Guérin (BCG)-vaccin,
een vaccin tegen tuberculose, bij de behandeling van de Covid-19-ziekte in de vroege
dagen van de pandemie van 2019.
Hoofdstuk 2 toont optimale toetsen voor hypothesen die bepaalde vormen van sym-

metrie vertonen, dat wil zeggen problemen die onveranderd blijven onder bepaalde
transformaties. Dit is met name belangrijk omdat probabilistische modellen voor
fysieke systemen deze symmetrieën vertonen. Fysische theorieën blijven bijvoorbeeld
onveranderd onder veranderingen in de eenheden van meting, het referentiekader ten
opzichte waarvan metingen worden verricht, of de volgorde waarin ze worden uitgevo-
erd. Het belangrijkste resultaat van dit hoofdstuk kan worden samengevat in de stelling
dat als een probleem een dergelijke invariantie vertoont, de optimale test ook dezelfde
invariantie moet respecteren. Dit is in principe niet triviaal, omdat de verzameling van
alle mogelijke altijd-geldige toetsen veel groter is dan de verzameling van invariante
toetsen.
Hoofdstuk 4 biedt een oplossing voor het probleem van voorspellingen met behulp

van deskundig advies. In dit klassieke probleem wordt een spel gespeeld in rondes en
moet de speler kiezen uit een vast aantal acties. Na elke beslissing krijgt de speler de
kwaliteit van alle acties te zien in de vorm van een getal. Als de speler van tevoren
wist welke actie de beste is, zou hij die vanaf het begin kiezen. De uitdaging van
dit probleem ligt in het ontbreken van deze kennis. We kunnen bijvoorbeeld elke dag
vertrouwen op meerdere weersvoorspellingen, en elke dag kunnen we evalueren hoe
goed elke voorspeller was door het verschil te meten tussen hun voorspellingen en het
waargenomen weer. Opmerkelijk genoeg is het zelfs zonder enige aannames over hoe
de kwaliteit van de acties wordt toegekend - ze zouden kunnen worden gegeven door
een kwaadwillende tegenstander - mogelijk om strategieën te ontwerpen die niet veel
slechter presteren dan wanneer de beste actie vanaf het begin was gekozen. De bijdrage
van dit hoofdstuk is een algoritme voor dit voorspellingsprobleem wanneer de grootte
van de kwaliteit van de acties ordes van grootte kan verschillen.
Hoofdstuk 5 introduceert een stuk wiskundige notatie dat is ontworpen om bepaalde

soorten probabilistische argumenten te bestuderen. Deze probabilistische argumenten
worden gebruikt om te beoordelen hoe ver de empirische prestaties van statistische en
voorspellingssystemen afwijken van hun theoretische waarde.
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From a broad perspective, the main topic of this dissertation is statistical hypothesis
testing. This topic is important because scientific hypothesis are often translated to
statistical hypothesis testing problems. For instance, when studying the effect of a
medical treatment, researchers compare the clinical outcomes of a group of people
that received the treatment to those of a control group that did not receive it. If
the treatment is effective, the clinical outcomes of the treatment group are expected
to be better than those of the control group. Hence, the scientific hypothesis about
the efficacy of the treatment can be studied through the statistical comparison of the
outcomes of the two groups of patients.

This dissertation is concerned with flexible methods for statistical monitoring. To
gain some appreciation of the type of flexibility that is alluded, we compare the meth-
ods that are the subject of our study to classic fixed-sample methods. Most classic
methods taught in introductory statistics courses demand that researchers plan the
experiments in advance. In particular, classic methods demand that researchers gather
a fixed amount of data before performing any analysis. This requirements are neces-
sary to control errors that may occur due to random chance. In the medical example,
this entails that researchers must witness the clinical outcomes of a fixed number—
a fixed sample size—of patients before analyzing their findings. Unfortunately, the
fixed-sample-size assumption can be restricting in certain situations. For instance,
researchers may be interested in analyzing the data as it is gathered in order to stop
the experiment earlier if needed. This is the case, for instance, in human survival-
time experiments. Indeed, early stopping may even be an ethical imperative when a
treatment shows to be life-saving. Powerful methods have been designed to overcome
this restriction. In particular, the methods that provide the most flexibility, known as
anytime valid, allow researchers to either continue or stop a running experiment, or
even to start a new one at any moment without altering the statistical validity of their
analysis. These flexible anytime-valid methods are the main topic of this dissertation.

