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Abstract 

Since the last century, glaciers have been retreating due to climate change, 
especially in the Arctic, which is causing the sea level to rise, has the potential to 
change global weather and climate patterns. Therefore, it is important to 
understand climate change impacts on glaciers and to develop new automated 
approaches that can accurately quantify glacier area changes. In this study, we 
developed a new Object-based image analysis approach in Google Earth Engine, 
utilizing Landsat satellite imagery and mapped a total of 2,203 (≈32,894 km2) 
glaciers in four regions in the Arctic and high latitudes: Novaya Zemlya, Russia, Baffin 
Island, Canada, Disko Island, Greenland and Kenai, Alaska at three different time 
periods; 1985-89, 2000-02, and 2019-21. 

The results showed a clear reduction in the total glacier area in each region. 480 
glaciers in Novaya Zemlya that cover an area of 22,990±301 km2 experienced a 
1,319±419 km2 (5.7%) decline in total glacier area. 523 glaciers on Baffin Island 
covering 7,211±158 km2 lost a total area of 452±227 Km2 (6.6%).  748 glaciers on 
Disko Island covering 1,929±127 km2 lost 457±168 km2 (23.6%), and 452 glaciers in 
Kenai covering 764±60 km2 lost 196±84 km2 (25.7%). Seventy-three glaciers have 
completely retreated including sixty-nine on Disko Island, three on Novaya Zemlya, 
and one in Kenai. The results also show that glaciers area loss was greater in 2000- 
02 to 2019-21, compared to 1985-89 to 2000-02 in all four regions. 

The accuracy of this method was evaluated by comparing manually corrected 
outlines, resulting in an overall accuracy estimate between 93% and 98% with the 
reference data based on random sampling approach. This demonstrates that our 
methodology in GEE is a powerful and robust tool for glacier mapping that reduces 
time required for manual correction and has the potential to be applied to other 
glacierised regions. 
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1.1. Introduction  

The cryosphere is an important part of the earth's climate system that interacts with 

humans and natural environments (Marshall 2011; Rees 2006). Glaciers are one of 

the key elements of the cryosphere that store 75% of fresh water on the Earth, with 

the majority of that water being stored in the Antarctic and Greenland ice sheets 

(IPCC 2014). Glaciers play an important role in providing economic benefits to 

societies, as they are major tourist destinations, attracting millions of tourists each 

year for activities such as hiking, skiing, and ice climbing (Wang and Zhou 2019). 

Glaciers also support diverse ecosystems, which provide habitat for a variety of 

plant and animal species (Cauvy-Fraunié and Dangles 2019). Their meltwater is vital 

for many locations, particularly arid countries like Pakistan and Peru, where glacier 

meltwater is necessary for agriculture and many regions rely on this water for 

hydroelectric power generation (e.g, Biemans et al. 2019; Nie et al. 2021).  

As a result of climate change, these large freshwater reservoirs are now melting at 

a fast rate, increasing global sea level (Hugonnet et al. 2021; Zemp et al. 2019) and 

there is growing concern about their instability in a warming world (e.g., Catania et 

al. 2020). Therefore, it is important to conduct research that can accurately monitor 

their trajectory that can inform mitigation strategies (Wrathall et al. 2019). 

Another important element of the cryosphere that serves a vital purpose in 

regulating the Global Climate system is that snow and ice reflect the sun’s energy 

back into space due to having a higher albedo than darker land and sea surfaces. 

This reflection helps control the Earth's temperature by reducing surface 

temperatures  that heat the atmosphere by radiating longwave infrared radiation 
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(Zarnetske et al. 2021). As global temperatures continue to rise, the loss of ice from 

the cryosphere has the potential to be part of a negative feedback loop that leads 

to the loss of further land and sea ice and increased surface and ocean warming.  As 

surfaces with a lower albedo appear there is greater potential for increase 

absorption of incoming solar radiation and heating of the Earth's climate. Since 

1880, the average global annual temperature has increased by 0.07°C per decade 

and started to increase at twice that rate after 1980 (NOAA 2019), a negative 

feedback loop as a result of ice loss has the potential to play an important role in 

future warming.   

Climate change has led to the shrinking of the cryosphere, increased permafrost 

temperature, reduced glacier and ice volume, and reduced snow cover extent in the 

Arctic region (IPCC 2019). As a result of climate change, the Arctic is warming more 

rapidly than in any other region in the world (Dai et al. 2019). According to studies 

by Schädel et al. (2018) and You et al. (2021),  the Arctic temperature over the last 

few decades increased more than twice as much as anywhere else in the world. A 

more recent study by Rantanen et al. (2022) suggests that Arctic warming has 

accelerated even further since 1979, with estimates indicating to be as much as four 

times higher than other parts of the world.  

The Arctic plays an important role in the Earth's Climate System and changes in the 

Arctic can have impacts worldwide, including influencing ocean circulation and 

weather patterns, and Global sea level rise (AMAP 2017). Global sea-level rise is a 

major impact of climate change, that threatens millions of people living in or near 

the coastal areas and has the potential to displace populations all over the world 
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(Kulp and Strauss 2019). The main sources of global sea-level rise are ocean warming 

(thermal expansion) and melting ice sheets (IPCC 2021), especially Greenland which 

is the largest contributor of the 21st century (King et al. 2020). 

Researchers have confirmed that most of the glaciers in the Arctic are 

thinning/retreating and contributing to sea level. For example, excluding the 

Greenland and Antarctic ice sheets, glaciers contributed 27±22mm of fresh water 

to global sea level from 1961 to 2016 (Zemp et al. 2019). Shepherd et al. (2020) 

found that between 1992 and 2018, Greenland Ice Sheet lost 3,902 ± 342 billion 

tonnes of ice, causing the mean sea level to rise by 10.8 ± 0.9 millimetres. Ciracì et 

al. (2020) observed the mass changes of glaciers and ice caps across the world and 

found that seven regions such as Alaska, Canadian Arctic Archipelago, Southern 

Andes, High Mountain Asia, Russian Arctic, Iceland, and Svalbard lost the most mass, 

with the largest share from Arctic between 2002 and 2019. Gardner et al. (2011) 

determined that the Canadian Arctic has lost 61±7 gigatons of ice per year from 

2003 to 2009 contributing 0.17±0.02mm/year to sea-level rise. Howat and Eddy 

(2012) observed rapid retreat in all parts of the Greenland ice sheet and found that 

90% of the Greenland glaciers retreated between 2000 and 2010.  Carr et al. (2017) 

evaluated glaciers in Greenland, Svalbard, and the Russian Arctic and found that 

97% of the selected glaciers across these three Arctic regions have retreated.  

In addition to the threat of Global sea-level rise to coastal communities, changes in 

glaciers can interrupt the supply of water resources for drinking, agriculture and 

energy production (Zhang et al. 2022), as well as have a negative impact on 

industries such tourism and agriculture. Rapid changes can be hazardous for 
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mountain communities resulting in a higher frequency of events such as glacier 

avalanches (Jacquemart and Cicoira 2022) and Glacial Lake outburst floods (GLOFs) 

which can rapidly devastate a community, causing catastrophic landslides, flash 

floods, widespread destruction and death (Vilca et al. 2021).  

Given the importance of glaciers in the Arctic and their potential to impact large 

parts of the whole world, it is necessary to develop more automated methods that 

can easily monitor regional glacial changes and provide a clear understanding of the 

climate change impacts on the glaciers in the Arctic. To monitor glacier changes over 

a vast region like the Arctic, remote sensing is an ideal tool as it can be used to map 

large glacierized areas relatively quickly (e.g., Winsvold et al 2014). 

1.2. Aims and Objectives  

The aim of this dissertation is to develop a new methodology for automated glacier 

mapping, that can be easily applicable in different regions, as well as to provide a 

clearer understanding of the impacts that climate change is having on Arctic 

glaciers. 

The main objectives are to:  

• Develop an automated remote sensing methodology for mapping glaciers 

that can be applied across the Arctic region. 

• Create outlines of glaciers across the Arctic region for three different time 

periods: 1985-89, 2000-02, and 2019-21.  

• Quantify glacier area changes in the Arctic region. 

• Evaluate the changes in temperature against changes in glacier areas. 
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• Compare the derived area changes of glaciers with mass loss (Hugonnet et 

al. 2021).  
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2.1. Introduction of remote sensing 

The process of obtaining information about an object without any physical contact 

with to it is called remote sensing (Campbell and Wynne 2011). Satellite remote 

sensing refers to acquiring information in a particular range of electromagnetic (EM) 

spectrum through mounted sensors on satellites (Pettorelli et al. 2018). There are 

two main types of remote sensing, active and passive (Figure 1). In active remote 

sensing, the sensor emits energy toward the target and measures the amount of 

energy reflected back again to the sensor, while passive remote sensing does not 

involve the sensor emitting energy; rather, the sensor measures the natural 

radiation emitted or reflected by the Earth's surface (Aggarwal 2004).   

 

Figure 1 illustrates two main types of remote sensing, (A) Active and (B) passive 
remote sensing. Red arrows are the representation of reflected rays while yellow 
shows the emitted rays towards the target (CAP 2016.; Tammemagi 2012). 

Remote sensing enables mapping of glaciers at both a regional and global scale in 

rough terrain and highly remote areas that are not feasible to monitor in the field 

(Racoviteanu, Arnaud, et al. 2008). Glacier surfaces are not only snow/ice, they can 

also be covered by rock debris and surface moraines. When covered in moraines or 
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has a layer of rock debris or other material covering its surface they are known as 

debris-covered glaciers whilst glaciers whose surfaces are free of debris are known 

as clean glaciers (Benn and Evans 2014) (Figure 2). 

Mapping glaciers using remote sensing data depends on the spectral response of 

the glaciers. Spectral response refers to how an object reflects, absorbs, or emits 

electromagnetic radiation at different wavelengths. Methods for mapping debris-

free glaciers (Figure 2A) are well established, as snow and ice have distinct spectral 

signatures to the surrounding terrain (e.g., Albert 2002; Paul et al. 2016). Debris-

covered glaciers (Figure 2B) are more difficult to map because of the similar spectral 

response of the surrounding terrain (Ghosh et al. 2014). As demonstrated in Figure 

2C, the periglacial debris is sediment, rock and other materials that accumulates at 

the base of glacier while supraglacial debris is debris that is deposited on glacier 

surface from rockfalls, landslides, other forms of erosion, and thus both has a similar 

spectral response  (Paul et al. 2004).  
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Figure 2 A) a debris-free glacier; B) the white arrow shows the debris-covered part 
of the glacier; C) representing the difference between supraglacial and periglacial 
debris-covered (Shukla et al. 2010).  

2.2. Optical remote sensing satellites 

Satellites with optical sensors are designed to measure reflected and radiated 

energy from the earth's surface in a well-defined range of the electromagnetic 

spectrum (Young et al. 2017). Every sensor records the reflected energy differently 

in terms of the spatial, spectral, radiometric, and temporal resolution. Spatial 

resolution relates to the smallest object that can be detected by the sensor; for 

example, a 30-metre spatial resolution represents an area of 30m x 30m on the 

ground. Temporal resolution is the revisit time of the same location by the satellite 
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(Théau 2008). Spectral resolution refers to the ability of the sensor to distinguish 

between spectral features/details, while the radiometric resolution is the sensor's 

ability to detect the variation of reflected energy from an area (Ose et al. 2016). 

In the early 1970s, aerial photographs were the primary source of remote sensing 

for extracting glacier parameters (Racoviteanu et al. 2008). In most of the world, 

aerial photographs are not available due to the high survey costs or for political 

reasons where reconnaissance flights are not permitted (Racoviteanu al. 2008). 

Prior to the 1970s, there were spy satellites (e.g., Corona and Hexagon) that are 

now available to use for research purposes such as archaeological and historical 

research. The initial large-scale monitoring of glaciers using remote sensing started 

in the 1970s with the launch of the Landsat 1 satellite mission which had 

multispectral scanning capabilities in the visible and infrared part of the spectrum. 

Many other important optical satellites have since been launched following the 

successes of the early missions such as Landsat 5, 7, 8, and 9 that were launched in 

1984, 1999, 2013 and 2021 respectively.  The Advanced Spaceborne Thermal 

Emission and Reflection Radiometer (ASTER) sensor onboard the Terra satellite was 

launched in 1999 with a Moderate Resolution Imaging Spectroradiometer (MODIS) 

sensor, and Sentinel 2 Multi-Spectral Instrument (MSI) was launched in 2015 (Table 

1). 
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Table 1 The table shows the launch date, swath width, the spatial and temporal 
resolution of the main optical open-source satellites. 

Optical 

sensors 

Landsat TM, 

EMT+, OLI 

ASTER MODIS Sentinel-2 MSI 

Launch 

date 

1984, 1999, 2013, 1999 1999 2015 

Revisit time 16 Days 16 Days 1-2 Days 10 

Spatial 

resolution 

30m to 120m 15m to 60m 250m to 

1000m 

10m to 60m 

Swath 

width 

185km 60km 2330km 290km 

Landsat Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), and 

Operational Land Imager (OLI) have become the primary source for glacier mapping 

due to the longer temporal record of images compared to other systems and have 

been widely used by many researchers. Zhang et al. (2019) used  Landsat satellite 

sensors to map glacier changes in Central Asia from 1975 to 2016, and showed that 

warming temperature was one of the main reasons for glaciers melting in the Aksu 

River Basin (Central Asia). Morris et al. (2006) used Landsat and ASTER sensors to 

map glaciers in Colombian and Venezuela from 1984 to 2004, Earl and Gardner 

(2016) created outlines of glaciers in North Asia using Landsat sensors (TM, ETM+, 

and OLI). There are other optical sensors as well that provide data for glacier 
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mappings such as Satellite Pour l’Observation de la Terre (SPOT), IKONOS, ALOS, 

WorldView, GeoEye-1, RapidEye, and QuickBird but data from some of these 

sensors are expensive are not always freely available. 

The swath width of the satellite is another important aspect to consider while 

selecting the sensor for glacier mapping for large regions like the Arctic.  Swath 

width refers to the width of the image that the sensor can capture on the ground. 

MODIS acquires data between 250m and 1000m pixel size, with a 2330 km swath 

width and can used  for wide-area analysis (Hall et al. 2006), but the resolution is 

too low for accurately delineating glaciers.  Sentinel 2 MSI captures data at 10m to 

20m spatial resolution from visible to shortwave infrared bands with a 290 km 

swath (Drusch et al. 2012). Sentinel-2 can be used to map glaciers on a regional 

basis, but it has a smaller archive of images (launched in 2015) which makes it a less 

suitable option for mapping glaciers over longer time spans. ASTER captures images 

with spatial resolution of 15-90m, and has the potential for debris-covered glacier 

mapping due to the availability of thermal bands (Sahu and Gupta 2020; Taschner 

and Ranzi 2002). However, ASTER has a smaller swath width (60km) than Landsat 

(185km), which limits the use of ASTER for regional glacier mapping. On the other 

hand, Landsat sensors such as TM, ETM+, and OLI/TIRS capture images at a medium 

resolution of 15m to 120m and the Landsat program’s long image archive (1972-

present) makes it an asset for glacier mapping. Details of Landsat TM, ETM+, and 

OLI/TIRS are shown in Table 2.  
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Table 2 represents, Landsat 5 TM consists of seven bands with a spatial resolution 

of 30m except band 6 which is 120m but resampled to 30m. Landsat 7 ETM+ has six 

bands (bands 1 to 5 and 7) with a spatial resolution of 30 metres, one thermal band 

which was collected at 60m but resampled to 30m, and one panchromatic band 

with 15m resolution. Landsat 8 OLI has eight bands with a 30 metres resolution, one 

panchromatic (15 metres), and two thermal bands having a resolution of 100 metres 

but resampled to 30 metres. 

