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RESUMO

A análise de redes sociais tem sido amplamente utilizada em diferentes contex-

tos de aplicação. Por exemplo, em Desenvolvimento Global de Software, onde vários

desenvolvedores com diversos conhecimentos e habilidades estão envolvidos, o uso de

modelos de redes sociais ajuda a entender como esses desenvolvedores colaboram. Encon-

trar especialistas que possam ajudar a abordar elementos ou problemas críticos em um

projeto é uma tarefa desaĄadora e crítica. Isso é especialmente verdade em projetos no

contexto de Desenvolvimento Global de Software, onde desenvolvedores com habilidades

e conhecimentos especíĄcos geralmente precisam ser identiĄcados. Nesse sentido, buscar

membros essenciais é uma tarefa valiosa, pois eles são fundamentais para a evolução da

rede. Este trabalho propõe um framework arquitetural para a identiĄcação de especialistas

como uma solução híbrida que inclui análise sintática e semântica em redes sociais. Busca-

mos abordar desaĄos de pesquisa relacionados ao projeto de sistemas de recomendação

que envolvam a análise de estruturas sociais no contexto de Desenvolvimento Global de

Software. Nesta solução, deĄnimos um modelo para a rede social capaz de capturar a

colaboração entre desenvolvedores, incorporamos estratégias de análise temporal da rede,

exploramos a rede usando algoritmos de aprendizado de máquina, propomos uma ontologia

para enriquecer os dados semanticamente e consideramos uma abordagem performativa

para métodos de análise de redes de grande volume. Realizamos quatro estudos de caso

usando dados extraídos do GitHub para avaliar a abordagem proposta, bem como um

conjunto de dados de grande volume para os estudos de performance. Os estudos de caso

fornecem evidências de que o método proposto pode identiĄcar especialistas, destacando

sua expertise e importância para a evolução da rede social.



ABSTRACT

Social network analysis has been widely used in different application contexts. For

example, in Global Software Development (GSD), where multiple developers with diverse

skills and knowledge are involved, the use of social networking models helps to understand

how these developers collaborate. Finding experts who can help address critical elements

or issues in a project is a challenging and critical task. It is especially true in the context of

Global Software Development projects, where developers with speciĄc skills and knowledge

often need to be identiĄed. In this sense, searching for essential members is a valuable

task, as they are fundamental to the evolution of the network. This work proposes an

architectural framework for expert identiĄcation as a hybrid solution that includes syntactic

and semantic analysis in social networks. We seek to address research challenges related to

designing recommendation systems when analyzing social structures in the Global Software

Development context. In this solution, we deĄne a model for the social network capable of

capturing collaboration between developers, incorporate strategies for temporal analysis of

the network, explore the network using machine learning algorithms, propose an ontology

to enrich the data semantically, and consider a performative approach for high-volume

social network analysis methods. We conducted four case studies using data extracted

from GitHub to evaluate the proposed approach, as well as a more extensive dataset for

the performance studies. The case studies provide evidence that our proposed method can

identify specialists, highlighting their expertise and importance to the evolution of the

social network.

Keywords: Social Network Analysis. Global Software Development. Expert Recommen-

dation System. Syntactic Analysis. Semantic Analysis. Collaboration Network Model.

Machine Learning. Ontology. High-volume Social Network.
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1 Introduction

The world is evolving fast, and a large volume of information is becoming increasin-

gly available. Data is generated every moment from different sources, such as IoT devices

and social media (1). Furthermore, the growing complexity of software development

processes and demand for fast software delivery bring challenges associated with the need

for efficient methods capable of extracting knowledge from data. In this sense, data

analysis is valuable as it aims to transform datasets into valuable information, converting

them into insights for decision-making (2).

Global Software Development (GSD) has arisen driven by the growing importance of

software as a vital component in almost every business (3, 4). It is a complex sociotechnical

system motivated by various advantages: reduced software development time and cost,

access to a large multi-skill pool of individuals, and responsiveness to customers and

market needs (5). Furthermore, GSD promotes the emergence of social structures with

numerous individuals worldwide working towards the same goal (6). As a result, we have

the appearance of version control platforms where teams of developers collaborate to

produce working software (7).

The complexity, effort required, and unpredictability in large-scale software deve-

lopment (8) raise challenges associated with Ąnding qualiĄed professionals to assist with

speciĄc tasks. Experts can be seen as experienced developers capable of solving complex

tasks to achieve project goals and help other developers (9). Moreover, they are essential

individuals in GSD, as they are often responsible for most of the relevant contributions in

software development (10). However, identifying those suitable to assist with project needs

is difficult, especially considering that various characteristics, such as technical knowledge,

previous experiences, collaborative skills, and availability, may inĆuence the search for

the right person (11). Other important characteristics should also be considered when

looking for suitable developers in global contexts, such as cultural factors, geographical

differences, and communication barriers (12).

Recommendation Systems (RS) are software applications that seek to provide

suggestions to meet usersŠ needs and preferences (13). They are fundamental in GSD

as they reduce the human effort of Ąnding suitable developers by providing suggestions

based on the analysis of developersŠ past behavior and interpersonal relationships (14).

Furthermore, its use makes the software development process more effective by supporting

decision-making activities, such as recommending developers to assist in speciĄc tasks (15)

or allocating entire teams to work on project components (16).

However, there are challenges in designing recommendation systems when analyzing

social structures in GSD:

(i) Temporal information: Among existing contextual aspects of data, temporal
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information can be considered one of the most valuable. It facilitates tracking the evolution

of individualsŠ preferences by modeling habits and interests over time (17). Taking the time

dimension into account is essential as peopleŠs interests are constantly changing, impacting

how they interact with each other and their ranking in recommendations (18). Not

considering temporal information may result in giving greater importance to individuals

who were but are no longer involved in a particular subject, e.g., a developer who has

contributed to a speciĄc topic in the past but has lost interest in that topic over time.

(ii) Work overload: Traditional approaches often lead to the design of analytical

models that recommend the same group of popular developers (19). Such a naive system

could drastically increase the requests for assistance from these individuals, who could

end up overloaded with numerous tasks to solve (20). Moreover, the excessive workload

faced by some developers promotes a stagnant collaboration scenario with low knowledge

dissemination, reduced productivity, and increasing software defects (21). Thus, identifying

developers who are not obvious but have similar skills to those considered experts expands

the diversity of recommendations by identifying additional potential individuals who could

contribute to project needs (22).

(iii) Semantic Analysis: Several studies have been developed over the years to

support data analysis approaches (23). However, learning from data is more than just

analyzing data. Some authors (24) suggest that there is no meaningful knowledge discovery

without understanding the context information in which data is generated. Thus, a range of

strategies can be used separately or advantageously integrated into data analysis methods

to incorporate semantics (25). Including semantic analysis in data analysis systems can

increase the quality of the study by bridging semantic gaps between data (26, 27).

(iv) Data Volume: Finally, in GSD, we have millions of registered developers,

repositories, and projects, not to mention information obtained from collaboration features

that reach billions of available data (28). The growing volume of data expands the size

of social structures while their complexity evolves with the number of connections to be

analyzed (29). Therefore, evaluating the systemŠs performance when developing network

analysis approaches is crucial if we want to produce optimized methods that perform in a

feasible time (30).

1.1 Proposal

Considering the four research challenges related to analyzing social structures

in GSD, we present a new architectural framework for expert identiĄcation. It is a

comprehensive solution for syntactic and semantic analysis in social networks in the Global

Software Development context. Our approach combines analysis techniques as different

components of a system to explore distinct aspects of the network, helping us identify those

with speciĄc knowledge. In this solution, we deĄne a temporal model for social networks
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capable of capturing collaboration interactions between developers over time. Thus, we

seek to identify and classify experts by investigating the evolution of their communities

in social networks. Furthermore, in order to boost decision-making and improve the

overall process, we explore the network using machine learning algorithms and propose an

ontology to enrich the data semantically. The approach also addresses issues related to

the volume of data, including a performative solution for executing social network analysis

methods.

Figure 1 highlights the contributions of our work along with the proposed analytics

process. First, we model the data as a social network, representing the relationship between

individuals that best aligns with the goals we seek to solve. Then we consider temporal

information and model the network over sequential periods to analyze how its structure

evolves. Finally, we analyze the evolution of the network formed among developers who

collaborate to achieve project goals.

Syntactic and semantic analyses are implemented separately to explore the data

more comprehensively. In linguistics, syntactic analysis is related to processes that

examine sentential structures, and here the term is used to address the study of network

structures (31). Therefore, in the syntactic analysis step, we characterize the network

and use a clustering algorithm to investigate how the inĆuence of developers changes over

time. We work to identify the individuals considered essential for network evolution and

the development of projects. Furthermore, we seek to identify less obvious developers

with similar skills to those considered inĆuential using both clustering and classiĄcation

approaches. To that end, we propose and integrate a diversity-based study focused on

reducing the work overload faced by highly requested individuals.

On the other hand, semantic analysis is the process of drawing meaning from data.

When combined with syntactic analysis, semantic-based methods allow us to delve deeper

into the analysis context, extracting knowledge from semantic structures. In this sense, we

create an ontology to categorize relations between the entities in the network. Ontologies

are logic models that explicitly represent conceptsŠ meaning (semantics) and relationships.

We use the model to create a knowledge graph by inferring implicit connections between

objects. Finally, we focus on Ąnding individuals with advanced knowledge or skills in the

network by analyzing the semantic structure.

We also employ a parallelism study to investigate the performance of our approach

when dealing with large data sets. We propose a graph partitioning strategy to reduce the

complexity of large network structures by dividing them into smaller, less-connected parts

to be processed in parallel. Our goal is to improve the processing time of network analysis

techniques, particularly density-based clustering algorithms, as they are widely used in

detecting and analyzing communities in social networks (32). In addition, the parallelism

study is responsible for supporting all other steps of the analysis process.
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Figure 1: Outlining the analytics process. The research challenges we address are in red
italics.

Thus, we summarize the main contributions of our approach:

• We perform a temporal characterization of the network to explore how its structure

evolves.

• We introduce a diversity-based analysis to address the problem of potential work

overload of certain experts.

• We create a semantic model using an ontology to explore implicit aspects of the

network.

• We propose a parallelism study and a new network partitioning strategy focused on

investigating and improving the performance of clustering algorithms.

• We propose an architectural framework combining syntactic and semantic analysis

techniques to identify experts in GSD.

To guide our study, we highlight a research question (RQ1) that should be answered

by the end of this work:

• (RQ1) How to develop an approach integrating the proposed analytical strategies?

We present a new architectural framework for expert identiĄcation that includes

solutions to the four research challenges related to analyzing social structures in

GSD.

Furthermore, in order to answer RQ1, we deĄne four secondary research questions

(SRQ).

• (SRQ1) What characterizes individuals as essential for network evolution? We

present a temporal characterization approach to identify active members (nodes)

and search for individuals considered crucial to the projects. We investigated several
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overlapping structures corresponding to consecutive timestamps, with the aim of

tracking the behavior of central nodes in the network and understanding how the

project evolves over time.

• (SRQ2) How to implement an approach that allows increasing diversity of recommen-

ded developers? We propose a diversity-based approach as a solution to the work

overload problem. We seek to identify developers who are not obvious but have

similar skills to those considered experts. We compared some popular classiĄcation

algorithms to explore individuals recognized as false positives; individuals who may

have characteristics similar to those identiĄed as true positives. In addition, we apply

some centrality algorithms seeking in order to understand the role of false positives

individuals in the network.

• (SRQ3) How can an ontology assist in identifying developers with speciĄc expertise?

We create an ontology to explore implicit aspects of the network. The ontology is

used to infer the expertise of developers by creating relationships between keywords

and knowledge topics. Individuals are classiĄed according to their degree of expertise

in the network and considering temporal aspects to explore the expertise interest over

time, prioritizing more recent project activities. The semantic model is supported

by an initial step focused on creating a knowledge domain to deĄne the projectŠs

expertise.

• (SRQ4) How develop a network partitioning strategy that optimizes the execution

time of clustering algorithms? We presented a new and unprecedented parallel graph

partitioning algorithm as well as its implementation details and obtained results

in an extensive data set. Sequential and parallel approaches were developed and

compared to evaluate the algorithmŠs feasibility. Considering the execution time and

memory consumption, we carried out a performance analysis.

The text of this dissertation is organized as follows: Chapter 2 presents some

concepts about expert recommendation systems and related work. Chapter 3 introduces

the architecture of the proposed solution, including explaining each step involved in

the approach, and describes the data and the social network model used in this study.

Chapter 4, 5, 6, and 7 present the historical research related to temporal categorization,

diversity-based analysis, semantic analysis, and network partitioning, respectively. Finally,

Chapter 8 presents conclusions and future works.

The development of this work resulted in the publication of Ąve published works

(33)(14)(34)(10)(35).
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All code and data used in this paper can be accessed at1,2,3,4.

1 https://github.com/Talessil/DRecSys
2 https://github.com/Talessil/Temporal-Analysis
3 https://github.com/Talessil/ExFindO
4 https://github.com/Talessil/parallelized-dc
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2 Backgroud and Related Work

Considering the research areas on which this work draws, we highlight in this

chapter the main concepts needed for the proposal understanding. The Ąrst two sections

present the background regarding Social Network Analysis and Expert Recommendation

Systems. The last section presents the related work considering research published in

these areas.

