
POLTAVA UNIVERSITY OF ECONOMICS AND TRADE

EDUCATIONAL AND SCIENTIFIC INSTITUTE OF

INTERNATIONAL EDUCATION

FORM OF DAY EDUCATION

DEPARTMENT OF COMPUTER SCIENCES AND INFORMATION

TECHNOLOGY

 Allowed for protection
Head of the department _________ Olkhovska O.V.

 (signature)

 "______"______________________2023

EXPLANATORY NOTE

FOR THE GRADUATE THESIS

 «DEVELOPMENT OF SIMULATOR SOFTWARE ON THE TOPIC

“DERIVATIVES” OF THE DISTANCE LEARNING COURSE “HIGHER

AND APPLIED MATHEMATICS»

from specialty 122 «Computer science»

educational program «Computer science»

bachelor's degree

The executor of the work is Samuel AMPAI

 ___________ "___"______2023.
 (signature)

Scientific supervisor, Ph.D. k.ped.s., Oksana KOSHOVA

 ___________ "___"______2023.
 (signature)

Poltava 2023

2

POLTAVA UNIVERSITY OF ECONOMICS AND TRADE

I APPROVE

Head of the department

________Olkhovska O.V.

" ___ » _________ 2023

TASKS AND CALENDAR SCHEDULE

OF EXECUTION OF DIPLOMA THESIS

Graduate of higher education in specialty 122 "Computer science"

Educational program "Computer Science"

Surname, first name, patronymic _ Samuel Ampai _

1. The topic «Development of simulator software on the topic “Derivatives” of

the distance learning course “Higher and applied mathematics»

approved by the rector's order No. ____-Н from___2022.

The deadline for the student to submit a thesis «__ » _______ 2023.

2. Source data for the bachelor's thesis: publications on the topic of educational

simulators in distance courses in computer science.

3. Content of the explanatory note (list of issues to be developed)

LIST OD SYMBOLS, UNITS, ABBREVIATIONS, RERMS

AN INTRODUCTION

CHAPTER 1. PROBLEM STATEMENT

1.1. Problem Statement

CHAPTER2. THEORETICAL PART

2.1. Derivative statement

2.2. The purposes of derivative

2.3. Basic derivative function

CHAPTER 3. PRACTICAL PART

3.1. Online GDB for C++

3.2. Components of Online GDB

3.3. The application of derivative in C++

3.4. Design And Programming of The Scientific Calculator

CONCLUSIONS

REFERENCES

APPENDIX A. Algorithm translation

Descriptive Algorithm

APPENDIX B. program code

4. List of graphic material: 3-4 sheets of block diagrams, other necessary illustrations.

3

5. Consultants of sections of the bachelor's thesis

Section Surname, initials,

position of consultant

Signature, date

issued the task accepted the

task

1. Statement of the

problem

Oksana Koshova

2. Information

review

Oksana Koshova

3. Theoretical part Oksana Koshova

4. Practical

implementation

Oksana Koshova

6. Calendar schedule of bachelor's work
The content of the work

Deadline

Actual

performance

1. Introduction

2. Study of methodological recommendations and

standards and report to the manager

3. Formulation of the problem

4. Information review of library and Internet sources

5. Theoretical part

6. The practical part

7. Completion of registration

8. Student report at the department

9. Editing (if necessary), reviewing

Issue date of task " ___ " _________ 2023.

Ampai Samuel, a higher education graduate

Scientific supervisor, Ph.D., k.ped.n., Oksana Koshova.

The results of the thesis defense

The thesis was evaluated at ___
 (Points, assessment according to the national scale, assessment according to ECTS)

Minutes of the meeting of the EC No. ____ of "____" ______________ 2023.

Secretary of the EC______________ _______________________
 (signature) (initials and surname)

4

Plan

Thesis of a higher education graduate with a bachelor’s degree

majors 122 Computer science

educational program 122 Computer science

Surname, first name, patronymic____ Ampai Samuel_____

On the topic «Development of simulator software on the topic

“Derivatives” of the distance learning course “Higher and applied mathematics»
CHAPTER 1. PROBLEM STATEMENT

1.1. Problem Statement

CHAPTER2. THEORETICAL PART

2.1. Derivative statement

2.2. The purposes of derivatives

2.3. Basic Derivative functions

CHAPTER 3. PRACTICAL PART

3.1. The Online GDB for C++

3.2. Component of Online GDB

3.3. The application of derivative in C++

3.4. Design And Programming of The Guess game

CONCLUSIONS

REFERENCES

APPENDIX A. Algorithm translation

Descriptive Algorithm

APPENDIX B. program code

Graduate of higher education ___________________ Samuel Ampai

"____" __________ 2023

I approve

Chief department ___________

Ph.D.. k.ph.-m.s. O. Olkhovska

"____" ________________ 2023

Agreed

Supervisor _______________

associate professor, Ph.D. O. Koshova

"____" ________________ 2023

5

ABSTRACT

The purpose of the Grade work. The purpose of the grade work is

development of software for application of derivatives in C++ programming

language.