Table 2 List of spectral bands of Landsat 5, 7, and 8 (TM, ETM+, and OLI/TIRS). 

Landsat 5 TM and Landsat 7 ETM+ Landsat 8 OLI 

Bands and wavelength 
(µm) 

Resolution Bands and wavelength 
(µm) 

Resolution 

Band 1 Blue 
(0.45-0.52) 

30m Band 1 Aerosol 
(0.43-0.45) 

30m 

Band 2 Green 
(0.52-0.61) 

30m Band 2 Blue 
(0.45-0.51) 

30m 

Band 3 Red 
(0.63-0.69) 

30m Band 3 Green 
(0.53-0.59) 

30m 

Band 4 NIR 
(0.76-0.90) 

30m Band 4 Red 
(0.64-0.67) 

30m 

Band 5 SWIR1 
(1.55-1.75) 

30m Band 5 NIR 
(0.85-0.88) 

30m 

Band 6 Thermal 
(10.40-12.50) 

(60)-30m Band 6 SWIR1 
(1.57-1.65) 

30m 

Band 7 SWIR 2 
(2.08-2.35) 

30m Band 7 SWIR 2 
(2.11-2.29) 

30m 

Band 8 Panchromatic 
(0.52-0.90) ETM+ only 

15m Band 8 Panchromatic 
(0.50-0.68) 

15m 

 Band 9 Cirrus 
(1.36-1.38) 

30m 

  Band 10 Thermal 1 
(10.6-11.19) 

(100)-30m 

  Band 11 Thermal 2 
(11.50-12.51) 

(100)-30m 
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2.3. Methods for glacier mapping 

2.3.1. Manual Delineation  

Many studies have traditionally used  manual digitisation to find and study the 

changes in the front position of glaciers through time (Carr et al. 2014, 2017; Howat 

and Eddy 2012; Moon and Joughin 2008), while some researchers have used manual 

digitisation to assess the accuracy of other semi-automated approaches to mapping 

(e.g., Alifu et al. 2015; Fischer et al. 2014; Paul et al. 2013; Shafique et al. 2018). 

Manual delineation is considered to be the most accurate method for glacier 

mapping (Albert 2002; Paul et al. 2017), but its accuracy depends on the analyst and 

it is time-consuming, especially when working on change assessment over a large 

region like the Arctic.  

2.3.2. Index-based methods  

Semi-automated methods such as Normalized Difference Snow Index (NDSI) and 

Band Ratio are easy to implement and can produce consistent results (Burns and 

Nolin 2014). In the band ratio method, the visible bands (green and red) or near-

infrared band in the EM spectrum are divided by short SWIR which results in the 

“Ratio Image”. In NDSI, the difference between visible (green or red) and SWIR 

bands is applied then divide with the addition of both bands resulting in a single 

band. These index-based methods utilise the different bands of the electromagnetic 

spectrum that make up the satellite image. Snow and ice are highly reflective in the 
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visible part of the electromagnetic spectrum, their reflectance starts to decrease in 

the near-infrared region, reaching nearly zero in the shortwave infrared (Jezek 

2006) (see Figure 3). In both techniques, the resulting image shows high values over 

the glacier and low values over the non-glacier area such as rocks and vegetation 

(Raup et al. 2014). These high and low values assist to select the threshold which 

helps to create the binary mask that indicates glacier and non-glacier areas. Then 

glacier outline can be derived by converting the binary mask to vector.    

 

Figure 3: The spectral curve of snow/debris-free glacier with the band positions of 
Landsat (5,7,8), from visible to short wave infrared region (Shao et al. 2020). 

Both Band Ratio and NDSI are well-established, fast, and robust methods for 

mapping clean glaciers over extensive areas (Paul et al. 2017). However, some 

difficulties are still present using these index-based methods. For example, mapping 

glaciers in the presence of lakes, clouds, shadow, and debris cover is known to cause 
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errors (Racoviteanu and Williams 2012). Band Ratio (visible/SWIR) is an effective 

method for mapping shadowed ice but tends to misclassify lakes (water bodies) as 

part of the glacier (Kääb et al. 2005; Paul et al. 2007). Band Ratio (NIR/SWIR) has 

also been used, but using NIR with SWIR is less effective in deep shadow (Burns and 

Nolin 2014). NDSI can provide more satisfactory results in the case of shaded ice 

(Racoviteanu, Arnaud, et al. 2008). The common problem of these techniques is 

when it comes to mapping debris cover glaciers, because NDSI and Band Ratio are 

using the multispectral response of ice to map glaciers but debris-covered glaciers  

have a similar reflectance to the surrounding terrain (Alifu et al. 2015). Therefore, a 

different approach is required to accurately map these systems.  

2.3.3. Indices with morphometric parameters    

Researchers have attempted to develop semi-automated methods for mapping 

using indices with morphometric parameters such as slope, aspect and curvature 

(e.g., Herreid and Pellicciotti 2020; Bhambri et al. 2011; Scherler et al. 2018; Bolch 

and Kamp 2006; Paul et al. 2004), while some have relied on manual delineation 

(Burns and Nolin 2014; Fischer et al. 2014). Paul et al. (2004) combined a 

multispectral classification technique with a DEM, showing that without the DEM, 

the method showed less promising results. Shafique et al. (2018) used NDSI with 

slope  to delineate debris-covered glaciers. Ghosh et al. (2014) used Band Ratio with 

slope to map debris-covered glaciers. Although, combining slope (morphometric 
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parameters) with Band Ratio has proven useful and faster than the manual 

delineation of the glacier, it still requires manual editing (Ghosh et al. 2014).  

Alifu et al. (2015) introduced a new method called “New Band Ratio” for mapping 

debris-covered glaciers. The common approach that was followed by researchers is 

to use a Digital Elevation Model (DEM) with indices (NDSI and Band Ratio) for 

mapping debris-covered glaciers, while this New Band Ratio method utilises the 

thermal, NIR, and SWIR (Thermal ÷ (NIR ÷ SWIR)) bands with the slope information 

obtained from a DEM. The thermal provides information about temperature 

changes on different surfaces, which helps in differentiating the debris-covered part 

of the glacier from other materials (Alifu et al. 2015). The thermal band can be used 

to differentiate between ice cover and debris-cover and increase the accuracy of 

the mapping. However, using only a thermal band for debris cover is limited, when 

the debris cover is thicker more than 40-50cm (Ranzi et al. 2004). Combining the 

thermal band with morphometric and multispectral data shows a promising result 

(Bolch et al. 2007), but manual editing will be still required for developing a semi-

automated method for mapping debris-covered glaciers (Racoviteanu et al. 2008).  

2.3.4. Machine learning techniques 

There is a number of machine learning techniques that researchers have used for 

glacier mapping such as Support Vector Machine (SVM), Artificial Neural Network, 

(ANN), Convolutional Neural Network (CNN), Random Forest, Decision tree, spectral 
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angle mapper, and maximum likelihood (e.g., Khan et al. 2020; Kumar et al. 2020; 

Racoviteanu and Williams 2012; Robson et al. 2020). 

Robson et al. (2020) used CNN and Object-Based Image Analysis (OBIA) to detect 

rock glaciers, finding that combining CNN with OBIA for mapping glaciers offers a 

promising result and leads to reduction of manual correction. Kumar et al. (2020) 

used the Maximum likelihood classifier to map glacier changes from 1987 to 2017 

in Bhutan, and found the accuracy between 80% and 67.2%, and suggested that the 

higher spatial resolution of images can provide better accuracy. Khan et al. (2020) 

investigated three main machine learning classifiers for glacier mapping: Random 

Forest, SVM, and ANN, based on the three classes” glaciers”, “debris-covered 

glaciers”, and “non-glaciated area” splitting data into training (70%) and testing 

(30%) found   that when compared random forest (Kappa: 0.95) performed better 

than ANN (Kappa: 0.92) and SVM (Kappa: 0.89).  The OBIA approach has been used 

to map debris-covered glacier in the Manaslu region of Nepal and to compute 

decadal scale changes in glaciers in Hohe Tauern National Park in Austria by  

(Robson et al. 2015, 2016). 

Most of these techniques are developed and tested for selected glaciers in a 

particular region. In the case of debris-covered glaciers, the developed method can 

be successful for that region but may not always be transferable to another region 

because of the distribution of debris-covered with diverse thicknesses (Bhambri et 

al. 2011). Most importantly, to map glacier changes over large areas at multiple 
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points in time, several satellite images are needed, and users must download and 

store each image locally on a laptop, desktop or local server. Processing large 

numbers of images on a desktop or laptop can be time-consuming, especially for 

large-scale mapping.   

2.4. Glacier Inventory/outlines 

The World Glacier Monitoring Service (WGMS) is an international organization, 

established in 1986 to monitor the world's glaciers. WGMS is based in Switzerland 

and Its primary goal is to collect and analyse data on the state of glaciers worldwide 

(WGMS 1989). The WGMS compiled the World Glacier Inventory (WGI), an 

inventory of glaciers at the global scale (Haeberli 1998; WGMS 1989). The World 

Glacier Inventory (WGI), a comprehensive database of glaciers around the world 

which is one of the main tasks of WGMS. The WGI contains information on the 

location, size, and other characteristics of over 200,000 glaciers worldwide (Eis 

2020). The WGMS data, which is included in the WGI, has been used to better 

understand the state of the world's glaciers and the effects of climate change on 

them (Gärtner-Roer et al. 2019). . In addition, the WGMS collects standardised 

information on glacier area, volume, and mass changes (e.g., Zemp et al. 2013, 

2009).  

The increase in the number of earth observation satellites that are now available, 

coupled with sophisticated image processing software, led to the Global Land Ice 
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Measurements from Space (GLIMS) project. The aim of the GLIMS initiative is to 

improve our understanding of how glaciers and ice sheets are changing, and 

maintain an up-to-date inventory of glacier outlines (Raup et al. 2007). The central 

product of the GLIMS project is a glacier database that stores glacier outlines and 

key information such as size, elevation, and other glacier attributes. GLIMS outlines 

are freely accessible to the worldwide community via its website, 

https://www.glims.org/ (Racoviteanu et al. 2009; Raup et al. 2007).  

The Randolph Glacier Inventory (RGI) is another global product that compiles glacier 

outlines and is supplementary to the GLIMS glacier database (Pfeffer et al. 2014). 

Despite these initiatives, multitemporal outlines of glaciers are still lacking for most 

parts of the world and researchers are still working on creating single and multi-

temporal glacier outlines in various parts of the world to better understand how 

glaciers are responding to climate change in these regions.  There are new glacier 

outlines generated for North Asia based on the NDSI method followed by manual 

editing using Landsat data (Earl and Gardner 2016). A Swiss glacier inventory for the 

year 2000 connected to the GLIMS project, was made using Landsat TM, ETM+, and 

ASTER imagery (Fischer et al. 2014; Paul et al. 2002).  

A glacier inventory for the European Alps is also available derived from Landsat TM 

images from 2003 using the Band Ratio technique (Paul et al. 2011). Several  glacier 

inventories are available for Norway including one for the Svartisen region that used 

mostly the Band Ratio technique to derive the mapping (Paul and Liss 2009), 

https://www.glims.org/
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additional inventories are also available forthe Jostedalsbreen region (Paul et al. 

2011), and mainland Norway (Andreassen et al. 2012).   Nuth et al., (2013) mapped 

new glacier outlines for Svalbard and Greenland using mostly Landsat images. 

Outlines of glaciers in southern Baffin Island, Canada were created by (Svoboda and 

Paul 2009) using ASTER data and Rastner et al. (2017) generated a new glacier 

inventory for Novaya Zemlya, Russian Arctic using the Band Ratio technique from 

Landsat 8 data. 

Most of these glacier inventories provide glacier outlines at one point in time, 

meaning important multitemporal outlines are still lacking in most of the world, 

which impedes our understanding of how glaciers are changing through time in 

response to warming.  These data are crucial for providing information to better 

understand the impacts of climate change, for modelling their future trajectories 

and quantifying their potential sea level contribution (Hock et al. 2019; Millan et al. 

2022).  

2.5. Conclusions 

Given that the Arctic plays such an important role in the Earth's climate system by 

reflecting sunlight and trapping cold air, which helps to regulate global 

temperatures (Previdi et al. 2021). In recent years, Climate change has caused 

significant changes in the Arctic, including melting sea ice, glaciers and permafrost, 

which has resulted in rising sea levels (IPCC 2021). Arctic glaciers, ice caps, and the 

GrIS all contributed approximately 1.2mm to sea-level rise each year from 2003 to 
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2015 (Moon et al. 2019). These changes have far-reaching consequences not only 

for the Arctic region, but also for the rest of the world.  The major research challenge 

for rapid monitoring of the Arctic will be to create a robust and automated 

methodology that can accurately create glaciers outlines through time at regional 

scale and to reduce the time of manual corrections. Such a tool would be of great 

benefit to the scientific community to allow continued assessment of the impacts 

that enhanced warming in the Pan-Arctic is having on the cryosphere. The main goal 

of this project is to develop are such an automated methodology and the detailed 

methodology is discussed in Chapter 3.  
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3.1. Abstract 

Climate change has had a significant impact on glacier recession, particularly in the 

Arctic, where glacier meltwater is an important contributor to global sea-level rise. 

Therefore, it is important to accurately quantify glacier recession within this 

sensitive region. In this study, we mapped 480 glaciers in Novaya Zemlya, Russian 

Arctic, using object-based image analysis applied to multispectral Landsat satellite 

imagery in Google Earth Engine to quantify the area changes between 1986-89 to 

2019-21.  The results show that in 1986-89, the total glacierized area was 

22,990±301 km2, in 2000-01 the area was 22,525±308 km2, and by 2019-21 the 

glacier area had reduced to 21,670±292 km2, representing a total 5.73% reduction 

in glacier area between 1986-89 and 2019-21. Higher glacier area loss was observed 

on the Barents Sea coast (7.1%), compared to the Kara (4.1%), reflecting previously 

observed differences in warming trends. The accuracy of the automatically 

generated outlines of each layer (1986-89, 2000-01, and 2019-21) was evaluated by 

comparing with manually corrected outlines (reference data) using random 

sampling, resulting in an overall accuracy estimate of between 96% and 97% 

compared to the reference data. This automated approach in Google Earth Engine 

is a promising tool for rapidly mapping glacier change that reduces the amount of 

time required to generate accurate glacier outlines. 