2.1 Social Network Analysis

Social networks are sets of connected objects represented by a graph in which

edges relate to nodes or vertices. A social network reĆects a social structure where

individuals or organizations and their relationships can be represented. For example,

relationships generally represent one or more types of interdependence (such as ideas and

religion) or more speciĄc relationships (knowledge sharing, information, and friendship, for

example). This social structure allows data and information exchanged between individuals

or organizations to be studied and analyzed at different levels of detail (36).

In social network analysis, many works are related to the key topic of Pattern &

Knowledge Discovery (37), and a key issue is community detection (38). As members

of social networks are very likely to participate in communities, Ąnding them has drawn

the attention of many researchers. There are many applications considering this issue

in different Ąelds, such as viral marketing (39), expert Ąnding (40), knowledge sharing

(41), and others. Furthermore, the interdisciplinary nature of the subject has increasingly

stimulated the study and development of algorithms and techniques to analyze network

topology, deĄne clusters for communitiesŠ identiĄcation, and locate inĆuencing elements,

connectors, and information diffusers (37).

According to (42), there are different types of people in a Social Network, and

we can highlight two: central connectors and information brokers. Central connectors

characterize people with many relationships; those inĆuential people who communicate

across subgroups, maintain a large connected group, or connect two groups, are considered

information brokers. Analyzing these kinds of people is important to characterize the

social network to identify responsible people by maintaining communication among people,

groups, and the whole network. Semantic meaning can also improve this characterization,

and speciĄc analyses can be used to identify semantic connections among people who

share similar interests that are not explicitly stated.

Community detection consists of Ąnding groups in the network so that the members

of each group are more similar to themselves than members of other groups. Many

approaches toward a solution to this problem can be found in the literature (43, 44),

and several studies (45, 46) have reviewed the most common methods to deal with the
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community detection task.

The problem is that most existing studies focus only on the link analysis or the

topological structure of the network (47). Also, they do not consider dynamic social

networks with different snapshots of the network (48). Thus, these methods do not use

the content available in the network, and the detected communities are often formed

by members with different interests (49). Some recent studies have shown that more

meaningful communities can be identiĄed by enriching the network semantically (37),

showing members with strong connections and similar interests simultaneously (50, 49).

2.2 Expert Recommendation Systems

Finding suitable individuals to meet needs that demand speciĄc knowledge is

challenging. Experts are individuals with deep knowledge or skill based on experience in

a particular study area. An expert can be deĄned as an individual with a score higher

than a determined threshold in a given topic or subject (51). They can be discovered by

analyzing data from user proĄles believed to have certain knowledge and experience. These

proĄles can be obtained from the content of documents related to peopleŠs activities (52).

However, the concept of "expert"is frequently unclear, and it is difficult to deĄne measures

that identify a person as such. Moreover, candidatesŠ areas of expertise are difficult to

quantify, while their experience constantly changes over time. Consequently, people often

turn to the most inĆuential individuals as experts, ignoring emerging ones (53).

It becomes increasingly necessary to identify the most qualiĄed and who may work

on speciĄc needs in their respective areas. For example, in the industry, professionals use

networking platforms (e.g., Linkedin) to search for potential candidates to Ąll job openings

in information technology areas (54). In academia, social networks capture previous

collaborations between researchers, whose analysis assists in Ąnding those who could carry

out article reviews (55) or contribute to different research groups (32). Furthermore, in

addition to being required to actively answer questions on Q&A platforms (56), experts

are needed to assist with speciĄc tasks as global, distributed software development evolves

more and more.

Expert recommendation systems seek to gather the past reputation of candidates,

rank them, and provide a ranked list of those whose experience best matches the userŠs

query (56). These systems can be implemented considering both topic-oriented and

expertise-oriented searching models. In topic-oriented searching systems, the goal is to

Ąnd an individual who is knowledgeable in a particular topic (57). On the other hand,

expertise-oriented searching systems focus on Ąnding the Ąelds with the greatest similarities

to an expertŠs specialty (58).

Although the Ąrst works related to recommendation systems date back to the 1970s

(59, 60), expert recommendation systems are an emerging research Ąeld that seeks to
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provide suggestions on those considered to be specialists (61). More recent recommendation

works apply machine learning (deep learning) (62), graph analysis (63), and semantic

approaches (64). Also, they are a branch of general recommendation systems, and one of

the most signiĄcant differences is in the source of knowledge extraction. Different data

types can be extracted from speciĄc repositories and used for different recommendations,

such as games (65) or movies (66). On the other hand, when we seek to recommend people,

collecting information about their knowledge and experiences becomes more complex, as

they are often members of various social networks (58).

2.3 Related Work

Social network analysis has been the subject of several recent studies as effective

graph analysis provides a deeper understanding of data and can beneĄt many applications

such as node classiĄcation, node recommendation, and link prediction.

In research focused on multiple dimensions, social networks are analyzed concerning

the big data paradigm dimensions (67, 68). Particularly in (67), Camacho et al. propose

the deĄnition of four different dimensions inspired by the popular V model (69) used

in the Big Data area. These are based on four essential features in social network

analysis, Pattern & Knowledge discovery, Information Fusion & Integration, Scalability,

and Visualization, which are used to deĄne a set of new metrics to evaluate the different

social network analysis software frameworks and tools. Also, a multiple-dimensional

analysis, including spatial, social, temporal, and semantic perspectives, is conducted in

(70) in order to understand Twitter usersŠ discussion. They argue that multi-dimensional

analysis can reveal complicated patterns and answer questions that cannot be addressed

with a single-dimension analysis (70).

However, most graph analytics methods suffer the high computation and space

costs. Graph embedding is an effective yet efficient way to solve the graph analytics

problem (71). The authors in (72) introduce a new setting for graph embedding, which

considers embedding communities rather than individual nodes. They Ąnd that community

embedding is useful for community-level applications such as graph visualization and

provides an opportunity to improve community detection and node classiĄcation.

Social network analysis has also been explored in several studies aimed at detecting

experts to assist with project issues (73, 74). In this sense, analyzing social networks

in search of specialists can be carried out from the investigation of structural data,

representing the connections, interactions, and topology of the network (75), as well as

content data that is focused on existing and shared information within the network by the

users (76).

In recent works (77, 78), collaborative models are structured and explored to

identify communitiesŠ specialists according to their expertise. In (77), a new approach
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to modeling researchers is proposed to recommend experts in scientiĄc communities,

considering factors such as topic relevance, expert quality, and researcher connectivity. It

addresses a good way to solve expert identiĄcation problems by employing a deep learning

method that combines user feature representations with question feature representations to

compute scores. In (78), the authors propose an expert Ąnding method, named NEWHITS,

which considers the topical similarity of the users and can adapt well to the feature of the

CQA. Also, while few works aim to Ąnd appropriate individuals to help with GSD issues,

they are not directly related to the term expert. Instead, they recommend individuals to

help with code reviews based on their historical contributions (77) or previously explored

code (79).

These approaches are considered static algorithms in community discovery, as they

refer to methods that do not take into account the evolution of social networks, i.e., the

ŠtimeŠ variable is not considered in the network modeling. On the other side, dynamic

community Ąnding algorithms (76) refer to those approaches that incorporate the variable

time into the model. Temporal analysis was used to identify patterns of user contributions

(80) and show that analyzing the evolution of their activities can be used to describe

changes in the network structure (81). Thus, work with temporal information is considered

a signiĄcant factor in the analysis process of social networks as it broadens the range of

possible analysis, giving an idea about the changes in the relationships between individuals

based on any time interval (82).

The evolution of social networks can be described by analyzing them based on

some aspects over time, e.g., shared activities, membersŠ associations, the similarity

between individualsŠ attributes, and the closure of network cycles (83). Compared to static

graph analysis, temporal models allow better recognition of usersŠ common interests and

predictions about their future activity. Furthermore, understanding how members and

their interactions evolve in communities can present key insights into identifying experts

(84).

When using machine learning models on evolutionary data, the authors in (84)

demonstrated that identifying experts by observing their temporal activity outperforms

models that use static data snapshots. In (9), a temporal analysis performed on overlapping

communities showed that overlapping nodes might be associated with either multidiscipli-

nary developers collaborating on different technologies simultaneously or changing their

interests. Also, statistically, signiĄcant improvements were observed when incorporating

temporal information to model dynamic user expertise (85). They modiĄed two widely

used approaches, Answer Count and ZScore, by applying exponential and hyperbolic

penalization models to discount the effect of older records. In (73), the authors consider

that light knowledge in other areas allows them to collaborate on different aspects of

the project. Therefore, they propose a method for T-shaped expert Ąndings based on

temporal expert proĄling. They regularly take snapshots of expertise trees to learn the
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relation between temporal changes in different candidatesŠ proĄles. Finally, (74) presents

the TTEA (temporal topic expertise activity) model that simultaneously uncovers the

topics, activities, expertise, and temporal dynamics to study the user behaviors and topics

dynamics. They demonstrated that TTEA shows advantages in topic modeling, question

routing, expert recommending, and community life-cycle management.

We could see that only structural data analysis would provide an incomplete view

of the information and patterns stored in the network. Therefore, graph metrics, machine-

learning algorithms (86), and semantics approaches (73) are becoming more common in

recommendation systems, although similarity estimation always proves to be a critical

problem. While traditional expert recommendation approaches ignore semantic-based

information, in (83) is proposed a novel Temporal-Expert-Topic (TET) approach based on

Semantics and Temporal Information for temporal expert Ąnding, which means identifying

a person with given expertise for different periods. They claim to be the Ąrst to deal

with the temporal expert Ąnding problem by proposing a generalized time topic modeling

semantic approach. We can see expertise-oriented (9) and topic-oriented (85) approaches

used as the basis for such semantic search models.

Some strategies are used to analyze semantically constructed graphs (87, 88). For

instance, GraphDBLP is a tool that models a social network as a graph and enriches the

data through semantic keyword similarities computed via word embedding. The authors in

(89) propose HQExpert, a novel expert-Ąnding method in CQA based on multi-granularity

semantic analysis and interest drift. They represent an expert domain based on semantic

analysis and an expert ranking strategy based on quality optimization to draw usersŠ

time-sensitive interests at different periods. A new deep model for expert Ąndings based

on convolutional neural networks is proposed in (90). Their model tries to detect usersŠ

expertise by simultaneously learning patterns from usersŠ documents and queries. Also,

(32) seeks to verify the level of inĆuence among researchers by analyzing a bidirectional

graph-based model. Then, they use ontological terms and rules to identify new connections

and promote scientiĄc collaboration.

Furthermore, diversity-based methods aim to recommend non-common people

(91, 91) rather than follow traditional strategies that lead to the same group of individuals

(92). Diversity in expert recommendation systems consists of identifying developers who

are not obvious but have similar skills to those considered experts (93). Its authors consider

the work in (94) as the Ąrst to study diversity in the presence of social networks and

demonstrate the more diverse the group members are, the better quality of the group of

experts. The lack of diversity may bring situations where experts begin ignoring their

expertise and follow the crowd due to social pressure or the information cascade effect

(95).
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2.3.1 Discussion

Comparatively, what differentiates our work from others are i) we performed the

analysis of social networks by exploring structural and semantic aspects. We performed

a temporal characterization of the network, searching for communities and identifying

essential members for the evolution of the network. Many studies identify individuals

that are somehow relevant but not crucial to the evolution of the network structure. ii)

We employ machine learning models and apply centrality metrics to classify developers

according to their contribution to the network. With this, we further explored the study

of the term diversity, showing that the lack of diversity can inhibit the performance of

some specialists, bringing situations in which other specialists are overloaded with tasks

to solve. iii) We address the use of the term expert in GSD, and for that, we propose a

taxonomy categorizing keywords in GSD projects, which extends to future related work.

Thus, we propose an ontology to explore implicit aspects of the network through a semantic

perspective and use ontological terms and rules to identify experts and expertise. Some

studies focus on identifying experts according to their expertise but not on identifying

them by linking developers with implicit semantic expertise and their change of interest

over time. iv) Finally, while graphical metrics, machine learning algorithms, and semantic

approaches are becoming more common in recommender systems, they are barely seen

together in the approach. Thus, we put together all the approaches above to perform

enriched data analysis and compose an architectural framework for expert identiĄcation

in GSD. Some studies combine the analysis of different network dimensions to analyze its

structure but do not focus on improving the detection of communities.

2.3.2 Parallelism

Be G = (V, E) an undirected graph with a set of nodes V = {v0, v1, ..., vn} and

edges eij = (vi, vj), with eij representing a relationship between nodes i and j. The graph

minimum cut problem can be deĄned as the division of V into n smaller parts minimizing

the edge cut (96). It can also be extended to the balanced graph partitioning problem

(97), where the partitions need to be approximately sized. Furthermore, the particular

case n = 2 leads to a classic discrete optimization problem: the minimal bisection problem

(98, 99). The bisection problem has proved to be an NP-hard (100) since it requires a new

cardinality constraint: |B| = |V |/2, on each partition (bisection) B ⊂ V .

