
Vaccine 41 (2023) 2893–2904
Contents lists available at ScienceDirect

Vaccine

journal homepage: www.elsevier .com/locate /vacc ine
Efficacy of multivalent recombinant herpesvirus of turkey vaccines
against high pathogenicity avian influenza, infectious bursal disease, and
Newcastle disease viruses
https://doi.org/10.1016/j.vaccine.2023.03.055
0264-410X/Published by Elsevier Ltd.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Abbreviations: ABSL-2, animal biosafety level 2; ABSL-3, animal biosafety level 3; AIV, avian influenza virus; B/BW, Bursa-body weight; BHI, brain heart infusio
BIAH, Boehringer Ingelheim Animal Health; CEF, chicken embryo fibroblasts; CMV, mouse cytomegalovirus; COBRA, computationally optimized broadly reactive
dpc, days post-challenge; ECE, embryonated chicken eggs; Egypt/14, A/Egypt/N04915/2014 H5N1 HPAIV; EID50, 50 percent embryo infectious doses; F, fusion prote
Food and Agriculture Organization; FITC, fluorescein isothiocyanate; GMT, geometrical mean titers; Gs/GD, A/goose/Guangdong/1/1996; HA, Hemagglut
hemagglutination inhibition; HPAI, High pathogenicity avian influenza; HPAIVs, High pathogenicity avian influenza viruses; HVT, herpesvirus of turkeys; vHV
herpesvirus of turkeys; IACUC, Institutional Animal Care and Use Committees; IBD, infectious bursal disease; IBDV, infectious bursal disease virus; IFA,
immunofluorescence assay; ILTV, infectious laryngotracheitis virus; IRES, internal ribosomal entry sequence; LP, low pathogenic; MDT, mean death time; MDV
disease virus; ND, Newcastle disease; NDV, Newcastle disease virus; OP, Oropharyngeal; PCR, polymerase chain reaction; qRRT-PCR, quantitative real-time
transcriptase polymerase chain reaction; REC, recombinant expression cassettes; SPF, Specific pathogen free; Tk/Hungary/16, A/domestic_turkey/Hungary/534
H5N8 HPAIV; Tk/MN/15, A/turkey/Minnesota/12582/2015 H5N2 HPAIV; TPB, tryptose phosphate broth; USNPRC, U.S. National Poultry Research Center; vHVT, reco
herpesvirus of turkey vectored vaccine; VLP, virus-like particle; VP2, virus protein 2.
⇑ Corresponding authors at: College of Veterinary Medicine, Auburn University, 166 Greene Hall, Auburn, AL 36849, USA (M. F. Criado) and U.S. National Poultry

Center (USNPRC), Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Rd, Athens, GA 30605, USA (D. E. Swayne)
E-mail addresses: mfc0034@auburn.edu (M.F. Criado), Aemro.Kassa@boehringer-ingelheim.com (A. Kassa), Kateri.bertran@irta.cat (K. Bertran), junghoon.kwon@

(J.-H. Kwon), mariana.sa_e_silva@boehringer-ingelheim.com (M. Sá e Silva), Lindsay.Killmaster@usda.gov (L. Killmaster), tedross@uga.edu (T.M. Ross), T
Mebatsion@boehringer-ingelheim.com (T. Mebatsion), birdfluvet@gmail.com (D.E. Swayne).
Miria F. Criado a,b,⇑, Aemro Kassa c, Kateri Bertran d,e, Jung-Hoon Kwon a,f, Mariana Sá e Silva c,
Lindsay Killmaster a, Ted M. Ross g, Teshome Mebatsion c, David E. Swayne a,⇑
a Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center (USNPRC), Agricultural Research Service,
U.S. Department of Agriculture, 934 College Station Rd, Athens, GA 30605, USA
bDepartment of Pathobiology, College of Veterinary Medicine, Auburn University, 166 Greene Hall, Auburn, AL 36849, USA
cBoehringer Ingelheim Animal Health USA Inc., 1730 Olympic Drive, Athens, GA 30601, USA
dUnitat mixta d’Investigació IRTA-UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA). Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra
08193, Catalonia, Spain
e IRTA. Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA). Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra 08193, Catalonia, Spain
fCollege of Veterinary Medicine, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea
gCenter for Vaccines and Immunology, University of Georgia, 501 D.W. Brooks Dr, Athens, GA 30602, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Received 27 September 2022
Received in revised form 23 March 2023
Accepted 24 March 2023
Available online 1 April 2023

Keywords:
HPAIV
IBDV
NDV
HVT recombinant vector vaccine
Multivalent vector
Poultry
Vaccines are an essential tool for the control of viral infections in domestic animals. We generated recom-
binant vector herpesvirus of turkeys (vHVT) vaccines expressing computationally optimized broadly
reactive antigen (COBRA) H5 of avian influenza virus (AIV) alone (vHVT-AI) or in combination with virus
protein 2 (VP2) of infectious bursal disease virus (IBDV) (vHVT-IBD-AI) or fusion (F) protein of Newcastle
disease virus (NDV) (vHVT-ND-AI). In vaccinated chickens, all three vHVT vaccines provided 90–100%
clinical protection against three divergent clades of high pathogenicity avian influenza viruses
(HPAIVs), and significantly decreased number of birds and oral viral shedding titers at 2 days post-
challenge compared to shams. Four weeks after vaccination, most vaccinated birds had H5 hemaggluti-
nation inhibition antibody titers, which significantly increased post-challenge. The vHVT-IBD-AI and
vHVT-ND-AI vaccines provided 100% clinical protection against IBDVs and NDV, respectively. Our find-
ings demonstrate that multivalent HVT vector vaccines were efficacious for simultaneous control of
HPAIV and other viral infections.
Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
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1. Introduction

Poultry viral diseases have negative economic and animal wel-
fare impact on the poultry industry worldwide [1,2]. There are no
effective treatment options against viral diseases, and vaccines and
vaccine programs, when available, vary widely in their effective-
ness [2]. Consequently, the prevention and control of these poultry
diseases have become challenging, requiring multifaceted pro-
grams that must often include several monovalent vaccines admin-
istered in several vaccinations to protect against multiple viruses
[2,3].