Key words 

Landsat, Glaciers, object-based image analysis, Google Earth Engine  
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3.2. Introduction  

Glaciers distinct from the Antarctic and Greenland Ice Sheets are one of the key 

elements of the cryosphere and are major freshwater reservoirs (Millan et al. 2022). 

As a result of climate change, these large freshwater stores are now melting at a 

fast rate, increasing global sea levels (Hugonnet et al. 2021; Zemp et al. 2019). After 

thermal expansion, glaciers and ice sheets are the largest contributors to sea-level 

rise in the 21st century (IPCC 2021). With millions of people around the world living 

within a few kilometres of the coast, future sea level rise has the potential to 

displace populations across the globe (Kulp and Strauss 2019).  

Over the last few decades the rate of temperature increase in the Arctic has been 

estimated to be more than twice as high as anywhere else in the world (Schädel et 

al. 2018; You et al. 2021), with a recent study estimating Arctic warming to be as 

much a four times higher since 1979 (Rantanen et al. 2022). In the Arctic, mountain 

glaciers, ice caps, and the Greenland Ice Sheet (GrIS) have all retreated over the past 

100 years and have started to retreat faster since 2000 (AMAP 2017). Combined, 

Arctic glaciers, ice caps, and the GrIS contributed approximately 1.2mm to sea level 

rise each year from 2003 to 2015 (Moon et al. 2019). 

Given the importance of glaciers in the Arctic and their potential to impact large 

parts of the world, it is necessary to develop automated methods that can easily 

monitor regional glacier changes and provide a clear understanding of the climate 

change impacts on Arctic glaciers. To monitor changes over such an expansive and 
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largely inaccessible region like the Arctic, satellite remote sensing is an ideal tool as 

it can be used to map large glacierized areas relatively quickly (e.g., Winsvold et al. 

2014). 

Several techniques have been used for glacier mapping based on remote sensing 

data, such as manual delineation (e.g., Albert 2002), Band Ratio (e.g., Bolch et al. 

2010), Normalized Difference Snow Index (NDSI) (Hall et al. 1995), object-based 

image analysis (e.g., Robson et al. 2015, 2016), and supervised learning-based 

classification (e.g. Maximum likelihood, Support Vector Machines, and Random 

Forest; Khan et al. 2020; Kumar et al. 2020; Nijhawan et al. 2016). Of these methods, 

manual delineation is considered to be the most accurate (Albert 2002; Alifu et al. 

2015; Paul et al. 2017), but this method is both time-consuming and potentially 

more susceptible to operator bias compared to more automated approaches. Both 

Band Ratio and NDSI are well-established, fast, and robust methods for mapping 

debris-free glaciers ice over extensive areas (Paul et al. 2015). However, some 

difficulties are still present in using these index-based methods, for example 

mapping glaciers in the presence of lakes, clouds, shadow, and debris cover.  

Band Ratio with visible and Shortwave Infrared (SWIR) bands from Landsat imagery 

(red/SWIR1) is an effective method for mapping shadowed ice but tends to 

misclassify lakes (water bodies) as part of the glacier (Kääb et al. 2005; Paul et al. 

2007). Band Ratio with Near Infrared (NIR) and SWIR (NIR/SWIR1) have also been 

used, but using NIR with SWIR is less effective in areas with dark shadows (Burns 
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and Nolin 2014). NDSI can provide more satisfactory results in the case of shaded 

ice, but fails to differentiate glacier ice from pro-glacial lakes (Racoviteanu et al. 

2008). Supervised learning based classification techniques may have limited 

applicability over large regions because of the longer processing time (Racoviteanu 

et al. 2009).     

Glacier outlines are an important data source that not only tell us the size of the 

glacier, but importantly are used for estimating ice volume (Millan et al. 2022), and 

glacier mass changes (Zemp et al. 2019), or predicting sea level rise (Hock et al. 

2019). The Randolph Glacier Inventory (RGI) is a global inventory of glaciers, and it 

is supplementary to the Global Land Ice Measurements from Space (GLIMS) 

database (RGI Consortium 2017). GLIMS is a digital database that contains glacier 

outlines and is a cooperative effort of worldwide institutes (Raup et al. 2007), 

available at https://www.glims.org/. However, for most glaciers around the world, 

outlines are only available at a single point in time which limits its use for 

understanding the long-term impacts of climate change for glaciers in many regions. 

 In order to map glacier changes over large areas over multiple points in time, 

multiple satellite images are needed. To do this mapping locally, users must 

download and store each image, with file sizes ranging from ~200 MB for complete 

Landsat 4-5 scenes, to ~1 GB for Sentinel-2 or Landsat 8 and 9 scenes. Processing 

large images on a desktop or laptop computer can be resource-intensive, which 

provides an additional cost barrier for large-scale mapping efforts. More recently, 

https://www.glims.org/
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cloud-based platforms such as Google Earth Engine (Gorelick et al. 2017) have 

enabled users to forgo the time and costs of downloading, storing, and processing 

images locally, which has greatly expanded the possibilities for large-scale analysis 

in a number of fields ( e.g., Lea 2018; Mahdianpari et al. 2019; Zhang et al. 2020). 

In this study, a method is developed using the Google Earth Engine cloud-based 

platform using an object-based image analysis approach to map and generate 

glacier outlines automatically. We use this method to generate multi-temporal 

outlines of glaciers on Novaya Zemlya, Russian Arctic. The main goals of this study 

are: i) to develop an automated method to map glaciers by leveraging the 

computational power and extensive data catalogue of Google Earth Engine; ii) to 

map the glaciers of Novaya Zemlya at multiple points in time;  iii) to compare the 

derived area changes to mass losses (Hugonnet et al. 2021); and iv) to evaluate the 

accuracy of the method using manually-corrected outlines.  

3.3.  Study Area 

The Russian Arctic consists of three main regions: Franz Josef Land, Severnaya 

Zemlya, and Novaya Zemlya, which lies north of the Russian mainland between the 

Barents and Kara Seas (Grant et al. 2009). According to the RGI 6.0, the glacier-

covered area of Severnaya Zemlya is 16,701 km2, for Franz-Josef Land it is 12,762 

km2 and for Novaya Zemlya it is 22,128 km2 (RGI Consortium, 2017). The most 

prominent feature of Novaya Zemlya is the large ice cap on the northern island 

(Severny Island), whereas the southern part of the archipelago (Yuzhny Island) is 
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dominated by a small valley and mountain glaciers (Melkonian et al. 2016). The ice 

cap on the northern side of Novaya Zemlya is approximately 400 km long and has a 

maximum elevation of 1,600 m above sea level (a.s.l.), with the southern part of 

Novaya Zemlya reaching 1,340 m a.s.l. (Rastner et al. 2017). 

Novaya Zemlya (Figure 4) has three different types of glaciers: the main ice cap's 

large outlet glaciers are mostly marine-terminating, while most of the glaciers that 

are separated from the main ice cap are land-terminating, with a small number of 

lake terminating glaciers (Rastner et al. 2017). According to the RGI 6.0, Novaya 

Zemlya has a total of 480 glaciers: 38 marine-terminating glaciers, 424 land-

terminating glaciers, and 18 lake-terminating glaciers. 

Glacier melt is influenced by different climate drivers such as, temperature, 

precipitation, solar radiation, wind, oceanic influences and atmospheric circulation 

as well as topography of glaciers (Benn & Evans, 2014). Melting of different types of 

glaciers, such as land, lake, and marine-terminating glaciers, may vary with these 

climate drivers in distinct regions. 

Marine-terminating glaciers are glaciers that flow into the ocean and are influenced 

by both atmospheric and oceanic conditions. Warm ocean waters interact with the 

glacier terminus, which can accelerate melting, causing the glacier to thin and 

retreat rapidly (e.g., Kochtitzky & Copland, 2022). Marine-terminating glaciers also 
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undergo and often experience calving, where large chunks of ice break off from the 

glacier's terminus, that contribute to area reduction. 

Lake-terminating glaciers are glaciers that terminate in a lake. Like with marine-

terminating glaciers, water temperature affects the rate of melting at the glacier 

terminus (Sugiyama et al., 2021). Warmer lake waters can enhance melting and 

contribute to area reduction. Changes in lake dynamics, including its size, depth, 

and water circulation patterns, can also impact the glaciers area change (e.g., 

Tsutaki et al., 2011). 

Land-terminating glaciers are glaciers that terminate on land, typically in 

mountainous regions (King et al. 2018). Some land-terminating glaciers may have a 

layer of debris (rocks, sediment) on their surface, that reduces melting and 

potentially stabilizing the glacier. 
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Figure 4: The study area of Novaya Zemlya, with glaciers outlines from RGI 6.0 
shown. The ESRI World Ocean and World Terrain base maps are used in the 
background.   

3.4. Data and method 

3.4.1.  Data 

Landsat data have proven to be an effective asset for glacier mapping, and for 

creating multi-temporal outlines of glaciers due to their large swath width, 

multispectral capabilities, and long temporal record of capturing images over 5 

decades (e.g., Nuth et al. 2013). A total of sixteen images from Landsat 5 Thematic 

Mapper (TM), Landsat 7 Enhanced Thematic Mapper Plus (ETM+), and Landsat 8 

Operational Land Imager (OLI) are used in this study (Table 3), divided into three 
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time periods: 1986-89, 2000-01, and 2019-21. The images used were carefully 

selected with minimal cloud cover.  

Landsat is a collaborative effort of the USGS and NASA and has been continuously 

observing the Earth from 1972 until the present day (Masek et al. 2020). The USGS 

provides Landsat products in three categories: real-time (RT), Tier 1, and Tier 2 

which are stored in Collection 1 or 2. Tier 1 images have the best quality, and are 

considered suitable for time-series analysis (Masek et al. 2020), while Tier 2 images 

have issues with geometric correction but are still usable. In this study, we use 

orthorectified Level-2 (surface reflectance) images (Tier 1) from Collection 1 for 

mapping glaciers in Novaya Zemlya. Some studies have used raw radiance or Digital 

Number (DN) values for glacier mapping with no atmospheric or topographic 

correction (Alifu et al. 2015; Paul et al. 2002). However, surface reflectance data are 

essential for systematic analysis, particularly in highly automated approaches 

(Hemati et al. 2021).  

Table 3: Details of images that are used in this study. 

S. No Satellite Date 
(DD/MM/YYYY) 

WRS-2 
Path/Row 

Google Earth Engine Image IDs 

01 Landsat 5 26/07/1986 174/6 LANDSAT/LT05/C01/T1_SR/LT05_174006
_19860726 

02 Landsat 5 03/08/1987 177/6 LANDSAT/LT05/C01/T1_SR/LT05_177006
_19870803 

03 Landsat 5 06/08/1989 179/6 LANDSAT/LT05/C01/T1_SR/LT05_179006
_19890806 

04 Landsat 5 06/08/1989 179/7 LANDSAT/LT05/C01/T1_SR/LT05_179007
_19890806 

05 Landsat 5 06/08/1989 179/8 LANDSAT/LT05/C01/T1_SR/LT05_179008
_19890806 

06 Landsat 7 25/08/2000 174/6 LANDSAT/LE07/C01/T1_SR/LE07_174006
_20000825 
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07 Landsat 7 31/07/2000 175/6 LANDSAT/LE07/C01/T1_SR/LE07_175006
_20000731 

08 Landsat 7 12/08/2000 179/6 LANDSAT/LE07/C01/T1_SR/LE07_179006
_20000812 

09 Landsat 7 12/08/2000 179/7 LANDSAT/LE07/C01/T1_SR/LE07_179007
_20000812 

10 Landsat 7 08/08/2001 178/8 LANDSAT/LE07/C01/T1_SR/LE07_178008
_20010808 

11 Landsat 8 20/08/2019 176/5 LANDSAT/LC08/C01/T1_SR/LC08_176005
_20190820 

12 Landsat 8 20/08/2019 176/6 LANDSAT/LC08/C01/T1_SR/LC08_176006
_20190820 

13 Landsat 8 23/08/2021 178/7 LANDSAT/LC08/C01/T1_SR/LC08_178007
_20210823 

14 Landsat 8 18/08/2020 180/6 LANDSAT/LC08/C01/T1_SR/LC08_180006
_20200818 

15 Landsat 8 19/09/2020 180/7 LANDSAT/LC08/C01/T1_SR/LC08_180007
_20200919 

16 Landsat 8 19/09/2020 180/8 LANDSAT/LC08/C01/T1_SR/LC08_180008
_20200919 

3.4.2.  Method: Object Based Image Analysis 

Google Earth Engine is a cloud-based remote sensing platform with planetary-scale 

analysis capabilities that contains a multi-petabyte catalogue of satellite imagery 

and geospatial datasets, making Google Earth Engine one of the most powerful 

remote sensing analysis tools available for analysing change datasets (Gorelick et al. 

2017). Using Google Earth Engine, we developed an object-based image analysis 

approach for classifying imagery, instead of a simpler pixel-based approach.  Pixel-

based classification focuses on individual pixels and neglects additional contextual 

information contained in surrounding pixels that could be used to increase the 

accuracy such as the spatial relationship with surrounding pixels, size of objects, 

texture, and shape that object-based image analysis incorporates (Blaschke 2010).  

The method was initially developed using a single Landsat 8 OLI/TIRS image before 

being applied to the other image sets for the whole of Novaya Zemlya to map glacier 
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changes. This study utilizes six bands from visible to SWIR (OLI Bands 2-7), and one 

thermal infrared band (TIR1, TIRS Band 10) as input layers for image segmentation 

(Figure 5). The visible to SWIR bands have 30m resolution. The TIR1 band was 

originally collected with 100m resolution, but Google Earth Engine automatically 

resampled this using a cubic convolution method to 30m. 

In the object-based image analysis approach, segmentation is an important step 

that groups similar pixels into a cluster or image objects (Ren and Malik 2003). Pixel-

based classification can result in so-called “salt and pepper” noise, and 

segmentation helps to reduce this effect in the final classification (Mahdianpari et 

al. 2019).  To reduce noise in the images, a one-sigma Gaussian filter of radius 2 was 

applied before segmentation (Xue et al. 2018).  

Google Earth Engine mainly supports three image segmentation techniques for 

remote sensing: simple non-iterative clustering, k-means, and G-means (Liu et al. 

2018). We use simple non-iterative clustering (Achanta and Süsstrunk 2017), which 

is an improved version of simple linear clustering, to segment the Landsat image 

(Figure 6B). The important parameters of simple non-iterative clustering are 

compactness, connectivity, seeds or grid size, and neighbourhood size. The 

compactness parameter defines the smoothness of the clusters, which affects 

cluster shape (Shafizadeh-Moghadam et al. 2021). A compactness value of zero 

removes spatial distance weighting, meaning that clusters are created based only 

on spectral characteristics. The connectivity parameter deals with adjacent objects, 
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with a connectivity of 4 corresponding to only orthogonal neighbours, and a 

connectivity of 8 corresponding to orthogonal and diagonal neighbours. The 

seed/size parameter determines the initial location or spacing of the cluster centres, 

and neighbourhood size is used to avoid boundary artifacts between tiles (Tassi and 

Vizzari 2020). In this study, the parameters compactness = 0, connectivity = 4, seed 

grid spacing = 15 pixels, and neighbourhood size = 128 pixels were selected by 

repeated iteration and visual evaluation.  
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Figure 5: Workflow of the method for creating glacier outlines in Google Earth 
Engine. The green box shows the automated steps in Google Earth Engine, while 
orange shows the post-processing steps in ArcMap 10.5.1.  

