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Abstract

This thesis consists of three chapters and studies how information, or the lack thereof,
affects the decision making of economic agents. By studying the theoretical implications
of different information structures, it seeks to contribute to the understanding of how
economic agents interact and what optimal decision making implies in situations of un-
certainty.

Chapter 1 studies the strategic interaction between two agents/countries deciding
whether to take climate action. A climate action is successful in restoring the environ-
ment if a critical mass of agents participate, providing a public good. The critical mass
needed for a success is interpreted as the current state of the environment and modelled
as a continuous variable. Depending on the state, agents may face either free ridding or
coordination incentives. If one agent’s action is sufficient to restore the environment, ac-
tions exhibit strategic substitutes and free riding incentives prevail. If the state is above
a critical value, actions exhibit strategic complements; both agents need to coordinate for
a success allowing for the possibility of a coordination failure. In a complete information
environment, there always exists an equilibrium that exhibits a coordination failure. On
the contrary, if agents face some uncertainty about the needed participation, under con-
ditions on their utilities, a coordination failure will be avoided whenever the participation
of both agents is needed. We show that risk-dominant actions can be strictly dominant at
signals around the parameter value where actions change discontinuously from strategic
substitutes to complements, even if they are nowhere strictly dominant in the underlying
complete information game, and iteratively strictly dominant in the whole range of signals
at which they are risk-dominant. We provide conditions on agents’ utilities that warrant
this outcome.

Chapter 2 generalizes the insight of chapter 1 in general two-player, two-action environ-
ments where agents’ payoffs may change discontinuously. In particular, we extend global
games à la Carlsson and van Damme (1993) to environments where the risk-dominant
equilibrium is selected even if there is no dominance solvable game in the underlying class
of complete information games. Strict dominance can emerge in the incomplete informa-
tion game from strategic uncertainty due to discrete payoff changes in underlying games,
and we provide sufficient conditions on payoff changes that warrant iterated dominance of
the risk-dominant equilibrium. Thus, strategic uncertainty creates strictly dominant ac-
tions as well as fostering iterated dominance, in contrast to global games hitherto where
strategic uncertainty does only the latter. Discrete payoff changes tend to arise, in particu-
lar, in situations where a public good can be provided with varying degrees of coordination
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depending on the state, so that coordinating actions can be strategic substitutes and free-
riding incentives present. We illustrate our findings in a stylized regime change model.

Chapter 3 studies whether information provided from a better than the agents in-
formed central bank allows the latter to control inflation. We study this question in a
monetary economy with asymmetric information and rational expectations. The central
bank follows an expected inflation targeting rule and has private, noisy information about
the future state of the economy, which communicates to market participants through its
forecast about expected inflation (Delphic Guidance). Agents update their beliefs in a
Bayesian way and infer the noisy signal for which the central bank has been informed
about. Through this mechanism the central bank can shape agents’ beliefs about the fu-
ture state of the economy which affect current realised inflation, and control the stochastic
path of inflation. Crucially, conventional inflation targeting policies, without explicit guid-
ance, do not suffice to control the stochastic path of inflation. We characterise situations
where a more comprehensive communication policy is called for, where the central bank
needs to communicate its forecast about expected inflation as well as its forecasts about
expected output.
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Chapter 1

Coordinating Climate Action Under
Uncertainty

Aknowledgements: This chapter has been greatly benefited from discussions with In-Uck
Park, Tai-Wei Hu, Nikolaos Kokonas, Eugene Jeong, Mathew Polisson, the participants
of the University of Bristol PhD seminar series and the participants of the 2022 RES
junior researcher symposium.

1.1 Introduction

Despite continuous discussions, increased public awareness and an increase in the measures

goverments take, climate change remains one of the most urgent issues of modern societies.

Until 2100, we expect an increase of 4◦C in global average temperature compared to pre-

industrial levels, a scenario of catastrophic estimated consequences. In the absence of a

global institution able to monitor and enforce commitments, countries seem reluctant or

unable to implement the proposed policies and the switch to renewable energy sources is

slow. With the adoption of carbon markets nowhere near the desired level1 and countries

being unlikely to reach the Paris Agreement goal of limiting global warming to well below

2◦C, preferably to 1.5◦C increase, compared to pre-industrial levels,2 scientists urge for

higher coordinated effort.

Economic literature has largely studied the free riding incentives that arise in such

public good provision problems. Less attention has been given to the coordination mo-

1It is estimated that to reach the temperature-limiting level of 2oC the carbon price should be
$100–$250 per ton. In 2019 we were less than 10% of that price (Nordhaus (2019)).

2The latest UNEP (UN Environment Programme) “Emissions Gap Report” found out that all efforts
would prevent only 7.5% of greenhouse gas emissions by 2030. To reach the 1.5°C target, however, it
would have to be 55%. The models included the updated nationally determined contributions (NDCs) to
climate protection in the context of the 2021’s UN Climate Change Conference in Glasgow. Even with
these new targets, we would have a warming of 2.7°C within this century.
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tives that may occur when free riding may lead to substantial consequences, like in the

case of climate change. If agents’ benefit from free riding is less than their benefit from

coordinating their action towards environmentally friendly production, then strong coor-

dination incentives arise. Yet even in this case, coordination may not occur since there is

the possibility of a coordination failure. This paper offers a framework to study those is-

sues in an environment where agents may face either free riding or coordination incentives

depending on noisy observations they make about the environment. We examine under

which conditions they can avoid a coordination failure.

To make ideas more concrete, consider a game between the US and China deciding

whether they should switch from a fossil fuel based production to a renewable energy

production. Since climate action remains costly, even if agents enjoy great benefits from

mitigation, they would rather free ride others’ action if their participation is not pivotal. If

for example the prediction for the increase in average global temperature was 2.5oC (lower

than the actual one) then China or the US3 unilaterally could achieve the goal of 2oC

by switching technologies. In this case free riding incentives prevail. On the other hand,

in the worse current 4oC increase prediction, no agent can unilaterally achieve the goal

and avoid the consequences of living in an above 2oC world. To achieve the goals of the

Paris agreement both countries need to coordinate their effort. This opens the door to the

possibility of self-fulfilling coordination failures. Crucially, the state of the environment

determines whether free riding or coordination incentives prevail. There exists a natural

level of pollution, beyond which higher coordination is required to achieve the target goal.

On the other hand, the actual state of the environment that determines agents’ incentives

is not precisely observed, since exact knowledge about future climate states is not possible.

In turn, agents may face uncertainty on the exact strategic interaction they face.

We study an incomplete information environment where incentives may change dis-

continuously depending on the underlying state of nature. We explore equilibrium in these

situations and describe under which conditions agents will avoid a coordination failure

with certainty. Importantly, we find that in this environment information frictions mat-

ter. In a complete information environment, there exist no payoff parameters such that a

coordination failure can be avoided with certainty; an equilibrium in which agents coordi-

nate will always exist alongside one which exhibits coordination failure. In the incomplete

information version of the game though, when agents only make noisy observations about

the needed participation, under conditions on their payoffs, both agents will have a strictly

dominant strategy to participate in a climate action and avoid a coordination failure. This

provides a positive description of which types of problems can be resolved via coordination

in the absence of an institution able to enforce commitments.

The idea that multiple equilibria might not be robust in the introduction of perturba-

tions about the payoffs or information of the game is not new i.e. Harsanyi (1973a), Selten

3Accounting for 33% and 12% of total carbon emissions (World bank (2019)).
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and Bielefeld (1988) and others. Even amongst strict equilibria that coordination games

imply, Carlsson and van Damme (1993) showed that the multiplicity is not robust to the

introduction of incomplete information about some payoff relevant parameter. Instead

the risk dominant action is the one uniquely selected after iterated deletion of strictly

dominated strategies. The result depends on agents’ actions being strategic complements,

payoffs being continuous to the fundamental and on the existence of extreme regions of

the fundamental for which agents have a strictly dominant action. With the predictive

power of the theory thus reinstated, global games have been fruitfully applied to various

contexts, such as financial markets and social situations.

There are many situations though in which actions are not always strategic comple-

ments, potentially changing discontinuously between complements and substitutes. Co-

ordination to mitigate the effects of climate change exhibits such characteristics. Similar

strategic interactions emerge in other collective action situations such as contribution to

a public good or protest participations. A defining feature of these situations is that the

successful outcome of the coordinated actions is a public good that benefits everyone re-

gardless of whether or not they contributed. This precludes the coordinating actions from

being invariably strategic complements due to free-riding incentives, which is a crucial

departure from the global games literature hitherto.

From a theoretical standpoint, we depart from the Carlsson and van Damme (1993)

framework by assuming that there exists a critical fundamental value where actions dis-

continuously change from being substitutes to complements. The key observation is that,

in the incomplete information version of the game, the risk dominant action can be strictly

dominant around the discontinuity, even though it is nowhere strictly dominant in the

complete information game. This allows for an iterative process similar to the one in

global games to select that action for the entire range of the fundamentals in which it is

risk dominant. We examine the conditions on the utilities around the critical value that

warrant reverberation of the iterative process throughout the risk-dominant region.

We consider a stylised regime change model, vastly studied in the global games lit-

erature, modified to include free riding incentives. Two agents/countries simultaneously

decide whether to take the costly action of adopting carbon emission reducing policies or

not in order to achieve some goal set exogenously by some international authority. Both

agents have a benefit if the goal is achieved but if an insufficient number of agents chooses

to take action, the policy fails, with no benefit to either.

Given a target goal, the actual state of the environment dictates how many agents are

needed to adopt the policy for a success which is modelled as the unobservable (underlying)

fundamental; a continuous random variable. Since the actual state of the environment

is unobserved, agents face uncertainty on the participation needed to achieve the goal.

However, each agent observes a private signal on the state of the environment with a

small random noise, from which they make inferences, before deciding whether to adopt
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a policy. The signal also allows the agent to make inference about the other agent’s signal

and their inference on the fundamental.

We start by characterizing a class of equilibria in which action to protect the environ-

ment will be taken whenever a success is possible (asymptotically as the noise vanishes)

provided that acting is the risk-dominant action whenever actions are strategic comple-

ments. In this equilibrium, referred to as an interval-threshold equilibrium, one agent

participates only when actions feature strategic complements and both agents’ participa-

tion is needed for a success. The other agent adopts the policy both when actions feature

strategic complements, avoiding a coordination failure, and when actions feature strategic

substitutes. For large noise these are not the only equiliria that exist.

The main finding is that the coordination failure is always prevented in any equilib-

rium, because the risk-dominant action uniquely survives iterated eliminations of strictly

dominated strategies so long as the cost of adopting the policy is below a bound which we

identify, for small enough noise. At the borderline signal, where agents’ participations are

equally likely to be strategic complements and substitutes, an agent is pivotal in succeed-

ing with one half probability whether the other agent participates or not. Consequently,

his minimal expected benefit from participating is bounded away from zero however the

other agent mixes between participating and not across her possible signals. If partic-

ipation cost is below this minimal benefit, therefore, participation is strictly dominant

for him upon observing a signal in a small neighborhood of that borderline signal, even

though no action is strictly dominant in the complete information version of the game.

This allows for an iterative procedure to select the risk dominant action for signals in

the interval converging to the values of the fundamentals for which actions feature strate-

gic complements as the noise vanishes. This result applied in the climate action context

provides a positive description to the problems that can be resolved with coordination

between the agents and whether intervention from an authority is necessary to guarantee

coordination.

The rest of the paper is organised as follows. Section 2 discusses the relevant literature.

Section 3 describes the model and the equilibrium concept. Section 4 characterizes interval-

threshold equilibria and discusses equilibria when noise is large. Section 5 establishes the

iterative dominance of risk-dominant actions in the strategic complements region. Section

6 discusses and section 7 concludes.

1.2 Related Literature

The theoretical underpinnings of the model are closely related with the global games

framework, firstly studied by Carlsson and van Damme (1993). They showed that equilib-

rium selection in coordination games is possible if we embed complete information games

in incomplete information environments. The risk dominant action (Harsanyi et al. (1988))
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is the uniquely selected equilibrium. Their framework was later expanded by Morris and

Shin (2001) and Morris and Shin (2002a) who highlighted the effects of public information

in such environments. The framework has been utilized to study coordination issues in

many theoretical and applied papers studying a variety of phenomena. Examples include

Angeletos et al. (2006) who demonstrated how policy interventions can act as an endoge-

nous signal and reintroduce multiplicity, Angeletos et al. (2007) who studied coordination

games in a dynamic environment and many others. This line of literature assumes that ac-

tions feature strategic complements and that utilities are continuous to the fundamentals.

In our environment actions change discontinuously from strategic complements to substi-

tutes. Moreover, main result does not require the existence of two dominance regions, an

assumption commonly made in this framework.

This paper is related to the line of literature that attempts to relax the complements

assumption in global games. Karp et al. (2007) were the first to consider a global game

with the addition of congestion effects. Their result was later challenged by Hoffmann

and Sabarwal (2015) who argued that their existence result was incomplete. Bunsupha

and Ahuja (2018) completed their result fully characterizing an equilibrium for this game

with infinitely switching strategies. They showed that this equilibrium is unique under

any strategy in which the aggregate action is monotone to the state of the fundamentals.

Harrison and Jara-Moroni (2021) expand the global games framework to games that

feature only strategic substitutes with overlapping dominance regions. Unlike us their

payoffs are continuous to the fundamental and they do not consider pure free riding

alongside with coordination incentives.

Equilibrium existence issues in games that feature both strategic substitutes and com-

plements are discussed in Hoffmann and Sabarwal (2019a). While uniqueness in such

environments is considered in Hoffmann and Sabarwal (2019b). Their result is different

from ours since they assume that agents’ utility is continuous to the state. Moreover,

their uniqueness result relies on a contagion argument starting from a dominance region.

If an action is strictly dominant for some realizations of the fundamentals, and if that

dominance region is strong enough (they use a p-dominance condition to measure the

influence of the dominant region to nearby values of the state), then for realizations of the

fundamental close to this dominant region agents will take the same action, allowing an

iterative argument to select an equilibrium. Our result is different to this line of literature

since it relies on the discontinuity between strategic substitutes and complements in order

to establish an iterative process.

Moreover, this paper is related to the literature that employs the global games frame-

work to study collective action problems (Tullock (1971), Olson (1965)). Shadmehr (2018)

study a collective action game where the strength of the regime is commonly known while

there exists uncertainty on the participation cost of the agents. The decision to act de-

pends on that cost and they characterise a symmetric equilibrium with a cutoff strategy.
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Their equilibrium is unique if the uncertainty is not too small. Actions can feature ei-

ther strategic substitutes or complements depending on the commonly known strength

of the regime thus both cannot exist in the same model as in our environment. Morris

and Shadmehr (2020) study a problem where the uncertainty is about the strength of the

regime like us. The benefit that agents receive from a successful collective action however

depends on the individual’s effort, a continuous variable. Thus actions do not necessarily

feature free riding. Their focus is the incentives that a leader needs to provide to het-

erogeneous agents to induce coordination. Other examples that study different aspects of

collective action within this framework include Edmond (2013) who studies information

manipulation in regime change movements; Shadmehr and Bernhardt (2011) who study

the effects that uncertainty about the alternative regimes can have in the participation

decision and others.

Lastly, this paper is subject to Weinstein and Yildiz (2007) critique who demonstrated

that the particular departure from the complete information that is assumed in the global

games framework is with loss of generality. In their paper, they show that the modelling

choice of information can be modified in such a way that any action is uniquely rational-

izable. By considering more general perturbations, they were able to recreate the global

games result for any action. In a later paper Morris et al. (2016) showed that the partic-

ular departure of global games coincides with the epistemic foundation that has players

being agnostic about their rank beliefs. That is players do not know whether their type

is higher compared to their opponents’. Although we restrict ourselves to a less general

class of games by considering the perturbation developed by Carlsson and van Damme,

this form of incomplete information is believed to be suitable for the phenomena that this

paper considers.

1.3 Model

Two risk neutral agents denoted by i ∈ I =
{
1, 2

}
simultaneously make a binary choice

ai ∈
{
0, 1

}
. We refer to ai = 1 as the agent i’s choice to “adopt the carbon reducing

policy”, or simply “act” for short, and ai = 0 as his choice to “not adopt/not act,”

respectively. The two agents’ choices succeed in restoring the environment if the number

of agents who act exceeds θ. The random variable θ ∈ (0, 3) is realized at the beginning

of the game. We interpret θ as the state of the environment which dictates how many

agents need to act to restore it. Each agent receives a benefit of b > 0 if the environment

is restored and the climate goal is achieved. Each agent i incurs a cost ci if they act. We

interpret ci as the needed emission limit that some international institution proposes in

order to achieve an exogenously set goal. A strict limit would imply a large ci for agents.
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Thus, agent i’s utility is

ui(ai, a−i, θ) =

{
b− aici if a1 + a2 ≥ θ

−aici otherwise

and assume b ≥ ci. It is trivial that agent i would never act if b < ci.

We describe the state of nature as “moderate” if θ ≤ 1, “critical” if 1 < θ ≤ 2, and

“irreversible” if θ > 2. If the state is moderate, the two agents’ choices to act are strategic

substitutes as just one acting is enough to restore the environment, generating free-riding

incentives for the agents. If the state is critical, choices to act are strategic complements

since both agents need to act to succeed. If the state of nature is irreversible, clearly both

agents have a strictly dominant choice to not act because regardless of agents’ actions the

environment cannot be restored. The description above is common knowledge, as is the

information structure on θ explained below.

In the complete information benchmark where the value of θ is common knowledge,

multiple equilibria arise due to standard coordination issues. When the state is moderate

and agents’ actions are strategic substitutes, there are two pure-strategy equilibria de-

pending on who acts and a mixed-strategy equilibrium in which both agents randomize

between acting and not. When the state is critical and agents’ actions are strategic comple-

ments, there exist an equilibrium in which neither agent acts (coordination failure) as well

as one in which both act. When θ > 2, there is a unique dominant-strategy equilibrium

where neither agent acts. Importantly regardless how low the cost of adopting the policy

is, all of these equilibria exist since ci > 0. Moreover, notice that ’acting’ is not strictly

dominant for any θ. This is not the case in the incomplete information environment.

We study an incomplete information environment where each agent privately observes

a noisy signal of the underlying fundamental θ drawn from a uniform distribution over

[0, 3]4 Specifically, each agent i observes a signal xi = θ+ ϵi where ϵi is an unbiased noise

independently and identically distributed according to a cdf F supported on [−σ, σ], with

an associated density function f which is symmetric around and single-peaked at 0. Being

interested in the impact of departure from complete information, we assume that the noise

is relatively small, in particular, σ ∈ (0, 1/6). With a slight abuse of notation, we denote

the cdf of the random variable θ + ϵi by F (·|θ) and the density function by f(·|θ), both
with [θ − σ, θ + σ] as their support.

Then, the posterior distribution (cdf) of θ conditional on any signal xi ∈ R is F (·|xi)

is because∫ θ

xi−σ
f(xi|θ′)dθ′∫ xi+σ

xi−σ
f(xi|θ′)dθ′

=

∫ θ

xi−σ
f(xi − θ′)dθ′∫ xi+σ

xi−σ
f(xi − θ′)dθ′

= 1− F (xi − θ) = F (θ − xi) = F (θ|xi),

4The distribution of θ is inessential for qualitative results so long as it has continuous and strictly
positive density on an interval containing [0, 2], but uniform distribution facilitates exposition greatly.
Moreover, for the limit results, as noise vanishes any prior would approximate a uniform distribution.

7



where the third equality is due to symmetry distribution of noise around 0. That is, upon

observing a signal xi, agent i’s posterior belief on θ is also F , centered at θ = xi with a

support [xi − σ, xi + σ]; thus, the posterior distribution F (·|xi) shifts to the right as xi

increases by the same amount: F (θ|xi) = F (θ′|x′
i) if θ

′ − θ = x′
i − xi.

Finally, we assume that the cost of adopting the policy/acting satisfies

c1 + c2 < 1 and c1 ≤ c2.

The first inequality ensures that acting is risk dominant for the range of the fundamentals

for which agents’ choices to act are strategic complements.5 The second inequality is

without loss. When it strictly holds, it implies that agent 1 has a risk dominant action to

act whenever θ ≤ 1 and it is not risk dominant for agent 2 to act is this range of signals.

A strategy of agent i is a measurable function si : R → [0, 1] that specifies, contingently

on every possible signal xi ∈ R, a probability with which agent i chooses to act. Agent

i’s expected utility from taking ai ∈ {0, 1} upon observing a signal xi, conditional on the

other agent’s strategy s−i, is

Ui(ai, s−i, xi) :=

∫ ∫ [
s−i(x−i)ui(ai, 1, θ) + (1− s−i(x−i))ui(ai, 0, θ)

]
dF (x−i|θ) dF (θ|xi).

Let Ui(α, s−i, xi) = αUi(1, s−i, xi) + (1− α)Ui(0, s−i, xi) for α ∈ (0, 1).

Definition 1 A strategy profile (s∗1, s
∗
2) is a Bayesian Nash equilibrium (BNE) if

Ui(s
∗
i (xi), s

∗
−i, xi) ≥ Ui(ai, s

∗
−i, xi) ∀ai ∈ {0, 1}, ∀xi ∈ R, i = 1, 2.

1.4 Interval-threshold equilibrium

We start the analysis with characterising existence of equilibria in the incomplete infor-

mation environment. Ideally, the two agents would like to coordinate on both acting when

θ ∈ (1, 2) and only one of them acting when θ < 1, but this is infeasible because they

observe only noisy signals of θ. Since the noise is small, however, such coordination may

be approximated if one agent acts on all signals roughly below 2, and the other agent acts

on all signals roughly in the interval [1, 2].

We characterize the conditions under which such a strategy profile indeed constitutes a

BNE, specifically where one agent i acts below a threshold x∗
i and the other agent −i acts

in an interval [x−i, x
∗
−i] where max{x∗

1, x
∗
2} ∈ (2− σ, 2 + σ). We refer to such equilibrium

as an interval-threshold equilibrium.

Intuitively, upon observing their respective upper threshold signals, the agent with the

higher threshold, say i with x∗
i > x∗

−i, infers that the state is more likely to be irreversible

5The case where c1 + c2 > 1 would imply that “not act” would be the risk dominant action. This
would trivialise the problem and no agent would act in the strategic complements region in the incomplete
information version of the game.

8



(i.e., θ > 2 is more likely) and also that the other agent is less likely to act, than the other

agent −i does upon observing x∗
−i. Hence, the agent with the higher upper threshold takes

more risk by acting on his upper threshold signal and therefore, his cost of acting should

be lower. We start with this observation stated below (and proved in Appendix).

Lemma 1 In every interval-threshold equilibrium, x∗
2 ≤ x∗

1 where the inequality is strict

if and only if c1 < c2.

An agent brings a benefit of b = 1 to himself by acting when his acting is pivotal in

restoring the environment, namely, when either (i) the state is critical (i.e., 1 < θ < 2)

and the other agent acts or (ii) the state is moderate (i.e., θ < 1) and the other agent

does not. The probability of an agent’s action being pivotal is:

Pv(xi) = Prob(agent −i acts, θ ∈ (1, 2) |xi) + Prob(agent −i not act, θ < 1 |xi) .

(1.1)

Hence, conditional on his signal xi, it is optimal for an agent i to act if the probability

that his action is pivotal exceeds his cost of acting Pv(xi) > ci, not act if Pv(xi) < ci and

he is indifferent between acting and not if they coincide:

Since the LHS (left-hand side) of (1.1) is continuous in xi, (1.1) holds at each boundary

signals x∗
i , x

∗
−i and x−i. We first determine the boundary signal levels from this indifference

condition, then verify optimality at other signals.

1.4.1 Optimality at the boundary signals

We start with the configuration that agent 1 acts below a threshold x∗
1, called a “threshold-

player,” and player 2 acts on signals in an interval [x2, x
∗
2], called an “interval-player”.

Subsequently, we examine the other configuration which is analyzed analogously subject

to suitable modifications due to c1 ≤ c2.

Agent 1 acts on all signals below x∗
1 ∈ (2 − σ, 2 + σ) in the considered configuration.

Observing a signal x2 < x∗
1 − 2σ, therefore, agent 2 infers that agent 1 will act for sure

and thus, that he is pivotal if and only if the state is critical. Since the state must be

critical if x2 > 1 + σ, he should act at signals x2 ∈ (1 + σ, x∗
1 − 2σ), implying that

x2 < 1 + σ < x∗
1 − 2σ < x∗

2.

Moreover, upon observing x2, agent 2 is pivotal with the posterior probability that

the state is critical, 1−F (1|x2). Hence, the indifference condition for agent 2 at the lower

boundary signal x2 simplifies to the first term of (1.1) being equal to c2:

1− F (1|x2) = c2 =⇒ x2 ∈

{
(1− σ, 1] if c2 ≤ 0.5

(1, 1 + σ) if c2 > 0.5.
(1.2)

This equation determines the value of x2 uniquely and independently of x∗
1 and x∗

2.
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To determine the upper threshold levels, note that upon observing their respective

upper boundary signal x∗
i , both agents deduce that the state is never moderate (i.e.,

θ > 1) because 1 + σ < x∗
2 as verified above. Hence, either agent is pivotal if and only if

the state is critical (θ < 2) and the other agent acts, simplifying the indifference condition

at x∗
i to the first term of (1.1) being equal to ci:∫ 2

x∗
1−σ

F (x∗
2|θ) dF (θ|x∗

1) = c1 and

∫ 2

x∗
2−σ

F (x∗
1|θ) dF (θ|x∗

2) = c2. (1.3)

Here, the integrand F (x∗
i |θ) is the probability that agent i would act conditional on θ,

from the perspective of agent −i upon observing x∗
−i. This is clear for agent i = 1, the

threshold-player, because he is supposed to act at all signals below x∗
1; and so is F (x∗

2|θ)
because, upon observing x∗

1, agent 1 infers that x2 is at most 2σ away from x∗
1 > 2 − σ,

hence x2 > 2 − 3σ = 1 + 3σ > x2. Thus, the upper boundary signals x∗
1 and x∗

2 are

determined as the solution to the two equations in (1.3), independently of x2.

As we show in Appendix, there is a unique solution to (1.3) and 1 + 3σ < x∗
2 < x∗

1 ∈
(2− σ, 2 + σ). It is clear that x∗

1, x
∗
2 < 2 + σ because if x∗

i ≥ 2 + σ then the state must be

irreversible (i.e., θ > 2) and there is no chance to restore the environment. If x∗
1 ≤ 2− σ

so that x∗
2 < 2 − σ as well, on the other hand, upon observing their respective upper

boundary signal x∗
i , either agent i would infer that the state must be critical and thus

that he is pivotal when the other agent observes a signal below x∗
−i. The probabilities

for the two agents to be pivotal upon observing x∗
i as such are complementary, implying

that the LHS of the two equations in (1.3) add up to 1, but this would contradict the

assumption that c1 + c2 < 1.

1.4.2 Optimality at non-boundary signals

We have so far determined the boundary signal levels by (1.2) and (1.3) in an equilibrium

where agents 1 and 2 adopt a threshold strategy and an interval strategy, respectively.

We now verify optimality of these strategies at other signals.

Conditional on agent 1’s strategy of acting on all signals below x∗
1, it is straightforward

to see that it is optimal for agent 2 to act precisely at signals x2 ∈ [x2, x
∗
2] because the

expected gain from acting is lower at x2 < x2 than at x2 since the state is less likely to be

critical (while agent 1 will act for sure because x1 ≤ x2 + 2σ < x∗
1); and it increases as x2

increases from x2 because the state is more likely to be critical, until x2 gets high enough

so that the state starts to become more likely to be irreversible and/or the other agent

starts to be less likely to act; at that point the expected gain starts to decline, down to

c2 at x2 = x∗
2 by (1.3) and lower afterward.

Next, we check optimality of agent 1 acting at every x1 < x∗
1. Conditional on agent

2 acting if and only if x2 ∈ [x2, x
∗
2], agent 1’s expected gain from acting on observing a
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signal x1, i.e., the LHS of (1.1), is∫ 1

−∞
F (x2|θ)dF (θ|x1) +

∫ 2

1

[F (x∗
2|θ)− F (x2|θ)]dF (θ|x1). (1.4)

It is verified (in Appendix) that (1.4) decreases in x1 ≤ 1− σ (when the second integral

vanishes), but for x1 ≥ 1 + σ (when the first integral vanishes) it initially increases

then declines (when the posterior probability of agent 2 acting declines), down to c2 at

x1 = x∗
1 and further afterwards. Therefore, it suffices to show that (1.4) exceeds c1 at

every x1 ∈ [1−σ, 1+σ]. Note that F (x∗
2|θ) = 1 in (1.4) for x1 ≤ 1+σ because x∗

2 > 1+3σ

as noted above.

First, consider the case that x2 ∈ (1 − σ, 1], that is, c2 ≤ 0.5 by (1.2). Recall that

agent 2’s expected gain from acting on observing x2 = x2, which equals c2 by definition

of x2, is the probability that θ ∈ (1, 2), i.e., 1− F (1|x2). Thus, upon observing the same

signal x1 = x2, if agent 1 is pivotal with a probability at least 0.5 conditional on θ being

in a subset with a posterior probability at least 2(1 − F (1|x2)), then agent 1’s expected

gain from acting is at least 1− F (1|x2) = c2 ≥ c1. We identify, in Appendix, a subset of

θ that works as such (the top end of feasible θ’s upon observing x1 = x2), and also show

that the argument extends to other signals x1 ∈ (1− σ, 1 + σ). In addition, a symmetric

logic applies to the case that x2 ∈ (1, 1 + σ).

We now consider the alternative configuration in which agent 1 acts in an interval

[x1, x
∗
1] and agent 2 below a threshold x∗

2. Analogously to the previous configuration, the

upper boundary levels x∗
1 and x∗

2 are determined by (1.3) and x1 is determined by the

condition c1 = 1−F (1|x1). In the current configuration, x1 ∈ (1−σ, 1) because c1 < 0.5 by

an analogous reasoning behind (1.2), and the previous analysis for the case x2 ∈ (1−σ, 1)

applies with the roles of agents 1 and 2 swapped. Specifically, conditional on agent 1

acting if and only if x1 ∈ [x1, x
∗
1], agent 2’s expected gain from acting at signal x2 is∫ 2

−∞
F (x1|θ)dF (θ|x2) +

∫ 2

1

[F (x∗
1|θ)− F (x1|θ)]dF (θ|x2) (1.5)

and the minimum value of (1.5) across all x2 < x∗
2 exceeds c1.