With advances in infrastructure and the emergence of even larger datasets, some

current studies have employed high-performance clusters to obtain high-quality partitions

in complex networks with billions of edges. They include graph partitioning and matching

methods applicable to large-scale graph analysis (101, 102), adaptations of techniques for

parallel graph clustering algorithms (103), and partitioning schemes for graph community

detection (104).
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However, despite advances in works related to graph partitioning, the lack of

research aimed at detecting communities in parallel is still a difficulty (104). We found

publications on parallel clustering techniques applied in social networks (104, 105, 106), but

none considers parallel partitioning with a focus on community detection by density-based

clustering algorithms. In addition, studies are found that consider execution time in their

analysis(107), but none include the analysis of memory consumption.

In a structured overview of graph partitioning studies in the literature, (108)

highlight the contrast between demands for different approaches to dealing with larger

datasets, and the fact that graph partitioning methods are becoming less likely to emerge.

Thus, concerns about future improvements in this area grow as analytics networks are

getting larger and more challenging to deal with todayŠs partitioners. Moreover, to the

best of our knowledge, no graph partitioning work guarantees a process that split the

graph into connected subnets (connected components) and allows for overlapping nodes to

exist. This further emphasizes the need for more effective parallel partitioning methods

for graph approaches.

The aspects that make our proposal different from previous studies are: (i) we

propose a new parallel graph partitioning algorithm focused on obtaining balanced partiti-

ons along with execution time feasibility in social networks. (ii) Our approach guarantees

the connectivity of each partition as well as allows overlapping nodes between different

partitions. Thus, the application of density-based clustering algorithms can be performed

on the graph partitions in order to detect communities. (iii) Besides time consumption, we

also perform algorithm analysis to evaluate its behavior in terms of memory consumption.
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3 Proposed Solution

This chapter presents the proposed architectural framework for expert identiĄcation.

The framework implements a hybrid analysis of social networks by integrating distinct and

complementary approaches to deal with the challenges raised in the introductory chapter.

3.1 Architecture Overview

Since we address the study and analysis of social networks, we propose an architec-

tural framework designed to explore collaborative networks in GSD contexts. Figure 2

presents the proposed conceptual architecture, which is deĄned in seven layers.
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Figure 2: Architecture for an Expert Recommendation System.

Initially, fundamental actions, such as data scraping and storage, are employed

in the Data Preparation layer. This step collects data from code hosting and version

control platforms like GitHub, focusing on repositories for software development projects.

Information captured includes developersŠ data and elements describing how they col-

laborate to achieve project goals. Still, the data is pre-processed in this stage, going

through cleaning, integration, reduction, and transformation steps until it is ready to

be ingested by the data modeling layer. This is a data integration process combining

extraction, transformation, and loading (ETL) (109). It was implemented without any

existing framework (e.g., Hevo Data, Airbyte, Apache Kafka, Pentaho Kettle, Apache

Camel) but using python for us to develop our own procedures.

Next, in the Data Modeling layer, social network structures are generated

according to the network model that best represents the relationships in the problem
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investigation context. This is done by deĄning the graph structure: nodes and connections.

The network structures are stored using both Neo4j, a graph database management system,

and NetworkX, a Python library for studying graphs and networks. Once the graph model

is established, the modeling process is extended using a temporal approach to represent

the network in speciĄc periods. Including time information in the modeling process allows

us to generate and analyze time frames in order to understand how the network evolves.

With the network structures in hand, we can use several methods separately or

together to compose analysis strategies. We divided them into two groups: syntactic and

semantic analysis approaches, as illustrated in the Syntactics layer and Semantics layer,

derived from the Data Analysis layer. Syntactic analysis approaches include methods

focused on exploring the structural aspects of networks. In this sense, machine learning

algorithms, such as Logistic regression (LR) (110), Linear Discriminant Analysis (LDA)

(111), Naive Bayes (NB) (112), K-Nearest Neighbors (KNN) (113), and Support Vector

Machines (SVM) (114), and centrality analysis measures, such as Closeness, Betweenness,

and Page Rank (115), are examples of approaches for this purpose. In addition, semantic

analysis approaches focus on representing and interpreting the meaning of data in a speciĄc

context. Therefore, knowledge graphs and their database structure are deĄned with a

focus on the applications we target to build; deĄned by the task, and the ontology is

deĄned from the domain knowledge, containing the deĄnition of concepts and relationships

for a given domain as well as the domain rules.

Furthermore, when dealing with large and more complex structures, a good strategy

is to partition the network into less-connected structures. Therefore, the architecture also

implements a parallelism strategy that optimizes network analysis approachesŠ execution

time. That approach is represented in the Parallelism layer, where the network structures

are divided into smaller partitions, the new partitions are analyzed in parallel, and the

partial results are merged to generate the Ąnal result.

Finally, regardless of the approach adopted, the results are gathered and analyzed

in the Recommendation layer in order to identify and recommend specialists according

to the required expertise.

In the next sections, we detail how the architecture can be used to address the

research challenges related to the search for experts presented in Chapter 1. Then, we

deĄne strategies from the combination of components present in the architecture and name

them according to the challenges of research they aim to solve (see Figure 3).

3.2 Temporal Characterization

In this subsection, we present the networkŠs temporal characterization method. It

is proposed as a solution to deal with the research challenges related to using temporal

information in expert recommendation systems.
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Figure 3: Research challenges and proposed solutions.

As illustrated in Figure 4, we consider the temporal characterization to be a two-

stage approach. In the Ąrst stage, we model the data as a social network and employ

temporal modeling to represent the network over sequential periods, deĄned by monthly

snapshots. The temporal modeling seeks to generate overlapping structures that can be

analyzed sequentially, that is, in chronological order to observe how the network evolves. In

the context of a network representing collaborative relationships, investigating the network

evolution allows us to track the contribution activity between developers. Therefore, this

stage can identify developers who are considered inĆuential due to their importance to

the network evolution by analyzing their contribution degree. In summary, this Ąrst stage

aims to reduce the initial number of developers to a group of more relevant individuals in

the network.

The second stage extends the Ąrst one by working towards searching for those

considered essential for the network evolution. These individuals may play key development

roles in the project and, therefore, are critical to the projectŠs growth. Here, we delve

further into the concept of what it means to be an inĆuential developer, looking at how

their inĆuence degree evolves. This analysis allows us to differentiate individuals considered

inĆuential exclusively at speciĄc periods or over a longer period in the project. In addition,

we use domain knowledge to enrich our analysis with semantic information, fundamental

to assist us in answering the "whys"of questions not possible to be elucidated by only

analyzing structural aspects of the network. The domain knowledge is recovered from

project documentation related to development resource labels.

3.3 Diversity-based Approach

In order to reduce the workload on highly in-demand individuals, we present the

diversity-based approach (see Figure 5) as a solution to deal with the research challenges

related to working overload in expert recommendation systems. We seek to reduce the

workload of some highly-requested individuals by increasing the diversity of recommended

developers by recommending those who are not obvious but have similar skills to those

considered experts.

Following the idea proposed in the temporal characterization method, this approach

also has a Ąrst stage responsible for reducing the initial number of developers to a group
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Figure 4: Network Temporal Characterization.

of the most inĆuential individuals in the network. Considering the degree of contribution

as a metric to Ąnd inĆuential individuals, it is likely that they have a greater and more

active participation in contributions to the network. They are identiĄed by analyzing

the developersŠ contribution degree. Therefore, studying these individuals is considered

valuable when identifying potential individuals to assist in project tasks.

In the second stage, we propose an analytics approach that trains different classiĄ-

cation models: LR, LDA, NB, KNN, and SVM, to predict whether or not individuals are

requested to assist with project tasks. The modelsŠ results are compared and evaluated,

and the model with the best results has its values chosen for further analysis. We focus

on analyzing individuals classiĄed as false positives (fp) because they are individuals

incorrectly classiĄed as positive. In this case, they are supposed to have similar cha-

racteristics to those classiĄed as true positives (tp). In other words, we investigate if

recommending false-positive individuals can be used as an alternative to increasing the

diversity of recommended developers and reducing the workload on those who excel in the

network.

3.4 Semantic-based Approach

Figure 6 shows the approach proposed to address the research challenges related to

semantic analysis in expert recommendation systems. Here again, the Ąrst stage comprises

the strategy of reducing the number of individuals to be analyzed to a group of more

inĆuential individuals in the network, according to their contribution degree.

We employ a semantic analysis approach in the second stage to extract meaning

from data. First, we create a taxonomy to provide the categories by which a given entity

within the given context can be described. The taxonomy is created using both domain

knowledge and information obtained in the Ąrst stage (syntactic analysis step).
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Figure 5: Diversity-based Approach.

Next, we use an ontology to explore the semantics behind the collaborative context

in GSD projects. The ontology is constructed following the Methontology Framework

(116) and its steps will be presented in Chapter 7. The ontology takes a step further

from the taxonomy, allowing us to classify and specify the entities by describing the data

structure as classes, relationships, and constraints that act on the concepts and entities.

Therefore, we use ontology to infer implicit connections between experts and expertise in

order to create a knowledge graph. A knowledge graph represents a semantic network and

can be used to identify, rank, and query individuals with speciĄc skill levels.

Figure 6: Semantic-based Approach.

3.5 Network Partitioning Strategy

Finally, this subsection presents the network partitioning strategy (see Figure 7),

which is proposed to address the research challenges related to data volume. Our focus is

on improving the processing time of community detection methods in social networks: the
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syntactic step we performed in the previous cases (stage 1). Although the syntactic step is

a common step in our architecture modules, it consists of costly operations, which makes

it crucial to improve its performance. Therefore, we propose a new network partitioning

algorithm and use it to reduce the structural complexity of large networks, dividing them

into balanced subnetworks to be processed in parallel. Lastly, the smaller structures are

analyzed in parallel, and the partial results are merged to produce the Ąnal result.

Figure 7: Network Partitioning Strategy.

To evaluate our proposal, we applied our architecture to a collaborative network of

developers working on GSD projects. Therefore, in the next chapter, we present the data

as well as describe the social network model used in this study.

3.6 Social Network Data and Model Description

GSD is supported by many platforms that enable collaboration between developers.

GitHub (117) is one of the biggest code hosting platforms, responsible for millions of

software development projects. It offers Git functionality, such as distributed version

control and source code management. The platform has been a target of recent studies

(118, 119) since it allows the integration of large amounts of data through its RESTful API.

Furthermore, GitHub offers collaborative features1 supported by pull-based methods (120),

which works with Issues, and Pull requests. Issues are trackers of bugs, enhancements,

requests, and ideas, while pull requests are a mechanism for developers to notify team

members that a feature or Ąx is ready. With this kind of system, a developer can let everyone

know that they can review the code, providing a forum to discuss the implementation of

the proposed feature.

Therefore, in order to evaluate our approach in a real-world scenario, we analyzed

some of the most starred(⋆) projects2 on GitHub: Node.js3 (86,445 ⋆), Kubernetes4

(86,761 ⋆), and Symfony5 (26,626 ⋆). These are popular projects with new features being
1 https://github.com/features
2 https://gitstar-ranking.com/repositories; accessed 24 Mar 2022
3 https://github.com/nodejs/node
4 https://github.com/kubernetes/kubernetes
5 https://github.com/symfony/symfony
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continuously developed and supported by a large community with various active developers

worldwide. The projects are brieĆy described below:

• Node.js is an open-source, cross-platform JavaScript runtime environment that

lets developers use JavaScript to write command-line tools. It is primarily used for

non-blocking, event-driven servers due to its single-threaded nature. Initial release:

May 27, 2009; Stable release: March 22, 2022.

• Kubernetes is an open-source container orchestration system for automating compu-

ter application deployment, scaling, and management. It aims to provide a platform

for automating deployment, scaling, and application containers across clusters of

hosts. Initial release: 7 June 2014; Stable release: December 16, 2021.

• Symfony is an open-source PHP web application framework (a set of reusable

PHP components/libraries) that aims to speed up the creation and maintenance

of full-featured web applications. Initial release: 22 October 2005; Stable release:

December 29, 2021.

3.6.1 Dataset Description

All data used in this research were obtained through the GitHub RESTful API.

However, it is important to emphasize that, as the work progressed, new data were obtained

and used in our analysis. The data obtained from the projects correspond to the period

from January 2014 to June 2018.

Table 1 shows the different tables used in the experiments and the number of

records in each table. The different tables are described as follows. (i) User : table with

data about distinct developers contributing to the projects; (ii) Pull request: table with

data about pull requests that were opened in projects; (iii) Review comments: table with

data of comments related to proposed changes in pull requests; (iv) Discussion comments:

table with data of comments in discussions forums; (v) Label: table with distinct tags

used to categorize pull requests.

Table 1 Ű DatasetŠs Tables and Number of Records.

Table Value
Users 15,762

Pull Requests 79,375
Review Comments 265,714

Discussion Comments 226,628
Labels 425
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3.6.1.1 Network Model

A social network model can represent different types of interactions depending on

the connections between individuals we want to analyze. Therefore, seeking to explore the

collaboration context in GSD projects, we propose a collaboration network model created

from implicit contribution relationships between developers.

As illustrated in Figure 8, a contribution relationship is created from User vi to

User vj when user vi creates a review comment on a pull request created by user vj.

Therefore, we say that vi contributes to vj. Review comments were chosen as they can

be seen as contributions that involve speciĄc knowledge since they are comments related

to code changes proposed in pull requests. Conversely, other collaborative features on

GitHub, such as discussion comments, were not considered at this point when modeling

the network because they are not explicitly related to any speciĄc knowledge. Furthermore,

it is important to highlight that the proposed collaboration model will be used in the data

modeling stage in the other approaches developed in this work. Next, we formalize the

proposed model.