The Random Forest classifier was implemented in Google Earth Engine for the 

classification of the segmented images. The Random Forest algorithm is a 

supervised machine learning algorithm that combines the output of multiple 

decision trees to produce a single result (Kulkarni and Lowe 2016). For image 
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classification, Random Forest is the most widely used machine learning algorithm in 

Google Earth Engine (Amani et al. 2020). Random Forest is robust, easy to 

implement, capable of dealing with high dimensionality, and can reduce the risk of 

overfitting (Nery et al. 2016; Praticò et al. 2021).  

In this study, the Random Forest algorithm using ten trees was trained on manually 

selected samples of “glacier” and “non-glacier” throughout the scene, and the 

segments were classified into two main classes: “glacier” and “non-glacier”. The 

“glacier” class includes ice, debris-covered ice, and moraines, while the non-glacier 

class includes water, vegetation, sea-ice, bare land and seasonal snow patches. To 

train the classifier, we used a total of 728 samples for the 1986-89 images, including 

365 glacier samples and 363 non-glacier samples. For the 2000-01 images, we used 

317 glacier and 303 non-glacier samples, and for the 2019-21 images we used 339 

glacier and 367 non-glacier samples. 

Finally, a median filter with radius 2.5 was applied to reduce noise in the classified 

image, and then the classified image was converted from raster to vector to create 

glacier outlines (Figure 6C). The automated glacier outlines were exported from 

Google Earth Engine to ArcMap 10.5.1 for post processing. As a final step, each 

glacier was examined to see if manual correction was required, and manual 

corrections were made where necessary. Finally, the linked glacier outlines were 

separated using the internal boundaries of the RGI version 6.0, to enable 

examination of the changes in each glacier. 
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Figure 6: The process of generating outlines using an object-based image analysis 
approach in Google Earth Engine: (a) a false color composite of a Landsat 8 image 
(OLI Bands SWIR1, NIR, and Red); (b) the result of simple non-iterative clustering 
segmentation; (c) the final glacier outline, overlain on the original image. 

3.4.2.1. Accuracy and Uncertainty 

The temporal nature by which satellite images are captured, invariably means that 

images of the same area are captured during different conditions and there can be 

seasonal variations that can impact on image quality. These variations can be 

illumination differences, cloud cover, or shadows cast over the target feature; for 

glacier mapping, snow patches can remain on the ground which are spectrally 

similar to snow covered glaciers.  Therefore, it is important to understand the 

capabilities of the method when utilising images from different times and to assess 

how accurate the glacier areas are computed using this automated methodology 

without manual corrections. Therefore, to determine the uncertainty in the glacier 

area, two approaches were used: random sampling and buffer analysis. 
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3.4.2.2. Uncertainty by random sampling  

To assess the accuracy of the automated outlines from each period, random 

samples were generated for each class in ArcMap 10.5.1, using manually corrected 

outlines as reference data. The random samples were separated into two classes, 

"glacier" and "non-glacier," with an equal number of samples for each class. In total, 

1,998 samples for each class were taken for the 1986-89 outlines, 1,971 samples 

from each class for the 2000-01 outlines and 1,937 samples from each class for the 

2019-21 outlines. These points were intersected with the automatically generated 

outlines and the reference data, and confusion matrices were created (Table 4). 

Table 4 Confusion matrices of each layer generated based on random sampling. 

1986-89                                                 Reference Data   

  
  
Classified 

 
Glacier Non-glacier Total User’s 

accuracy 
Kappa 

Glacier 1973 100 2073 95.1% 0.93 

Non-glacier 25 1898 1923 98.7%  

Total 1998 1998 3996   

 
Producer’s 
accuracy  

98.7% 94.9%    

2000-01                                                 Reference Data   

  
  
Classified 

 
Glacier Non-glacier Total User’s 

accuracy 
Kappa 

Glacier 1954 140 2094 93.3% 0.92 

Non-glacier 17 1831 1848 99.0%  

Total 1971 1971 3942   

 
Producer’s 
accuracy 

99.1% 92.8%    

2019-21                                                 Reference Data   

  
  
Classified 

 
Glacier Non-glacier Total User’s 

accuracy 
Kappa 

Glacier 1917 115 2032 94.3% 0.93 



 

 

 

53 | P a g e  
 

Non-glacier 20 1822 1842 98.9%  

Total 1937 1937 3874   

 
Producer’s 
accuracy 

98.9% 94.0%    

3.4.2.3.  Uncertainty using buffer analysis 

To assess the area uncertainty of the manually-corrected outlines, a buffer of ±30m 

was applied to each manually corrected layer. In the absence of suitable reference 

data, the buffer approach is typically employed to determine accuracy using a 

literature-derived uncertainty value (±0.5 or 1 pixel) (Granshaw and Fountain 2006; 

Paul et al. 2017). The uncertainty in the glacier area was determined by calculating 

the buffered area of each layer. The high, low, and area ± uncertainty values for 

each period are shown in Table 5.  

Table 5  Computed areas (in km2) of each layer based on the ±30 m buffer. 

Time period High Low Area 

1986-89 23291 22689 22990 ± 301 

2000-01 22833 22217 22525 ± 308 

2019-21 21962 21378 21670 ± 292 

3.5. Results 

In 1986-89, the total glacierized region of Novaya Zemlya was 22,990±301 km2, in 

2000-01 the area was 22,525±308 km2, and by 2019-21 the glacier area was reduced 

to 21,670±292 km2. Of the 480 glaciers mapped, 142 are greater than 10 km2, 262 

glaciers are between 1 to 10 km2, and 76 glaciers are smaller than 1 km2. This glacier 

inventory includes three terminus types: 38 marine-terminating, 424 land-
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terminating, and 18 lake-terminating glaciers. The marine-terminating glaciers 

cover the largest glacier area (14,448±137 km2), followed by the land-terminating 

glaciers covering 7,299±94 km2, and the lake-terminating glaciers that cover 

1,241±16 km2. 

The overall accuracy for each layer was calculated using the confusion matrices 

(Table 4). The 1986-89 layer showed 96.8% overall accuracy, the 2000-01 layer had 

96.0% accuracy, and the 2019-21 layer had 96.5% accuracy. The details of 

producer’s and user’s accuracy are mentioned in Table 4. The producer’s accuracy 

varies between 92.8% and 98.9%, the user’s accuracy ranges between 93.3% and 

99.0%, and the kappa coefficient is greater or equal to 0.92 for all three layers. 

It is also important to assess how accurate the automatically-generated glacier 

areas are, using the information displayed in Table 4. Table 6 compares the manually 

estimated glacier areas with the unbiased estimates of glacier area for each time 

period, calculated following the methods described by Olofsson et al. (2013). The 

comparison of manual and automated area estimates shows that besides 2000-01, 

the manual and automated area estimates overlap within the uncertainty bands. 

When compared to 1986-89 and 2000-01, the manual area estimates shows that 

the area loss nearly doubled between 2000-01 and 2019-21, whereas the automatic 

estimate shows the opposite. Additionally, the automated estimate of the area 
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changes between 2000-01 and 2019-21 has a larger uncertainty (±624 km2) than the 

estimated change (-441 km2) (Table 6). 

Table 6: The total area (in km2) of glaciers computed manually corrected outlines (± 
1 pixel buffer), both including and excluding glaciers that surged, and the 
automatically generated outlines (± 95% confidence interval) 

 
Manual Change (from previous) Automated Change (from previous) 

 All Non-Surge All Non-Surge   

1986-89 22,990 ± 301 22,049 ± 301   22,930±470  

2000-01 22,525 ± 308 21,578 ± 308 -465 ± 430 -470 ± 430 21,762±435 -1,168 ± 640 

2019-21 21,670 ± 292 20,756 ± 292 -855 ± 424 -821 ± 424 21,321±448 -441 ± 624 

3.5.1. Glacier area changes  

To calculate area changes, we use the manually-corrected glacier outlines. Between 

1986-89 and 2019-2021, glaciers in Novaya Zemlya showed a 5.7% reduction in total 

area. Glacier retreat rates increased by 1.7% from 2000-01 to 2019-21 (-3.7%), 

compared to 1986-89 to 2000-01 (-2%). These changes in glacier area were not 

constant across glacier terminus type (land, lake, and marine-terminating). From 

1986-89 to 2019-21, land-terminating glaciers lost 580±130 km2 (7.9%), lake-

terminating glaciers lost 106±21 km2 (9.9%), and marine-terminating glaciers lost 

580±263 km2 (4.4%) of glacierized area, see  Figure 7. 
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Figure 7: The total area changes for lake, marine, and land-terminating glaciers in 
both km2 (a) and percent area (b). 

Figure 8a depicts the area lost for each glacier from 1986-89 to 2000-01 and Figure 

8b shows the loss of each glacier from 2000-01 to 2019-21, while Figure 7c and 

Figure 8d show the area loss of each glacier as a percentage. Only 41 glaciers larger 

than 200 km2 are responsible for nearly half (49.5%) of the area loss in the region, 

and 272 glaciers are responsible for 84% of the total glacier area loss. Because of 

the larger area of these glaciers, however, the total percentage loss for these 272 

glaciers is less than 25%. 
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Figure 8: Area changes of Novaya Zemlya glaciers, (a) from 1986-89 to 2000-01 and 
(b) 2000-01 to 2019-21 in km2, and (c) from 1986-89 to 2000-01 and (d) 2000-01 to 
2019-21 as a percent. Stars in a and c show glaciers that surged during the 1986-89 
and 2000-01 period. 

Figure 9 shows the percent area change vs glacier area based on terminus type. 

Figure 9b depicts 38 marine-terminating glaciers that cover the majority of the 

glacierized region (14,448±137 km2) in Novaya Zemlya, Figure 9a shows 18 lake-

terminating glaciers which cover 1,241±16 km2, while Figure 9c shows 424 land-
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terminating glaciers covering 7,299±94 km2. Between 1986-89 and 2019-21, three 

land-terminating glaciers have completely disappeared, and 18 glaciers retreated 

more than 60%, while a further 57 glaciers retreated between 40% and 60%. 

 

Figure 9: Percent area change vs glacier area for each glacier from 1986-89 to 2019-
21, for (a) lake-terminating, (b) marine-terminating, and (c) land-terminating 
glaciers. 
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3.6. Discussion  

3.6.1. Glacier retreat  

As reported in elsewhere (e.g., Kochtitzky and Copland 2022; Sharp et al. 2014), It 

is clear that glaciers are retreating across the Arctic. This study shows that all 

glaciers in Novaya Zemlya have been retreated at various rates from 0.3% to 100%, 

with a few examples of surging glaciers captured in the analysis (Figure 8a, 8c). 

Although the area loss of glaciers differed by each glacier type in Novaya Zemlya. 

Carr et al. (2017) found that the retreat rate of marine-terminating glaciers is higher 

than that of land-terminating glaciers, which is corroborated by our results (Figure 

10). However, land-terminating glaciers did not experience the same increase in 

retreat rate as lake and marine-terminating glaciers in 2000-01 to 2019-21. The 

retreat rates of land-terminating glaciers increased by 1.4% between 2000-01 and 

2019-21 relative to that between 1986-89 to 2000-01, whereas the retreat rates of 

lake and marine-terminating glaciers increased by 2.8% and 1.7%, respectively. 

Like the rest of the Arctic, Novaya Zemlya is warming faster than the rest of the 

world, with both surface air and sea surface temperatures increasing rapidly on 

both the Barents and Kara Sea coasts (e.g., Kohnemann et al. 2017; Isaksen et al. 

2022). In particular, Isaksen et al. (2022) found that 2m surface air temperature 

warming was higher on the Barents Sea side of Novaya Zemlya (1.5–2.0 °C/decade 

between 1981-2020) compared to the Kara Sea side (1.0–1.5 °C/decade). These    
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changes are driven in part by a decrease in Sea Ice Concentration (SIC) in the region 

(Yamagami et al. 2022), with the drop in SIC over the Barents Sea nearly twice as 

high compared to the Kara Sea (Kumar et al. 2021). Consistent with these studies, 

our observations show that glaciers terminating on the Barents Sea coast of Novaya 

Zemlya retreated faster than glaciers terminating on the Kara Sea coast Figure 10, a 

pattern that remains consistent across glacier terminus type (Figure 11). Barents 

Sea glaciers lost a total area of 843.4 km2 (-7.3%) between 1986-89 and 2019-21, 

while glaciers on the Kara Sea lost 448.9 km2 (-4.2%).   

 

Figure 10 Area change for glaciers on the Barents Sea vs Kara Sea (a) in km2 and (b) 
as a percentage. 

Examination based on terminus type shows that all three types of glaciers are 

retreating more on the Barents Sea side than those terminating on Kara Sea side 

(Figure 11). Carr et al. (2014) observed a similar pattern of higher retreat on the 

Barents Sea coast than the Kara Sea between 1992 and 2010. Marine and lake-

terminating glaciers are retreating faster on both sides, in both time periods of the 
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study, although land-terminating glacier retreat is slowing down at the Barents Sea 

from 2000-01 to 2019-21 compared to 1986-89 and 2000-01. 

 

Figure 11: Area change of marine (a, d), land (b, e) and lake-terminating (c, f) glaciers 
on the Barents Sea vs Kara Sea, in km2 (a-c) and percent area (d-f).  

All three types of glaciers: lake, marine, and land-terminating glaciers have lost 

more glacier area from 2000-01 to 2019-21 than 1986-89 to 2000-01; although, 

during the period 1986-89 to 2000-01, three marine-terminating glaciers and one 

lake-terminating glacier surged. Two of the same glaciers were identified by (Carr 

et al. 2017), and one was identified by (Grant et al. 2009). This study identified one 

additional glacier surge (RGI ID: RGI60-09.00070) that increased the area of the 

glacier by 3.26 km2, and showed terminus advance by up to 1.31 km by 2000-01 
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compared to 1986-89 (Figure 12). During 1986-89 to 2000-01, all four surged 

glaciers increased in area by 0.6% (+5.8 km2), however during the second time 

period (2000-01 to 2019-21), the same glaciers retreated and showed a strongly 

negative change in area of -3.4% (-32.6 km2), with a net area loss between 1986-89 

and 2019-21 for each glacier. These four glaciers were excluded from the area 

change analysis.  

 

Figure 12: Time series of Landsat images showing Pavlov Glacier (RGI60-09.00070) 
in (a) 1986-07-26, (b) 2000-07-31, and (c) 2019-08-20, showing a clear advance 
associated with a surge between 1986 and 2000. 

3.6.2. Comparison of glacier area loss with mass balance loss 

Comparing glacier area changes with geodetic mass balances obtained from 

Hugonnet et al. (2021) for the period 2000-2020 shows that marine-terminating 

glaciers lost area (3.1%) as well as mass (-0.25 m a-1) and lake-terminating glaciers 

lost a total of 6.5% area while also showing greater mass loss (-0.42 m a-1) compared 

to land and marine terminating glaciers (Figure 13). However, land-terminating 

glaciers show a slightly different pattern than lake and marine-terminating glaciers 



 

 

 

63 | P a g e  
 

(Figure 13), with land-terminating glaciers losing a substantial amount of area 

(4.7%) with less substantial mass loss (-0.18 m a-1).   