The object of the Grade work is distance learning system for students.

The subject of the Grade work is software for application of derivatives in

C++ programming language.

6

CONTENT

LIST OF SYMBOLS, UNITS, ABBREVIATIONS, TERMS ... 7

INTRODUCTION ... 8

CHAPTER 1. PROBLEM STATEMENT .. 12

1.1. Problem Statement ... 12

CHAPTER 2. THEORETICAL PART ... 13

2.1. Derivative statement ... 13

2.2. The purposes of derivative ... 13

CHAPTER 3. PRACTICAL PART ... 23

3.1. Online Gdb for C++.. 23

3.2. Components of OnlineGDB .. 26

3.3. The Application of Derivative in C++ .. 27

3.4. Design And Programming of a Simple Guessing Game .. 37

CONCLUSIONS .. 38

REFERENCES .. 39

APPENDIX A. Algorithm translation ... 40

Descriptive Algorithm. .. 40

APPENDIX B. Program code ... 41

7

LIST OF SYMBOLS, UNITS, ABBREVIATIONS, TERMS

SYMBOLS, UNITS,

ABBREVIATIONS,

TERMS

Explanation of symbols, units, abbreviations, terms

Simulator a program enabling a computer to execute program

F(x) This symbol represents the function whose derivative we

are attempting to compute.

D(X) This symbol signifies a change in the value of x that is

infinitesimal. It is used to define the derivative, which is

defined as the limit of the change in f(x) divided by the

change in x as dx approaches zero.

∇f(x) This symbol represents the gradient of f(x), which is a

vector that points in the direction of the greatest increase in

f(x). It is often used in multivariable calculus to find the

direction of steepest ascent

C++ Object-oriented programming, generic programming,

templates, and exception handling are all characteristics of

C++. It is a popular choice for designing large-scale

applications, and many software developers and businesses

worldwide utilize it.

8

INTRODUCTION

Topicality. Every generation believes they are experiencing the most exciting

period of ongoing social and technological growth. However, since the invention of

computers and the internet, the present appears to be a period of unparalleled

advancement.

A formal language used to convey instructions to a computer is called a

programming language. It is employed in the creation of websites, applications, and

software. Although programming languages are made to be simple for people to read

and write, they are also organized in a way that makes them simple for computers to

understand. Programming languages come in a wide variety, each with an own syntax

and set of coding guidelines. Java, Python, C++, and JavaScript are a few of the more

well-liked programming languages.

In this work grade, I created a simulator based on the topic "Derivatives" in the

C++ programming language.

Derivatives are used in C++ to solve optimization problems, represent physical

phenomena, and evaluate the behavior of complicated systems.it helps in machine as

well.

C++ lacks a built-in derivative operator, although it does include libraries and

frameworks for dealing with derivatives.

These libraries enable you to execute numerical calculations to approximate a

function's derivative at a particular point. The Boost C++ Libraries, which includes

several tools for conducting numerical calculations, including differentiation, is a

popular library for working with derivatives in C++.

The Armadillo C++ Library is another popular library that offers a variety of

linear algebra and numerical analysis tools, including support for differentiation and

integration.

C++ libraries for working with derivatives frequently emphasize low-level

access to hardware resources and performance optimization.

9

For the first task in this grade work, I will initially study arrays in Java, clarify

their types and methods of declaring them, and explain how to enter the values of

different types inside them, and I will explain their advantages and disadvantages.

For the second task in this grade work, I will design and write a program in the

Java language that implements a scientific calculator, and I will use the array to store

the values that the user will enter and also to store the values resulting from the

calculations executed through the scientific calculator.

In the era of globalization, we used Calculator so many times. We use it to do

the calculation in a short time. In this perspective, I have made a java Scientific

Calculator software. By using this software, we can easily calculate our mathematical

problem.

The purpose of the Grade work. The purpose of the grade work is

development of software for application of derivatives in C++ programming

language.

The object of the Grade work is distance learning system for students.

The subject of the Grade work is software for application of derivatives in

C++ programming language.

The simulator’s goal is to be used as a training tool to help students learn the

topic of derivatives in C++.

The following methods for the development have been used:

- NetBeans Platform including JDK.

- JFrame container.

- java language.

- java Swing.

C++ is a general-purpose programming language created by Bjarne Stroustrup

at Bell Labs in the early 1980s. It is a C programming language extension that was

developed to give extra capabilities for object-oriented programming (OOP), such as

classes, inheritance, and polymorphism, while retaining the efficiency and low-level

control of C.

10

The term "C++" is derived from the C increment operator, which is written as

"++". In C++, the "++" operator reflects the language's ability to enhance C's

capability.