Collaborative Development Feature

User vi User vj

Pull
Request

Does a Review Comment
Is Created By

Contributes to

GitHub

w(vi,vj)

Figure 8: Collaboration Network Model.

Collaboration Model: Let B = (Ub, Pb, Eb) be a bipartite bidirectional graph

(see Figure 9), with Ub, Pb, and Eb denoting the set of users, pull requests and edges

connecting the nodes, respectively. Each edge can be labeled with: Ścreated_byŠ (from

P to U), or Ścreated_review_commentŠ (from U to P). Also, each node pi ∈ Pb can have

N input edges, with N equal to the number of review comments, however, it can have

only one output edge (only one author). In order to model the collaboration network,

we extract a bidirectional graph D = (Vd, Ed) from B, where Dd = {d0, d1, ..., dn} is the

set of developers (nodes), connected by a set of edges Ed = {eij, ..., ekm}, representing

contributions between pairs of developers. A relationship eij = (vi, vj, wij) is established

when a developer vi creates a review comment on developer vjŠs pull request. In addition,

the weight value wij is calculated by summing all viŠs review comments on all pull requests

opened by developer vj.
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Figure 9: Developer Network.

3.6.1.2 Evaluation Structure

The data and the social network model presented (in this chapter) in Ągure 8. were

used in developing historical researches that evaluate this workŠs proposal. Considering

the four pillars of the proposed solution, we divided the evaluation into four historical

researches, presented in the following chapters.

Historical Research 1 was conducted to verify the proposalŠs feasibility regarding

the temporal characterization of the social network. In historical research 1, a clustering

algorithm was used to identify experts, and a temporal analysis was conducted to analyze

the evolution of the network over time. We also use domain knowledge to understand

which experts are responsible for the growth of the network.

Historical research 2 veriĄes the proposalŠs feasibility to identify alternative specia-

lists, i.e., to reduce the workload of some developers who are widely requested at certain

times. We used clustering and classiĄcation algorithms in this case study to identify

alternative specialists. The results were analyzed to see if the identiĄed developers could

be considered alternative experts.

In Historical researches 1 and 2, we used information about the social network

structure for the analyses carried out. In historical research 3, a semantic analysis is

conducted to enrich the data through the proposal of an ontology. This ontology was

instantiated using GitHub data and the network structure described in this chapter.

Finally, historical research 4 aims to investigate the structural complexity reduction

in large graph arrangements, considering the graph partitioning problem as a fundamental

algorithmic operation on large-scale parallel methods (121) and its impact on social network

analysis. Considering that we seek to address the data volume in social networks, here we

use a different dataset, with a greater number of entities and connections: the Digital

Bibliography & Library Project (DBLP) database (122). As this dataset will only

be used in this historical research, it will be described later in Chapter 7.
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4 Historical Research 1: Temporal Characterization

Considering time dimension is essential in expert recommendation systems as

peopleŠs interests constantly change, which may impact their ranking in recommendations.

In this chapter, we carry out experiments to investigate how the proposed temporal

characterization approach contributes to the search and recommendation of experts. The

temporal characterization is an instantiation of the proposed architecture with a focus on

syntactic analysis of the network. We consider temporal information to model the network

over subsequent periods in order to investigate the evolution of the network formed among

developers who collaborate to achieve project goals. To achieve our goal, we seek to

understand what deĄnes developers as essential for the evolution of the network.

4.1 Network Characterization

This section presents the analysis and results related to the temporal characteriza-

tion of the network. The data is analyzed using the proposed temporal network approach

(see Figure 4). In the Ąrst stage, we perform syntactic analysis on the overlapping struc-

tures in order to Ąnd inĆuential individuals in the network. In the second stage, we

use domain knowledge (semantics) to enrich our investigations in search of individuals

considered essential for the evolution of the network.

In order to reduce the initial number of developers to a group of individuals with

greater relevance in the network, we used a density-based clustering algorithm to analyze

the network and identify inĆuential individuals in communities. A density-based clustering

algorithm was chosen as we want to identify developers who are well connected, which

are represented by core nodes. Also, since we donŠt know the number of groups, we need

an algorithm that doesnŠt require this number as a parameter. Density-based clustering

methods usually have two main parameters: (eps and minPts). The parameter eps deĄnes

the inĆuence (connection weight) for a node to be considered an inĆuencer of its neighbors,

and minPts indicates the minimum number of neighbors that a node must have to be

considered a core node. Therefore, we can see core nodes as inĆuential developers because

of the minimum number of connections they must have.

Since we want to identify inĆuential individuals in a collaborative network, we used

NetSCAN to search for core nodes. NetSCAN (32) is density-based and has been used in

previous studies to detect overlapping communities in social networks. In addition to the

parameters mentioned above, NetSCAN also has an optional parameter (radius), which

allows the search for elements inĆuenced by the core in a greater depth.

After preliminary analysis of the network, we set the NetSCAN parameters to be

eps = 1 and minPts = 4. The eps = 1 corresponds to the out-degree mode value above

zero in the network, and minPts = 4 corresponds to the out-degree average value rounded
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down in the network. With these values, we give more value to developers who contribute

to a different number of individuals (minPnt) than the weight of each relationship (eps).

Thus, we consider inĆuential those with many contributions to different people greater

than or equal to the average number of contributions to different people in the network.

The third parameter (radius) was kept with its default value equal to 1.

Considering the data presented in subsection 3.6.1, we generated overlapping

structures to analyze the network over consecutive periods. Although all obtained data

correspond to the period from January 2010 to June 2018, given the data quality, we opted

to work with the most recent period, from January 1, 2017, to June 30, 2018. We

modeled each month as a contribution network and ran the NetSCAN algorithm on each

network to Ąnd core nodes for each period. Table 2 shows the number of nodes and edges

of the network for each period, as well as the number of clusters identiĄed by NetSCAN

and the nodes and cores that make up these clusters.

Table 2 Ű NetSCAN results in each overlapping structure

Period Nodes Edges Clusters Cores
2017-1 436 987 9 66
2017-2 494 1117 6 62
2017-3 489 1016 8 66
2017-4 477 1034 10 67
2017-5 547 1299 7 70
2017-6 551 1137 6 62
2017-7 522 1110 10 63
2017-8 595 1337 8 70
2017-9 557 1186 5 63

2017-10 704 1519 4 73
2017-11 624 1367 9 85
2017-12 489 873 11 39
2018-1 530 1043 6 59
2018-2 573 1168 12 76
2018-3 497 1032 9 59
2018-4 528 1020 8 60
2018-5 493 1012 11 60
2018-6 481 926 11 44

Once we have deĄned and identiĄed inĆuential developers as being Core Nodes,

we now move further in analyzing these individuals. We seek to investigate the role of

Core Nodes as inĆuential individuals, analyzing their degree of contribution over different

periods in the network.

Considering the temporal characterization goal addressed in historical research 1,

Ągure 10 shows (A) the number of Core Nodes for each period to which they contributed

and (B) the contribution degree of each Core Node. As we can see, the number of Core
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Nodes contributing does not change much over the months until 2017-11. At that moment,

the number of Core Nodes contributing reaches a maximum in 2017-11, followed by a

minimum in the next month, 2017-12. Furthermore, although 2017-11 is the month

with the most Core Nodes contributing, Figure 10-B shows that 2017-11 has less intense

contributions (darker colors) than in the previous month (2017-10), which has the most

speciĄc contributions; Core Nodes contributing more intensely (lighter colors).
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Figure 10: (A) the number of Core Nodes contributing in each period. (B) Core NodesŠ
contribution degree per period.

Figure 11 presents boxplots in order to further illustrate the Core NodesŠ contribu-

tion degree per period. It shows that 2017-10 is the month with the highest number of

individual contributions, indicating that this is a month that demanded a greater degree

of contribution from some speciĄc Core Nodes (outliers). These analyses may indicate

the growth of project demands that require speciĄc expertise, with emphasis on 2017-10,

where there is the most signiĄcant number of individual contributions.

It is also possible to observe another pattern, where outlier nodes contribute more

and more from 2017-1 up to 2017-10. Although 2017-11 is the period with the most Core

Nodes contributing when compared to the other months, this is also a period where only

one individual stands out with their high contribution degree. Consequently, this draws

our attention to a question (Q1) to be investigated in the domain knowledge step (next

subsection):

Q1: What characterizes periods with a greater number of individual contributions?

Considering all the Core Nodes identiĄed in the analyzed periods, in Figure 12, we

illustrate (i) the number of Core Nodes related to the number of months they contributed

(i.e., how many Core Nodes contributed in 1, 2, 3, ..., 18 months), and (B) who are the
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Figure 11: Boxplot: Core NodesŠ contribution degree per period.

developers identiĄed as Core Nodes in each month (the y-axis on the graph represents

each individualŠs ID). By analyzing the graphs, it is possible to see that many Core Nodes

participated in just a few months. Most of them contributed in just one month, while

others contributed for short periods, such as 2, 3, or 4 months. For longer contribution

periods (> 4 months), the number of Core Nodes contributing stabilizes. Furthermore,

we can see that some have contributed over several months and probably have a more

signiĄcant role in the network. Therefore, we also employ domain knowledge to answer

Q2 in the next subsection:

(Q2) How can Core Nodes be characterized as those who contribute during all

periods in the projects?

Finally, we also analyzed sequential periods of contribution and idle periods of

contribution. Similar to Figure 12-A, Figure 13 contains graphs showing the number of

Core Nodes related to (A) sequential periods of contribution, (B) the maximum sequential

period of contribution, (C) sequential periods of inactivity (idle periods), and (D) the

maximum sequential period of inactivity. It is worth explaining that both 13-A and 13-C

represent the totality of cumulative periods, i.e., a developer who contributed for a period,

stopped, and contributed again after some idle period, counts in both periods. According

to 13-A and 13-B, many Core Nodes have contributed for one month or short sequential

periods, and a few have contributed for longer sequential periods. Furthermore, 13-C

and 13-D show that some Core Nodes were absent for 12 and 13 months between periods

of contribution. Therefore, we extend the discussion of the next subsection with a Ąnal

question, Q3.

(Q3) What characterizes Core Nodes who make contributions in speciĄc periods?



41

Figure 12: (A) Number of Core Nodes who contributed by the number of contributed
months. (B) The ID of individuals identiĄed as Core Nodes in each period.

In conclusion, we were able to identify inĆuential individuals in the network by

analyzing their contribution degrees. Furthermore, some may be essential for the network

evolution due to their high contribution degree in speciĄc periods. However, despite some

individualsŠ high contribution degree, it is impossible to affirm that they are essential

for network evolution by analyzing the network structure alone. Therefore, in the next

subsection, we include domain knowledge in our analysis to help us search for essential

developers in the network. We seek to answer questions Q1, Q2, and Q3, which can help

us to identify these individuals.

4.2 Analysis using domain knowledge

At this stage of the temporal characterization approach, we extend our investigation

by using domain knowledge in order to characterize individuals considered essential for

network evolution.

Projects hosted on GitHub repositories are equipped with a label system that

provides several tags for annotating pull requests and issues. Tags are responsible for

improving access and understanding of documents, capturing progress history points,

marking release versions, and assisting users in navigating to critical parts of the project

(123). Likewise, developers are also related to tags that categorize the pull requests they

contributed to. Therefore, we use domain knowledge to explore the tags responsible for

labeling pull requests.

Figures 14, 16, and 15 show Symfony, Kubernetes, and Nodejs projects, respectively,

with the monthly distribution of the main tags used in each project. Also, the graphics
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show trend lines that may represent developing directions that projects are heading, e.g.,

with this information, it is also possible to observe how projects are evolving, indicating

higher stability or a greater development effort.

Figure 14: Symfony Project: Tag Distribution.

In the Symfony project (Figure 14), bug and feature are the most used tags. We can

associate these two tags with efforts related to corrective maintenance and the development

of new features, respectively. In addition, a smooth fall of all trend lines indicates project

stabilization.

On the other hand, Node.js (Figure 15) appears to be growing due to the increase

in the number of tags related to evolutionary maintenance, such as lib/src and doc. Node.js

has a larger number of distinct tags distributed over the periods, demonstrating the

importance of various areas being developed within the project. Despite this, the project
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Figure 15: Node.js Project: Tag Distribution.

Figure 16: Kubernetes Project: Tag Distribution.

also shows signs of stability due to the decrease in the number of test-related labels,

indicating the consolidation of its main components.

Lastly, Kubernetes (Figure 16) shows an upward trend in the number of bugs over

the months. It is possible to observe a particular situation in 2017-11 where there is a

huge amount of PRs mainly labeled with ŚfeatureŠ, ŚcleanupŠ, and ŚbugŠ tags. Similar to

Symfony, the appearance of these tags in Kubernetes PR seems to be strongly associated

with the development of new features.

These results show that periods with a large number of individual contributions

(identiĄed in the structural analysis of the network), such as 2017-10 and 2017-11, match

with periods with a huge amount of PR labeled according to the development of new

features or the appearance of bugs. Therefore, answering Q1, the periods with greater

individual contributions can be characterized by periods of high speciĄc demand in projects.

In the projects, we also identify different developersŠ proĄles. These contributed over

all periods, while others made speciĄc contributions. We observed that these individuals

have different contribution proĄles characterized by topics of contributions. In this sense,

we seek to explore the Core Nodes considering their specialties and the main technologies
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adopted in each project.