 

Figure 13: (a) Percent area change (2000-01 to 2019-21) and (b) area-averaged mass 
change (2000-2020) from Hugonnet et al. (2021) for each glacier type. 

Figure 14 depicts a comparison of each glacier area loss with its mass loss. The 

results indicate that lake-terminating glaciers lost more area than land and marine-

terminating glaciers (Figure 13), with a more negative mass balance (Figure 14). 

Ciracì et al. (2018) found that marine-terminating glaciers are losing mass faster 

than glaciers terminating on land. Almost the same trend can be seen in marine-

terminating glaciers, with a more negative area-averaged mass balance for marine-

terminating glaciers compared to land-terminating glaciers (Figure 14), because 

marine and lake-terminating glaciers lose mass via frontal ablation and land-

terminating glaciers do not. Land-terminating glaciers showed least mass loss 

compared to marine and lake-terminating glaciers, as seen in the total mass loss of 
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land-terminating glaciers (Figure 13). In terms of relative area change, however, 

land-terminating glaciers showed a stronger decrease in area compared to marine-

terminating glaciers.  

 

Figure 14: Area-averaged mass change (2000-2020) from Hugonnet et al. (2021) vs 
percent area change (2000-01 to 2019-21) for each glacier. 

3.6.3. Methodology framework in Google Earth Engine 

Rastner et al. (2013) compared object-based image analysis with pixel-based 

classification using the Red/SWIR band ratio technique, demonstrating that object-

based image analysis performed better than pixel-based classification and reduced 

the time needed for manual corrections, despite the longer processing time 

required. 
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The 16 Level-2 products used in this study total 9.10 GB as distributed by USGS Earth 

Explorer. Downloading the files via the USGS Bulk Download Web Application took 

approximately 15 minutes, even on a fast internet connection. In comparison, 

running the script to generate outlines for a single image on Google Earth Engine 

and exporting the outlines took approximately one minute. 

 

Figure 15: Comparison between object-based image analysis, Band Ratio, and 
Corrected outlines for two different sites in Novaya Zemlya. 

In addition to the time saved by forgoing downloading and processing the images 

locally, the object-based image analysis method implemented on Google Earth 

Engine reduced the amount of manual correction needed when compared to the 

Red/SWIR1 band ratio method. Figure 15 compares the object-based image analysis 

output to the manually-corrected outlines, as well as the output of the Red/SWIR1 

band ratio using a threshold of 2.0, following (Rastner et al. 2017). Both outputs 

clearly require manual correction, with large areas of seasonal snow captured by 

both methods in the area shown in Figure 15a, but the band ratio output captures 

a large area of seasonal and perennial snow patches (Figure 15b) that is not 

captured by the object-based image analysis output. In addition, both methods have 
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misclassified areas of thin cloud cover, shown in the middle of Figure 15b, as well as 

areas with larger medial moraines. 

In this study, the Google Earth Engine object-based image analysis approach 

removes the time required for downloading, extracting, and storing the images, is 

easily applicable to other regions, and reduces the amount of manual correction 

required, compared with pixel-based methods. This method, however, may not be 

effective for mapping debris-covered glaciers, or areas covered by fresh snow or 

thin cloud cover. To address these issues, other approaches that have used object-

based image analysis have included additional datasets such as digital elevation 

models and terrain slope or coherence derived from synthetic aperture radar (SAR) 

images (Robson et al. 2015, 2016). Unfortunately, many of these products are not 

yet available in Google Earth Engine, though the possibility exists for users to upload 

and make use of these additional datasets in their workflows. 

3.7. Conclusion  

This study presents a new object-based image analysis methodology, implemented 

in Google Earth Engine, for rapid and accurate glacier mapping. The software 

framework designed in Google Earth Engine utilises multi-temporal Landsat satellite 

imagery, and the outlines generated showed an accuracy of between 96% and 97% 

when compared to a manually-corrected reference dataset. This demonstrates that 

our methodology is a powerful, robust tool for accurate and rapid mapping of 
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glaciers changes on regional scale that reducing the time required of manual 

correction and can be applied to other glacierized regions. Utilizing this automated 

approach, we created outlines of glaciers on Novaya Zemlya for three different time 

periods: 1986-89, 2000-01, and 2019-21. This important dataset is essential for 

understanding the impact of climate change on glaciers and could be used to 

estimate ice volume and mass change. 

This method allowed for a comprehensive analysis of the changes that occurred in 

Novaya Zemlya glaciers between 1986-1989 and 2019-21. Over this time period, 

glaciers in Novaya Zemlya lost a total area of 1,319±419 km2 (5.7%), with three 

glaciers disappearing entirely. The results clearly demonstrate that all glaciers in 

Novaya Zemlya are responding to the impacts of climatic warming in the Arctic. With 

the exception of four glaciers that surged between 1986-89 to 2000-01, all glaciers 

in the study area retreated between 1986-89 and 2019-21, and even those four 

glaciers have retreated since 2000-01. 

Our analysis indicates there are regional variations in how glaciers are responding 

to oceanic warming in this part of the Arctic, with more loss observed from glaciers 

that terminate on the Barents Seaside of Novaya Zemlya compared to those that 

terminate on the Kara Sea-side. In comparison, results showed that land-

terminating glaciers retreated less between 2000-01 and 2019-21 compared to 

1986-89 to 2000-01, while the retreat rate of marine-terminating glaciers increased 

from 2000-01 to 2019-21, relative to 1986-89 to 2000-01. While marine-terminating 
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glaciers, which cover the majority of Novaya Zemlya, lost more area than land and 

lake-terminating glaciers, lake-terminating glaciers showed a larger percentage loss 

than the land and marine-terminating glaciers. 

Detailed regional studies of glacier behaviour across the Arctic are important for 

understanding the decadal responses and the likely trajectory of Arctic glaciers in a 

warming world. Given their potential contribution to global sea levels, it is 

important to map and understand the scale of change accurately and to provide 

tools for rapid assessment at regional scales. Platforms such as Google Earth Engine, 

combined with the expansive Landsat archive and approaches such as Object-Based 

Image Analysis, help provide these tools.  
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4.1. Abstract 

Climate change has had a significant impact on glacier recession worldwide, 

with melting ice sheets and glaciers contributing disproportionately to global 

sea-level rise. To better understand the impact of climate change on glaciers 

in the Arctic and high latitudes, observations of temporal changes in glacier 

extent are necessary.  Currently such large-scale observations are not 

available due to the large effort required to accurately map glacier areas over 

very large areas. In this study, we mapped 1723 glaciers in Baffin Island, 

Canadian Arctic, Qeqertarsuaq (Disko Island), Greenland and Kenai, Alaska, 

using Object-Based Image Analysis (OBIA) applied to multispectral Landsat 

satellite imagery in Google Earth Engine (GEE) to quantify glacier area change 

over three decades. Over the period 1985-86 to 2019-21, Baffin glaciers lost 

452±227 km2 (6.6%), Disko glaciers lost 456±168 km2 (23.6%), and the Kenai 

glaciers showed a 196±84 km2 (25.7%) decline in the total area. Based on ERA5 

reanalysis data, Disko (1.7 °C) shows the highest temperature increase 

between 2001 and 2019, followed by Baffin (1.1 °C) and Kenai (1 °C), when 

compared to between 1985 and 2001. The results also showed that glacier 

area loss also increased in 2000-02 to 2019-21 in all three regions, compared 

1985-86 to 2000-02. During 1985-86 and 2019-21, a total of 70 glaciers have 

completely retreated, including 69 on Disko and one in Kenai 

Key words 
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Glaciers, OBIA, Landsat, Google Earth Engine 

4.2. Introduction  

The Arctic cryosphere is an important component of the earth’s system that stores 

freshwater, influences sea-level, and results in net cooling of the earth's surface 

(Olsen et al. 2011). However, the Arctic has experienced some of the most rapid 

warming of any region on earth over the last few decades (e.g., Schädel et al. 2018; 

You et al. 2021). According to a recent study by Rantanen et al. (2022), warming in 

the Arctic has been four times greater than the rest of world since 1979. As result 

of climate change, mountain glaciers, ice caps, and the Greenland Ice Sheet (GrIS) 

have all receded in the Arctic over the last century (AMAP 2017). These vast 

freshwater reservoirs are rapidly melting, and raising global sea levels (Hugonnet et 

al. 2021; Zemp et al. 2019). 

Millions of people live within a few kilometres of the coast, and future sea level rise 

could start forcing communities worldwide to relocate (Kulp and Strauss 2019). In 

the 21st century, glaciers and ice sheets are the largest contributor to global sea-

level rise (IPCC 2021).  As glaciers have such a large impact and have the potential 

to affect a large portion of the world, it is important to closely monitor regional 

glacier changes and gain a clear understanding of the impact of climate change on 

these systems. Remote sensing is an ideal tool for monitoring changes in huge 

glacierized regions that are largely inaccessible like the Arctic (e.g. Winsvold et al. 

2014). 
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Glaciers are climatically controlled systems that grow and decay in response to 

temperature and precipitation changes, making them one of the best indicators of 

climate change (e.g., Bosson et al. 2019). Continuous monitoring of glaciers by 

mapping glacier outlines across different time-frames can be a useful tool to help 

quantify glacier changes and predict their future evolution (Haeberli 2004; Huss 

2012). Glacier outlines are essential for this task, as they are used to estimate ice 

volume (Millan et al. 2022), calculate glacier mass changes (e.g., Zemp et al. 2019), 

and are important for predicting sea level rise (Hock et al. 2019).  

Several important digital glacier inventories are available that have glacier outlines 

for different parts of the work.  However, it is important that these are updated 

regularly for assessing the impacts of climate change on glaciers over long times 

scales  (Sorg et al. 2012).  Global Land Ice Measurements from Space (GLIMS) is a 

digital database that stores glacier outlines, accessible globally at 

https://www.glims.org/, where users can explore and download glacier outlines 

(Raup et al. 2007). However, for most glaciers worldwide, outlines are only available 

at a single point in time, limiting their use for understanding the long-term effects 

of climate change on glaciers.  

In this study, we apply a newly developed Object-Based Image Analysis (OBIA) 

approach to map and generate glacier outlines automatically using a framework 

developed in Google Earth Engine (GEE) by Ali et al. (2023). This automated method 

is used to generate multi-temporal outlines of glaciers in three regions: Baffin, 
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Canadian Arctic; Disko, Greenland; and the Kenai Peninsula, Alaska. The main goals 

of this study are : i) to map glacier area changes across three different regions at 

multiple points in time; ii) to evaluate changes in temperature with changes in 

glacier area; iii) to compare the derived area changes to mass losses (Hugonnet et 

al. 2021); and iv) to assess the accuracy of the method using manually-corrected 

outlines in different glacierized regions. 

4.3. Study Area 

To understand the impacts of climate change on glaciers in the Arctic and high 

latitudes this study focused on three different regions; including two in the Arctic: 

Baffin Island (Canadian Arctic), Disko Island (Greenland), and one in the Kenai 

Peninsula, Alaska (Figure 16). A total of 1723 glaciers were chosen from the 

Randolph Glacier inventory (RGI) version 6.0 (RGI Consortium 2017): 748 glaciers on 

Disko (RGI Area: 1869 km2);  523 glaciers on Baffin (7054 km2); and  452 glaciers on 

the Kenai Peninsula (638 km2). 

The Canadian Arctic Archipelago is located north of mainland Canada and is the 

world's largest region of land ice outside of the Greenland and Antarctica ice sheets 

(Sharp et al. 2014). The average annual temperature on Baffin can be as low as -

20°C in the north and -6°C in the south, with extreme low temperatures reaching -

50°C (Peter and Maxwell 2015). Annual precipitation on Baffin Island varies from 

400mm on the southern part of the island to less than 100mm in the centre (Strozzi 

et al. 2017). 
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Disko (Greenlandic: Qeqertarsuaq) is the largest island in Greenland, located off the 

west coast. The average monthly temperature ranges from -12 °C in February to +7 

°C in July (Friberg et al. 2001). The coldest record from 1991 to 2020 is -40.5 °C, set 

in March 1993 while the highest temperature ever recorded was 21.7 °C in July 2017 

(Greenland Climate, 2020). 

The Kenai Peninsula is situated between the Cook Inlet and the Gulf of Alaska in 

south-central Alaska (Yang et al. 2020). It  generally has a maritime climate with a 

mean annual temperature of 1.1 °C and 485mm of precipitation (Berg et al. 2006). 

The warmest month in Kenai is July, with an average high of 17°C and low of 10°C, 

and the coldest month is January, with an average low of -11°C and high of -4°C.  

  

Figure 16 The three study areas: A. Kenai, Alaska; B. Baffin, Canada; and C. Disko, 
Greenland. Red polygons show the RGI 6.0 outlines of the glaciers selected for the 
study. 
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4.4. Data and Methods 

4.4.1. Data 

Landsat is a joint project of the United States Geological Survey (USGS) and National 

Aeronautics and Space Administration (NASA) that has been continuously 

monitoring the Earth since 1972 (Rocchio et al. 2018).  Landsat satellite data has 

shown to be a useful asset for glacier mapping due to its large swath width of about 

185 km that can capture a large area in single pass, long temporal record of 

capturing images, and multispectral capabilities that can acquire data in several 

bands (e.g., Hemati et al. 2021). Several bands are useful for glacier mapping 

because glaciers have distinct spectral signatures in specific bands that can be used 

to differentiate them from surrounding areas. In this study, the images were 

carefully selected in GEE during the summer-time period (July-September) with 

minimal cloud cover, including three images of Landsat 5 Thematic Mapper (TM), 

four Landsat 7 Enhanced Thematic Mapper Plus (ETM+) images, and four Landsat 8 

Operational Land Imager (OLI) images (Table 7).  

The USGS creates data in three categories: real-time (RT), Tier 1, and Tier 2, which 

are stored in Collection 1 or 2. Tier 1 images have the highest quality and are suited 

for time-series analysis (Masek et al. 2020), while Tier 2 images have geometric 

correction issues but are still good quality images. Some studies have used digital 

number or raw radiance data without atmospheric correction to map glaciers (e.g., 

Alifu et al. 2015; Paul et al. 2002). However, surface reflectance data is necessary 
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for systematic analysis, especially in highly automated approaches (Hemati et al. 

2021). In this study, we use Collection 1, Tier 1, Level 2 surface reflectance products.  

In this study, we also used ERA5 reanalysis data for computing temperature changes 

over the selected regions from 1985 to 2019. ERA5 is the fifth generation of 

reanalysis data produced by the European Centre for Medium-Range Weather 

Forecasts (ECMWF) (Copernicus Climate Change Service 2019).  ERA5 provides 

global coverage of various meteorological variables, including temperature, 

precipitation, wind speed, humidity, and atmospheric pressure (e.g., Vanella et al. 

2022). 