High pathogenicity avian influenza (HPAI), Newcastle disease
(ND), and infectious bursal disease (IBD) are among the most sig-
nificant viral diseases of poultry that utilize vaccination as key part
of their control program globally or in many parts of the world
[3,4]. Outbreaks of HPAI virus (HPAIV) in poultry and wild birds
have had a devastating economic and social impact worldwide
[5,6]. According to Food and Agriculture Organization (FAO), only
in the first four months of 2022, more than one thousand H5Nx
HPAIV outbreaks in animals were reported in Africa, North Amer-
ica, Asia, and Europe [7]. In particular, the H5 HPAIV of A/goose/
Guangdong/1/1996 (Gs/GD) Eurasian lineage emerged in 1996 in
China and expanded from Asia to the rest of the world [8–11].
The Gs/Gd lineage H5 HPAIV has evolved into multiple clades
and subclades by mutations in the hemagglutinin (HA) gene and
the cross-protection between different clades is usually low [9].

In addition, Newcastle disease virus (NDV) is a significant
worldwide disease of poultry caused by virulent strains of avian
orthoavulavirus 1 (former avian paramyxovirus 1) [12]. The NDV
is enzootic in multiple countries worldwide and has resulted in
at least four panzootic outbreaks since it was first identified in
the 1920s, with the fifth panzootic potentially underway in
Indonesia, Israel, Pakistan, Eastern Europe, and India [12]. In the
last few years, the genotype VII became endemic and spread to
many other countries in Asia, Africa, Middle East, and Europe
[12]. The introduction of virulent NDV in poultry flocks of NDV-
free countries can cause costly outbreaks, as exemplified by the
virulent NDV outbreaks reported in California, USA, and neighbour-
ing states in 2018 after 15 years of free-NDV status [13]. The NDV
continues to cause economic losses in enzootic countries despite
widespread use of vaccination [12]. Finally, IBD is a worldwide
immunosuppressive disease of young chickens caused by serotype
1 strains of IBD virus (IBDV) [14]. In addition to high morbidity and
mortality, the immunosuppressive effect of the disease predis-
poses birds to infection by other agents and hampers optimal
response to vaccination against other pathogens [14,15].

Vaccination programs have been developed to control all three
pathogens, either by eliciting maternal antibodies in hens to be
passed through the egg, by directly immunizing the progenies, or
both [2–4,16,17]. While routine vaccination against NDV and IBDV
is performed virtually worldwide [17–19], routine vaccination
against HPAIV has only been used in countries enzootic to the dis-
ease [4,17]. Among viral vector vaccines, Meleagrid alphaher-
pesvirus 1, commonly known as herpesvirus of turkeys (HVT) or
a serotype 3 Marek’s disease virus (MDV), is the most widely used
vector to express protective antigens for avian pathogens [3,17,20–
22]. Some advantages of recombinant vector herpesvirus of turkeys
HVT (vHVT) vaccines include persistent replication in the host,
ability to induce both humoral and cell-mediated immunity, resis-
tance to maternal antibody neutralization (as these viruses are
cell-associated), and relatively easy production and administration
[3,17,20,21,23–25]. Most of the recombinant vHVT vaccines cur-
rently in use express single inserts of foreign genes of AIV, NDV,
IBDV, or infectious laryngotracheitis virus (ILTV), thus inducing
protection against one pathogen in addition to the highly conta-
gious, lymphoproliferative Meleagrid alphaherpesvirus 1
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[3,15,17,24]. Similar to other vaccine vectors, the interference of
vHVT vector limits the expression of simultaneous antigens against
multiple viruses [26]. However, vHVT double-insert vaccines con-
currently expressing antigens of IBDV and NDV, IBDV and ILTV,
or NDV and ILTV have been tested or licensed as trivalent recombi-
nant vHVT vaccines [3,17,22,27]. Only one vHVT triple-insert vac-
cine containing IBDV, ILTV, and H9 HA AIV has been generated,
albeit its stability and efficacy in vivo remains to be assessed
[28]. To the best of our knowledge, there are no vHVT double-
insert vaccines expressing the H5 HA gene of AIV, which is the crit-
ical antigen of AIV to elicit neutralizing antibodies, in combination
with the gene of another pathogen.

In our recent study, vHVT vaccines containing computationally
optimized broadly reactive antigen (COBRA) H5 AIV inserts [29,30]
were tested in chickens [31]. We used the promising COBRA H5
AIV antigen candidate from our previous study [31] and generated
a single-insert (vHVT-AI) and double-insert (vHVT-IBD-AI and
vHVT-ND-AI) recombinant vaccines. Our main goal was to evaluate
the efficacy of clinical protection, viral shedding, and broadness of
neutralizing antibodies in vaccinated chickens against H5 HPAIVs
challenges, including clinical protection against IBDV and NDV
strains.
2. Materials and methods

2.1. Generation of vector vaccines

Multivalent recombinant vHVT vaccines were generated as pre-
viously described [31,32] with modifications (Fig. 1). Briefly,
recombinant viruses were generated by in vitro recombination in
secondary chicken embryo fibroblasts (CEF) co-electroporated
with donor plasmids containing recombinant expression cassettes
(REC) (Fig. 1) and viral DNA isolated from either HVT strain Fc126
(for vHVT-AI) or vHVT-013 (vHVT-IBD-AI and vHVT-ND-AI).

