

Supervised Meta-Reinforcement Learning with Trajectory Optimization for
Manipulation Tasks

Wang, L., Zhang, Y., Zhu, D., Coleman, S., & Kerr, D. (2023). Supervised Meta-Reinforcement Learning with
Trajectory Optimization for Manipulation Tasks. IEEE Transactions on Cognitive and Developmental Systems, 1-
11. https://doi.org/10.1109/tcds.2023.3286465

Link to publication record in Ulster University Research Portal

Published in:
IEEE Transactions on Cognitive and Developmental Systems

Publication Status:
Published online: 15/06/2023

DOI:
10.1109/tcds.2023.3286465

Document Version
Author Accepted version

General rights
Copyright for the publications made accessible via Ulster University's Research Portal is retained by the author(s) and / or other copyright
owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these
rights.

Take down policy
The Research Portal is Ulster University's institutional repository that provides access to Ulster's research outputs. Every effort has been
made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in
the Research Portal that you believe breaches copyright or violates any law, please contact pure-support@ulster.ac.uk.

Download date: 24/07/2023

https://doi.org/10.1109/tcds.2023.3286465
https://pure.ulster.ac.uk/en/publications/0e50a410-ec8e-410b-9224-68b504e6ab1f
https://doi.org/10.1109/tcds.2023.3286465

IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS 1

Supervised Meta-Reinforcement Learning with
Trajectory Optimization for Manipulation Tasks

Lei Wang, Yunzhou Zhang, Delong Zhu, Sonya Coleman, Member, IEEE, Dermot Kerr

Abstract—Learning from small amounts of samples with rein-
forcement learning (RL) is challenging in many tasks, especially
in real-world applications, such as robotics. Meta-Reinforcement
Learning (meta-RL) has been proposed as an approach to address
this problem by generalizing to new tasks through experience
from previous similar tasks. However, these approaches generally
perform meta-optimization by focusing direct policy search meth-
ods on validation samples from adapted policies, thus requiring
large amounts of on-policy samples during meta-training. To
this end, we propose a novel algorithm called Supervised Meta-
Reinforcement Learning with Trajectory Optimization (SMRL-
TO) by integrating Model-Agnostic Meta-Learning (MAML) and
iLQR-based trajectory optimization. Our approach is designed to
provide online supervision for validation samples through iLQR-
based trajectory optimization and embed simple imitation learn-
ing into the meta-optimization rather than policy gradient steps.
This is actually a bi-level optimization that needs to calculate
several gradient updates in each meta-iteration, consisting of
off-policy reinforcement learning in the inner loop and online
imitation learning in the outer loop. SMRL-TO can achieve
significant improvements in sample efficiency without human-
provided demonstrations, due to the effective supervision from
iLQR-based trajectory optimization. In this paper, we describe
how to use iLQR-based trajectory optimization to obtain labeled
data and then how leverage them to assist the training of meta-
learner. Through a series of robotic manipulation tasks, we
further show that compared with the previous methods, the
proposed approach can substantially improve sample efficiency
and achieve better asymptotic performance.

Index Terms—Reinforcement learning, meta learning, iLQR,
trajectory optimization, robotic manipulation.

I. INTRODUCTION

REINFORCEMENT learning (RL) provides a powerful
framework for automatic acquisition of behaviour skills

by interacting with unstructured environments. In recent years,
with the assistance of powerful and flexible neural network
representations, RL has made great success in many fields
ranging from playing games [1]–[5] to autonomous flying
and driving [6]–[12]. Although these RL methods can achieve
state-of-the-art results in many domains by learning a neural
network policy, they often require a large amount of ex-
periential data from system interaction. Hence, it is often

Lei Wang is with Faculty of Robot Science and Engineering, Northeastern
University, Shenyang, China.

Yunzhou Zhang is with College of Information Science and Engineering,
Northeastern University, Shenyang, China (Corresponding author: Yunzhou
Zhang, Email: zhangyunzhou@mail.neu.edu.cn).

Delong Zhu is with Department of Electronic Engineering, The Chinese
University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.

Sonya Coleman and Dermot Kerr are with School of Computing, Engineer-
ing and Intelligent Systems, Ulster University, N. Ireland, UK.

very challenging for these RL approaches to be used in real-
world applications where experience must be collected on real
physical systems, such as robots, which can be costly.

Recently, meta-reinforcement learning (meta-RL) has been
proposed as an approach to learn from previous similar
experience rather than from scratch. Built on the fact that
most tasks to be solved usually share common structure,
the mechanism for meta-RL is primarily to learn internal
representations and/or constraint rules, both of which are
widely applicable to many tasks. Once learned, the meta-
learner will quickly adapt to a new task through only a few
interactions with the environment. While most current meta-
RL algorithms have made great progress in a variety of tasks,
they generally train a meta-learner by focusing direct policy
search methods on validation samples from adapted policies,
thus requiring large amounts of on-policy samples during the
meta-training procedure [13]–[15]. To this end, [16] proposed
a context-based off-policy meta-RL algorithm (PEARL) that
learns a probabilistic encoder of tasks for sample efficiency.
However, these direct on- and off-policy search methods
in the meta-RL context easily fall into local optimum and
suffer from sample complexity. To alleviate the problem, [17]
proposed an off-policy meta-RL algorithm, Guided Meta-
Policy Search (GMPS) that uses imitation learning in meta-
optimization through previously learned expert policies or
human-provided demonstrations across tasks. Despite great
advances, this approach is limited to domains where human
demonstrations have been provided. When demonstrations
are not available, the policy of each meta-training task is
trained with large amounts of data through standard single-
task RL algorithms to obtain expert trajectories which are used
by GMPS. In our work, we determined that when adapting
to each task through off-policy data during meta-training,
GMPS suffers from the problem posed by the mixture of
both instability and imbalance of adaption [18]. In addition,
since training global experts for all tasks and learning meta-
level policies π are completely separated in GMPS, the global
experts find it difficult to correctly provide supervision due to
the distribution mismatch.

We determine in this work that supervision itself does
not need to be acquired by directly learning the global op-
timal policies of meta-training tasks, although using imita-
tion learning can effectively help train a meta-level policy.
Instead, we just need to provide supervision only on the
trajectories collected in each iteration of the meta-training
phase. This way of providing targeted online supervision

0000–0000/00$00.00 © 2021 IEEE

This article has been accepted for publication in IEEE Transactions on Cognitive and Developmental Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2023.3286465

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF ULSTER. Downloaded on June 26,2023 at 09:17:51 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS 2

avoids distribution mismatch. When available, the meta-RL
algorithm can obtain direct supervision and enable efficient
meta-training by leveraging imitation learning, while avoiding
falling into local minimum. In this work, we demonstrate that a
practical idea is to use the trajectory optimization with iterative
LQR (iLQR) [19], where the dynamic system is locally linear
and the cost is quadratic around the current trajectory. Given an
initial trajectory with only a few samples, iLQR can calculate
an optimal trajectory from the initial to the target state by
iteratively solving for the locally optimal policy. Compared
with the neural network for solving the whole task, the locally
optimal policy for tracking a single trajectory is easy to learn.