We randomly chose seven inĆuential Core Node developers to be further analyzed.

Table 3 describes these developers considering: (i) ID; (ii) Period of contribution, with

most individuals having contributed during all periods and two in speciĄc periods; (iii)

Project on which they worked; Furthermore, other information related to PR they worked,

including (iv) Kind; (v) Technology; and (vi) Size (code lines), which is information

available only for the Kubernetes project. We further extended the analysis of two

developers who contributed in all periods in Kubernetes: Dev 980082 (Figure 17) and Dev

730123 (Figure 18), by illustrating the tag distribution of the PRs they participated in.

Table 3 Ű CNs ProĄles

Core ID Period Project Kind Technology Size
730123 all Kubernetes bug, clean sig/api-machinery size/L,size/M
980082 all Kubernetes bug sig/api-machinery, sigh/auth size/M, size/XS, size/L
439929 all Nodejs lib/src, errors C++,HTTP2 -

2512748 all Nodejs test C++ -
243674 all Symfony bug DependencyInjection, Frameworkbundle -
826111 2017-3,2017-4 Kubernetes Feature sig/node,sig/storage size/L
610090 2017-7,2017-10,2018-2 Symfony Bug,Deprecation,Feature TwigBridge,HttpKernel -

Figure 17: Dev 980082: Tags distribution.

Figure 18: Dev 730123: Tags distribution.

In Table 3, we see that these bugs may be mainly related to small/medium size

contributions in apimachinery1, a library for servers and clients to work with Kubernetes

API infrastructure without direct type dependencies.

Figure 17 shows that Dev 980082 has a contribution pattern that meets demands

related to bugs in Kubernetes, indicating that the author contributed during periods of
1 https://github.com/kubernetes/apimachinery
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signiĄcant demand related to bug Ąxing. In the table 3, we see that these bugs are related

to small-large changes and the apimachinery, a library for servers and clients to work

with Kubernetes API infrastructure without direct type dependencies. Also, according to

Figure 18, Dev 730123 was a key individual in contributions related to cleanup, speciĄcally

in periods when the project had a great demand on that topic.

Moreover, by analyzing other Core Nodes who contributed in all periods, we

discovered that their contributions are usually related to topics concerning the projectsŠ

principal technologies, such as C++ in Node.js and corrective maintenance in Symfony.

Therefore, in answering Q2, we can characterize individuals who contributed during all the

periods as those who work according to the demands of the projectsŠ main technologies.

The most frequent contributors work more comprehensively, assisting with speciĄc needs

such as resolving bugs, performing software builds, and they have a large number of

approved issues.

On the other hand, several developers contributed at only speciĄc periods, such

as Dev 826111 and Dev 610090. Dev 826111 with large contributions between 2017-3

and 2017-4 in the Kubernetes project, working on new features related to components

that support the controlled interactions between pods and host resources2, and block

storage Ąles3, according to their related technologies. In addition, Dev 610090 contributed

in isolated periods where there was a need to develop features and Ąx bugs regarding

components like TwigBridge4 and HttpKernel5 in the Symfony project.

Also, as exempliĄed in table 3, we could observe that individuals who work at

particular moments in the projects tend to contribute to issues with low priority. They

usually operate with more than one project technology, although there is always one

technology that stands out, i.e., the one they know best. In addition, they can probably

be characterized as inexperienced individuals who work with smaller code, which is often

the recommendation of many projects so that new members can become more familiar

with the demands of the project. Accordingly, Q3 is also answered.

Finally, we can also answer the Ąrst secondary research question SRQ1 presented

in chapter 1. By answering questions Q1, Q2, and Q3, we could characterize individuals

considered essential for network evolution.

2 https://github.com/kubernetes/community/blob/master/sig-node/README.md
3 https://github.com/kubernetes/community/blob/master/sig-storage/README.md
4 https://github.com/rcrowe/TwigBridge
5 https://github.com/symfony/http-kernel
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5 Historical Research 2: Diversity-based Analysis

In the previous Chapter, we used the proposed temporal characterization approach

to analyze a collaboration network modeled over consecutive periods. We analyzed its

evolution by considering structural aspects and exploring domain knowledge to expand our

investigations. From the analysis, we were able to identify inĆuential individuals as well

as those who can be considered essential for network evolution. However, it was observed

that the high demand in speciĄc periods causes some developers to be highly requested.

Therefore, this section presents the diversity-based analysis approach as a solution to the

work overload problem.

For the analysis, we keep working with the data from projects on GitHub, introduced

in subsection 3.6.1. In addition, as we do not intend to study isolated periods, we extended

the analyzed data to the entire period present in the database, from January 1, 2014, to

June 30, 2018.

5.1 Network Analysis

The diversity-based approach also has an initial network analysis step focusing on

Ąnding inĆuential individuals. This is done to reduce the number of developers examined

to a smaller group of more relevant individuals in the network. For this purpose, we used

the NetSCAN (eps = 1, minPts = 4, radius = 1 ) clustering algorithm as described in the

preceding Chapter to search for core nodes.

In Table 4, we present information about the number of (i) nodes, (ii) edges, and

(iii) connected components in the network. Also, we present data related to the results

obtained with the clustering that includes the number of (i) clustered nodes, (ii) found

clusters, and (iii) nodes identiĄed as core nodes.

Table 4 Ű Values that describe the network and clustering results.

Nodes Edges Components
5591 (5536*) 24563 28

Clusters Clustered Nodes Core Nodes
54 1853 900

∗Biggest connected component.

5.2 ClassiĄcation

In GSD, requested individuals are those who are usually asked to assist with some

speciĄc project tasks. In this sense, we seek to work with classiĄcation models to Ąnd one

that we can use to classify experts. Therefore, Ąve popular algorithms were chosen to

classify the developers as required developers or not required ones: Logistic regression
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(LR), Linear Discriminant Analysis (LDA), Naive Bayes (NB), K-Nearest Neighbors

(KNN), and Support Vector Machines (SVM). These algorithms were chosen because they

are easy to use to implement classiĄcation problems since they are available in python

using the Sklearn library.

Furthermore, we deĄned the target class according to the binary attribute: Re-

quested, which is a Ąeld of the User table. This attribute deĄnes whether a developer has

already been requested, at least once, to review a pull request. Moreover, considering the

network collaboration context, four other numerical attributes were chosen and calculated

to compose the instances to be analyzed by the models. The attributes are the total

number of (i) pull requests, (ii) review comments, (iii) discussion comments, and (iv)

distinct tags that a developer is associated with.

In the context of classiĄcation models, a false positive is an error in a binary

classiĄcation method where a test result incorrectly indicates a condition. For instance, in

expert classiĄcation systems, false positive elements may represent individuals incorrectly

classiĄed as experts. However, as these individuals are classiĄed as positive, it may be

that, among the true negatives, they are the ones that have characteristics most similar to

the true positives. Therefore, in the next subsection, we seek to investigate whether the

recommendation of false positives is adequate as an alternative to increasing the diversity

of individuals that are required to assist in project demands.

5.3 Results

We used the 900 individuals identiĄed as core nodes in our analysis since they are

a group of more relevant developers in the network and are considered inĆuential. In order

to evaluate the classiĄcation models, we adopted the k-fold cross-validation technique

(124), a re-sampling procedure used to evaluate machine learning models. The procedure

has a single parameter called k, which refers to the number of interactions that a given

data sample is split into test and training data sets. In this regard, we took the value k

equal to 10, and for the size of test and training data, we used the percentages 30% and

70%, respectively. Furthermore, the same si seed is used during the i-th interaction of

each algorithm so that we can compare the models properly.

The models were compared and analyzed to choose the one that presented the best

results for our problem. Figure 19 illustrates boxplots representing the accuracy scores of

each model in the ten runs performed. The accuracy was chosen as the evaluation metric

since it deĄnes the proportion of true results (true positives + true negatives) over the

total number of instances. Also, we are looking for a model with high accuracy and one

with false positive values. The main idea is that the algorithm should be good for Ąnding

experts (true positives) and have the Ćexibility to Ąnd people with characteristics similar

to experts (false positives).
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In analyzing the boxplots (Figure 19), we see that the LDA model obtained the

highest accuracy score when compared with the results obtained by the other models. The

average accuracy score of the LDA was 76%, while the others were: LR at 59%, NB at

58%, KNN at 55%, and SVM at 54%. Furthermore, the LDA model was also able to

classify some instances as false positives. Therefore, we chose one of the results of the

LDA model to be investigated further. The instance chosen was the one that achieved

80% accuracy.

Figure 19: Average classiĄcation accuracy for Ąve classiĄers.

Figure 20 presents the confusion matrix for the chosen LDA. The 0 value represents

the predicted condition, meaning that values that fall into this class are classiĄed as required

individuals, while the 1 represents individuals classiĄed as not required. According to

the confusion matrix, 49 individuals were correctly predicted as required (true positives),

and 172 were correctly predicted as not required (true negatives). Since the test samples

have 275 individuals, this LDA model reached 80% accuracy (221/275). Furthermore,

39 individuals were identiĄed as false negatives, while 15 were incorrectly predicted as

positives (false positives). As discussed, in order to reduce the request overload to the same

group of inĆuential developers on the network, we further investigate the 15 individuals

classiĄed as false positives.

Figure 20: Confusion matrix.



49

When searching on GitHub, we found four project-related roles: Member, Contribu-

tor, Collaborator, and None. As illustrated in Table 5, we matched each of these roles with

the individuals classiĄed as false positives to speciĄcally identify what role they play in

the network. As we can see, most of those in the group of false positives are contributors,

those who have previously committed to repositories (different from collaborators: those

who can pull - read - the contents of the repository and push - write - changes to the

repository). In addition, one of the false positives was also identiĄed as a member of a

project or organization.

Table 5 Ű DevelopersŠ Role

False Positives None Contributor Collaborator Member
15 0 14 0 1

To evaluate whether the individuals in the false positive group not only make

isolated contributions but are also active in projects, we examined the contribution period

of each of these developers; this is illustrated in Figure 21. The blue and green dots

represent the Ąrst and the last year of contribution to the projects, respectively. We can

see that many of the individuals in the false positive group contributed over several years,

having signiĄcant and active activity in the network. Some worked throughout all observed

periods, while others were still active until the last year (2018). These results reinforce the

importance of considering those individuals identiĄed as false positives due to their role

and contribution time within the projects, even though they were not necessarily asked to

help with the project tasks.

Figure 21: False positivesŠ contribution timespan.

In graph theory, centrality indicators assign ranks to nodes within a graph cor-

responding to their position in the network. Therefore, as the last analysis metric, we

also calculated the centrality indicators for the false positive individuals. Three boxplots
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are shown in Figure 22, containing the comparison of the Closeness, Betweenness, and

Page Rank centrality measures. The graphs highlight the scores obtained by only the false

positive group compared to the score of all the other nodes in the network.

When analyzing the boxplots, we can see that all the false positives have Page

Rank and Betweenness scores that deĄne them as outliers. The high Betweenness values

show that these individuals operate as information bridges between different groups in

the network. Likewise, the Page Rank values indicate the increased relevance of false

positive individuals due to the importance and inĆuence of the nodes they are connected to.

Besides that, all proximity scores of false positives are above the third quartile, indicating

that these are individuals with a high degree of contribution to the network; they are

among individuals with the shortest distances to all other nodes, capable of disseminating

information efficiently through the graph.

Thus, considering the adopted metrics, we can say that the individuals classiĄed

as false positives are among the ones with the highest centrality scores on the network. In

addition, when comparing with the results presented in Figure 21, even the false positive

individuals that contributed for a short period to the network have signiĄcant measures of

centrality, demonstrating their importance in the period they worked.

Figure 22: Centrality Analysis.

Finally, recommending the individuals identiĄed as false positives to assist with

project tasks can be used to reduce the workload of highly requested individuals. Therefore,

we can answer the second secondary research question SRQ2 since we were able to

implement an approach that allows increasing the diversity of recommended developers.
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6 Historical Research 3: Semantic Analysis

In Chapter 5, we identiĄed essential individuals by exploring the network evolution.

In addition, the analyses allowed us to identify some overworked developers due to the

high number of requests they receive to contribute to tasks in projects. In Chapter 6, we

extended our investigations by proposing a diversity-based approach to identify additional

individuals who could also be recommended as alternatives to overloaded experts since

these other individuals had similar skills to those considered experts.

The studies carried out so far are considered syntactic in their analyses because

they focus on the networkŠs structural investigation. However, there is no meaningful

knowledge discovery without attributing meaning to data in the context in which it is

embedded. Therefore, in this Chapter, we propose a semantic analysis approach to enhance

our analysis of the data on individuals. SpeciĄcally, we create an ontology to extract

topics from keywords in order to discover implicit relations between developers and their

expertise. We also consider temporal aspects in order to investigate how the developersŠ

interests change over time.

The data from the three projects on GitHub was used for the analysis. We

conducted a preliminary ontology construction based on all projects. However, as already

illustrated in Chapter 5, we mapped the terms available in the projects and observed that

the projects are very varied in terms of Ştags"and Şlabels". In this sense, we would have

to create speciĄc taxonomies for each project. We realize it is important to deĄne a very

detailed taxonomy to better understand the terms and build a higher-quality ontology.