Note that (1.5) is a function of c1 because F (x∗
1|θ) = 1 for x2 ∈ (1− σ, 1 + σ) and x1

is determined by c1 = 1 − F (1|x1); hence the minimum value of (1.5) across all x2 < x∗
2

is also a function of c1, which we denote by c̄2(c1). Therefore, the current configuration

constitutes a BNE if and only if c2 ≤ c̄2(c1). Note that in the limit case as c1 → 0 so that

x1 → 1−σ, the value of (1.5) at x2 = 1−σ converges to 0.5. This implies that if c2 > 0.5

then the current configuration fails to be a BNE for sufficiently small c1.

Summarizing the discussion so far, we characterize interval-threshold equilibria as

below.
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Proposition 1 (a) There exists an interval-threshold equilibrium in which agent 1 adopts

the threshold strategy and agent 2 the interval strategy. This equilibrium is unique and

achieves the efficiency of complete information asymptotically as σ → 0.

(b) It is an equilibrium for agent 2 to adopt the threshold strategy and agent 1 the interval

strategy if and only if c2 ∈ [c1, c̄2(c1)] ̸= ∅ where c̄2(c1) is the minimum value of (1.5) across

all x2 < x∗
2 and converges to 0.5 from above as c1 → 0.

Recall that the upper boundary levels x∗
1 and x∗

2, determined by the equation system

(1.3), are the same regardless of which agent adopts the interval strategy. Therefore, both

agents i = 1, 2 act at all signals in their respective range [xi, x
∗
i ] in any interval-threshold

equilibrium, thus largely coordinate when both need to act to restore the environment

(since [xi, x
∗
i ] ≈ [1, 2]). In the next section, an iterated dominance argument shows that

such coordination in the complementary region must prevail in every equilibrium if c2 is

not too large, as noise vanishes.

1.5 Iterative Dominance

Carlsson and van Damme (1993) establish the seminal result in 2-player, 2-action global

games where the players’ utilities change continuously in an underlying parameter θ and

each player observes a noisy signal of θ: if an action, which is risk-dominant in some open

range I of underlying parameter values, is strictly dominant at some θ ∈ I for at least

one player, then it is iteratively dominant at all signals in I for both players in the global

game as the noise vanishes.

Their result does not apply to the model analyzed in the previous section (in particular,

to the complementary region) because no action is strictly dominant at any parameter

values θ < 2. Nevertheless, we show that acting (ai = 1) is strictly dominant at signals

near xi = 1 in the global game, and through an iterative process its dominance extends

to all signals in the complementary region as σ tends to 0. The key property behind this

result is that acting, which is risk-dominant in the complete information game when θ

is above the critical value of 1 (where the utilities are discontinuous), is also sufficiently

attractive even if θ is slightly below 1 and the other agent switches to not acting (a−i = 0).

This may hedge the risk-dominant action sufficiently for it to be the dominant action at

signals near the critical value, initiating the iterative expansion process.

Continuing with the model analyzed in the previous section, recall that an agent i is

pivotal when either θ ∈ (1, 2) and the other agent −i acts or θ < 1 and agent −i does

not. Given a strategy s−i : R → [0, 1] of agent −i, therefore, the probability that agent i
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is pivotal upon observing a signal xi ∈ (1− σ, 1 + σ) is

P (xi|s−i) :=

∫ 1

xi−σ

∫ θ+σ

θ−σ

[1− s−i(x−i)]dF (x−i|θ)dF (θ|xi) +

∫ xi+σ

1

∫ θ+σ

θ−σ

s−i(x−i)dF (x−i|θ)dF (θ|xi)

= F (1|xi) +

∫ ∞

−∞
s−i(x−i)Λ(x−i|xi) dx−i

where Λ(x−i|xi) :=

∫ xi+σ

1

f(x−i|θ)f(θ|xi)dθ −
∫ 1

xi−σ

f(x−i|θ)f(θ|xi)dθ. (1.6)

If P (xi|s−i) > ci for every s−i, then it is the dominant strategy for agent i to act at the

signal xi. To examine when this is the case, we observe that P (xi|s−i) is minimized when

s−i(x−i) = 0 if Λ(x−i|xi) ≥ 0 and when s−i(x−i) = 1 if Λ(x−i|xi) < 0.

Since f(x−i|θ) = f(θ|x−i) due to symmetry, Λ(x−i|xi) is positive (negative, resp) if

θ > 1 is more (less, resp) likely than θ < 1 conditional on observing two signals xi and

x−i. Hence, Λ(x−i|xi) = 0 when x−i and xi are equidistant from 1 in opposite directions,

i.e., x−i = 2− xi, because then θ is equally likely to be above or below 1. Consequently,

Λ(x−i|xi)

{
< 0 if x−i < 2− xi

> 0 if x−i > 2− xi.
(1.7)

Thus, P (xi|s−i) is minimized when s−i(x−i) = 0 for x−i ≥ 2 − xi and s−i(x−i) = 1 for

x−i < 2− xi, which we denote by s̆−i. Let P (xi) := P (xi|s̆−i) denote the minimum value

of P (xi|s−i) across all s−i.

If xi = 1, in particular, s̆−i assigns 0 for x−i ≥ 1 and 1 for x−i < 1. Therefore, P (1)

is the probability, conditional on xi = 1, that θ is below 1 but x−i is above 1, or the

other way around. The two events are equally likely and the probability of the latter is∫ 1+σ

1
F (1|θ)f(θ|1)dθ. Hence,

P (1) = 2

∫ 1+σ

1

F (1|θ)f(θ|1)dθ = 2

∫ 1+σ

1

F (1− θ)f(1− θ)dθ =
1

4

where the last equality follows because
∫ a

−∞ F (x)f(x)dx = F (a)2/2 for any cdf F .6

If xi = 1− σ so that s̆−i assigns 1 for all x−i < 1 + σ, agent i is never pivotal because

θ < 1 for sure and the other agent were to always act, i.e., P (1 − σ) = 0. Analogously,

P (1 + σ) = 0 because if xi = 1 + σ then θ > 1 and the other agent never acts according

to s̆−i(x−i).

As such, the function P (xi) is defined continuously on the interval [1 − σ, 1 + σ]

and assumes strictly positive values in the interior and 0 at the boundaries. For each

c ∈ (0, P (1)), therefore, a largest interval (x(1)(c), x̂(1)(c)) exists on which P (xi) > c.7

Consequently,

6Letting F (x) = t so that f(x)dx = dt,
∫ a

−∞ F (x)f(x)dx =
∫ F (a)

−∞ tdt = F (a)2/2.
7Note that 1− x(1)(c) = x̂(1)(c)− 1 by symmetry.
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[A] it is strictly dominant for an agent i to act at every signal xi ∈ (x(1)(ci), x̂
(1)(ci))

if ci < P (1).

Clearly, 1− σ < x(1)(c1) < x(1)(c2) < 1 < x̂(1)(c2) < x̂(1)(c1) < 1 + σ if c1 < c2 < P (1).

From this initial range of signals on which acting is dominant, we expand the dominant

range of signals iteratively in the usual manner. Given [A], an agent i with a signal

xi ∈ [1− σ, 1 + σ] is pivotal with a probability at least

P
(1)
i (xi) := min

s−i

P (xi|s−i) subject to s−i(x−i) = 1 ∀x−i ∈ (x(1)(c−i), x̂
(1)(c−i)). (1.8)

If 2 − xi < x̂(1)(c−i), the constraint in (1.8) requires s−i to assign 1 to an interval of

signals x−i to which s̆−i assigns 0, increasing the value of mins−i
P (xi|s−i). Therefore,

P
(1)
i (xi) > P (xi) for all xi ∈ [1, 1 + σ], in particular, and consequently, the range of

signals on which acting is (iteratively) strictly dominant for agent i expands to an interval

(x(2)(ci), x̂
(2)(ci)) that contains (x

(1)(ci), x̂
(1)(ci)) and x̂(1)(ci) < x̂(2)(ci).

Repeating the process iteratively, one generates an increasing sequence of upper bound-

aries of dominant ranges {x̂(n)(ci)}n for each agent i. Suppose x̂(n)(ci) ≥ 1 + σ for both

i = 1, 2 for some n, so that both agents are certain that θ > 1 upon observing the bound-

ary signal x̂(n)(ci). Then, the probability of agent i being pivotal on observing xi ≥ x̂(n)(ci)

is minimized when agent −i acts only in the then-dominant range of signals (which ex-

pands every round). Therefore, from then on, each agent’s upper boundary of dominant

range increases by at least the same amount as the other agent’s boundary increased in

the previous round (i.e., x̂(n+1)(ci) − x̂(n)(ci) ≥ x̂(n)(c−i) − x̂(n−1)(c−i)) until it reaches

2 − σ, when the expansion slows down and settles at x∗
i for both players, i.e., the upper

boundary signals of the interval-threshold equilibrium in the previous section. We show

in Appendix that this is indeed the case if c1, c2 < P (1) = 1/4.

Next, we determine x(∞)(ci), the lower end of the signal range for which acting is

iteratively dominant for agent i. Given that it is iteratively dominant for both agents to

act at every xi ∈ (x(1)(ci), x
∗
i ) as shown above, upon observing a signal xi ∈ (1−σ, x(1)(ci)),

the probability that agent i is pivotal is minimized when s−i(x−i) ≡ 1 by (1.6). Thus, the

minimized value is 1 − F (1|xi) which increases in xi from 0 at xi = 1 − σ and exceeds

c2 at all xi ∈ (x(1)(ci), 1) as shown in [A] above. Consequently, x(∞)(ci) is the signal

xi ∈ (1− σ, x(1)(ci)) that solves 1− F (1|xi) = ci for i = 1, 2. Note that this is xi defined

in the previous section, namely, the lowest signal at which the interval-player acts in

the interval-threshold equilibrium, which we now denote as x(ci) to be explicit about its

dependence on ci (but not on i).

Proposition 2 It is iteratively strictly dominant for agent i to act at every signal in the

interval [x(ci), x
∗
i ) ⊃ [1, 2− σ] if c1 ≤ c2 < P (1) = 1/4.

We stated the result for c1, c2 < 1/4, but this is not necessary. Note that the lower c1 is,

the larger is the initial signal range where acting is dominant for agent 1, (x(1)(c1), x̂
(1)(c1)).
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This in turn means that a larger dominant signal range for agent 2 in the next stage,

(x(2)(c2), x̂
(2)(c2)), and so on. As a result, the conclusion of Proposition 2 holds for higher

c2 (that goes above 1/4) if c1 is lower.

Finally, it is straightforward to show that agent i never acts at any signal xi > x∗
i in

every equilibrium, leading to the following characterization of equilibrium in conjunction

with Proposition 2.

Corollary 1 If c2 < 1/4, in every equilibrium both agents act for sure at all xi ∈
(xi, x

∗
i ) ⊃ [1, 2− σ] and never acts at any signal xi > x∗

i .

We already established that it constitutes an equilibrium that agent i acts if and only

if xi ∈ (xi, x
∗
i ) and agent −i acts if and only if x−i < x∗

−i. This implies that the range

of signals where the risk dominant actions are iteratively dominant cannot be expanded

beyond (xi, x
∗
i ).

Section 5 demonstrated how low agents’ costs facilitate uniqueness in the complements

region. An important observation is that there is a friction between uniqueness in the

strategic complements and substitutes region. By allowing equilibrium selection in the

strategic complements region, we make it harder for equilibrium selection in the strategic

substitutes region to be achieved. This is a known friction in the literature as demonstrated

at Guesnerie (2004). They argue that conditions that facilitate equilibrium selection in

a game of strategic complements will have the opposite effect in a game with strategic

substitutes. In our game this is incorporated in the players’ costs. For high enough costs

we can achieve uniqueness in the strategic substitutes region but we will have multiplicity

in the complements region. On the contrary, low costs result in a unique equilibrium in

the complements region but multiplicity in the substitutes region. This is highlighted in

the next proposition.

Proposition 3 It is iteratively strictly dominant for agent 1 to act and agent 2 not to

act at every signal xi < 1 if c2 > 3/4.

Notice that equilibrium selection in the strategic substitutes region implies multiplicity

whenever the fundamentals exhibit strategic complements and vice versa. This in turn in

the context of the model discussed above implies a potential source of inefficiency. Notice

that in the case where c1 < c2 the socially optimal outcome would require agent 1 acting

whenever θ ∈ (0, 1] while both agents act whenever θ ∈ (1, 2). This way, the environment

is restored with the least possible cost.
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1.6 Discussion

The analysis so far provides a description of the situations where agents will coordinate

in taking the climate action, avoiding a coordination failure, whenever both agents’ par-

ticipation is needed. The observation that if agents’ participation cost is low enough,

coordination is guaranteed can be crucial for an institution that attempts to coordinate

agents in adopting climate friendly policies. Notice that such an institution would attempt

to coordinate agents by setting a goal which would imply the costs that agents will have

to occur in order to succeed in lowering global temperature. If the goal is too ambitious,

for example, and requires a large change in production, then it is associated with larger

costs. The model implies that picking the correct goal may have large consequences for

coordination and provides a framework to study these issues.

Moreover, in our attempt to focus on the coordination incentives of the issue, we

have abstracted from other strategic interactions that the problem presents. For example,

one could expand the analysis by studying a two stage game to include communication

or negotiations that may lead to commitment. Even though commitment would likely

facilitate coordination, when considering issues like climate change it has been proved

hard to implement. Whether meaningful communication in such an environment where

agents may face different incentives is possible is a question that we leave for future

research.

Lastly, the work so far has focused on a two player binary action model. Naturally,

when one thinks of issues like climate change should include more agents that are hetero-

geneous not only with respect to their cost from acting but also to the respective benefit

they get from a resolution of the issue as well as the impact their action has. Inclusion of

such elements would significantly complicate the analysis since agents in this case would

not only face either strategic substitutes or complements like in the model above but in

cases actions can feature both strategic substitutes and complements with those incentives

changing at different points for different agents. Nevertheless, this paper indicates that

studying those issues in an incomplete information environment, and carefully considering

the different strategic interactions between agents can have strong implications about the

situations where a coordination failure will be avoided.

1.7 Conclusion

Climate change is one of the most urgent issues of our time. Despite specialists’ warnings,

countries seem reluctant to implement the measures suggested by international institu-

tions and under the current predictions they will fail to achieve the proposed goal. At the

heart of the problem lies the public good characteristic of the issue. All interested parties

would like to free ride others’ effort and not contribute by participating and taking costly

green measures. Even in the presence of large consequences due to the effects of climate
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change, when agents have a strong incentive to coordinate their effort, it is not clear that

they can avoid a coordination failure. This paper studies these issues in an incomplete

information environment and describes under which conditions coordination is the unique

game theoretic prediction of the strategic interaction.

Two large players decide whether to take climate action or not, after observing noisy

signals about the state of the environment. If the state is moderate only one agent needs

to adopt climate policies in order to restore the environment, while both agents’ participa-

tion is needed if the state is critical. Actions can thus exhibit either strategic substitutes

or complements with the possibility of a self-fulfilling coordination failure. The key impli-

cation of the model is that there exist utility levels such that a coordination failure will

always be prevented, in the incomplete information environment of the game. The same

utility levels would not guarantee coordination in the complete information game. This

provides a description of the types of problems that can be solved with coordination.

From a theoretical standpoint, we study a 2-player, 2-action coordination game in

which agents’ actions can feature either strategic complements or substitutes. The depar-

ture from the previous literature stems from actions changing between substitutes and

complements discontinuously to the underlying fundamental. We observe that around the

critical level of the fundamental value, where such discontinuity occurs, agents can have

a strictly dominant action in the incomplete information game even though no action is

strictly dominant in the complete information version. That is because the risk dominant

action from one side of the discontinuity, depending on agents’ utilities, can be sufficiently

attractive to the agents, in the contingency that their opponent takes the opposite action,

on the other side of the discontinuity. This allows for an iterative process similar to the

one developed in Carlsson, van Damme (1993) to select that action as the unique predic-

tion for all fundamental values for which it remains risk dominant. We derive conditions

on the utilities of the agents that allow for such iterative process to take hold.
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1.8 Appendix

Proof of Lemma 1. Consider the agent i whose upper threshold is higher, i.e., x∗
i ≥ x∗

−i.

Upon observing x∗
i > 2 − σ, this agent infers θ > 1 and thus that he is pivotal if θ < 2

and the other agent observes a signal to act, the likelihood of which is equal to ci by

(1.1). The probability that the other agent −i observes a signal to act, however, is less

than 0.5 because x−i is equally likely to be above and below x∗
i and x∗

−i < x∗
i , from

which we deduce that ci < 0.5. Since this probability is positive, we also deduce that

x∗
−i > x∗

i −2σ > 2−3σ > 1+σ. Then, upon observing x∗
−i, agent −i also infers θ > 1 and

thus that he is pivotal if θ < 2 and the other agent observes a signal to act, the likelihood

of which is equal to c−i.

Since x∗
i > x∗

−i > 1+ σ, the posterior probability that θ ∈ (1, 2) is higher at the signal

x∗
−i than at x∗

i , and the probability of the other agent observing a signal to act conditional

on agent i observing x∗
i is no higher than 0.5. Thus, if the agent i observes a signal to

act with a probability exceeding 0.5 conditional agent −i observing x∗
−i, then ci < c−i

ensues, i.e., i = 1. This is clearly the case if agent i is the threshold-player. If agent i is the

interval-player, then xi < 1+ σ because he should act upon observing a signal xi = 1+ σ

given that θ > 1 for sure and agent −i acts with prob at least 0.5, as well as ci < 0.5.

Thus, [xi, x
∗
i ] is an interval of length exceeding 2σ and contains x∗

−i, hence the agent i

observes a signal to act with a probability exceeding 0.5 conditional agent −i observing

x∗
−i.

Proof of Proposition 1. We provide the deferred proofs.

(1) To show there is a unique solution to (1.3) and 2− 3σ < x∗
2 < x∗

1 ∈ (2− σ, 2 + σ).

We have shown in the main text that x∗
2 ≤ x∗

1 ∈ (2 − σ, 2 + σ). For agent 1 to be

indifferent between acting and not at x∗
1, he should be pivotal with a positive probability,

which implies that x∗
2 > x∗

1 − 2σ > 2− 3σ.

Next, suppose there are two solutions to (1.3, denoted by (x∗
1, x

∗
2) and (x′

1, x
′
2) where

x′
1 = x∗

1 − r < x∗
1 wlog. Then, (1.3) dictates that∫ 2

x∗
1−σ

F (x∗
2 − θ + σ)f(θ − x∗

1 + σ)dθ = c1 =

∫ 2

x∗
1−r−σ

F (x′
2 − θ + σ)f(θ − x∗

1 + r + σ)dθ.

Note that the RHS evaluated at x′
2 = x∗

2 − r, is
∫ 2+r

x∗
1−σ

F (x∗
2 − θ̃ + σ)f(θ̃ − x∗

1 + σ)dθ̃ > c1

by change of variable θ̃ = θ + r. This implies that x′
2 < x∗

2 − r. On the other hand,∫ 2

x∗
2−σ

F (x∗
1 − θ + σ)f(θ − x∗

2 + σ)dθ = c2 =

∫ 2

x′
2−σ

F (x∗
1 − r − θ + σ)f(θ − x′

2 + σ)dθ

by (1.3), but the RHS evaluated at x′
2 = x∗

2−r, is
∫ 2+r

x∗
2−σ

F (x∗
1− θ̃+σ)f(θ̃−x∗

2+σ)dθ̃ > c2.

This implies that x′
2 > x∗

2 − r (because the RHS of the previous displayed equation
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decreases in x′
2 due to symmetry and single-peakedness of f), contradicting the earlier

assertion x′
2 < x∗

2 − r. Note that this argument presumes x∗
2 + σ > 2. If x∗

2 + σ < 2 then

since θ < 2 is evident to agent 2 upon observing x∗
2 or x′

2, x
∗
1 − x∗

2 = x′
1 − x′

2 must hold,

again contradicting x′
2 < x∗

2 − r.

(2) To show (1.4) decreases in x1 ≤ 1 + σ; for x1 ≥ 1 + σ, it initially increases then

declines.

The derivative of (1.4) wrt x1 is

−
∫ 1

−∞
F (x2|θ)f ′(θ|x1)dθ −

∫ 2

1

[F (x∗
2|θ)− F (x2|θ)]f ′(θ|x1)dθ. (1.9)

Note that f is symmetric around and single-peaked at θ = x1, that is, f
′(θ|x1) = −f ′(2x1−

θ|x1) > 0 for θ ∈ (x1 − σ, x1], which is used repeatedly in the reasoning below. For

x1 ≤ 1 − σ, only the first term is relevant (the second term vanishes) which is negative

because F (x2|θ) decreases in θ ∈ [x1 − σ, x1 + σ]. For x1 ≥ 1 + σ, only the second

term is relevant (the first term vanishes). F (x∗
2|θ) = 1 for θ ≤ x∗

2 − σ, decreases for

θ ∈ (x∗
2 − σ, x∗

2 + σ) and is 0 for θ ≥ x∗
2 + σ. F (x2|θ) = 1 for θ ≤ x2 − σ, decreases for

θ ∈ (x2 − σ, x2 + σ) and is 0 for θ ≥ x2 + σ. Since x∗
2 − x2 > 2σ, F (x∗

2|θ) − F (x2|θ)
increases for θ ∈ (1, x2) if nonempty, then stay constant at 1 until θ = x∗

2 − σ (hence, for

an interval of θ of length at least 2σ), from which point it declines down to 0 at θ = x∗
2+σ.

Due to symmetric and single-peaked f , therefore, as x1 increases from 1 + σ the second

term of (1.9) is positive, then 0 for a while before turning to negative. This means that

for x1 ≥ 1 + σ, (1.4) initially increases then declines down to c2 at x1 = x∗
1 and further

afterwards.

(3) To show that (1.4) exceeds c1 at every x1 ∈ [1− σ, 1 + σ].

Focus on the highest possible θ’s with a posterior probability 2(1 − F (1|x2)) upon

observing x1 = x2, that is, the interval [θ̂, x2 + σ] where 1 − F (θ̂|x2) = 2(1 − F (1|x2)).

Agent 1’s action is pivotal with a probability greater than 0.5 conditional on θ ∈ [θ̂, x2+σ],

because then θ is equally likely to be above and below 1 (by construction) and

F (x2|θ) > F (x2|θ′) ⇐⇒ F (x2|θ) + 1− F (x2|θ′) > 1 if θ < 1 < θ′, (1.10)

that is, the average probability that agent 1’s action is pivotal between any two θ, θ′ ∈
[θ̂, x2+σ], one below 1 and the other above 1, exceeds 0.5. This implies that (1.4) exceeds

1− F (1|x2) = c2 at x1 = x2.

The same conclusion obtains when agent 1 observes x1 > x2 as well, because then θ

is more likely to be above than below 1 subject to θ being in the top interval of possible

θ’s of measure 2(1−F (1|x2)) and, in addition to (1.10), we have 1−F (x2|θ) > 0.5 for all

θ > 1. The same also holds at x1 < x2, because then it is straightforward to verify that

agent 1’s action is pivotal with a probability exceeding 0.5 both conditional on θ < 1 and

conditional on θ ∈ (1, 2).
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Therefore, if x2 ∈ (1− σ, 1), i.e., c2 ≤ 0.5, then the minimum value of (1.4) across all

x1 < x∗
1 exceeds c2, hence exceeds c1 as well, establishing it to be an equilibrium for agent

1 to adopt the threshold strategy below x∗
1 and agent 2 the interval strategy on [x2, x

∗
2].

Next, consider the case that x2 ∈ (1, 1 + σ) so that c2 > 0.5 by (1.2). Note the

symmetry between this and the previous case: agent 1’s action is pivotal if both θ and

x−i are one the same side (below or above) of 1 and x2, respectively, except that x2 is

on the opposites of 1 in the two cases. From this symmetry it follows that the value of

(1.4) at x1 ∈ (1− σ, 1 + σ) in one case coincides with the value of (1.4) in the other case

when x1 is equidistant from 1 in the other direction and consequently, that the minimum

value of (1.4) among all x1 < x∗
1 is also the same in the two cases. Since this minimum

value has been shown to exceed c1 when c2 < 0.5 above, so it must when c2 > 0.5 as well,

establishing it to be an equilibrium for agent 1 to adopt the threshold strategy below x∗
1

and agent 2 the interval strategy on [x2, x
∗
2].

Proof of Proposition 2. Recall the iterative process that generates an increasing

sequence of upper boundaries of dominant ranges {x̂(n)(ci)}n for each agent i. It remains

to verify that limn→∞ x̂(n)(ci) = x∗
i for i = 1, 2 if c1, c2 < P (1) = 1/4.

Note that this will indeed be the case if the upper boundary x̂(1)(ci) is already above

1 + σ after the first round, i.e., ci ≤ minxi∈[1−σ,1+σ] P
(1)
i (xi) for i = 1, 2. For ci > 0 small

enough, this is the case because x̂(1)(ci) → 1 + σ as ci → 0 and thus, P
(1)
i (xi) is bounded

away from 0 on [1− σ, 1 + σ].

From construction of the sequence of dominant intervals {(x(n)(ci), x̂
(n)(ci))}n, it is

clear that (x(n)(ci), x̂
(n)(ci)) ⊂ (x(n)(c′i), x̂

(n)(c′i)) for each n and i = 1, 2, if ci ≥ c′i for

i = 1, 2. Therefore, if x̂(∞)(c′i) < 1 + σ for some i and some (c′1, c
′
2), then x̂(∞)(c1) =

x̂(∞)(c2) < 1 + σ for c1 = c2 = min{c′1, c′2}. Moreover, since x̂(n)(ci) is continuous in ci
when c1 = c2, there is some c > 0 such that x̂(∞)(c1) = x̂(∞)(c2) = 1+σ for (c1, c2) = (c, c).

This means that for (c1, c2) = (c, c), we have c being equal to

P
(∞)
i (1 + σ) = min

s−i

P (1 + σ|s−i) subject to s−i(x−i) = 1 ∀x−i ∈ (x(∞)(c−i), x̂
(∞)(c−i))

≥ P (1 + σ|s−i) where s−i(x−i) = 1 ⇔ x−i ∈ (−∞, 1− σ] ∪ [1, 1 + σ]

> 1/4

where the weak equality is due to (1.6) and the strict inequality ensues because the regime

is strong for sure on xi = 1 + σ, given which Prob(x−i ∈ [1, 1 + σ]) > 1/4, contradicting

c < P (1) = 1/4.

Proof of Proposition 3.

See Corollary 2.2 and its discussion in the next Chapter.
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Chapter 2

Global Games without Dominance
Solvable Games
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2.1 Introduction

Game theory has long been a primary theoretic framework in economic analysis, yet its

predictive power and usefulness are marred by multiple equilibria that often arise even

in basic economic models such as coordination games. The problem is attributed at least

partly to excessive rationality and perfect knowledge of the game assumed on players, and

equilibrium selection has been fruitful through requiring robustness to slight perturbations

in such aspects, e.g., Harsanyi (1973a) and Selten (1975), among others.

Even between two strict Nash equilibria, Carlsson and van Damme (1993) show that

the risk-dominant equilibrium (Harsanyi and Selten, 1988; defined later) can be selected

if the payoffs of the game to be played are determined continuously by an underlying

state/fundamental and the players observe only private signals of the underlying state

with small noises. This framework, known as “global games,” has been widely adopted to

study coordination issues in various economic and social phenomena (see below) owing to

its appealing structure of informational incompleteness. The authors note, however, that

the result depends critically on the existence of a subclass of dominance solvable games

(for some underlying states) that serve as take-offs for the iterated dominance argument

(p. 992). Then, the equilibrium action of the dominance solvable games will become iter-

atively dominant when nearby states are observed if it is risk-dominant in those states,
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because the players will then assign high enough probability to their opponent playing

that equilibrium given the strategic uncertainty caused by small noise in observation.

We show that the same result can be obtained even if no dominance solvable game

exists because the initial dominance could be forged from strategic uncertainty in the

global game. To see the basic idea, consider two friends who will commonly benefit when

a task is completed, which may require just one or both of them to work depending on

the underlying state. Individually, work will be beneficial only if the other also works

in case both are required, but only if the other doesn’t otherwise (free riding). Hence,

work is dominant in neither state (whether one or both are needed). If both states are

equally likely based on the observed signals, however, work would bring benefit with 50%

chance no matter what, thus would be the dominant action so long as the cost of work is

small relative to the benefit. We study when the iterated dominance may start off from

dominance in the global (rather than the underlying) game due to strategic uncertainty

and progress to cover the entire risk-dominant region.

If payoffs of the game are continuous everywhere in the underlying state, dominant

actions cannot emerge in the global game without dominance solvable games (hence the

quote above) because players know the payoffs arbitrarily precisely for small noise. There-

fore, our results rely on discontinuous changes in payoffs for the iterated dominance to

take off. In financial markets, for instance, returns from investments may change discon-

tinuously if different monetary policies will be adopted depending on whether the value of

the fundamental turns out to be above or below a threshold. Discrete changes in payoffs

also tend to arise in situations where a public good can be provided with varying degrees

of coordination depending on the underlying state. For example, in a democracy move-

ment aimed at toppling a repressive regime, a full uprising may be needed to succeed if

the regime is strong (e.g., if the fundamental, capturing the regime’s strength, is above

a threshold level) but a modest turnout may suffice otherwise. Then, participations in

the protest are strategic complements in the former case, but strategic substitutes in the

latter where free-riding incentives are inherent. Our analysis pertains to such situations

which have not yet been addressed in the global game literature.