In this paper, we develop a novel off-policy meta-RL
algorithm called Supervised Meta-Reinforcement Learning
with Trajectory Optimization (SMRL-TO). As illustrated in
Figure 1, our algorithm integrates Model-Agnostic Meta-
Learning (MAML) [15] with iLQR-based trajectory optimiza-
tion, which involves a bi-level optimization including off-
policy RL in the inner loop and online imitation learning in the
outer loop. In each meta-iteration, this bi-level optimization
needs to calculate several gradient updates on the collected
samples. To resist the composite effect from instability and
imbalance, our approach exploits a clipping surrogate objective
function in the inner loop. Our approach can improve the
sample efficiency without human-provided demonstrations and
will not consume large amounts of additional samples like
GMPS, particularly in domains where trajectories are not easy
to collect. In addition, we only use trajectory optimization
in meta-training. In meta-testing, we still use vanilla policy
gradient like MAML. Therefore, our approach has the same
runtime performance as MAML and is also easy to use, while
reducing the sample complexity. As far as we know, our work
is the first to combine trajectory optimization and RL in the
meta-learning context. We perform the experimental evaluation
in robotic manipulation environments. Compared with the pre-
vious meta-RL methods, SMRL-TO achieves significant gains
in sample efficiency and has better asymptotic performance.
We further conduct an ablation study to understand the impact
of the components of our approach.

To summarize, the core contributions of our work are triple:
• We propose a novel off-policy meta-RL architecture

called SMRL-TO, which achieves significant improve-
ments in sample efficiency without human-provided
demonstrations due to the effective supervision from
trajectory optimization.

• We describe how to use iLQR-based trajectory opti-
mization to obtain the local expert policies, resulting in
supervised data, as shown in Section IV-A.

• We show how to leverage supervised data from Section
IV-A to train the meta-learner. Moreover, we exploit a
clipping surrogate objective to suppress the instability and
guarantee the balance of adapting to tasks during meta-
training, as shown in Section IV-B.

II. RELATED WORK

A. Meta-Reinforcement Learning
Our work builds on the meta-RL framework that is inspired

by the fact that human beings can realize fast learning based

on past experience. Recently, a variety of different meta-RL
approaches has been proposed to tackle sample complexity. In
one approach, the algorithm is encoded with the weights of the
recurrent neural network, which are trained with states across
episodes within a task [14], [20]–[22]. Another approach is
to meta-optimize the parameters of the neural network and
then fine tune these parameters at test time on the new
task [15], [23], [24]. Other approaches generally meta-learn
constraint rules, such as some hyperparameters that are usually
set manually [25], the loss function [26] and the exploration
strategies [13]. These approaches focus direct policy methods
or evolutionary strategies on on-policy samples to acquire an
optimal meta-learner. In contrast, we introduce a supervision
mechanism and embed simple imitation learning into meta-
optimization instead of policy gradient steps. This permits our
algorithm to obtain more information from a few samples and
achieve significant improvements in sample efficiency during
meta-training.

B. Guided Meta-Policy Search

Meta Imitation Learning [27] combines MAML [15] with
imitation learning using expert video demonstrations to al-
leviate sample complexity during meta-training. Similarly,
EMRLD [28] jointly utilizes RL and imitation learning over
the expert data to generate a meta-policy and focuses on the
sparse reward environments. Closest to our approach is Guided
Meta-Policy Search (GMPS) [17] that combines imitation
learning with RL by leveraging offline expert demonstrations
in the meta-RL context. Specifically, GMPS separates meta-
training into two phases. In the first phase, GMPS learns the
global optimal expert policies for all meta-training tasks by
standard single-task RL algorithms or imitation learning with
human-provided demonstrations. In the second phase, GMPS
uses the learned expert policy for each meta-training task to
relabel the data from the current adapted policy and then
performs meta-optimization with imitation learning. Despite
excellent sample efficiency, these approach are limited to some
domains where human-provided demonstrations or optimal
expert policies of each task have been obtained in advance.
In contrast, our approach integrates a component of trajectory
optimization into the meta-RL framework, which can provide
online supervision for validation samples without human-
provided demonstrations.

C. Guided Policy Search

Previous methods, such as varieties of Guided Policy Search
algorithms [29]–[33], have also explored the combination of
trajectory optimization and imitation learning for efficiency in
the context of RL. Similar to our approach, these methods
create a local approximation to the environmental dynamics,
and then learn a set of simple local “expert policies” by
using trajectory optimization. However, the purpose of these
methods is to obtain the global optimal policy for single tasks
by using as few samples as possible. In contrast, our approach
aims to train a meta-learner (or meta-level policy) that can
quickly adapt to new tasks rather than apply a single optimal
policy, so as to reduce the pressure on needing perfect “expert

This article has been accepted for publication in IEEE Transactions on Cognitive and Developmental Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2023.3286465

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF ULSTER. Downloaded on June 26,2023 at 09:17:51 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS 3

Start

Bi-level Optimization

Relabel Data

iterate

tr

Run to collect

samples for

task
i

i



Optimize via

  MSE CLIP tr *valmin , ,
i i i i

i




   

  ,t ts a

val

i

  ,t ts a

*val

i

  *, ()t i tps s

*(|)

Acquire local expert

policy by

iLQR-based trajectory

optimization

i t tp a s

 

tr

RL tr

Compute task-adapted

parameters u

,

sing

i

i

i i     

val

Run to collect

samples for

task

i

i

i

tr

i

Figure 1. Meta-training procedure for the SMRL-TO algorithm. We aim to learn a meta-level policy πθ that quickly adapts to new tasks by leveraging only
a few interactions in the meta-testing. In each meta-iteration, the algorithm first collects samples Dtr

i and Dval
i for each task Ti. Then using iLQR-based

trajectory optimization acquires each local expert policy p∗i for Dval
i and relabels data, resulting in supervised data D∗val

i (shown in the yellow box). Finally,
the algorithm performs the bi-level optimization across batch tasks (shown in the blue box). Iterate the above process.

policies”. In this respect, our approach can be regarded as a
relaxed extension of the Guided Policy Search algorithm [29]
in the meta-learning setting.

D. Trajectory Optimization

Trajectory optimization algorithms deal with the problem
of optimizing trajectory-centric policies and minimizing the
cost of individual trajectories [33], [34]. In one approach,
the algorithms are model-free and fit the policies to the best
or weighted samples, needing for “trial and error” random
exploration [35]–[37]. These algorithms can handle arbitrary
complex dynamics at the cost of sample efficiency. Another
approach is to model the global dynamical systems [38]–[40].
For example, PILCO [40] learns a global dynamic model
with Gaussian processes to optimize policies, which relies
on large nonlinear optimizations in each iteration. Although
these model-based algorithms typically have the advantage
of improving sample efficiency, they are not always able to
accurately model complex and unknown dynamical systems
to obtain effective policies [41]. In contrast, our method does
not require learning a global model, instead iteratively solving
for the locally optimal policy through iLQR [19] under local
and time-varying linear dynamics model. Our method can
deal with complex and discontinuous dynamics with fewer
samples, combining the advantages of model-free and model-
based methods.

III. PRELIMINARIES

In this section, we describe the meta-RL problem formula-
tion and trajectory optimization that our work builds on.

