
Matrix factorization ranks via polynomial
optimization

Andries Steenkamp ∗

Abstract In light of recent data science trends, new interest has fallen in alterna-
tive matrix factorizations. By this, we mean various ways of factorizing particular
data matrices so that the factors have special properties and reveal insights into
the original data. We are interested in the specialized ranks associated with these
factorizations, but they are usually difficult to compute. In particular, we consider
the nonnegative-, completely positive-, and separable ranks. We focus on a general
tool for approximating factorization ranks, the moment hierarchy, a classical tech-
nique from polynomial optimization, further augmented by exploiting ideal-sparsity.
Contrary to other examples of sparsity, the resulting sparse hierarchy yields equally
strong, if not superior, bounds while potentially delivering a speed-up in computa-
tion.

1 Introduction and motivation for matrix factorization ranks

We live in a digital world. Data drives decisions as a never-ending stream of informa-
tion engulfs our lives. An essential tool for navigating the flood of information is the
ability to distill large bodies of information into actionable knowledge. A practical
example is nonnegative (NN) factorization, applied to data represented as a matrix.
A NN factorization of an entry-wise nonnegative matrix 𝑀 ∈ R𝑚×𝑛

+ is a pair of
nonnegative matrices 𝐴 ∈ R𝑚×𝑟

+ and 𝐵 ∈ R𝑟×𝑛+ for some integer 𝑟 ∈ N such that:

𝑀 = 𝐴𝐵. (1)

Andries Steenkamp
CWI Amsterdam, e-mail: jajs@cwi.nl
∗ Centrum Wiskunde & Informatica (CWI), Amsterdam. andries.steenkamp@cwi.nl

This work is supported by the European Union’s Framework Programme for Research and Inno-
vation Horizon 2020 under the Marie Skłodowska-Curie Actions Grant Agreement No. 813211
(POEMA).

1

ar
X

iv
:2

30
2.

09
99

4v
1

 [
m

at
h.

O
C

]
 2

0
Fe

b
20

23

jajs@cwi.nl
andries.steenkamp@cwi.nl

2 Andries Steenkamp

The primary object of interest is the inner dimension 𝑟 of the factorization. One can
always take 𝐴 = 𝑀 and 𝐵 = 𝐼, where 𝐼 is the identity matrix, hence getting 𝑟 = 𝑛.
However, the interesting case is when 𝑟 < 𝑚𝑛

𝑚+𝑛 . In this case, one has managed to
express the 𝑚 × 𝑛 values of 𝑀 in terms of the (𝑚 × 𝑟) + (𝑟 × 𝑛) values of 𝐴 and 𝐵,
and as a result, using less storage. The smallest integer 𝑟 for which this is possible
is called the nonnegative matrix factorization rank, or just the nonnegative rank for
short, and is mathematically defined as follows,

rank+ (𝑀) := min{𝑟 ∈ N : 𝑀 = 𝐴𝐵 for some 𝐴 ∈ R𝑚×𝑟
+ and 𝐵 ∈ R𝑟×𝑛+ }. (2)

It is not hard to see that the NN-rank is sandwiched between the classical rank and
the size of the matrix, i.e.,

rank(𝑀) ≤ rank+ (𝑀) ≤ min{𝑛, 𝑚}.

However, storage space efficiency is only part of the value of NN factorization. The
true power of NN factorization comes from the fact that it is an easy-to-interpret
linear dimensionality reduction technique. To understand what we mean by this, we
first re-examine the relationship between the three matrices 𝑀, 𝐴, and 𝐵 in eq. (1).

Observe how the 𝑗 th column of 𝑀 is given as a conic combination of the columns
of 𝐴 with weights given by the 𝑗 th column of 𝐵, i.e.,

𝑀:, 𝑗 =

𝑟∑︁
𝑖=1

𝐵𝑖, 𝑗𝐴:,𝑖 . (3)

Because all terms involved are nonnegative, zero entries in 𝑀 force the corre-
sponding entries of the factors to be zero. Formally, for any 𝑘 ∈ {1, 2, .., 𝑚} and
𝑗 ∈ {1, 2, .., 𝑛}, 𝑀𝑘, 𝑗 = 0 if and only if 𝐵𝑖, 𝑗𝐴𝑘,𝑖 = 0 for all 𝑖 ∈ {1, 2, .., 𝑟}. Having
no cancellation among factors will be useful for interpreting applications of non-
negative factorization. We will explain this further in section 1.1 with examples.
Furthermore, observe that the nonnegative factorization needs not be unique. In fact,
for any non-singular, nonnegative matrix 𝑃 ∈ R𝑟×𝑟+ with nonnegative inverse 𝑃−1

one can produce another factorization

𝑀 = (𝐴𝑃−1) (𝑃𝐵). (4)

An example of such a matrix 𝑃 would be a permutation matrix.

Example of a nonnegative factorization

Consider the following example of a 4 × 4 nonnegative matrix and its nonnegative
factorization from which we can deduce that rank+ (𝑀) = 2, because rank(𝑀) = 2:

𝑀 =

35 38 41 44
79 86 93 100
123 134 145 156
167 182 197 212

 =

1 2
3 4
5 6
7 8

[

9 10 11 12
13 14 15 16

]
= 𝐴𝐵.

Matrix factorization ranks via polynomial optimization 3

1.1 Applications of nonnegative factorization

Having introduced the nonnegative rank, we now justify its importance with three
applications. What we present here is but a small fraction of the whole body of
literature on nonnegative factorization. The interested reader is highly encouraged to
read a recent monograph of Gillis [24] for an in-depth study of the nonnegative rank
with many applications and further references. Alternatively, we invite the reader to
try and conceive a few applications of their own.

Image processing

When analyzing large amounts of images, it is natural to ask if the vast bulk of
images are not just combinations of a few “basic images". This raises two questions.
First, how does one find or construct a set of basic images? Second, given this,
hopefully small, set of basic images, how does one reproduce the original images?
Lee and Seung answered both questions in [35], where they factorized a set of
images of human faces into a set of typical facial features and nonnegative weights.
Combining the weights and features, one approximately recovers the original faces.
In this setting, the matrix 𝑀 has as columns the vectorized gray-scale images of
human faces, hence 𝑀𝑖, 𝑗 is the 𝑖th pixel of the 𝑗 th face, with a value between 0 and
1, with 0 corresponding to black and 1 to white.

Recalling the interpretation of (3), we can think of the columns of the matrix 𝐴
as (vectorized) images of human facial features, like a mouth or pair of eyes. Hence,
the 𝑗 th image 𝑀:, 𝑗 is a weighted sum of feature-images 𝐴:,𝑖 (𝑖 ∈ [𝑟]), where the
(nonnegative) weight of feature 𝐴:,𝑖 is given by entry 𝐵𝑖, 𝑗 of the matrix 𝐵.

In contradistinction to other techniques like principle component analysis (PCA),
which possibly gives factors with negative entries, NN factorization saves us from
the task of interpreting notions like “negative pixels" or “image cancellations." By
“negative pixels," we mean negative factor values, i.e., 𝐵𝑖, 𝑗𝐴𝑘,𝑖 < 0. This means that
factor 𝐵𝑖, 𝑗𝐴:,𝑖 does not just add features but also possibly erases the features added
by other factors 𝐵ℓ, 𝑗𝐴:,ℓ , where ℓ ≠ 𝑖. A fun by-product of these image factorizations
is that one can generate new images by multiplying the matrix 𝐴 with new weights
different from 𝐵. However, the resulting images are not guaranteed to look like faces
for a poor choice of weights.

4 Andries Steenkamp

Topic recovery and document classification

In text analysis, the matrix 𝑀 is called the word occurrence matrix, and its entries
𝑀𝑖, 𝑗 are the number of times the 𝑖th word occurs in the 𝑗 th document. This way of
looking at a corpus of text is often called a “bag of words model," the sequence is
ignored, and only the quantity is considered. Since word count is always nonnegative,
𝑀 is nonnegative and has some NN factors 𝐴 and 𝐵. The columns of matrix 𝐴 take
the meaning of “topics", and 𝐵 gives the correct weights to recover 𝑀 . Since there
are no cancellations, we observe in the columns of 𝐴 that certain sets of words tend
to occur together, at least within the original set of documents. Moreover, we see
how the documents (the columns of 𝑀) are composed from these base topics (the
columns of 𝐴), with the importance of each topic given by the entries of 𝐵. One can
hence use these learned topics to group or classify documents.

Linear extension complexity

This third application is different from the above two. First, we define the linear
extension complexity, then we show how it relates to the nonnegative rank, and
finally, we motivate its importance. The linear extension complexity of a polytope
𝑃 is the smallest integer 𝑟 for which 𝑃 can be expressed as the linear image of an
affine section of R𝑟+. Alternatively, the linear extension complexity can be defined as
the smallest number of facets a higher dimensional polytope 𝑄 can have while still
having 𝑃 as a projection. In 1991 Yannakakis [43] proved that the linear extension
complexity of 𝑃 is equal to the nonnegative rank of the slack matrix associated with
𝑃. For a polytope 𝑃 the slack matrix is (𝑑𝑖 − 𝑐𝑇𝑖 𝑣)𝑣∈V ,𝑖∈I , where 𝑐𝑖 ∈ R𝑚, 𝑑𝑖 ∈ R
come from the hyperplane representation of 𝑃 = {𝑥 ∈ R𝑚 : 𝑐𝑇

𝑖
𝑥 ≤ 𝑑𝑖 (𝑖 ∈ I)}, and

the vectors 𝑣 ∈ R𝑚 come from the extremal point representation of 𝑃 = conv(𝑉). This
link between nonnegative rank and linear extension complexity was instrumental in
showing why many combinatorial problems, like the traveling salesman problem,
could not be efficiently solved simply by lifting the associated problem polytope to
higher dimensions in some clever way, see [22]. On the topic of lifting convex sets
we refer the reader to the survey [20].