Table 7: Details of images that are used in this study.  

Satellite Date 
(DD/MM/YYYY) 

WRS-2 
Path/Row 

GEE Image IDs 
 

Baffin, Canadian Arctic 

Landsat 5 19/08/1985 18/13 LANDSAT/LT05/C01/T1_SR/LT05_0
18013_19850819 

Landsat 7 13/08/2000 17/13 LANDSAT/LE07/C01/T1_SR/LE07_0
17013_20000813 

Landsat 7 01/08/2002 19/13 LANDSAT/LE07/C01/T1_SR/LE07_0
19013_20020801 

Landsat 8 25/07/2020 19/13 LANDSAT/LC08/C01/T1_SR/LC08_0
19013_20200725 

Landsat 8 30/07/2021 17/13 LANDSAT/LC08/C01/T1_SR/LC08_0
17013_20210730 

Disko, Greenland  

Landsat 5 03/09/1985 11/11 LANDSAT/LT05/C01/T1_SR/LT05_0
11011_19850903 

Landsat 7 29/08/2001 12/11 LANDSAT/LE07/C01/T1_SR/LE07_0
12011_20010829 

Landsat 8 01/09/2019 11/11 LANDSAT/LC08/C01/T1_SR/LC08_0
11011_20190901 

Kenai, Alaska 

Landsat 5 28/07/1986 67/18 LANDSAT/LT05/C01/T1_SR/LT05_0
67018_19860728 
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Landsat 7 01/08/2002 67/18 LANDSAT/LE07/C01/T1_SR/LE07_0
67018_20020801 

Landsat 8 18/08/2019 67/18 LANDSAT/LC08/C01/T1_SR/LC08_0
67018_20190808 

4.4.2. Method: Object based image analysis in Google Earth Engine 

Google Earth Engine is a powerful cloud-based remote sensing analysis tool that has 

planetary-scale analysis capabilities and a multi-petabyte imagery library (Gorelick 

et al. 2017). Object Based Image Analysis   incorporates contextual information from 

neighbouring pixels, the size and shape of objects, and texture during classification, 

whereas pixel-based classification focuses on individual pixels (Blaschke 2010). In 

this study, we use an Object-based Image Analysis approach in Google Earth Engine 

to map glacier changes developed byAli et al. (2023). We provide a brief summary 

of the approach used below, with full details of the methodology available in Ali et 

al. (2023).  

Segmentation is an important step in the OBIA approach as it groups similar pixels 

into clusters or image objects (Ren and Malik 2003). As input layers for image 

segmentation, this study uses the visible green and red, near infrared, shortwave 

infrared, and thermal bands. Before segmentation, a one-sigma Gaussian filter with 

radius 2 pixels was applied to reduce noise in the images (Xue et al. 2018). We use 

the simple non-iterative clustering technique, an improved version of simple linear 

clustering, to segment the Landsat image (Achanta and Süsstrunk 2017). 

To classify the image objects, we trained a Random Forest classifier with 10 trees 

on manually selected samples of "glacier" and "non-glacier" classes distributed 
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throughout the scene. To train the classifier, we used approximately 100 “glacier” 

and 100 “non-glacier” samples per image. The Random Forest classifier is the most 

widely used machine learning algorithm in GEE (Amani et al. 2020), it is robust, and 

can handle high dimensionality, reducing the risk of overfitting (Nery et al. 2016; 

Praticò et al. 2021). After classification, a median filter with a radius of 2.5 was used 

to reduce noise in the classified image, which was then converted from raster to 

vector to create glacier outlines. 

The automated glacier outlines were exported from GEE to ArcGIS 10.5.1 for post-

processing. Each glacier was examined to determine whether manual correction 

was required, and manual corrections were made where needed. Finally, the linked 

glacier outlines were separated using the RGI's internal boundaries, which enabled 

analysis of changes for each glacier. 

To have a better understanding of the glacier area changes, we also used ERA5 

reanalysis data in the Google Earth Engine platform to calculate the average yearly 

temperature for each region. The ERA5 data can be accessed through the Google 

Earth Engine interface, making it a valuable tool for analysis. We exported the 

temperature data from Google Earth Engine and used the Matplotlib library to 

produce a figure depicting the temperature changes from 1985 to 2019 for each 

region. 
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4.4.2.1. Accuracy and Uncertainty 

Satellite-capture images during different conditions can have differences in 

illumination, issues with cloud cover or shadows over the target feature, all of which 

can have impact on automated classification and image quality. The three regions 

used in this study have seasonal variations, different climatic regimes and as well 

different topographic settings. So, it is important to understand the capabilities of 

the method when utilising images from different times and in different locations. 

To determine the uncertainty of the mapped glacier area, two approaches were 

used these were random sampling and buffer analysis.  

4.4.2.2. Uncertainty by random sampling 

Random samples were generated to assess the accuracy of the automated outlines 

from each time period, and reference datasets were created based on the manually 

corrected outlines of each layer. The random samples were divided into two classes, 

"glacier" and "non-glacier," with an equal number of samples in each class, using 

the manually corrected outlines as reference data. The confusion matrix was 

created by comparing the classification for the automated outlines and the 

reference data. The details of producer’s accuracy, user’s accuracy and misclassified 

samples of each layer are given in Table 8.  
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Table 8 Confusion matrices of each layer in Baffin, Disko, and Kenai generated based 
on random sampling. 

Reference Data 

Baffin:  Layer 1985 Glacier Non-glacier Total User’s accuracy 

C
la

ss
if

ie
d

 
 

Glacier 1784 38 1822 97.9% 

Non-glacier 35 1781 1816 98.0% 

Total 1819 1819 3638  

Producer’s accuracy 98.0% 97.9%   

Layer 2000-02 Glacier Non-glacier Total User’s accuracy 

Glacier 1725 28 1753 98.4% 

Non-glacier 56 1753 1809 96.9% 

Total 1781 1781 3562  

Producer’s accuracy 96.8% 98.4%   

Layer 2020-21 Glacier Non-glacier Total User’s accuracy 

Glacier 1659 19 1678 98.8% 

Non-glacier 49 1689 1738 97.1% 

Total 1708 1708 3416  

Producer’s accuracy 97.1% 98.8%   

Disko:   Layer 1985 Glacier Non-glacier Total User’s accuracy 

C
la

ss
if

ie
d

 

Glacier 929 26 955 97.2% 

Non-glacier 31 934 965 96.7% 

Total 960 960 1920  

Producer’s accuracy 96.7% 97.2%   

Layer 2001 Glacier Non-glacier Total User’s accuracy 

Glacier 677 25 702 96.4% 

Non-glacier 27 679 706 96.1% 

Total 704 704 1408  

Producer’s accuracy 96.1% 96.4%   

Layer 2019 Glacier Non-glacier Total User’s accuracy 

Glacier 636 11 647 98.3% 

Non-glacier 41 666 707 94.2% 

Total 677 677 1354  

 Producer’s accuracy 93.9% 98.3%   

Kenai: Layer 1986 Glacier Non-glacier Total User’s accuracy 

C
la

ss
if

ie
d

 

Glacier 698 50 748 93.3% 

Non-glacier 35 683 718 95.1% 

Total 733 733 1466  

Producer’s accuracy 95.2% 93.1%   

Layer 2002 Glacier Non-glacier Total User’s accuracy 

Glacier 623 34 657 94.8% 

Non-glacier 51 640 691 92.6% 

Total 674 674 1348  

Producer’s accuracy 92.4% 94.9%   

Layer 2019 Glacier Non-glacier Total User’s accuracy 
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Glacier 618 2 620 99.6% 

Non-glacier 35 651 686 94.8% 

Total 653 653 1306  

Producer’s accuracy 94.6% 99.6%   

4.4.2.3. Uncertainty using buffer analysis. 

A ±30m buffer was applied to assess the area uncertainty of each manual corrected 

outline. In the absence of appropriate reference data, the buffer approach is 

commonly used to determine accuracy using a literature-derived uncertainty value 

(±0.5 or 1 pixel) (Granshaw and Fountain 2006; Paul et al. 2017). The buffered area 

of each layer in Baffin, Dikso, and Kenai was used to calculate the uncertainty in the 

glacier area, and Table 9 shows the high, low, and area with ± uncertainty values for 

each time period. 

Table 9 Computed areas (in km2) of each layer based on the ±30 m buffer. 

Baffin High Low Area 

1985 7369 7053 7211±158 

2000-02 7213 6887 7050±163 

2020-21 6922 6596 6759±163 

Disko    

1985 2056 1802 1929±127 

2001 1896 1642 1769±127 

2019 1582 1362 1472±110 

Kenai    

 1986 824 704 764±60 

2002 768 642 705±63 

2019 627 509 568±59 

4.5. Results  

The overall accuracy for each layer in Baffin, Disko, and Kenai was calculated using 

the confusion matrices in Table 8, showing an overall accuracy of between 93.7% 
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and 98% in three different regions. Baffin showed an overall accuracy between 

97.6% and 98.0%, Disko has an accuracy range from 96.1% to 97%, and Kenai has 

an accuracy between 93.7% and 97.1%. Table 10 displays the overall accuracy and 

kappa coefficient of the method in each area for each layer. 

Table 10 Overall accuracy and kappa coefficient of each layer of Baffin, Disko, and 
Kenai based on random sampling. 

 
1985-86 2000-02 2019-21 

Regions Percentage Kappa Percentage Kappa Percentage Kappa 

Baffin 97.9 0.96 97.6 0.95 98.0 0.96 

Disko 97.0 0.94 96.3 0.92 96.1 0.92 

Kenai 94.2 0.88 93.7 0.87 97.1 0.94 

Table 8 provides the detailed information of the producer and user accuracy. The 

producer accuracy of all layers varies between 93.1% to 99.6%, while the user 

accuracy ranges from 93.3% to 99.6%, and kappa coefficient is between 0.87 and 

0.96. The Kappa Coefficient values range from -1 to 1, indicating how well 

classification and reference data agree. The producer accuracy assesses how 

accurately the reference pixels were identified, whereas the user accuracy 

measures how well the map depicts what is actually on the ground.  

4.5.1. Glacier Area change  

Between 1985-86 and 2019-21, the glaciers on Baffin lost a total of 452±227 km2 

(6.6%) glacierized area, while Disko glaciers showed a 456±168 km2 (23.6%) 

reduction, and Kenai glaciers area decreased by 196±84 km2 (25.7%). The area loss 

of glaciers was greater in the second time period of the study (2000-02 to 2019-21) 

compared to the first time period (1985-86 to 2000-02). From 1985-86 to 2000-02, 
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glaciers on Baffin lost 2.2% area, Disko glaciers lost 8.2%, and Kenai lost 7.7%. From 

2000-02 to 2019-21 the area loss of each region nearly doubled, to 4.1% for glaciers 

on Baffin, 16.7% on Disko, and 19.5% in the Kenai Peninsula (Figure 17). 

 

 

Figure 17 The total area loss of Baffin, Disko, and Kenai glaciers from 1985-86 to 
2000-02 and 2000-02 to 2019-21, in both area and percent area. A and C shows the 
area loss of glacier in km2 while B and D show the area loss in percentage.  

Figure 18 depicts the total area change of each glacier as a percentage for two time 

periods: 1985-86 to 2000-02 and 2000-02 to 2019-21. Sixteen glaciers on Baffin, five 

glaciers on Disko, and four glaciers on Kenai have lost more than 5km2 of their total 

area, while in percentage the same sixteen glaciers on Baffin shows the loss from 

2% to 13%, five glaciers on Disko lost between 10% and 52%, and four glaciers on 

Kenai lost from 10% to 28%. During the period of this study, a total of 70 glaciers 
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have completely retreated, sixty-nine glaciers of these are on Disko and the other 

glacier is in Kenai. 

 

Figure 18 Represent the glacier area changes from 1985-86 to 2000-02 (A, B, and C) 
and between 2000-02-2019-21 (D, E, and F). (A-D) shows Baffin, (B-E) Disko, and (C-
F) Kenai Alaska. The stars in B and E represent the surged glaciers. 

4.6. Discussion 

4.6.1. Glacier area changes  

Glaciers, ice caps, and the Greenland Ice Sheet (GrIS) have all retreated in the Arctic 

over the last century and have started to retreat faster since 2000 (AMAP 2017). 

The same trend has been observed in this study in Baffin, Disko, and Kenai. Baffin 

glaciers loss increased by 1.9 percentage points in 2000-02 to 2019-21, while in 
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Disko (8.5 percentage points) and Kenai (11.7 percentage points) the area lost 

increased by double compared to 1985-86 to 2019-21. The same trend has also 

been observed in Novaya Zemlya, where glacier area loss increased by 1.7 

percentage points  from 2000-01 to 2019-21 compared to 1986-89 to 2000-01 (Ali 

et al. 2023) ( Figure 19).  

 

 

Figure 19 Area loss of four regions in km2 per year between two time periods.  Data 
for Novaya Zemlya from Ali et al. (2023).  

A total of 70 glaciers have entirely retreated, and many more are on the verge of 

disappearing: sixteen glaciers on Baffin, 165 glaciers on Disko, and thirty-seven 

glaciers in Kenai have lost more than 80% of their total area (Figure 20). Although 

these glaciers are small in size (< 2 km2), their combined area (73.5 km2) declined to 

8.3 km2 between 1985-89 and 2019-21. 
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Figure 20 Representing the glaciers that have been retreated more than 80% of their 
areas during 1985-86 and 2019-21, x-axis shows the area of glacier from 1985-86 

4.6.2. Evaluating temperature with glacier area changes 

Between 1985 and 2019, the lowest temperature at Baffin ranged from -15.1 °C to 

-9 °C, the highest at Kenai varied from -2.1°C to 3.2°C, Novaya Zemlya temperature 

varies from -8.9 °C to -6.9 °C and Disko temperature ranged between -8.9°C and -

3.9°C (Figure 21). During the second time period (2000-02-2019-21) of the study, 

the glacier area loss increased by almost double, and the average temperatures rose 

by 2 °C in Novaya Zemlya, 1.1 °C in Baffin, 1.7 °C in Disko, and Kenai by 1 °C 

compared to 1985 and 2001.  

Across all four areas, Kenai is the warmest region (Figure 21,22), showing a higher 

percentage loss of area (Figure 17). Novaya Zemlya experienced a higher increase 

in annually average temperature but shows a lower percentage area loss (5.7%), 

due to the smallest increase in summer (May-Sep) average temperature with 

respect to other three areas (Figure 22).  

The total loss of Baffin glacierized area in km2 (452±227 km2) is not substantially 

different from Disko (456±168 km2), but Disko shows a higher percentage loss of 
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23.6% area while Baffin lost 6.6%. However, Disko is a warmer region than Baffin, 

and experienced a larger increase in annually averaged temperature as well as in 

summer average temperature in 2000-02 to 2019-21 compared to 1985-86 to 2000-

02. 

 

Figure 21 Annually average temperature of Baffin, Disko, and Kenai. The dashed line 
represents the average temperature of the study time periods.  