Therefore, we focused our study on the project Node.js. As introduced in subsection

3.6.1, Node.js is an open-source, cross-platform JavaScript environment and one of the most

starred repositories on GitHub. It is supported and continuously developed and maintained

by a large and active community, with various developers contributing worldwide. We

used GitHub RESTful API to acquire more recent data and extended the analyzed periods

from January 1, 2016, to July 01, 2020.

Initial Ąndings identify 1513 developers among the 3143 users, that Ąt the contri-

butor role according to our proposed network model. The NetSCAN clustering algorithm

was again used as a preprocessing step with eps = 1 and minPnts = 4 (see Section 4.1).

Table 6 shows values describing the data, which includes the number of (i) users, (ii)

contributors, (iii) pull requests, (iv) review comments, (v) distinct labels, (vi) a total of

labels used in all analyzed pull requests, and the date of the (vii) Ąrst and (viii) last pull

request analyzed.
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Table 6 Ű Database Information.

Data Info
Pull requests 21600

Review comments 75365
Initial date 2016-01-01

Last date 2020-07-01
Users 3143

Unique tags 166
Pull tags 47854

6.1 Ontology

We developed the ontology following the Methontology Framework (116), an accep-

ted methodology that deĄnes the ontology development process. The framework includes

four phases: (i) SpeciĄcation, (ii) Conceptualisation, (iii) Formalisation, and (iv)

Evaluation. Next, we describe each phase.

6.1.1 SpeciĄcation

The speciĄcation is considered an essential step in system development. Therefore,

this step established the Ontology Requirement SpeciĄcation Document (ORSD). The

ORSD allows us to identify the ontologyŠs knowledge and deĄne the requirements the

ontology must cover. In this document, we describe the ontologyŠs: (i) purpose, (ii) scope,

(iii) implementation language, and (iv) intended End-Users. The ORSD is shown in Table

7.

6.1.2 Conceptualization

The conceptualization phase focuses on organizing and structuring the semantic

meaning of data. Therefore, we developed a taxonomy4 to categorize the knowledge in the

context addressed. We Ąrst identiĄed and classiĄed all available keywords related to the

project Node.js on GitHub. Then, since many tags correspond to project components, we

reviewed the Node.js documentation5 to categorize the tags. According to the study and

compilation of the keywords, it was possible to deĄne six different categories: (i) Type, (ii)

Module, (iii) Status, (iv) Versioning, (v) Platform, and (vi) Directory. The tags available

in the Node.jsŠ Pull Request label system were distributed into these six categories, as

described in Table 8.
4 A Taxonomy is a hierarchical structure representing the formal organization of classes or

types of objects within a domain.
5 https://nodejs.org/api/



53

Table 7 Ű ORSD

Ontology Requirements SpeciĄcation Document
1 Purpose
To extract topics and speciĄc topics of knowledge from key
development terms in order to discover implicit relations
between developers and expertise.
To consider temporal information to compute the individualsŠ
change of interest over time.
To identify and rank the developers according to a given
speciĄc skill.
2 Scope:
The ontology focuses on recommending experts in the
context of GSD.
The level of granularity is directly related to the competency
questions that are deĄned in Subsection 6.1.4 (Evaluation); Table 11.
3 Language:
The ontology was implemented in OWL language1 using
the Protégé ontology tool2 and Owlready23, a module that
that can manage ontologies and knowledge graphs in Python.
4 Intended End-Users:
User 1. Individuals who want to know what expertise is
present in a project.
User 2. Individuals who want to know what expertise a
developer is associated with.
User 3. Individuals who want to know a developerŠs
expertise level.
User 4. Individuals who are searching for experts.
User 5. Individuals who want to rank developers according to
to some expertise.
User 6. Individuals who want to know how developersŠ interest
in speciĄc expertise has changed over time.

Further, we expanded the category Type into the Topic and SpeciĄcTopic categories,

as illustrated in Figure 23. This is because Type is associated with distinct software

development knowledge, including Testing, Integration, Project Management, Security,

Performance, Memory, Diagnostics, Updating, Errors, Features, and other technologies,

such as Programming Languages. We can say that topics and speciĄc topics represent

project expertise. A topic represents a more general subject, while a speciĄc topic represents

a more speciĄc subject, i.e., saying that a developer is familiar with the topic programming

language is more comprehensive and not as accurate as saying that they are familiar with

the speciĄc topic, for example, Python.

Finally, in Figure 24, we present the taxonomy model created from two knowledge

sources: the network model, as detailed in subsection 3.6.1.1 , and the keyword study. The

main entities of the taxonomy are: (i) Developer, (ii) Pull Request, (iii) Keyword, (iv)
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Table 8 Ű Tags from pull-requests labels of Nodejs Project.

Node.js Keywords
Type
build, C++, Cl/Ćaky test, conĄrmed-bug, debugger, errors, experimental,
feature request, memory, meta, performance, postmortem, python,
refactor to ES6+, report, security, semver-major, semver-minor, test, wasm
Module:
addons, asm.js, assert, async_hooks, async-wrap, brotli, buffer, cares,
child_process, cli, cluster, console, coverage, crypto, deprecations, dgram,
dns, domain, dtrace, ES Modules, events, eventtarget, fs, gyp, http,
http_parser, http2, https, i18n-api, inspector, install, libuv, module,
n-api/n-api-semver-major, net, npm, os, openssl, path, perf_hooks,
process, promises, punycode, querytring, quic, readline, regression,
repl, source maps, stream, string_decoder, timers, tls, trace_events,
tty, url, util, url whatwg, V8 Engine, v8 module, V8 Platform, vm,
wasi, worker, zlib
Status:
abandoned, author_ready, baking-for-lts, blocked, dependencies, discuss,
fast-track, help wanted, invalid, investigating, known limitation, landed,
needs-benchmark-ci, needs-ci, needs-citgm, notable-change, stalled, on hold,
pending, review wanted, wontĄx, work in progress (WIP)
Versioning:
backport-blocked-v.X, backport-open-v.X, backport-requested-v.X,
backported-to-v.X, dont-land-on-v.X, land-on-v.X, v.X
Platform:
aix, android, arm, freebsd, ibmi, linux, macOS, mips, ppc, s390, SmartOS,
windows, Windows Subsystem for Linux (WSL)
Directory:
benchmark, doc, lib/src, tools

Keyword Category, and (v) Expertise. Developer, Pull Request, and Keyword entities, as

well as their respective relationships, are derived from the network model. The Keyword

Category entity, including the Topic and SpeciĄcTopic entities, are associated with the

keywords characterization.

6.1.3 Formalization

The formalization phase is when we convert the conceptual model (taxonomy) into

a computable model. We used the Protégé6, a tool that uses the Ontology Web Language

(OWL)7 to deĄne an ontology by specifying its classes, properties, and semantic rules.

In OWL, classes are interpreted as a set of individuals or objects. For example, all

classes are subclasses of the class Thing, which represents a set of all individuals. Figure
6 https://protege.stanford.edu/
7 https://www.w3.org/TR/owl-features/
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Figure 24: Nodejs project taxonomy.

25 shows the classes deĄned in the ontology.

Properties in OWL represent relationships between individuals. There are two

types of properties: object property and data property. An object property links an object,

such as an individual, to another object, while data properties link objects to a data

type, such as Integer, String, or Date values. Table 9 shows the properties deĄned in the

ontology, including their type, domain, and range.

SWRL is a language for the Semantic Web used to express semantic rules and

logic. Table 10 shows the SWRL rules created to infer implicit relationships. The rules R1

and R2 are responsible for associating keywords with topics and speciĄc topics, checking

if the keyword is included in the keyword set deĄned by the respective topic or speciĄc
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Figure 25: Ontology classes and properties.

Table 9 Ű Ontology properties and their types, ranges, and domains.

Property Type Domain Range
hasTopic ObjectProperty Keyword Topic

hasSpeciĄcTopic ObjectProperty Keyword SpeciĄcTopic
hasKeyword ObjectProperty PullRequest Keyword

hasPullRequest ObjectProperty Developer PullRequest
hasExpertise ObjectProperty Developer Expertise

keywordName DataProperty Keyword String
weight DataProperty Expertise Integer

year DataProperty PullRequest Date

topic. Since pull requests are also related to keywords, we use R3 and R4 to associate

pull requests to the same topics and speciĄc topics associated with the keywords they are

related to. Also, developers are related to the pull requests they contributed to. Therefore,

we created rule R5 to associate developers with expertise.

Table 10 Ű SWRL rules.

SWRL Rules
R1: Keyword(t1) ∧ Topic(t2) ∧ name(t1, n1) ∧ name(t2, n2) ∧
equal(n1, n2) → hasTopic(t1, t2)
R2: Keyword(t1) ∧ SpeciĄcTopic(st) ∧ name(t, n1) ∧ name(st, n2) ∧
equal(n1, n2) → hasSpeciĄcTopic(t1, st)
R3: PullRequest(pr) ∧ Keyword(t1) ∧ hasKeyword(pr, t1) ∧
hasTopic(t1, t2) → hasTopic(pr, t2)
R4: PullRequest(pr) ∧ Keyword(t1) ∧ hasKeyword(pr, t1) ∧
hasSpeciĄcTopic(t1, st) → hasSpeciĄcTopic(pr, st)
R5: Developer(d) ∧ hasPullRequest(d, pr) ∧ hasExpertise(pr, ex) → hasExpertise(d, ex)

Thus, we can say that a given developer d can be connected to a set of distinct

keywords Kd = {k0, k1, ..., kn} through contributions made in pull requests. Of these,

each keyword k ∈ Kd can be associated with a set of one or more pull requests Pd =

{p0, p1, ..., py}, to which d has contributed. Furthermore, each keyword k ∈ Kd is associated

with one expertise e ∈ Ed = {e0, e1, ..., ez}, being Ed the set of all expertise associated
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to developer d. Therefore, the proposed ontology is also used to calculate the expertise

weight, considering temporal information to compute its variation over time. For this

purpose, we employ equation 6.1 and equation 6.2.

We used Equation 6.1 (125) to calculate W d
k , the weight of the keyword k, for

developer d considering the y Pull Requests for which d contributed. BY is the base year

used in this work, 2021 (BY must be greater than the maximum value of CY , otherwise

we would have 1/0 in the exponent of the equation), and CY is the pull request p creation

year, which the keyword k is associated with. Thus, Equation 6.1 gives greater weight to

the more recent contributions associated with the keyword.

W d
k =

∑

y∈Pd

exp1/(BY −CY ) (6.1)

Consequently, WEXd
e , the total weight of expertise e for developer d can be

calculated using Equation 6.2. In Equation 6.2, we summarize the total expertise weight e

associated with Pull Requests Pd.

WEXd
e =

∑

k∈Kd

W d
k (6.2)

6.1.4 Evaluation

The evaluation activity is carried out during all phases in the traditional Methon-

tology Framework (126). In our work, we considered this activity as another phase in the

proposed methodology, consisting of carrying out the following tasks: veriĄcation and

validation.

The veriĄcation step consists of carrying out a technical judgment of the ontology,

according to the ORSD, by verifying the correctness and validating the ontology. The

correctness of the ontology is done through a veriĄcation process using the Pellet plugin

reasoner on Protégé, a piece of software able to infer logical consequences from a set of

asserted facts or axioms.

The validation is a step to ensure that the ontology fulĄlls its purpose. Suarez-

Figueroa et al. (127) present guidelines based on using the Competency Questions (CQ)

and the existing methodologies to build ontologies. Competency Questions speciĄcation is

vital since it allows us to determine its scope and validate the ontology (128). Therefore,

the veriĄcation step is done with the ontology responding correctly to the CQ (129). The

CQs designed to aid in the validation activity are shown in Table 11 and are answered in

the next subsection, where we present our results.
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Table 11 Ű Main Competency Questions

Competency Questions (CQ)
CQ1: What expertise are present in the project?
CQ2: Who are the developers related to the expertise e?
CQ3: What is the expertise weight of a developer d?
CQ4: How are the developers ranked according to the expertise e?
CQ5: How has the expertise weight of a developer changed over time?
CQ6: Who is the most qualiĄed developer to be recommended
to assist with a task requiring expertise e?
In order to answer the CQ, queries were developed using python and Owlready2.

The code can be found at8,9

6.2 Results

Initially, the database described in subsection 3.6.1 was loaded into the ontology

and the SWRL rules were processed on the data to infer new relationships. According

to the developed taxonomy, we have keywords associated with topics and speciĄc topics.

Thus, we use rules R1 and R2 to connect each tag to topics and speciĄc topics (tag test

connected to topic Testing, for example). Furthermore, we have PRs associated with

keywords, and since keywords are associated with topics and speciĄc topics we were able

to infer new connections between PRs and topics (e.g. Testing, Security,..) and speciĄc

topics (e.g. New Features, C++,...) using rules R3 and R4. Finally, we have developers

connected to PRs and associated with speciĄc topics and topics by inference (rule R5).

Therefore, we were able to Ąnd out implicit relationships between developers and expertise,

deĄned by speciĄc topics and topics.

In the analyses, the ontology was Ąrst used to identify all the expertise in the

project Node.js - Competency Question (CQ1). To do so, we look at developers associated

with the project and their respective expertise associated with the collaboration. The

identiĄed expertise encompassed the following topics: Memory, Performance, Security, CI,

ProjectManagement, Testing, Updating, C++, Python, ES6+, NewFeature, CoreFeature,

OperationalErrors, and ProgrammerErrors.