1.2 Commonly used notation

We group here some notation used throughout the chapter. For any positive integer
𝑚 ∈ N we denote by [𝑚] := {1, 2, ..., 𝑚} the set consisting of the first 𝑚 positive
integers. For vectors 𝑢, 𝑣 ∈ R𝑚 we denote by 〈𝑢, 𝑣〉 :=

∑
𝑖∈[𝑚] 𝑢𝑖𝑣𝑖 the vector inner-

product of 𝑢 and 𝑣. Similarly, for matrices 𝐴, 𝐵 ∈ R𝑚×𝑛 we use the same notation
to denote the Frobenius inner product 〈𝐴, 𝐵〉 :=

∑
𝑖∈[𝑚], 𝑗∈[𝑛] 𝐴𝑖, 𝑗𝐵𝑖, 𝑗 of 𝐴 and 𝐵.

We say that a square matrix 𝐴 ∈ R𝑚×𝑚 is positive semi-definite (PSD), denoted by
𝐴 � 0, if and only if 𝑣𝑇 𝐴𝑣 ≥ 0 for any choice of 𝑣 ∈ R𝑚. The set of all PSD matrices

Matrix factorization ranks via polynomial optimization 5

of size 𝑟 ∈ N is denoted by S𝑟+ := {𝐴 ∈ R𝑟×𝑟 : 𝐴 � 0}. Analogous to real matrices
that are PSD, there are complex square matrices that are Hermitian PSD. A complex
matrix 𝐴 ∈ C𝑚×𝑚 is Hermitian PSD if and only if 𝑣∗𝐴𝑣 ≥ 0 for all 𝑣 ∈ C𝑚, where 𝑣∗
is the complex conjugate of 𝑣. For positive integer 𝑚, we denote by H𝑚 the set of
all 𝑚 × 𝑚 Hermitian matrices. By

Σ[𝑥] := {
∑︁
𝑖∈[𝑘]

𝜎𝑖 : 𝑘 ∈ N, 𝜎𝑖 = 𝑝2
𝑖 for some polynomial 𝑝𝑖 ∈ R[𝑥]}

we denote the set of all sums of squares of polynomials. If the variables 𝑥 =

(𝑥1, 𝑥2, ..., 𝑥𝑚) are clear from the context we simply write Σ.

1.3 On computing the nonnegative rank

Given the utility of computing nonnegative factorizations, it is natural to ask the
following. Is it difficult to compute the nonnegative rank for a given data matrix 𝑀 ≥
0? This was answered in the affirmative in 2009 by Vavasis [42]. Despite being NP-
hard to solve, good approximations are sometimes quite accessible. In section 2, we
show a general technique for approximating the matrix factorization rank from below
using tools from polynomial optimization. An alternative geometrically motivated
approach is to look for a minimal rectangle cover for the support of𝑀 , see [25].Given
a matrix 𝑀 ∈ R𝑛×𝑚, one seeks the smallest set of rectangles, sets of the form
𝑅 := {{𝑖, 𝑗} : 𝑖 ∈ 𝐼 ⊂ [𝑛], 𝑗 ∈ 𝐽 ⊂ [𝑛]}, such that for each nonzero entry 𝑀𝑖, 𝑗 ≠ 0,
{𝑖, 𝑗} belongs to at least one of these rectangle.

Finding the factorization rank does not necessarily give a factorization. The
method we propose in section 2 does not generally give a factorization, except in
a particular case, which we consider in section 2.3, where it is possible to recover
the factors. For NN factorization, several algorithms exist that iteratively compute
𝐴 and 𝐵 given a guessed value 𝑟 . However, these algorithms only give approximate
factorizations, that is, 𝑀 ≈ 𝐴𝐵, with respect to some norm. A sufficiently good
approximate NN factorization also implies an upper bound on the NN rank.

For practical problems, an approximation is often sufficient. For a detailed account
of NN factorization, we refer the reader again to the book of Gillis [24].

1.4 Other factorization ranks

Above, we looked at NN factorization and some of its applications in data analysis
and optimization theory. However, there are many more matrix factorization ranks,
each having its intricacies, applications, and interpretations. We list a few more
examples of factorization ranks to link them to NN factorization and later state some
results on some of them.

6 Andries Steenkamp

Completely positive factorization

This factorization is very similar to nonnegative factorization apart from the mod-
ification that 𝐵 = 𝐴𝑇 . Formally, an entry-wise nonnegative matrix 𝑀 ∈ S𝑚 is
completely positive (CP) if there exists a nonnegative matrix 𝐴 ∈ R𝑚×𝑟

+ , for some
integer 𝑟 ∈ N, such that:

𝑀 = 𝐴𝐴𝑇 . (5)

Clearly, CP-matrices are doubly nonnegative, i.e., entry-wise nonnegative and pos-
itive semi-definite (PSD). However, these are not sufficient criteria for 𝑀 to be CP,
unless 𝑚 ≤ 4, see [2]. Consider the following (Example 2.9 from [2]) to see that this
does not hold for 𝑚 ≥ 5.

Example of a doubly nonnegative matrix that is not CP [2]

𝑀 =

1 1 0 0 1
1 2 1 0 0
0 1 2 1 0
0 0 1 2 1
1 0 0 1 6

.

The nonnegativity is clear, the PSDness is checked via computing all the minors (or
using a computer to check the eigenvalues). To see why the matrix is not CP, we
refer to the explanation given in Berman and Shaked-Monderer’s monograph [2].

Just deciding if a given matrix is CP is already an NP-hard problem; see [15].
Because the completely positive factors 𝐴 and 𝐴𝑇 are the same, up to transposition,
the CP factorization is often called a symmetric factorization. We will see another
example shortly at the end of this section. Similar to nonnegative rank, there is a
completely positive rank mathematically defined as the smallest inner dimension
𝑟 ∈ N for which a CP factorization of 𝑀 exists, i.e.

rankcp (𝑀) := min{𝑟 ∈ N : 𝑀 = 𝐴𝐴𝑇 for some 𝐴 ∈ R𝑚×𝑟
+ }. (6)

Clearly a matrix 𝑀 is CP if and only if rankcp (𝑀) < ∞. Hence computing the
CP-rank can’t be any easier than deciding if 𝑀 is CP. That being said, the complexity
status of computing rankcp (𝑀) for a CP matrix 𝑀 is unknown to the best of our
knowledge. Some upper bounds are known for the CP-rank: first, rankcp (𝑀) ≤ 𝑚,
when 𝑚 ≤ 4, and second, rankcp (𝑀) ≤

(𝑚+1
2
)
− 4 if 𝑚 ≥ 5, see [39]. In 1994 it was

conjectured by Drew, Johnson, and Loewy [17] that rankcp (𝑀) ≤ b𝑚2

4 c, the bound
being only attained for CP matrices 𝑀 that have complete bipartite support graphs.
This conjecture was disproved by Bomze et al. [4, 5] two decades later, using several
specially constructed counter-examples. We show in eq. (7) an example, namely 𝑀7
from [4], of size 𝑚 = 7, with rankcp (𝑀7) = 14 > b 49

4 c = 12:

Matrix factorization ranks via polynomial optimization 7

𝑀7 =

163 108 27 4 4 27 108
108 163 108 27 4 4 27
27 108 163 108 27 4 4
4 27 108 163 108 27 4
4 4 27 108 163 108 27
27 4 4 27 108 163 108
108 27 4 4 27 108 163

. (7)

On the more applied side, CP matrices occur in the theory of block designs. We
omit many details here, but essentially, block designs deal with arranging distinct
objects into blocks in such a way that the objects occur with certain regularity within
and among the blocks. There is a direct application of block design in designing
experiments where researchers wish to prevent the differences between test subjects
from obfuscating the differences in outcome due to treatment, see [29] for block
designs in depth and see [38] for the link between block designs and CP matrices.

From another perspective of applications, completely positive matrices are of
great interest in optimization.

In 2009, Burer [7] showed that any nonconvex quadratic program with binary
and continuous variables could be reformulated as a linear program over the cone of
completely positive matrices. This effectively meant that many NP-hard problems
could now be viewed as linear programs with CP-membership constraints. This
reformulation does not make the problems any easier to solve as the difficulty is now
pushed into characterizing complete positivity. However, it does allow us to attack a
large class of problems by understanding a unifying thread.

For a thorough account of completely positive and copositive matrices, we refer
the inquisitive reader to the monograph by Berman and Shaked-Monderer [38].

Separable rank

In the setting of quantum information theory, the state of some physical system is
often characterized by a Hermitian PSD matrix 𝑀 ∈ H𝑚 ⊗ H𝑚. These states are
said to be separable if there exist vectors 𝑎1, ..., 𝑎𝑟 , 𝑏1, ..., 𝑏𝑟 ∈ C𝑚 for which

𝑀 =

𝑟∑︁
ℓ=1

𝑎ℓ𝑎
∗
ℓ ⊗ 𝑏ℓ𝑏

∗
ℓ , (8)

where 𝑎∗ denotes the complex conjugate of 𝑎, and ⊗ denotes the tensor product. We
will not go into the details, but it suffices to think of separable states as fully explained
by classical physics, in contradistinction, non-separable states, a.k.a. entangled states
have special properties of interest in quantum physics. For rank-one states, i.e., if
rank(𝑀) = 1, also called pure states, one can obtain a separable factorization by
using singular value decomposition (SVD). Non-rank-one states are called mixed
states, and deciding whether a mixed state 𝑀 is separable is, in general, NP-hard,
see [28, 23].

8 Andries Steenkamp

Example of an entangled state [8]

Consider the following mixed state of size 9 × 9, hence 𝑚 = 3. We have omitted
showing zeros for readability, and we draw grid lines in order to highlight the block
structure.

𝑀 =

1 1 1
2 1

1
2 1

1 1
2

1 1 1
2 1

1 2
1 1

2
1 1 1

.

In [8] it is shown that 𝑀 is entangled.