Formally, we extend two-person, two-action global games studied in Carlsson and van

Damme (1993) to environments where strategic uncertainty in the global game kicks off

(as well as advances) iterated elimination of strictly dominated strategies. Suppose an

action pair, say (a1, a2), is the risk-dominant equilibrium for underlying states above a

certain critical level. A risk-dominant equilibrium is a strict equilibrium with a greater

product of deviation losses than the other strict equilibrium. Hence, the actions a1 and

a2 are optimal relative to each other but suboptimal relative to the other action of the

opponent, say bi, for states above the critical level.

Let us ask when a player, say 1, may find the action a1 to be his dominant choice

in the global game upon observing the critical level as his signal (so that the underlying
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state may be on either side). Dominance requires a1 to be uniquely optimal whatever

agent 2 does, accounting for uncertain underlying state. Since a1 is optimal relative to

a2 but not to b2 in states above the critical level as mentioned, at minimum a1 has to

be optimal relative to b2 in some states below the critical level. This observation leads to

a necessary condition for an iterated elimination process to take off, namely, either the

risk-dominant action αi is strictly dominant or the two actions are strategic substitutes

immediately below the critical level for at least one player.

Once the iteration process progressed enough so that, conditional on the boundary

signal of the dominance range, the dominant choices must be risk-dominant for any pos-

sible underlying state (given small noise), then a standard logic in global games ensures

that the iteration continues to cover the entire risk-dominant range of signals. In Carlsson

and van Damme (1993), this is warranted because the initial dominance range starts from

dominance solvable states which are even more conducive (than risk-dominant states) to

subsequent dispersion of the dominant choices. This logic carries over to our environments

provided that the risk-dominant action (above the critical level) suddenly becomes strictly

dominant below the critical level.

Our main results concern the alternative case that the initial dominance stems from

strategic uncertainty in the global game, without strict dominance anywhere. In such

circumstances, extra conditions are needed for the iteration to progress enough because

initial dominance and early expansion can be more limited. Essentially, the actions need be

sufficiently strong strategic substitutes below the critical level, so that the risk-dominant

action is more beneficial in case the other player plays the other action. As a result, it is

dominant more widely, facilitating the expansion.

Combining the two conditions discussed above (i.e., for take-off and enough progress),

we provide sufficient conditions on payoffs at the critical level, that warrant iterated selec-

tion of the risk-dominant equilibrium. Unsurprisingly, the details of the conditions depend

on certain key aspects of players’ payoffs and on noise structure. We also provide, where

possible, more restrictive sufficient conditions that can be easily checked with payoffs only

(independently of noise structure) and apply them to a stylized regime change model to

illustrate their potential usefulness.

Related Literature. Global games were first introduced by Carlsson and van Damme

(1993) for two-person, two-action games as an equilibrium selection mechanism, and ex-

tended to arbitrary number of players and actions by Frankel et al. (2003). The framework

has subsequently been fruitfully utilized to study coordination issues in various economic

and social situations. Morris and Shin (1998) apply it to study potential causes of currency

attacks and policy implications for curtailing them; Morris and Shin (2002) and Hellwig

(2002) scrutinize the impact of public signals that players may receive in addition to pri-

vate signals; Angeletos, et al. (2006) examine signalling effects of policy interventions in

financial contexts; Angeletos, et al. (2007) extend the analysis to dynamic settings where
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agents take actions in multiple periods and learn about the fundamental over time;Jullien

and Pavan (2019) study the effects of information management in platform markets. This

is only a partial list.

Several authors adopt the framework to specifically address collective action/regime

change issues. Shadmehr and Bernhardt (2011) investigate novel implications of the strate-

gic interactions emerging from uncertain payoffs. Edmond (2013) studies how information

technology interacts with regime’s survival. Morris and Shadmehr (2020) characterize how

to optimally inspire heterogeneous revolutionaries.

Almost all papers above focus on environments where actions feature strategic com-

plements, but studies also exist that focus on strategic substitutes. Hoffman and Sabarwal

(2019) extend the original global game arguments to multi-person, multi-action games al-

lowing strategic substitutes by imposing a suitable p-dominance condition. Harrison and

Jara-Moroni (2021) obtain unique equilibrium in multi-person, binary action games of

strategic substitutes under a certain payoff asymmetry.

Our model accommodates both strategic complements and substitutes, in particular,

allowing for free-riding incentives which have not been addressed in global games hitherto.

Crucially, we show how and when the global game approach works even without dominance

solvable games, opening up new scope for application.

The paper is organized as follows. Section 2 illustrates the core insights behind our

main result in a stylized regime change model. Section 3 describes the model. Section

4 presents the main findings and analysis. Section 5 concludes and Appendix contains

deferred proofs.

2.2 Illustration – a stylized regime change model

Two agents indexed by i ∈ {1, 2} simultaneously make a binary choice ai ∈ {0, 1}. We

refer to ai = 1 as the agent i’s choice to “attack the regime,” or simply “act” for short,

and ai = 0 as his choice to “not attack/not act.” The two agents succeed in overthrowing

the regime if the number of agents who attack/act exceeds the strength of the regime,

denoted by θ, which is a random variable uniformly distributed over (0, 2). Each agent i

receives a benefit of b = 1 if the regime is overthrown and incurs a cost ci ∈ (0, 1) if he

acts. Thus, agent i’s utility is

ui(ai, a−i, θ) =

{
b− ai · ci if a1 + a2 > θ

− ai · ci otherwise.

We say the regime is “weak” if θ ∈ (0, 1) and “strong” if θ ∈ [1, 2). If the regime is

weak, the two agents’ choices to act are strategic substitutes as just one attack is enough

to topple the regime. If the regime is strong, choices to act are strategic complements

since both agents need to act to succeed. The description above is common knowledge, as

is the information structure on θ explained below.

24



In the complete information benchmark where the value of θ is common knowledge,

multiple equilibria arise due to standard coordination issues. If the regime is weak and

agents’ actions are strategic substitutes, there are two pure-strategy equilibria depending

on who acts. When the regime is strong and agents’ actions are strategic complements,

there exist an equilibrium in which neither agent acts (coordination failure) as well as one

in which both act.

We study an incomplete information environment, or a global game, where each agent

privately observes a noisy signal of the regime’s strength θ before action choice, but

not θ. Specifically, each agent i observes a signal xi = θ + ϵi where ϵi is an unbiased

noise identically and independently distributed according to an atomless cdf F supported

on [−σ, σ], with an associated density function f assumed to be symmetric around 0

in this illustration. Hence, the two agents observe signals within 2σ of each other, i.e.,

|x1 − x2| < 2σ. We consider small noise, i.e., σ is small.

The agents’ costs of acting are assumed to satisfy

c1 + c2 < b = 1 and c1 < c2. (2.1)

By the first inequality, it is the risk-dominant equilibrium for both agents to act if θ ∈
[1, 2), i.e., if agents’ choices to act are strategic complements; by the second, it is risk-

dominant for agent 1 to act and agent 2 to not act if θ < 1, i.e., if choices to act are

strategic substitutes. (We define risk-dominant equilibrium formally in (2.4) below.)

A strategy si of agent i specifies a probability si(xi) with which agent i chooses to act,

contingently on every possible signal xi ∈ X := (−σ, 2+σ). Agent i’s expected utility from

taking ai ∈ {0, 1} upon observing a signal xi, conditional on the other agent’s strategy

s−i, is

Ui(ai, s−i, xi) :=

∫ ∫ [
s−i(x−i)ui(ai, 1, θ) + (1− s−i(x−i))ui(ai, 0, θ)

]
dF (x−i|θ) dF̃ (θ|xi).

where F (·|θ) is the distribution of each agent’s signal conditional on θ and F̃ (·|xi) is the

posterior distribution of θ conditional on observing the signal xi. Upon observing a signal

xi, it is strictly dominant for agent i to act (ai = 1) if

Ui(1, s−i, xi) > Ui(0, s−i, xi) for every strategy s−i of agent −i.

Clearly, no action choice is strictly dominant in the complete information game (i.e.,

when θ is known) for any θ ∈ (0, 2). However, we show that it is strictly dominant for

both agents to act upon observing the signal xi = 1 in the global game if ci < 1/4; and

also that it is iteratively dominant for both to act at every signal xi ∈ (1, 2) as σ tends

to 0.

Each agent i brings a benefit of b = 1 to himself by acting when his acting is pivotal

in overthrowing the regime, namely, when either

(i) the regime is strong (i.e., 1 ≤ θ) and the other agent acts, or
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(ii) the regime is weak (i.e., θ < 1) and the other agent does not act.

Thus, the probability that his action is pivotal conditional on his signal xi is

Pv(xi) := Prob(agent −i acts, 1 ≤ θ |xi) + Prob(agent −i not act, θ < 1 |xi),

and upon observing his signal xi, it is uniquely optimal for agent i to act if Pv(xi) > ci,

and uniquely optimal for agent i to not act if Pv(xi) < ci.

Note from (i) and (ii) above that each agent i is least likely to be pivotal if the other

agent were to act (not act, resp.) when the regime is more likely to be weak (strong,

resp.). Suppose that agent i observes the borderline signal xi = 1, so that the regime is

equally likely to be weak or strong based on his signal alone. Then, the regime is more

likely to be weak (strong, resp.) if the other agent observes a signal x−i < 1 (x−i > 1,

resp.). Hence, agent i is least likely to be pivotal upon observing xi = 1 if the other agent

were to act when x−i < 1 and not otherwise: in this case agent i is pivotal when θ is above

1 but x−i is below 1, or the other way around. Since the two events are equally likely and

the probability of the former is
∫ 1+σ

1
F (1|θ)dF̃ (θ|1), agent i is pivotal at xi = 1 with a

probability at least

2

∫ 1+σ

1

F (1|θ)dF̃ (θ|1) = 2

∫ 1+σ

1

F (1− θ)f(1− θ)dθ = 2

∫ 0

−σ

F (θ)f(θ)dθ =
1

4
.

Here, the first equality follows because F̃ (θ|1) = 1−F (1−θ) so that dF̃ (θ|1) = f(1−θ)dθ,

and the last equality obtains because for any cdf F on R we have∫ z

−∞
F (θ)f(θ)dθ =

∫ F (z)

0

ϑdϑ =
F (z)2

2
(2.2)

by a change of variable as ϑ = F (θ) so that dϑ = f(θ)dθ. Thus, Pv(1) ≥ 1/4.

If ci < 1/4, therefore, it is strictly dominant for agent i to act on the borderline signal

xi = 1, and so it is for nearby signals as well by continuity. Hence, there is a largest

interval containing 1, denoted by (x1
i (ci), x̂

1
i (ci)), such that

[A] it is strictly dominant for agent i to act at every signal xi ∈ (x1
i (ci), x̂

1
i (ci)) if

ci < 1/4.

From this initial range of signals on which acting is dominant, we expand the domi-

nance range of signals iteratively. Recall that each agent is least likely to be pivotal when

the other agent acts when θ is more likely to be below 1 and not act otherwise. Thus,

both agent acting as per [A], in particular on signals in [1, x̂1
i (ci)), increases each other’s

likelihood to be pivotal at signals above 1. Hence, the dominance range of signals expands,

in particular, to a higher upper boundary denoted by x̂2
i (ci) > x̂1

i (ci).

Repeating the process iteratively, one generates an increasing sequence of upper bound-

aries of dominance ranges, {x̂n
i (ci)}n. If x̂n

i (ci) ≥ 1 + σ for both i ∈ {1, 2} in some round

n, observing a signal above his boundary x̂n
i (ci), agent i is certain that the regime is

strong (1 ≤ θ) and thus he is pivotal whenever the other agent −i acts. Since agent
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−i acts on her dominance range at minimum, agent i’s upper boundary moves up to a

level where he is indifferent between acting and not when agent −i acts precisely on her

dominance range. From then on, each agent’s upper boundary of the dominance range

increases at least as much as the other agent’s boundary increased in the pervious round

(i.e., x̂n+1
i (ci)− x̂n

i (ci) ≥ x̂n
−i(c−i)− x̂n−1

−i (c−i)) until at least it reaches 2− σ, because the

probability that the other agent’s signal falls in the range with an increased boundary is

no lower if one’s own signal increased as much or less.

It remains to verify that the upper boundaries indeed surpass 1 + σ, so that acting is

risk-dominant for any possible underlying state when the boundary signal is observed. This

would be nonissue if the underlying game was continuous in θ and acting was dominance

solvable at θ = 1 (as in the framework of Carlsson and van Damme) because then,

conditional on the boundary signal of the initial dominance range, acting would be either

risk-dominant or dominance solvable in underlying states for small noise, and the latter

states are even more conducive to acting.

The situation differs in our setting because initial dominance stems from strategic

uncertainty without dominance solvability, thus is governed by the size and structure of

noise. But if, in each round n with x̂n
i (ci) < 1 + σ, the other agent −i finds it dominant

to act upon observing a signal x−i = x̂n
i (ci), two agents’ upper boundaries top each other

every round until they reach 1+ σ. This is verified to be the case if ci < 1/4 according to

a sufficient condition obtained in the next section (Corollary 2).

To recap, acting is iteratively dominant in the risk-dominant region if ci < 1/4, because

then (i) acting is strictly dominant at the borderline signal xi = 1 in the global game,

starting off an iteration process, and (ii) the upper boundaries of the dominance range

of signals surpass 1 + σ, allowing the iteration cruise all the way. In the next section, by

elaborating these two conditions we derive sufficient conditions for risk-dominant choices

to be iteratively dominant in general 2-player, 2-action global games. Applied to the model

in this illustration, the findings also imply that if 3/4 < c2, it is iteratively dominant for

agent 1 to act and agent 2 to not on all signals xi < 1.

Remark. The regime change game may be modified as follows: the underlying state

θ ∈ (0, 1) is the probability that it takes both agents to act to topple the regime (a

contingency described as the regime being strong), while either agent acting alone is

enough with probability 1 − θ (a contingency described as the regime being weak); and

the payoffs of the underlying game at θ are the expected benefit from toppling the regime

given θ, net of any acting cost. Then, the global game conforms to the framework of

Carlsson and van Damme (1993), i.e., the underlying game payoffs are continuous in θ.

However, this global game depicts a different situation: the regime’s strength is inherently

uncertain, captured by a binary random variable parameterized by the probability θ of

being strong; and observing any signal xi∈(0, 1) agents know almost precisely what kind

of random variable it is as σ → 0 and also that the other player knows about it with
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the same precision, too. In our model, by contrast, the regime’s strength is determined

without residual uncertainty by the underlying state (i.e., strong if θ ≥ 1 and weak if

θ < 1), and signals give clues about the regime’s strength with widely varying degrees of

precision. In particular, observing a signal xi = 1 the agents get no clue themselves (other

than equally likely to be strong and weak) even as σ → 0, but are aware that the opponent

could have a pretty good idea as x−i can be near 1 ± σ. Thus, strategic uncertainty is

unabated around the critical signal even as the noise vanishes, and we show that iterated

dominance may spring from such unabated strategic uncertainty, too.

2.3 Model and preliminaries

Carlsson and van Damme (1993) establish a seminal result in 2-player, 2-action global

games: if an action pair is either risk-dominant or the unique strict equilibrium on an

open set of underlying states and is strictly dominant for one player at some state therein,

it is iteratively dominant on that set (of signals) in the global game. However, this result

is not useful in analyzing the regime change model of the previous section because no

action is strictly dominant at any underlying state, nonetheless iterative dominance of

risk-dominant actions prevails.

This finding stems from a key departure from Carlsson and van Damme (1993): payoffs

of the game change discontinuously at some critical state and the iterative process takes

off from the strategic uncertainty around this critical level. Such discontinuities often arise

in environments where a public good can be provided with varying degrees of coordination

depending on the underlying state. Generalizing the insight from the regime change model,

we aim to provide conditions on discontinuous payoffs that warrant iterative dominance

of risk-dominant actions. We view our result as complementing that of Carlsson and van

Damme (1993, CvD for short).

As in CvD, we consider 2-player, 2-action games (2×2 games) where each player i ∈
{1, 2} chooses one of two available actions, αi and βi. For easy comparison, we follow their

notation closely below. A specification of utility levels, g ∈ R8, defines a “game,” where

each coordinate of g corresponds to one of eight utility levels ui(γ1, γ2) for γi ∈ {αi, βi}
and i ∈ {1, 2}. For compact exposition, define “deviation loss” from the strategy profiles

α = (αi, α−i) and β = (βi, β−i), respectively, as

gαi = ui(αi, α−i)− ui(βi, α−i) and gβi = ui(βi, β−i)− ui(αi, β−i) for i = 1, 2. (2.3)

Then, γ ∈ {α, β} is a Nash equilibrium of g if gγi ≥ 0 for i = 1, 2. It is well-known that a

generic 2×2 game g ∈ R8 has either a unique equilibrium or three equilibria (two strict

and one mixed), e.g.,Harsanyi (1973b). When there are two strict Nash equilibria, we

denote them by α and β (relabelling strategies as needed).

For γ ∈ {α, β}, let Gγ ⊂ R8 be the set of games g for which γ is a strict Nash

equilibrium, that is, gγ1 , g
γ
2 > 0. For g ∈ Gα∩Gβ so that both α and β are strict equilibria,
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α is said to risk-dominate β if the product of deviation losses is larger from α than from

β, i.e.,
gα1 g

α
2 > gβ1 g

β
2 . (2.4)

Let Rα≻β denote the set of games in which α risk-dominates β and let Rα denote the set

of games in which α is the only strict equilibrium or risk-dominates β, i.e.,

Rα≻β := {g ∈ Gα ∩Gβ : a risk-dominates b} and Rα := (Gα \Gβ) ∪Rα≻β.

The underlying game is determined by a state θ ∈ Θ through a “game function”

g : Θ → R8, where θ is a random variable uniformly distributed over an open interval

Θ ⊂ R.1 We assume that g : Θ → R8 is piece-wise C1 with bounded derivative: Θ

is partitioned into intervals Θ1,Θ2, · · · , where supΘℓ = inf Θℓ+1, and g is C1 and the

derivative dg/dθ is bounded in the interior of each Θℓ. Thus, g may be discontinuous at

each borderline state θ = supΘℓ = inf Θℓ+1 for some ℓ.

Each player does not observe θ but observes a noisy private signal xi = θ + σϵi where

ϵi is distributed by an atomless cdf F and corresponding density f with support [−1, 1]

that satisfies the standard monotone likelihood ratio property (MLRP), i.e.,

f(x− θ)

f(x− θ′)
increases in x if θ > θ′ (2.5)

(which warrants that a higher signal is more likely from a higher state); and σ > 0 is

a scale factor. Upon observing a signal xi, therefore, player i infers that the underlying

state θ is in the interval (xi − σ, xi + σ), the posterior distribution of which derived by

Bayes rule from F (to be specified later).

A tuple (g,Θ, F, σ) defines a global game in which each player selects a strategy (mea-

surable function) si : X → [0, 1] that specifies a probability of choosing αi contingently

on the observed signal xi ∈ X := ∪θ∈Θ(θ − σ, θ + σ).

Let Ui(γi, s−i|xi) denote player i’s expected utility from γi ∈ {αi, βi} conditional on

observing a signal xi and the other player’s strategy s−i. We define the following process

of prescribing iteratively dominant action for some signals in the global game: for n ∈ N,

Sσ,0
i := {s | s : X → [0, 1]},

Aσ,n
i = {xi ∈ X | Ui(αi, s−i|xi) > Ui(βi, s−i|xi) ∀s−i ∈ Sσ,n−1

−i },
Bσ,n

i = {xi ∈ X | Ui(αi, s−i|xi) < Ui(βi, s−i|xi) ∀s−i ∈ Sσ,n−1
−i },

Sσ,n
i = {si ∈ Sσ,0

i | si(xi) = 1 if xi ∈ Aσ,n
i and si(xi) = 0 if xi ∈ Bσ,n

i },
Aσ

i = ∪∞
n=1A

σ,n
i , Bσ

i = ∪∞
n=1B

σ,n
i .

We say that a strategy si is “admissible” in round n if si ∈ Sσ,n−1
i .

1Our results extend to the case that θ admits a bounded, strictly positive and C1 density h on Θ,
because key arguments are local where h is approximately uniform as explained in CvD.
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Carlsson and van Damme (1993) characterize when risk-dominant actions are itera-

tively dominant in the case that g is continuous everywhere, as presented below for the

environment described above.

Theorem CvD Suppose I ⊂ Θℓ is an open interval such that g(I) ⊂ Rα. If αi is strictly

dominant for at least one player in the underlying game g(θ) for some θ ∈ I, then every

signal xi ∈ I is in Aσ
1 ∩ Aσ

2 for sufficiently small σ.

The theorem above requires αi to be strictly dominant for at least one player in some

underlying game g(θ) where θ ∈ Θℓ, which serves as the take-off for iterative elimination

of dominated actions. As illustrated, even if αi is not strictly dominant in any underlying

game, the process may take off in the global game from a critical signal (which will be a

boundary of some interval Θℓ) and continue all the way. We try to understand when this

is indeed the case by delineating the conditions on the underlying game payoffs at the

limit as θ tends to the relevant boundary.

We present our findings for the case that α risk-dominates β at the lower end of some

partition element Θℓ, so that the pertinent conditions are on the limit deviation losses

at the lower boundary, denoted by x = inf Θℓ, from both directions, namely, gγi (x
+) =

limθ↓x g
γ
i (θ) and gγi (x

−) = limθ↑x g
γ
i (θ). The result can be restated symmetrically to work

for the other case in which α risk-dominates β at the upper end of Θℓ.

Suppose that α risk-dominates β at x+, that is,

g(x+) ∈ Gα ∩Gβ and gα1 (x
+)gα2 (x

+) > gβ1 (x
+)gβ2 (x

+) (2.6)

where x = inf Θℓ = supΘℓ−1 for some ℓ > 1. Then, since g is continuous in the interior of

Θℓ, α risk-dominates β on an open interval of θ in Θℓ, denoted by I ⊂ Θℓ, with x as the

lower boundary, i.e., x = inf I = inf Θℓ.

We say that “α is iteratively dominant (in I)” if every signal xi ∈ I is in Aσ
1 ∩ Aσ

2 for

sufficiently small σ. We characterize when this is the case for games that satisfy (2.6), in

terms of conditions on the values gγi (x
+) and gγi (x

−) for γ ∈ {α, β} and i ∈ {1, 2}.
Strategic interactions in global games rely on each player’s inference on the distribution

of the other player’s signal conditional on his own signal. We close this section with a useful

lemma that it is distributed symmetrically around a single peak at one’s own signal xi

(which is proved in Appendix).

Lemma 2 The density of x−i conditional on player i’s signal xi is symmetric around and

single-peaked at x−i = xi if (xi − σ, xi + σ) ⊂ Θ.
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2.4 When are risk-dominant actions iteratively dom-

inant?

We study when α is iteratively dominant in the full range of signals for which it is risk-

dominant. This obviously requires emergence of initial dominance of αi to kick off the

iteration. In the model of CvD, the initial dominance emerges from αi being strictly

dominant in some underlying games adjacent to those in which α is risk-dominant or the

unique strict equilibrium. In our context where g is discontinuous at θ = x and α is risk-

dominant at θ > x, this corresponds to αi becoming strictly dominant in g(θ) as θ dips

below the critical level x. We start with this case and discuss the extent to which the logic

of CvD extends to situations where g is discontinuous (Section 4.1), prior to analyzing

other environments where the logic of CvD is insufficient (Section 4.2). To facilitate the

exposition we explain the core arguments for our results heuristically in the main text,

deferring a formal proof to Appendix.

2.4.1 The case that αi is strictly dominant in g(x−).

Let us consider a global game where αi is strictly dominant in underlying games g(θ) for

θ immediately below the critical level x, while α is risk-dominant in g(θ) for θ above x

as per (2.6). In the case that g is continuous and α remains a strict equilibrium at θ = x

as considered in Theorem CvD, this means that gβi (x) = 0 < gαi (x) and gβi (θ) increases

strictly at θ = x, so that gβi (θ) < 0 < gαi (θ) for θ in an interval immediately below x.

For small enough σ, therefore, when player i observes most of the signals in that interval

up to x − σ, he infers that αi is strictly dominant in the underlying game, thus in the

global game as well. In fact, αi is strictly dominant for slightly higher signals as well due

to continuity, say up to x̂i ∈ (x− σ, x). Starting from this strict dominance, an iterative

process sequentially renders both αi and α−i strict dominant throughout the entire range

of signals for which α is risk-dominant. We first elaborate on this core logic of Theorem

CvD and extend it to our environments.

To elaborate on the logic, we observe that gαi (θ) + gβi (θ) > 0 for θ ≥ x in I for both

players due to risk dominance, (2.6), and also for θ slightly below x due to continuity of

g. The inequality gαi (θ)+ gβi (θ) > 0 means that the two actions are strategic complements

in g(θ): the inequality is equivalent to

ui(αi, α−i)− ui(βi, α−i) = gαi (θ) > −gβi (θ) = ui(αi, β−i)− ui(βi, β−i) (2.7)

which means that player i’ net payoff gain from playing αi rather than βi is larger when

player −i also plays α−i as opposed to when she plays β−i. Hence, αi is more attractive the

more likely player −i is to play α−i, and is uniquely optimal for player i if player −i plays

α−i with a probability exceeding a threshold level that makes two actions equivalent for
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player i, namely
gβi (θ)

gαi (θ)+gβi (θ)
.2 For later use, we also note that the two actions are strategic

substitutes if the reverse inequality of (2.7) holds, i.e., gαi (θ) + gβi (θ) < 0, in which case αi

is more attractive the less likely player −i is to play α−i, and thus is uniquely optimal if

α−i is played with a probability lower than
gβi (θ)

gαi (θ)+gβi (θ)
.

Therefore, upon observing signals xi above the critical level x or slightly below x in

the global game, either player i infers that actions are strategic complements and plays αi

as the unique optimal action if the other player is expected to play α−i with a probability

higher than the relevant threshold. Recall that one player, i, plays αi as the strictly domi-

nant action for signals up to x̂i ∈ (x−σ, x). Thus, there is a signal, say x̂−i (near x̂i), such

that the probability with which player i observes a signal xi < x̂i (hence, takes αi as the

dominant action) is the threshold level for player −i when she observes x̂−i. Consequently,

player −i plays α−i as the (iteratively) dominant action upon observing signals up to x̂−i

(because the lower x−i is, the higher is the probability that player i observes xi < x̂i).

This renders αi more attractive for player i due to strategic complementarity, making it

the dominant action for signals up to a higher boundary than x̂i in the next round. By

the same token, the ranges of signals at which αi is dominant expand iteratively for both

players in every round due to strategic complementarity, throughout the risk dominant

range of signals if σ is small enough.

A key logic in this process is that the probabilities with which each player observes a

signal below their upper boundary (hence plays αi as the dominant action) conditional on

the other player’s boundary signal sum up to one (cf. Lemma 2) in each round, whereas

their threshold probabilities
gβi (θ)

gαi (θ)+gβi (θ)
sum less than 1 due to risk dominance. This war-

rants that the risk-dominant action is uniquely optimal for at least one player i upon

observing his boundary signal, expanding the boundary in the next round. So long as this

logic is preserved in our context when g changes discontinuously at θ = x, the iterative

dominance result of CvD should prevail. This logic is indeed preserved if the threshold

probability does not jump too much as θ dips below x, as stated in the next result (and

proved in Appendix).

Proposition 4 In a global game (g,Θ, F, σ) with an open interval I ⊂ Θℓ such that

x=inf I=inf Θℓ and g(I) ∪ g(x+) ⊂ Rα≻β, α is iteratively dominant in I if{
gαi (x

−)>0 for i ∈ {1, 2}, and

gβi (x
−)<0 for one i, and gβ−i(x

−)<0 or
gβ−i(x

−)

gα−i(x
−)+gβ−i(x

−)
< 1− gβi (x

+)

gαi (x
+)+gβi (x

+)
.

(2.8)

The condition (2.8) ensures that αi is strictly dominant in g(x−) for one agent i, i.e.,

gβi (x
−) < 0 < gαi (x

−), while for the other player, either α−i is also strictly dominant in

2Note that αi is strictly dominant if this threshold is negative (i.e., gβi (θ) < 0 < gαi (θ)), while βi is

strictly dominant if the threshold exceeds 1 (i.e., gαi (θ) < 0 < gβi (θ)). An analogous comment applies for
the case of strategic substitutes.
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g(x−) or the threshold probabilities sum less than 1 for underlying states θ in a neigh-

borhood of the critical level x. Note that (2.8) is satisfied by a much larger set of game

functions g’s than those that satisfy the conditions of Theorem CvD.

2.4.2 The case that αi is nowhere strictly dominant

Proposition 4 extends Theorem CvD to environments where αi turns strictly dominant

from being risk-dominant in the underlying game g(θ) discontinuously for at least one

player i. We now study the alternative case that this does not happen, that is, in our

context αi is not strictly dominant in g(θ) for θ’s immediately below x for either player

in the sense that

if gαi (θ) > 0 then gβi (θ) ≥ 0 for θ in an interval (θ̃, x) ̸= ∅, (2.9)

while α is risk-dominant in g(θ) for θ > x as per (2.6).

We aim to understand when and how iterative dominance of risk-dominant actions

may result from strategic uncertainty due to discontinuous payoffs, in the absence of

nearby underlying states where the action is strictly dominant and the iteration takes off

from. It is possible, however, that an iteration process may take off elsewhere due to a

cause unrelated to the strategic uncertainty, yet travel through x and into the range of

risk-dominant signals, I. For example, the iteration process may start from some states

in Θℓ−1 far below x and expand upward all the way to x (à la Theorem CvD), then jump

over x and continue throughout I.

In order to present a cleaner picture of how payoff discontinuity may lead to iterative

dominance of α without such confounding factors, we proceed our discussion presuming

that αi is never iteratively dominant at signals outside a small neighborhood of I, namely,

(x − σ, sup I): that is, Aσ,n
i ∩ (x − σ, sup I) = Aσ,n

i for all n and i = 1, 2. However, this

is for expositional convenience and our main result, Proposition 5, is independent of this

presumption (as will be clear in the discussion below).