Computing the annual average precipitation would provide a more thorough 

understanding of glacier area changes in these regions. However, it is important to 

note that snowfall requires temperatures to be close or below freezing, less than 0 
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degrees Celsius. However, during the summer months, the average temperature in 

Kenai and Disko exceeds 0 degrees Celsius, resulting in rain instead of snow. So, 

accurately computing the precipitation in these four areas becomes challenging due 

to the variability of data across time periods in different regions. 

 

Figure 22 Summer months (May-September) average temperature of Baffin, Disko, 
and Kenai. The dashed line represents the average temperature of the study time 
periods. 
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4.6.3. Comparison of glacier area loss with mass balance  

Comparing glacier area changes on Novaya Zemlya, Baffin, Disko, and Kenai with 

geodetic mass balances obtained from for the period 2000–2020 reveals that Kenai 

represents the highest loss of both area (19.4%) and as well as mass balance (0.89 

m a-1), while Novaya Zemlya glaciers lost the least amount of both area (3.7%) and 

mass balance (0.24 m a-1). In contrast to Novaya Zemlya, Disko, and Kenai, Baffin 

has a slightly different pattern, losing a total of 4.1% of glacier area while 

experiencing a substantial increase in mass loss (0.67 m a-1) relative to other regions 

(Figure 23 ). 

 

Figure 23 (A) shows total glacier area change (2000-02 to 2019-21) and (B)  
represent area-averaged mass change (2000-2020) from (Hugonnet et al. 2021). 

4.7. Conclusion  

This study used an OBIA method in GEE, utilizing multi-temporal Landsat satellite 

images for rapid and accurate glacier mapping in three different regions: Baffin, 

Canada, Disko, Greenland, and the Kenai Peninsula, Alaska. The automatically 
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generated outlines showed an accuracy between 93% and 98% when compared 

with manually corrected outlines. The results demonstrate that OBIA in GEE is a 

powerful, robust tool for precise and fast mapping of glacier changes on a regional 

scale, decreasing the time required for manual correction.   

The OBIA framework in GEE enabled a comprehensive analysis of the decadal 

changes of 1273 glaciers from 1985-86 to 2019-21, showing that the selected 

glaciers on Baffin lost a total of 452±227 Km2 (-6.6%) area, glaciers on Disko lost 

456±168 km2 (-23.6%), and the selected glaciers in the Kenai Peninsula lost 196±84 

km2 (-25.7%).  

The findings showed that in 2000-02 to 2019-21 the glaciers in Kenai and Disko lost 

increased more than double compared to 1985-86 to 2000-02, while glaciers’ area 

lost in Baffin increased from 2.2% to 4.1%. Our analysis also shows that there are 

complicated regional variations in how glaciers are responding to warming in 

different parts of the Arctic, with the increase of 1 °C temperature Kenai lost more 

glacierized region than Baffin and Disko in the second time period of the study, while 

Disko experienced the highest increased of temperature of 1.7 °C which causes a 

substantial amount of area lost.   
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5.1. Abstract 

Glaciers have been retreating over the last century as a result of climate change, 

particularly in the Arctic, causing sea levels to rise, affecting coastal communities 

and potentially changing global weather and climate patterns. Therefore, it is 

important to understand the impact of climate change on glaciers and accurately 

quantify glacier area changes in the Arctic and at high latitudes. In this study, we 

mapped 2203 glaciers in Novaya Zemlya (Russian Arctic), Baffin Island (Canadian 

Arctic), Disko Island, (Greenland) and Kenai (Alaska), using Object-Based Image 

Analysis (OBIA) applied to multispectral Landsat satellite imagery in Google Earth 

Engine (GEE) to quantify the glacier area changes over three decades. Between 

1985-86 and 2019-21, the results show that the overall glacier area loss in Novaya 

Zemlya is 1319±419 km2 (5.7%), 452±227 km2 (6.6%) in Baffin, 457±168 km2 (23.6%) 

in Disko Island and 196±84 km2 (25.7%) in Kenai. A total of seventy-three glaciers 

have completely disappeared including sixty-nine on Disko Island, three in Novaya 

Zemlya and one in Kenai. Based on a random sampling approach, the method 

showed an estimated accuracy between 93% and 98% with the reference data 

indicating that this method has the potential for rapid glacier mapping that can be 

easily used in other glacierized regions. 
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Landsat, Glaciers, OBIA, Google Earth Engine 
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5.2. Introduction  

The cryosphere is a key component of the global climate system, and as 

temperatures continue to rise, the cryosphere continues to shrink, leading to a 

number of significant impacts (IPCC 2021). In particular, melting glaciers are a major 

concern, as they contribute to sea level rise, coastal erosion, hazards such as 

avalanches and glacial floods in mountainous regions and the disruption of essential 

fresh water supplies (Ding et al. 2021). 

Glaciers in the Arctic region play a vital role in the global climate system by reflecting 

sunlight and trapping cold air, which helps to regulate global temperatures (Previdi 

et al. 2021). Over the last few decades, the Arctic is warming faster than any other 

region in the world, a phenomenon known as Arctic amplification (e.g., Dai et al. 

2019). Positive feedback mechanisms, such as ice-albedo feedback, where sea ice 

melts and more sunlight are absorbed by the darker ocean, lead to further warming  

(Screen and Simmonds 2010). Additionally, changes in atmospheric and oceanic 

circulation patterns, and increases in greenhouse gas concentrations in the 

atmosphere are all factors that contribute to Arctic Amplification (Dai et al. 2019). 

As a result of these processes, studies have reported that the Arctic is warming twice 

or more than twice as much as anywhere else in the world (Schädel et al. 2018; You 

et al. 2021), with a recent study estimating that the Arctic has been warming nearly 

four times faster than the rest of the world (Rantanen et al. 2022) . 
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In the Arctic, glaciers, ice caps, and the Greenland Ice Sheet have all retreated in the 

past 100 years and are starting to retreat faster since 2000 causing changes in the 

surface albedo and global sea level rise (AMAP 2017). Glaciers, snow cover, and sea 

ice are expected to decrease throughout this century, which means that more 

incoming solar radiation will be absorbed by open water and land, leading to 

increased melting and heating across the Arctic (IPCC 2019). 

The Global Land Ice Measurements from Space (GLIMS) initiative provides a global 

database of glacier outlines, mostly derived from satellite imagery (Raup et al. 

2007). Glacier outlines are an important dataset, especially outlines of the same 

glaciers mapped over time, and are necessary for assessing the impact of climate 

change. However, mapped outlines are only available at a single point in time for 

most of the World’s glaciers, which limits their use for understanding the long-term 

impacts of climate change. 

Given the importance of glaciers to the Arctic region, multi-temporal glacier outlines 

are necessary to provide a clear understanding of the climate change impacts on 

Arctic glaciers. In this study, we used a satellite remote sensing approach in Google 

Earth Engine (GEE) to create multi-temporal outlines of glaciers in different Arctic 

regions, providing a valuable dataset that can be used to rapidly assess the impacts 

of climate change, to estimate glacier mass changes,  and to predict glacier 

contributions to sea level rise (e.g Hock et al. 2019; Zemp et al. 2019). 
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5.3. Study Area 

This study focused on four different regions within the Arctic and at high latitudes: 

Novaya Zemlya (Russian Arctic), Baffin Island (Canadian Arctic), Disko Island 

(Greenland), and the Kenai Peninsula (Alaska) (Figure 16). A total of 2203 glaciers 

were selected for mapping using the Randolph Glacier Inventory (RGI) version 6.0. 

According to the RGI 6.0, there are 480 glaciers on Novaya Zemlya measuring 22128 

km2, 748 glaciers of Disko Island measuring 1869 km2, 523 glaciers on Baffin Island 

measuring 7054 km2, and 452 glaciers in Kenai Alaska covering an area of 638 km2 

(RGI Consortium 2017). 

Novaya Zemlya is located north of Russia's mainland, between the Barents and Kara 

Seas (Figure 24). The Canadian Arctic Archipelago, which is the largest land ice 

region outside of the Greenland and Antarctic ice sheets, is located north of 

mainland Canada (Figure 24), while Disko Island (Greenlandic: Qeqertarsuaq) is the 

largest island in Greenland, located off the west coast. The Kenai Peninsula is 

located in south-central Alaska, between the Cook Inlet and the Gulf of Alaska 

(Figure 24).  The four study regions were chosen because they are spread widely 

within the Arctic and high latitudes and can provide representative insights on the 

impacts that pan-Arctic warming is have on glacier recession.  
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Figure 24:The four study areas are, A) Novaya Zemlya; B) Baffin Island; C) Disko 
Island; and D) Kenai, Alaska.  The red polygons in the insert images are the selected 
glaciers from RGI. 

5.4. Method 

5.4.1. Data sources 

NASA’s Landsat satellite programme has been collecting imagery of the Earth since 

1972 and is the longest-running earth observation satellite programme (Masek et 

al. 2020).  Landsat satellites collect data in the visible to infrared part of the 

electromagnetic spectrum to monitor different features of the Earth such as land 

cover, vegetation, surface temperature, and more. The main sensors of Landsat 

satellites are Multi-Spectral Scanner (MSS), Thematic Mapper (TM), Enhanced 

Thematic Mapper Plus (ETM+), Operational Land Imager (OLI), and Thermal Infrared 

Sensor (TIRS) (Hemati et al. 2021). This study uses Landsat 5 (TM), Landsat 7 (ETM+), 

and Landsat 8 (OLI/TIRS) for glacier mapping.   
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Because of the large swath width, the multispectral capabilities, and the long time 

span of data collection, Landsat data have proven to be an effective asset for glacier 

mapping and for creating multi-temporal outlines of glaciers (e.g., Mölg et al. 2018; 

Nuth et al. 2013). The images for this study were carefully selected in GEE during 

the summer-time period (July-September) with the least amount of cloud cover. To 

map glaciers, we use Collection 1 Level-2 Tier 1 surface reflectance products (Table 

11). These images are orthorectified and atmospherically corrected. In particular, 

Tier 1 images have the best quality, and are considered suitable for time-series 

analysis (Masek et al. 2020). The United States Geological Survey (USGS)  also 

provides images in Tier 2; however, Tier 2 images have issues with geometric 

correction but may still be usable (Hemati et al. 2021). 

Table 11: Details of images that are used in this study for each location.  

Serial 

Number 

Satellite Date image 

acquired 

WRS-2 

Path/Row 

GEE Image IDs 

 

Novaya Zemlya, Russian Arctic 

01 Landsat 5 26/07/1986 174/6 LANDSAT/LT05/C01/T1_SR/LT05_174006_19860726 

02 Landsat 5 03/08/1987 177/6 LANDSAT/LT05/C01/T1_SR/LT05_177006_19870803 

03 Landsat 5 06/08/1989 179/6 LANDSAT/LT05/C01/T1_SR/LT05_179006_19890806 

04 Landsat 5 06/08/1989 179/7 LANDSAT/LT05/C01/T1_SR/LT05_179007_19890806 

05 Landsat 5 06/08/1989 179/8 LANDSAT/LT05/C01/T1_SR/LT05_179008_19890806 

06 Landsat 7 25/08/2000 174/6 LANDSAT/LE07/C01/T1_SR/LE07_174006_20000825 

07 Landsat 7 31/07/2000 175/6 LANDSAT/LE07/C01/T1_SR/LE07_175006_20000731 

08 Landsat 7 12/08/2000 179/6 LANDSAT/LE07/C01/T1_SR/LE07_179006_20000812 

09 Landsat 7 12/08/2000 179/7 LANDSAT/LE07/C01/T1_SR/LE07_179007_20000812 

10 Landsat 7 08/08/2001 178/8 LANDSAT/LE07/C01/T1_SR/LE07_178008_20010808 

11 Landsat 8 20/08/2019 176/5 LANDSAT/LC08/C01/T1_SR/LC08_176005_20190820 

12 Landsat 8 20/08/2019 176/6 LANDSAT/LC08/C01/T1_SR/LC08_176006_20190820 

13 Landsat 8 23/08/2021 178/7 LANDSAT/LC08/C01/T1_SR/LC08_178007_20210823 

14 Landsat 8 18/08/2020 180/6 LANDSAT/LC08/C01/T1_SR/LC08_180006_20200818 

15 Landsat 8 19/09/2020 180/7 LANDSAT/LC08/C01/T1_SR/LC08_180007_20200919 

16 Landsat 8 19/09/2020 180/8 LANDSAT/LC08/C01/T1_SR/LC08_180008_20200919 

Baffin Island, Canadian Arctic 

17 Landsat 5 19/08/1985 18/13 LANDSAT/LT05/C01/T1_SR/LT05_018013_19850819 

18 Landsat 7 13/08/2000 17/13 LANDSAT/LE07/C01/T1_SR/LE07_017013_20000813 

19 Landsat 7 01/08/2002 19/13 LANDSAT/LE07/C01/T1_SR/LE07_019013_20020801 
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20 Landsat 8 25/07/2020 19/13 LANDSAT/LC08/C01/T1_SR/LC08_019013_20200725 

21 Landsat 8 30/07/2021 17/13 LANDSAT/LC08/C01/T1_SR/LC08_017013_20210730 

Disko Island, Greenland  

22 Landsat 5 03/09/1985 11/11 LANDSAT/LT05/C01/T1_SR/LT05_011011_19850903 

23 Landsat 7 29/08/2001 12/11 LANDSAT/LE07/C01/T1_SR/LE07_012011_20010829 

24 Landsat 8 01/09/2019 11/11 LANDSAT/LC08/C01/T1_SR/LC08_011011_20190901 

Kenai, Alaska 

25 Landsat 5 28/07/1986 67/18 LANDSAT/LT05/C01/T1_SR/LT05_067018_19860728 

26 Landsat 7 01/08/2002 67/18 LANDSAT/LE07/C01/T1_SR/LE07_067018_20020801 

27 Landsat 8 18/08/2019 67/18 LANDSAT/LC08/C01/T1_SR/LC08_067018_20190808 

 

5.4.2. Glacier mapping: Object-based image analysis 

Object-based classification uses both spectral and spatial information such as size, 

shape, texture, and context from the surrounding pixels for image classification 

(Blaschke 2010). As pixel-based classification relies entirely on the spectral 

information contained within each pixel, it can result in “salt and pepper” noise in 

the final classification (Ma et al. 2019). In this study, we used Object-based Image 

Analysis (OBIA) approach in Google Earth Engine to map glacier changes. Google 

Earth Engine is a cloud-based platform for Earth Observation data processing and 

scientific research that allows users to access, analyse, and visualise multi-petabyte 

catalogue of data, making GEE one of the most powerful tools available for remote 

sensing analysis (Gorelick et al. 2017). Below, we provide a brief summary of the 

approach used as the full details of the methodology are provided in Ali et al. 

(Accepted 2023). 

In the OBIA approach, segmentation is an important step that groups similar pixels 

into a cluster or image objects. In this study, we use Simple Non-Iterative Clustering 

(SNIC), an improved version of simple linear clustering, to segment the Landsat 

image (Achanta and Süsstrunk 2017). Based on the segmented image, a Random 
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Forest algorithm with ten trees was trained on manually selected samples of 

“glacier” and “non-glacier” classes throughout the scene (e.g., Nery et al. 2016; 

Praticò et al. 2021). To train the classifier, we used approximately 100 “glacier” and 

100 “non-glacier” samples per image. To create glacier outlines, the classified image 

was converted from raster to vector, and outlines were exported from GEE to 

ArcMap 10.5.1. Each glacier outline was carefully examined and corrected where 

required for the area change analysis. The RGI 6.0 internal boundaries were used to 

divide the connected glaciers to enable the computation of area change for each 

glacier.       