C++ was first launched in 1985, and its combination of low-level control and

high-level abstractions quickly garnered appeal among programmers. It was used to

create a wide range of software, including operating systems, device drivers, and

video games:

System specialized: C++ is not fundamentally platform-independent because

code execution is dependent on the hardware that is underneath and operating system.

C++ code, on the other hand, can be made platform-independent by employing

platform-specific abstractions, such as using libraries that provide platform-

independent functionality or writing code that works on various systems.

Furthermore, tools like as compilers and cross-platform development environments

are available to assist developers in creating platform-independent C++ code. In

machine learning, derivatives are used to optimize models and improve performance.

Gradient descent is a popular optimization algorithm that uses derivatives to find the

minimum of a function.

This Grade work will look at one of the most significant aspects of the C++

programming language, because it allows researchers to forecast how a system will

act in the future based on its current state, the derivative statement is especially

valuable in simulators. This is critical for many applications, such as forecasting

weather patterns or simulating disease propagation. Researchers can develop more

accurate predictions and gain a better understanding of the underlying mechanisms

driving the system's behavior by using the derivative statement.

Online GDB is a web-based compiler and debugger for C, C++, and other

programming languages. It allows users to write, compile, and run code directly from

their web browser, without the need for any additional software or tools. Thus, the

grade work focuses.

11

12

CHAPTER 1. PROBLEM STATEMENT

1.1. Problem Statement

The problem statement for derivatives in C++ involves calculating the rate of

change of a function at a specific point or over a range of values. This can be done

using various methods such as forward, backward, and central difference

approximations. The goal is to create an algorithm that accurately approximates the

derivative of the function, while also being efficient and easy to use. The algorithm

should be able to handle a wide range of input values and provide accurate results,

even in cases where the function is complex or difficult to evaluate. This problem

statement is relevant in many fields, including physics, engineering, finance, and

computer science, and can be used to solve a wide range of real-world problems.

Derivatives in C++ can be difficult to implement for a variety of reasons. One

of the most difficult issues is determining the best approach for approximating the

derivative, as different methods may be more or less accurate depending on the

function under consideration. Another problem is ensuring that the algorithm is

efficient and capable of dealing with a wide range of input values while still

producing accurate outputs. When working with complex or highly nonlinear

functions, this can be very problematic. Furthermore, it is possible to make mistakes

when implementing the method, which can result in inaccurate results or even

crashes. Finally, grasping the mathematical concepts underlying derivatives and how

they might be implemented in C++ requires a learning curve. Overall, while C++

variants can be powerful tool for solving complex problems.

13

CHAPTER 2. THEORETICAL PART

2.1. Derivative statement

For the distance course "Derivatives" you must build a simulator. The main

point of the work includes:

 highlight the C++ language.

 explain the fundamental concepts of the topic Derivatives.

 create a derivative for the simulator and build a block diagram.

 explain the programming language and technologies used in building the

program.

2.2. The purposes of derivative

What are derivatives?

Derivatives are used to find the rate of changes of a quantity with respect to other quantity.

How derivative function works in C++?

The derivative of a function is the rate at which the function value is changing,

with respect to x, at a given value of x. Graphically we can say that derivative is

nothing but a slope at a particular point of a function. The slope of the tangent line

differs from one point to the next. The value of the derivative of a function depends

on the point in which we decide to evaluate it. Basically, we often mention the slope

of a function instead of the slope of its tangent lines.

Notation

 The representation of a derivative is by a prime symbol. Example

represents the derivative of a function evaluated at point . Uniformly, writing

 indicates we are carrying out the derivative of the function The

prime symbol disappears as soon as the derivative has been calculated.

A derivative is a measure of how much a function changes with respect to its

input. It is defined as the limit of the ratio of the change in the function to the change

in the input, as the change in the input approaches zero. In other words, the derivative

14

of a function at a point x is defined as:

 where h is a small positive number that represents the change in x.

In C++, we can use numerical methods to approximate the derivative of a

function at a point, since the limit definition of the derivative is often difficult to

compute exactly. One common numerical method for approximating derivatives is

the finite difference method, which uses the slope of a secant line between two points

on the function to approximate the derivative.

To use the finite difference method to approximate the derivative of a function

f(x) at a point x, we choose a small value of h and compute the slope of the secant

line between the points . This slope is given

by: / h which is an approximation of the derivative of at .

In C++, we can define a function that represents the function we want to differentiate,

and then use the finite difference method to approximate the derivative of that

function at a given point. We can also use other numerical methods to approximate

derivatives, such as Taylor series expansions, Runge-Kutta methods, and more

advanced techniques. Overall, numerical methods are a powerful tool for

approximating derivatives in C++, and they are widely used in scientific and

engineering applications.

Steps for finding a derivative function in C++includes.