The discussion revolves around how Aσ,n
i , the set of signals where αi is (iteratively)

dominant in each round n, evolves. This necessitates checking when αi is dominant in the

global game. For this, we define Vi(s−i|xi) := Ui(αi, s−i|xi)−Ui(βi, s−i|xi) as the expected

net gain of player i from playing αi rather than βi upon observing a signal xi, conditional

on the other player’s strategy s−i. Since the said net gain conditional on θ is gαi (θ) or

−gβi (θ) depending on whether player −i chooses α−i or β−i (cf. (2.3)),

Vi(s−i|xi) =

∫
θ

∫
x−i

[s−i(x−i)g
α
i (θ)− (1− s−i(x−i))g

β
i (θ)]dFσ(x−i|θ)dF̃σ(θ|xi) (2.10)

where Fσ(x−i|θ) = F (x−i−θ
σ

) is the distribution of signal x−i conditional on θ and F̃σ(θ|xi) =

1 − F (xi−θ
σ

) is the posterior distribution of the state θ conditional on player i observing
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the signal xi.
3

By definition, αi is initially strictly dominant for player i upon observing a signal xi,

i.e., xi ∈ Aσ,1
i , if Vi(s−i|xi) > 0 for all s−i : X → [0, 1]. We start by identifying a specific

s−i that minimizes Vi(s−i|xi), denoted by s̆−i(·|xi), which is instrumental in presenting

our arguments.4

The strategy s̆−i that minimizes Vi(s−i|xi)

For our analysis, it suffices to focus on signals xi in the interval (x − σ, x + σ), so that

θ may be on either side of the critical level x. For small enough σ, the value of gγi (θ)

is approximated by gγi (x
+) if θ is just above x, i.e., if θ ∈ (x, xi + σ), and by gγi (x

−)

if θ ∈ (xi − σ, x) for γ ∈ {α, β}. Consequently, Vi(s−i|xi) is first-order approximated as

σ → 0, by the integral in (2.10) when gγi (θ) is replaced as such, which we denote by

Ṽi(s−i|xi). With this replacement, Ṽi(s−i|xi) is a weighted sum of the four limit values

of conditional net gain from playing αi, namely, gαi (x
+), gαi (x

−), −gβi (x
+) and −gβi (x

−),

where their respective weights are the probabilities, conditional on xi, that θ is on the

relevant side of x and player −i plays γ−i according to s−i for γ ∈ {α, β}.
To specify s̆i that minimizes Ṽi(s−i|xi) invariantly to σ, we introduce an alternative

scale of state θ and signals xi by their distance from x in multiples of σ, which we refer to as

the “relative scale”: state θ = x+ϑσ is represented as state ϑ ∈ R and signal xi = x+λiσ

is represented as signal λi ∈ R for i = 1, 2. With this change of scale/variables, we have

Ṽi(s−i|x+ λiσ) := −F (λi)g
β
i (x

+)−
[
1− F (λi)

]
gβi (x

−) +

∫
λ−i

s−i(x+ λ−iσ)Ψi(λ−i|λi)dλ−i(2.11)

where Ψi(λ−i|λi) := [gαi (x
+) + gβi (x

+)]

∫ ∞

0

f(λ−i − ϑ)f(λi − ϑ)dϑ (2.12)

+ [gαi (x
−) + gβi (x

−)]

∫ 0

−∞
f(λ−i − ϑ)f(λi − ϑ)dϑ.

Note that Ṽi(s−i|x+λiσ) is invariant to σ as a function of λi, so long as s−i is treated as a

function of λ−i. Regardless of σ, therefore, Ṽi(s−i|x+λiσ) is minimal when s−i(x+λ−iσ) =

0 if Ψi(λ−i|λi) ≥ 0 and s−i(x+λ−iσ) = 1 if Ψi(λ−i|λi) < 0, which is the strategy we denote

by s̆−i(·|xi) for xi = x+ λiσ ∈ (x− σ, x+ σ).

The first and second integrals of Ψi(λ−i|λi) in (2.12) are the probabilities that a given

signal pair (xi, x−i) = (x + λiσ, x + λ−iσ) is observed when θ > x (i.e., ϑ > 0) and when

θ < x (i.e., ϑ < 0), respectively. Since gαi (x
+)+gβi (x

+) > 0 from (2.6), if gαi (x
−)+gβi (x

−) ≥
0 then Ψi(λ−i|λi) ≥ 0 and thus, s̆−i(·|xi) ≡ 0 for every xi = x+λiσ ∈ (x− σ, x+ σ). This

is intuitively clear: if the actions are strategic complements on both sides of x, Vi(s−i|xi)

is minimized when α−i is never played according to s−i.

3Formally, F̃σ(θ|xi) =

∫ θ
xi−σ

f(
xi−ϑ

σ )dϑ∫ xi+σ

xi−σ f(
xi−ϑ

σ )dϑ
= 1− F (xi−θ

σ ) and thus, f̃σ(θ|xi) = σ−1f(xi−θ
σ ).

4Since |xi − x−i| ≤ 2σ, we define s̆−i(·|xi) on x−i ∈ [xi − 2σ, xi + 2σ].
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If gαi (x
−) + gβi (x

−) < 0, on the other hand, the actions are certain to be substitutes if

xi = x−σ (so that the underlying state θ must be below x) but complements if xi = x+σ

(so that θ > x); moreover, the actions are more likely to be complements as the observed

signals xi = x + λiσ and/or x−i = x + λ−iσ increase from x − σ to x + σ, i.e., as λi

and/or λ−i increase from −1 to 1. Given a signal xi = x+ λiσ ∈ (x− σ, x+ σ), therefore,

there is a unique value of λ−i, denoted by T−i(λi) ∈ (−1, 1), such that Ψi(T−i(λi)|λi) = 0.

Hence, as λ−i increases above T−i(λi), or equivalently, as x−i increases above the threshold

x + T−i(λi)σ, the actions become sufficiently likely to be strategic complements so that

s̆−i(x−i|x+ λiσ) switches from 1 to 0. Since a higher signal xi = x+ λiσ ∈ (x− σ, x+ σ)

also renders actions more likely to be complements as noted above, T−i(λi) decreases in

λi ∈ (−1, 1). The next lemma summarizes the findings on s̆−i(·|xi).

Lemma 3 For xi = x + λiσ ∈ (x − σ, x + σ) where λi ∈ (−1, 1), Ṽi(s−i|x + λiσ) is

minimized by

s̆−i(·|x+ λiσ) ≡ 0 if gαi (x
−) + gβi (x

−) ≥ 0;

s̆−i(·|x+ λiσ) =
{ 1 for x−i < x+ T−i(λi)σ

0 for x−i > x+ T−i(λi)σ

}
if gαi (x

−) + gβi (x
−) < 0

where T−i(λi) ∈ (−1, 1) satisfies Ψi(T−i(λi)|λi) = 0 and decreases in λi.

Having pinned down s̆−i, we now examine when the risk-dominant actions are itera-

tively dominant. We organize the analysis depending on whether the actions are strategic

complements or substitutes in g(x−) for each player.

α is not iteratively dominant if gαi (x
−) + gβi (x

−) > 0 for i = 1, 2.

Suppose the actions are complements for player i in g(x−), i.e., gαi (x
−) + gβi (x

−) > 0.

Since αi is not strictly dominant immediately below x, i.e., (2.9), it follows that gβi (θ) ≥ 0

for θ in a small interval immediately below x.5 Since gβi (θ) > 0 for θ ∈ I as well, observing

a signal xi above x (within I) or slightly below x in the global game, player i infers that

gβi (θ) ≥ 0 in the underlying game, that is, βi is optimal if the other player always plays

β−i regardless of her signal x−i. If σ is small enough, therefore, αi is not strictly dominant

at any signal xi ∈ (x− σ, sup I) in the global game.

Consequently, if the actions are complements for both players in g(x−), then Aσ,1
i = ∅

for both i = 1, 2 (under the presumption that αi is never iteratively dominant outside

(x − σ, sup I)). Then, it is admissible in round 2 for the other player −i to play β−i

regardless of her signal and thus, αi is not dominant at any signal xi ∈ (x− σ, sup I) by

the same reasoning as before, i.e., Aσ,2
i = ∅ for both i = 1, 2. Recursively, Aσ,n

i = ∅ in

5To elaborate, if gβi (θ) < 0 for θ < x arbitrarily close to x, we would have gβi (θ) < 0 < gαi (θ) for θ

immediately below x because gαi (x
−) + gβi (x

−) > 0, contradicting (2.9).
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every round n for both players and an iteration process never takes off from the strategic

uncertainty in this case. To recap, if the actions are strategic complements for both players

in g(x−), iterative dominance of risk-dominant actions in I cannot result from the strategic

uncertainty due to discontinuous payoffs at θ = x.

In light of the above, we now consider cases in which the actions are strategic substi-

tutes in g(x−) for at least one player. Then, for α to be iteratively dominant as a result

of an iteration process stemming from the strategic uncertainty, three key steps need to

take place as follows for all small enough σ:

(S1) αi is initially dominant at some signals in (x−σ, x+σ), i.e., Aσ,1
i ∩ (x−σ, x+σ) ̸= ∅,

for at least one player i.

(S2) The ranges of iteratively dominant signals, Aσ,n
i , expand above x+σ for both players

in some round, say N , i.e., Aσ,N
i ∩ [x+ σ, sup I) ̸= ∅ for both i = 1, 2.

(S3) The iterative process continues throughout the risk-dominant signals.

Recall that Aσ,n
i = ∅ if the actions are complements for player i in g(x−) so long as

Aσ,n−1
−i = ∅ as discussed above. Therefore, if the two actions are strategic substitutes in

g(x−) for only one player, say i, thenAσ,1
i ̸= ∅ andAσ,1

−i = ∅, whereasAσ,1
i may be nonempty

for both players if the actions are strategic substitutes for both players in g(x−). In either

case, the sets Aσ,n
i grow in every round n in the sense that Aσ,n−1

i ⊂ Aσ,n
i . This process

generates a sequence of upper boundary signals {x̄n
i } for each player i, where x̄n

i = supAσ,n
i

is the least upper bound of player i’s signals for which αi is iteratively dominant in round

n.

The step (S2) requires that x̄N
i ≥ x + σ for both i in some round N . A precise and

simple characterization of whether and when this happens seems out of reach because

it would require tracking how the sets Aσ,n
i change each round, which depends on the

sets Aσ,n−1
−i and Bσ,n−1

−i of the previous round and recursively, of all previous rounds. The

task is further complicated by the fact that the sets Aσ,n
i may consist of multiple disjoint

intervals.

Instead, we look for sufficient conditions for (S2) by delineating how a single interval

of initially dominant signals for each player may expand to surpass x+ σ in some round.

The details of analysis differ depending on whether the actions are strategic substitutes

for both players or for just one player in g(x−). We start with the former case. It proves

useful to express signals in the relative scale in this discussion, in particular, the boundary

signals as x̄n
i = x+ λ̄n

i σ.

When gαi (x
−) + gβi (x

−) < 0 for i = 1, 2

Suppose that the actions are strategic substitutes for both players in g(x−), i.e., gαi (x
−)+

gβi (x
−) < 0 for i = 1, 2. Let us consider a simple iteration process (as in the illustration

of Section 2) that takes off from a single interval of initially dominant signals, Aσ,1
i , that
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contains the critical signal x for both players; then the ranges of iteratively dominant

signals, Aσ,n
i , evolve as single intervals with the following feature: the upper boundary x̄n

i

of each player’s dominant signals exceeds the upper boundary x̄n−1
−i of the other player’s

dominant signals of the previous round.

Such “overtaking” of each other’s upper boundary will expand Aσ,n
i over x + σ as

in the step (S2), unless both players’ upper boundaries stall prematurely at the same

limit, say x̄ = limn→∞ x̄n
1 = limn→∞ x̄n

2 < x + σ. We provide a sufficient condition that

precludes such premature stalling, which will ensure that the iteration process expands

over x+ σ and continues throughout the range of risk-dominant signals. The condition is

then generalized to preclude premature stalling of the players’ upper boundaries even at

different limits.

If the upper boundaries stall at the same limit x̄ < x+σ, the minimal value of the net

gain Vi(s−i|xi) among all admissible s−i’s is nil at xi = x̄ for both players. Denoting the

limit signal as x̄ = x + λ̄σ in the relative scale, this minimal value is obtained when s−i

replicates s̆(·|x+ λ̄σ) specified in Lemma 3, subject to prescribing α−i at (i.e. assigning 1

to) all signals x−i ∈ Aσ,∞
−i . If this minimal value is warranted to be positive, the premature

stalling at x̄ = x+ λ̄σ would be precluded.

However, the set Aσ,∞
−i is not known precisely, except that it contains the interval

[x, x+ λ̄σ). Hence, if Vi(s−i|x+ λ̄σ) is positive when s−i replicates s̆(·|x+ λ̄σ) subject to

prescribing α−i at signals x−i in [x, x + λ̄σ), the value Vi(s−i|x + λ̄σ) is higher when s−i

prescribes α−i to all signals x−i in Aσ,∞
−i , thus precluding premature stalling at the level

x̄ = x+ λ̄σ.

Likewise, premature stalling can be precluded at any level x̄ ∈ [x, x+σ] if the relevant

condition holds for every λ̄ ∈ [0, 1], that is, if

Ṽi(s̆
λ
−i|x+ λσ) > 0 for all λ ∈ [0, 1] for i ∈ {1, 2} (2.13)

where s̆λ−i(·) denotes the strategy s−i that assigns 1 to x−i if x−i ∈ [x, x + λσ) or x−i ≤
x+ T−i(λ)σ, and 0 otherwise.

It is straightforward to verify that the steps (S1) and (S2) are satisfied if (2.13) holds

in a global game, even when the ranges of iteratively dominant signals, Aσ,n
i , consist of

multiple intervals. First, since s̆λ−i = s̆−i when λ = 0, the inequality at λ = 0 is the

condition that αi is initially dominant at xi = x, hence (S1). To check (S2), we let x̂n
i

denote the upper boundary of the largest interval in Aσ,n
i that contains x and define

x̂∞
i = limn→∞ x̂n

i . If x̂∞
i < x + σ for one player i and x̂∞

i ≤ x̂∞
−i, then (2.13) would

imply that αi is iteratively dominant at xi = x̂∞
i , thus at slightly higher signal as well by

continuity, contradicting the definition of x̂∞
i . Hence, we deduce that x̂∞

i ≥ x+σ for both

i, establishing (S2).

Moreover, it then follows that the iterative expansion continues throughout the risk-

dominant range of signals by an argument standard in global games as briefly explained
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earlier (Section 4.1) and detailed in Appendix. Therefore, (2.13) serves as a sufficient

condition for α to be iteratively dominant in I.

The condition (2.13), however, is specific to the cases where the iteration process

takes off from signals around the critical signal x and the two players’ upper boundaries

of dominant signals “overtake” each other’s in each round n. We now reformulate (2.13)

to accommodate more general iterative processes.

Consider an iteration process represented by a sequence of Aσ,n
i for each player i, that

satisfies (S2) in round N . Fix an initially dominant signal x0
i = x + λ0

iσ ∈ Aσ,1
i and let

x̂n
i = x+ λ̂n

i σ denote the upper boundary of the largest interval in Aσ,n
i that contains x0

i .

We now convert labelling of each player’s signals to a common benchmark labelling in a

way that x̂n
i exceeds x̂n−1

−i after respective conversion as follows.

For each player i, define a continuous and strictly increasing bijective function ρi :

[−1, 1] → [−1,max{λ̂N
−i, λ̂

N
i }] with the following properties: assuming λ̂N

−i ≤ λ̂N
i ,

(i) ρi(0) = λ0
i , and

(ii) ρ−1
i (λ̂n−1

i ) ≤ ρ−1
−i (λ̂

n
−i) ≤ ρ−1

i (λ̂n
i ) for each n ≤ N .

That is, each ρi maps “benchmark” labelling of signals on [−1, 1] to actual signals of

player i in such a way that (i) the critical signal in the benchmark labelling (λ = 0) is

initially dominant, and (ii) the upper boundary x̂n
i = x+ λ̂n

i σ of each player i exceeds the

previous boundary x̂n−1
−i of the other player, when converted to their respective benchmark

labels, namely, x + ρ−1
i (λ̂n

i )σ exceeds x + ρ−1
−i (λ̂

n−1
−i )σ. Then, the condition (2.13) can be

generalized as below to preclude premature stalling of iterative expansion by ensuring

that the two players’ upper boundary signals x̂n
i of iterative dominance “overtake” each

other’s via suitable conversions to a common benchmark labeling:

Ṽi(s̆
ρ−i(λ)
−i |x+ ρi(λ)σ) > 0 for all λ ∈ [0, 1] for i ∈ {1, 2}, (2.14)

where s̆
ρ−i(λ)
−i is a strategy that assigns 1 to x−i if x−i ∈ [x + ρ−i(0)σ, x + ρ−i(λ)σ) or

x−i ≤ x+ T−i(ρi(λ))σ = 1 in case ρi(λ) < 1, and 0 otherwise.

Proposition 5 Consider a global game (g,Θ, F, σ) with an open interval I ⊂ Θℓ such

that x= inf I = inf Θℓ and g(I) ∪ g(x+) ⊂ Rα≻β. If gαi (x
−) + gβi (x

−) < 0 for both i, α is

iteratively dominant in I if (2.14) holds for some pair of functions ρi : [−1, 1] → [−1,Λ],

i ∈ {1, 2}, where each ρi is a continuous and strictly increasing bijection for Λ > 1 and

ρi(0) < 1. If (2.14) holds for ρ1 and ρ2, so does it when gβi (x
−) is reduced for either i.

The inequality in (2.14) ensures that player i’s net gain from playing αi (rather than

βi) is positive observing his signal xi = x + ρi(λ)σ subject to player −i playing α−i in a

specific interval, [x+ρ−i(0)σ, x+ρ−i(λ)σ). Recall that Ṽi(s−i|xi) is a weighted sum of the

four conditional net gain values from playing αi, namely, gαi (x
+), gαi (x

−), −gβi (x
+) and

−gβi (x
−), where the weights are the probabilities with which relevant contingencies arise

for each value conditional on xi and s−i. Given the values gαi (x
+) and gβi (x

+) as in (2.6),
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therefore, Ṽi(s̆
λ
−i|x + ρi(λ)σ) is higher as gαi (x

−) and/or −gβi (x
−) are higher. Insofar as

gαi (x
−) cannot be increased above 0 (for αi not to be strictly dominant in g(x−)), (2.14)

is more likely to hold as gβi (x
−) is lower, i.e., as strategic substitutability intensifies in the

sense that gαi (x
−) + gβi (x

−) < 0 is reduced. The last claim of Proposition 5 captures this

observation.

In principle, the condition (2.14) can be checked from the values gαi (x
+), gβi (x

+), gαi (x
−)

and gβi (x
−) in conjunction with the noise distribution F , once ρ1 and ρ2 are specified. How-

ever, it is hard to know a priori which ρ1 and ρ2 would work, and also cumbersome to

check whether (2.14) holds for each and every λ ∈ [0, 1). In fact, since F affects how

T−i(λ) changes in λ, it is impossible to derive a condition equivalent to (2.14) that can

be applied independently of F .

Instead, distribution-free conditions may be sought for a subclass of environments of

economic interest. In particular, within the class of noise distributions that are symmetric

around 0, which is a sensible property, we provide a condition independent of F that

warrants (2.14) for the case that both ρi’s are identity functions, i.e., (2.13), in Corollary

2. We apply this condition to the regime change model of Section 2 and derive further

implications.

Corollary 2 In the situation considered in Proposition 5 where ϵi is distributed sym-

metrically around 0, α is iteratively dominant in I if either of the following conditions

hold:

(a)

{
gαi (x

+) + gβi (x
+) ≥ −gαi (x

−)− gβi (x
−) > 0, and

−gαi (x
+) ≤ gβi (x

−) <
−3gβi (x

+)−gαi (x
+)

2
or gβi (x

−) ≤ −gαi (x
+) < −3gβi (x

+).

(b)

{
gαi (x

+) + gβi (x
+) ≤ −gαi (x

−)− gβi (x
−), and

gβi (x
−) <

−3gβi (x
+)−gαi (x

+)

2
< −3gβi (x

+) or gβi (x
−) ≤ −gαi (x

+) < −3gβi (x
+).

If gαi (x
+)+gβi (x

+) ≥ −gαi (x
−)−gβi (x

−) > 0 as considered in part (a), Ṽi(s
λ
−i|x+λσ) in

(2.11) is higher than the value of the same formula when gαi (x
−) + gβi (x

−) is replaced by

−[gαi (x
+) + gβi (x

+)]. We show (in Appendix) that this latter value can be bounded below

uniformly across λ when the noise is symmetric. If this uniform lower bound is positive,

(2.13) holds and α is iteratively dominant in I by Proposition 5. The condition that

this uniform bound is positive is stated in part (a), which differs depending on whether

gαi (x
+) ≥ −gβi (x

−) or gαi (x
+) ≤ −gβi (x

−).

As an intermediate step to part (b), observe that Corollary 2 (a) applies when gαi (x
+)+

gβi (x
+) = −gαi (x

−) − gβi (x
−) and thus, (2.13) holds if the condition in part (a) holds. If

gβi (x
−) is reduced, so that gαi (x

+) + gβi (x
+) ≤ −gαi (x

−) − gβi (x
−) as part (b) postulates,

(2.13) continues to hold by the last claim of Proposition 5. Therefore, the condition in

part (a), when gβi (x
−) is reduced to any lower level, is sufficient for (2.13) to hold. This

is the condition stated in part (b).
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The environment of Corollary 2 covers the regime change model of Section 2: the

critical state is x = 1 and gαi (x
+) = 1−ci, g

β
i (x

+) = ci, g
α
i (x

−) = −ci and gβi (x
−) = ci−1.

Note that gαi (x
+)+gβi (x

+) = −gαi (x
−)−gβi (x

−) so that both parts (a) and (b) of Corollary

2 apply. Since gαi (x
+) = −gβi (x

−), every condition therein prescribes the same condition

for “acting” to be iteratively dominant in the complementary region, namely, ci < 1/4 as

stated in Section 2.

Corollary 2 also reveals that it is iteratively dominant for agent 1 to act and for agent

2 to not act on signals in the substitutive region, i.e., xi ∈ (0, 1), if c2 > 3/4. To see

this, we need to relabel the choices for agent 2: since it is risk-dominant for agent 1 to

act and agent 2 not act on signals below 1 (as noted in Section 2), we relabel the choice

to act as β2 and to not act as α2 for agent 2. In addition, we need to reorient θ and xi

in the reverse direction, say as ϑ = −θ and yi = −xi, so that α risk-dominates β for

ϑ ∈ (−1, 0), and focus on gγi (y
+) and gγi (y

−) at the discontinuity point y = −1. Then,

gα1 (y
+) = 1− c1, g

β
1 (y

+) = c1, g
α
1 (y

−) = −c1 and gβ1 (y
−) = c1 − 1; gα2 (y

+) = c2, g
β
2 (y

+) =

1−c2, g
α
2 (y

−) = c2−1 and gβ2 (y
−) = −c2. Once again, gαi (y

+)+gβi (y
+) = −gαi (y

−)−gβi (y
−)

and gαi (y
+) = −gβi (y

−), hence every condition prescribes that if c1 < 1/4 and c2 > 3/4

then the risk-dominant equilibrium in the substitutive region is iteratively dominant.

When gαi (x
−) + gβi (x

−) < 0 < gα−i(x
−) + gβ−i(x

−)

Lastly, we consider the case where the two actions are strategic substitutes for one player,

say 1, but complements for player 2. In this case, the initial dominance should arise for

player 1 because, as explained earlier, it cannot arise for a player for whom the actions

are complements. As in the previous cases, for iterative dominance of α, it is crucial that

the range of iteratively dominant signals, Aσ,n
i , expand over x+σ for both players in some

round, and a sufficient condition can be formulated analogously to (2.14). However, extra

conditions are needed to ensure that the range of player 1’s signals at which α1 is initially

dominant, Aσ,1
1 , is large enough to trigger iterative dominance of α2 for the other player

in the subsequent round.

Specifically, the range of initial dominance, Aσ,1
1 , contains an interval which is large

enough so that, conditional on player 1 playing α1 at signals in this interval, player 2

finds α2 dominant at some of her signals in the subsequent round. We formalize this as

follows: there is an interval of signals at which α1 is initially dominant, that is converted

via ρ1 to an interval immediately below x in benchmark labelling without loss, denoted

by [x+ λσ, x] ⊂ (x− σ, x], or equivalently,

Ṽi(s̆−i|x+ ρi(λ)σ) > 0 for all λ ∈ [λ, 0] ̸= ∅ for i = 1. (2.15)

Then, this triggers dominance of α2 if α2 is dominant for player 2 at some signal, denoted

x0
2, conditional on player 1 playing α1 at the signals in the aforesaid interval of initial

dominance, namely, [x+ρ1(λ)σ, x+ρ1(0)σ] converted back from the benchmark labelling.
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This amounts to Ṽ2(s
ρ1(λ,0)
1 |x0

2) > 0 where s
ρ1(λ,0)
1 denotes a strategy s1 that assigns 1

precisely to signals x1 ∈ [x + ρ1(λ)σ, x + ρ1(0)σ] and 0 to all other signals, because

s̆1(·) ≡ 0 by Lemma 3 given that the actions are strategic complements on both sides of

x for player 2. Converting the signal x0
2 to x in the benchmark labelling without loss, we

formalize this condition as Ṽ2(s
ρ1(λ,0)
1 |x+ ρ2(0)σ) > 0.

Finally, the condition (2.14) needs to be modified for player i = 2 as follows because,

unlike in the previous case, s̆1(·) ≡ 0 and α1 is initially dominant in the interval [x +

ρ1(λ)σ, x+ ρ1(0)σ]:

Ṽi(s
ρ−i(λ,λ)
−i |x+ ρi(λ)σ) > 0 for all λ ∈ [0, 1] for i = 2 (2.16)

where s
ρ−i(λ,λ)
−i is a strategy that assigns 1 to x−i if x−i ∈ [x+ ρ−i(λ)σ, x+ ρ−i(λ)σ) and 0

otherwise. Note that (2.16) subsumes Ṽ2(s
ρ1(λ,0)
1 |x+ρ2(0)σ) > 0. We now state a sufficient

condition for the iterative dominance of α when the actions are strategic complements for

one player and strategic substitutes for the other in g(x−).

Proposition 6 Consider a global game (g,Θ, F, σ) with an open interval I ⊂ Θℓ such

that x=inf I=inf Θℓ and g(I)∪g(x+) ⊂ Rα≻β. If gα1 (x
−)+gβ1 (x

−) < 0 < gα2 (x
−)+gβ2 (x

−),

α is iteratively dominant in I if (2.14) holds for i = 1 as well as (2.15) and (2.16), for

some pair of functions ρi : [−1, 1] → [−1,Λ], i ∈ {1, 2}, where each ρi is a continuous and

strictly increasing bijection for Λ > 1 and ρi(0) < 1. If all three conditions hold for ρ1
and ρ2, so do they when gβi (x

−) is reduced for either i.

2.5 Conclusion

We demonstrated in a stylized regime change model that the risk-dominant equilibrium

can be uniquely selected in the global game even if underlying game is not dominance

solvable for any fundamental value/underlying state. This requires a departure from the

standard global game framework: specifically, discrete changes in payoffs of the game at a

critical fundamental value (in appropriate directions and magnitudes) may hedge the risk-

dominant action sufficiently for it to be the dominant action at signals near the critical

level, initiating an iterated dominance process from strategic uncertainty in the global

game.

Essentially, the hedging emanates from the actions becoming strategic substitutes as

the fundamental crosses the critical level, so that the risk-dominant action can be optimal

whichever action the other player takes if the fundamental is on the appropriate side of

the critical level. Based on this insight, we extend two-person, two-action global games

studied in Carlsson and van Damme (1993) by providing sufficient conditions for the

iterated dominance argument to take off without dominance solvable games and cover the

risk-dominant region.
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As discussed in Introduction, the global game framework has been fruitful in study-

ing coordination issues in various economic and social situations where actions feature

strategic complements, although some recent studies consider strategic substitutes. Our

model accommodates both strategic complements and substitutes, in particular, allowing

for free-riding incentives which have not been addressed in global games hitherto. Cru-

cially, we examine how and when the iterative coordination may arise from the strategic

uncertainty as to whether the actions are complements or substitutes.

Insofar as such strategic uncertainties tend to arise in certain situations of economic

interest, for instance, where a public good can be provided with varying degrees of co-

ordination depending on the underlying state, our findings open new scope for fruitful

applications of global games. The scope of application will be further enlarged by ex-

tending the analysis to models of more players and/or actions, which we leave for future

research.
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2.6 Appendix

Proof of Lemma 2:

We assume xi = 0 and σ = 1 without loss. The cdf of x−i conditional on xi = 0 is∫ σ

−σ

F (x−i|θ)dF̃ (θ|0) =
∫ σ

−σ

F (x−i − θ)f(−θ)dθ.

Differentiating this wrt x−i, we get conditional density of x−i ∈ (−2σ, 0) as

χ(x−i|0) =

∫ x−i+σ

−σ

f(x−i − θ)f(−θ)dθ for x−i ∈ (−2σ, 0).

We show below that this increases in x−i < 0.

Fix x−i ∈ (−2σ, 0). Since MLRP, (2.5), implies f ′(z)f(y)−f(z)f ′(y)
f(y)2

≥ 0 when y > z,

∂

∂ϵ
[f(x−i − θ+

ϵ

2
)f(−θ− ϵ

2
)]
∣∣∣
ϵ=0

=
f ′(x−i − θ)f(−θ)− f(x−i − θ)f ′(−θ)

2
≥ 0. (2.17)

Hence,

∂

∂ϵ
χ(x−i + ϵ|0)

∣∣∣
ϵ=0

=
∂

∂ϵ

∫ x−i+ϵ+σ

−σ

f(x−i + ϵ− θ)f(−θ)dθ
∣∣∣
ϵ=0

=
∂

∂ϵ

∫ x−i+ϵ/2+σ

−σ−ϵ/2

f(x−i − θ̃ +
ϵ

2
)f(−θ̃ − ϵ

2
)dθ̃

∣∣∣
ϵ=0

= [f(−σ)f(−x−i − σ) + f(x−i + σ)f(σ)]/2

+

∫ x−i+σ

−σ

f ′(x−i − θ)f(−θ)− f(x−i − θ)f ′(−θ)

2
dθ [∗]

≥ 0

where the second equality is due to a change of variables (θ̃ = θ− ϵ/2) and the inequality

due to (2.17). Since ∂
∂x−i

χ(x−i|0) = ∂
∂ϵ
χ(x−i + ϵ|0)

∣∣
ϵ=0

, this proves that χ(x−i|0) increases
in x−i < 0.