5.4.3. Map description 

The main map contains more than two thousand glacier outlines that were 

produced using our approach. This breaks down to 480 glacier outlines in Novaya 

Zemlya, 523 in Baffin Island, 748 in Disko Island and 452 in Kenai. The main map was 

produced using ESRI ArcGIS Pro in A1 size (594mm x 841mm). Because each area 

was located in a different part of the Arctic, a specific Universal Transverse Mercator 

(UTM) projection was set for each study region (Table 12). To provide better 

visualisation and topographic context of the mapped glacier outlines, we used the 

built-in base maps of ArcGIS Pro, a World Ocean base map for the main layouts, and 

for the inset map a hill shaded World Topographic map was used.     

Table 12 Shows the UTM projection information used for each study area.  

Region Projection Base Map 

Novaya Zemlya, Russia WGS1984 UTM 41N World ocean 

Baffin Island, Canada WGS1984 UTM 21N World ocean 

Disko Island, Greenland WGS1984 UTM 22N World ocean 

Kenai, Alaska WGS1984 UTM 6N World ocean 
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The main map shows the area change of each glacier in percentages from 1985-89 

to 2019-21, A) shows Novaya Zemlya, B) Baffin Island, C) Disko Island, and D) Kenai. 

The light-yellow colours show glaciers that have lost the least amount of area in 

percentage (0 to 0.9%) while dark red represents the glaciers that have lost more 

than 30% of their area. The colours of this map were carefully selected to be colour 

blind safe using the COLORBREWER 2.0 website “https://colorbrewer2.org/”.  

5.5. Results 

In this study, we created a new dataset of glacier outlines at three time periods: 

1985-89, 2000-02, and 2019-21 (Figure 25), that shows the area change of each 

glacier in both percentage and km2 in two time periods (1985-89 to 2000-02 and 

2000-02 to 2019-21), which is essential for understanding the impact of climate 

change on glaciers over time. This dataset also provides the specific date of when 

the image was captured by the satellite, as well as the area change analysis which 

was carried out on the manually corrected outlines.  

https://colorbrewer2.org/
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Figure 25. A close-up example of the area changes of glaciers mapped in Disko Island 
in 1985, 2001, and 2019. The Landsat images used for mapping are labelled in A-C.  
Black polygons were derived from Landsat 5 in 1985, Yellow from Landsat 7 in 2001 
and Red from Landsat 8 in 2019.  D shows a composite of the mapping done in three 
time periods, each colour represents a separate year and clearly illustrates the level 
of glacial change at this location.  

Using these multi-temporal glacier outlines, Novaya Zemlya showed a total 

reduction in glacier area of 1319±419 km2 (5.7%) from 1985-89 to 2019-21, area of 

selected glaciers at Baffin’s declined by 452±227 km2 (6.6%), Disko Island glacier 

area decreased by 457±168 km2 (23.6%), while the selected glaciers at Kenai 

decreased by 196±84 km2 (25.7%). Between 1986-89 to 2019-21, seventy-three 

glaciers have completely disappeared, including sixty-nine on Disko Island, three in 

Novaya Zemlya and one in Kenai. 

Figure 26 shows the total area loss of glaciers from 1985-89 to 2000-02 and 2000-

02 to 2019-21 in Novaya Zemlya, Baffin Island, Disko Island, and Kenai, revealing 
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that the area loss was higher from 2000-02 to 2019-21, compared to 1985-89 to 

2000-02. Between 1985-89 and 2000-02, glaciers in Novaya Zemlya lost 2% of their 

area, Baffin Island lost 4.1% of its glacierized area, Disko lost 16.7%, and the Kenai 

glacier area declined by 19.5%. The glacial area loss of Novaya Zemlya increased by 

1.7% from 2000-01 to 2019-21, while Baffin Island’s loss increased by 1.9%, Disko 

Island’s loss increased by 8.4%, and Kenai’s loss increased by 11.7%.  

 

 

Figure 26. A) the area loss of glacier in Novaya Zemlya, B) Baffin Island, C) Disko 
Island, and D) Kenai from 1985-89 to 2000-02 and between 2000-02 to 2019-21. 
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5.6. Conclusion  

Based on Landsat data and utilizing an OBIA approach in GEE, we created outlines 

of more than two-thousand glaciers from four different regions of the Arctic: 

Novaya Zemlya, Baffin Island, Disko Island, and Kenai for three different time 

periods: 1985-89, 2000-02, and 2019-21. These multi-temporal outlines enable the 

computation of the total area change of each glacier within the study area in km2 

and percentage for three time periods, which is an important data set for rapidly 

quantifying the impacts of climate change on glacier loss in the Arctic and high 

latitudes. 

The final map enables the glacier outlines to be viewed in greater detail, providing 

valuable visual insights about the state of glaciers in each of four study regions. The 

data allowed the glacier changes in each location to be quantified and show that in 

the timeframes of this study outlined in Table 11.  

Novaya Zemlya glaciers cover an area of 22,990±301 km2 in 1986-89 and 

experienced a 5.7% decline in total area, Baffin Island covers 7,211±158 km2 in 1985 

and lost a total of 6.6% of its glacier area, Disko Island covers 1,929±127 km2 in 1985 

and lost 23.6% of its glacier area and the Kenai glaciers cover 764±60 km2 in 1986 

having lost 25.7% of its glacier area. Seventy-three glaciers have completely 

retreated, including sixty-nine on Disko Island, three on Novaya Zemlya, and one in 

Kenai. 

Between 1985-89 and 2019-21, the results show a clear reduction in the total glacier 

area in all four regions and demonstrated that all glaciers in the four areas are 

responding to climate change. However, the impact of climate change on glaciers 
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was greater in 2000-02 to 2019-21, compared to 1985-89 to 2000-02, resulting in 

higher area loss of glacier in 2000-02 to 2019-21 than 1985-89 to 2000-02.   

It is important to conduct comprehensive regional analysis on glacier behaviour in 

the Arctic and high latitudes in order to comprehend the decadal changes and the 

likely direction of glaciers in these regions as the world continues to warm. Because 

the melting of these glaciers may have a significant impact on global sea levels rise, 

accurate measurements and mapping large extend changes, as well as the precise 

tools that can facilitate rapid mapping of glacier are necessary at the regional scale. 

Platforms such as Google Earth Engine, combined with the extensive Landsat 

archive and approaches such as Object-Based Image Analysis, help provide these 

valuable tools. 

5.7. Software  

The initial outlines of glaciers were created using Google Earth Engine, and the main 

map was created using ArcGIS Pro desktop software. 

At the following link, an example Google Earth Engine script is available 

demonstrating the object-based image analysis process to create initial glacier 

outlines: 

https://code.earthengine.google.com/?accept_repo=users/buner_shapfile/OBIA_

Example_code.  

  

  

https://code.earthengine.google.com/?accept_repo=users/buner_shapfile/OBIA_Example_code
https://code.earthengine.google.com/?accept_repo=users/buner_shapfile/OBIA_Example_code
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Chapter 6 

Discussion 
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6. Discussion and summary  

6.1. Discussion  

Google Earth Engine (GEE) provides access to a vast amount of geospatial data, 

including satellite imagery from a variety of sensors which allows users to perform 

analysis at a large scale and over a long time period (Gorelick et al., 2017). GEE also 

provides a range of machine learning algorithms for analysing geospatial data, 

which enables users to develop automated workflows for processing large amounts 

of data, and for more efficient and accurate analysis (e.g., Mahdianpari et al., 2020; 

Zhang et al., 2019). 

Rastner et al., (2014) used the Red/SWIR band ratio technique to compare OBIA to 

pixel-based classification, demonstrating that OBIA performed better than pixel-

based classification and reduced the time required for manual corrections, despite 

the longer processing time. In this study, the OBIA approach showed an accuracy 

between 93% and 98% when compared with reference datasets. This automated 

approach removes the time required for downloading, extracting, and storing the 

images, as demonstrated in this study is easily applicable to other regions and 

reduces the amount of manual correction required, compared with pixel-based 

methods. 

To address the effects of climate change on glaciers, and its potential impacts on 

coastal communities and beyond, precise mapping methods to monitor glaciers at 

the regional scale needs to be developed and utilised. As in this study, the OBIA 

method can help researchers to accurately map glacier changes. This can provide 
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insights into the impact of climate change on glaciers as well as help in predicting 

future changes, which can improve climate change mitigation and adaptation 

policy. The OBIA method for glacier mapping in GEE has the potential to make useful 

contributions to both glaciology community and policymaking. 

As reported in different studies (Gardner et al., 2011; Melkonian et al., 2016; Yang 

et al., 2020; Yde & Knudsen, 2007), glaciers are retreating in Novaya Zemlya, Baffin 

Island, Disko Island, and Kenai. This study also showed that glaciers have all 

retreated between 1985-89 and 2019-21 at various rates in the same regions. 

According to the Arctic Monitoring and Assessment Programme (AMAP, 2017), 

glaciers, ice caps, and the Greenland ice sheet have all started to retreat faster since 

2000. The same trend has been observed in this study, with glacier area loss and 

temperature both increase in all four regions.  

When both the area loss and temperature between 1985-89 and 2000-02 were 

compared to the area loss and temperature during 2000-02 and 2019-21, it was 

found that Novaya Zemlya had the highest temperature increase (2 °C) followed by 

Disko Island (1.7 °C), However, Disko Island (6.9 km2/year) showed a higher retreat 

rate in glacier area than Novaya Zemlya (5.9 km2/year). Baffin glacier retreat rates 

increased by 3.2 km2/year with the increase in temperature of 1.1°C and 

temperature in Kenai increased by 1 °C with the increased in retreat rates of 4.3 

km2/year. 

Glaciers are melting worldwide as a result of rising temperatures, and the rate of 

melting is increasing rapidly. According to the IPCC (2019) report, the rate of mass 

loss has accelerated in the last few decades and glaciers have been losing mass since 
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the 1950s as a result of rising temperatures. This study compared mass loss from 

Hugonnet et al., (2021) with area loss from 2000 to 2020, and found that all four 

regions; Novaya Zemlya, Baffin Island, Disko Island, and Kenai have lost glacier area 

as well as mass, as reported in other studies as well (Zemp et al., 2019; Ciracì et al., 

2018; Gardner et al., 2011; Zwally et al., 2011). The Kenai glaciers lost the most area 

(19.4%) and mass (0.89 m a-1) followed by Disko Island, while Novaya Zemlya 

glaciers lost the least amount of area (3.7%). 

The effects of climate change on glaciers in the Arctic and high latitude regions are 

becoming increasingly evident by a higher rate of glacier area loss and an overall 

rise in temperature during the second time period of the study. These findings 

highlight the accelerating effects of climate change on glaciers over time. 

The decadal area changes of glaciers are an important dataset for the glaciologists 

and policy makers. This data can provide insights on glaciers behaviour and 

response to climate change as well can assist decisions related to climate change 

mitigation and adaptation. Glaciologists can use this glacier area change data to 

improve their understanding of glacier behaviour in the Arctic and high altitudes, as 

well as to validate and improve glacier models, which are important for predicting 

future glacier behaviour and assessing the potential impacts of climate change. 

6.2. Summary 

 This study successfully developed an automated method using Google Earth Engine 

(GEE) and accurately mapped larger glacierized area of approximately 32,894 km2 

across four regions: Novaya Zemlya, Baffin Island, Disko Island, and Kenai. Based on 
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random sampling approach, the method accuracy was evaluated by comparing 

manually corrected outlines, resulting an impressive overall accuracy ranging 

between 93% and 98%. The implementation of this automated approach in GEE not 

only significantly reduced the processing time required for analysing large images 

on desktop computers or laptops but also overcame the challenge of mapping on a 

large scale. These findings demonstrate the potential of GEE as a powerful tool for 

efficient and accurate mapping in different regions in the Arctic. 

Utilising this automated approach, we produced a dataset that has more than two 

thousand glacier outlines across four distinct regions for three different time 

periods (1985-89, 2000-02, and 2019-21). The results obtained from this dataset 

show that all glaciers in Novaya Zemlya, Baffin Island, Disko Island, and Kenai have 

been affected by climate change, and have experienced substantial loss in 

glacierized area between 1985-89 and 2019-21. 

A comprehensive analysis of this dataset reveals a consistent trend of increasing 

impact of climate change on glaciers across all four regions. The period from 2000-

02 to 2019-21 shows a greater impact compared to the previous period of 1985-89 

to 2000-02. The results also show that between 1985-89 and 2019-21, a total of 

seventy-three glaciers have completely retreated, with the highest number of 

retreats occurring on Disko Island (sixty-nine), followed by Novaya Zemlya (three), 

and Kenai (one).  

As a result of climate change, glaciers in the Arctic and high latitude are melting, 

and start retreat faster after 2000-02 that may have a significant impact on global 

sea-level rise, which can have far-reaching effects on coastal communities and 
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across the world. These retreats of glaciers show the clear evidence of the changing 

climate that require the urgent need for action to mitigate and adapt to the 

consequences of climate change. Therefore, it is necessary to have accurate tools 

that can enable rapid mapping of glaciers at a regional scale.  

6.3. Recommendations for future work   

This study established a method that maps glaciers automatically based on OBIA in 

GEE using a single image at a time, which is a step forward in glacier mapping. Yet, 

there is still room for more research, one potential direction for future research is 

to improve this method that can map glaciers at multiple points in time (e.g., 1985, 

2001, 2021) in a single run of script, which will save more time. 

Another potential direction to improve this method is to connect GEE to external 

platforms such as Google Colab in order to use strong computational resources to 

build and implement deep learning models (e.g., ANN and CNN) for glacier mapping, 

which can improve mapping accuracy and efficiency, especially in complex and 

various glacier environments. 

In this study, we investigated the glacier area changes with temperature changes 

which is an essential aspect of glaciology research. However, other climatic and 

environmental factors such as precipitation, oceanic currents, humidity, elevation, 

and location all can influence glacier area changes.  Therefore, examining the 

relationship between glacier area changes with these climatic and environmental 

factors can provide valuable insights into the response of glaciers to changing 
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climate and such datasets can help in reforming policies related to climate change 

adaptation and disaster risk reduction.  

Global sea-level rise poses a major threat to coastal communities all over the world 

and these glaciers in the Arctic and high altitude are particularly vulnerable to 

climate change. Therefore, predicting the potential sea-level rise from these 

selected glaciers and quantifying their contribution to total sea-level rise is an 

important area of future research work. Such research can assist to inform climate 

change policy and minimize the financial impacts of sea-level rise on coastal 

populations and infrastructure.   
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Appendix  
This map is the part of chapter 05, representing the area change of each glacier in percentages from 1985-89 to 2019-21, A) shows Novaya Zemlya, B) Baffin Island, 
C) Disko Island, and D) Kenai. 