Analogously to other matrix ranks we considered thus far, there is also a notion
of separable rank, see [13], sometimes called optimal ensemble cardinality [16],
which we define for a separable matrix 𝑀 as

ranksep (𝑀) = min{𝑟 ∈ N : 𝑀 =

𝑟∑︁
ℓ=1

𝑎ℓ𝑎
∗
ℓ ⊗ 𝑏ℓ𝑏

∗
ℓ for some 𝑎ℓ and 𝑏ℓ in C𝑚}. (9)

A possible interpretation of the separable rank is that it gives a sense of how complex
a classical system is, with the convention being that an entangled state has infinite
separable rank. To our knowledge, the complexity of computing the separable rank
is still unknown. There are some crude bounds on the separable rank though

rank(𝑀) ≤ ranksep (𝑀) ≤ rank(𝑀)2.

The left most inequality can be strict (see [16]) and the right most inequality follows
from Caratheodory’s theorem [41].

In addition to the above definition, there are several other variations on this
notion of separability. One variation is to look for factorizations of the form 𝑀 =∑𝑟
ℓ=1 𝐴ℓ ⊗ 𝐵ℓ , where 𝐴ℓ , 𝐵ℓ ∈ H𝑚 are Hermitian PSD matrices. From this it is

easy to define the associated mixed separable rank as the smallest 𝑟 for which such
a factorization is possible. When 𝑀 is diagonal its mixed separable rank equals the
nonnegative rank of an associated 𝑚 × 𝑚 matrix consisting of the diagonal entries
of 𝑀 , see [14]. This shows that mixed separable rank is hard to compute.

Matrix factorization ranks via polynomial optimization 9

Nonnegative tensor factorization ranks

Tensors, also called multi-way arrays, are natural generalizations of matrices com-
monly encountered in applied fields such as statistics, computer vision, and data
science. Strictly speaking, tensor factorization ranks falls beyond the scope of this
chapter, but given the similarities, we would be remiss not to include some remarks
and references on the matter.

Consider, for example, a three-way array 𝑇 ∈ R𝑛×𝑚×𝑝 . Then, its tensor rank is
the smallest number 𝑟 ∈ N of rank-one tensors (tensors of the form 𝑎 ⊗ 𝑏 ⊗ 𝑐 for
some 𝑎 ∈ R𝑛, 𝑏 ∈ R𝑚, and 𝑐 ∈ R𝑝) necessary to describe 𝑇 , i.e.

ranktensor (𝑇) = min{𝑟 ∈ N : 𝑇 =

𝑟∑︁
ℓ=1

𝑎ℓ ⊗ 𝑏ℓ ⊗ 𝑐ℓ , 𝑎ℓ ∈ R𝑛, 𝑏ℓ ∈ R𝑚, 𝑐ℓ ∈ R𝑝}.

Similarly, one can define the nonnegative tensor rank by requiring the factors 𝑎ℓ , 𝑏ℓ ,
and 𝑐ℓ to be nonnegative. Moreover, one can define the symmetric tensor rank by
requiring 𝑛 = 𝑚 = 𝑝 and the factors to be equal, i.e., 𝑎ℓ = 𝑏ℓ = 𝑐ℓ for all ℓ ∈ [𝑟].
An interesting effect of going to tensors is that some decompositions become unique
[40]. See [9] for an applications-centric monograph on tensor factorization. For a
mathematical survey, see Kolda and Bader [31].

Non-commutative matrix factorization ranks

We conclude this section with two more factorizations, often called non-commutative
analogs of nonnegative- and CP factorizations. First is the positive semi-definite
(PSD) factorization, where given a matrix 𝑀 ∈ R𝑚×𝑛

+ we look for PSD matrices
𝐴1, ..., 𝐴𝑚, 𝐵1, ..., 𝐵𝑛 ∈ S𝑟+ , for some 𝑟 ∈ N, such that the matrix 𝑀 is described
entry-wise as follows: 𝑀𝑖, 𝑗 = 〈𝐴𝑖 , 𝐵 𝑗〉 ∈ R for 𝑖 ∈ [𝑚] and 𝑗 ∈ [𝑛]. If the
matrices 𝐴𝑖 and 𝐵 𝑗 are diagonal for 𝑖 ∈ [𝑚] and 𝑗 ∈ [𝑛], then we recover a
nonnegative factorization. Similar to nonnegative factorization, there is a substantial
research interest in PSD-factorization, largely due to its many appealing geometric
interpretations, including semi-definite representations of polyhedra. We refer the
reader to the survey by Fawzi et al. [19] for further study of PSD-factorizations.

Second, we have the symmetric analog of PSD-factorization, called a completely
positive semi-definite (CPSD) factorization, which simply adds the requirement that
𝑛 = 𝑚 and 𝐵𝑖 = 𝐴𝑖 for all 𝑖 ∈ [𝑚].

The associated definition of rank accompanying these two factorizations should
be clear. We stop introducing matrix factorization ranks now and shift gears towards
proving bounds.

10 Andries Steenkamp

2 Bounding matrix factorization ranks

There are two modes of approximating factorization ranks. The first is from above,
using heuristics to construct factorizations. The second is from below, via computing
parameters, often combinatorial in nature, exploiting the support graph of the matrix
𝑀 . The approach we follow falls in this latter category. We will explain the method
applied to the CP-rank, though it should be clear what substitutions are needed to
generalize it to the other factorization ranks we described in section 1.

In this section, we give the focal point of this chapter, the moment hierarchy.
This is the core technique for approximating factorization ranks. In order to define
the hierarchy, we start in section 2.1 with polynomial optimization problems, which
we feel is more natural than jumping straight into generalized moment problems
considered in section 2.2. Finally, we apply the tools built in section 2.2 to the setting
of CP-rank in section 2.3.

The significant results concerning the properties of the hierarchy, like conver-
gence, flatness, and exactness, will be mentioned and explained as we proceed. See
the works [26, 27] for a more fleshed-out exposition of the process we follow here.

2.1 A brief introduction to polynomial optimization

We will be drawing heavily from the rich field of polynomial optimization, so it is
only natural that we introduce some tools and notations in this regard. This small
subsection is not an overview of the field. For that, we recommend the excellent
works [34, 33]. We attempt to cover only the necessities needed to motivate the title
and ease the reader into the more advanced machinery. Depending on the book’s
other chapters and the reader’s background, some topics may be familiar, in which
case, perusing this subsection will at least clarify the notation we use.

Consider the following optimization problem:

𝑓 min := inf
𝑥∈𝐾

𝑓 (𝑥), (10)

where
𝐾 := {𝑥 ∈ R𝑚 : 𝑔𝑖 (𝑥) ≥ 0 (𝑖 ∈ [𝑝]) , ℎ 𝑗 (𝑥) = 0 (𝑗 ∈ [𝑞])}, (11)

and 𝑓 , 𝑔1, ..., 𝑔𝑝 , ℎ1, ..., ℎ𝑞 ∈ R[𝑥] are polynomials in 𝑚 variables 𝑥1, ..., 𝑥𝑚. The
domain of optimization,𝐾 , is a basic closed semi-algebraic set. Problem (10) is called
a polynomial optimization problem or a POP for short. POPs are versatile tools for
modeling various problems. Clearly, linear and quadratic programs are instances of
POPs. Furthermore, one can encode binary variables with polynomial constraints of
the form 𝑥𝑖 (𝑥𝑖 − 1) = 0. Hence, many NP-hard problems can be reformulated as a
POP, and, as such, POPs are generally hard to solve, see [33].

The moment approach to attacking a POP of the form (10) is as follows. We
optimize the integral of the objective over probability measures that have support on

Matrix factorization ranks via polynomial optimization 11

𝐾 , i.e., we consider the following problem

valPOP := inf
`∈ℳ (𝐾)

∫
𝑓 (𝑥)𝑑`,

s.t.
∫

1𝑑` = 1,
(12)

where ℳ(𝐾) is the set of all Borel measures supported on the set 𝐾 .
Problems (10) and (12) are equivalent in the sense that they have the same optimal

values, i.e., 𝑓 min = valPOP. To see that 𝑓 min ≥ valPOP holds consider the Dirac delta
measure 𝛿𝑥min supported at a minimizer 𝑥min of problem (10). Then we have

valPOP ≤
∫

𝑓 (𝑥)𝑑𝛿𝑥min = 𝑓 (𝑥min) = 𝑓 min.

For the other inequality, valPOP ≥ 𝑓 min, simply observe∫
𝑓 (𝑥)𝑑` ≥ 𝑓 min

∫
1𝑑` = 𝑓 min.

The last equality comes from the fact that ` is a probability measure. With the
equivalence between POPs and this new problem (12) established, we can focus on
solving the latter.

2.2 Generalized moment problems

Problem (12) is a special instance of what is called a generalized moment problem
(GMP), which is an even more versatile type of problem than a POP. Reformulating
our optimization problem over measures does not give a clear advantage, as measures
are difficult to handle. However, we will soon see in (16) how one can truncate the
problem to create a hierarchy of semi-definite programs (SDP).

Consider the following general form of GMP:

val := inf
`∈ℳ (𝐾)

{ ∫
𝑓0 (𝑥)𝑑` :

∫
𝑓𝑖𝑑` = 𝑎𝑖 (𝑖 ∈ [𝑁])

}
, (13)

where 𝑓0, 𝑓1, ..., 𝑓𝑁 are polynomials. From the discussion in section 2.1, we saw that
POPs are a special class of GMPs with 𝑁 = 1 and 𝑓1 = 𝑎1 = 1. In section 2.3,
we will show that the CP-rank can be reformulated as a GMP. Before we can
start attacking the above GMP with the so-called moment method, we must first
set some notation and basic definitions. Let N𝑚𝑡 be the set of all multi-indices
𝛼 = (𝛼1, 𝛼2, ..., 𝛼𝑚) such that |𝛼 | :=

∑𝑚
𝑖=1 𝛼𝑖 ≤ 𝑡. If 𝑡 = ∞ we just write N𝑚.