Next, we prove that the density χ(x−i|0) is symmetric around 0, i.e., χ(x−i|0) =

χ(−x−i|0). It suffices to show that ∂
∂x−i

χ(x−i|0)
∣∣
x−i=y

= − ∂
∂x−i

χ(x−i|0)
∣∣
x−i=−y

for y ∈
(0, 2σ). Since

χ(x−i|0) =

∫ σ

x−i−σ

f(x−i − θ)f(−θ)dθ for x−i ∈ (0, 2σ),
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∂

∂ϵ
χ(x−i + ϵ|0)

∣∣∣
ϵ=0

=
∂

∂ϵ

∫ σ−ϵ/2

x−i+ϵ/2−σ

f(x−i − θ̃ +
ϵ

2
)f(−θ̃ − ϵ

2
)dθ̃

∣∣∣
ϵ=0

= −[f(x−i − σ)f(−σ) + f(σ)f(−x−i + σ)]/2

+

∫ σ

x−i−σ

f ′(x−i − θ̃)f(−θ̃)− f(x−i − θ̃)f ′(−θ̃)

2
dθ̃

= −[f(x−i − σ)f(−σ) + f(σ)f(−x−i + σ)]/2

+

∫ −x−i+σ

−σ

f ′(−θ)f(−x−i − θ)− f(−θ)f ′(−x−i − θ)

2
dθ

which is negative of [*] as desired, where the last equality is due to change of variable

θ = θ̃ − x−i. This completes the proof.

Proof of Proposition 4:

Let τ+i =
gβi (x

+)

gαi (x
+)+gβi (x

+)
∈ (0, 1) denote the threshold probability for player i in g(x+).

The sum of threshold probabilities is τ+1 + τ+2 < 1 because gα1 (x
+)gα2 (x

+) > gβ1 (x
+)gβ2 (x

+)

by (2.6).

By assumption, αi is strictly dominant g(x−) for at least one player who we denoted

by 1. For the other player 2, either (i) gβ2 (x
−)<0 so that α2 is dominant in g(x−), or (ii)

gβ2 (x
−)≥0 and 0 ≤ gβ2 (x

−)

gα2 (x
−)+gβ2 (x

−)
< 1− gβ1 (x

+)

gα1 (x
+)+gβ1 (x

+)
, in which case α2 is uniquely optimal

if player 1 plays α1 with a probability greater than the threshold level τ−2 =
gβ2 (x

−)

gα2 (x
−)+gβ2 (x

−)
.

In case (i), since α2 is uniquely optimal regardless of the probability with which player 1

plays α1, we may set the threshold level as τ−2 = 0. In either case, τ+1 + τ−2 < 1. By the

same token, we set τ−1 = 0.

The threshold probability τi(θ) :=
gβi (θ)

gαi (θ)+gβi (θ)
in g(θ) is arbitrarily closely approximated

by τ+i as θ converges to x from above, and by τ−i as θ converges to x from below if τ−i > 0.

For small enough σ, therefore, upon observing xi ∈ (x− 7σ, x+ 3σ),

[B] player i finds αi uniquely optimal if α−i is played with a probability exceeding

max{τ−i , τ+i }+ ϵ for arbitrarily small ϵ > 0 such that max{τ−i , τ+i }+ ϵ < 1.

Recall that α1 is initially strictly dominant for player 1 upon observing signals up to

a threshold x̂1 ∈ (x − σ, x) if σ is small enough, in particular, upon observing signals

x1 ∈ (x− 7σ, x̂1), i.e., (x− 7σ, x̂1) ⊂ Aσ,1
1 .

For x2 ∈ (x − 7σ, x + 3σ), let Prob(x1 < x̂1|x2) denote the probability with which

player 1 observes a signal x1 < x̂1 (hence, plays α1) conditional on player 2 observing her

signal x2. By Lemma 2, there is x̂2 ∈ (x̂1 − 2σ, x̂1 + 2σ) such that Prob(x1 < x̂1|x̂2) =

max{τ−2 , τ+2 } + ϵ. Since Prob(x1 < x̂1|x2) decreases in x2 ∈ (x− 5σ, x̂2) by Lemma 2, α2

is dominant for player 2 upon observing signals x2 ∈ (x− 5σ, x̂2), i.e., (x− 5σ, x̂2) ⊂ Aσ,2
2 .

Note that x− σ < x̂1 and x− 3σ < x̂2.

44



Let x̂σ,2
2 ≥ x̂2 denote the upper boundary of the largest interval in Aσ,2

2 that contains

x̂2 in its support, and let x̂σ,2
1 ≥ x̂1 denote the upper boundary of the largest interval in

Aσ,2
1 that contains x̂1 in its support. Likewise, for both i ∈ {1, 2}, let x̂σ,n

i ≥ x̂σ,n−1
i denote

the upper boundary of the largest interval in Aσ,n
i that contains x̂i in its support for n > 2

and let x̂σ,∞
i = limn→∞ x̂σ,n

i . Note that (x − 5σ, x − 3σ) ⊂ (x − 5σ, x̂σ,n
i ) ⊂ Aσ,n

i for all

n ≥ 2 for both i = 1, 2. We show below that (i) x̂σ,∞
i > x+ σ and (ii) x̂σ,∞

i ≥ X̂ for both i

for any X̂ ∈ (x+ σ, sup I) if σ is small enough, which will establish the Proposition.

(i) With a view to reaching a contradiction, suppose x̂σ,∞
i ≤ x + σ for some i for

arbitrarily small σ. Assume x̂σ,∞
i ≤ x̂σ,∞

−i without loss. If 2σ ≤ x̂σ,∞
−i − x̂σ,∞

i , in round n

large enough so that x̂σ,n
−i − x̂σ,n

i is at least arbitrarily close to 2σ, Prob(x−i < x̂σ,n
−i |x̂

σ,n
i )

is arbitrarily close to 1, hence exceeds max{τ−i , τ+i } + ϵ. Consequently, αi is dominant

at xi = x̂σ,n
i and also at slightly higher signals by continuity, contradicting x̂σ,n

i being a

boundary signal of Aσ,n
i .

If x̂σ,∞
−i − x̂σ,∞

i < 2σ, in round n large enough so that x̂σ,n
−i − x̂σ,n

i < 2σ, we have

Prob(xi < x̂σ,n
i |x̂σ,n

−i )+Prob(x−i < x̂σ,n
−i |x̂

σ,n
i ) = 1 by Lemma 2, that is, the probability that

player i observes xi < x̂σ,n
i (hence play αi) conditional on player −i observing x−i = x̂σ,n

−i ,

and the converse probability are complimentary. Since τ+1 +max{τ−2 , τ+2 } < 1 as asserted

above, so that τ+1 +max{τ−2 , τ+2 }+ 2ϵ < 1 for small enough ϵ, at least one player i infers

the other player playing α−i with a probability exceeding max{τ−i , τ+i }+ϵ upon observing

xi = x̂σ,n
i if σ is small enough, thus finds αi iteratively dominant by [B]. As this would

contradict x̂σ,n
i being a boundary signal of Aσ,n

i , we have established that x̂σ,∞
i > x+σ for

both i = 1, 2.

(ii) In the underlying game g(θ) for θ ∈ I, αi is uniquely optimal if player −i plays α−i

with a threshold probability τi(θ) =
gβi (θ)

gαi (θ)+gβi (θ)
∈ (0, 1). Upon observing xi ∈ [x + σ, X̂],

therefore, αi is uniquely optimal if the other player plays α−i with a probability exceeding

τi(xi) + ϵ for arbitrarily small ϵ > 0 if σ is sufficiently small. The set [x + σ, X̂] being

closed, the value of ϵ > 0 can be chosen uniformly for all xi ∈ [x+ σ, X̂] given σ, in such

a way that ϵ → 0 as σ → 0. Since τi(θ) + τ−i(θ) < 1 for every θ ∈ {x+} ∪ (x, X̂] due to

risk dominance as noted earlier and τi(θ) and τ−i(θ) are continuous in θ, there is η > 0

such that τi(θ) + τ−i(θ) + 2ϵ < 1− η for all θ ∈ [x+ σ, X̂] for all sufficiently small σ.

With a view to reaching a contradiction, suppose x̂σ,∞
i ∈ (x + σ, X̂) for some i for

arbitrarily small σ. Assume x̂σ,∞
i ≤ x̂σ,∞

−i without loss. If 2σ ≤ x̂σ,∞
−i − x̂σ,∞

i , in round n

large enough so that x̂σ,n
−i − x̂σ,n

i is at least arbitrarily close to 2σ, Prob(x−i < x̂σ,n
−i |x̂

σ,n
i ) is

arbitrarily close to 1, hence exceeds τi(x̂
σ,n
i )+ ϵ. Consequently, αi is dominant at xi = x̂σ,n

i

and also at slightly higher signals by continuity, contradicting x̂σ,n
i being a boundary signal

of Aσ,n
i .

If x̂σ,∞
−i − x̂σ,∞

i < 2σ, in round n large enough so that x̂σ,n
−i − x̂σ,n

i < 2σ, we have

Prob(xi < x̂σ,n
i |x̂σ,n

−i ) + Prob(x−i < x̂σ,n
−i |x̂

σ,n
i ) = 1 by Lemma 2 as before. In addition,

τi(x̂
σ,n
i ) + τ−i(x̂

σ,n
−i ) + 2ϵ < 1 for small enough σ because τi(θ) + τ−i(θ) + 2ϵ < 1 − η for
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all θ ∈ [x + σ, X̂] as asseted above and |x̂σ,n
i − x̂σ,n

−i | → 0 as σ → 0. Hence, in round n

for large enough n, either αi is dominant for player i upon observing xi = x̂σ,n
i or α−i is

dominant for player −i upon observing x−i = x̂σ,n
−i . As this would contradict x̂σ,n

i being a

boundary signal of Aσ,n
i for at least one player i, we have established that x̂σ,∞

i ≥ X̂ for

both i = 1, 2.

Proof of Lemma 3:

As asserted in the main text, Ṽi(s−i|x+ λiσ) is minimized with s̆−i such that s̆−i(x+

λ−iσ|x + λiσ) = 0 if Ψi(λ−i|λi) ≥ 0 and s̆−i(x + λ−iσ|x + λiσ) = 1 if Ψi(λ−i|λi) < 0.

Hence, it is straightforward that s̆−i(·|x+ λiσ) ≡ 0 if gαi (x
−) + gβi (x

−) ≥ 0.

Next, suppose gαi (x
−)+gβi (x

−) < 0. It is clear from (2.12) that Ψi(−1|−1) = gαi (x
−)+

gβi (x
−) < 0 because

∫∞
0
f(−1 − ϑ)f(−1 − ϑ)dϑ = 0, and Ψi(1|1) = gαi (x

+) + gβi (x
+) > 0

because
∫ 0

−∞f(1 − ϑ)f(1 − ϑ)dϑ = 0. Also, Ψi(λ−i|λi) is continuous in λi and λ−i and

symmetric between them. Hence, if Ψi(λ−i|λi) strictly increases in λ−i ∈ (−1, 1) for any

given λi ∈ (−1, 1), the specification of s̆−i(·|x+ λiσ) in the Lemma 3 verified.

It remains to verify that ∂Ψi(λ−i|λi)/∂λ−i > 0. Note that Pr+ + Pr− = 1 where

Pr+ =
∫∞
0
f(λ−i−ϑ)f(λi−ϑ)dϑ and Pr− =

∫ 0

−∞f(λ−i−ϑ)f(λi−ϑ)dϑ. Due to MLRP, f

is single-peaked, say at λ̂ ∈ (−1, 1). First, consider the case that λi ≥ λ̂. If λ−i ≥ λ̂ as well,

then ∂Pr−/∂λ−i =
∫ 0

−∞f ′(λ−i − ϑ)f(λi − ϑ)dϑ < 0 because f ′(λ) < 0 for λ > λ̂, hence

∂Pr+/∂λ−i > 0 because Pr++Pr− = 1. Hence, ∂Ψi(λ−i|λi)/∂λ−i > 0. If λ−i < λ̂, on the

other hand, ∂Pr+/∂λ−i =
∫∞
0
f ′(λ−i − ϑ)f(λi − ϑ)dϑ > 0 because f ′(λ) > 0 for λ < λ̂,

hence ∂Pr−/∂λ−i < 0 because Pr++Pr− = 1. Hence, again ∂Ψi(λ−i|λi)/∂λ−i > 0. Next,

∂Ψi(λ−i|λi)/∂λ−i > 0 is proved analogously for the alternative case that λi < λ̂. This

completes the proof.

Proof of Proposition 5:

In a global game considered in the proposition, suppose gαi (x
−) + gβi (x

−) < 0 for

i = 1, 2. The condition (2.14) for λ = 0, i.e., Ṽi(s̆
ρ−i(0)
−i |x + ρi(0)σ) > 0, implies x0

i =

x + ρi(0)σ ∈ Aσ,1
i . Let x̂σ,n

i > x0
i be the upper boundary of the largest interval in Aσ,n

i

containing x0
i . Denote x̂

σ,n
i = x+ λ̂n

i σ. Clearly, λ̂
n
i ∈ (0, 1] increases in n. We show that (i)

λ̂∞
i = limn→∞ λ̂n

i > 1 and then (ii) x̂σ,∞
i = x+λ̂∞

i σ≥ X̂ for both i for any X̂ ∈ (x+σ, sup I)

if σ is small enough, which will establish iterative dominance of α in I.

(i) With a view to reaching a contradiction, suppose λ̂∞
i ≤ 1 < Λ, so that ρ−1

i (λ̂∞
i ) < 1,

for some i for arbitrarily small σ, and ρ−1
i (λ̂∞

i ) ≤ ρ−1
−i (min{λ̂∞

−i,Λ}) without loss. If

ρ−1
i (λ̂∞

i ) < ρ−1
−i (min{λ̂∞

−i,Λ}), in round n + 1 large enough so that ρ−1
i (λ̂n

i ) ≤ ρ−1
i (λ̂∞

i ) <

ρ−1
−i (min{λ̂n

−i,Λ}), we have Vi(s−i|x + ρi(λ̂)σ) ≥ Vi(s̆
ρ−i(λ̂)
−i |x + ρi(λ̂)σ) for every λ̂ ∈

[ρ−1
i (λ̂n

i ), ρ
−1
i (λ̂∞

i )] and every admissible s−i in round n+1 by Lemma 3, because player −i

plays α−i on Aσ,n
−i ⊃ [x0

−i, x̂
σ,n
−i ) ⊃ [x+ρ−i(0)σ, x+ρ−i(λ̂)σ) given that x+ρ−i(ρ

−1
i (λ̂∞

i ))σ <
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x + ρ−i(ρ
−1
−i (min{λ̂n

−i,Λ}))σ = x + min{λ̂n
−i,Λ}σ ≤ x + λ̂n

−iσ = x̂σ,n
−i . Since Vi(s̆

ρ−i(λ̂)
−i |x +

ρi(λ̂)σ) → Ṽi(s̆
ρ−i(λ̂)
−i |x + ρi(λ̂)σ) as σ → 0 and Ṽi(s̆

ρ−i(λ̂)
−i |x + ρi(λ̂)σ) > 0 by (2.14),

we would have Vi(s̆
ρ−i(λ̂)
−i |x + ρi(λ̂)σ)) > 0 for λ̂ ∈ [ρ−1

i (λ̂n
i ), ρ

−1
i (λ̂∞

i )] so that x̂σ,∞
i =

x+ ρi(ρ
−1
i (λ̂∞

i ))σ ∈ Aσ,n+1
i , a contradiction.

It remains to consider the case that λ̂∞
i ≤ 1 < Λ and ρ−1

i (λ̂∞
i ) = ρ−1

−i (λ̂
∞
−i) < 1. In this

case, the minimal value of Vi(s−i|x + λ̂∞
i σ) in each round n obtains when s−i assigns 1

only to x−i ∈ (−∞, x+ T−i(λ̂
∞
i )σ)∪Aσ,n−1

−i by Lemma 3. By continuity of Vi(·|x+ λ̂∞
i σ),

this minimal value converges to a value no lower than Ṽi(s̆
λ̂∞
i

−i |x+ λ̂∞
i σ) as n → ∞ because

x̂σ,n
i → x̂σ,∞

i . Since Ṽi(s̆
λ̂∞
i

−i |x+ λ̂∞
i σ) > 0 by (2.14), we would have x̂σ,∞

i = x+ λ̂∞
i σ ∈ Aσ,n

i

for some n if σ is small enough, again a contradiction. This establishes that λ̂∞
i > 1 for

i = 1, 2.

(ii) With a view to reaching a contradiction, suppose x̂σ,∞
i ∈ (x+ σ, X̂) for some i for

arbitrarily small σ. Assume x̂σ,∞
i ≤ x̂σ,∞

−i without loss. Upon observing xi ∈ (x + σ, X̂),

each agent is certain that θ ∈ I, thus α risk-dominates β.

If x̂σ,∞
i ≥ x + 3σ for both i, upon observing xi = x̂σ,∞

i each agent i knows that agent

−i observes x−i > x + σ and thus chooses α−i with probability at least Prob(x−i <

x̂σ,∞
−i | x̂σ,∞

i ). An argument analogous to that in the proof for Proposition 4 leads to a

contradictory conclusion that αi should be dominant at x̂σ,∞
i for at least one i.

Thus, suppose x̂σ,∞
i ∈ (x+σ, x+3σ) for at least one i. First, if x̂σ,∞

i = x+λ̂∞
i σ ≤ x+Λσ

for either player i, let i denote the sole such player or the player with a lower ρ−1
i (λ̂∞

i ).

Then, Vi(s−i|x̂σ,∞
i = x + λ̂∞

i σ) is minimal in round n large enough when s−i assigns

1 only at x−i ∈ Aσ,n
−i ⊃ (x0

−i, x + λ̂n
−iσ) ⊃ (x0

−i, x + ρ−i(ρ
−1
i (λ̂n

i ))σ), which is no lower

than Vi(s̆
ρ−i(ρ

−1
i (λ̂n

i ))
−i |x + λ̂∞

i σ). Since Ṽi(s̆
ρ−i(ρ

−1
i (λ̂∞

i ))
−i |x + λ̂∞

i σ) > 0 by (2.14), we have

Ṽi(s̆
ρ−i(ρ

−1
i (λ̂n

i ))
−i |x + λ̂∞

i σ) > 0 for large enough n by continuity, hence Vi(s̆
ρ−i(ρ

−1
i (λ̂n

i ))
−i |x +

λ̂∞
i σ) > 0 for large enough n as σ → 0. This would mean that αi is iteratively dominant

at xi = x̂σ,∞
i , a contradiction.

Second, if x̂σ,∞
i = x + λ̂∞

i σ ∈ (x + Λσ, x + 3σ) for both players, assume x̂σ,∞
i ≤ x̂σ,∞

−i .

Then, Vi(s−i|x̂σ,∞
i ) is minimal in round n large enough when s−i assigns 1 only at x−i ∈

Aσ,n
−i ⊃ (x0

−i, x + ρ−i(λ̂
n
−i)σ), which is no lower than that when s−i assigns 1 only at

x−i ∈ (x0
−i, x+ρ−i(λ̂

n
−i)σ). This, in turn, is no lower than Vi(s−i|x+Λσ) when s−i assigns

1 only at x−i ∈ (x0
−i, x + Λσ), which is positive by (2.14). This would mean that αi is

iteratively dominant at xi = x̂σ,∞
i by the same token as above, a contradiction.

Finally, to prove the last part of the proposition, suppose (2.14) holds for ρ1 and ρ2 in a

global game. By Lemma 3, Ṽi(s̆
ρ−i(λ)
−i |x+ρi(λ)σ) is the minimal value of Ṽi(s−i|x+ρi(λ)σ)

among all s−i’s subject to assigning 1 to all x−i ∈ (x + ρ−i(0)σ, x + ρ−i(λ)σ). Given any

such s−i, note from (2.11) that Ṽi(s−i|x+ρi(λ)σ) is higher when gβi (x
−) is reduced because

the coefficient of gβi (x
−) in (2.11) is the negative of the probability that θ < x and player

−i plays β−i according to s−i conditional on player i’s signal xi = x+ ρi(λ)σ. Therefore,

47



the minimal value of Ṽi(s−i|x + ρi(λ)σ) among all such s−i’s is no lower when gβi (x
−) is

reduced for either i, that is, (2.14) continues to hold when gβi (x
−) is reduced for either i.

This completes the proof.

Proof of Corollary 2:

(a) Suppose that density f of ϵi symmetric around 0. Then, if the two players observe

signals xi and x−i that are equidistant from x in the opposite direction, θ is equally likely to

be above or below x and thus, Ψi(x−i|xi) ≥ 0 if gαi (x
+)+gβi (x

+) ≥ −gαi (x
−)−gβi (x

−) > 0.

This implies that x−i needs to be below x by more than xi exceeds x for Ψi(x−i|xi) = 0 to

hold, that is, Ti(x+λσ) ≤ x−λσ. Hence, Fσ

(
(−∞, Ti(x+λσ))∪ (x, x+λσ)|θ

)
= Fσ(x+

λσ|θ)−Fσ(x|θ)+Fσ(Ti(x+λσ)|θ) and replacing gαi (x
−)+gβi (x

−) with −[gαi (x
+)+gβi (x

+)]

in Ṽi(s̆
λ
−i|x+ λσ) gives

Ṽi(s̆
λ
−i|x+ λσ) ≥ [gαi (x

+) + gβi (x
+)]∆i(λ)− gβi (x

−) + [gβi (x
−)− gβi (x

+)]F (λ) (2.18)

where ∆i(λ) :=

∫ x+λσ+σ

x

[Fσ(x+ λσ|θ)− Fσ(x|θ) + Fσ(Ti(x+ λσ)|θ)]dF̃σ(θ|x+ λσ)

−
∫ x

x+λσ−σ

[Fσ(x+ λσ|θ)− Fσ(x|θ) + Fσ(Ti(x+ λσ)|θ)]dF̃σ(θ|x+ λσ).

We show below that (i) ∆i(λ) ≥ ∆∗(λ) where ∆∗(λ) is ∆i(λ) evaluated when Ti(x +

λσ) = x − λσ, and (ii) ∆∗(λ) increases in λ ∈ [0, 1) at a rate no lower than f(λ), i.e.,
d
dλ
∆∗(λ) ≥ f(λ). By property (ii), ∆∗(λ) is bounded below by

∆∗(0) +

∫ λ

0

f(z)dz = ∆∗(0) + F (λ)− F (0) = F (λ)− 3

4

because, given symmetric noise which implies F̃σ(θ|x) = Fσ(θ|x) = 1 − Fσ(x|θ), we have

∆∗(0) =
∫ x+σ

x
[1 − Fσ(x|θ)]dFσ(θ|x) −

∫ x

x−σ
[1 − Fσ(x|θ)]dFσ(θ|x) = −1/4 by (2.2) and

F (0) = 1/2. Hence, from (i) we deduce that the RHS of (2.18) is bounded below by

[gαi (x
+) + gβi (x

+)]
(
F (λ)− 3

4

)
− gβi (x

−) + [gβi (x
−)− gβi (x

+)]F (λ). (2.19)

Consequently, (2.13) holds if (2.19) is positive for all λ ∈ [0, 1]. (2.19) increases in λ if

gαi (x
+)+gβi (x

+) ≥ −[gβi (x
−)−gβi (x

+)] > 0, i.e., gαi (x
+) ≥ −gβi (x

−) > 0, but decreases in λ

if gαi (x
+)+gβi (x

+) ≤ −[gβi (x
−)−gβi (x

+)], i.e., gαi (x
+) ≤ −gβi (x

−). Hence, (2.19) is minimal

at λ = 0 in the former case and at λ = 1 in the latter; and the minimized values are

[gαi (x
+)+gβi (x

+)]
(
F (0)− 3

4

)
−gβi (x

−)+[gβi (x
−)−gβi (x

+)]F (0) =
−gαi (x

+)−3gβi (x
+)−2gβi (x

−)

4
and

[gαi (x
+)+ gβi (x

+)]
(
1− 3

4

)
− gβi (x

+) =
gαi (x

+)−3gβi (x
+)

4
, respectively. Therefore, (2.13) holds if

−3gβi (x
+)−2gβi (x−)>gαi (x

+) or gαi (x
+)>3gβi (x

+) depending on whether gαi (x
+)≥−gβi (x

−)

or not, as summarized in part (a) of Corollary 2.

We now prove that (i) ∆i(λ)≥∆∗(λ) and (ii) d∆∗(λ)
dλ

> f(λ).
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(i) Replace Ti(x+λσ) with τ in ∆i(λ). Treating τ as an independent variable, it suffices

to show that ∂∆i(λ)
∂τ

≤ 0 for τ ∈ (x − σ, x + σ) because Ti(x + λσ) ≤ x − λσ. Denoting
y = x+ λσ for notational ease, we have

∂∆i(λ)

∂τ
=

∫ y+σ

x
σ−1f(

τ − θ

σ
)dF̃σ(θ|y)−

∫ x

y−σ
σ−1f(

τ − θ

σ
)dF̃σ(θ|y).

Note that f( τ−θ
σ
) = 0 for θ > τ + σ because then τ−θ

σ
< −1. If y > x+ σ/2, we have

∂∆i(λ)

∂τ
= σ−1

[∫ τ+σ

x
f(

τ − θ

σ
)dF̃σ(θ|y)−

∫ x

τ−x+y
f(

τ − θ

σ
)dF̃σ(θ|y)−

∫ τ−x+y

y−σ
f(

τ − θ

σ
)dF̃σ(θ|y)

]

= −
∫ x

τ−x+y
σ−1f(

τ − θ

σ
)dF̃σ(θ|y) ≤ 0

where the second equality obtains because
∫ τ+σ

x
f( τ−θ

σ
)dF̃σ(θ|y) =

∫ τ−x+y

y−σ
f( τ−θ

σ
)dF̃σ(θ|y).

If y ≤ x+ σ/2, on the other hand,

∂∆i(λ)

∂τ
= σ−1

[∫ x+2(y−x)

x
f(

τ − θ

σ
)dF̃σ(θ|y) +

∫ τ+σ

x+2(y−x)
f(

τ − θ

σ
)dF̃σ(θ|y)

−
∫ x

τ−x+y
f(

τ − θ

σ
)dF̃σ(θ|y)−

∫ τ−x+y

τ+x−y
f(

τ − θ

σ
)dF̃σ(θ|y)−

∫ τ+x−y

y−σ
f(

τ − θ

σ
)dF̃σ(θ|y)

]

= −
∫ x

τ−x+y
σ−1f(

τ − θ

σ
)dF̃σ(θ|y) ≤ 0

where the second equality obtains because
∫ x+2(y−x)

x
f( τ−θ

σ
)dF̃σ(θ|y)=

∫ τ−x+y

τ+x−y
f( τ−θ

σ
)dF̃σ(θ|y)

and
∫ τ+σ

x+2(y−x)
f( τ−θ

σ
)dF̃σ(θ|y) =

∫ τ+x−y

y−σ
f( τ−θ

σ
)dF̃σ(θ|y).

(ii) Since ∆∗(λ) is invariant to x and σ, we rewrite it for x = 0 and σ = 1 as

∆∗(λ) =

∫ λ+1

0
Ξ(λ, θ)dF̃ (θ|λ)−

∫ 0

λ−1
Ξ(λ, θ)dF̃ (θ|λ) where Ξ(λ, θ) := F (λ−θ)−F (−θ)+F (−λ−θ).

Differentiate the first integral by taking the limit of the following quotient as η → 0:∫ λ+η+1

0
Ξ(λ+ η, θ)dF̃ (θ|λ+ η)−

∫ λ+1

0
Ξ(λ, θ)dF̃ (θ|λ)

η

=

∫ λ+1

−η
[F (λ− θ′)− F (−θ′ − η) + F (−λ− θ′ − 2η)]dF̃ (θ′|λ)−

∫ λ+1

0
[F (λ− θ)− F (−θ) + F (−λ− θ)]dF̃ (θ|λ)

η

=

∫ λ+1

0
[F (−θ)−F (−θ−η)+F (−λ−θ−2η)−F (−λ−θ)]dF̃ (θ|λ)

η
+

∫ 0

−η
[F (λ−θ)−F (−θ−η)+F (−λ−θ−2η)]dF̃ (θ|λ)

η

→
∫ λ+1

0

[f(−θ)− 2f(−λ− θ)]dF̃ (θ|λ) + [F (λ)− F (0) + F (−λ)]f(λ) as η → 0,

where the first equality is due to a change of variable θ′ = θ − η. Differentiating the
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second integral analogously, we get∫ 0

λ+η−1
Ξ(λ+ η, θ)dF̃ (θ|λ+ η)−

∫ 0

λ−1
Ξ(λ, θ)dF̃ (θ|λ)

η

=

∫ 0

λ−1
[F (−θ)−F (−θ−η)+F (−λ−θ−2η)−F (−λ−θ)]dF̃ (θ|λ)

η
−

∫ 0

−η
[F (λ−θ)−F (−θ−η)+F (−λ−θ−2η)]dF̃ (θ|λ)

η

→
∫ 0

λ−1

[f(−θ)− 2f(−λ− θ)]dF̃ (θ|λ) − [F (λ)− F (0) + F (−λ)]f(λ) as η → 0.