1. Identify the variable terms and constant terms in the equation.

2. Multiply the coefficients of each variable term by their exponents.

3. Decrement of each exponent by one.

4. Use new coefficient in place of the old ones.

5. Find the value of the function from the value of the value.

Using the procedures, we can find the derivatives of a function but using code,

but using code to do so can be a bit more challenging.

Derivatives of usual function

We are going to have a look at the list of the most important derivatives.

15

Although these formulas can be formally proven, it is a great idea to fully understand

how derivatives work.

a. The Constant function

The derivative of constant function is always zero since the function

does not change with respect to its input.

The derivative of a function is a measure of how much the function changes

with respect to its input. In general, the derivative of a function f(x) at a point x is

defined as.

where h is a small positive number that represents the change in x.

When we apply this definition to a constant function, we get:

Also,

So, the derivative of a constant function is always zero. This makes sense,

since a constant function does not change with respect to its input, so the rate of

change (i.e. the derivative) is always zero.

b. the identity function

The identity function is a function that returns its input as its output. In other

words, the output of the function is equal to the input of the function. The identity

function is denoted by the symbol "id" or "I", and is defined as:

For any value of x, the output of the function is just x itself. For example, if we

plug in we get:

Similarly, if we plug in , we get:

16

The identity function is important because it is the simplest example of a

function. It is also an example of a function that is both injective and surjective. An

injective function is a function where every input has a unique output, while a

surjective function is a function where every output has at least one input that maps to

it. Since the identity function maps every input to a unique output and every output

has at least one input that maps to it, it is both injective and surjective.

A function of form

The derivatives of function is a measure how much the function changes

with respect to its input In general, the derivative of a function and is also

defined as;

Where h is a small positive number which represents the change in .

When we apply this definition to a function of the form , we get;

(

Notation

 The rule stated above applies to all types of exponents. it can natural,

fraction and whole. It is always important that this exponent is constant. There is

another rule which is exponential function.

 It is often the case that a function satisfies this form requires a bit of

reformulation before proceeding to the derivative. It is the case of roots (square,

cubic) representing fractional exponents.

An exponential function (form with a>0)

To implement an exponential function of the form with a > 0 in C++. You

can use the built in library function pow (). The pow function takes two arguments:

the base and exponent and the return the value .

17

Here's an example of how you can use the pow() function to implement an

exponential function:


```c++ 

#include <iostream> 

#include <cmath> 

 

double exponential(double a, double x) { 

    return pow(a, x); 

} 

 

int main() { 

    double a = 2.0; 

    double x = 3.0; 

    double result = exponential(a, x); 

    std::cout << "The exponential of " << a << " to the power of " << x << " is " 

<< result << std::endl; 

    return 0; 

} 

``` 


In this example, we define a function called exponential() that takes two

arguments: the base a and the exponent x. The function uses the pow() function to

compute the value of , and returns the result.

In the main() function, we call the exponential() function with a = 2.0 and x =

3.0, and store the result in a variable called result. We then print out the result using

std::cout.

18

This program will output:

The exponential of 2 to the power of 3 is 8

You can change the values of a and x to compute different exponential

functions just to get the understanding of this.

The function in C++

To compute the derivative of the function f(x) = e^x in C++, you can use the

built-in math library function exp(). The exp() function takes one argument, the

exponent x, and returns the value e^x.

Here's an example of how you can use the exp() function to compute the

derivative of the function f(x) = e^x:


```c++ 

#include <iostream> 

#include <cmath> 

 

double derivative(double x) { 

    return exp(x); 

} 

 

int main() { 

    double x = 2.0; 

    double h = 0.0001; 

    double result = (derivative(x + h) - derivative(x)) / h; 

    std::cout << "The derivative of e^x at x = " << x << " is " << result << 

std::endl; 

    return 0; 

} 



19 

 

 

 

``` 


In this example, we define a function called derivative() that takes one

argument, the exponent x. The function uses the exp() function to compute the value

of e^x, and returns the result.

In the main() function, we call the derivative() function with x = 2.0, and store

the result in a variable called result. We then compute the derivative of the function

using the formula (f(x + h) - f(x)) / h, where h is a small number (0.0001 in this case)

that represents the step size. We print out the result using std::cout.

This program will output:

\

he derivative of e^x at x = 2 is 7.38906

Basic Rules of Derivatives

Power rule: This rule is used when we need to find the derivative of a function

that has a variable raised to a power. The power rule states that if f(x) = x^n, then

f'(x) = nx^(n-1). In C++, we can implement this rule using the pow() function from

the <cmath> library. The pow() function takes two arguments: the base and the

exponent, and returns the base raised to the exponent. Here's an example

implementation.

```c++ 

double power_rule(double x, double n) { 

    return n * pow(x, n-1); 

} 

``` 

2. Product rule: This rule is used when we need to find the derivative of a

function that is the product of two other functions. The product rule states that if f(x)

= u(x) * v(x), then f'(x) = u'(x) * v(x) + v'(x) * u(x). In C++, we can implement this