For 𝑥 = (𝑥1, 𝑥2, ..., 𝑥𝑚) ∈ R𝑚 denote the truncated sequence of monomials by
[𝑥]𝑡 :=

(
𝑥𝛼

)
𝛼∈N𝑚𝑡

, where 𝑥𝛼 := 𝑥𝛼1
1 𝑥

𝛼2
2 · · · 𝑥𝛼𝑚𝑚 . For a measure ` define its moments

to be the sequence of values, obtained when integrating the monomials w.r.t. the

12 Andries Steenkamp

measure, i.e, ∫
𝑥𝛼𝑑` (𝛼 ∈ N𝑚).

Using moments, we can think of measures as linear functionals acting on the ring
of polynomials. That is, for a measure `, we can define a linear map 𝐿 : R[𝑥] → R
by defining what it does to monomials: 𝐿 (𝑥𝛼) =

∫
𝑥𝛼𝑑` for every 𝛼 ∈ N𝑛. Hence,

for any polynomial 𝑓 =
∑
𝛼 𝑐𝛼𝑥

𝛼, we have

𝐿 (𝑓) = 𝐿 (
∑︁
𝛼

𝑐𝛼𝑥
𝛼) =

∑︁
𝛼

𝑐𝛼𝐿 (𝑥𝛼) =
∑︁
𝛼

𝑐𝛼

∫
𝑥𝛼𝑑` =

∫
𝑓 𝑑`.

Denote the space of truncated linear functionals acting on the space of polynomials
of degree at most 𝑡, i.e., on R[𝑥]𝑡 , by R[𝑥]∗𝑡 . Going in the opposite direction, i.e.,
from a linear functional 𝐿 ∈ R[𝑥]∗ to a measure `, is not always possible. When there
does exists a measure ` ∈ ℳ(𝐾) such that 𝐿 (𝑥𝛼) =

∫
𝑥𝛼𝑑` for all 𝛼 ∈ N𝑚, 𝐿 is

said to have a representing measure. We introduce some more concepts and notation
to characterize the necessary conditions for measure representable functionals.

Recall the definition of our semi-algebraic set 𝐾 in eq. (11):

𝐾 := {𝑥 ∈ R𝑚 : 𝑔𝑖 (𝑥) ≥ 0 (𝑖 ∈ [𝑝]) , ℎ 𝑗 (𝑥) = 0 (𝑗 ∈ [𝑞])}.

For 𝑡 ∈ N ∪ {∞} define the truncated quadratic module generated by g :=
(𝑔0, 𝑔1, 𝑔2, ..., 𝑔𝑝), with 𝑔0 = 1, as

M(g)2𝑡 :=
{ 𝑝∑︁
𝑗=0
𝜎𝑗𝑔 𝑗 : 𝜎𝑗 ∈ Σ, deg(𝜎𝑗𝑔 𝑗) ≤ 2𝑡

}
. (14)

Here Σ denotes the set of sums of squares of polynomials. In a similar vein we define
the truncated ideal generated by h := (ℎ1, ℎ2, ..., ℎ𝑞) as

I(h)2𝑡 :=
{ 𝑞∑︁
𝑗=1
𝛾 𝑗ℎ 𝑗 : 𝛾 𝑗 ∈ R[𝑥], deg(𝛾 𝑗ℎ 𝑗) ≤ 2𝑡

}
. (15)

When 𝑡 = ∞ we also just drop the subscript and write: M(g) and I(h).
A crucial observation (see [33]) is that if 𝐿 ∈ R[𝑥]∗ has a representing measure

` ∈ ℳ(𝐾) then 𝐿 ≥ 0 on M(g) and 𝐿 = 0 on I(h). Using this, we can define, for
any 𝑡 ∈ N ∩ {∞}, the following sequence of parameters,

b𝑡 := min{𝐿 (𝑓0) :𝐿 ∈ R[𝑥]∗2𝑡 ,
𝐿 (𝑓𝑖) = 𝑎𝑖 (𝑖 ∈ [𝑁]),
𝐿 ≥ 0 on M(g)2𝑡 ,
𝐿 = 0 on I(h)2𝑡 }.

(16)

We call b1, b2, ..., b∞ a hierarchy as we clearly have for any 𝑡 ∈ N that,

Matrix factorization ranks via polynomial optimization 13

b𝑡 ≤ b𝑡+1 ≤ b∞ ≤ val.

Exercise 1

Given a solution 𝐿 to the problem associated with b𝑡+1 construct a solution to the
problem associated with b𝑡 .

Under mild assumptions, the bounds b𝑡 converge asymptotically to the optimum
value val as 𝑡 goes to infinity. We state the well-known and widely used result here
and refer to [33, 12] for a full exposition.

Theorem 1 Assume problem (13) is feasible and the following Slater-type condition
holds:

there exist scalars 𝑧0, 𝑧1, . . . , 𝑧𝑁 ∈ R such that
𝑁∑︁
𝑖=0

𝑧𝑖 𝑓𝑖 (𝑥) > 0 for all 𝑥 ∈ 𝐾.

Then (13) has an optimal solution `, which can be chosen to be finite atomic, i.e.,
` =

∑
𝑗∈𝐽 𝑐 𝑗𝛿𝑥 (𝑗) for some finite index set 𝐽, scalars 𝑐 𝑗 ≥ 0, and points 𝑥 (𝑗) ∈ 𝐾 . If,

in addition, M(g) is Archimedean, i.e., 𝑅 −∑𝑚
𝑖=1 𝑥

2
𝑖
∈ M(g) for some scalar 𝑅 > 0,

then we have lim𝑡→∞ b𝑡 = b∞ = val.

Hence, the link between the GMP (13) and the hierarchy (16) is established.
Earlier, we said that, for each 𝑡, problem (16) is an SDP. This fact may become

apparent after the following characterizations. Firstly, observe that a polynomial
𝜎 ∈ R[𝑥]2𝑡 is a sum of squares, i.e. 𝜎 ∈ Σ, if and only if there exists some matrix
𝑀𝜎 � 0 such that 𝜎(𝑥) = [𝑥]𝑇𝑡 𝑀𝜎 [𝑥]𝑡 . Having this in mind, we see that 𝐿 ≥ 0 on
Σ2𝑡 is equivalent to saying 𝐿 ([𝑥]𝑡 [𝑥]𝑇𝑡) � 0, because 𝐿 (𝜎) = 𝐿 ([𝑥]𝑇𝑡 𝑀𝜎 [𝑥]𝑡) =

〈𝐿 ([𝑥]𝑡 [𝑥]𝑇𝑡), 𝑀𝜎〉, and using the fact that the PSD cone is self-dual. Similarly, for
any 𝜎 ∈ Σ2𝑡 and 𝑗 ∈ [𝑝] we have 𝐿 (𝑔 𝑗𝜎) = 〈𝐿 (𝑔 𝑗 (𝑥) [𝑥]𝑡 [𝑥]𝑇𝑡), 𝑀𝜎〉. Thus 𝐿 ≥ 0
on M(g)2𝑡 can be equivalently characterized by the PSD constraints:

𝐿 (𝑔 𝑗 [𝑥]𝑡−𝑑𝑔𝑗 [𝑥]
𝑇
𝑡−𝑑𝑔𝑗

) � 0, (17)

for 𝑗 = 0, 1, ..., 𝑝, where 𝑑𝑔 𝑗 := ddeg(𝑔 𝑗)/2e. Secondly, the ideal constraints 𝐿 = 0
on I(h)2𝑡 can be encoded as follows:

𝐿 (ℎ 𝑗 [𝑥]2𝑡−deg(ℎ 𝑗)) = 0, (18)

for each 𝑗 ∈ [𝑞], where the vector equality should be understood entry-wise.

Exercise 2

Prove the above two claimed equivalences.

14 Andries Steenkamp

Using eq. (17) and eq. (18) we can reformulate problem (16) as

b𝑡 = min{𝐿 (𝑓) :𝐿 ∈ R[𝑥]∗2𝑡 ,
𝐿 (𝑓𝑖) = 𝑎𝑖 (𝑖 ∈ [𝑁]),
𝐿 (𝑔 𝑗 [𝑥]𝑡−𝑑𝑔𝑗 [𝑥]

𝑇
𝑡−𝑑𝑔𝑗

) � 0 (𝑗 = 0, 1, ..., 𝑝),

𝐿 (ℎ 𝑗 [𝑥]2𝑡−deg(ℎ 𝑗)) = 0 (𝑗 ∈ [𝑞])}.

(19)

For fixed level 𝑡, the program (19) is an SDP of size polynomial in 𝑚. It is
known that SDPs are efficiently solvable under some technical conditions, see [36].
However, computing val remains inefficient because the matrices describing (19)
could be of size max 𝑗∈[𝑝]{

(𝑚+𝑡−𝑑𝑔𝑗
𝑡−𝑑𝑔𝑗

)
}, and hence soon grow beyond what most

currently available hardware can store in memory. In our experience the level 𝑡 of
the hierarchy is often quite small (1 to 5) for practical examples.

Finite convergence and recovering optimal solutions

Thus far in this section, we have seen how to get successive approximations of
val. We saw in the preceding section 2.1 how GMPs relate to POPs, and soon in
section 2.3 we will see how GMPs relate to the CP-rank of a matrix. However, what
was not shown is whether we can also recover an optimizer 𝑥min. On another note,
we said that the hierarchy quickly exceeds hardware capacity as the level increase,
so it would be helpful if we had finite convergence, i.e., b𝑡 = b∞ for some 𝑡 < ∞. It
turns out that there is a condition under which we solve both of these shortcomings
mentioned above: finite convergence and the possibility of recovering an optimizer.
Simply put, if a solution 𝐿 to the hierarchy b𝑡 at level 𝑡 satisfies the flatness condition
(20), then the bound at that level is exact, i.e., b𝑡 = b∞, and there is a way to extract a
finite atomic solution to the GMP in eq. (13). We formally state the classical theorem
due to Curto and Fialkow [10, 11], upon which we base these claims. Note that the
original formulation by Curto and Fialkow was not in the context of GMPs. We refer
the reader again to [33, 12] for a more cohesive view.