Subtracting the second from the first, given symmetry of f around 0,

d∆∗(λ)

dλ
=

∫ λ+1

0

[f(−θ)− 2f(−λ− θ)]dF̃ (θ|λ)−
∫ 0

λ−1

[f(−θ)− 2f(−λ− θ)]dF̃ (θ|λ) + 2[1− F (0)]f(λ)

=
[∫ λ+1

0

f(θ)dF̃ (θ|λ)−
∫ 0

λ−1

f(θ)dF̃ (θ|λ)
]
+ 2

[∫ 0

λ−1

f(λ+ θ)dF̃ (θ|λ)−
∫ λ+1

0

f(λ+ θ)dF̃ (θ|λ)
]
+ f(λ)

> f(λ)where the inequality ensues because the first bracketed differential of two integrals of the

preceding expression is positive and the second is zero for λ ∈ [0, 1).

(b) Suppose gαi (x
+) + gβi (x

+) ≤ −gαi (x
−)− gβi (x

−). Increase gβi (x
−) to g̃βi (x

−) so that

gαi (x
+) + gβi (x

+) = −gαi (x
−)− g̃βi (x

−). By part (a) of Corollary 2, if

−gαi (x
+) ≤ g̃βi (x

−) <
−3gβi (x

+)− gαi (x
+)

2
or g̃βi (x

−) ≤ −gαi (x
+) < −3gβi (x

+), (2.20)

then (2.13) holds and thus, α is iteratively dominant in I.

By Proposition 5, (2.13) continues to hold and α is iteratively dominant in I when

a lower gβi (x
−) replaces g̃βi (x

−). The condition in (b) is (2.20) when a lower gβi (x
−) re-

places g̃βi (x
−) because −gαi (x

+) <
−3gβi (x

+)−gαi (x
+)

2
⇔ −3gβi (x

+)−gαi (x
+)

2
< −3gβi (x

+). This

establishes part (b).

Proof of Proposition 6:

In a global game considered in the proposition, assume gα1 (x
−)+gβ1 (x

−) < 0 < gα2 (x
−)+

gβ2 (x
−). The condition (2.15) implies [x0

1 = x+ ρ1(λ)σ, x+ ρ1(0)σ] ⊂ Aσ,1
i , and (2.16) for

λ = 0 implies x0
2 = x+ ρ2(0)σ ∈ Aσ,2

2 . Let x̂σ,n
i > x0

i be the upper boundary of the largest

interval in Aσ,n
i containing x0

i . Denote x̂σ,n
i = x + λn

i σ. Clearly, λ
n
i ∈ (0, 1] increases in n.

We show that (i) λ∞
i = limn→∞ λn

i > 1 and then (ii) x̂σ,∞
i = x + λ∞

i σ ≥ X̂ for both i for

any X̂ ∈ (x+ σ, sup I) if σ is small enough, which will establish iterative dominance of α

in I.

(i) With a view to reaching a contradiction, suppose λ∞
i ≤ 1 < Λ, so that ρ−1

i (λ∞
i ) < 1,

for some i for arbitrarily small σ, and ρ−1
i (λ∞

i ) ≤ ρ−1
−i (min{λ∞

−i,Λ}). If ρ−1
i (λ∞

i ) <

ρ−1
−i (min{λ∞

−i,Λ}), in round n+1 large enough so that ρ−1
i (λn

i ) ≤ ρ−1
i (λ∞

i ) < ρ−1
−i (min{λn

−i,Λ}),
we have Vi(s−i|x + ρi(λ)σ) ≥ Vi(s̆

ρ−i(λ)
−i |x + ρi(λ)σ) if i = 1 and Vi(s−i|x + ρi(λ)σ) ≥

Vi(s
(λ,λ)
−i |x + ρi(λ)σ) if i = 2 for every λ ∈ [ρ−1

i (λn
i ), ρ

−1
i (λ∞

i )] and every admissible
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s−i in round n + 1 by Lemma 3, because player −i plays α−i on Aσ,n
−i ⊃ [x0

−i, x̂
σ,n
−i ) ⊃

[x0
−i, x + ρ−i(λ)σ), given that x + ρ−i(ρ

−1
i (λ∞

i ))σ < x + ρ−i(ρ
−1
−i (min{λn

−i,Λ}))σ = x +

min{λn
−i,Λ}σ ≤ x + λn

−iσ = x̂σ,n
−i . Therefore, we would have Vi(s−i|x + ρ−1

i (λ∞
i )σ) > 0

for every admissible s−i for small enough σ by (2.14) or (2.16), so that x̂σ,∞
i = x +

ρi(ρ
−1
i (λ∞

i ))σ ∈ Aσ,n+1
i , a contradiction.

It remains to consider the case that λ∞
i ≤ 1 < Λ and ρ−1

i (λ∞
i ) = ρ−1

−i (λ
∞
−i) < 1. In

this case, the minimal value of Vi(s−i|x+ λ∞
i σ) in each round n obtainswhen s−i assigns

1 only to x−i ∈ (−∞, x + T−i(λ
∞
i )σ) ∪ Aσ,n−1

−i if i = 1 or only to x−i ∈ Aσ,n−1
−i if i = 2

by Lemma 3. By continuity of Vi(·|x+ λ∞
i σ), this minimal value converges to a value no

lower than Ṽi(s̆
λ∞
i

−i |x+ λ∞
i σ) or Ṽi(s̆

(λ,λ∞
i )

−i |x+ λ∞
i σ) as n → ∞ because x̂σ,n

i → x̂σ,∞
i . Since

Ṽi(s̆
λ∞
i

−i |x + λ∞
i σ) > 0 by (2.14) and Ṽi(s̆

(λ,λ∞
i )

−i |x + λ∞
i σ) > 0 by (2.16), we would have

x̂σ,∞
i = x+ λ∞

i σ ∈ Aσ,n
i for some n if σ is small enough, a contradiction. This establishes

that λ∞
i > 1 for i = 1, 2.

(ii) The proof of part (ii) of Proposition 5 also applies here, establishing iterative

dominance of α in I.

The last part of the proposition can be proved in the same way as the last part of the

Proposition 5 is proved, hence the details are omitted. This completes the proof.
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Chapter 3

Controlling Inflation with Central
Bank Communication

Statement of co-authorship: This chapter is co-authored with Nikolaos Kokonas and

Michael Rousakis. All co-authors contributed equally to the chapter.

3.1 Introduction

The recent global rise in inflation has sparked an interesting debate among academics and

policymakers regarding its causes and the extent of monetary policy tightening needed to

control inflation. One possible explanation of why central banks delayed in their reaction

to prevent the burst in inflation was the belief that inflation expectations were firmly

anchored and rises of inflation would be temporary. However, recent data suggests that

expectations were not so well-anchored, with a rising share of households expecting that

inflation to be higher in the future (Reis, 2022).

The contribution of the paper is to show that central bank announcements regarding

its forecasts about likely movements of future macroeconomic variables, in our set-up,

inflation and output, what has been dubbed Delphic Guidance in the literature (Campbell

et al., 2012), convey information to market participants about the state of the economy

that is essential to control the stochastic path of inflation. In that respect, we treat

the problem of the determination of the stochastic path of inflation as an information,

signal extraction problem. Crucially, we show that reliance solely on conventional inflation

targeting policies to control inflation, without explicit guidance about the likely future

path of the economy, allows the heterogeneous expectations of households and firms about

the future state of the economy to affect arbitrarily the realised path of inflation and, as

a result, the central bank loses control of its main target.

We consider an infinite horizon, cashless economy populated by a representative house-

hold which consists of a consumer/worker and a producer, and the central bank. The state

of the economy is described by productivity, which consists of a permanent, AR(1) com-
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ponent and is subject to zero-mean iid shocks. The model’s only source of inefficiency is

the asymmetry of information about productivity between agents. At the beginning of

each period only the consumer learns productivity. The producer has to form expecta-

tions about productivity and maximise expected profits, and they only learn productivity

after production decisions have been taken. The central bank steps in after production

has taken place and sets its policy according to an expected inflation targeting rule. Fur-

thermore, the central bank might receive noisy signals about future productivity which

it communicates to the agents before production takes place, without observing current

productivity at the time of the announcement, thus, respecting the informational restric-

tions of the producer. All agents are Bayesian, and the equilibrium concept is rational

expectations.

The log-linear equilibrium of the economy reduces to the standard IS block and a

Lucas-type Philips curve (PC), where output increases (decreases) if the producer’s es-

timate about the current price level exceeds (falls below) the realised level of prices. We

focus on linear rational expectations equilibria, where inflation and output conjectures

are functions of realised productivity and agents’ expectations about the permanent com-

ponent of productivity, which, in turn, is the best estimate about future productivity.

In our environment, conventional monetary policy can only pin down, if at all, ex-

pected inflation from the IS block (stochastic Fisher equation), allowing a continuum of

inflation paths consistent with equilibrium. In turn, output, being a function of inflation

from the Philips curve, is left indeterminate as well. Equivalently, as realised inflation

depends on current productivity and estimates about future productivity, conventional

policy can only determine their joint impact (sum of coefficients) on realised inflation,

leaving the coefficients on agents’ estimates about future productivity free and, as a re-

sult, the stochastic path of inflation arbitrary. The inability of the central bank to control

inflation leads to suboptimal, belief-driven fluctuations.

Central bank communication, in the form of forecasts about expected inflation or

output, is powerful because it reveals the central banks’ noisy information about the

future state of the economy, shaping agents’ expectations about future productivity and,

through updating of beliefs, renders these expectations irrelevant, thus determining the

stochastic path of inflation.

The argument reduces to counting equations and unknowns. Conventional policy, with-

out explicit guidance – either because the central bank does not possess noisy information

about the future state of the economy or because it withholds its private information inten-

tionally –, cannot pin down the coefficients on the agents’ estimates about future produc-

tivity that affect realised inflation and output. Explicit guidance through announcements

of forecasts about expected inflation or output allow agents to back out the noisy signals,

and through Bayesian updating, adds non-trivial restrictions equal to the number of free

coefficients. In turn, consistency between equilibrium conjectures for inflation and output
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and the IS and PC block, require that the coefficients on the agents’ expectations about

future productivity that, in turn, affect realised inflation and output become zero, thus,

rendering these expectations irrelevant.

We extend the previous argument to an economy with productivity as well as demand

shocks, and show that a more comprehensive communication is called for, namely, the

central bank must announce forecasts about expected inflation as well as expected output

to control the stochastic path of inflation.

The empirical literature has demonstrated that central banks have additional informa-

tion about inflation beyond what is known to market participants, and that policy actions

can modify market participants’ forecasts (Romer and Romer, 2000).1 Our theoretical re-

sults uncover the fundamental role that central bank forecasts play in modifying agents’

forecasts about the likely path of the economy, and thus, adding additional restrictions

to the equilibrium set that pins down a unique path for inflation and output.

It should be stressed that the mechanism to control inflation in our paper is different

from the corresponding mechanism in the canonical New Keynesian framework. Specif-

ically, our economy features a continuum of bounded inflation paths in the absence of

explicit guidance, thus, the need of a Taylor-type principle argument to select the unique

bounded solution out of a continuum of unbounded solutions, as in the canonical New

Keynesian model, is not relevant here. In fact, Castillo-Martinez and Reis (2019), in a re-

view of the relevant literature, make clear the distinction between models where arbitrage

and interest rate setting by the central bank does not suffice to pin down the stochastic

path of inflation, namely, models that rely on the stochastic Fisher equation to pin down

inflation (which is our case), and models where the Taylor-type principle, coupled with a

terminal condition on inflation selects the unique bounded solution out of a continuum

of explosive solutions (which is the mechanism to control inflation in the canonical New

Keynesian framework).

The rest of the paper is organized as follows. Section 2 discusses the related literature,

Section 3 presents the model, Section 4 presents equilibrium under various announcements

from the central bank. Section 5 discusses extensions and section 6 concludes.

3.1.1 Related Literature

Our paper is related to the literature that studies the ability of a central bank to con-

trol inflation, under different specifications of monetary policy. A non-extensive list of

contributions includes Sargent and Wallace (1975), McCallum (1981), Woodford (1994),

Clarida et al. (2000), Cochrane (2011), Cantoni et al. (2019), Castillo-Martinez and Reis

(2019), Angeletos and Lian (2021), amongst others. It is worth emphasising that our

1Recent empirical work, see, for example, Coenen et al. (2017) and Jain and Sutherland (2020), argues
that state-contingent forward guidance and central bank projections provide additional information to
market participants and manage to modify their forecasts.
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indeterminacy results do not derive from the stability of the steady state or even the

infinity of the horizon.2 In contrasts, our work is closest to Nakajima and Polemarchakis

(2005), who showed that in finite or infinite horizon stochastic monetary economies, and

under “Ricardian” fiscal policy, interest rate or money supply rules can only pin down

an average value of inflation, leaving its distribution across states of the world indeter-

minate. In that context, Adão et al. (2014) and Magill and Quinzii (2014) showed that

fixing the term structure of interest rates determines the path of inflation. We expand

this line of literature by treating the determination of the stochastic path of inflation as

an information, signal-extraction problem, and show that conventional inflation targeting

policies, supplemented with central bank forecasts about the likely future movements of

macroeconomic variables, suffice to control the path of inflation.

Our paper is also related to the important literature that studies the social value of

public information. The seminal work of Morris and Shin (2002b, 2005) argued that the

welfare effects of increased public information is ambiguous, since the release of precise

public signals may be welfare impairing in an environment that features strategic comple-

mentarities between agents’ actions. Woodford (2005) and Morris et al. (2006) questioned

the previous anti-transparency result, while Hellwig (2005) argued that the welfare effects

may be improving due to reduced price dispersion. Furthermore, Angeletos and Pavan

(2007) argued that the welfare consequences of public information depend, crucially, on

the nature of strategic interactions between agents. Our approach abstracts from strategic

interactions and the resulting externality that arises from individuals trying to second-

guess the actions of others. Public information in our set up convey information to agents

about the future state of the world, that, in turn, perturbs agents’ expectations away from

prior beliefs, and adds equilibrium restrictions needed to pin down the path of inflation

and output. Our framework offers an example where public information has social value

since it eliminates the possible emergence of suboptimal, belief-driven fluctuations, but

remains silent about how precise public signals should be. As argued by the literature,

the latter point would require careful consideration of agents’ interactions.

Bassetto (2019) studies a cheap talk game between a central bank and agents when

their incentives are not aligned and finds that indeed information transmission is possible.

We take this as given in assuming that information transmission is possible and instead

focus on the effect that such communication has in controlling inflation.

Lastly, the theoretical model in the next section is related with the literature on

dispersed information and shares elements with Angeletos and La’o (2010), Lorenzoni

(2009) and Lorenzoni (2010). Even though we use a similar to those papers friction to allow

for belief driven fluctuations, in contrast with this work we focus on classes of equilibria

that exhibit indeterminacy without any communication from the better informed central

bank.

2All our results follow intact in a finite horizon version of the model.
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3.2 The model

We consider a cashless, competitive, monetary economy. The representative household

consists of one producer and one consumer/worker. The consumer/worker, supplies labor

to a representative firm they own but is managed by the producer. The firm produces a

single non-storable commodity. There exists a short term nominal bond market with the

bond price set by the monetary authority according to an expected inflation targeting

rule. Time is discrete and infinite with each period denoted by t = 0, 1, ... . Consumer’s

preferences are given by:

U(Ct, Nt) = Et

[ ∞∑
t=0

βt(logCt −
N1+ζ

t

1 + ζ
)
]
, (3.1)

where Ct denotes consumption and Nt denotes employment at period t. The constant

ζ > 0 is the inverse of Frisch elasticity of labor supply and β ∈ (0, 1) is a discount factor.

The consumer faces a sequence of budget constraints:

PtCt +QtBt+1 = Bt +WtNt +Ψt, (3.2)

where Pt denotes commodity prices, Bt+1 denotes holdings of nominal bonds purchased

at period t and maturing at t + 1 , Qt denotes the nominal bond price, Wt denotes the

nominal wage and Ψt denotes the firm’s profits. The firm’s technology and profits are

given respectively by:

Yt = AtNt (3.3)

Ψt = PtYt −WtNt, (3.4)

where At denotes productivity. The Central bank targets future inflation and sets the

nominal bond price according to an interest-rate rule:

Qt = βEcb
t

[
Πt+1

]−ϕπ
( Yt

Y ∗
t

)−ϕy
, (3.5)

where Πt+1 denotes inflation in period t + 1, Y ∗
t denotes the natural level of output and

the ratio between the natural and current level of output is the output gap. The monetary

policy parameter ϕπ is and ϕy are assumed to be non-negative. Without loss for the rest

of the text we will assume that ϕy = 0 since whether the central bank targets output gap

or not is inessential to our analysis.

Shocks and Signals: The economy is characterised by asymmetric information. Specif-

ically, only the consumer can observe their productivity, At. Let at = logAt and define

similarly any lowercase variable henceforth. Productivity consists of a permanent compo-

nent xt and a temporary component ϵt:
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at = logAt = xt + ϵt with ϵt ∼ N(0, σ2
ϵ )

The consumer/worker observes at but not its decomposition. Aggregate productivity fol-

lows a random walk:

xt = ρxt−1 + et with et ∼ N(0, σ2
e), ρ ∈ (0, 1]

The Central Bank at the beginning of each period receives information about productivity

up to τ periods ahead, in the form of noisy observations about future productivity shocks3

at each period τ in the form of a signal:

st+τ = ϵt+τ + ut+τ with ut+τ ∼ N(0, σ2
u).

The terms ut, et, ϵt are mutually independent and serially uncorrelated noise.

Timing: Each period is divided in two stages. In stage 1, the central bank makes its

announcements which we discuss in the next section. The consumer, but not the producer,

observes productivity at. Production takes place, producers maximise expected profits,

forming expectations about current, unobserved productivity at, and households choose

labour supply optimally. Crucially, the nominal wage is independent from the consumer’s

labour supply due to the linearity of technology, thus the producer cannot infer current

productivity by observing the current wage. Implicitly it is assumed that the producer

and the consumer are physically separated at the beginning of each period. This allows

us to abstract from the “Lucas-Phelps” islands framework and focus on a representative

agent model instead.4

In stage 2, the Central Bank steps in and sets interest rates according to the tar-

geting rule (5) and commodity and bonds markets open.5 If the central bank acted at

the beginning of each period, its actions would be rendered neutral. Consumers choose

consumption and bond holdings optimally, taking prices as given, and prices adjust to

clear commodity and bond markets. At the beginning of stage 2, the Central Bank and

the producer can infer current productivity at since production has already taken place.

However, no agent in the economy observes permanent productivity xt. The timing is

summarized at the graph bellow.

(t,I):
Central bank announces st+τ

Consumers observe at
Production takes place.

(t,II):
Central bank sets Qt.

Commodity and bond markets clear.

t

3One could allow the central bank to announce observations about the actual value of future produc-
tivity (at+τ ) but this would complicate agents’ learning problem without adding any insight.

4Alternatively, one could introduce idiosyncratic shocks in labour supply such as preference shocks in
order for labour supply not to reveal productivity.

5This timing is in line with the literature as seen in Lorenzoni (2010)
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3.3 Equilibrium

3.3.1 Information and Beliefs

In order to define equilibrium, we first define agents’ information sets. Let the state of

the economy at time t be Ωt =
{
(at)

t
t=0, (xt)

t
t=0, (st+τ )

τ
τ=1

}
. Let the information of agent

i, with i ∈ {cb, p, c} denoting respectively the central bank, producer and consumer, be

denoted by I it,s with s ∈ {1, 2} denoting the stage within a given period t.

Let {At} denote the Central Bank’s announcement, allowing this set to be empty

when we study the case where the central bank transmits no information. We assume

that “no announcements” do not have any informational value and agents do not update

their beliefs upon hearing such message. This in turn implies that we can focus only in

the case where the central bank has some information and transmits it and the case where

the central bank does not possess any information and its announcement is empty. In our

setup any private information that the central bank has will not affect equilibrium thus the

second case where the central bank has no information and makes no announcements is

equivalent with the case where the central bank withholds its information6 thus we use this

as the benchmark case of where the central bank offers no announcements. Lastly, in our

setup the central bank can credibly convey its information to the agents. We take our cue

from Bassetto (2019) who shows that in a cheap talk game where the incentives of a central

bank are misaligned with those of the agents, information transmission from a superior

informed central bank is possible. We discuss how informativeness of the announcement

affects our setup in section 4.

The information sets of the agents are given by:

Icbt,1 =
{
(at)

t−1
t=0,At)

t
t=0}

Icbt,2 =
{
(at)

t
t=0,At)

t
t=0}

Ict,1 =
{
(at)

t
t=0 ∪ (At)

t
t=0

}
Ipt,1 =

{
(at)

t−1
t=0 ∪ (At)

t
t=0

}
Ipt,2 = Ict,1

With slight abuse of notation we denote the expectation of agent q at period t and

stage s, conditional on their information I it,s with Ei
t,s[.] = Ei

t,s[.|I it,s]. Agents’ expectations
are formed as follow:

Each day the consumer observe their productivity and they update their belief about

the permanent component of productivity:

Ec
t [xt] = (1− µ)Ec

t−1[xt] + µat.

6For an example where the central bank has private information see Appendix 6.4
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Where µ is the Kalman gain which measures the relative weight that agents place between

past and new information in order to estimate the permanent component of productivity

which we derive in the Appendix. The producer observes productivity only after produc-

tion has taken place:

Ep
t,1[at] = Ep

t,1[xt] = ρEp
t,1[xt−1]

Ep
t,2[xt] = Ec

t [xt] = (1− µ)Ec
t−1[xt] + µat

Lastly notice that the producer can make inferences about the consumer’s beliefs:

Ep
t,1

[
Ec

t,1[xt]
]
= (1− µ)Ec

t−1[xt] + µEp
t,1[at] = Ep

t,1[xt].

Importantly without any communication, no agent can distinguish between the per-

manent and temporary component one period ahead, regardless of the stage within date

t.

Ec
t [xt+1] = Ec

t [at+1] = ρEc
t [xt],

Ep
t [xt+1] = Ep

t [at+1] = ρEp
t [xt],

The last equations in both agents’ learning problem do not hold in the case where the

central bank makes announcements about future productivity shocks of the economy.

Since agents are Bayesian, they will update their beliefs about future realized productivity

(at+τ ), while their beliefs about the permanent component of productivity will remain

unchanged. Their expectation about realized productivity in period τ in the case that

((At)
t
t=0 = {st+1, st+2, ....}) is given by:

Ei
t [at+τ ] =

(σ2
x + σ2

ϵ )
−1Ei

t [xt+τ ] + (σ2
u)

−1st+τ

(σ2
x + σ2

ϵ )
−1 + (σ2

u)
−1

Lastly, note that in the case of transparency, the producer’s estimate about the beliefs

of the consumer is different than before since Ep
t [at] ̸= Ep

t [xt]:

Ep
t,1[E

c
t [xt]] = Ep

t,1[(1− µ)Ec
t−1[xt] + µat] = (1− µ)Ec

t−1[xt] + µEp
t,1[at] ̸= Ep

t,1[xt].

3.3.2 Equilibrium and Optimality Conditions

Given agents’ learning problems and different information sets we proceed to describe

equilibrium.

Definition 2 A rational expectations equilibrium under an interest rate rule Q(Icbt,2), con-

sists of prices
{
P (Icbt,2),Wt(I

p
t,1), Q(Icbt,2)

}∞
t=0

, an allocation for the producer{
Nd

t (I
p
t,1), Yt(Ωt)

}∞
t=0

and an allocation for the consumer
{
Ct(I

c
t,2), N

s
t (I

c
t,1), Bt+1(I

c
t,2)

}∞
t=0

such that:
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1. Allocations solve the agents’ problems at the stated prices

2. Markets clear: Yt = Ct, N
d
t = N s

t , Bt+1 = 0 for all t and B0 = 0.

In order to characterise equilibria, we start by deriving agents’ optimality conditions.

The consumer maximises their dicounted expected utility (1) subject to a series of budget

constraints (2) and the no-Ponzi scheme constraint Bt+1 > −Γ for any Γ ̸= 0, since Bt = 0

at equilibrium. From consumer’s optimisation problem one acquires:

N ζ
t =

Wt

PtCt

(3.6)

Qt = βEc
t,1

[ 1

Πt+1

Ct

Ct+1

]
(3.7)

Equation (3.6) is the intratemporal optimality condition that equates the real wage, in

terms of consumption, to the disutility of supplying one additional unit of labour. Equation

(3.7) is the intertemporal Euler equation.

The producer chooses labour input to maximise expected profits, Ep
t [λtΨt], using their

expectation of household’s marginal utility of wealth, λt = (PtCt)
−1, as the appropriate

discount rate. More formally, we obtain:

Wt =
Ep

t,1[λtPtAt]

Ep
t,1[λt]

. (3.8)

Due to linearity, the firm accommodates any labour supplied at the given wage as long as

expected profits are zero (realised profits are typically not zero since the real wage is not

equal to productivity). Notice that (3.8) in combination with (3.6) implies that there exists

a wedge between the marginal product of labour and the marginal rate of substitution

between consumption and leisure. This in turn means that belief based fluctuations imply

inefficient output fluctuations.

We will focus our analysis on linear rational expectations equilibria. Doing so consid-

erably simplifies the analysis and enables the use of Kalman filters for the agents learning

problem. To this end we write the agents problems (3.6) − (3.8) alongside with (3.5) in

log-linear form7 as follows:

ζnt = wt − pt − ct, (3.9)

qt = logβ + ct − Ec
t,1[πt+1 + ct+1] + const., (3.10)

wt = Ep
t,1[at] + Ep

t,1[pt] + const.′, (3.11)

7Given the conjectures about inflation and output we consider, we confirm in the Appendix that Πt

and Ct are indeed log-normally distributed.
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qt = logβ − ϕπE
cb
t,2[πt+1]− ϕy(yt − y∗t ) + const.′′, (3.12)

where const. denotes constants. Technology and market clearing conditions can be written:

yt = nt + at (3.13)

yt = ct (3.14)

Notice that the producer and the consumer both take decisions, given their information

set, at stage 1, thus we are only interested in their beliefs at that stage. We denote with

Ep
t [.] = Ep

t,1[.] and similarly for the consumer, unless stated otherwise. Substitute (3.9)

into (3.11) and subtract and add pt−1 to acquire:

(1 + ζ)yt = Ep
t [at] + Ep

t [πt]− πt + ζat. (3.15)

Lastly, the information set of the central bank coincides with the information set of the

consumer at the time the central bank steps in Icbt,2 = Ict,1, thus E
cb
t [.] = Ec

t [.]. Combining

(3.10) with (3.12) one acquires:

Ec
t [yt+1]− yt = (ϕπ − 1)Ec

t [πt+1] + ϕy(yt − y∗t ). (3.16)

Equation (3.15) is a Lucas-type Philips curve, where output increases above trend

whenever producer’s beliefs about inflation exceeds realised inflation at the time produc-

tion decisions take place; and equation (3.16) is the standard IS equation combined with

the central bank targeting rule. These two equations characterize the log-linear equilib-

rium in our environment. To proceed, we will conjecture linear solutions for inflation and

output as functions of shocks and use the method of undetermined coefficient to show

that our conjectures are consistent with (3.15) and (3.16) and, as a result, represent a

competitive equilibrium for this economy.

Firstly, we discuss all our key results in the benchmark environment of symmetric

information, where classical dichotomy applies and monetary policy has no real effects;

and subsequently, we proceed to characterise the case of asymmetric information, where

communication allows the central bank to stabilise the economy from inefficient, self-

fulfilling fluctuations.

3.3.3 Symmetric Information

In order to highlight the type of indeterminacy we have in mind, we begin our analysis by

considering an economy with symmetric information and assume that the central bank

transmits no information about future shocks. In this case the consumer, the producer and

the central bank observe at thus we drop the superscripts from agents’ expectations. Note

that even though information is symmetric, no agent observes the permanent component
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of productivity xt. In the absence of asymmetric information yt = y∗t = at, and nominal

variables do not affect the real side of the economy. Moreover, since there is no difference

in information, Ep
t [πt] = πt, thus the equilibrium conditions are:

yt = at

Et[yt+1]− yt = (ϕπ − 1)Et[πt+1]. (3.17)

Importantly, notice that from the Fisher equation rt = qt − Et[πt+1] the central bank

by choosing qt can determine only expected inflation. The actual realizations of inflation

can take arbitrary values depending on the realizations of uncertainty. To enable this

indeterminacy, we allow inflation to depend arbitrarily in both shocks in permanent and

temporary productivity. We consider linear equilibria of the following form:

πt+1 = ξ1at + ξ2at+1 + Ξ2Et+1[xt+1]. (3.18)

That is, inflation depends on the past productivity, at, current realisations at+1 and

on agents’ expectation about permanent productivity Et+1[xt+1]. This summarizes all the

information agents have for the economy. Taking expectations of (3.18) as of time t one

acquires:

Et[πt+1] = ξ1at + (ξ2 + Ξ2)Et[xt+1]. (3.19)

The last expression uses the fact that since Et[ϵt+1] = 0, agents’ estimate about pro-

ductivity next period coincides with their estimate of its permanent component, Et[at+1] =

Et[xt+1]. The key observation here is that from the perspective of period t agents cannot

distinguish between the permanent and the temporary shocks that will occur one period

ahead and agents’ beliefs about these shocks will be different once they have realized.

Matching coefficients between (3.19) and (3.17) one acquires ξ1 =
−1

ϕπ − 1
, (ξ2 +Ξ2) =

1

ϕπ − 1
. Importantly, (ξ2 + Ξ2) can be determined only as a sum. Any combinations of

ξ2+Ξ2 that satisfies the above equality can be an equilibrium. The particular combination

of ξ2,Ξ2 is subject to agents’ coordination. The equilibrium inflation is given by:

πt+1 =
−1

ϕπ − 1
at + ξ2at+1 + (

1

ϕπ − 1
− ξ2)Et+1[xt+1].