The plasmid containing REC for vHVT-AI contained COBRA-C
H5, HA from H5 HPAI, driven by mouse cytomegalovirus (CMV)
promoter [31]. The design and characterization of the computa-
tionally optimized COBRA-C H5 antigen have been previously
described [30,33,34]. Briefly, the COBRA HA antigen was generated
by multiple rounds of consensus generation using HA sequences
from H5N1 clade 2 human-origin viruses collected from 2004 to
2006. The polybasic cleavage sites of all H5 sequences were mod-
ified to low pathogenic (LP) type. The REC for vHVT-IBD-AI con-
tained the gene for virus protein 2 (VP2) of IBDV driven by
mouse CMV promoter and COBRA-C H5 expressed by internal ribo-
somal entry sequence (IRES) inserted in tandemwith the VP2 gene.
Similarly, the REC for vHVT-ND-AI contained the gene for fusion (F)
protein of NDV driven by mouse CMV promoter and COBRA-C H5
expressed by IRES inserted in tandem with the F gene.
2.2. Molecular characterization of recombinant vaccines

All generated recombinant viruses were evaluated by poly-
merase chain reaction (PCR). The PCR primers were designed to
identify the sequence that should be present only in the recombi-
nant virus and absent from the parent virus vaccine construct
(Table S1). In addition, PCR primers were used to amplify the entire
REC, including part of the recombination arm, promoter, and
recombinant genes. All the final constructs were also confirmed
by Sanger sequencing reaction. Briefly, viral DNA was extracted
from infected CEF cells by QIA DNeasy Blood & Tissue Kit (Qiagen
Inc., Germantown, MD, USA). PCR was performed using 500 ng of
DNA with specific primer pairs (Table S1) and OneTaq� 2X Master
Mix with Standard Buffer (New England Biolabs, Ipswich, MA,
USA), according to manufacturer’s protocol. The PCR cycling condi-



Fig. 1. Schematic representation of the generation of multivalent recombinant HVT vaccines. Recombinant viruses contained recombinant expression cassettes (REC) and
viral DNA isolated from either HVT Fc126 (for vHVT-AI) or HVT013 (for vHVT-IBD-AI and vHVT-ND-AI). The vHVT-AI contained COBRA-C H5 protein of HPAIV driven by
mouse cytomegalovirus (CMV) promoter. The vHVT-IBD-AI contained virus protein 2 (VP2) of IBDV driven by mouse CMV promoter and COBRA-C H5 protein expressed by
internal ribosomal entry sequence (IRES) inserted in tandem with the VP2 gene. Similarly, the vHVT-ND-AI contained fusion (F) protein of NDV driven by mouse CMV
promoter and COBRA-C H5 protein expressed by IRES inserted in tandem with the F gene.

Table 1
Experimental design for chickens vaccinated with multivalent vHVT vaccines and
challenged with clade 2.3.4.4A A/turkey/Minnesota/12582/2015 H5N2 HPAIV (Tk/
MN/15), clade 2.3.4.4B A/domestic turkey/Hungary/53433/2016 H5N8 HPAIV (Tk/
Hungary/16), or clade 2.2.1 A/Egypt/N04915/2014 H5N1 HPAIV (Egypt/14).

Group Vaccine 1 H5 HPAIV challenge 2 Number of birds

1 vHVT-IBD-AI Tk/MN/15 10
2 vHVT-ND-AI Tk/MN/15 10
3 vHVT-AI Tk/MN/15 10
4 Sham-vaccinated Tk/MN/15 10
5 vHVT-IBD-AI Tk/Hungary/16 10
6 vHVT-ND-AI Tk/Hungary/16 10
7 vHVT-AI Tk/Hungary/16 10
8 Sham-vaccinated Tk/Hungary/16 10
9 vHVT-IBD-AI Egypt/14 10
10 vHVT-ND-AI Egypt/14 10
11 vHVT-AI Egypt/14 10
12 Sham-vaccinated Egypt/14 10

1 The vaccines were administered at 1 day old by the subcutaneous route in 0.2
ml per bird. Sham-vaccinated birds were administered sterile HVT diluent and used
as negative controls.

2 All birds were challenged 4 weeks post-vaccination by the intrachoanal route
with Tk/MN/15 at 5.9 log10 EID50 (Groups 1–4), Tk/Hungary/16 at 5.9 log10 EID50

(Groups 5–8), or Egypt/14 at 6.5 log10 EID50 (Groups 9–12).

Table 2
Experimental design for chickens vaccinated with multivalent vHVT vaccine and
challenged with STC or Var-E IBDV strains.

Group Vaccine 1 IBDV challenge 2 Number of birds

1 vHVT-IBD-AI STC 20
2 Sham-vaccinated STC 20
3 vHVT-IBD-AI Var-E 20
4 Sham-vaccinated Var-E 20
5 Sham-vaccinated TPB diluent 20

1 The vaccines were administered at 1 day old by the subcutaneous route in
0.2 ml per bird. Sham-vaccinated birds were administered sterile HVT diluent and
used as negative controls.

2 All birds were challenged 3 weeks post-vaccination by the eyedrop route with
STC IBDV strain at 1.8 log10 EID50 (Groups 1 and 2), or at 4 weeks post-vaccination
by the eyedrop route with Var-E IBDV strain at 2.9 log10 EID50 (Groups 3 and 4).
Group 5 was administered TPB diluent and used as negative control.
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tion was 94 �C for 2 mins, followed by 40 cycles of 30 secs at 94 �C,
45 secs at 58 �C, and 1 to 6 mins (adjusted according expected the
amplicon size) at 68�; then a final extension at 68 �C for 5 mins.

2.3. Protein expression analysis by indirect immunofluorescence assay

Vaccine constructs were screened for expression of recombi-
nant antigens by indirect immunofluorescence assay (IFA) with
antigen-specific antibodies. To obtain a pure population of recom-
binant virus, the electroporated IFA-positive CEF were recovered,
and the population mixture was serially diluted and screened by
IFA. The screening procedure was repeated for multiple rounds
until pure recombinant virus populations were recovered.