Theorem 2 (Flatness theorem) [10, 11] Consider the set 𝐾 from (11) and define
𝑑𝐾 := max{1, ddeg(𝑔 𝑗)/2e : 𝑗 ∈ [𝑝]}. Let 𝑡 ∈ N such that 2𝑡 ≥ max{deg(𝑓𝑖) : 0 ≤
𝑖 ≤ 𝑁} and 𝑡 ≥ 𝑑𝐾 . Assume 𝐿 ∈ R[𝑥]∗2𝑡 is an optimal solution to the program (19)
defining the parameter b𝑡 and it satisfies the following flatness condition:

rank 𝐿 ([𝑥]𝑠 [𝑥]𝑇𝑠) = rank 𝐿 ([𝑥]𝑠−𝑑𝐾 [𝑥]𝑇𝑠−𝑑𝐾) for some integer 𝑠 such that 𝑑𝐾 ≤ 𝑠 ≤ 𝑡.
(20)

Then equality b𝑡 = val holds and problem (13) has an optimal solution ` which is
finite atomic and supported on 𝑟 := rank 𝐿 ([𝑥]𝑠−𝑑𝐾 [𝑥]𝑇𝑠−𝑑𝐾) points in 𝐾 .

For the details on how to extract the atoms of the optimal measure when the flatness
condition of Theorem 2 holds, we refer to [30, 34].

Matrix factorization ranks via polynomial optimization 15

In the context of factorization, we will soon see that the convergence described
in Theorems 1 and 2 is not towards the rank but instead another closely related
convex parameter. Furthermore, for the cases of nonnegative- and CP factorization,
the atoms we recover are exactly the columns of the factorization matrices. We now
proceed to apply the above techniques to the task of approximating the completely
positive rank.

2.3 Constructing a hierarchy of lower bounds for CP-rank

With the moment hierarchy machinery in place, we return our attention to factor-
ization ranks. In particular, we will construct a hierarchy of lower bounds for the
CP-rank. It should be clear to the reader how to extend the contents of this section to
the nonnegative and separable ranks. As for the other ranks discussed in section 1,
some technicalities will be required, which we omit for brevity and simply provide
references where appropriate.

Begin by recalling the definition of the CP-rank from eq. (6), and note that we
can equivalently express it as follows:

rankcp (𝑀) = min{𝑟 ∈ N : 𝑀 =

𝑟∑︁
ℓ=1

𝑎ℓ𝑎
𝑇
ℓ for some 𝑎1, 𝑎2, ..., 𝑎𝑟 ∈ R𝑚+ }. (21)

The above is sometimes called an atomic formulation because the factors 𝑎ℓ (the
columns of 𝐴 in the eq. (6) formulation) can be thought of as the atoms of the
factorization. Assuming we know that 𝑀 is CP, we believe solving the optimization
problem (21) is still hard, though, to the best of our knowledge, there is no proof of
this claim. It is natural to ask if relaxing some constraints yields an easier problem.
In this vein, Fawzi and Parrilo [21] introduced a natural “convexification" of the
CP-rank:

𝜏cp (𝑀) := inf
{
_ :

1
_
𝑀 ∈ conv{𝑥𝑥𝑇 : 𝑥 ∈ R𝑚+ , 𝑀 − 𝑥𝑥𝑇 � 0, 𝑀 ≥ 𝑥𝑥𝑇 }

}
. (22)

A similar parameter can be defined for the NN-rank [21] and the separable rank [27].

Exercise 3

Prove that 𝜏cp (𝑀) is a lower bound for rankcp (𝑀).

Because 𝜏cp is a convex relaxation of the combinatorial parameter rankcp, it is
possibly strictly worse, i.e., 𝜏cp (𝑀) < rankcp (𝑀) for some 𝑀 . Furthermore, 𝜏cp (𝑀)
does not appear any easier to compute than rankcp (𝑀), in part because we do not
have an efficient characterization of the convex hull described in eq. (22). However,
not all is lost, as 𝜏cp (𝑀) can be reformulated as a GMP,

16 Andries Steenkamp

𝜏cp (𝑀) = inf
`∈M(𝐾𝑀)

{ ∫
𝐾𝑀

1𝑑` :
∫
𝐾𝑀

𝑥𝑖𝑥 𝑗𝑑` = 𝑀𝑖 𝑗 (𝑖, 𝑗 ∈ [𝑚]),
}
, (23)

where

𝐾𝑀 := {𝑥 ∈ R𝑚 :
√︁
𝑀𝑖𝑖𝑥𝑖 − 𝑥2

𝑖 ≥ 0 (𝑖 ∈ [𝑚]),
𝑀𝑖 𝑗 − 𝑥𝑖𝑥 𝑗 ≥ 0 (𝑖 ≠ 𝑗 ∈ [𝑚]),
𝑀 − 𝑥𝑥𝑇 � 0}.

(24)

For a small proof using Theorem 1 see Lemma 2 of [32]. The idea of using a GMP
to model CP matrices was already explored in the work of Nie [37].

The reader may wonder why the constraints 𝑀𝑖 𝑗 − 𝑥𝑖𝑥 𝑗 ≥ 0 and
√
𝑀𝑖𝑖𝑥𝑖 − 𝑥2

𝑖
≥ 0

are preferred here over the equivalent and more intuitive constraints: 𝑥𝑖 ≥ 0 and
𝑀𝑖 𝑗 − 𝑥𝑖𝑥 𝑗 ≥ 0 (for all 𝑖, 𝑗 ∈ [𝑚]). This is because the former gives, for finite 𝑡, a
larger truncated quadratic module, which in turn gives better bounds for the finite
levels of the hierarchy. Both options are, of course, equivalent in the limit as 𝑡 goes
to infinity, see [26].

Note that the last constraint, 𝑀 − 𝑥𝑥𝑇 � 0, is a polynomial matrix constraint.
The idea behind this constraint is to encode that any CP factor 𝑎𝑎𝑇 of 𝑀 is PSD
less than 𝑀 , i.e., 𝑀 − 𝑎𝑎𝑇 � 0. We could equivalently have asked that 𝑓𝑣 (𝑥) :=
𝑣𝑇 (𝑀 − 𝑥𝑥𝑇)𝑣 ≥ 0 for all 𝑣 ∈ R𝑛, or that the minors of 𝑀 − 𝑥𝑥𝑇 be nonnegative.
However the matrix formulation is computationally easier to implement as we will
see below. Several characterizations and supplementary references are considered
for this constraint in [27].

Now we simply apply the techniques of section 2.1 to construct a hierarchy of
lower bounds for the above GMP (23) to obtain the following parameter for any
𝑡 ∈ N ∪ {∞}:

b
cp
𝑡 (𝑀) := min{𝐿 (1) :𝐿 ∈ R[𝑥]∗2𝑡 ,

𝐿 (𝑥𝑥𝑇) = 𝑀,
𝐿 ([𝑥]𝑡 [𝑥]𝑇𝑡) � 0,

𝐿 ((
√︁
𝑀𝑖𝑖𝑥𝑖 − 𝑥2

𝑖) [𝑥]𝑡−1 [𝑥]𝑇𝑡−1) � 0 (𝑖 ∈ [𝑚]),
𝐿 ((𝑀𝑖 𝑗 − 𝑥𝑖𝑥 𝑗) [𝑥]𝑡−1 [𝑥]𝑇𝑡−1) � 0 (𝑖 ≠ 𝑗 ∈ [𝑚]),
𝐿 ((𝑀 − 𝑥𝑥𝑇) ⊗ [𝑥]𝑡−1 [𝑥]𝑇𝑡−1) � 0}.

(25)

The basic idea for the construction of this hierarchy comes initially from [26]. The
last constraint was added later in [27].

Using Theorem 1 we have the following chain of inequalities:

b
cp
1 (𝑀) ≤ bcp

2 (𝑀) ≤ ... ≤ bcp
∞ (𝑀) = 𝜏cp (𝑀) ≤ rankcp (𝑀).

Let us get some intuition for why this hierarchy works. Consider a CP factorization
𝑎1, ..., 𝑎𝑟 ∈ R𝑚+ of 𝑀 with 𝑟 := rankcp (𝑀). Define for each 𝑖 ∈ [𝑟] the following

Matrix factorization ranks via polynomial optimization 17

evaluation linear functional 𝐿𝑎𝑖 that maps a polynomial 𝑓 (𝑥) to its evaluation at the
point 𝑎𝑖 , i.e.,

𝐿𝑎𝑖 : R[𝑥] 3 𝑓 (𝑥) ↦→ 𝑓 (𝑎𝑖) ∈ R (𝑖 ∈ [𝑟]).

Then �̃� :=
∑
𝑖∈[𝑟] 𝐿𝑎𝑖 is feasible for the problem (25). Moreover, �̃� (1) = 𝑟 =

rankcp (𝑀).

Exercise 4

Show that �̃� satisfies each of the constraints of problem (25).

One can think of the constraints in (25) as filters excluding solutions that are
dissimilar to �̃�. Of course, �̃� is only feasible and not necessarily optimal. Hence
b𝑡 (𝑀) ≤ rankcp (𝑀) for every 𝑡, and in practice, the inequality is often strict. The
finite atomic measure ˜̀ :=

∑𝑟
𝑖=1 𝛿𝑎𝑖 supported on the atoms 𝑎1, ..., 𝑎𝑟 is a represent-

ing measure of �̃�.

With a hierarchy constructed, we can now compute some examples.

2.4 A note on computing hierarchies of SDPs

We said before that, for a fixed 𝑡 ∈ N, problem (25) is an SDP, and we claimed
that it could be computed efficiently. We now give some tips in implementing these
problems using freely available software. Theory is often a poor substitute for hands-
on experience when it comes to implementing code. Therefore, this small subsection
is simply a snapshot of the quickly changing available tools. The reader is encouraged
to play around with these tools should he/she seek a deeper understanding. At the
end, we list a table of results so that the reader can get a feel for the power of these
approximation hierarchies.

Disclaimer, the procedure we describe here is based on the author’s experience
and preferences and should not be seen as the only way to compute hierarchies.