A. Meta-RL Problem Statement

Meta-RL is a meta-learning framework for reinforcement
learning. The goal of meta-RL is to learn a reinforcement

learner (or meta-learner), which can quickly learn an optimal
policy for a new task after interacting with the environment
a few times by making full use of previous knowledge and
experience. To this end, meta-RL algorithms require samples
across different tasks drawn from a distribution ρ(T) to
train the reinforcement learner. Considering the distribution
over tasks, each task Ti corresponds to a Markov decision
process (MDP), which shares common action and state space,
but differs in the reward function and/or the environmental
dynamics.

In this work, we only consider the well-known gradient-
based meta-RL method called Model-Agnostic Meta-
Learning (MAML) [15], which our approach builds on.
Formally, we define a finite-horizon MDP at discrete time
for each RL task Ti by a tuple Mi =

(
S,A,Pi,Ri, γ,H

)
,

wherein S is the state space, A is the set of actions, Pi:
S ×A× S → R+ is the transition (or dynamics) distribution
for task Ti, Ri: S × A → R is the reward function for
task Ti, γ ∈ [0, 1] is the discount factor, and H is the episode
length. We consider the reinforcement learner to be a policy
πθ(at | st), which maps state st to at. The loss function of a
reinforcement learning problem for task Ti is the following:

LRL
Ti (θ,Di) = −Est,at∼πθ,Pi

[
H∑
t=1

γt−1ri(st,at)

]
, (1)

where θ is the optimized parameters and Di denotes the
samples from task Ti. During meta-training, the policy is
trained with samples Dtr

i by the policy gradient for each task
Ti and the updated parameters are denoted as φi:

φi = θ − α∇θLRL
Ti
(
θ,Dtr

i

)
, (2)

where α is the fast adaptation learning rate. Then we collect
new samples Dval

i from Ti via the adapted policy parameters

This article has been accepted for publication in IEEE Transactions on Cognitive and Developmental Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2023.3286465

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF ULSTER. Downloaded on June 26,2023 at 09:17:51 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS 4

φi and update the model parameters θ via stochastic gradient
descent as follows:

θ ← θ − β∇θ
∑
i

LRL
Ti
(
φi,Dval

i

)
= θ − β∇θ

∑
i

LRL
Ti
(
θ − α∇θLRL

Ti
(
θ,Dtr

i

)
,D∗val

i

)
,

(3)

where β is the meta learning rate.
Subsequently, during meta-testing, a new task Ttest is drawn

from ρ(T), and the meta-learner with updated parameters θ
can adapt its behaviors to the new task via a few interactions
Dtest by gradient descent:

φtest = θ − α∇θLRL
Ttest

(
θ,Dtest

)
. (4)

In the meta-training phase of meta-RL, direct policy search
requires a large number of on-policy samples to train a meta-
level policy. In this work, we instead direct the training by
leveraging local “expert policies”. In the next section, we will
describe how to acquire these “expert policies” by trajectory
optimization.

B. Trajectory Optimization with iLQR

Trajectory optimization is a technique for optimizing the pa-
rameters of the local policy p(at|st), a probability distribution
with respect to a trajectory τ = {s1,a1, s2,a2, . . . , sH ,aH}
that is a sequence of states and actions over a period of
time. Given some cost function `(st,at) and system transition
distribution p(st+1 | st,at), we define the total cost of the
trajectory as `(τ) =

∑T
t=1 `(st,at) and optimize the policy to

minimize the expectation Ep(τ)[`(τ)] =
∫
`(τ)p(τ)dτ under

the policy trajectory distribution

p(τ) = p(s1)

T∏
t=1

p(st+1 | st,at)p(at | st),

where p(s1) is the initial state distribution.
The local policy can be optimized efficiently with a small

number of samples using the iterative LQR (iLQR) algo-
rithm [19], [29]. The iLQR method iteratively optimizes trajec-
tories by solving for local expert policies under the assumption
of linear dynamics and quadratic costs. The system dynamics
f(st,at) are approximated as the time-varying linear-Gaussian
form p(st+1 | st,at) = N (fstst + fatat + fct,Ft), where
Ft denotes the covariance of the Gaussian noise. Given a
trajectory, denoted {ŝ1, â1, . . . , ŝH , âH}, the iLQR algorithm
approximates the quadratic value function and the Q-function
as follows:

V (st) =
1

2
sTt Vs,stst + sTt Vst + const

Q(st,at) =
1

2
sTt Qs,stst +

1

2
aTt Qa,atat +Qstst +Qatat

+ sTt Qs,atat + const.

Subscripts denote derivatives, e.g. Qst is the gradient of Q
at time t with respect to st, Qs,st is the Hessian, and so

forth. Under the approximation, we can recursively compute
the derivatives of the Q-function as:

Qst = `st + fTstVst+1 Qs,st = `s,st + fTstVs,st+1fst

Qat = `at + fTatVst+1 Qa,at = `a,at + fTatVs,st+1fat

Qa,at = `a,at + fTatVs,st+1fat Qa,st = `a,st + fTatVs,st+1fst

as well as the derivatives of the value functions:

Vst = Qst −QTa,stQ−1
a,atQat

Vs,st = Qs,st −QTa,stQ−1
a,atQa,st

The locally optimal policy is given by:

g(st) = ât + kt + Kt(st − ŝt), (5)

where kt = −Q−1
a,atQat and Kt = −Q−1

a,atQa,at denote the
linear bias term and feedback term respectively. The detailed
formula derivation process of iLQR algorithm can be found
in [42].

In this work, we employ the iLQR algorithm to learn a
time-varying linear-Gaussian policy as following

p(at | st) = N (g(st),Ct) , (6)

where Ct = Q−1
a,at denotes the covariance.

IV. SUPERVISED META-REINFORCEMENT LEARNING

In this section, we will combine MAML [15] with iLQR-
based trajectory optimization to design a novel meta-RL
algorithm called SMRL-TO for improving sample efficiency
during meta-training. SMRL-TO solves the meta-optimization
problem in two steps: SMRL-TO first explicitly learns lo-
cal “expert policies” around on-policy validation samples by
iLQR-based trajectory optimization and produces supervised
data in Section IV-A; these data are then used to direct the
training of the meta-level policy with imitation learning in
Section IV-B.

A. Learning Local Expert Policy

In this work, we apply iLQR-based trajectory optimization
to validation samples Dval

i collected from the adapted policy
πφi in task Ti. Given an initial trajectory from Dval

i , iLQR
can optimize the parameters of the local policy pi(at|st) with
respect to this trajectory. While the linear-Gaussian policy
is simple, it admits a very efficient optimization process
and works well for individual trajectory. Since the trajec-
tories from each task are optimized independently, we can
omit the subscript i in order to be more concise in this
section. For continuous control tasks with complex environ-
mental dynamics, it is difficult to design the system dynam-
ics N (fstst + fatat + fct,Ft) through domain knowledge.
Fortunately, we can use linear regression to estimate these
system dynamics over the current samples {(ŝt, ât, ŝt+1)}
in Dval. Since the number of samples scales with the state
dimension, this method suffers from severe sample complexity
at each iteration to obtain a good dynamics model.To greatly
reduce the number of samples, we employ a Gaussian mixture
model (GMM) to construct a normal-inverse-Wishart (NIW)

This article has been accepted for publication in IEEE Transactions on Cognitive and Developmental Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2023.3286465

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF ULSTER. Downloaded on June 26,2023 at 09:17:51 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS 5

prior of the dynamics distribution [43]. We define the NIW
prior using parameters Φ, µ0, m and n0. After obtaining
these prior parameters from several previous iterations, we
can calculate the maximum a posteriori estimate (MAP) on
[st;at; st+1] of the system dynamics, given by

µ =
mµ0 + n0µ̂

m+ n0

Σ =
Φ +N Σ̂ + Nm

N+m (µ̂− µ0) (µ̂− µ0)
T

N + n0
,

where µ̂ and Σ̂ are respectively the empirical mean and
empirical covariance of N trajectory samples {st,at, st+1}.
To obtain these prior parameters, we fit a Gaussian distribution
over current samples {(ŝt, ât, ŝt+1)} and obtain the mean µ0

and covariance Φ. Here m and n0 should be the number of
samples; in this work, we set them both to 1.