IFA was performed as previously described [31] with modifica-
tions. Briefly, the CEFs inoculated with viruses were fixed after
2–3 days post-infection with 95% acetone and incubated with anti-
bodies for VP2 (IBDV), F (NDV), HA (AIV H5 strain) or HVT antigens.
For all COBRA-H5 constructs, the expression of HA of AIV H5 and
HVT antigens were evaluated using chicken anti-H5N2 sera
(Charles River, North Franklin, CT, USA) diluted 1:300 and L78.2
monoclonal antibody against HVT (Boehringer Ingelheim Animal
Health (BIAH) USA Inc., Gainesville, GA, USA) diluted 1:3,000, as
previously described [31]. In addition, the expression of IBDV
VP2 (COBRA H5-IBDV construct) and NDV F (COBRA H5-NDV con-
struct) was evaluated using chicken IBD antisera (Charles Rivers
Laboratories, North Franklin, CT, USA) diluted 1:500 and chicken
NDV antisera (Charles Rivers Laboratories, North Franklin, CT,
USA) diluted 1:300, respectively. After washes with PBS, cells were
incubated with secondary antibodies, goat anti-chicken IgY (H + L)
Alexa Fluor 568 (Life technologies Corporation, Carlsbad, CA, USA,
#A11041) and anti-mouse IgG-fluorescein isothiocyanate (FITC)
(Sigma-Aldrich Inc, St. Louis, MO, US, #F2012-1) both diluted
1:300. The protein expression was examined using Nikon Eclipse
Ti inverted microscope.

2.4. Animals and housing

Specific pathogen free (SPF) White Leghorn chickens were
assigned into groups for HPAIV challenge (Table 1, twelve groups),
IBDV challenge (Table 2, five groups), and NDV challenge (Table 3,
two groups). Birds were housed in negative pressured HEPA-
filtered isolators at the animal biosafety level 2 (ABSL-2) facilities
of Boehringer Ingelheim Animal Health (BIAH) USA Inc., Athens,
GA for the vaccination and challenge periods. Only the birds that
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were subsequently challenged with HPAIVs were transferred to
negative pressured HEPA-filtered isolators at the animal biosafety
level 3 (ABSL-3) enhanced facilities of the U.S. National Poultry
Research Center (USNPRC) for the challenge period. These studies



Table 3
Experimental design for chickens vaccinated with multivalent vHVT vaccine and
challenged with GB Texas NDV strain.

Group Vaccine1 NDV challenge 2 Number of birds

1 vHVT-ND-AI Texas GB 20
2 Sham-vaccinated Texas GB 20

1 The vaccines were administered at 1 day old by the subcutaneous route in
0.2 ml per bird. Sham-vaccinated birds were administered sterile HVT diluent and
used as negative controls.

2 All birds were challenged 4 weeks post-vaccination by the intramuscular route
with Texas GB NDV strain at 4.2 log10 EID50 (Groups 1 and 2).

M.F. Criado, A. Kassa, K. Bertran et al. Vaccine 41 (2023) 2893–2904
were reviewed and approved by the BIAH USA Inc. and USNPRC
Institutional Animal Care and Use committees (IACUC).

2.5. Vaccination

Vaccines were administered at 1 day of age by the subcuta-
neous route in 0.2 ml per bird (Tables 1 to 3). Sham-vaccinated
birds were administered sterile HVT diluent (diluent commercial-
ized by BIAH USA Inc.) and used as negative controls.

2.6. Challenge viruses

The HPAIV challenge stocks were prepared and titrated in
embryonated chicken eggs (ECE) using standard methods [35].
Stocks were diluted to the target dose with brain heart infusion
(BHI) broth (Becton, Dickinson and Company, Sparks, MD, USA)
with penicillin (2000 units/ml; Sigma-Aldrich, St. Louis, MO,
USA), gentamicin (200 ug/ml; Sigma-Aldrich, St. Louis, MO, USA)
and amphotericin B (5 ug/ml; Sigma-Aldrich, St. Louis, MO, USA).
The HPAIVs were manipulated in biosafety level (BSL) 3 enhanced
facilities in accordance with procedures approved by the USNPRC
Institutional Biosafety Committee. The IBDV and NDV challenge
stocks were prepared and titrated in ECE and diluted to the target
dose with tryptose phosphate broth (TPB) (Sigma-Aldrich, St. Louis,
MO, USA). The IBDV and NDV were manipulated in BSL-2 facilities
in accordance with procedures approved by BIAH USA Inc. and
IACUC. The vHVT-IBD-AI-, vHVT-ND-AI-, and vHVT-AI-vaccinated
birds were challenged against three different HPAIV strains
(Table 1): clade 2.3.4.4c (previously termed 2.3.4.4A) A/turkey/
Minnesota/12582/2015 H5N2 HPAIV (Tk/MN/15) (GenBank acces-
sion numbers KX351776-83), clade 2.3.4.4b (previously termed
2.3.4.4B) A/domestic_turkey/Hungary/53433/2016 H5N8 HPAIV
(Tk/Hungary/16) (GISAID accession number EPI859207), and clade
2.2.1 A/Egypt/N04915/2014 H5N1 HPAIV (Egypt/14) (GISAID
EPI_ISL_262572). The full-length H5 HA amino acid identity
between COBRA C insert and the HPAIV challenges are shown in
Table S2.

The vHVT-IBD-AI-vaccinated birds were also challenged against
classical STC IBDV strain (EP-1) and variant-E IBDV strain (Var-E;
1084-E CP2 3–14-95) (Table 2). The vHVT-ND-AI –vaccinated birds
were also tested against neurotropic, velogenic GB Texas NDV
strain (Table 3).