The core idea is to work inside the programming language Julia [3], within which
there is a package called JuMP [18] specially designed as a high-level interface
between several commonly used solvers and Julia. In particular, JuMP can interface
with MOSEK [1], a powerful commercial interior-point solver. Though MOSEK
requires a license to run, academic licenses are available free of charge at the time of
writing this. To summarize, one installs Julia, imports JuMP, uses the JuMP syntax
to formulate the desired SDP as a JuMP-model, and then one passes off the JuMP-
model to MOSEK to be solved. In broad strokes, this was the procedure followed in
[26, 27, 32] to compute bounds for the NN-, CP-, and separable ranks. Some code is
available as a package 2.

2 See the code repository: https://github.com/JAndriesJ/ju-cp-rank

18 Andries Steenkamp

Some numerical results for CP-rank

In [27], the hierarchy (25) was tested on several matrices with high CP-rank. See [4]
for the construction and definitions of these matrices. We already saw 𝑀7 above in
eq. (7). We now list the bound at level 𝑡 = 3 of the hierarchy (25) for some of the
other matrices in [4].

Table 1 Bounds for completely positive rank at level 𝑡 = 3.

𝑀 rank(𝑀) 𝑚 b𝑚2

4 c b cp
3 (𝑀) rankcp (𝑀)

𝑀7 7 7 12 11.4 14
𝑀7 7 7 12 10.5 14
𝑀8 8 8 16 14.5 18
𝑀9 9 9 20 18.4 26

Level 𝑡 = 3 was the highest that could be computed on the available hardware.

3 Exploiting sparsity

In this penultimate section, we explore sparsity, by which we mean the exploitation of
zeros in the matrix𝑀 to obtain better bounds or faster computations. In particular, we
will explore a special kind of sparsity called ideal sparsity, as defined in [32]. Recall
in problem (16) that the ideal constraint in the SDP forces the measure to vanish
on certain polynomials. In this section, we show how the zero entries in a matrix
lead the measure vanish on particular monomials. Using this, we can replace the
original measure by multiple measures, each with a smaller support than the original
one. The motivation behind this divide-and-conquer tactic is that the measures with
smaller support lead to SDPs with smaller matrices and hence are easier to compute.
Surprisingly, the sparse hierarchy, which we will define in (33), is also stronger than
its dense analog (16), in contradistinction to other sparsity techniques where one
often sacrifices the quality of the bounds in favor of computational benefits.

We first begin with a general introduction to ideal sparsity for the GMP setting
in section 3.1. With the basic idea established, we apply ideal sparsity to CP-rank in
section 3.2 and construct a sparse analog to the hierarchy (25). Finally, we conclude
this section with some results in section 3.3 demonstrating the benefits of this sparse
hierarchy over its dense analog.

Matrix factorization ranks via polynomial optimization 19

3.1 An abbreviated introduction to ideal sparsity

Let 𝑉 := [𝑚], 𝐸 ⊆ {{𝑖, 𝑗} ∈ 𝑉 × 𝑉 : 𝑖 ≠ 𝑗}, and let 𝐸 := {{𝑖, 𝑗} ∈ 𝑉 × 𝑉 : {𝑖, 𝑗} ∉
𝐸, 𝑖 ≠ 𝑗} be its complement. Suppose now that the semi-algebraic set from eq. (11)
is defined as follows

𝐾𝐸 := {𝑥 ∈ R𝑚 : 𝑔𝑖 (𝑥) ≥ 0 (𝑖 ∈ [𝑝]) , 𝑥𝑖𝑥 𝑗 = 0 ({𝑖, 𝑗} ∈ 𝐸)}.

By definition, the ideal in eq. (15) becomes

I𝐸,2𝑡 :=
{ ∑︁
{𝑖, 𝑗 }∈𝐸

𝛾𝑖 𝑗𝑥𝑖𝑥 𝑗 : 𝛾𝑖 𝑗 ∈ R[𝑥]2𝑡−2

}
⊆ R[𝑥]2𝑡 . (26)

Observe that we have 𝐾𝐸 ⊆ I𝐸 . We plan to partition 𝐾𝐸 in a particular way to
eliminate the need for ideal constraints in the subsequent levels of the hierarchy.

Consider the undirected graph 𝐺 = (𝑉, 𝐸) and denote its maximal cliques by
𝑉1, . . . , 𝑉𝑠 . For each 𝑘 ∈ [𝑠] define the following subset of 𝐾𝐸 :

𝐾𝑘 := {𝑥 ∈ 𝐾 : supp(𝑥) ⊆ 𝑉𝑘 } ⊆ 𝐾 ⊆ R𝑚. (27)

Here, supp(𝑥) = {𝑖 ∈ [𝑚] : 𝑥𝑖 ≠ 0} denotes the support of 𝑥 ∈ R𝑚. Observe that the
sets 𝐾1, . . . , 𝐾𝑠 cover the set 𝐾𝐸 :

𝐾𝐸 = 𝐾1 ∪ . . . ∪ 𝐾𝑠 . (28)

It is an easy exercise to see that if 𝑥 ∈ 𝐾𝐸 , then its support supp(𝑥) is a clique of
the graph 𝐺, and thus it is contained in a maximal clique 𝑉𝑘 , so that 𝑥 ∈ 𝐾𝑘 , for
some 𝑘 ∈ [𝑠]. Now define 𝐾𝑘 ⊆ R |𝑉𝑘 | to be the projection of 𝐾𝑘 onto the subspace
indexed by 𝑉𝑘 :

𝐾𝑘 := {𝑦 ∈ R |𝑉𝑘 | : (𝑦, 0𝑉 \𝑉𝑘) ∈ 𝐾𝑘 } ⊆ R |𝑉𝑘 | . (29)

We use the notation (𝑦, 0𝑉 \𝑉𝑘) to denote the vector of R𝑛 obtained from 𝑦 ∈ R |𝑉𝑘 |

by padding it with zeros at all entries indexed by 𝑉 \ 𝑉𝑘 . For an 𝑛-variate function
𝑓 : R |𝑉 | → R and a subset𝑈 ⊆ 𝑉 , we let 𝑓 |𝑈 : R |𝑈 | → R denote the function in the
variables 𝑥(𝑈) = {𝑥𝑖 : 𝑖 ∈ 𝑈}, which is obtained from 𝑓 by setting to zero all the
variables 𝑥𝑖 indexed by 𝑖 ∈ 𝑉 \𝑈. That is, 𝑓 |𝑉𝑘 (𝑦) = 𝑓 (𝑦, 0𝑉 \𝑉𝑘) for 𝑦 ∈ R |𝑉𝑘 | .

We may now define the following sparse analog of (13):

valsp := inf
`𝑘 ∈ℳ (𝐾𝑘) ,𝑘∈[𝑠]

{ 𝑠∑︁
𝑘=1

∫
𝑓0 |𝑉𝑘 𝑑`𝑘 :

𝑠∑︁
𝑘=1

∫
𝑓𝑖 |𝑉𝑘 𝑑`𝑘 = 𝑎𝑖 (𝑖 ∈ [𝑁])

}
.

(30)

Proposition 1 [32] Problems (13) (using 𝐾𝐸) and (30) are equivalent, i.e., their
optimum values are equal: val = valsp.

20 Andries Steenkamp

Based on the reformulation (30) we can define the following ideal-sparse moment
relaxation for problem (13): for any integer 𝑡 ∈ N ∪ {∞}

b
isp
𝑡 := inf

{ ∑𝑠
𝑘=1 𝐿𝑘 (𝑓0 |𝑉𝑘) : 𝐿𝑘 ∈ R[𝑥(𝑉𝑘)]∗2𝑡 (𝑘 ∈ [𝑠]),∑𝑠

𝑘=1 𝐿𝑘 (𝑓𝑖 |𝑉𝑘) = 𝑎𝑖 (𝑖 ∈ [𝑁]),
𝐿𝑘 ≥ 0 on M(g |𝑉𝑘)2𝑡 (𝑘 ∈ [𝑠])

}
,

(31)

where g |𝑉𝑘 := (𝑔0 |𝑉𝑘 , 𝑔1 |𝑉𝑘 , 𝑔2 |𝑉𝑘 , ..., 𝑔𝑝 |𝑉𝑘). Note that the ideal constraint are en-
tirely captured by the fact that none of the measures `𝑘 support any elements of the
ideal.

With two hierarchies converging to the same value, the obvious question is
whether one converges faster. Surprisingly, the bounds for the sparse hierarchy (31)
are at least as good as for the dense hierarchy (16).

Theorem 3 [32] For any integer 𝑡 ∈ N∪{∞}, we have b𝑡 ≤ b isp
𝑡 ≤ val. If, in addition

M(g) is Archimedian and the condition in Theorem 1 holds, then lim𝑡→∞ b
isp
𝑡 = val.

The advantage of (31) over (16) is twofold. Firstly, the sparse bounds are at least
as good as the dense bounds. Secondly, there is potential for computation speed-up
since each set 𝑉𝑘 can be much smaller than the whole set 𝑉 . This holds despite
there now being more variables and constraints overall. However, speed-up fails in
cases where there are exponentially many (in 𝑛) maximal cliques, like when 𝐺 is a
complete graph with a perfect matching deleted.

Observe that chordality need not be assumed on the cliques. However, we are
required to find all maximal cliques. For an arbitrary graph, this could be difficult,
but in the setting of factorization ranks, the graphs are often small, with around 5 to
15 vertices. Hence, one can compute the maximal cliques using algorithms like the
one described in [6].

3.2 Ideal sparsity in approximating CP-rank

Return now to the completely positive rank. The rather abstractly defined ideal
constraint in section 3.1 will emerge naturally from the zeros in a matrix. Consider
a CP matrix 𝑀 ∈ S𝑚+ , assume 𝑀𝑖𝑖 > 0 for all 𝑖 ∈ [𝑚]. If 𝑀 is a CP matrix with
𝑀𝑖𝑖 = 0, then its 𝑖th row and column are identically zero, and thus it can be removed
without changing the CP-rank. Define the support graph𝐺𝑀 := (𝑉, 𝐸𝑀) of 𝑀 , with
edge-set and non-edge-set respectively defined by:

𝐸𝑀 := {{𝑖, 𝑗} : 𝑀𝑖 𝑗 ≠ 0, 𝑖, 𝑗 ∈ 𝑉, 𝑖 ≠ 𝑗}, 𝐸𝑀 := {{𝑖, 𝑗} : 𝑀𝑖 𝑗 = 0, 𝑖, 𝑗 ∈ 𝑉, 𝑖 ≠ 𝑗}.