When applied to the iLQR-based trajectory optimization
method, the system dynamics N (µ,Σ) are then approximated
as linear-Gaussian dynamics, N (fstst+fatat+fct,Ft), given
by

fsat = Σ−1
[sat,sat]Σ[sat,st+1] fct = µ[st+1] − fsatµ[sat]

]
Ft = Σ[st+1,st+1] − fsatΣ[sat,sat]f

T
sat.

Once we have obtained the system dynamics, we can use
the iLQR-based trajectory optimization to obtain the local
“expert policy” p(at | st) of the current validation samples
Dval. Unfortunately, the local policy and global policy may
have different state distributions. Hence, we use the following
constraint formulation:

min
p(τ)

Ep(τ)[`(τ)] s.t. DKL (p(τ)‖πφ(τ)) ≤ µ (7)

where the KL-divergence constraint is to encourage the local
policy p (at | st) to stay close to the global policy πφ (at | st).

In previous work [30], a similar constraint optimization was
used and µ in the constraint, was determined by other com-
ponents in each iteration, so as to achieve compact constraints
and accurate results. In contrast, our approach, a relaxed
version, uses a fixed µ for constraint optimization. However,
the resulting errors from our method will not accumulate or get
magnified in practice. We empirically analyze this in detail.
First, the trajectory optimizations between different tasks are
independent of each other, and the generated local “expert
policies” only provide supervision information for a few tra-
jectory samples collected in each iteration, making these small
deviations scattered irregularly. However, the nature for our
proposed meta-RL is primarily to learn the common internal
representations between different tasks, which mitigates the
impact of the deviation. Second, since our approach is a nested
optimization where the standard RL in the inner loop is not
affected by trajectory optimization, it can alleviate the impact
caused by the trajectory optimization in the previous iteration.

The local policy and the global policy have different
representation forms (linear Gaussian and neural network
respectively), which increases the computational complexity.

Algorithm 1 Trajectory Optimization for Meta-training Tasks
Require: Batch meta-training tasks {Ti} drawn from distri-

bution ρ(T)
Require: The adapted policy πφi for each task Ti
Require: Validation samples Dval

i = {(st,at)} from each πφi
Require: Initialize labeled data D∗val = {∅}

1: for all Ti do
2: Fit dynamics pi (st+1 | st,at) to Dval

i with GMM prior
3: Fit linearized global policy π̄φi using samples in Dval

i

4: Optimize constraint objective in Equation 7 to get local
expert policy p∗i (at | st)

5: Label validation samples Dval
i , resulting in data D∗val

i =
{(st, p∗i (st))}

6: Aggregate D∗val ← D∗val ∪ D∗val
i

7: end for

To simplify the calculation in practice, we use the linear-
Gaussian approximation π̄φ of the global policy πφ around
{ŝt, ât}. This approximation can be obtained in the same way
as fitting system dynamics.

In each meta-iteration, we can obtain the local “expert
policy” p∗i (at | st) on samples Dval

i for each task Ti by iLQR-
based trajectory optimization as previously described. Then we
leverage these local “expert policies” to label the validation
samples for all batch tasks, resulting in supervised data D∗val.
We summarize this procedure in Algorithm 1.

During meta-training, MAML needs to compute the
Hessian-vector product of neural network parameters, and
is limited to small models. In contrast, our SMRL-TO uses
iLQR-based trajectory optimization to obtain local expert
policies. This process is only related to the states and actions
of trajectories, and does not involve the parameters of neural
network. So SMRL-TO is not limited to small models.

B. Supervised Meta-Reinforcement Learning Algorithm

To reduce the sample complexity in the meta-training phase,
we use simple imitation learning instead of a single-step direct
policy search. This needs to calculate several gradient descent
steps in each meta-iteration using the collected samples,
including training samples Dtr and validation samples Dval.
When adapting to each task Ti drawn from the task distribution
ρ(T), and the updated model parameter φi is trained using the
training samples Dtr

i from the current policy with parameters
θinit at each step of gradient descent. Therefore, we only
collect samples Dtr

i once for each task Ti using the policy
πθinit at the start of a meta-iteration. However, after the first
step of gradient descent, the target policy πθ we need to
learn has already changed from the initial policy πθinit used to
collect samples. To solve this, we use the importance weighted
policy gradient, which is one of the most popular tricks for off-
policy learning. At each gradient step, the adapted parameter
φi for each task Ti is calculated by

φi = θ + α∇θEst,at∼πθinit

[
rt(θ)Ât

]
, (8)

This article has been accepted for publication in IEEE Transactions on Cognitive and Developmental Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2023.3286465

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF ULSTER. Downloaded on June 26,2023 at 09:17:51 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS 6

where rt(θ) = πθ(at|st)
πθinit

(at|st) denotes the marginal importance

weights and Ât denotes an estimate of the advantage function
at time step t.

In this scheme, if there is no constraint on importance
weights rt(θ), the adapted parameters φi in Equation 8 will
be updated greatly, since θ gradually moves away from θinit

in the gradient updates. This can cause instability and slow
convergence during training. Although simply forcing the
fast adaptation learning rate α to reduce can alleviate this
problem, it can not prevent policy parameters φi from the
occasional large updates, and thus can not maintain a desired
learning speed. Additionally, the multi-task form in the meta-
RL framework will aggravate this problem as the loss required
for updating policy parameters is obtained by averaging the
losses of batch tasks in each iteration. If the loss of one
task is occasionally larger than that of other tasks because of
importance weights, the policy update will be biased towards
the task, resulting in imbalance of adapting to tasks. As a
result, the learned policy parameters in the meta-training phase
may be more sensitive to the loss function of new tasks during
meta-testing and can easily achieve rapid adaptation, while the
other new tasks are just the opposite [18].