2.7. HPAIV challenge and sampling

Four weeks post-vaccination, all SPF chickens from groups in
Table 1 were challenged by the intra-choanal route with estimated
target dose of 6 log10 EID50/0.1 ml of HPAIV (Table 1). The inoculum
titers were verified as 5.9, 5.9, and 6.5 log10 EID50/dose for Tk/
MN/15, Tk/Hungary/16, and Egypt/14 HPAIVs, respectively, by
back titration in ECE. Birds were monitored daily for clinical signs
and mortality for 14 dpc. Severely sick birds were euthanized and
counted as dead for the next day in mean death time (MDT) calcu-
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lations. Oropharyngeal (OP) swabs were collected at 2- and 4-days
post-challenge (dpc) and placed in 1.5 ml of BHI with antibiotic
and antimycotic. Serum samples were collected pre-challenge
(26 days post-vaccination) and at termination (14 dpc). At 14
dpc, surviving birds were euthanized following approved protocol
by the IACUC.
2.8. IBDV challenge and sampling

SPF chickens from groups 1 and 2 in Table 2 were challenged
with STC IBDV strain at three weeks post-vaccination by the eye-
drop route with estimated target dose of 2 log10 EID50/0.03 ml
(Table 2). The inoculum titer was verified as 1.8 log10 EID50/dose
by back titration in ECE. Groups 3 and 4 in Table 2 were challenged
with Var-E IBDV strain at four weeks post-vaccination by the eye-
drop route with estimated target dose of 2 log10 EID50/0.03 ml
(Table 2). The inoculum titer was verified as 2.9 log10 EID50/dose
by back titration in ECE. Group 5 received TPB and was used as
negative control. Birds were monitored daily for clinical signs
and mortality. At 4 dpc, STC IBDV challenged birds were eutha-
nized and necropsied to evaluate gross lesions in the cloacal bursa.
At 11 dpc, Var-E IBDV challenged birds were euthanized and
necropsied to evaluate bursa-to-body weight (B/BW) ratios.
2.9. NDV challenge and sampling

Four weeks post-vaccination, all SPF chickens from groups in
Table 3 were challenged by the intramuscular route, following
guidance for NDV vaccine licensure in the US (9CFR 113.329)
[36] with estimated target dose of 4 log10 EID50/0.1 ml of Texas
GB NDV strain. The inoculum titer was verified as 4.2 log10 EID50/-
dose by back titration in ECE. Birds were monitored daily for clin-
ical signs and mortality for 14 dpc, and then euthanized following
approved protocol.
2.10. Determination of HPAIV shedding from swabs

OP swab samples collected from HPAIV challenged birds were
processed for quantitative real-time reverse transcriptase poly-
merase chain reaction (qRRT-PCR) [37] with modifications [38] to
determine viral RNA titers. The standard curves for viral RNA quan-
tification were established with RNA extracted from dilutions of
the same titrated stocks of the challenge virus. This is a standard
protocol among published veterinary influenza vaccine studies
given the high correlation between the quantity of RNA deter-
mined by qRRT-PCR and the EID50 determined by ECE titration
when the same challenge virus stock is used to generate the stan-
dard curve [39]. The lower limit of detection was 1.1 log10 EID50/ml
for Tk/MN/15, 1.4 log10 EID50/ml for Tk/Hungary/16, and 1.7 log10
EID50/ml for Egypt/14. For statistical purposes, negative qRRT-
PCR samples were assigned a value 0.1 lower than the correspond-
ing limit of detection.
2.11. Serology in HPAIV challenged birds

The sera collected pre- and post-challenge was tested by
hemagglutination inhibition (HI) assay to determine humoral anti-
body levels against H5 antigens specific for each corresponding
challenge strain. The antigens were prepared as previously
described [40] and the HI assays were performed according to
standard procedures [41]. Titers were expressed as log2 geometri-
cal mean titers (GMT). Samples with titers below 3 log2 GMT were
considered negative and expressed as 2 log2 GMT for statistical
purposes.
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2.12. Statistical analysis

Differences in virus shedding and HI titers between vaccinated
groups were analyzed with Kruskal-Wallis test and Dunn’s Multi-
ple Comparison test with One-way ANOVA using GraphPad soft-
ware Prism 8 (San Diego, CA). The softwares SAS v9.4 (SAS
Institute, Cary, NC) and R 3.1.1 were used to confirm these results
and to calculate the B/BW ratios. Statistical significance was
declared at p value � 0.05. All data obtained was plotted using
GraphPad software Prism 8.
3. Results

3.1. Generation and validation of recombinant viruses

Three recombinant virus vaccines were generated as shown in
Fig. 1. The PCR reactions demonstrated that each gene sequence
in the generated recombinant viruses resulted in the expected
amplicon size (data not shown). In addition, the sequencing reac-
tions confirmed that all gene inserts present in each construct
had no changes compared to original sequences (data not shown).
The expression of recombinant proteins in each live vector vaccine
was confirmed by IFA assay, in which viral plaques were stained
for the parent virus (HVT) and the recombinant genes (VP2, F,
HA) (Fig. 2).

3.2. HPAIV challenge

3.2.1. Clinical protection
After challenge, all sham-vaccinated birds showed acute severe

clinical disease and death, with MDT of 2.6, 3, and 2.4 dpc for
Tk/MN/15, Tk/Hungary/16, and Egypt/14, respectively (Fig. 3). All
vaccinated birds challenged with Tk/MN/15 remained clinically
healthy during the observation period (14 dpc) with no clinical
signs from the vaccination or challenge (Fig. 3a). All the Tk/Hun-
gary/16 and Egypt/14 challenged birds remained clinically healthy,
except for one vHVT-ND-AI vaccinated, Tk/Hungary/16 challenged
bird that was euthanized at 7 dpc due to prostration (Fig. 3b) and
one vHVT-ND-AI vaccinated, Egypt/14 challenged bird that was
found dead at 7 dpc (Fig. 3c).

3.2.2. Virus shedding
At 2 dpc, all the sham-vaccinated birds had high virus titers in

the OP swab samples regardless of the HPAIV challenge used
(Fig. 4). The mean viral titers in the sham groups were 7.3, 6.0,
and 6.6 log10 EID50/ml for Tk/MN/15 (Fig. 4a), Tk/Hungary/16
(Fig. 4b), and Egypt/14 (Fig. 4c), respectively. All vaccine constructs
significantly decreased OP viral shedding titers at 2 dpc compared
to sham-vaccinated birds for the three HPAIVs and the vaccinated
groups were not significantly different among each other. In addi-
tion, the number of vaccinated birds shedding virus also decreased
compared to sham groups, and it was significantly lower for vHVT-
AI vaccinated birds regardless of HPAIV challenge (Fig. 4) and
vHVT-IBD-AI vaccinated birds challenged against Tk/Hungary/16
(Fig. 4b).