If 𝐺𝑀 is not connected, then 𝑀 can be block-diagonalized using row and column
permutations. It is immediately apparent that the CP-rank of a block diagonal matrix
is the sum of the CP-ranks of its blocks. So we may assume that 𝐺𝑀 is connected.
Now we can modify the semi-algebraic set from eq. (24) to read as follows

Matrix factorization ranks via polynomial optimization 21

𝐾
isp
𝑀

:= {𝑥 ∈ R𝑚 :
√
𝑀𝑖𝑖𝑥𝑖 − 𝑥2

𝑖
≥ 0 (𝑖 ∈ [𝑚]),

𝑀𝑖 𝑗 − 𝑥𝑖𝑥 𝑗 ≥ 0 ({𝑖, 𝑗} ∈ 𝐸𝑀),
𝑥𝑖𝑥 𝑗 = 0 ({𝑖, 𝑗} ∈ 𝐸𝑀),
𝑀 − 𝑥𝑥𝑇 � 0}.

(32)

We have not introduced any new information. We have just explicitly encoded the
fact that 𝑀𝑖 𝑗 = 0 and 𝑀𝑖 𝑗 − 𝑥𝑖𝑥 𝑗 ≥ 0 imply 𝑥𝑖𝑥 𝑗 = 0 (because 𝑥 ≥ 0). In this form
we can apply the results from sections 2.2, 2.3 and 3.1 to define the following new
hierarchy,

b
cp,isp
𝑡 (𝑀) = min

{ 𝑠∑︁
𝑘=1

𝐿𝑘 (1) : 𝐿𝑘 ∈ R[𝑥(𝑉𝑘)]∗2𝑡 (𝑘 ∈ [𝑠]),∑︁
𝑘∈[𝑠]:𝑖, 𝑗∈𝑉𝑘

𝐿𝑘 (𝑥𝑖𝑥 𝑗) = 𝑀𝑖 𝑗 (𝑖, 𝑗 ∈ 𝑉),

𝐿𝑘 ([𝑥(𝑉𝑘)]𝑡 [𝑥(𝑉𝑘)]𝑇𝑡) � 0 (𝑘 ∈ [𝑠]),

𝐿𝑘 ((
√︁
𝑀𝑖𝑖𝑥𝑖 − 𝑥2

𝑖) [𝑥(𝑉𝑘)]𝑡−1 [𝑥(𝑉𝑘)]𝑇𝑡−1) � 0 (𝑖 ∈ 𝑉𝑘 , 𝑘 ∈ [𝑠]),
𝐿𝑘 ((𝑀𝑖 𝑗 − 𝑥𝑖𝑥 𝑗) [𝑥(𝑉𝑘)]𝑡−1 [𝑥(𝑉𝑘)]𝑇𝑡−1) � 0 (𝑖 ≠ 𝑗 ∈ 𝑉𝑘 , 𝑘 ∈ [𝑠]),
𝐿𝑘 ((𝑀 − 𝑥𝑥𝑇) ⊗ [𝑥(𝑉𝑘)]𝑡−1 [𝑥(𝑉𝑘)]𝑇𝑡−1) � 0, (𝑘 ∈ [𝑠]).

(33)

As a direct consequence of Theorem 3 we have the following relation:

b
cp
𝑡 (𝑀) ≤ bcp,isp

𝑡 (𝑀) ≤ 𝜏cp (𝑀).

Problem (33) looks cumbersome. However, it is ultimately just problem (25) with
the single functional replaced by multiple functionals, each with support tailored to
exclude polynomials in the ideal I𝐸𝑀 .

Observe that, if, in problem (33), we replace the matrix 𝑀 − 𝑥𝑥𝑇 by its prin-
cipal submatrix indexed by 𝑉𝑘 , then one also gets a lower bound on 𝜏cp (𝑀), at
most bcp,isp

𝑡 (𝑀), but potentially cheaper to compute. We let bcp,wisp
𝑡 (𝑀) denote the

parameter obtained in this way, by replacing in the definition of bcp,isp
𝑡 (𝑀) the last

constraint by

𝐿𝑘 ((𝑀 [𝑉𝑘] − 𝑥(𝑉𝑘)𝑥(𝑉𝑘)𝑇) ⊗ [𝑥(𝑉𝑘)]𝑡−1 [𝑥(𝑉𝑘)]𝑇𝑡−1) � 0 for 𝑘 ∈ [𝑠], (34)

so that we have
b

cp,wisp
𝑡 (𝑀) ≤ bcp,isp

𝑡 (𝑀).

An example of maximal cliques in the support graph of a matrix

To get some intuition into what the maximal cliques look like in the CP factorization
setting, consider the following matrix and its associated support graph in fig. 1.

22 Andries Steenkamp

Fig. 1 Example of a matrix and its support graph. This example has non-edges: 𝐸𝑀 :=
{{1, 4}, {1, 6}, {2, 6}, {3, 4}, {3, 6}, {4, 5}}, and maximal cliques: 𝑉1 := {1, 2, 3, 5, 7}, 𝑉2 :=
{2, 4, 7},𝑉3 := {5, 6, 7},𝑉4 := {4, 6, 7}. Hence, if 𝑀 is CP, then its factors can only be supported
by one of these four cliques.

3.3 Advantages of the sparse hierarchy

In this subsection, we compare the dense and sparse hierarchies for approximating
the CP-rank. The comparison is first made in terms of bounds and then in terms of
computational speed-up.

Better bounds

We now demonstrate some advantages of the sparse hierarchy (33) above its dense
counterpart in (25). To this end consider one of the matrices from [5], namely,

𝑀 =

91 0 0 0 19 24 24 24 19 24 24 24
0 42 0 0 24 6 6 6 24 6 6 6
0 0 42 0 24 6 6 6 24 6 6 6
0 0 0 42 24 6 6 6 24 6 6 6
19 24 24 24 91 0 0 0 19 24 24 24
24 6 6 6 0 42 0 0 24 6 6 6
24 6 6 6 0 0 42 0 24 6 6 6
24 6 6 6 0 0 0 42 24 6 6 6
19 24 24 24 19 24 24 24 91 0 0 0
24 6 6 6 24 6 6 6 0 42 0 0
24 6 6 6 24 6 6 6 0 0 42 0
24 6 6 6 24 6 6 6 0 0 0 42

.

Matrix factorization ranks via polynomial optimization 23

For this matrix we know that rankcp (𝑀) = 37. At the first level 𝑡 = 1, we have
b

cp,isp
1 (𝑀) = 29.66 while the dense hierarchy gives bcp

1 (𝑀) = 4.85. Going to higher
levels does improve the dense bound to bcp

2 (𝑀) = 29.66, but the sparse bound does
not seem to change.

In [32], it was shown that the separation between bcp,isp
1 (𝑀) and bcp

1 (𝑀) could
be made arbitrarily big by taking matrices 𝑀 of the form:

𝑀 =

(
(𝑚 + 1)𝐼𝑚 𝐽𝑚

𝐽𝑚 (𝑚 + 1)𝐼𝑚

)
∈ S2𝑚

and increasing 𝑚. Here 𝐼𝑚 is the identity matrix, and 𝐽𝑚 is the all-ones matrix.
This gap is motivated by the sparse hierarchy incorporating certain structural

information that the dense hierarchy ignores. To understand what we mean, consider
first the edge clique-cover number 𝑐(𝐺) of the graph 𝐺 defined to be the minimal
number of cliques needed to cover all edges of 𝐺. In Lemma 13 of [32] it is shown
that

b
cp,wisp
1 (𝑀) ≥ 𝑐frac (𝐺𝑀),

where 𝑐frac (𝐺) is the fractional edge clique-cover number, the natural linear relax-
ation of 𝑐(𝐺):

𝑐frac (𝐺) := min
{ 𝑠∑︁
𝑘=1

𝑥𝑘 :
∑︁

𝑘:{𝑖, 𝑗 }⊆𝑉𝑘

𝑥𝑘 ≥ 1 for {𝑖, 𝑗} ∈ 𝐸
}
.

Exercise 5

Compute the fractional and usual (integer) clique-cover number of 𝐺
𝑀

.

Hence we have the following relations:

𝑐frac (𝐺𝑀) ≤ bcp,wisp
1 (𝑀) ≤ bcp,wisp

2 (𝑀) ≤ ... ≤ bcp,wisp
∞ (𝑀).

≤ ≤ =

b
cp,isp
1 (𝑀) ≤ bcp,isp

2 (𝑀) ≤ ... ≤ bcp,isp
∞ (𝑀) = 𝜏cp (𝑀) ≤ rankcp (𝑀)

≤ ≤ =

b
cp
1 (𝑀) ≤ b

cp
2 (𝑀) ≤ ... ≤ bcp

∞ (𝑀).

The weak sparse hierarchy bcp,wisp
𝑡 and the dense hierarchies bcp

𝑡 are incomparable,
as there are examples where one outperforms the other and vice versa.

24 Andries Steenkamp

Speed-up in computation

We said before that the sparse hierarchy involves smaller SDPs than the dense version
and, as a result, can be computed faster.

To demonstrate this, the hierarchies are tested on a family of randomly generated
CP-matrices ordered ascending in size and ascending in nonzero density. The nonzero
density of a matrix 𝑀 is the fraction of entries above the diagonal that are nonzero,
hence for the identity matrix, it would be zero, and for a dense matrix with no zeros,
it would be one. This parameter is crude in that it is oblivious to the structure of the
support graph. Nonetheless, it suffices to show how the speed-up is related to the
sparsity in the matrix. Consider the following fig. 2 taken from [32].