Figure 26 shows the weight of each identiĄed expertise, which corresponds to the

sum of that expertise weight for all developers. According to these results, the most

common expertise in the project is related to the topic Updating, followed by the speciĄc

topics C++ and Testing. To answer Competency Question (CQ2), we identiĄed the

developers having one or more of this expertise; there are 24 core and 1489 non-core

individuals. Developers with expertise on Updating are more involved in releases (minor

and major) in the project, working directly on feature development or bug Ąxes. On the
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other hand, those with expertise on Testing are those individuals with unit test automation,

debugging, and QA. Finally, C++ is a speciĄc topic within programming languages and

is one of the primary languages used in development projects. Our subsequent analyses

focus on these three areas of expertise.

Figure 26: Total weight of each expertise in the network.

We investigated the weight difference of Updating, C++, and Testing expertise

between core and non-core individuals. Regarding (CQ3), Figure 27 shows box plots with

the total weight percentage comparing the 24 core and 1489 non-core nodes related to each

expertise. We can see that the individuals with the highest weight values are among the

core nodes. Some are outliers as their expertise weight is signiĄcantly above the maximum

value (maximum = Q3 + 1.5 ∗ IQR). Again, these numbers reinforce the existence of

workload in a small group of individuals. However, although most non-core individualsŠ

weight is less than 0.2, a few non-core individuals have an expertise weight above the

median of core individuals, indicating potential non-core individuals to be recommended.

For Competency Question CQ4, we ranked the developers considering their weight

in the Updating, C++, and Testing. Table 12 shows the normalized score values of the top

ten ranked developers. Table 12 is divided into two tables showing scores in two distinct

periods. Table 12-A shows the scores considering the period from 2016-01-01 to 2019-12-31.

On the other hand, Table 12-B considers the most recent period, from 2020-01-01 to

2020-07-01. We adopted this division as a strategy for evaluating the recommendations.

We analyzed the developers considering their contributions between 2016 and 2019 and

used their activity in 2020 to verify whether the individuals were still active in 2020 or not.

Looking speciĄcally at recommendations for expertise in Testing, the three best-

classiĄed developers are Dev718899, Dev2512748, and Dev439929. When we check Table

12-B, we can see that Dev718899 and Dev439929 are suitable to be recommended because

they are still maintaining a high performance (top-two developers) in 2020. On the other
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Figure 27: Box plots of Expertise Weight Values.

hand, Dev2512748 signiĄcantly fell in their rank, dropping from second to tenth. In this

sense, we sought to explore the variation of developersŠ expertise weight over time to

improve our recommendations by addressing the situation where individuals drop their

scores signiĄcantly. We conducted a further analysis considering the Ąve top-ranked

developers in Testing.

Figure 28 shows (for CQ5 ) the expertise weight in each period (2016 to 2019),

including the trend lines of each individual. The weight values are relative to the overall

total weight of the expertise Testing each year, e.g., if only one individual has some

expertise, their weight would be equal to 1. We can say that these values indicate the

relevance of developers regarding the demand for tasks related to Testing in each period.

Figure 28: Trend lines of Expertise Weight Values.

Returning to the analysis of Table 12-A and -B, we can explain the rank drop of

Dev2513748 by his reduction in interest in Testing questions over the years, demonstrated

by his negative trend line. In contrast, the positive trend line supports the high rank of

Dev718899 and the rise in the ranks of Dev899444. Therefore, for Competency Question
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Table 12 Ű Recommendation Results

Developer Updating Developer C++ Developer Testing
Table II-a: Core Nodes Recommendations from 2016-01-01 to 2019-12-31

3065230 1 899444 1 718899 1
439929 0.9376 275871 0.7358 2512748 0.6108
238531 0.6300 439929 0.3645 439929 0.4754
899444 0.5489 4299420 0.2647 1443911 0.4509
275871 0.4546 96947 0.1935 899444 0.3814

8822573 0.4449 2512748 0.1897 96947 0.3579
505333 0.4424 1538624 0.1852 8822573 0.3434
54666 0.4066 54666 0.1654 275871 0.3057

718899 0.3198 17607 0.1523 696611 0.2806
2512748 0.2929 10393198 0.1262 54666 0.1684

Table II-b: Core Nodes Recommendations from 2020-01-01 to 2020-07-01
899444 1 899444 1 439929 1
439929 0.8889 439929 0.5158 718899 0.9827

3065230 0.5542 275871 0.4183 899444 0.8281
8822573 0.3786 5952481 0.1476 8822573 0.4524

52195 0.3762 4299420 0.1385 3065230 0.1780
5952481 0.3399 54666 0.1122 275871 0.1313
275871 0.3209 2512748 0.1118 1443911 0.1292
54666 0.2685 8822573 0.0600 17607 0.0848

718899 0.2502 17607 0.0598 54666 0.0417
2352663 0.1492 2352663 0.0426 2512748 0.0411

CQ6, we can say that Dev718899 and Dev899444 are more suitable to be recommended

for tasks that require expertise in Testing. Furthermore, these analyses reinforce the

importance of considering the individualsŠ change of interest in recommendation approaches.

We can improve the results by prioritizing individuals with a positive contribution tendency

rather than those with a drop in interest.

Therefore, we can answer SRQ3 since we could use an ontology to assist in iden-

tifying developers with speciĄc expertise. With the ontology, we inferred implicit relations

between developers and expertise, in addition to giving weight to these relationships and

ranking developers according to each expertise. Also, in order to improve the analytical

process, we investigated the trend of developersŠ interest in expertise over the years,

allowing us to identify developers with a high weight of expertise and a positive interest

trend.
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7 Historical Research 4: Network Partitioning

This chapter addresses the fourth challenge related to data volume in designing

recommendation systems and analyzing social structures. We propose a balanced subtree-

splitting strategy as a new parallel graph partitioning algorithm. Furthermore, the

partitioning approach has a focus on density-based clustering algorithms for social network

analysis. We can highlight two main goals of our proposal: (i) the proposed method

preserves the partitions as connected components, so this is considered valuable for

connection-dependent methods (130), such as density-based clustering approaches, to be

subsequently processed over the partitions, and; (ii) the presence of overlapping nodes on

different partitions is allowed, supporting new clustering approaches such as NetSCAN,

which also allow the presence of overlapping nodes in different clusters (32).

7.1 Partitioning Algorithm

In this section, we describe the proposed algorithm for a balanced partitioning

of a graph in parallel. First, it is important to note that we do not intend to propose

a combinatorial optimization approach since we do not seek to Ąnd an optimal result

or use an objective function to measure the quality of solutions. Instead, the program

focuses on the time optimization of density-based clustering algorithms through the use of

a partitioning approach.

The partitioning method was designed to split a graph into two partitions. If

more than two partitions are required, the function is invoked recursively up to the

desired number of partitions. Therefore, as our focus is on parallel partitioning, the whole

process was designed to split the data set into 2n partitions using multiple processors

simultaneously. When a partitioning execution ends, it immediately calls the partitioning

function for each new subset.

The partitioning strategy will be explained in the following subsections and can be

deĄned by three main algorithms: (i) preprocessing, (ii) partitioning, and (iii) recursion.

The Ąrst takes care of setting and initializing the parameters. The second deĄnes the

balanced subtree-splitting strategy. While the third is related to the parallel approach,

which includes the partitioning function recursion. The line number in the algorithm will

often be referred to in the text for a better explanation.

7.1.1 Pre-processing

Algorithm 1 shows the preprocessing operations necessary for structuring data and

deĄning parameters. As expected input, we have: (i) db, a dataset that can be modeled as

a graph G = (V, E) with no edge directionality constraint required; (ii) pt, the number of

desired partitions; and (iii) per, the percentage value for deĄning limits.
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First, db is modeled as a network (line 1), and its minimum spanning tree (mst)

is calculated (line 2). Working with a mst structure is a crucial step, as it allows the

network to be split into two subnetworks by removing only a single edge. Next, in line

3, we search for the node with the highest degree (hd) in the mst, that is, the node (or

one of the nodes) with the highest number of connected subtrees. This node will be the

starting point in the partitioning process.

The value per is used to deĄne limits (line 4 and line 5), which will be used in

the network partitioning process. The upper limit deĄnes the desired maximum number

of nodes that a partition can have, while the lower limit deĄnes the minimum number

of nodes. We use threshold values as they allow Ćexibility in the size difference between

partitions, e.g., if per were equal to 0, the algorithm would always try to split the network

into partitions of the same size strictly. If that were the case, the algorithm would not

work when it was not possible to break a graph into connected components of the same

size.

Finally, the partitioning function is called (line 6), passing the deĄned parameters

as input.

Algorithm 1 Initialization
Input: database: db; partitions: pt; percentage: per

1: g = graph creation (db)
2: mst = minimum spanning tree (g)
3: hd = highest degree node (mst)
4: upper limit = number of nodes (mst) * (0.5 + per/100)
5: lower limit = number of nodes (mst) * (0.5 - per/100)
6: partitioning (mst, hd, upper limit, lower limit)

7.1.2 Graph Partitioning

Algorithm 2 deĄnes the main loop of the graph partitioning algorithm. First, we

initialize two vectors (vector1, vector2 ), where each partitionŠs subtrees is stored, and two

variables (sum1, sum2 ), responsible for tracking the number of nodes in each partition

over the program iterations.

At each step of the proposed subtree splitting strategy, we can have one of four

possible scenarios (A, B, C, D), as illustrated in Figure 30. Starting with the root node

(rt), the algorithm will traverse all its subtrees (st) until it reaches one of the four scenarios.

The scenarios are described below.

• Scenario A: This scenario occurs when a subtree sti with size within the limits is

found (line 4). Thus, the cut function is invoked to split the graph into two sets

(line 5). One set with the subtree sti, and another set with the node rt and all its

subtrees but sti.
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Figure 29: Subtree-Splitting Strategy Scenarios.

• Scenario B: This scenario occurs when a given rtŠs subtree (sti) has a number of

nodes greater than the upper_limit (line 6). In this case, the root node (rt) goes

down to the stiŠs root node position (line 8), and the next loop starts with a new

root node rt.

• Scenario C: This scenario can be divided into two parts (C1 and C2). In both

cases, we know that all rtŠs subtrees sizes are below the lower_limit because the

condition of scenarios A and B were not met. In this way, the algorithm employs a

sequential method to deĄne a subtree combination for partitioning.

Ű C1: First, it is checked if the size of the subtree sti plus the size of one of the

partitions reaches a value within the limits (line 10 and 13). If the check

passes, the subtree sti is added to the respective partition (line 11 and 14),

node rt is added to both partitions as it is the node connecting all the structure,

and function cut is called (line 12 and 15) as one of the partitions has reached

a number of nodes within the deĄned limits.

Ű C2: As long as C1 is not satisĄed (line 16 and 20), the subtree sti is placed

in the smallest partition (line 18 and line 22), the number of nodes in the

partitions is refreshed, and a new comparison (C1) is performed on the next

subtree stj (line 19 and line 23).

• Scenario D: This is considered an overload situation and can even be seen as the

third part of case C. However, we deĄne this as a new scenario to demonstrate the

case when none of the above cases (C1 and C2) are satisĄed (line 24). It occurs

when the size of sti plus the size of any of the partitions is greater than upper_limit

(line 25 and line 28). Thus, sti is added to the smallest partition (line 26 and

line 29) and node rt is added in both partitions for the same reason explained in

scenario C. Finally, the partitioning procedure is done (line 27 and line 30).
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Algorithm 2 Partitioning
Input: m, hd, upper limit, low limit
Output: 2 partitions

Initialisation : vector1, vector2, sum1, sum2
1: st = first subtree (hd)
2: while not call cut function do
3: cont = count number of nodes (st)
4: if (lowlimit ≤ cont ≤ upperlimit) then
5: cut (m, st, rt)
6: else if (upperlimit < cont) then
7: initialises (vector1, vector2, sum1, sum2)
8: rt = st
9: st = next subtree (rt)

10: else if (lowlimit ≤ cont + sum1 ≤ upperlimit) then
11: vector1 = append (st)
12: cut (m, st, vector1)
13: else if (lowlimit ≤ cont + sum2 ≤ upperlimit) then
14: vector2 = append (st)
15: cut (m, st, vector2)
16: else if (sum1 + cont ≤ lowlimit) then
17: sum1 = sum1 + cont
18: vector1 = append (st)
19: st = next subtree (rt)
20: else if (sum2 + cont ≤ lowlimit) then
21: sum2 = sum2 + cont
22: vector2 = append (st)
23: st = next subtree (rt)
24: else
25: if sum1 ≥ sum2 then
26: vector2 = append (st)
27: cut (m, vector1, vector2)
28: else
29: vector1 = append (st)
30: cut (m, vector1, vector2)
31: end if
32: end if
33: end while

7.1.3 Recursion

In Algorithm 3, we have deĄned the program recursion. It shows the cut function

overview and the beginning and end of the parallel zone. Let graph g and two subgraphs

sg1 and sg2 be the functionŠs input; the partitioning function will be invoked continuously

by tasks/threads until it reaches the stop condition (desired number of partitions). As

long as the condition is not satisĄed, the highest degree node (hd) is recalculated, and the

upper limit and lower limit for each of the partitions sg1 and sg2. Finally, the partitioning

function will be invoked for each partition by passing the necessary parameters.