Where ξ2 takes arbitrary values. The distribution of inflation across date events is

undeterminate since the central bank with its rule cannot uniquely pin down ξ2. Agents

might coordinate their actions on the realisation of extrinsic signals, which might induce

excessive inflation volatility that is not attributed to the volatility of fundamentals. Notice

that in this simple economy, indeterminacy has no effect on real output. We show that

in the case where inflation affects real allocations, this indeterminacy implies that output

will be indeterminate as well.
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Regardless, this example is enough to hint our key result. Information that shifts

agents’ expectations away from the priors can break the coincidence of the permanent

and temporary component of the economy and restore determinacy. Communication and

transparency in our environment act as an extra restriction on the Fisher equation pinning

down inflation. The same result we show can be acquired with indirect communication via

announcements about the central bank’s expectation about future inflation. In stochastic

economies that the path of inflation is indeterminate, transparency can be an important

tool for a policy maker in order to pin down inflation.

Next we proceed in applying that insight in the case with asymmetric information

where indeterminacy affects real allocations, and examine the effect that announcements

have in determining the path of inflation.

3.3.4 Asymmetric Information

In the asymmetric information the producer does not observe current productivity and

they make decisions based on their expectation about current productivity, Ep
t [at]. The

central bank acts at the end of each period when production has already taken place

thus it can infer productivity and shares the same information set with the consumer.

Moreover, realized output depends on the difference between realized inflation and the

expectations of the producer about realized inflation Ep
t [πt]− πt as can be seen from the

Philips curve (3.16). If the central bank with its policy is unable to pin down inflation,

output will be indeterminate as well, while fluctuations in inflation will imply suboptimal

output fluctuations in the economy.

The equilibrium conditions that describe the environment with asymmetric informa-

tion are (3.15) alongside with (3.16) in their log-linear form, which we rewrite bellow for

convenience:

(1 + ζ)yt = Ep
t [at] + Ep

t [πt]− πt + ζat (15)

Ec
t [yt+1]− yt = (ϕπ − 1)Ec

t [πt+1] + ϕy(yt − y∗t ). (16)

Without loss of generality, we will assume for the rest of the analysis we set ϕy = 0.

Equilibria without communication

We first characterize the equilibrium without communication. We consider linear equilibria

of the following form:

yt =θ0 + θ1at +Θ1E
c
t [xt] + κ1E

p
t [at] +K1E

p
t [xt] (3.20)

πt+1 =ξ0 + ξ1at + Ξ1E
c
t [xt] + ω1E

p
t [at] + Ω1E

p
t [xt]+

+ ξ2at+1 + Ξ2E
c
t+1[xt+1] + ω2E

p
t+1[at+1] + Ω2E

p
t+1[xt+1].

(3.21)
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Here, similarly to the symmetric information, we allow inflation to depend arbitrarily

on agents’ beliefs about both the permanent and temporary shocks that the economy faces.

Thus we index πt+1 with the expectation of the consumer at t+1 about xt+1, at+1. Next we

turn our attention to (3.20). Notice that from the Philips curve (3.15), current output yt
depends on the wedge between the producer’s expectation about inflation and the realized

inflation, Ep
t [πt]−πt. Moreover, notice that Ep

t

[
Ec

t [xt]
]
= Ep

t [xt] and Ep
t

[
Ec

t [at]
]
= Ep

t [at].

Thus we index yt with both the beliefs of the consumer and the producer about the

permanent component of productivity xt and their beliefs about realized productivity at.

Lastly, from the IS curve (3.16), expected inflation in period t + 1 depends both on

realized output yt and the expectations of the consumer about future output Ec
t [yt+1].

For this reason, we add the expectations of the consumer and the producer about the

permanent component of productivity alongside realized productivity in period t as well

with the expectations of both agents about those variables.

Crucially, Ec
t+1[xt+1] ̸= at+1 since the term at+1 is observed at period t+ 1 while from

the perspective of period t, Ec
t [xt+1] = Ec

t [at+1]. Lastly, notice that on period t+ 1, when

they act, the producer shares the information set that the consumer has in period t since

they receive information about realized productivity on period t at the end of that period.

Thus the consumer in period t is able to calculate the expectations of the producer one

period ahead. Having this in mind and taking expectations as of date t of equation (3.21)

one acquires:

Ec
t [πt+1] =ξ0 + ξ1at + Ξ1E

c
t [xt] + (ξ2 + Ξ2)E

c
t [xt+1]+

ω1E
p
t [at] + Ω1E

p
t [xt] + (ω2 + Ω2)E

p
t [xt+1].

(3.22)

Substituting (3.20) and (3.22) in (3.15)− (3.16) and matching coefficients, yields the

following class of equilibria:

yt =
ζ − ξ2
1 + ζ

at +
ξ2 − ξ̃

1 + ζ
Ec

t [xt] +
1 + ξ2
1 + ζ

Ep
t [at] +

ξ̃ − ξ2
1 + ζ

Ep
t [xt] (3.23)

πt+1 =
−ζ + ξ2

(1 + ζ)(ϕπ − 1)
at + ξ2at+1 +

ξ̃ − ξ2
(1 + ζ)(ϕπ − 1)

Ec
t [xt] + (ξ̃ − ξ2)E

c
t+1[xt+1]+

−(1 + ξ̃)

(1 + ζ)(ϕπ − 1)
Ep

t [xt] +
1− ξ̃

(1 + ζ)(ϕπ − 1)
Ep

t+1[xt+1].

(3.24)

Where ξ̃ = (ξ2+Ξ2) =
ζ

(1 + ζ)(ϕπ − 1) + 1
and ξ2 remains undetermined and can take

arbitrary values while the constants ξ0, θ0 are suppressed for brevity and are described in

the Appendix.
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Proposition 7 In the absence of communication, A = ∅, the equilibrium stochastic path

of inflation and output is indeterminate and indexed by ξ2.

Similarly to the symmetric information, in the absence of further information agents at

period t cannot distinguish between changes in the temporary and permanent component

of productivity that is Ei
t [at+1] = Ei

t [xt+1], an equality that does not hold at period t+1.

The related coefficients κ1, K1, κ2, K2, θ2,Θ2, ω1, ω2,Ω1,Ω2 in equilibrium depend on the

pair ξ2,Ξ2 which we can only pin down as a sum ξ̃ = (ξ2 +Ξ2). Thus all these coefficients

remain undetermined. Lastly, the indeterminacy of the nominal side of the economy makes

output indeterminate as well since yt depends on realised πt from the Philips curve (3.16).

Indeterminacy here implies that the economy is subject to sunspot equilibria. One can

construct an equilibrium in which agents coordinate arbitrarily to some ξ2 which may be

different from the optimal equilibrium from a welfare point of view. The indeterminacy

of inflation may lead to suboptimal volatility in the economy since agents can coordinate

in equilibria with suboptimal output.

Equilibrium with communication

Next we consider the case in which the central bank communicates st+1 = ϵt+1+ut+1; that

is each period t it makes an announcement about the shock in the temporary component

of productivity one period ahead, ϵt+1. This communication shifts expectations away from

the priors allowing for the agents to uniquely pin down the different effect of the permanent

and temporary component of the economy with ξ2 =
ζ

(ϕπ − 1)(1 + ζ) + 1
while Ξ2 = 0,

in equilibrium.

Taking expectations as of date t of equation (21), substituting (20)− (21) into (15)−
(16) and matching coefficients yields the following class of equilibria:

yt =
(ϕπ − 1)ζ

(1 + ζ)(ϕπ − 1) + 1
at +

(1 + ζ)(ϕπ − 1) + 1 + ζ

(1 + ζ)2(ϕπ − 1) + 1
Ep

t [at] (3.25)

πt+1 =
ζ

(1 + ζ)(ϕπ − 1) + 1
(at+1 − at) +

(1 + ζ)(ϕπ − 1) + ζ

(1 + ζ)2(ϕπ − 1)2 + 1
Ep

t+1[(at+1 − at)]. (3.26)

Proposition 8 The central bank can uniquely determine the stochastic path of inflation

and output by communicating noisy signals about future productivity shocks at each date

event, At = {st+1}.

Under communication, the stochastic path of inflation and output is determined. No-

tice that the equilibrium inflation and allocations do not depend on the permanent com-

ponent of the economy outside the way it helps estimate productivity. In this equilibrium,
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agents will disregard shocks in their beliefs about the permanent component of the econ-

omy and output will only depend on current productivity and the expectations of the

producer about it.

In this simple economy, if the central bank transmits information about the idiosyn-

cratic component of the economy, it is able to determine the stochastic path of inflation.

Notice that the result does not depend on the noise of the signal ut+1 as long as σ2
u < ∞.

As long as this signal is informative, equilibrium is determined. At first glance this may

seem to contrast with other literature like Angeletos et al. (2007), Morris and Shin (2002)

and others that have argued that transparency in the form of precise public signals, may

not be beneficial for the economy since in our environment any information is useful. This

is due to our modelling choice to abstract from strategic interactions between the agents

which ultimately determine how much transparency (in terms of variance) is beneficial

from a welfare point of view. By abstracting from agents’ interactions in this manner, we

contrast the usefulness of transparency against the case of no transparency at all. This

way we are able to highlight the importance of Delphic forward guidance in determining

the stochastic path of inflation as we discuss in the next section. One could include such

strategic interactions in the model by allowing for non-linear technology such that agents

react to other’s choice of labour and by introducing some idiosyncratic noise on agents’

observation so that incomplete information matters.

Remark : One could consider a different model in which the central bank has infor-

mation and makes announcements about the permanent component of productivity. In

this case, this extra information would have no effect in determining the path of inflation.

Announcements about xt+1 would shift agents’ expectations about both at+1 and xt+1 in

the same way thus agents would still not be able to distinguish between the permanent

and temporary component of the economy Ei
t [at+1] = Ei

t [xt+1] and hence inflation would

still be arbitrarily indexed by ξ2.

So far we have established that if the central bank offers communication about future

realized productivity, at+1, it can uniquely pin down the stochastic path of inflation. In

essence communication in our environment offers an extra constraint for the equilibrium

path of inflation, allowing agents to distinguish between the permanent and idiosyncratic

component of the economy. Next we consider whether the central Bank can convey the

same information through indirect communication, via announcements about its expec-

tation about future inflation Ecb
t,1[πt+1]. Notice that the expectations of the central Bank

are taken at the first stage during which the central bank has not yet observed at. Its

information set will be the same as the producer’s alongside with the extra signal it re-

ceives about future temporary shocks Icbt,1 = Ipt,1 ∪ {st}. This is important, since at the

time of the announcement, the beliefs of the central bank in the case it had no further

information are common knowledge between all agents in the economy. By hearing the
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announcement agents are able to decipher both that the central bank possesses superior

information and back out its signal. Taking expectations of (3.26) at period (t, 1) we get

the announcement of the central bank about its expectation on future inflation:

Ecb
t,1[πt+1] = ∆Ecb

t,1[at+1 − at], (3.27)

where ∆ =
ζ

(1 + ζ)(ϕπ − 1) + 1
+

(1 + ζ)(ϕπ − 1) + ζ

(1 + ζ)2(ϕπ − 1)2 + 1
.

Note that (3.27) is the expectation of the central bank about the determined value of

inflation. All agents in the economy understand what the equilibrium value of ξ2 would

be in an economy with information about future productivity at+1. Upon hearing central

bank’s information about future inflation, agents are able to understand that the cen-

tral bank has superior information since if the central bank had no further information

{st+1} = ∅, its expectation about future inflation would be:

Ẽcb
t,1[πt+1] =

1− ζ

(ϕπ − 1)(1 + ζ)
Ẽcb

t,1[xt] + (ξ̃ +
1− ξ̃

(1 + ζ)(ϕπ − 1)
)Ẽcb

t,1[xt+1].

Since Ẽcb
t,1[πt+1] ̸= Ecb

t,1[πt+1], agents know that this signal contains information about

the future productivity of the economy. Importantly,

Ecb
t,1[at+1 − at] = (1− k)Ecb

t [xt+1] + kst+τ − Ecb
t,1[at]

8 is linear to the central bank’s signal st+1. Since both agents are Bayesian and un-

derstand the information structure, upon hearing Ecb
t,1[πt+1] are able to back out the in-

formation that the Central bank has about at+1. Then they update their beliefs about

the permanent and idiosyncratic component of the economy and indeed they are able to

determine the equilibrium value of ξ2. By communicating its expectation about future in-

flation the central bank effectively communicates the extra information it has and is able

to pin down the stochastic path of inflation. The same communication can be achieved

by communicating information about expectations on future productivity. In particular,

if the central bank announces:

Ecb
t,1[yt+1] = ΩEcb

t,1[at+1], (3.28)

where Ω =
(ϕπ − 1)ζ

(1 + ζ)(ϕπ − 1) + 1
+

(1 + ζ)(ϕπ − 1) + 1 + ζ

(1 + ζ)2(ϕπ − 1) + 1
.

Proposition 9 The central bank can uniquely determine the stochastic path of inflation

and output by announcing its expectation about future inflation Ecb
t,1[πt+1] or future pro-

ductivity Ecb
t,1[yt+1].

Proof: Follows from the discussion above.

8Where k is a collection of constants (see Appendix)
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So far, we have constrained agents to include in their solution beliefs only about the

relevant variables up to one period ahead. For this reason the degree of indeterminacy

was one, since equilibrium depended arbitrarily only on the variable ξ2. One could con-

struct equilibria that depend on beliefs an arbitrary amount of periods ahead. In this case,

the degree of indeterminacy would be equal to the number of realizations of uncertainty

included. To demonstrate how communication would work in such general environment,

start by considering an economy where inflation and output is indexed with both perma-

nent and temporary shocks up to two periods ahead. To this end consider the conjectures:

yt =θ0 + θ1at +Θ1E
c
t [xt] + θ2E

c
t [at+1] + Θ2E

c
t [xt+1] + κ1E

p
t [at] +K1E

p
t [xt]

+ κ2E
p
t [at+1] +K2E

p
t [xt+1]

(3.29)

πt+1 =ξ0 + ξ1at + Ξ1E
c
t [xt] + ξ2at+1 + Ξ2E

c
t+1[xt+1] + ξ3E

c
t+1[at+2] + Ξ3E

c
t+1[xt+1]

ω1E
p
t [at] + Ω1E

p
t [xt] + ω2E

p
t+1[at+1] + Ω2E

p
t+1[xt+1] + ω3E

p
t [at+2] + Ω3E

p
t [xt+2]

(3.30)

In this case, absent of any communication, from the perspective of time t cannot

distinguish between the temporary and the permanent component of productivity both

for periods t+ 1 and t+ 2. In this case, indeterminacy would be of degree 2 and indexed

by the terms ξ2 and ξ3 as shown in the appendix. Moreover, if the cental bank provides

direct communication about its information on future productivity shocks, at+1, at+2 it

can uniquely pin down the stochastic path of inflation with ξ2 =
ζ

(ϕπ − 1)(1 + ζ) + 1
and

ξ3 = 0.

Next we consider whether the central bank can communicate the same information via

indirect communication about its expectation about future inflation. Suppose, similarly

to before, that the central bank communicates its expectation about inflation one period

ahead:

Ecb
t,1[πt+1] = ∆Ecb

t,1[at+1 − at], (3.31)

where ∆ =
ζ

(1 + ζ)(ϕπ − 1) + 1
+

(1 + ζ)(ϕπ − 1) + ζ

(1 + ζ)2(ϕπ − 1)2 + 1
.

Notice that from equation (31) following the same logic as before, agents can back

out the information that the central bank has about at+1 but not at+2. Even though

agents would be able to distinguish and put appropriate weight between temporary and

permanent shocks of period t + 1, they will still not be able to distinguish between the

shocks that will occur in period t+2. That is, even though Et[at+1] ̸= Et[xt+1], Et[at+2] =

Et[xt+2]. In this case, indeterminacy is pervasive and indexed by ξ3. Further information

is needed for agents to be able to determine the equilibrium path of inflation. This can

be done if the central bank makes further announcements about inflation in the future.
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In particular here by announcing its expectation about πt+2:

Ecb
t,1[πt+2] = ∆Ecb

t,1[at+2 − at+1]. (3.32)

Equations (3.31 − 3.32) represent a system with two equations and two unknowns

at+1, at+2. By solving this linear, invertible system of equations, agents are able to back

out the extra information that the central bank has, and are thus able to determine the

value of both ξ2 and ξ3. The equilibrium path of inflation is determinate.

Following the same logic, by induction, we generalize the insight for the role of com-

munication for conjectures that include shocks for an arbitrary τ periods ahead in the

future.

yt =

τ,τ−1∑
i=1,j=0

ξiE
c
t [at+j] +

τ,τ−1∑
i=1,j=0

Ξ1E
c
t [xt+j] +

τ,τ−1∑
i=1,j=0

κiE
p
t [at+j] +

τ,τ−1∑
i=1,j=0

KiE
p
t [xt+j]

(3.33)

πt+1 =ξ0 + ξ1at + Ξ1E
c
t [xt] + ω1E

p
t [at] + Ω1E

p
t [xt]+

τ+1,τ∑
i=2,j=1

ξiE
c
t+1[at+j] +

τ+1,τ∑
i=2,j=1

Ξ1E
c
t+1[xt+j] + +

τ+1,τ∑
i=2,j=1

ωiE
p
t+1[at+j] +

τ+1,τ∑
i=2,j=1

ΩiE
p
t [xt+j]

(3.34)

Proposition 10 In a model that accounts for agents’ beliefs up to τ periods ahead, the

stochastic path of inflation is determinate if the Central Bank announces each period the

vector of signals < st+1, ..., st+τ > or equivalently under indirect announcements about its

expectation about future inflation: A = {Ecb
t,1[πt+1], .., E

cb
t,1[πt+τ ]}.

Remark : Allowing τ = ∞ requires to supplement the analysis with a terminal

condition on inflation which ensures that the stochastic path of inflation is bounded. This

is not a transversality condition, deriving from optimality conditions, but is similar to the

so-called “elusive terminal condition” that helps determine inflation in the canonical New

Keynesian model.9

Lastly, notice that so far we have considered two cases. One in which the central

bank does not possess information and inflation is indeterminate, and one in which the

central bank possesses information and communicates it, determining inflation. One may

want to consider the case in which the central bank possesses information but does not

communicate it. In that case, the only change would be that instead of equating the

9For a discussion about terminal conditions see Castillo-Martinez and Reis (2019).
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expectations of the consumer with those of the central bank in equation (3.16), we should

have the beliefs of the central bank instead, since now the central bank knows everything

that the consumer does and has some extra private information about the future state of

productivity. In this case, and since we have assumed that if the central bank transmits

no information, agents make no inferences about its information set, equilibrium would

collapse in the one described before in the case of no communication. That is because

future expected inflation depends on agents’ beliefs about current and future output from

the IS equation (3.16) since agents’ information has remained unchanged, equilibrium

would be indeterminate unless further information is provided.

3.3.5 Comprehensive communication

The insight that transparency allows the Central Bank to pin down the stochastic path of

inflation extends in richer environments with multiple shocks, provided that the central

bank has superior information than the agents about the particular shocks. In the case

of multiple shocks though, the central bank must communicate further information to

the agents about its expectation about future production. We dub this comprehensive

communication.

To demonstrate this suppose that alongside with the shocks in the economy that

affect productivity, now there exists an independently identically distributed demand

shock ηt ∼ N (0, σ2
η). In this case, we further endow the central bank with an observation

about ηt+1.
10 Agents’ utility function is modified as follows:

U(Ct, Nt) = Et

[ ∞∑
t=0

eηtβt(logCt −
N1+ζ

t

1 + ζ
)
]
. (3.35)

The Philips curve remains unchanged while the adjusted Euler equation is:

Ec
t [yt+1]− yt = Ec

t [ηt+1 − ηt] + (ϕπ − 1)Ec
t [πt+1]. (3.36)

And in place of (20)− (21) we conjecture that output and inflation follows:

yt =θ0 + θ1at +Θ1E
c
t [xt] + κ1E

p
t [at] +K1E

p
t [xt] (3.37)

πt+1 =ξ1at + ξ2at+1 + Ξ1E
c
t [xt] + Ξ2E

c
t+1[xt+1]+

ω1E
p
t [at] + ω2E

p
t+1[at+1] + Ω1E

p
t [xt] + Ω2E

p
t+1[xt+1] + µ1ηt + µ2ηt+1.

(3.38)

Notice that (3.35) does not depend on the preference shocks (ηt) since both agents

know this shock at the beginning of the period thus there exists no wedge in their beliefs.

Taking expectations of (3.36) as of period t, substituting the conjectures in (3.36)− (3.15)

10Allowing the central bank to directly observe ηt+1 is equivalent for our needs with giving it a noisy
observation about ηt+1.
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and matching coefficients, one acquires the equilibrium absent any communication is given

by:

yt =
ζ − ξ2
1 + ζ

at +
ξ2 − ξ̃

1 + ζ
Ec

t [xt] +
1 + ξ2
1 + ζ

Ep
t [at] +

ξ̃ − ξ2
1 + ζ

Ep
t [xt] (3.39)

πt+1 =
−ζ + ξ2

(1 + ζ)(ϕπ − 1)
at + ξ2at+1 +

ξ̃ − ξ2
(1 + ζ)(ϕπ − 1)

Ec
t [xt] + (ξ̃ − ξ2)E

c
t+1[xt+1]+

−(1 + ξ̃)

(1 + ζ)(ϕπ − 1)
Ep

t [xt] +
1− ξ̃

(1 + ζ)(ϕπ − 1)
Ep

t [xt+1] +
1

ϕπ − 1
ηt + µ2ηt+1

(3.40)

Where µ2, ξ2 remain undetermined and can take arbitrary values while ξ̃ has the same

constant value as before. Similarly, if the central bank provides direct communication

about its signals one period ahead, it can pin down the coefficients ξ2, µ2. In this case

though, the central bank must communicate information about both shocks in the future

{st+1, ηt+1}. The equilibrium path of output and inflation is given by:

yt =
(ϕπ − 1)ζ

(1 + ζ)(ϕπ − 1) + 1
at +

(1 + ζ)(ϕπ − 1) + 1 + ζ

(1 + ζ)2(ϕπ − 1) + 1
Ep

t [at] (3.41)

πt+1 =
ζ

(1 + ζ)(ϕπ − 1) + 1
(at+1−at)+

(1 + ζ)(ϕπ − 1) + ζ

(1 + ζ)2(ϕπ − 1)2 + 1
Ep

t+1[(at+1−at)]+
1

(ϕπ − 1)
(ηt−ηt+1)

(3.42)

Proposition 11 In the absence of communication, the stochastic path of inflation re-

mains undetermined and is indexed with ξ2, µ2. Under communication At = {st+1, ηt+1},
the stochastic path of inflation is determined.

The key insight here is the same as before but because the economy is subject to two

shocks, if the central bank were to announce only st+1, agents’ expectations about the pref-

erence shock would be Ei
t [ηt+1] = 0 and the path of inflation would remain undetermined,

while extra information shifts agents’ expectations away from the priors determining the

stochastic path of inflation and output.

The interesting observation in an economy with multiple shocks is that if the cen-

tral bank wants to communicate its information with indirect signals, communicating its

expectations about Ecb
t,1[πt+1] would not suffice to determine the path of inflation. That

is because agents would not be able to infer its different signals about {at+1, ηt+1} and

they would face an identification issue. They would not be able to separate whether the

changes in the central banks’ expectations are due to a change in productivity or due

to changes in future preference shock. To see this take expectations of (3.40) given the

information set of the central bank at (t, 1):
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Ecb
t,1[πt+1] = ∆Ecb

t,1[at+1 − at] +
1

ϕπ − 1
Ecb

t,1[ηt − ηt+1]. (3.43)

By announcing the left hand side of (3.43) alone, agents are not able to back out the

different shocks that will hit the economy at (t+ 1). The central bank in this case, must

provide more “comprehensive communication” that includes its expectations about future

output that does not depend on demand shocks but only on future productivity:

Ecb
t,1[yt+1] =

( (ϕπ − 1)ζ

(1 + ζ)(ϕπ − 1) + 1
+

(1 + ζ)(ϕπ − 1) + 1 + ζ

(1 + ζ)2(ϕπ − 1) + 1

)
Ecb

t,1[at+1] (3.44)

From equation (3.44), agents are able to back out the signal that the central bank has

about at+1. Then from equation (3.43) they can back out its information about ηt+1 and

thus the equilibrium path of inflation is determined.

Proposition 12 Under comprehensive communication with announcements Ecb
t [πt+1],

Ecb
t [yt+1] the central bank can uniquely pin down the stochastic path of inflation.

Proof: Follows from the discussion above.

3.4 Conslusion

This paper studies the effect of transparency from a better than the agents informed cen-

tral bank in controlling inflation. We study a cashless monetary economy which is subject

to permanent and temporary productivity shocks. The central bank sets the prices of

nominal bonds targeting expected inflation. We demonstrate that equilibria that depend

both on realized productivity and the beliefs of the agents about permanent productiv-

ity exist but the distribution of inflation across date events is not unique and remains

undetermined. The central bank with its rule cannot uniquely pin down inflation which

is subject to sunspot equilibria. In the case that there exists some asymmetry in agents’

information, when the classical dichotomy does not apply and nominal values affect real-

ized output, the inability to control inflation can lead to inefficient output fluctuations.

The inefficiency stems from agents being unable to distinguish between the permanent

and temporary component of the economy in the future. Thus they might put positive

weight on their beliefs about permanent productivity while optimal output should only

depend on realized productivity.

On the contrary, if the central bank communicates noisy information about future

realized productivity or the future temporary shocks of the economy, agents are able to

distinguish between the permanent and idiosyncratic component of the economy. This

allows the central bank to uniquely pin down the path of inflation and in turn determine

output. We show that in an environment where all the agents are rational, the same can
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be achieved with indirect announcements about the central bank’s beliefs about future

inflation. This is similar to what has been dubbed in the literature as “Delphic” forward

guidance since it represents non-committal announcements about the beliefs of the central

bank on future inflation. We provide a novel argument in support of such announcements

since we demonstrate that they can be useful in determining the path of inflation. We

show that this extends to economies which have demand shocks as well.
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3.5 Appendix

3.5.1 Kalman filters

No communication

We start by considering the agents’ learning problems without any communication. At

each period t, 2 the central bank has the same information as the consumer at t, 1, Icbt,2 =

Ict,1 thus we focus on the learning problem of the consumer. Let the consumer’s prior about

permanent productivity be given by:

xt|Ict−1 ∼ N (xt|t−1, σ
2
x|t−1)

Where xt|t−1 := E[xt|Ict−1] and σ2
x|t−1 := V ar[xt|Ict−1]. Upon observing their current

productivity at, the consumers update their beliefs about xt:

xt|Ict ∼ N
(
(1− µt)xt|t−1 + µtat,

( 1

σx,t−1

+
1

σϵt

)−1
)

where µt =

1

σ2
ϵ

1

σ2
x|t−1

+
1

σ2
ϵ

.

Their expectation about future permanent productivity is given by:

xt+1|Ict ∼ N
(
ρxt|t, σ

2
x

)
,

where

σ2
x,t = (

1

σ2
x|t−1

+
1

σ2
ϵ

)−1 + σ2
e . (3.45)

Let σ2
x denote the solution (fixed point) of the Riccati equation (3.45). A solution does

not exist in the limit where σe → ∞. We dismiss this case. We assume that at period 0

agents’ learning problems are at their steady state x0|−1 ∼ N (0, σ2
x). The Kalman gain

will thus be time invariant:

µ =

1

σ2
ϵ

1

σ2
x

+
1

σ2
ϵ

.

Moreover, in the absence of any communication:

at+1|Ict ∼ N (xt+1|t, σ
2
x + σ2

ϵ )

implying that agents cannot distinguish between the permanent and temporary compo-

nent of productivity. Turning our attention to the producer, notice that at t, 1 when the
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producer makes decisions, they have only information about past realized productivity

that is:

at|Ipt,1 ∼ N (xt|t−1, σ
2
x + σ2

ϵ )

xt|Ipt,1 ∼ N (xt|t−1, σ
2
x)

At period t, 2, the producer can back out productivity from the already incurred pro-

duction and thus they share the same information with the consumer and the central

bank, Ipt,2 = Ict,1, and they update their belief about the permanent component, this esti-

mate forms their beliefs about the permanent and temporary component of the economy

at period t+ 1.

xt|Ipt,2 ∼ N
(
(1− µ)xt|t−1 + µat,

( 1

σx

+
1

σϵt

)−1
)

Ep
t,2[xt+1] = Ep

t,2[at+1] = ρEp
t,2[xt]

All agents in the economy, from the perspective of period t cannot distinguish between

the permanent and temporary component of productivity one period ahead. For any agent

i: Et[at+1|I it ] = Et[xt+1|I it ]. Lastly notice that the producer estimates consumer’s beliefs

about the permanent component of productivity as follows:

Ep
t,1

[
Ec

t,1[xt]
]
= (1− µ)xt|t−1 + µEp

t [at] = Ep
t,1[xt]

While the consumer since their information set strictly includes that of the producer can

always estimate the producer’s beliefs about the permanent and temporary component of

productivity accurately.

Information with Communication

Now we consider agents’ information when the central bank each period t communicates

information about the temporary shocks of productivity up to τ periods ahead. Notice

that this signal does not contain any information about the permanent component of

productivity but only for the iid shock ϵt+τ . Thus agents update their beliefs about at+τ

while their learning about permanent productivity remains unchanged. In particular for

agent i using Bayes rule, one acquires:

at+τ ∼ N
(
(1− k)Ei

t [xt+τ ] + kst+τ , (σ
2
x + σ2

ϵ )
−1 + (σ2

u)
−1
)
, (3.46)

where k =
(σ2

u)
−1

(σ2
x + σ2

ϵ )
−1 + (σ2

u)
−1

.

Importantly in this case, for all agents beliefs about the permanent future component of

productivity are different from their beliefs about future realized productivity Ei
t [at+1] ̸=
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Ei
t [xt+1]. Lastly, in the case with communication, since now Ep

t,1[at] ̸= Ep
t [xt], the second

order belief of the producer, which we denote by Ẽp
t,1[xt], is given by:

Ẽp
t,1[xt+τ ] = Ep

t,1

[
Ec

t,1[xt+τ ]
]
= (1− µ)xt+τ |t−1 + µEp

t [at+τ ] ̸= Ep
t [xt+τ ]

This differs form their beliefs in the case without communication since it now incorpo-

rates the information about the temporary component of productivity at period τ . One

could consider more complicate signals for example the central bank could communicate

noisy signals about productivity s̃t+τ = at+τ + ut+τ . Notice that this signal contains in-

formation both about the permanent and temporary component of the economy. In that

case, agents would first update their beliefs about the permanent component of produc-

tivity before estimating future realized productivity. Even though the derivation of the

learning problem would be more complex, the role of information for the purposes of the

problem would remain the same, shifting expectations away from the priors and allowing

agents to distinguish between the permanent and temporary shock of the economy.