Computation times vs. matrix size and nonzero density, level 𝑡 = 2

Fig. 2 Scatter plot of the computation times (in seconds) for the three hierarchies b cp
2,† (indicated

by a red square), b cp,isp
2,† (indicated by a yellow lozenge), b cp,wisp

2,† (indicated by a green circle)
against matrix size and nonzero density for 850 random matrices. The matrices are arranged in
ascending size (𝑛 = 5, 6, 7, 8, 9) and then ascending nonzero density, ranging from the minimal
density needed to have a connected support graph to a fully dense matrix. For each size and nonzero
density ten examples were computed to account for different support graphs.

The hierarchies bcp
𝑡 ,†, b

cp,isp
𝑡 ,† , and bcp,wisp

𝑡 ,† are slight modifications of the familiar
parameters bcp

𝑡 , bcp,isp
𝑡 , and bcp,wisp

𝑡 described already. The exact definition is avoided
here because there are several technicalities to consider that will only detract from
the core message, which is that the sparse hierarchy is potentially much faster when
there are many zeros in the matrix.

Matrix factorization ranks via polynomial optimization 25

4 Summary

Finally, we summarise this chapter. In section 1, we introduced the reader to several
factorization ranks and motivated their importance with applications and links to
other branches of science. After building the general tools needed, we focused on
approximating the CP-rank in section 2. We then improved our approximation in
section 3 by including structural information about the matrix support graph before
demonstrating the improvement with theoretical and numerical results. We hope to
have convinced the reader of the generality and utility of polynomial optimization
techniques in dealing with the difficult and pertinent problem of matrix factorization.

Acknowledgements

We want to thank Prof. Dr. Monique Laurent for proofreading several drafts of this
chapter and providing key insights when the author’s knowledge was lacking. We
also thank the editors for the opportunity to consolidate and share our expertise on
this fascinating topic.

References

1. E. D. Andersen and K. D. Andersen. The MOSEK interior point optimizer for linear program-
ming: An implementation of the homogeneous algorithm. H. Frenk, K. Roos, T. Terlaky, and
S. Zhang, editors, High Performance Optimization, 197–232. Springer US, Boston, MA, 2000.

2. A. Berman and N. Shaked-Monderer. Completely Positive Matrices. WORLD SCIENTIFIC,
2003.

3. J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. Julia: A fresh approach to numerical
computing. SIAM Review, 59(1):65–98, 2017.

4. I. M. Bomze, W. Schachinger, and R. Ullrich. From seven to eleven: Completely positive
matrices with high cp-rank. Linear Algebra and its Applications, 459:208–221, 2014.

5. I. M. Bomze, W. Schachinger, and R. Ullrich. New lower bounds and asymptotics for the
cp-rank. SIAM Journal on Matrix Analysis and Applications, 36(1):20–37, 2015.

6. C. Bron and J. Kerbosch. Algorithm 457: Finding all cliques of an undirected graph. Commu-
nications of The Acm, 16(9):575–577, Sept. 1973.

7. S. Burer. On the copositive representation of binary and continuous nonconvex quadratic
programs. Mathematical Programming, 120(2):479–495, Sept. 2009.

8. M.-D. Choi. Positive linear maps. Operator Algebras and Applications, volume 38 of Proc.
Sympos. Pure Math., pages 583–590. 1982.

9. A. Cichocki, R. Zdunek, A. H. Phan, and S-i. Amari. Nonnegative Matrix and Tensor Factor-
izations: Applications to Exploratory Multi-Way Data Analysis and Blind Source Separation.
Wiley Publishing, 2009.

10. R. E. Curto and L. A. Fialkow. Solution of the truncated complex moment problem for flat
data. 1996.

11. R. E. Curto and L. A. Fialkow. The truncated complex 𝐾 -moment problem. Transactions of
the American Mathematical Society, 352:2825–2855, 2000.

12. E. de Klerk and M. Laurent. A survey of semidefinite programming approaches to the gener-
alized problem of moments and their error analysis. Association for Women in Mathematics
Series, 2019.

26 Andries Steenkamp

13. G. De las Cuevas, T. Drescher, and T. Netzer. Separability for mixed states with operator
Schmidt rank two. Quantum, 3:203, Dec. 2019.

14. G. de las Cuevas and T. Netzer. Mixed states in one spatial dimension: Decompositions and
correspondence with nonnegative matrices. Journal of Mathematical Physics, 2020.

15. P. J. C. Dickinson and L. Gĳben. On the computational complexity of membership problems
for the completely positive cone and its dual. Computational Optimization and Applications,
57:403–415, 2014.

16. D. P. Divincenzo, B. M. Terhal, and Ashish V. Thapliyal. Optimal decompositions of barely
separable states. Journal of Modern Optics, 47(2-3):377–385, 2000.

17. J. H. Drew, C. R. Johnson, and R. Loewy. Completely positive matrices associated with
M-matrices. Linear & Multilinear Algebra, 37:303–310, 1994.

18. I. Dunning, J. Huchette, and M. Lubin. JuMP: A modeling language for mathematical opti-
mization. Siam Review, 59:295–320, 2017.

19. H. Fawzi, J. Gouveia, P. A. Parrilo, R. Z. Robinson, and R. R. Thomas. Positive semidefinite
rank. Mathematical Programming, 153(1):133–177, Oct. 2015.

20. H. Fawzi, J. Gouveia, P. A. Parrilo, J. Saunderson, and R. R. Thomas. Lifting for simplicity:
Concise descriptions of convex sets. SIAM Review, 64(4):866–918, 2022.

21. H. Fawzi and P. A. Parrilo. Self-scaled bounds for atomic cone ranks: Applications to nonneg-
ative rank and cp-rank. Mathematical Programming, 158(1):417–465, July 2016.

22. S. Fiorini, S. Massar, S. Pokutta, H. R. Tiwary, and R. de Wolf. Exponential lower bounds for
polytopes in combinatorial optimization. Journal of The Acm, 62(2), May 2015.

23. S. Gharibian. Strong NP-hardness of the quantum separability problem. Quantum Information
& Computation, 10:343–360, 2010.

24. N. Gillis. Nonnegative Matrix Factorization. Society for Industrial and Applied Mathematics,
Philadelphia, PA, 2020.

25. N. Gillis and F. Glineur. On the geometric interpretation of the nonnegative rank. Linear
Algebra and its Applications, 437(11):2685–2712, 2012.

26. S. Gribling, D. de Laat, and M. Laurent. Lower bounds on matrix factorization ranks via
noncommutative polynomial optimization. Foundations of Computational Mathematics, 1–
58, 2019.

27. S. Gribling, M. Laurent, and A. Steenkamp. Bounding the separable rank via polynomial
optimization. Linear Algebra and its Applications, 2022.

28. L. Gurvits. Classical deterministic complexity of Edmonds’ problem and quantum entangle-
ment. In Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing,
STOC ’03, pages 10–19, New York, NY, USA, 2003. Association for Computing Machinery.

29. M. Hall. Combinatorial Theory. John Wiley & Sons, 1988.
30. D. Henrion and J.-B. Lasserre. Detecting global optimality and extracting solutions in Glop-

tiPoly. D. Henrion and A. Garulli, editors, Positive Polynomials in Control, 293–310. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2005.

31. T. G. Kolda and B. W. Bader. Tensor decompositions and applications. SIAM Review,
51(3):455–500, 2009.

32. M. Korda, M. Laurent, V. Magron, and A. Steenkamp. Exploiting ideal-sparsity in the gener-
alized moment problem with application to matrix factorization ranks. ArXiv, +2023.

33. J. B. Lasserre. Moments, Positive Polynomials and Their Applications. IMPERIAL COLLEGE
PRESS, 2009.

34. M. Laurent. Sums of squares, moment matrices and optimization over polynomials. In
M. Putinar and S. Sullivant, editors, Emerging Applications of Algebraic Geometry, 157–270.
Springer New York, New York, NY, 2009.

35. D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix factorization.
Nature, 401:788–791, 1999.

36. Y. Nesterov and A. Nemirovskii. Interior-Point Polynomial Algorithms in Convex Program-
ming. Society for Industrial and Applied Mathematics, 1994.

37. J. Nie. The A-truncated 𝐾 -moment problem. Foundations of Computational Mathematics,
14(6):1243–1276, Dec. 2014.

Matrix factorization ranks via polynomial optimization 27

38. N. Shaked-Monderer and A. Berman. Copositive and Completely Positive Matrices. World
Scientific Publishing.

39. N. Shaked-Monderer, I. M. Bomze, F. Jarre, and W. Schachinger. On the cp-rank and minimal
cp factorizations of a completely positive matrix. SIAM Journal on Matrix Analysis and
Applications, 34:355–368, 2013.

40. N. D. Sidiropoulos and R. Bro. On the uniqueness of multilinear decomposition of N-way
arrays. Journal of Chemometrics, 14(3):229–239, 2000.

41. A. Uhlmann. Entropy and Optimal Decompositions of States Relative to a Maximal Commu-
tative Subalgebra. Open Systems & Information Dynamics, 5(3):209–228, Sept. 1998.

42. S. A. Vavasis. On the complexity of nonnegative matrix factorization. SIAM Journal on
Optimization, 20:1364–1377, 2009.

43. M. Yannakakis. Expressing combinatorial optimization problems by linear programs. STOC
’88, 1988.

	Matrix factorization ranks via polynomial optimization
	Andries Steenkamp
	1 Introduction and motivation for matrix factorization ranks
	1.1 Applications of nonnegative factorization
	1.2 Commonly used notation
	1.3 On computing the nonnegative rank
	1.4 Other factorization ranks

	2 Bounding matrix factorization ranks
	2.1 A brief introduction to polynomial optimization
	2.2 Generalized moment problems
	2.3 Constructing a hierarchy of lower bounds for CP-rank
	2.4 A note on computing hierarchies of SDPs

	3 Exploiting sparsity
	3.1 An abbreviated introduction to ideal sparsity
	3.2 Ideal sparsity in approximating CP-rank
	3.3 Advantages of the sparse hierarchy

	4 Summary
	References
	References