Actually, this is a constrained optimization problem. In the
MAML method, we can ignore this constraint since rt(θ) is
always equal to 1. In this work, we apply the clipping trick [44]
to the objective function to alleviate this problem. Although
simple, the clipping trick turns the constrained optimization
into unconstrained optimization, which makes it easier to train
the meta-learner through gradient descent. The “surrogate”
objective we proposed is as follows:

LCLIP
Ti

(
θ,Dtr

i

)
= −Eτ∼πθinit

[
min

(
rt(θ)Ât, r

clip
t (θ)Ât

)]
,

(9)
where rclip

t (θ) = clip (rt(θ), 1− ε, 1 + ε), and ε is a hyper-
parameter. When ε is within a reasonable range, the clipping
trick is not sensitive to ε, which is also what we expect. In this
work, we set this parameter ε as the default value 0.2, which
was first proposed in the PPO algorithm [44]. Then we take
the gradient step for each task Ti on the policy parameters
θ : φ̄i = θ − α ◦ ∇θLCLIP

Ti (θ,Dtr
i). In our approach, the fast

adaptation learning rate α is meta-learned like Meta-SGD [45].
The objective LCLIP makes the updated parameters φ̄i similar
to θinit by clipping importance weight rt(θ). It is worth noting
that we use the clipping objective only when the optimizing
meta-objective, and still use the vanilla loss function when
collecting trajectories. Compared with the on-policy method
PPO, the approach we proposed applies the clipping trick
to the off-policy setting in the inner loop of meta-RL and
performs well in practice.

After computing the adapted parameters φ̄i for each task
Ti, we will perform meta-optimization with simple imitation
learning by leveraging the mean-squared-error (MSE) loss
function:

LMSE
Ti

(
φ̄i,D∗val

i

)
=

∑
s(j),a(j)∼D∗val

i

∥∥∥πφ̄i(s(j))− a(j)
∥∥∥2

2
,

(10)

Algorithm 2 SMRL-TO Meta-training.
Require: Distribution over tasks ρ(T);
Require: Meta learning rate β.

1: Initialize policy network πθ and fast adaptation learning
rate α.

2: while not done do
3: initialize θinit with weights θ
4: Sample batch tasks Ti ∼ ρ(T)
5: for all Ti do
6: Collect samples Dtr

i using πθ in task Ti
7: Compute adapted parameters using Dtr

i : φi = θ−α◦
∇θLRL

Ti (θ,Dtr
i)

8: Collect samples Dval
i = {(st,at)} using πφi in task

Ti
9: end for

10: Produce supervised data D∗val using Algorithm 1
11: for iteration k = 1, ...,K do
12: for all Ti do
13: Compute importance weights rt(θ) = πθ(at|st)

πθinit (at|st)
in task Ti

14: Evaluate ∇θLCLIP
Ti (θ,Dtr

i) using Dtr
i and rt(θ)

according to Equation 9
15: Compute adapted parameters by gradient descent:

φ̄i = θ − α ◦ ∇θLCLIP
Ti (θ,Dtr

i)
16: Sample supervised data D∗val

i ∼ D∗val for the
meta-update

17: end for
18: (θ, α)← (θ, α)−β∇θ

∑
i LMSE
Ti (φ̄i,D∗val

i) in Equa-
tion 10

19: end for
20: end while

where D∗val
i is the labeled validation samples for each task Ti

from Section IV-A.
The structure of SMRL-TO is summarized in Algorithm 2.

In each meta-iteration, we first initialize θinit with meta-
level policy weights θ on line 3 for further calculation of
importance weights. Similar to the MAML method [15], we
respectively collect samples Dtr

i and Dval
i through πθ and πφi

for each drawn task Ti on lines 4− 9. Unlike prior meta-RL
methods, we leverage iLQR-based trajectory optimization to
produce supervised data D∗val on line 10 for meta-updates.
Subsequently, we optimize the meta-objective for K gradient
steps with the same batch samples on lines 11−19, including
computing adapted parameters φ̄i with the clipping objective
LCLIP
Ti on line 15 and updating θ and α to optimize the mean-

squared-error objective LMSE
Ti over all batch tasks on line 18.

V. EXPERIMENTS

The aim of our experimental evaluation is to answer the fol-
lowing questions: (1) without human-provided demonstrations,
can SMRL-TO use imitation learning to learn a meta-learner
only using the online supervision from trajectory optimization?
(2) is SMRL-TO better in sample efficiency than previous
meta-RL algorithms during meta-training? (3) can SMRL-TO
quickly adapt to new tasks during meta-testing?

This article has been accepted for publication in IEEE Transactions on Cognitive and Developmental Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2023.3286465

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF ULSTER. Downloaded on June 26,2023 at 09:17:51 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS 7

Figure 2. 3D robotic manipulation environments for experimental evaluation.
From left to right: Pusher, Door Opening, Peg Insertion. In the Pusher task,
a Sawyer arm pushes a red block to the target position indicated by the
green marker. The goal of Door Opening task is to open the door to a target
angle sampled from 30 to 90 degrees as shown by the green markers. In Peg
Insertion, the robotic arm insert a peg into a hole, where the goal location of
hole is sampled from a 20 cm × 20 cm region.

A. Experimental Setup

To answer these questions, we evaluate our algorithm using
simulated robotic manipulation tasks as shown in Figure 2.
Each task needs to perform robotic motor control based on
the MuJoCo physics engine [46]. For further design of reward
function, we use the following general metric on vectors z1

and z2:

` (z1, z2) = wα ‖z1‖2 + wβ log
(
‖z2‖2 + ε

)
, (11)

where wα and wβ are the parameters corresponding to weight
squared loss and log-square loss, respectively, and we set ε =
10−5.

1) Sawyer Manipulation Tasks: The simulation environ-
ments used for the tasks come from the Meta-World [47],
which is a benchmark for multi-task and meta reinforcement
learning. The tasks involve moving a 7-DoF Sawyer arm with
a gripper by motor control rather than 3D position control. For
two specific Sawyer tasks, we use the general reward function

R = −w1` (z1, z2)− w2` (z3, z4)− wa ‖a‖2 − ws ‖s‖2
(12)

z1 = z2 = d1 (13)

z3 =
t

H
d2 z4 = (

t

H
)2d2 (14)

where H denotes the horizon length, ` is the general metric
described in Equation 11, wa and ws weight the squared losses
of actions and states, respectively. The details of d1 and d2

are described later. The two specific tasks are as follows:
• Pusher: In these tasks, the Sawyer arm needs to push a

red block of wood with a gripper to the target marked by
the green ball, which is sampled from a 20 cm × 10 cm
region. The full state observations consist of joint angles,
velocities, block position and end-effector position, but
not target positions. The Sawyer arm needs to acquire
the ability to adapt to different target positions through
training. In the reward function of this environment, d1

is the distance between the block and the gripper, and d2

is the distance between the block and the target.
• Door Opening: These tasks are challenging, requiring 3D

control of the arm to grab the door handle and then
open the door to a target angle sampled from 30 to 90
degrees. The full state observations consist of joint angles,
velocities, handle position and end-effector position, but

Table I
PARAMETERS OF THE REWARD FUNCTION

Environment

Name Parameter Value

wα 5.0
wβ 0.05

Pusher w1 0.5
w2 5.0
wa 5× 10−3

ws 5.0

wα 5.0
wβ 0.05

Door Opening w1 0.5
w2 2.5
wa 2.5× 10−4

ws 0.5

wα 5.0 | 0.
wβ 0.05

Peg Insertion w1 1.0
w2 1.0
wa 5× 10−4

Table II
HYPERPARAMETERS FOR ALL EXPERIMENTS

HyperParameters Value

Policy network 2 hidden layers with 64 neurons
Discount rate (γ) 0.99
GAE λ 0.98
Meta learning rate (β) 0.001
Update steps per meta-iteration (K) 500
Trajectories sampled per task 20
Clipping parameter (ε) 0.2

not target angle/position. In the reward function for this
environment, d1 is the distance between the door handle
and the gripper and d2 is the distance between the door
handle and the target.