20

rule using the product rule formula. Here's an example implementation:

```c++ 

double product rule(double u, double v, double u_prime, double v_prime) { 

    return u_prime * v + v_prime * u; 

} 

``` 


3. Quotient rule: This rule is used when we need to find the derivative of a

function that is the quotient of two other functions. The quotient rule states that if f(x)

= u(x) / v(x), then f'(x) = (u'(x) * v(x) - v'(x) * u(x)) / v(x)^2. In C++, we can

implement this rule using the quotient rule formula. Here's an example

implementation:

```c++ 

double quotient_rule(double u, double v, double u_prime, double v_prime) { 

    return (u_prime * v - v_prime * u) / pow(v, 2); 

} 

``` 


4. Chain rule: This rule is used when we need to find the derivative of a

function that is composed of two or more other functions. The chain rule states that if

f(x) = g(h(x)), then f'(x) = g'(h(x)) * h'(x). In C++, we can implement this rule using

the chain rule formula. Here's an example implementation:

o ``c++ double chain_rule(double g, double h, double g_prime, double h_prime)

How does composite function works??

A composite function is a function that includes another function. A composite

function is one that can be broken down into many components, each of which is a

function in and of itself, and these parts are not linked by addition, subtraction,

21

product, or division.

To understand how composite functions work, let's consider two functions f(x)

and g(x). The function g(x) takes an input x and produces an output g(x). The

function f(x) takes an input f(x) and produces an output f(g(x)). So, when we evaluate

the composite function (f o g)(x), we first evaluate g(x) to get a value, say a, and then

evaluate f(a) to get the final output.

Here's an example to illustrate how composite functions work. Let's consider

the functions f(x) = x^2 and g(x) = 2x + 1. To evaluate the composite function (f o

g)(x), we first need to evaluate g(x) to get a value, say a. So, if we plug in x = 2 into

g(x), we get:

g(2) = 2(2) + 1 = 5

Now, we evaluate f(a) to get the final output:

f(5) = 5^2 = 25

So, (f o g)(2) = f(g(2)) = f(5) = 25.

In summary, composite functions allow us to combine two functions to create a

new function, where the output of one function becomes the input of the other

function. To evaluate a composite function, we first evaluate the inner function, and

then use the output as the input to the outer function.

The chain rule

The chain rule of derivatives is a rule used to calculate the derivative of

function composed of two or more functions.

In C++, the chain rule can be implemented using the concept of function

composition.

22

Let's consider a function f(x) = g(h(x)), where g and h are functions of x. To

find the derivative of f(x), we need to use the chain rule, which states that: f'(x) =

g'(h(x)) * h'(x) This means that the derivative of f(x) is equal to the derivative of g

evaluated at h(x), times the derivative of h(x). In C++, we can implement this rule

using the following steps:

1. Define the functions g and h as separate functions, each taking an input of

type double and returning a value of type double.

2. Define a new function f that takes an input of type double and returns a

value of type double. This function should call the functions g and h using the input

x, and return the result of g(h(x)).

2. Define a new function f_prime that takes an input of type double and

returns a value of type double. This function should use the chain rule to calculate the

derivative of f at x. Specifically,

it should calculate g'(h(x)) and h'(x), and then multiply them together to get

f'(x). Here's an example implementation of the chain rule of derivatives in


``` 

#include <iostream> 

#include <cmath> 

 

double g(double x) { 

    return std::sin(x); 

} 

 

double h(double x) { 

    return std::cos(x); 

} 

 



23 

 

 

 

double f(double x) { 

    return g(h(x)); 

} 

 

double f_prime(double x) { 

    double h_prime = -std::sin(x); 

    double g_prime = std::cos(h(x)); 

    return g_prime * h_prime; 

} 

 

int main() { 

    double x = 1.0; 

    std::cout << "f(" << x << ") = " << f(x) << std::endl; 

    std::cout << "f'(" << x << ") = " << f_prime(x) << std::endl; 

    return 0; 

} 

``` 


In this example, the functions g and h are defined as the sine and cosine

functions, respectively. The function f is defined as the composition of g and h, and

the function f_prime uses the chain rule to calculate the derivative of f at a given

point x. The main function simply calls f and f_prime fo

CHAPTER 3. PRACTICAL PART

3.1. Online Gdb for C++

Online GDB is a web-based compiler and debugger for C++ that allows you to

write, compile, and debug your code in one place. It is a convenient tool for

developers who do not want to install a compiler on their local machine or who want

24

to share their code with others.

When you first navigate to the Online GDB website, you will see a simple

interface with a text editor, a console, and several buttons. To use Online GDB with

C++, you need to select the "C++" language option from the drop-down menu in the

top left corner.

Once you have selected the C++ language, you can begin writing your code in

the editor window. You can create new files or use existing ones by clicking the

"New File" or "Open File" buttons. As you write your code, you can use the console

to test your code and view the output.