At 4 dpc, all sham-vaccinated birds were either dead or eutha-
nized due to clinical signs, except for one Tk/Hungary/16 chal-
lenged bird (Fig. 4). Significant differences in viral shedding titers
among vaccine groups were only observed at 4 dpc with Tk/
MN/15 (Fig. 4a) and Tk/Hungary/16 (Fig. 4b) challenges.

3.2.3. Serology
None of the sham-vaccinated birds had detectable hemaggluti-

nation inhibition (HI) antibody titers before challenge (Fig. 5). In
contrast, most vHVT-IBDV-AI and vHVT-AI vaccinated birds had
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HI titers against the corresponding challenge HPAIV prior to chal-
lenge (from 8 to 10 birds out of 10 per group) with mean titers that
ranged between 3.2 and 4.2 log2 GMT (Fig. 5). The vHVT-ND-AI
vaccinated birds tended to have lower seroconversion rates, espe-
cially against Tk/MN/15 (3/10), and lower mean titers (2.5 to 2.9
log2 GMT) pre-challenge (Fig. 5).

None of the sham-vaccinated birds survived, and post-challenge
sera was not collected. All the surviving birds had statically signif-
icant higher antibody titers in the post-challenge sera (14 dpc)
compared to pre-challenge sera (Fig. 5), except for the HVT-AI vac-
cinated group challenge with Tk/Hungary/16 that no difference
was observed (Fig. 5b). The post-challenge mean HI antibody titers
of the vaccinated birds ranged from 4.7 to 6.3, 5.2 to 6.0, and 6.0 to
7.5 log2 after challenge with Tk/MN/15, Tk/Hungary/16, and
Egypt/14, respectively (Fig. 5).

3.3. IBDV challenge

After STC IBDV challenge, 1 out of 20 sham-vaccinated birds
showed lethargy at 4 dpc, and 3 out of 20 birds died on 4 dpc.
All sham-vaccinated birds had typical IBDV lesions in the cloacal
bursa at 4 dpc consisting of peri-bursal edema, edema, and/or
macroscopic hemorrhages. All the vHVT-IBD-AI vaccinated birds
were clinically healthy during the observation period (4 dpc) and
lacked typical IBDV lesions in the cloacal bursa.

After Var-E IBDV challenge, all birds remained clinically healthy
during the observation period (11 dpc). The mean Bursa-body
weight (B/BW) ratios were 0.36 for vaccinated and challenged
birds, 0.12 for sham-vaccinated and challenged controls, and 0.52
for sham-vaccinated and sham-challenged controls (Fig. 6). All
mean B/BW ratios were significantly different among them.

3.4. NDV challenge

After Texas GB NDV challenge, all the sham-vaccinated birds
were found dead at 4 dpc, and all the vHVT-ND-AI vaccinated birds
remained clinically healthy and survived the observation period
(14 dpc).
4. Discussion

Viral coinfections are frequent in densely populated poultry
areas, and vaccines are an essential tool for their control [2–
4,16,17]. Since simultaneous administration of multiple single
insert vHVT vaccines is not a viable solution [26], the development
of multivalent recombinant vaccines that can induce simultaneous
protection against multiple avian pathogens is highly desirable.
Among the recombinant viral vectors, HVT is the most successful
and widely used commercially for the delivery of various immuno-
genic proteins to protect against poultry diseases such as HPAIV,
IBDV, and NDV [3,17,20–22]. Here, we generated vHVT vaccines
expressing COBRA H5 AIV antigen alone (vHVT-AI) or in combina-
tion with VP2 IBDV antigen (vHVT-IBD-AI) or F NDV antigen
(vHVT-ND-AI). Subsequently, we tested the efficacy of these vacci-
nes against experimental challenge with divergent H5 HPAIV of the
Gs/GD lineage in SPF chickens. In addition, we also evaluated the
clinical protection conferred by challenge against IBDV and NDV.
This study did not evaluate the protection against MDV, and addi-
tional tests are necessary to confirm it. However, vHVT is a com-
monly used vaccine to control MDV showing great success at
protecting chickens against tumors and mortality [3,15,17,24].

Even though the vHVT vaccine has been established and used
for several years, there are still several challenges in developing a
vaccine with multiple inserts. One of the major complications is
the compatibility between the vector backbone and the inserts



Fig. 2. Indirect immunofluorescence antibody (IFA) assay. Immunofluorescence staining showing the expression of HVT, protein 2 (VP2) of infectious bursal disease virus
(IBDV), Hemagglutinin (HA) of H5 avian influenza virus (AIV), fusion (F) protein of Newcastle disease virus (NDV) for all vaccine candidates.
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[17,42,43]. Problems can arise due to the chemical incompatibility
or genetic mismatch (sequence and location) of the inserts in the
vector [42,43]. Any of these complications can affect the vector
replication, the expression of the inserts, and/or the production
of the complete protein once inside the host, which ultimately
can impact the generation of a good immune response against
the vector and/or inserts [42]. Therefore, it is crucial to analyze
the stability of any viral vector, especially multivalent viral vectors,
during the early stages of vaccine development [28]. Here, we con-
firmed that vHVT vaccine candidates containing H5 AIV insert
alone (vHVT-AI) or H5 AIV insert combined with VP2 IBDV insert
(vHVT-IBD-AI) or F NDV insert (vHVT-ND-AI) were stable in the
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expression of both vector and inserts after 12 rounds of amplifica-
tion in cell culture. Analyzes were confirmed by IFA assay, PCR, and
sequencing reactions. Subsequent in vivo efficacy studies with
these constructs further confirmed protection levels consistent
with single vHVT constructs.