In this work, a number of mathematical results on the theory of anytime-valid
testing and prediction are shown. As it is often the case with mathematical works, the
results in this dissertation can be applied in multiple contexts. The contents of this
dissertation pertain the design of optimal—in a specific sense—anytime-valid tests in
abstract settings that aim at capturing relevant applications.

Chapter 3 shows an anytime-valid test for the analysis of time-to-event data. This is
useful when monitoring experiments whose focus is the time elapsed until an outcome
of interest is observed. For instance, the time that it takes for a person to become ill
after a treatment, the up time of a mechanical device after a piece is replaced or the
time that a person spends watching a video. In particular, we develop an anytime-valid
counterpart of the logrank test, arguably the most important test used for the com-
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parison of the survival times of two groups of patients in medical trials. This test has
been successfully used by some of the coauthors of the chapter in assessing the efficacy
of the Bacillus Calmette-Guérin (BCG) vaccine—a vaccine against tuberculosis—in
treating Covid-19 disease in the early days of the 2019 pandemic.
Chapter 2 shows optimal tests for hypothesis problems that present certain types

of symmetry, that is, problems that remain unchanged under certain transformations.
This is specially important because probabilistic models for physical systems show
these symmetries. For instance, physical theories remain unchanged under changes in
the units of measurement, the frame of reference with respect to which measurements
are made or the order in which they are executed. The main result of this chapter can
be summarized in the statement that if a problem shows such an invariance, the optimal
test should also respect the same invariance. This is, in principle, nontrivial, because
the set of all possible anytime-valid tests is much larger than the set of invariant tests.
Chapter 4 provides a solution to the problem of prediction with expert advice. In

this classic problem, a game is played in rounds and the player must decide among
a fixed number of actions. After each decision, the player is shown the quality of all
actions in the form of a number. If the player knew in advance which action is best,
they would choose it from the onset. The challenge of this problem lies in the absence
of this knowledge. For example, we may count on several weather forecasts each day,
and each day we can evaluate how well each forecaster was by measuring the difference
between their predictions and the observed weather. Remarkably, even without any
assumptions on how the quality of the actions are assigned—they could be given by an
evil adversary—, it is possible to design strategies that perform not much worse than
having chosen the best action from the beginning. The contribution of this chapter is
an algorithm to this problem of prediction when the magnitude of the quality of the
actions may vary by orders of magnitude.
Chapter 5 introduces a piece of mathematical notation designed to study certain

types of probabilistic arguments. These probabilistic arguments are used to judge
how far the empirical performance of statistical and prediction systems is from their
theoretical value.
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Resumen

A grandes rasgos, el objeto de esta disertación es la prueba estad́ıstica de hipótesis.
Este es un tema importante porque, con frecuencia, las hipótesis cient́ıficas pueden
probarse a través de pruebas estad́ısticas de hipótesis. Por ejemplo, durante el estudio
de un tratamiento médico, un grupo de investigadores puede comparar los resultados
cĺınicos de dos grupo de personas; uno que recibió el tratamiento y los de un grupo
de control que no lo recibió. Si el tratamiento es efectivo, se espera que los resultados
cĺınicos del grupo que recibió el tratamiento sean mejores que los del grupo de control.
Por lo tanto, la hipótesis cient́ıfica sobre la eficacia del tratamiento puede ser estudiada
a través de la comparación estad́ıstica entre los resultados cĺınicos de los dos grupos
de pacientes. Para este fin, es crucial contar con métodos estad́ısticos confiables.

Esta disertación se ocupa de diseñar métodos flexibles para el monitoreo estad́ıstico
de experimentos cient́ıficos. Para entender de qué tipo de flexibilidad se habla, es útil
comparar los métodos de los que se ocupa esta tésis con métodos clásicos que requieren
un tamaño de muestra predeterminada. La mayoŕıa de métodos clásicos que se enseñan
en cursos introductorios a la estad́ıstica exigen que los investigadores planeen sus
experimentos con antelación. En particular, los métodos clásicos prescriben que los
investigadores recojan una muestra de un tamaño fijo antes de hacer cualquier análisis.
Este requerimiento es necesario para controlar la probabilidad de cometer errores que
son producto del muestreo aleatorio. En el ejemplo anterior, este requerimiento hace
que los investigadores deban esperar a presenciar los resultados cĺınicos de un número
fijo de pacientes antes de analizar sus hallazgos. Desafortunadamente, esto puede
ser una limitación en algunas aplicaciones. Por ejemplo, en estudios cĺınicos sobre
el tiempo de supervivencia de ciertos pacientes, detener un experimento se puede
convertir en un imperativo ético si el tratamiento demuestra salvar vidas humanas.
Existen métodos diseñados para superar esta restricción. En particular, los métodos
que proveen una mayor flexibilidad son aquellos que son siempre válidos (anytime
valid). Estos métodos son el objeto principal de esta disertación.