To compile your code, click the "Compile" button in the top menu. If there are

any errors, they will be displayed in the "Error" tab. You can click on the error

message to jump to the relevant line in your code.

To debug your code, click the "Debug" button in the top menu. This will open

a new window with the debugger interface. Here, you can set breakpoints, step

through your code, and view the values of variables. The debugger interface is like

what you would see in a desktop IDE, with buttons for stepping over, stepping into,

and stepping out of functions.

Once you have finished debugging your code, you can exit the debugger and

return to the editor window by clicking the "X" button in the top right corner.

To run your code, click the "Run" button in the top menu. This will execute

your code and display the output in the "Output" tab. You can also input values into

the console to test your code with different inputs.

Online GDB also provides other useful features, such as the ability to save and

share your code with others, and the ability to download your code as a file.

Overall, Online GDB is a powerful and convenient tool for C++ developers

who want to write, compile, and debug their code in a web-based environment. Its

simple interface and powerful features make it a great choice for developers of all

skill levels.

25

GNU Debugger

The GNU Debugger (GDB) is a powerful command-line tool that allows

developers to debug programs written in various programming languages, including

C, C++, Ada, and others. GDB is a free and open-source tool that is available on most

Unix-based systems, including Linux, macOS, and FreeBSD.

GDB enables developers to monitor and control program execution, set

breakpoints, explore memory and variables, and much more. GDB allows developers

to step through their code line by line, analyze variable and expression values, and

view the call stack.

GDB can be utilized in a variety of ways, depending on the developer's

requirements. GDB, for example, can be launched in command-line mode, which

allows the developer to communicate with GDB via a terminal window. GDB can

also be linked into a linked Development Environment (IDE), such as Eclipse or

Code::Blocks, where the developer can interact with GDB via a graphical interface

One of GDB's most useful features is the ability to establish breakpoints in

code. A breakpoint is a point in the code when GDB will interrupt program execution

and allow the developer to inspect the program's state. Breakpoints can be placed on a

single line of code, a function call, or a condition.

GDB also includes several instructions for inspecting the program's state. The

"print" command, for example, can be used to print the value of a variable or

expression. The "info" command displays program information such as the call stack

and the current line of code.

Overall, GDB is a robust and adaptable debugging tool. While it can be

challenging to use at first, GDB is an essential tool for any developer who needs to

debug their code.

26

Figure 1. GDB GNU Builder

3.2. Components of OnlineGDB

OnlineGDB is a web-based compiler and debugger with a variety of developer-

friendly features. OnlineGDB's primary components include the following:

1. Web-based code editor: OnlineGDB includes a web-based code editor that

allows developers to write code in a variety of programming languages such as C,

C++, Java, Python, and others.

2. Compiler: OnlineGDB comes with a compiler that can compile code written

in a variety of computer languages. The compiler is built within the web-based

interface, allowing developers to build code with a single click.

3. Debugger: OnlineGDB includes a debugger that allows developers to

step through their code, set breakpoints, and inspect the program's state. The

debugger is built within the web-based interface, allowing developers to debug their

code in the same environment.

4. Console: OnlineGDB has a console that allows developers to interact with

27

the input and output of their program. The console is incorporated within the web-

based interface, allowing developers to examine the output of their application while

still working in the same environment.

5. Sharing: By providing a URL to their code, developers can share their code

with others. This can be beneficial for interacting with others or obtaining debugging

assistance.

Overall, OnlineGDB is a robust and adaptable solution for web-based

developers who need to write, compile, and debug code.

3.3. The Application of Derivative in C++

Derivatives in C++ are used in a variety of domains, including computer

graphics, optimization, physics, and engineering. The following are some examples

of how derivatives are utilized in C++:

1. Computer graphics: Derivatives can be used to calculate the slope of a curve

at a specific location, which is important in designing smooth curves and surfaces in

computer graphics.

2. Optimization: In optimization issues, derivatives can be employed to identify

the least or maximum value of a function.

3. Physics: Derivatives can be used to compute an object's velocity and

acceleration, which is useful in simulating the motion of objects in physics.

4. Engineering: Derivatives can be used to calculate a system's rate of

change, which is useful in engineering for modelling and analyzing complex systems

Derivatives in C++ can be calculated using a variety of numerical approaches,

including the finite difference method and automatic differentiation. Libraries like

Boost and GSL include functions for calculating derivatives, while C++ frameworks

like ROOT and OpenCV make considerable use of derivatives in their algorithms.