2) Peg Insertion: The final environment comes from pre-
vious work in [30]. The tasks are more complex and involve
manipulating a 7-DoF arm to insert a tight-fitting peg into a
hole. The location of the hole is sampled uniformly from a 20
cm × 20 cm region. The full state observations include joint
angles, velocities, and the position of the end-effector relative
to the hole, but not hole position. For this environment, we
employ the reward function

R = −w1`
1 (z1, z2)− w2`

2 (. , z3)− wa ‖a‖2 (15)

` =

{
`1 if wα = 5.0 wβ = 0.05
`2 if wα = 0. wβ = 0.05

z1 = z2 = d (16)

z3 = 10× d× 1t=H−1 (17)

where d is the distance between the hole and the peg and
1 is an indicator function. The parameters of the reward
function for each environment are shown in Table I. The
hyperparameters for all experiments using SMRL-TO are
shown in Table II.

B. Comparisons
We compare our algorithm SMRL-TO with previous meth-

ods, including MAML [15], PEARL [16] and GMPS [17].

This article has been accepted for publication in IEEE Transactions on Cognitive and Developmental Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2023.3286465

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF ULSTER. Downloaded on June 26,2023 at 09:17:51 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS 8

Figure 3. Meta-training sample efficiency comparisons on Pusher (left), Door Opening (middle) and Peg Insertion (right). Compared with MAML and PEARL,
SMRL-TO is able to achieve higher average return in the first few iterations and continues to improve over iteration, resulting in better performance. While
similar asymptotic performance with GMPS at the end of meta-training, SMRL-TO can adapt to new tasks robustly during meta-testing (analysis in Section
V-B). The curve of GMPS does not indicate the part of training expert policies, but the number of samples used during the period is included. The red dotted
line indicates the final result.

MAML is an on-policy meta-RL algorithm that first computes
adapted parameters via a vanilla policy gradient and then
performs meta-optimization with TRPO [48]. Compared with
MAML, PEARL is an off-policy actor-critic meta-RL algo-
rithm, which learns a probabilistic encoder of tasks. GMPS
is an off-policy meta-RL algorithm that requires previously
learned expert policies or human-provided demonstrations of
all meta-training tasks and uses imitation learning to train
the meta-level policy. To reduce the affects of stochastics,
we re-run three repetitions for each algorithm with random
initializations at the meta-training and meta-testing.

In the meta-training phase, we evaluate the algorithms in
different ways according to their features. When evaluating
MAML, PEARL and SMRL-TO, in each meta-iteration of the
meta-training phase, we drawn batch tasks (30 in Pusher, 20 in
Door Opening, 20 in Peg Insertion) from distribution ρ(T) as
training tasks to optimize the meta-level policy and then drawn
another new batch tasks (40 in Pusher, 40 in Door Opening,
20 in Peg Insertion) from ρ(T) as testing tasks to evaluate the
trained meta-level policy. Unlike the above three algorithms,
GMPS is a two-stage method and needs to train the policy
of each meta-training task with a large number of samples to
obtain expert trajectories. For example, for one meta-training
task in Pusher environment, GMPS requires about 0.8 million
samples to train the expert policy. It is impossible for GMPS to
train expert policies for all tasks drawn from task-distribution
ρ(T) in the whole meta-training. However, our proposed
method only needs about 2 million samples to obtain the meta-
level policy in the whole meta-training stage, which is far
less than the amount of samples used by GMPS. Therefore,
it is impractical to evaluate the GMPS algorithm according
to the above evaluation method. For better comparison with
the above three algorithms in sample efficiency, GMPS, in
this work, only involves 2 specific tasks in the whole meta-
training phase. That is, we train and evaluate GMPS on these
2 tasks in each meta-iteration. In this way, the GMPS method
uses as many samples as our proposed SMRL-TO algorithm in
the meta-training phase. We can easily compare the ability of
meta-level policy trained by GMPS and SMRL-TO to adapt to
new tasks. We employ soft actor-critic (SAC) [49] algorithm
for GMPS to learn the optimal policies of these two tasks and

the samples used for training are included in experimental
evaluation.

We first evaluate SMRL-TO for sample efficiency on robotic
manipulations. Figure 3 presents the meta-training compar-
isons in a series of robotic manipulation tasks. Learning
curves are averaged over three replicas. The error-bars indicate
the standard error across three different seeds. With the aid
of iLQR-based trajectory optimization, SMRL-TO achieves
improvements in sample efficiency, particularly in Pusher and
Peg Insertion. In Door Opening, SMRL-TO achieves similar
asymptotic performance with PEARL at the end of meta-
training, although higher average return than MAML and
PEARL at the beginning. It means that SMRL-TO can make
it easy for the end-effector to locate the position of the door
handle, but is not superior to PEARL in opening the door to the
target angle. We analyze that under linear-Gaussian dynamics,
it is relatively difficult to optimize the local policy for the latter
process. MAML algorithm based on policy search easily falls
into local optimum and requires numerous samples to escape
from it in these tasks, while SMRL-TO is not. Compared
with MAML, PEARL improves sample efficiency by learning
an encoder of tasks. However, PEARL exploits the policy
search method that cannot provide more direct supervision
like imitation learning, resulting in slow convergence and high
sample complexity. The comparisons have proved that using
the online supervision from trajectory optimization instead of
simply focusing direct policy search on trial-and-error data,
does contribute to the learning of meta-level policy, hence
SMRL-TO can meta-learn efficiently.

SMRL-TO performs well and presents similar asymptotic
performance with GMPS at the meta-training. However, the
task space ρ(T) in GMPS is reduced to two tasks in the
training and evaluation, which results in overfitting nicely
and does not adapt to new tasks at the meta-testing. This
means that when the same number of samples are used at
the meta-training, SMRL-TO can robustly adapt to new tasks,
while GMPS cannot. GMPS must require more samples at
the meta-training if it can adapt to new tasks. Our proposed
SMRL-TO avoids the use of global expert policy per task like
GMPS, and then achieves the goal of high sample efficiency.
It should be noted that when performing GMPS algorithm

This article has been accepted for publication in IEEE Transactions on Cognitive and Developmental Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2023.3286465

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF ULSTER. Downloaded on June 26,2023 at 09:17:51 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS 9

Figure 4. Meta-testing comparison between SMRL-TO and MAML for
Pusher (up) and Peg Insertion (down). Learning curves are averaged over
three replicas. The error-bars indicate the standard error. For Pusher, we plot
the distance between the red block and the target position at last time step,
while for Peg Insertion we plot the the distance between the peg and the hole
at last time step. Both SMRL-TO and MAML can adapt their behaviours to
new tasks by just few gradient steps, but SMRL-TO achieves smaller distance
at the end of meta-testing.

in each task, we intercept the learning curve (red solid line)
of the first few iterations, and use the red dotted line to
indicate the final result. Because GMPS algorithm suffers from
instability in the next iterations. It is that due to distribution
mismatch, states from the adapted policy can not be correctly
labeled with optimal actions from previously learned expert
policies. Thus bad data increases over iteration, resulting in
an oscillating and diverging behavior. Compared with GMPS,
our proposed algorithm SMRL-TO including off-policy RL
setting, can meta-learn stably without any demonstrations by
leveraging online supervision from trajectory optimization.