At the end of all processes, the respective analysis procedures, such as a clustering

procedure, can be performed on each obtained partition.
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Algorithm 3 Cut
Input: graph: g, subgraphs: sg1, sg2

1: sg1,sg2 = split (g)
2: free (g)

parallelism zone: start
3: if (did not reach the desired number of partitions) then
4: recalculate hd, upper limit, low limit for sg1 and sg2

5: partitioning (mst(sg1), hd, upper limit, low limit)
6: partitioning (mst(sg2), hd, upper limit, low limit)
7: end if

parallelism zone: end
8: analysis procedures (sg1, sg2, ..., sgn)

7.2 Results

This section presents partitioning studies, including performance results concerning

the proposed algorithm. In order to evaluate our approach, we seek to investigate whether

the partitioning method can split a graph-modeled database into n balanced partitions,

keeping the two particulars deĄned in this chapter beginning. Furthermore, as the main

goal is to allow the partitioning to be processed in a viable time, we also conducted a

performance study comparing its sequential and parallel executions. The objective is to

evaluate gains and losses in terms of memory and time consumption.

Below are described the speciĄcations of the hardware and software used for tests:

• Hardware: 3.10 GHz CPU Intel I5 second generation with 16GB RAM.

• Operating System: 64-bit Debian GNU/Linux 10.

• Software: OpenMP API was used for the parallel implementation with the maximum

number of threads available (four) in a shared memory multiprocessing programming

in C/C++ language.

7.2.1 Datasets Description

The experiments are divided into two steps. First, we apply the partitioning

method on smaller datasets and perform the analysis of the obtained partitions. We seek

to verify the feasibility of Ąnding balanced partitions, considering the adoption of limits

for calculating the partitions. The small networks used to evaluate our approach are: (i)

ZacharyŠs Karate Club (131), (ii) Protein Network (132), (iii) artiĄcial and (iv) 200data

(32), as well as the GitHub network used in this work (see Section 3.6.1).

However, the main goal is to investigate the feasibility of our application in social

networks with large volumes of data. Therefore, we extend the analysis of the algorithm

to a larger dataset in order to explore and detail the partitioning advantages. We also

carry out performance analysis considering processing time and memory consumption. We
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use data available from a well-known dataset repository 1. The Digital Bibliography &

Library Project (DBLP) database (122) is used and modeled as a network of scientiĄc

citations between researchers. For network modeling, an ŞisCitedByŤ connection is created

from researcher A to researcher B when B cites a publication by A. The network has a

total of 1,100,505 nodes and 9,915,146 edges.

7.2.2 Partitioning Results

The limit percentage chosen for this experiment was about 5%. Therefore, the

low limit is equal to 45%, and the higher limit is equal to 55%. This is not to say that

only partitions within this limit will be found, but this was considered an adequate value

to look for to obtain balanced partitions. Furthermore, a previous empirical experiment

showed that in some cases, the partitionsŠ size does not change much with higher limit

values, and for lower values, it takes longer to Ąnd partitions within the limits.

Table 13 shows the partitioning result into the Ąve smallest instances. In the table,

we have each instanceŠs name, size, and number of partitions (p). The number of partitions

varies from 2 to 32 depending on the instance size. In order to analyze obtained partitionsŠ

size and their proximity to the deĄned limit, we looked at the maximum obtained cut

percentage among all the divisions performed in each step, e.g, 12.5% at p=8 means that in

the four partitionings performed (split each of 4 networks into 2 to obtain 8 subnetworks),

the partitioning that resulted in the greatest difference in size between the subnetworks

obtained was 37.5% of the nodes for one partition and 62.5% of nodes for another one.

These initial results show that while the limit values help to Ąnd balanced partitions,

there are several cases where the cut percentage exceeds the thresholds due to the graph

structure.

Table 13 Ű Maximum Cut Percentage (in %)

instance size p=2 p=4 p=8 p=16 p=32
artiĄcial 16 12.5% 4.54% - - -

karate 34 2.94% 2.63% 12.5% - -
protein 21 7.14% 0% 16.66% - -

200data 200 3.5% 4.62% 14.4% 7.89% 11.53%
github 5536 13.8% 3.11% 5.05% 6.44% 10.0%

Also, Table 14 details the results regarding the DBLP database. Since it is a large

network, we conducted split operations in the instance into up to 16,384 partitions, in

which some characteristics were observed: (i) the maximum cut percentage (cutp); (ii)

the partition with the largest size (max); (iii) the partition with the smallest size (min);

and, (iv) the total of overload cases in the partitions (scenario D).
1 https://networkdata.ics.uci.edu
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Table 14 Ű DBLP Partitioning Results

partitions cutp (%) max min overload
2 1 551,799 548,706 0
4 5 307,710 244,089 0
8 5 164,231 120,640 0

16 5 84,634 55,381 0
32 5 46,250 27,065 0
64 5 24,416 12,770 0

128 5 12,492 6,119 0
256 20 6,726 2,790 6
512 18 3,687 1,132 22

1024 16 2,015 521 42
2048 21 1,108 214 80
4096 21 596 102 169
8192 21 324 49 356

16384 22 179 24 742

When we look at the two partitions, we can see that the largest partition is

approximately the same size (1.005 times larger) as the smallest partition. Analyzing

the 16,384 partitions, we can see that the largest partition is about 7.45 larger than the

smallest one. Although the cutp is within the range of 5% up to division by 128 partitions,

it is possible to see an increasing contrast between the largest and smallest partition as

the number of partitions increases. This is due to the cutp value that is recalculated based

on the size of the partitions at each iteration. Also, after 128 partitions, we have the

beginning of overload occurrences. The sum of all overhead cases is 1,417, corresponding

to 8.64% of the 16,383 partitioning processes.

According to the result, it was possible to Ąnd partitions ensuring connectivity

and allowing nodes to overlap. These are considered attractive initial results since Ąnding

optimal graph division while maintaining the network connectivity is difficult. Therefore,

it is possible to say that the proposed algorithm could split a graph-modeled database

into n balancing partitions, maintaining the two particulars proposed.

7.2.3 Performance Analysis

Since the proposed algorithm focuses on processing large data sets in a feasible time,

we compare the sequential and parallel execution of the approach, considering the analysis

of the algorithmŠs performance in terms of processing time and memory consumption.

We Ąrst highlight some implementation decisions to understand the results better.

• Decision 1: A previous analysis of the functions was carried out to understand

which ones demand more processing time. We could see that the search functions



69

are the most expensive. Consequently, an adjacency list was adopted as a structure

to represent the graph, and the search in the graph is done through direct access

using a vector with the positions corresponding to the nodesŠ ids. This decision aims

to improve execution time in exchange for increased memory consumption.

• Decision 2: As we have limited available resources/infrastructure to carry out the

tests, we free up all memory spaces (used by the structures) as soon as they are

not used to allow the program to run. The function Cut (Algorithm 3) shows the

deallocation of graph g after being partitioned into g1 and g2. Following the same

logic, g1 and g2 are also deallocated after each recursion step.

The graphs in Figure 30 illustrate the comparison of parallel and sequential

approaches concerning execution time and memory consumption.

Figure 30: Graphics of Performance Results.

The top graph shows the relationship between the number of partitions (x-axis) and

execution time (y-axis). According to the results, the execution time remains approximate

for both approaches up to 512 partitions. After that, it is possible to notice an increasing

gap between the execution time of the approaches as the number of partitions increases.

With 32,768 partitions, we have a peak in the difference of values where the sequential

approach takes 1,298s to run, almost three times longer than the parallel approach with

466s.

The bottom graphic shows the relation between the number of partitions (x-axis)

and memory consumption (y-axis). The memory value at each point corresponds to the

higher consumption peak during the program execution. By analyzing the graphic, we

can see that the memory consumption does not change signiĄcantly with the increase in
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the number of partitions in the sequential approach. However, we can see that the parallel

approach presents an increase in memory consumption up to 512 partitions; this was

expected since the program allocates access and storage structures while invoked recursively.

Furthermore, we can see that memory consumption stabilizes after 512 partitions. This

can be due to hardware limitations and implementation decisions regarding the number

of threads and the structure allocation/deallocation Ćow that seems to restrict the total

memory consumption at a maximum value.

Finally, it is possible to answer SRQ4. Focused on assisting in social network

community detection, we developed a new parallel partitioning algorithm for graph

structures. Our approach has a balanced subtree-splitting strategy, designed to support

density-based clustering algorithms, considering node overlapping among groups and

ensuring partition connectivity. We also adopted boundaries to make the partitioning

process more Ćexible since the search for partitions of the same size is not always possible.

We also investigated the algorithm behavior in a well-known large data set, aiming to

understand the partitioning results and analyze the algorithm performance according to

time and memory consumption. Initial Ąndings point out that the algorithm can split a

data set into n balanced partitions maintaining the particulars proposed and indicating

relevance for further parallel applications.
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8 Conclusion and Future Works

GSD contexts comprise social networks with connected developers worldwide.

In these structures, the essential individuals have greater relevance than the average

member. They consist of the most collaborative and participative members in the network,

connecting distinct groups of developers. Also, they can generally be seen as experts: the

most experienced developers who can help solve complex tasks to achieve project goals in

speciĄc situations. Experts are essential in GSD since they can bring skills and expertise

to a project and are likely to collaborate with others to solve distinct tasks. Although

identifying these individuals is valuable, recommending experts to help with project tasks

is demanding, especially when considering research challenges faced when analyzing social

structures in GSD.

We proposed a collaboration social network based on data related to popular

projects on GitHub. An initial analysis showed that few developers are associated with

many connections on the network. These are relevant members in the network, called

core nodes. Identifying core nodes in all periods was possible, and they were considered

essential for the network evolution due to their high contribution degree.

In order to address the Ąve research challenges, we proposed an architectural

framework for expert identiĄcation. The framework has seven main components for

performing temporal, diversity-based, and semantic network analysis.

First, we investigated the evolution of communities in the network. Our method

was to analyze overlapping structures in sequential time periods and, as a result, we were

able to explore temporal changes by investigating syntactic and semantic network aspects.

We could identify inĆuential individuals with a high contribution degree in the network

since they are responsible for contributing in periods of high demand and speciĄc periods

that require particular technologies. They are considered essential based on their role in

meeting speciĄc project demands. However, our results also showed that some of these

individuals are highly requested, which can cause them to be overworked.

With the main goal of Ąnding non-obvious experts for collaboration, we developed

a diversity-based approach to identify non-obvious developers with similar skills to experts.

We aimed at reducing the work overload over the same group of developers by Ąnding

non-obvious individuals to assist with project issues, increasing the diversity in GSD

collaboration scenarios. Several classiĄcation models were explored and the adopted

classiĄcation model, LDA, had the highest accuracy. We could also identify individuals

that were classiĄed by LDA as false positives (fp) indicating that they had skills similar to

those of identiĄed experts. We provided evidence that those that fell into the fp group

could play important roles in the projects.

However, these analyses were insufficient to understand fully these individualsŠ
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roles in the network. In this sense, semantic approaches may be considered in searching for

individuals with speciĄc knowledge. Thus, we proposed an ontology as a semantic approach

to represent the domain knowledge and enrich the results with semantic information. In

developing the ontology we looked to extract topics and speciĄc topics from keywords in

the projects. It allowed us to enrich the developer network with more semantic weight and

brought knowledge about the projectsŠ evolution. Therefore, we were able to identify and

classify individuals with particular expertise considering the variation of their interests

over the years.

Furthermore, some community detection methods, such as NetSCAN, face pro-

cessing time infeasibility in analyzing large networks as the structural complexity of

the networks increases. In this sense, graph partitioning methods can reduce the effort

required by the network processing approaches, acting as a starting point for many parallel

applications. Therefore, we proposed a new parallel partitioning algorithm for graph

structures. Our approach has a balanced subtree-splitting strategy, designed to support

density-based clustering algorithms, considering nodes between clusters, and ensuring

partition connectivity. We investigated the algorithm behavior on a well-known large data

set, aiming to understand the partitioning results and analyze the algorithm performance

according to time and memory consumption. Initial Ąndings point out that the algorithm

is performative and can split a dataset into n balanced partitions, keeping the proposed

particulars.

All these approaches were integrated into our Ąnal architectural framework that

combines syntactic and semantic analysis techniques, including machine learning algorithms,

complex network analysis methods, and ontology development, in addition to taking into

consideration performance issues for high-volume networks. The framework allowed us to

explore distinct aspects of the network in order to identify those with speciĄc knowledge.

Our results are promising for recommending experts as it was possible to identify central

developers with a high weight of expertise and positive interest trends. Therefore, RQ1 is

Ąnally answered since we could develop an expert recommendation approach integrating

the proposed temporal, diversity-based, semantic, and partitioning strategies.

In future work, we intend to advance each research challenge addressed in this paper

by enhancing our approaches for temporal, diversity, and semantic aspects in analyses. We

also look to improve the ontology, with the aim of recommending specialists and teams

of specialists with complementary skills. This work focused on analyzing a GSD context

with various individuals, projects, and artifacts. In the future, we also plan to extend our

taxonomy by exploring other software development projects on Github.

Moreover, we intend to investigate the next steps of the parallel process illustrated

in Figure 2. In addition to the partitioning step, we will apply a density-based clustering

algorithm to the obtained partitions and merge the partitions in order to analyze the
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parallelism process as a whole.
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