En este trabajo se presenta una colección de resultados matemáticos sobre la teoŕıa
de predicción y de pruebas estad́ısticas siempre válidas. Dada la naturaleza matemática
de los resultados aqúı mostrados, estos pueden ser aplicados en múltiples contextos.
Esta disertación trata sobre el diseño de procedimientos siempre válidos en marcos
abstractos con el propósito de capturar aplicaciones relevantes.

En el caṕıtulo 3 se muestra una prueba siempre válida para el análisis de super-
vivencia. Este tipo de análisis es útil para monitorear experimentos cuyo objetivo es
estudiar el tiempo que toma presenciar un evento de interés. Por ejemplo, se puede
tratar del tiempo que toma antes de que una persona presente una enfermedad tras un
tratamiento, del tiempo que le toma a una máquina descomponerse, o del tiempo que
una persona dura viendo un video. El caṕıtulo muestra una versión siempre válida de
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la prueba de Mantel-Cox, que es utilizada para comparar los tiempos de supervivencia
de dos grupos de pacientes en ensayos cĺınicos. T́ıpicamente, se utiliza para comparar
un tratamiento y un procedimiento de control. La prueba aqúı descrita ha sido uti-
lizada con éxito por algunos de los coautores del caṕıtulo para evaluar la eficacia de la
vacuna BCG (bacilo de Calmette y Guérin) –una vacuna contra la tuberculosis– para
tratar la enfermedad por coronavirus (COVID-19) durante la etapa temprana de la
pandemia de 2019.
El caṕıtulo 2 muestra pruebas siempre válidas óptimas para problemas que presentan

ciertos tipos de simetŕıas, esto es, problemas que permanecen invariantes bajo ciertas
transformaciones. La importancia de este tipo de problemas radica en que los modelos
probabiĺısticos para sistemas f́ısicos presentan este tipo de invarianzas. Por ejemplo,
las predicciones de las teoŕıas f́ısicas no cambian si se alteran las unidades de medida,
el marco de referencia con respecto al cual se realizan mediciones o el orden en que
estas se realizan. El resultado principal de este caṕıtulo se puede resumir en pocas
palabras: si los modelos considerados presentan una invarianza, una prueba siempre
válida óptima debe presentar la misma invarianza. En principio, eso no es obvio,
porque el conjunto de todos las pruebas siempre válidas en mucho más grande que el
conjunto de las que adicionalmente son invariantes.
El caṕıtulo 4 presenta una solución a una modificación del problema de predicción

con consejo experto. Se trata de un problema clásico. En él, un jugador debe decidir
en cada ronda entre un número predeterminado de acciones. Después de elegir una
acción, el jugador puede ver cuál habŕıa sido su desempeño si hubiera elegido cualquier
otra acción. Por ejemplo, si cada d́ıa contamos con múltiples predicciones sobre cuánto
va a llover y debemos decidir cuál creer, cada d́ıa podemos evaluar nuestras decisiones
comparando las predicciones con la realidad. En este caso y en general, el desempeño
de cada acción es juzgado con una medida numérica; el error de cada predicción, por
ejemplo. Si el jugador supiera cuál es la mejor acción, siempre la elegiŕıa, pero ésta no
es conocida. Sorprendentemente, incluso si no se asume nada sobre el mecanismo que
genera las observaciones, es posible diseñar estrategias que no son mucho peores que
haber elegir la mejor acción desde el principio. La contribución de este caṕıtulo es un
algoritmo para resolver este problema cuando la magnitud numérica de la calidad de
las acciones puede variar en órdenes de magnitud.
El caṕıtulo 5 introduce notación matemática para estudiar cierto tipo de argumentos

probabiĺısticos. Estos argumentos son utilizados para juzgar la diferencia entre el
desempeño observado y el desempeño teórico de sistemas estad́ısticos y de predicción.
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