In meta-testing, both MAML and our SMRL-TO adapt to
new tasks by vanilla policy gradient. From the curves in
Figure 4, we observe that SMRL-TO can quickly adapt to
new tasks and achieve better performance than MAML by
just few gradient updates. This shows that our approach can
train a reinforcement learner more efficiently. We report the
numerical results of meta-testing in Tables III and IV.

C. Ablation Study

In this section, we conduct an ablation study to evaluate the
contribution of each component of our proposed approach. We
compare our algorithm with its three ablated variants on Peg-
Insertion. The first variant uses fixed rather than meta-learned

Figure 5. Comparison of our approach with ablated variants for Peg Insertion.
Learning curves are averaged over three replicas. The error-bars indicate the
standard error. The plot shows the results with meta-learned α and with
clipping trick (“SMRL-TO complete”), with meta-learned α and without
clipping trick (“SMRL-TO non-clip”), without meta-learned α and with
clipping trick (“SMRL-TO fixed”), as well as without meta-learned α and
without clipping trick (“SMRL-TO baseline”). Our method (“SMRL-TO
complete”) presents the best performance.

fast adaptation learning rate (α) in the inner loop, which we
label “SMRL-TO fixed”. The second variant, referred to as
“SMRL-TO non-clip”, only removes clipping trick on the
basis of our complete algorithm “SMRL-TO complete” and
uses vanilla importance-weighted policy gradient in the inner
loop. The third variant uses fixed fast adaptation learning rate
and removes clipping trick at the same time, which we label
“SMRL-TO baseline”. To reduce the affects of stochastics,
we also re-run three repetitions for each ablated variant with
random initializations.

The results are shown in Figure 5 in terms of the average re-
turn of 30 meta-testing tasks at training samples. Our proposed
algorithm “SMRL-TO complete” uses both meta-learned fast
adaptation learning rate and the proposed clipping trick. The
comparison to the “SMRL-TO baseline” variant shows that
both of the above components are crucial for obtaining the
good overall performance. In addition, we interestingly ob-
served that the “SMRL-TO baseline” and “SMRL-TO non-
clip” variants show similar performance in the experiment.
This means that using the meta-learned learning rate alone
can not effectively solve the instability problem introduced by
the off-policy optimization, while it can contribute the perfor-
mance at the aid of clipping trick, as shown in comparison
of “SMRL-TO fixed” and “SMRL-TO complete” variants. It
is proved that our proposed clipping trick can alleviate the
instability problem and is a particularly important component
of our algorithm.

VI. DISCUSSION AND FUTURE WORK

In this paper, we introduced a novel meta-RL algorithm
called SMRL-TO, which can meta-learn more efficiently and
stably with the aid of iLQR-based trajectory optimization.
Compared with the existing meta-RL methods, our approach
has several benefits. Through trajectory optimization, it can
acquire more information from a small amount of on-policy

This article has been accepted for publication in IEEE Transactions on Cognitive and Developmental Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2023.3286465

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF ULSTER. Downloaded on June 26,2023 at 09:17:51 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS 10

Table III
PUSHER, DISTANCE (CM)

num. grad steps 0 1 2 3

MAML 0.1950± 0.0078 0.1804± 0.0093 0.1722± 0.0112 0.1694± 0.0085

SMRL-TO (ours) 0.1204± 0.0059 0.1072± 0.0051 0.1006± 0.0039 0.0990± 0.0046

Table IV
PEG INSERTION, DISTANCE (CM)

num. grad steps 0 1 2 3

MAML 0.1409± 0.0137 0.0789± 0.0106 0.0825± 0.0105 0.0682± 0.0103

SMRL-TO (ours) 0.1154± 0.0107 0.0728± 0.0098 0.0430± 0.0062 0.0309± 0.0047

data for policy learning. It makes policy learning more robust
and efficient through imitation learning rather than direct
policy search. More importantly, due to the small sample
complexity, our approach is likely to solve tasks in real-
world situations without human-provided demonstrations. So
our next step would be to apply our method to physical robotic
systems. In effect, our work has actually given a paradigm that
combines MAML algorithm with local optimization method to
speed up training of reinforcement-learner. While putting less
the pressure on needing perfect supervision, our approach is
also affected by the choice of policy optimization method.

ACKNOWLEDGMENTS

This work was supported by National Natural Science Foun-
dation of China (No. 61973066, 61471110), Foundation of Key
Laboratory of Equipment Reliability (WD2C20205500306).

REFERENCES

[1] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik,
J. Chung, D. H. Choi, R. Powell, T. Ewalds, P. Georgiev et al., “Grand-
master level in starcraft ii using multi-agent reinforcement learning,”
Nature, vol. 575, no. 7782, pp. 350–354, 2019.

[2] D. Ye, G. Chen, W. Zhang, S. Chen, B. Yuan, B. Liu, J. Chen, Z. Liu,
F. Qiu, H. Yu et al., “Towards playing full moba games with deep
reinforcement learning,” arXiv preprint arXiv:2011.12692, 2020.

[3] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre,
S. Schmitt, A. Guez, E. Lockhart, D. Hassabis, T. Graepel et al.,
“Mastering atari, go, chess and shogi by planning with a learned model,”
Nature, vol. 588, no. 7839, pp. 604–609, 2020.

[4] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton et al., “Mastering
the game of go without human knowledge,” Nature, vol. 550, no. 7676,
p. 354, 2017.

[5] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

[6] Y. Lin, M. Wang, X. Zhou, G. Ding, and S. Mao, “Dynamic spectrum
interaction of uav flight formation communication with priority: A
deep reinforcement learning approach,” IEEE Transactions on Cognitive
Communications and Networking, vol. 6, no. 3, pp. 892–903, 2020.

[7] B. R. Kiran, I. Sobh, V. Talpaert, P. Mannion, A. A. Al Sallab, S. Yo-
gamani, and P. Pérez, “Deep reinforcement learning for autonomous
driving: A survey,” IEEE Transactions on Intelligent Transportation
Systems, 2021.

[8] T. Zhang, G. Kahn, S. Levine, and P. Abbeel, “Learning deep control
policies for autonomous aerial vehicles with mpc-guided policy search,”
in 2016 IEEE international conference on robotics and automation.
IEEE, 2016, pp. 528–535.

[9] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015.

[10] M. Ramicic and A. Bonarini, “Augmented memory replay in reinforce-
ment learning with continuous control,” IEEE Transactions on Cognitive
and Developmental Systems, 2021.

[11] F. Zeng, C. Wang, and S. S. Ge, “Tutor-guided interior navigation
with deep reinforcement learning,” IEEE Transactions on Cognitive and
Developmental Systems, 2020.

[12] X. Huang, W. Wu, and H. Qiao, “Computational modeling of emotion-
motivated decisions for continuous control of mobile robots,” IEEE
Transactions on Cognitive and Developmental Systems, vol. 13, no. 1,
pp. 31–44, 2020.