Another challenge for a multivalent poultry vaccine is identify-
ing the ideal insert for HPAIV. The control of HPAIV is one of the
greatest challenges for the poultry industry. Over time, H5N1
HPAIV Gs/GD lineage diverged into multiple phylogenetically and
antigenically distinct clades and subclades based on the H5 HA
gene [9]. Consequently, antigenic variants resistant to many vac-
cine seed strains have emerged [43], which has created challenges



Fig. 3. Survival curves of chickens vaccinated with experimental H5 COBRA-, IBDV-,
and NDV-multivalent vHVT vaccines and challenged with a. clade 2.3.4.4c A/turkey/
Minnesota/12582/2015 H5N2 HPAIV (Tk/MN/15), b. clade 2.3.4.4b A/domestic
turkey/Hungary/53433/2016 H5N8 HPAIV (Tk/Hungary/16) or c. clade 2.2.1 A/
Egypt/N04915/2014 H5N1 HPAIV (Egypt/14).
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in maintaining relevant H5 seed strains for poultry vaccines [44].
As a result, even vHVT-H5 vaccines which traditionally demon-
strated promising results against a wide range of H5Nx HPAIVs
of the Gs/GD lineage [45–51] may confer variable protection
against genetically divergent HPAIVs [52–54]. COBRA technology,
is one of the vaccine strategies in poultry, which generate antigens
with novel H5 HA consensus sequences [29,30].

In previous studies in mammals, COBRA H5 antigen virus-like
particle (VLP) vaccines protected against lethal challenge with
homologous and heterologous H5N1 HPAIV, showing more effi-
cient viral clearance and broader antibody responses against differ-
ent clades and sub-clades than monovalent or polyvalent vaccines
[29,32,33]. In our previous study, COBRA H5 VLP vaccines provided
clinical protection in chickens challenged with a lethal dose of
homologous H5N1 HPAIV, clade 2.2 (A/whooper swan/Mongo-
lia/244/2005) [55]. However, even if these vaccines elicited a
robust HA antibody response, they provided no or partial clinical
protection against a drifting H5N1 HPAIV variant, clade 2.3.2.1b
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(A/duck/Vietnam/NCVD-672/2011), and reduction of virus shed-
ding was suboptimal with both challenge strains [55]. To overcome
the limitations of non-replicating vaccine platforms, vHVT vaccines
were tested in our recent study in chickens as a vaccine platform
for COBRA H5 inserts [30]. While both wild-type H5 and COBRA
H5 inserts provided clinical protection and significant reduction
of viral shedding against homologous and heterologous H5 HPAIV
Gs/GD, COBRA H5 inserts elicited broader antibody responses
against antigenically diverse strains [30]. These results suggested
that the combination of COBRA technology with the self-
replicating vHVT could improve H5Nx HPAIV control in the field.

In the present study, all three vHVT vaccine candidates, being
COBRA H5 insert alone (vHVT-AI) or combined with VP2 IBDV
insert (vHVT-IBD-AI) or F NDV insert (vHVT-ND-AI), provided
90–100% clinical protection against clade 2.3.4.4c, clade 2.3.4.4b,
and clade 2.2.1 HPAIVs. All vaccines were also able to significantly
decrease OP shedding titers compared to the sham vaccine and eli-
cit neutralizing antibodies against clade 2.3.4.4 variants and other
Gs/GD clade. This was especially noteworthy on groups vaccinated
with vHVT-AI and vHVT-IBD-AI, which also tended to elicit high HI
titer and had significantly fewer birds shedding challenge virus
than the sham group. The vHVT-ND-AI vaccine was less efficient
in reducing viral shedding, in line with relatively lower pre-
challenge HI antibody titers. Some vaccinated survivors lacked
detection of pre-challenge HI antibodies, especially in the vHVT-
ND-AI vaccinated groups. This suggests that the presence of pre-
challenge HI antibody titers against the challenge virus may be a
positive predictor for survival, but HI titers < 3 log2 GMT may
not be a consistent negative predictor with antigenic variants, as
previously observed [19,30,54–58]. It is evident that viral vector
vaccines do not necessarily produce high levels of antibodies as
measured by HI, and protection in poultry also derives from cell-
mediated immunity, IgA mucosal immunity to uncharacterized
influenza viral proteins, or humoral immunity from non-HI anti-
bodies, such as antibodies to conserved regions in the HA stalk or
in other viral proteins [24,46,52,53,57–59]. Future studies are still
necessary to evaluate which of these pathways are activated and
are essential in protecting birds against the lethal HPAIV challenge
when using our vHVT vaccines.

It is also important to highlight that all the surviving birds had
significantly higher antibody titers in the post-challenge sera (14
dpc) compared to pre-challenge sera, with similar patterns
observed in other studies using the vHVT vaccines with a single
insert [25,31]. Thus, it suggests that multivalent vaccines using
vHVT did not change the patterns of antibody production. The only
exception was HVT-AI vaccinated group challenge with Tk/Hun-
gary/16. In this case, additional experiments with more birds per
group may increase the statistical power to observe differences
between pre-and post-challenge.

In general, homologous or closely related vaccine virus-
challenge virus in the same genetic clade provides the best protec-
tion for AIV. In our study, the HA amino acid sequence from the
challenge viruses compared to the vaccine COBRA C insert varied
between 90.3% and 96.1% (Table S2), with no significant difference
in protection between challenges. These results showed no direct
correlation between HA amino acid differences and evaluated
parameters, such as protection, shedding, or antibody titers. A pos-
sible explanation, as shown in a previous study, suggested that
specific changes in critical antigenic sites might be a better predic-
tor of protection than the overall sequence identity of the AIV HA
protein [60]. Thus, some essential epitopes, alone or in combina-
tion, may affect vaccine protection regardless of the clades of the
H5Nx challenge viruses [60]. In addition, the COBRA technology
overcomes genetic differences in genetic variants detected in the
field due to broader antibody responses against different clades
and sub-clades, as shown in previous studies [30,33]. Together,