3.5.2 Equilibria without approximations

Symmetric Information

Here we consider equilibria without approximations starting with the benchmark sym-

metric information case. In this case no agents observes the signal st+τ . Next notice that

absent of any frictions, At = Yt = Ct and that at the moment that the central bank steps

in to set inflation, its information set is the same as the consumer’s. Next combining the

central bank’s interest rate rule (3.5) with the Euler equation (3.7) that comes from the

consumer’s optimization problem one acquires:

Ec
t,1[Πt+1]

−ϕπ = Ec
t,1

[ 1

Πt+1

At

At+1

]
. (3.47)

Conjecture that future inflation follows:

πt+1 = ξ0 + ξ1at + ξ2at+1 + Ξ2Et+1[xt+1]

Taking natural logs and substituting the conjecture into the LHS of (3.47) one acquires:

e−ϕπ(ξ0+ξ1at+ξ2Ec
t [at+1]+Ξ2Et+1[xt+1]) = e−ϕπ(ξ0+ξ1at+(ξ2+Ξ2)Et[xt+1]). (3.48)

where the second inequality stems from the fact that in the absence of any communi-

cation, Ec
t [xt+1] = Ec

t [at+1]. Turning to the RHS of (3.47) notice that:

Ec
t [πt+1 + at+1] = ξ0 + ξ1at + (1 + ξ2)E

c
t [at+1] + Ξ2Et[xt+1]

V arc[πt+1 + at+1] = (1 + ξ2 + Ξ2)
2σ2

x + (1 + ξ2)
2σ2

ϵ
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Thus the RHS becomes:

e−(ξ0+ξ1at+(1+ξ2)Ec
t [at+1]+Ξ2Et[xt+1])+at−1/2V ar[πt+1+at+1] (3.49)

Matching coefficients with (47)− (48) one acquires:

−ϕπ(ξ2 + Ξ2) = −(1 + ξ2 + Ξ2)

−ϕπξ1 = (1− ξ1)

(1− ϕπ)ξ0 =
1

2
V ar[πt+1 + at+1]

From the system of the above equations, one acquires that ξ1 =
1

1− ϕπ

, (ξ2 + Ξ2) =

1

ϕπ − 1
while ξ0 =

1

2(1− ϕπ)
V ar[πt+1 + at+1] as in the main text. Importantly, the coeffi-

cients ξ2,Ξ2 can take arbitrary values. We have one more unknowns than equations thus

the system is undetermined.

Assymetric information

Proof of Proposition 7: Next we consider equilibria without approximations for the

assymetric information case and we start with the benchmark of no communication. Start

with combining the consumer’s optimal labour supply condition (3.6) and the producer’s

optimization problem (3.8). Add and subtract Pt−1 and note that λt =
1

PtCt

. Next confirm

that they can be rewritten as:

N ζ
t =

1

ΠtCt

Ep
t,1[

At

Ct

]

Ep
t,1[

1

ΠtCt

]
(3.50)

Next, turning to the Euler equation, it can be rewritten as:

Ec
t,1[Πt+1]

−ϕπ = Ec
t,1

[ 1

Πt+1

At

At+1

]
. (3.51)

Equations (3.50)-(3.51) correspond to (3.15)− (3.16) in the main text. Next start with

the conjectures about output and inflation:

yt =θ0 + θ1at +Θ1E
c
t [xt] + κ1E

p
t [at] +K1E

p
t [xt] (3.52)

πt+1 =ξ0 + ξ1at + Ξ1E
c
t [xt] + ω1E

p
t [at] + Ω1E

p
t [xt]+

+ ξ2at+1 + Ξ2E
c
t+1[xt+1] + ω2E

p
t+1[at+1] + Ω2E

p
t+1[xt+1].

(3.53)
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We will show that given all shocks being normally distributed, (3.52) − (3.53) imply

that Ct and Πt are log- normally distributed.

Start with the optimality condition (3.50), take logs and substitute the technology

(yt = at + nt) and the market clearing condition ct = yt and get:

eζ(yt−at) = e−(πt+yt)
Ep

t [e
(at−yt)]

Ep
t [e

−(πt+yt)]
(3.54)

Substituting conjectures (3.51)− (3.52) in the LHS of (3.54) one acquires:

eζ(θ0+θ1at+Θ1Ec
t [xt]+κ1E

p
t [at]+K1E

p
t [xt]−at). (3.55)

Turning our attention to the RHS we start by showing that the numerator term

Ep
t [e

(at−yt)] of (54) is normally distributed. Substituting the conjectures one acquires:

Ep
t [e

(at−yt)] = Ep
t [e

(at−θ0−θ1at−Θ1Ec
t [xt]−κ1E

p
t [at]−K1E

p
t [xt])].

Conditional on the producer’s information, and using the fact that without any infor-

mation, Ep
t

[
Ec

t [xt]
]
= Ep

t [xt] the exponent is normally distributed with mean:

Ep
t [at − yt] = −θ0 + (1− θ1 − κ1)E

p
t [at]− (Θ1 +K1)E

p
t [xt].

For the variance notice that Ep
t

[
Ec

t [xt]
]
= Ep

t [(1 − µ)Ec
t [xt−1] + µat] with the first

term of the equation being known to the producer while the second one being a source of

variation. Thus variance is given by:

V arpt [at − yt] = (1− θ1 − µΘ1)
2σ2

p,a where σ2
a,p = σ2

x + σ2
ϵ .

Thus the above term is normally distributed and can be rewritten as:

e
−θ0+(1−θ1−κ1)E

p
t [at]−(Θ1+K1)E

p
t [xt]+

1

2
V arp[at−yt]

Next notice that the denominator of (5), Ep
t [e

−(πt+yt)] is equal with:

Ep
t

[
e∧−

(
ξ0+ξ1at−1+Ξ1E

c
t [xt−1]+ω1E

p
t [at−1]+Ω1E

p
t [xt−1]+ξ2at+Ξ2E

c
t [xt]+ω2E

p
t [at]+Ω2E

p
t [xt]

+θ0 + θ1at +Θ1E
c
t [xt] + κ1E

p
t [at] +K1E

p
t [xt]

)]
(3.56)

Again here use the fact that Ep
t

[
Ec

t [xt]
]
= Ep

t [xt] thus the above term is normally

distributed with
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Ep
t [−(πt− yt)] = −(ξ0+ θ0)− (ξ1+ω1)at−1− (Ξ1+Ω1)E

p
t [xt−1]− (ξ2+ω2+κ1+ θ1)E

p
t [at]

-(Ξ2 + Ω2 +Θ1 +K1)E
p
t [xt]

V arpt (πt + yt) = (ξ2 + θ1 + µΞ2 + µΘ1)
2σ2

a,p

Thus the fraction can be expressed as:

Ep
t [e

(at−yt)]

Ep
t [e

−(πt+yt)]
=

e−G/2+(1−θ1−κ1)E
p
t [at]−θ0−(Θ1+K1)E

p
t [xt]

e−F/2−(ξ0+θ0)−(ξ1+ω1)at−1−(Ξ1+Ω1)E
p
t [xt−1]−(ξ2+ω2+κ1+θ1)E

p
t [at]−(Ξ2+K2)E

p
t [xt]

= e∧{Ep
t [at]+ξ0+(ω1+ξ1)E

p
t [at−1]+(Ξ1+Ω1)E

p
t [xt−1]+(ξ2+ω2)E

p
t [at]+(Ξ2+Ω2)E

p
t [xt]+(F−G)/2}

= eE
p
t [at]−Ep

t [πt]+(F−G)/2

Where F = V arpt [πt − yt]/2 and G = V arpt [at − yt]/2 which are constants. Turning our

attention back to (54) we now have:

eζ(yt−at) = e−(πt+yt)+Ep
t [at]+Ep

t [πt] ⇐⇒
e(1+ζ)yt = eζat+Ep

t [at]+Ep
t [πt]−πt+F−G

(3.57)

And confirm that (56) corresponds to the equilibrium condition (15) ignoring con-

stants.

The exponent of the LHS and RHS of (57) can be rewritten respectively as:

(1 + ζ)
(
θ0 + θ1at +Θ1E

c
t [xt] + κ1E

p
t [at] +K1E

p
t [xt]

)
(3.58)

Ep
t [at] + ζat + Ep

t

(
ξ0 + ξ1at−1 + ξ2at + Ξ1E

c
t [xt] + ω1E

p
t [at] + Ω1E

p
t [xt]

)
−(

ξ0 + ξ1at−1 + ξ2at + Ξ1E
c
t [xt] + ω1E

p
t [at] + Ω1E

p
t [xt]

)
=

(1 + ξ2)E
p
t [at] + Ξ2E

p
t [xt] + (ζ − ξ2)at − Ξ2E

c
t [xt] (3.59)

Matching coefficients between (58) and (59) and taking into account that Ep
t [at] =

Ep
t [xt], one acquires:

θ0 =
F −G

1 + ζ
θ1 =

ζ − ξ2
1 + ζ

, Θ1 =
−Ξ2

1 + ζ
, (κ1 +K1) =

1 + ξ2 + Ξ2

1 + ζ
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Next we turn our attention to equation (3.51) Take natural logs and substitute the

conjecture into the LHS of (3.51) one acquires:

e−ϕπ(ξ0+ξ1at+Ξ1Ec
t [xt]+ω1E

p
t [at]+Ω1E

p
t [xt]+ξ2at+1+Ξ2Ec

t [xt+1]+ω2E
p
t+1[at+1]+Ω2E

p
t+1[xt+1]) (3.61)

Turning to the RHS of (3.51), the denominator E[πt+1 + yt+1] is normally distributed

with mean and variance:

Ec
t [πt+1 + yt+1] = θ0 + ξ0 + ξ1at + Ξ1E

c
t [xt] + (1 + ξ2 + θ1)E

c
t [at+1] + (Ξ2 +Θ1)E

c
t [xt+1]+

+(ω2 + κ1)E
p
t+1[at+1] + (Ω2 +K2)E

p
t+1[xt+1]

V arc[πt+1 + yt+1] = [Θ1(1− µ) + Ξ1 + Ξ2(1− µ)]2σ2
x + (θ1 + µΘ1 + ξ2 + µΞ2)

2σ2
α

Thus the RHS becomes:

e−(ξ0+ξ1at+(1+ξ2)Ec
t [at]+Ξ2Ec

t [xt+1]+ω2E
p
t [at+1]+Ω2E

p
t [xt+1])+Ec

t [yt+1]−yt−1/2V ar[πt+1+yt+1] (3.62)

Tanking into account that Ec
t [xt+1] = Ec

t [at+1] and Ep
t+1[xt+1] = Ep

t+1[at+1] and match-

ing coefficients of (3.61)− (3.62), one acquires:

−θ1
ϕπ − 1

= ξ1
−Θ1

ϕπ − 1
= Ξ1

θ1 +Θ1

ϕπ − 1
= (ξ2 + Ξ2)

−K1 − κ1

ϕπ − 1
= (ω1 + Ω1)

K1 + κ1

ϕπ − 1
= (ω2 + Ω2) ξ0 =

V ar[πt+1 + yt+1]

2(ϕπ − 1)
(3.63)

Matching the set of equilibrium conditions (3.59)−(3.63) one arrives at the conclusion

of proposition 1 since the coefficients ξ2,Ξ2 remain undetermined. The equilibrium output

and inflation are given by (3.23), (3.24) concluding the proof of Proposition 7.

Proof of Proposition 8: Next for proposition 8 we consider the case where the central

bank transmits information about the productivity shocks one period ahead. In this case,

for all agents, Ei
t [at+1] ̸= Ei

t [xt+1] and for the producer Ep
t [at] ̸= Ep

t [xt]. This further

implies the Ep
t [E

c
t−1[xt]] = (1−µ)Ep

t−1[xt] +µEp
t [at]) ̸= Ep

t [xt] since even though Ep
t [xt] =

Ep
t−1[xt], E

p
t [at] ̸= Ep

t [xt]. Taking these observations into account and working similarly

as before, notice that the fraction on the RHS of (54) now becomes:

Ep
t [e

(at−yt)]

Ep
t [e

−(πt+yt)]
=
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e−G′+(1−θ1−κ1)E
p
t [at]−θ0−Θ1((1−µ)Ep

t−1[xt]+µEp
t [at])+K1E

p
t [xt]

e−F ′−(ξ0+θ0)−(ξ1+ω1)at−1−(Ξ1+Ω1)E
p
t [xt−1]−(ξ2+ω2+κ1+θ1)E

p
t [at]−(Ξ2+Θ1)(1−µ)Ep

t−1[xt]+µEp
t [at])

,

With G′ = V arp[at − yt]/2 = (1− θ1 − µΘ1)σ
′2
α,p/2 and σ′

α,p is the variance of at with

information given by (46), while F ′ = V arp[πt + yt]/2 = (ξ2 + µΞ2 + θ1 + µΘ1)σ
′2
a,p/2.

Thus (54) can be rewritten as:

e
(1+ζ)

(
θ0+θ1at+Θ1Ec

t [xt]+κ1E
p
t [at]+K1E

p
t [xt]

)
=

e(1+ξ2)E
p
t [at]+Ξ2E

p
t [xt]+(ζ−ξ2)at−Ξ2Ec

t [xt]+Ξ2(µE
p
t [xt]+(1−µ)Ep

t [at])+F ′−G′
.

Matching coefficients one acquires:

θ1 =
ζ − ξ2
1 + ζ

, Θ1 =
−Ξ2

1 + ζ
, κ1 =

1 + ξ2 + Ξ2(1− µ)

1 + ζ
, K1 =

Ξ2µ

1 + ζ
, θ0 =

F ′ −G′

1 + ζ

The analysis of (51) remains the same as above thus:

e−ϕπ(ξ0+ξ1at+Ξ1Ec
t [xt]+ω1E

p
t [at]+Ω1E

p
t [xt]+ξ2at+1+Ξ2Ec

t [xt+1]+ω2E
p
t+1[at+1]+Ω2E

p
t+1[xt+1]) =

e−(ξ0+ξ1at+(1+ξ2)Ec
t [at]+Ξ2Ec

t [xt+1]+ω2E
p
t [at+1]+Ω2E

p
t [xt+1])+Ec

t [yt+1]−yt−1/2V ar[πt+1+yt+1]

And matching coefficients one acquires:

−θ1
ϕπ − 1

= ξ1
−Θ1

ϕπ − 1
= Ξ1

θ1
ϕπ − 1

= ξ2
Θ1

ϕπ − 1
= Ξ2

−κ1

ϕπ − 1
= ω1

−K1

ϕπ − 1
= Ω1

κ1

ϕπ − 1
= ω2

K1

ϕπ − 1
= Ω2 ξ0 =

V ar[πt+1 + yt+1]

ϕπ − 1

Solving the system of equations one is able to pin down the coefficients and conclude

the proof of Proposition 2:

θ1 =
(ϕπ − 1)ζ

(1 + ζ)(ϕπ − 1) + 1
κ1 =

(1 + ζ)(ϕπ − 1) + 1 + ζ

(1 + ζ)2(ϕπ − 1) + 1
, Ξ2 = Θ2 = 0

ξ2 = −ξ1 =
ζ

(1 + ζ)(ϕπ − 1) + 1
, ω2 = −ω1 =

(1 + ζ)(ϕπ − 1) + ζ

(1 + ζ)2(ϕπ − 1)2 + 1
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3.5.3 Multiple shocks

Proof of Proposition 10: Next we consider conjectures for inflation that depend on

the temporary and permanent shocks for more than one period in the future. Remember

that the key point here is to show that more signals are required to pin down inflation

in that case. To this end suppose that the central bank transmits information one period

ahead for ϵt+1 but no information about ϵt+2 and consider the conjectures:

yt =θ0 + θ1at +Θ1E
c
t [xt] + θ2E

c
t [at+1] + Θ2E

c
t [xt+1] + κ1E

p
t [at] +K1E

p
t [xt]

+ κ2E
p
t [at+1] +K2E

p
t [xt+1]

(3.64)

πt+1 =ξ0 + ξ1at + Ξ1E
c
t [xt] + ξ2at+1 + Ξ2E

c
t+1[xt+1] + ξ3E

c
t+1[at+2] + Ξ3E

c
t+1[xt+1]

ω1E
p
t [at] + Ω1E

p
t [xt] + ω2E

p
t+1[at+1] + Ω2E

p
t+1[xt+1] + ω3E

p
t [at+2] + Ω3E

p
t [xt+2]

(3.65)

Substituting the new conjecture about output in the RHS of (54) one acquires:

eθ0+θ1at+Θ1Ec
t [xt]+θ2Ec

t [at+1]+Θ2Ec
t [xt+1]+κ1E

p
t [at]+K1E

p
t [xt]+κ2E

p
t [at+1]+K2E

p
t [xt+1]−at

The nominator on the LHS of (54) can be rewritten as:

Ep
t [e

(at−θ0+θ1at+Θ1Ec
t [xt]+θ2Ec

t [at+1]+Θ2Ec
t [xt+1]+κ1E

p
t [at]+K1E

p
t [xt]+κ2E

p
t [at+1]+K2E

p
t [xt+1])] =

To see that this is normally distributed, start with Ep
t [at − yt] which can be rewritten

as:

Ep
t [(at−θ0−θ1at−Θ1E

c
t [xt]−θ2E

c
t [at+1]−Θ2E

c
t [xt+1]−κ1E

p
t [at]−K1E

p
t [xt]−κ2E

p
t [at+1]−K2E

p
t [xt+1])]

(3.66)

Next remember that we denote with Ẽ the second order beliefs of the producer that are

calculated as follows:

Ẽp
t [xt] = Ep

t [E
c
t [xt]] = (1− µ)Ep

t−1[xt] + µEp
t [at]

Ẽp
t [at+1] = Ep

t [E
c
t [at+1]] =Ep

t [
(σ2

x + σ2
ϵ )

−1Ec
t [xt+1] + (σ2

u)
−1st+1

(σ2
x + σ2

ϵ )
−1 + (σ2

u)
−1

]

=
(σ2

x + σ2
ϵ )

−1ρEp
t [E

c
t [xt]] + (σ2

u)
−1st+1

(σ2
x + σ2

ϵ )
−1 + (σ2

u)
−1

Ẽp
t [xt+1] = Ep

t [E
x
t [xt+1]] = ρEp

t [E
c
t [xt]]
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With this in mind, (64) is normally distributed with mean and variance

Ep
t [at − yt] =

−(θ0+(1+θ1)E
p
t [at]+Θ1Ẽ

p
t [xt]+θ2Ẽ

p
t [at+1]+Θ2Ẽ

p
t [xt+1]+κ1E

p
t [at]−K1E

p
t [xt]−κ2E

p
t [at+1]−K2E

p
t [xt+1])]

G′′ = V arp[at − yt] = (1− θ1 −Θ1µ+ θ2kρµ−Θ2ρ(1− µ))2σ′2
α,p.

where k =
(σ2

x + σ2
ϵ )

−1

(σ2
x + σ2

ϵ )
−1 + (σ2

u)
−1

. Thus the nominator can be rewritten as:

e−(θ0+(1+θ1)E
p
t [at]+Θ1Ẽ

p
t [xt]+θ2Ẽ

p
t [at+1]+Θ2Ẽ

p
t [xt+1]+κ1E

p
t [at]−K1E

p
t [xt]−κ2E

p
t [at+1]−K2E

p
t [xt+1])+1/2G′′]

Working in the same manner for the denominator, confirm that (πt + yt) follows a

normal distribution with mean:

Ep
t (πt + yt) =(θ0 + ξ0) + (ξ1 + ω1)at−1 + (Ξ1 + Ω1)E

p
t [xt−1] + (ξ2 + θ1 + κ1 + ω2)E

p
t [at]+

(ξ2 + θ1)Ẽ
p
t [xt] + (Ω2 +K1)E

p
t [xt] + (ξ3 + θ2)Ẽ

p
t [at+1] + (Ξ3 +Θ2)Ẽ

p
t [xt+1]+

(ω3 + κ2)E
p
t [xt+1]

V arp(πt + yt) = F ′′ = (ξ1 + ω1kρµ+ (ξ2 + θ1) + µ(ξ2 +Θ1) + (Ξ3 +Θ2kρ(1− µ))2σ2
a,p

Thus the fraction can be rewritten as:

eE
p
t [at]+(ξ0)+(ξ1+ω1)at−1+(Ξ1+Ω1)E

p
t [xt−1]+(ξ2+ω2)E

p
t [at]+(ξ2)Ẽ

p
t [xt]+(Ω2)E

p
t [xt]+(ξ3)Ẽ

p
t [at+1]+(Ξ3)Ẽ

p
t [xt+1]+(ω3)E

p
t [xt+1]−G′′+F ′′

Or equivalently:

eE
p
t [at]+Ep

t [πt]+const

Thus (54) can be rewritten as:

e(1+ζ)yt = eζat+Ep
t [at]+Ep

t [πt]−πt+F ′′−G′′

Substituting in for the conjectures and cancelling out the common terms between

Ep
t [πt]− πt one acquires:

e(1+ζ)(θ0+θ1at+Θ1Ec
t [xt]+θ2Ec

t [at+1]+Θ2Ec
t [xt+1]+κ1E

p
t [at]+K1E

p
t [xt]+κ2E

p
t [at+1]+K2E

p
t [xt+1]) = (3.67)

eζat+Ep
t [at]+(ξ2)E

p
t [at]+(Ξ2)Ẽ

p
t [xt]+(ξ3)Ẽ

p
t [at+1]+(Ξ3)Ẽ

p
t [xt+1]−G′′+F ′′−ξ2at−Ξ2Ec

t [xt]−ξ3Ec
t [at+1]−Ξ3Ec

t [xt+1]

(3.68)

Lastly notice that the second order beliefs of the producer can be rewritten as follows:
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Ẽp
t [xt] = (1− µ)Ep

t [xt] + µEp
t [at]

Ẽp
t [xt+1] = Ep

t

[
ρ((1−µ)Ec

t−1[xt]+µ[at])
]
= ρ((1−µ)Ep

t [xt]+µEp
t [at]) = Ep

t [xt+1]+ρµ(Ep
t [at]−Ep

t [xt])

Ẽp
t [at+1] = Ep

t

[
Ec

t [at+1]
]
= Ep

t

[
(1− k)Ec

t [xt+1] + kst+1

]
=

(1− k)
(
Ep

t [xt+1] + ρµ(Ep
t [at]− Ep

t [xt])
)
+ kst+1 = Ep

t [at+1] + (1− k)ρµ(Ep
t [at]− Ep

t [xt])

Taking this into account and matching coefficients between (66)− (67) one acquires:

θ0 =
(F ′′ −G′′)/2

1 + ζ
, θ1 =

ζ − ξ2
1 + ζ

, Θ1 =
−Ξ2

1 + ζ
, θ2 =

−ξ3
1 + ζ

, Θ2 =
−Ξ3

1 + ζ

κ1 =
1 + ξ2 + µ(Ξ2 + ξ3(1− k)ρ+ ρΞ3)

1 + ζ
, K1 =

Ξ2(1− µ)− ρµ(Ξ3 + (1− k)ξ3)

1 + ζ
, κ2 =

ξ3
1 + ζ

,

K2 =
Ξ3

1 + ζ
(3.69)

Next we turn our attention to (3.51) ans we start with the denominator which in logs

can be rewritten as Ec
t [e

(πt+1+yt+1)] This is normally distributes with mean and variance:

Ec
t [πt+1 + yt+1] =(ξ0 + θ0) + ξ1at + Ξ1E

c
t [xt] + (ξ2 + θ1)E

c
t [at+1] + (Ξ2 +Θ1)E

c
t+1[xt+1]+

(ξ3 + θ2)E
c
t+1[at+2] + (Ξ3 +Θ2)E

c
t+1[xt+1] + ω1E

p
t [at] + Ω1E

p
t [xt]+

(ω2 + κ1)E
p
t+1[at+1] + (Ω2 +K1)E

p
t+1[xt+1] + (ω3 + κ2)E

p
t [at+2]+

(Ω3 +K3)E
p
t+1[xt+2]

(V ar)c[πt+1+yt+1] = [Ξ1+(Ξ2+Θ1+Ξ2+Θ2)(1−µ)]2σ2
x+(θ1+µ(Θ1+Ξ2+Θ2+Ξ3)+ξ2+2+θ2+ξ3)

2σ2
α

Thus (3.51) can be rewritten as

e1/(1−ϕπ)(Ec
t [y[t+1]−yt)) = eE

c
t [πt+1]

Moreover notice that these expessions hold regardless on whether the central bank

communicates information about at+2 if the central bank offers no new information besides

at+1, then we have the extra condition that Ei
t [at+2] = Ei

t [xt+2] having this in mind we

match coefficients with the above equation and we end up with two sets of equilibrium

conditions:
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−θ1
ϕπ − 1

= ξ1
−Θ1

ϕπ − 1
= Ξ1

θ1
ϕπ − 1

= ξ2
Θ1

ϕπ − 1
= Ξ2 (ξ3 + Ξ3) =

(θ2 +Θ2)

ϕπ − 1

−κ1

ϕπ − 1
= ω1

−K1

ϕπ − 1
= Ω1

κ1

ϕπ − 1
= ω2

K1

ϕπ − 1
= Ω2 ξ0 =

V ar[πt+1 + yt+1]

ϕπ − 1

(ω3 + Ω3) =
κ2 +K2

ϕπ − 1
(3.70)

While with announcements the equations for the coefficients become:

−θ1
ϕπ − 1

= ξ1
−Θ1

ϕπ − 1
= Ξ1

θ1
ϕπ − 1

= ξ2
Θ1

ϕπ − 1
= Ξ2 Ξ3 =

(Θ2)

ϕπ − 1

ξ3 =
(θ2)

ϕπ − 1

−κ1

ϕπ − 1
= ω1

−K1

ϕπ − 1
= Ω1

κ1

ϕπ − 1
= ω2

K1

ϕπ − 1
= Ω2

ξ0 =
V ar[πt+1 + yt+1]

ϕπ − 1
, ω3 =

κ2

ϕπ − 1
, Ω3 =

K2

ϕπ − 1
(3.71)

Notice that in both cases the coefficients related with the producer are uniquely pinned

down by the coefficients of the consumer. This implies that (3.69) − (3.70) are a system

of (9) equations with (10) unknowns thus the system is undetermined. On the contrary,

(3.69) − (3.71) is a system of (9) equations with (9) unknowns thus the system is de-

termined as claimed in the main text. In the same manner, by induction this result

generalizes for τ periods since in order to have determinacy in our economy signals for

the whole horizon are required, concluding the proof of proposition 10.

Proof of Proposition 11: Lastly, for Proposition 11, notice that the Philips curve is

the same as described in equation (3.59). Thus :

eE
c
t [yt+1]−yy−Ec

t [ηt+1−ηt] =

eξ1at+ξ2at+1+Ξ1Ec
t [xt]+Ξ2Ec

t [xt+1]+ω1E
p
t [at]+ω2E

p
t+1[at+1]+Ω1E

p
t [xt]+Ω2E

p
t+1[xt+1]+µ1ηt+µ2Ec

t [ηt+1 ] (3.72)

Notice that if the central bank offers no information about ηt+1, Ec
t [ηt+1] = 0 thus the

coefficient µ2 remains undetermined. On the contrary, if the central bank offers information

and Ec
t [ηt+1] ̸= 0 then µ2 =

1

ϕπ − 1
. Which concludes the proof of Proposition 5.
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3.5.4 Central bank with private information

Lastly we examine the case that the central bank possesses superior information but does

not communicate it with the agents. We will argue that such information does not play

any role in equilibrium in our setup, allowing us to focus only in the case that the central

bank does not have any information. Since we have assumed that agents in the absence of

any information do not update their priors, we show that the case where the central bank

withholds information collapses to the one where the central bank has no information

for the purposes of determining inflation. To see this start with the case of symmetric

information where yt = at and notice that the only change would be in our IS equation

(16) which would instead be written as:

Ec
t [yt+1]− yt = ϕπE

cb
t [πt+1]− Ec

t [πt+1], (3.73)

since now the central bank has some private information.

Next conjecture for inflation:

πt+1 = ξ1at + ξ2[at+1] + Ξ2E
c
t+1[xt+1] + ξ3E

cb
t [at+1]. (3.74)

Here we include in the conjecture the beliefs of the central bank from the perspective

of period t about at+1 since this is the only way that the agents’ information differs.

Next notice that:

Ecb
t [at+1] = (1− k)Ecb

t−1[xt+1] + kst+1

Ec
t [E

cb
t [at+1]] = (1− k)Ec

t−1[xt+1] + kEc
t [st+1] = (1− k)Ec

t−1[xt+1]

Where the second equation uses the fact that agents have the same information about

the permanent component of productivity and the fact that Ec
t [st+1] = 0.

Substitution output and the conjecture in (3.73) we have:

Ec
t [at+1]− at =(ϕπ − 1)ξ1at + (ϕπ − 1)(ξ2 + Ξ2)E

c
t [xt+1] + (Ξ3 + ξ3)(1− k)Ec

t−1[xt+1]

+ ϕπξ3E
cb
t [at+1].

(3.75)

The last line uses the fact that Ec
t [at+1] = Ec

t [xt+1]. Matching coefficients with the LHS

one acquires:

ξ1 =
−1

ϕπ − 1
, (ξ2 + Ξ2) =

1

ϕπ − 1
, ξ3 = 0

and notice that this is the same equilibrium with the one where the central banks has

no information and it makes no announcements. The same logic applies and in the case

with asymmetric information since any private information that the central bank has,

agents would estimate using the available information thus any private information would

not play a role in equilibrium.
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