Example 1.

```cpp 



28 

 

 

 

#include <boost/math/differentiation/autodiff.hpp> 

#include <iostream> 

 

using namespace boost::math::differentiation; 

 

// Define the function to differentiate 

auto f(auto x) { 

    return sin(x) + 2 * x; 

} 

 

int main() { 

    // Calculate the first derivative of f at x = 1 

    auto x = make_fvar<double, 1>(1); 

    auto result1 = derivative(f, wrt(x)); 

 

    // Calculate the second derivative of f at x = 1 

    auto result2 = derivative(result1, wrt(x)); 

 

    // Print the results 

    std::cout << "f'(1) = " << result1 << std::endl; 

    std::cout << "f''(1) = " << result2 << std::endl; 

 

    return 0; 

} 

``` In this example, we first calculate the first derivative of `f` at `x = 1`, and 

then we calculate the second derivative of `f` at `x = 1` by calling the `derivative`

function again, passing in the result of the first derivative as the function to

differentiate. Finally, we print the results to the console. In this case, the output

would be:

29


``` 

f'(1) = 2.5403 

f''(1) = -0.416147 

``` 


which are the approximate values of the first and second derivatives of `f` at `x

= 1`.

Example 2.

#include <iostream>

#include <cmath>

using namespace std;

// Define the function to differentiate

double f(double x) {

 return sin(x) + 2 * x;

}

// Calculate the derivative of f at x using the finite difference method

double derivative(double x, double h) {

 double fx = f(x);

 double fxh = f(x + h);

 return (fxh - fx) / h;

}

int main() {

 // Calculate the derivative of f at x = 1 using h = 0.001

30

 double x = 1;

 double h = 0.001;

 double result = derivative(x, h);

 // Print the result

 cout << "f'(1) = " << result << endl;

 return 0;

}

n this example, the `f` function represents the function whose derivative we

want to calculate, and the `df` function represents the derivative of `f` using the finite

difference method. The `main` function calls the `df` function with a value of `x` and

a small value of `h` to calculate the derivative of `f` at `x`. The result is then printed

to the console.

Note that this is a simple example and that there are many other methods for

calculating derivatives that are more accurate and efficient.

Example 3.

```cpp 

#include <iostream> 

#include <complex> 

 

using namespace std; 

 

complex<double> f(complex<double> z) 

{ 

    return sin(z); 

} 



31 

 

 

 

 

complex<double> df(complex<double> z, double h) 

{ 

    complex<double> hI(0.0, h); 

    return imag(f(z + hI)) / h; 

} 

 

int main() 

{ 

    complex<double> z(1.0, 1.0); 

    double h = 0.0001; 

 

    complex<double> result = df(z, h); 

 

    cout << "The derivative of sin(z) at z = " << z << " is " << result << endl; 

 

    return 0; 

} 

``` 


In this example, the `f` function represents the complex function whose

derivative we want to calculate, and the `df` function represents the derivative of `f`

using the complex-step differentiation method. The `main` function calls the `df`

function with a value of `z` and a small value of `h` to calculate the derivative of `f`

at `z`. The result is then printed to the console.

Notation

the complex-step differentiation method is a technique for calculating the

derivative of complex functions that is more accurate than the finite difference

method, especially for functions that have a complex output.

32

Example 4.

``cpp

#include <iostream>

#include <cmath>

using namespace std;

double f(double x)

{

 return sin(x);

}

double df(double x, double h)

{

 return (f(x + h) - f(x)) / h;

}

int main()

{

 double x = 0.5;

 double h = 0.0001;

 double result = df(x, h);

 cout << "The derivative of sin(x) at x = " << x << " is " << result << endl;

 return 0;

Example 5.

#include <bits/stdc++.h>

33

using namespace std;

long long dTerm(string t1, long long v)

{

 string coeffStr = "";

 int i;

 for (i = 0; t1[i] != 'x'; i++)

 coeffStr.push_back(t1[i]);

 long long coeff = atol(coeffStr.c_str());

 string powStr = "";

 for (i = i + 2; i != t1.size(); i++)

 powStr.push_back(t1[i]);

 long long expo = atol(powStr.c_str());

 return coeff * expo * pow(v, expo - 1);

}

long long dVal(string& poly, int v)

{

 long long ans = 0;

 istringstream is(poly);

 string t1;

 while (is >> t1) {

 if (t1 == "+")

 continue;

 else

 ans = (ans + dTerm(t1, v));

 }

cout<<"The derivative of a function is "<< ans;

}

int main()

34

{

 string str = "2x^2 + 4x^1";

 int v = 2;

 cout << dVal(str, v);

 return 0;

}

OUTPUT

The derivative of a function is 12.

Example 6.

#include <iostream>

#include <iomanip>

#include <boost/multiprecision/cpp_dec_float.hpp>

#include <boost/math/constants/constants.hpp>

int main(int, char**)

{

 using boost::math::constants::pi;

 using boost::multiprecision::cpp_dec_float_50;

 //

 // We'll pass a function pointer for the function object passed to derivative,

 // the typecast is needed to select the correct overload of std::sin:

 //

 const float d_f = derivative(

 pi<float>() / 3,

 0.01F,

35

 static_cast<float(*)(float)>(std::sin)

);

 const double d_d = derivative(

 pi<double>() / 3,

 0.001,

 static_cast<double(*)(double)>(std::sin)

);

 //

 // In the cpp_dec_float_50 case, the sin function is multiply overloaded

 // to handle expression templates etc. As a result it's hard to take its

 // address without knowing about its implementation details. We'll use a

 // C++11 lambda expression to capture the call.