Fig. 4. Scatter plot of oropharyngeal (OP) shedding from chickens vaccinated with experimental H5 COBRA-, IBDV-, and NDV-multivalent vHVT vaccines and challenged with
a. clade 2.3.4.4c A/turkey/Minnesota/12582/2015 H5N2 HPAIV (Tk/MN/15), b. clade 2.3.4.4b A/domestic turkey/Hungary/53433/2016 H5N8 HPAIV (Tk/Hungary/16) or c.
clade 2.2.1 A/Egypt/N04915/2014 H5N1 HPAIV (Egypt/14). Shedding titers are expressed as equivalent log10 EID50 (50 percent embryo infectious doses) /ml with error bars.
Ratios above the bars indicate the number of birds with positive qRRT-PCR values from the total number of birds. The limit of detection was 1.1 log10 EID50/ml for Tk/MN/15,
1.4 log10 EID50/ml for Tk/Hungary/16, and 1.7 log10 EID50/ml for Egypt/14. For statistical purposes, negative qRRT-PCR samples were assigned a value 0.1 lower than the
corresponding limit of detection. Statistical significance was declared at p value � 0.05.
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all of these explain the good efficiency of protection against diver-
gent clades of H5 HPAIV in our study.

The vHVT-IBD-AI vaccine was also tested against classical STC
and variant-E IBDV strains. On the one hand, the assessment of
protection against classical STC IBDV was performed early (4
dpc) by evaluation of gross lesions in the bursa, which demon-
strated acute effects of the classical STC IBDV as well as 100% pro-
tection conferred by the vHVT-IBD-AI vaccine. The assessment of
protection against variant-E IBDV strain was performed by B/BW
ratio calculation at 11 dpc, as previously showed as a useful tool
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for evaluating the impact of IBDV challenge and vaccination in
homogeneous SPF WL chickens [61]. The statistically significant
differences between mean B/BW ratios of the vHVT-IBD-AI vacci-
nated and challenged group compared to the sham-vaccinated
and challenged group indicated protection of the bursa. The high
levels of clinical protection and bursal integrity following classical
and variant IBDV challenges are consistent with previous studies
against classical and variant IBDV strains using vHVT expressing
VP2 IBDV insert alone or combined with inserts of other pathogens
[16,42,61–63]. The vHVT-ND-AI vaccine was also tested against



Fig. 5. Serology of chickens vaccinated with experimental H5 COBRA-, IBDV-, and NDV-multivalent vHVT vaccines and challenged with a. clade 2.3.4.4c A/turkey/Minnesota/
12582/2015 H5N2 HPAIV (Tk/MN/15), b. clade 2.3.4.4b A/domestic turkey/Hungary/53433/2016 H5N8 HPAIV (Tk/Hungary/16) or c. clade 2.2.1 A/Egypt/N04915/2014 H5N1
HPAIV (Egypt/14). HI antibody titers against corresponding challenge viruses pre- and post-challenge. Titers are expressed as log2 GMT. Samples with titers below 3 log2 GMT
were considered negative and expressed as 2 log2 GMT for statistical purposes. Ratios above the bars indicate the number of birds with HI titers from the total number of
birds. N/A indicated that sham-vaccinated challenged birds were either dead or euthanized due to clinical signs before collection of post-challenge serum.
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velogenic Texas GB NDV strain, which provided 100% clinical pro-
tection against lethal challenge. This high level of clinical protec-
tion against velogenic NDV is similar to previous studies with
vHVT expressing F NDV insert alone or in combination with inserts
of other pathogens [16,26,42,64–68].

Vaccines for viral disease in poultry are essential in endemic
countries to control infection. Despite several advantages of vHVT
vaccines, as with any other vaccine, it has some limitations and
should be combined with different strategies to obtain the best
outcome. Some vHVT vaccines require four weeks before full
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immunity can be reached [16,69], which could be a challenge for
endemic countries. One important strategy to overcome these
issues is a prime-boost vaccination, usually combining initial vac-
cination with vHVT followed by lived or killed vaccination to
increase immunity and protect birds against infection [6,12]. Vac-
cination should be combined with enhanced biosecurity measures
and constant epidemiological surveillance. Biosecurity measures
will help to reduce the possibility of introducing and spreading
zoonotic infectious agents, providing protection to animals and
humans. Finally, epidemiological surveillance helps to identify



Fig. 6. Bursa-body weight (B/BW) ratios (11 dpc) from chickens vaccinated with
vHVT-IBD-AI or sham-vaccinated and challenged with Var-E IBDV strain or sham-
challenged with TPB. Statistical significance was declared at p value � 0.05.
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emergent variant viruses circulating in the field, develop a plan for
disease prevention and control, and consequently improve vacci-
nation effectiveness by identifying ideal targets.

In summary, the main objective of this study was to evaluate
the feasibility of multivalent vHVT vaccine to confer multi-level
protection against HPAIV challenges, plus efficacy against IBDV
and NDV challenges based on clinical protection. Further studies
using more discriminating indicators of vaccine efficiency, like
virus shedding or antibody titers, are needed for IBDV, NDV and
MDV. In conclusion, the present study demonstrates that the repli-
cating vHVT vaccine platform with COBRA H5 insert alone or in
combination with VP2 IBDV or F NDV provides clinical protection
and significant reduction of viral shedding against challenge with
diverse Gs/GD H5 HPAIVs. In addition, HVT vector vaccines with
dual inserts also provided clinical protection against classical IBDV,
variant IBDV, and virulent NDV. Our findings demonstrate that
insertion of multiple genes from two different pathogens within
the HVT genome had no adverse effect on the expression, stability,
and in vivo efficacy against HPAIV, IBDV, and NDV challenges, ren-
dering HVT vector vaccines an efficacious tool for simultaneous
control of HPAIV and other viral infections. Therefore, the combi-
nation of COBRA and vHVT vaccine vector technologies to generate
multivalent vHVT vaccines has a great potential to improve the
control of H5Nx HPAIV and other poultry pathogens in the field.

Short title: Efficacy of multivalent vector vaccines against viral
infections in poultry.
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