[13] A. Gupta, R. Mendonca, Y. Liu, P. Abbeel, and S. Levine, “Meta-
reinforcement learning of structured exploration strategies,” in Advances
in Neural Information Processing Systems, 2018, pp. 5302–5311.

[14] Y. Duan, J. Schulman, X. Chen, P. L. Bartlett, I. Sutskever, and
P. Abbeel, “Rl2: Fast reinforcement learning via slow reinforcement
learning,” arXiv preprint arXiv:1611.02779, 2016.

[15] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning
for fast adaptation of deep networks,” in International Conference on
Machine Learning-Volume 70, 2017, pp. 1126–1135.

[16] K. Rakelly, A. Zhou, C. Finn, S. Levine, and D. Quillen, “Efficient off-
policy meta-reinforcement learning via probabilistic context variables,”
in International conference on machine learning. PMLR, 2019, pp.
5331–5340.

[17] R. Mendonca, A. Gupta, R. Kralev, P. Abbeel, S. Levine, and C. Finn,
“Guided meta-policy search,” in Advances in Neural Information Pro-
cessing Systems, 2019, pp. 9653–9664.

[18] A. Kendall, Y. Gal, and R. Cipolla, “Multi-task learning using uncer-
tainty to weigh losses for scene geometry and semantics,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2018, pp. 7482–7491.

[19] W. Li and E. Todorov, “Iterative linear quadratic regulator design for
nonlinear biological movement systems.” in ICINCO (1), 2004, pp. 222–
229.

[20] J. X. Wang, Z. Kurth-Nelson, D. Tirumala, H. Soyer, J. Z. Leibo,
R. Munos, C. Blundell, D. Kumaran, and M. Botvinick, “Learning to
reinforcement learn,” arXiv preprint arXiv:1611.05763, 2016.

[21] N. Mishra, M. Rohaninejad, X. Chen, and P. Abbeel, “A simple neural
attentive meta-learner,” arXiv preprint arXiv:1707.03141, 2017.

[22] B. C. Stadie, G. Yang, R. Houthooft, X. Chen, Y. Duan, Y. Wu,
P. Abbeel, and I. Sutskever, “Some considerations on learning to explore
via meta-reinforcement learning,” arXiv preprint arXiv:1803.01118,
2018.

[23] A. Nichol, J. Achiam, and J. Schulman, “On first-order meta-learning
algorithms,” arXiv preprint arXiv:1803.02999, 2018.

[24] J. Rothfuss, D. Lee, I. Clavera, T. Asfour, and P. Abbeel, “Promp:
Proximal meta-policy search,” arXiv preprint arXiv:1810.06784, 2018.

[25] Z. Xu, H. P. van Hasselt, and D. Silver, “Meta-gradient reinforcement
learning,” in Advances in Neural Information Processing Systems, 2018.

[26] R. Houthooft, R. Y. Chen, P. Isola, B. C. Stadie, F. Wolski, J. Ho, and
P. Abbeel, “Evolved policy gradients,” 2018.

[27] C. Finn, T. Yu, T. Zhang, P. Abbeel, and S. Levine, “One-shot visual
imitation learning via meta-learning,” in Conference on robot learning.
PMLR, 2017, pp. 357–368.

This article has been accepted for publication in IEEE Transactions on Cognitive and Developmental Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2023.3286465

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF ULSTER. Downloaded on June 26,2023 at 09:17:51 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS 11

[28] D. Rengarajan, S. Chaudhary, J. Kim, D. Kalathil, and S. Shakkottai,
“Enhanced meta reinforcement learning using demonstrations in sparse
reward environments,” arXiv preprint arXiv:2209.13048, 2022.

[29] S. Levine and V. Koltun, “Guided policy search,” in International
Conference on Machine Learning, 2013, pp. 1–9.

[30] W. H. Montgomery and S. Levine, “Guided policy search via approx-
imate mirror descent,” in Advances in Neural Information Processing
Systems, 2016, pp. 4008–4016.

[31] S. Levine, N. Wagener, and P. Abbeel, “Learning contact-rich manip-
ulation skills with guided policy search,” in 2015 IEEE International
Conference on Robotics and Automation. IEEE, 2015, pp. 156–163.

[32] S. Levine and V. Koltun, “Learning complex neural network policies
with trajectory optimization,” in International Conference on Machine
Learning, 2014, pp. 829–837.

[33] S. Levine and P. Abbeel, “Learning neural network policies with
guided policy search under unknown dynamics,” in Advances in Neural
Information Processing Systems, 2014, pp. 1071–1079.

[34] S. Levine, Motor skill learning with local trajectory methods. Stanford
University, 2014.

[35] E. Theodorou, J. Buchli, and S. Schaal, “A generalized path integral con-
trol approach to reinforcement learning.” Journal of Machine Learning
Research, vol. 11, no. Nov, pp. 3137–3181, 2010.

[36] J. Peters, K. Mulling, and Y. Altun, “Relative entropy policy search,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 24,
no. 1, 2010, pp. 1607–1612.

[37] R. Y. Rubinstein and D. P. Kroese, The cross-entropy method: a unified
approach to combinatorial optimization, Monte-Carlo simulation, and
machine learning. Springer, 2004, vol. 133.

[38] M. P. Deisenroth, D. Fox, and C. E. Rasmussen, “Gaussian processes
for data-efficient learning in robotics and control,” IEEE transactions on
pattern analysis and machine intelligence, vol. 37, no. 2, pp. 408–423,
2013.

[39] Y. Pan and E. Theodorou, “Probabilistic differential dynamic program-
ming,” Advances in Neural Information Processing Systems, vol. 27,
2014.

[40] M. Deisenroth and C. E. Rasmussen, “Pilco: A model-based and data-
efficient approach to policy search,” in International Conference on
machine learning, 2011, pp. 465–472.

[41] Y. Chebotar, K. Hausman, M. Zhang, G. Sukhatme, S. Schaal,
and S. Levine, “Combining model-based and model-free updates for
trajectory-centric reinforcement learning,” in International conference
on machine learning. PMLR, 2017, pp. 703–711.

[42] S. Levine, “Optimal control and planning,” http://rail.eecs.berkeley.edu/
deeprlcourse-fa17/f17docs/lecture 8 model based planning.pdf, pp.
27–37, 2017.

[43] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of
deep visuomotor policies,” The Journal of Machine Learning Research,
vol. 17, no. 1, pp. 1334–1373, 2016.

[44] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[45] Z. Li, F. Zhou, F. Chen, and H. Li, “Meta-sgd: Learning to learn quickly
for few-shot learning,” arXiv preprint arXiv:1707.09835, 2017.

[46] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control,” in 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE, 2012, pp. 5026–5033.

[47] T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine,
“Meta-world: A benchmark and evaluation for multi-task and meta
reinforcement learning,” in Conference on Robot Learning. PMLR,
2020, pp. 1094–1100.

[48] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in International conference on machine
learning, 2015, pp. 1889–1897.

[49] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in International conference on machine learning. PMLR, 2018,
pp. 1861–1870.

This article has been accepted for publication in IEEE Transactions on Cognitive and Developmental Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2023.3286465

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF ULSTER. Downloaded on June 26,2023 at 09:17:51 UTC from IEEE Xplore. Restrictions apply.