 // We also need a typecast on the first argument so we don't accidentally pass

 // an expression template to a template function:

 //

 const cpp_dec_float_50 d_mp = derivative(

 cpp_dec_float_50(pi<cpp_dec_float_50>() / 3),

 cpp_dec_float_50(1.0E-9),

 [](const cpp_dec_float_50& x) -> cpp_dec_float_50

 {

 return sin(x);

 }

);

 // 5.000029e-001

 std::cout

 << std::setprecision(std::numeric_limits<float>::digits10)

 << d_f

36

 << std::endl;

 // 4.999999999998876e-001

 std::cout

 << std::setprecision(std::numeric_limits<double>::digits10)

 << d_d

 << std::endl;

 // 4.99e-01

 std::cout

 << std::setprecision(std::numeric_limits<cpp_dec_float_50>::digits10)

 << d_mp

 << std::endl;

}

The derivative anticipated value is 0.5. In this case, the central difference rule

is ill-conditioned, which means it has a minor loss of precision. Keeping this in mind,

the results are consistent with the expected value of 0.5.

Example 7.

Input: str = "2x^3 +1x^1 + 3x^2"

 val = 2

Output: 37

Explanation: 6x^2 + 1x^0 + 6x^1

 Putting x = 2

 6*4 + 1 + 6*2 = 24 + 1 + 12 = 37

Input: str = “1x^3”

 val = 2

Output: 12

Explanation: 1 * 3 *x^2

 Putting x = 2

37

 3 * 4 = 12

3.4. Design And Programming of a Simple Guessing Game

Information regarding my grade work, which includes screenshots.

Finally, I have designed a simple guessing game in C++ with the help of

onlinegdb. A guessing game in C++ involves the user guessing a randomly generated

number within a certain range. The program will prompt the user to enter a number,

and then compare it to the generated number. If the guess is too high or too low, the

program will give the user a hint and prompt them to guess again. The game

continues until the user has correctly guessed the number, at which point the program

will congratulate them and ask if they want to play again.

Figure 1.1

The guess game.

38

CONCLUSIONS

There was independent consideration of several sources of information and

mastery of the project in this Grade work assignment. Consolidation of the theoretical

expertise offered by lecture content I have studied at the prestigious university.

Derivatives in C++ can be challenging to implement, but if mastered, they can

be a useful tool for tackling complex mathematical problems. While there are

numerous approaches for approximating derivatives, the optimum strategy will

depend on the specific problem at hand. C++ gives you a lot of flexibility and control

over how these methods are implemented, but it's also quite easy to make mistakes if

you're not careful. Overall, studying derivatives in C++ can be a difficult but

rewarding subject for anyone interested in mathematics, science, or engineering.

39

REFERENCES

1. COMPUTER SOFTWARE DERIVATIVE WORKS: THE CALM BEFORE THE STORM

2. MODELLING DERIVATIVES APPLICATION: JUSTIN LONDON

3. OPTIONS AND DERIVATIVES PROGRAMMING IN C++: CARLOS OLIVEIRA

MATH FOR PROGRAMMERS

40

APPENDIX A. Algorithm translation

Descriptive Algorithm.

Step 1. Open your web browser for example Safari web browser.

Step 2. Type in your search engine OnlineGDB compiler.

Step 3. Change the language to C++.

Step 4. Type in the codes for the guess game.

Step 5. Run the code.

Step 6. Play the guess game.

41

APPENDIX B. Program code

/***

Welcome to GDB Online.

GDB online is an online compiler and debugger tool for C, C++, Python, Java,

PHP, Ruby, Perl,

C#, OCaml, VB, Swift, Pascal, Fortran, Haskell, Objective-C, Assembly,

HTML, CSS, JS, SQLite, Prolog.

Code, Compile, Run and Debug online from anywhere in world.

****************/

#include <iostream>

#include <cstdlib>

#include <ctime>

using namespace std;

int main()

{

 srand(time(0));

 int number = rand() % 100 + 1;

 int guess;

 int tries = 0;

 cout<<"Welcome to Sam's guess game"<< endl;

 cout << "I'm thinking of a number between 1 and 100. Can you guess what it

is?" << endl;

42

 do {

 cout << "Enter your guess: ";

 cin >> guess;

 tries++;

 if (guess > number) {

 cout << "Too high! Try again." << endl;

 } else if (guess < number) {

 cout << "Too low! Try again." << endl;

 } else {

 cout << "Congratulations! You guessed the number in " << tries << "

tries." << endl;

 }

 } while (guess != number);

 return 0;

}

