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We study numerically the microjetting mode obtained when a fluid is injected through a
tube submerged in a uniaxial extensional flow. The steady solution to the full non-linear
Navier-Stokes equations is calculated. We obtain the linear global modes determining
the linear stability of the steady solution. For sufficiently large outer viscosity, the flow
remains stable for infinitely small values of the injected flow rate. This implies that jets
with vanishing diameters can be produced regardless of the jet viscosity and outer flow
strength. For a sufficiently small inner-to-outer viscosity ratio, the microjetting instability
is associated only with the flow near the entrance of the jet. The tapering meniscus
stretches and adopts a slender quasi-conical shape. Consequently, the cone tip is exposed
to an intense outer flow, which stabilizes the flow in the cone-jet transition region. This
work presents the first evidence that fluid jets with arbitrarily small diameters can be
stably produced via tip streaming.

1. Introduction

The stable production of arbitrarily thin fluid jets has become the Holy Grail for many
microfluidic applications that demand monodisperse collections of tiny droplets, bubbles,
capsules, and emulsions. The microjetting mode of tip streaming (Anna & Mayer 2006;
Montanero & Gañán-Calvo 2020) has been the preferred method in most cases because
it allows the formation of long fluid threads much thinner than any fluid passage of the
microfluidic device. Using hydrodynamic (De Bruijn 1993) or electrohydrodynamic forces
(Duft et al. 2003), energy is gently focused into the tip of a tapering meniscus anchored to
the feeding tube. In a particular region of the parameter space, the meniscus tip steadily
emits a jet much thinner than the tube. The jet eventually breaks up into droplets due
to the capillary instability.
The kinetic energy per unit volume ρjv

2
j /2 (ρj and vj are the jet’s density and velocity,

respectively) is practically independent of the injected flow rate Q in most microjetting
realizations. This implies that the jet diameter dj ∼ (Qi/vj)

1/2 scales approximately

as Q
1/2
i . In principle, the jet diameter can be indefinitely reduced by lowering the in-

jected flow rate. However, experiments and numerical simulations have shown that the
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flow inevitably becomes unstable at a critical value of Qi, which sets a minimum value
of the jet diameter (Montanero & Gañán-Calvo 2020). For instance, the microjetting
modes of gravitational jets (Rubio-Rubio et al. 2013), flow focusing (Cruz-Mazo et al.
2017), confined selective withdrawal (Evangelio et al. 2016; López et al. 2022), and elec-
trospray (Ponce-Torres et al. 2018) become unstable at this well-known minimum flow
rate stability limit, which prevents producing jets with arbitrarily small diameters.

A number of significant studies of the microjetting mode of tip streaming demonstrated
thin jets, but that did not determine the minimum flow rate stability limit. Using a dou-
ble flow-focusing arrangement, Gañán-Calvo et al. (2007) produced compound fluid jets
with submicrometer diameters. The transient numerical simulations of Suryo & Basaran
(2006) showed the transition from jetting to microjetting (tip streaming) in the coflow-
ing configuration when the inner-to-outer flow rate ratio decreased below a critical value.
The vanishing flow rate ratio limit was not analyzed in that work. It is worth mentioning
that Gañán-Calvo (2008) showed that an infinitely thin jet is stable (convectively unsta-
ble) if the interface speed exceeds a critical value, which depends on the ratio between
the jet and outer medium viscosities. However, this must be regarded as a prerequisite
for microjetting, which does not consider the critical instability that originates in the
tapering meniscus.

Taylor (1932, 1934) proposed a long-wave model to describe the flow in an axisymmetric
drop submerged in a viscous uniaxial extensional flow. Using this approximation, Zhang
(2004) showed how the extensional flow might produce a vanishingly thin jet from the
tip of a meniscus attached to a tube. A continuous transition to microjetting with an
arbitrarily small flow rate (jet diameter) can occur when the imposed capillary number
is decreased. As the flow rate decreases, the solution to the long-wave model tends to
a universal velocity profile when the variables are appropriately scaled. However, these
numerical results were based on the slender body theory, which is known to fail for
conical tips (Eggers 2021). More importantly, the flow stability was not determined, and,
therefore, the viability of this method was not demonstrated. It must be pointed out
that numerical simulations usually converge to a microjetting solution even when the
bifurcation point has been crossed, making the stability analysis critical.

This work examines the microjetting mode obtained when a fluid is injected through
a tube submerged in a uniaxial extensional flow (−Gr/z, 0, Gz). We analyze the flow
stability as the injected flow rate decreases. Our results show that infinitely thin jets can
be produced for a sufficiently large outer viscosity, independently of the jet viscosity and
the outer flow intensity G.

2. Governing equations

Consider a cylindrical capillary of radius a placed in linear uniaxial extensional flow
given by the equations

u(o) = −Gr/2, w(o) = Gz, (2.1)

where u(o) and w(o) are the radial and axial components of the velocity field, and G is the
flow intensity. The center of the capillary exit is located at the origin of the cylindrical
coordinate system (r,z) (see Fig. 1). A fluid of density ρi and viscosity µi is injected
through the capillary at a constant flow rate Qi. The density and viscosity of the outer
fluid are ρo and µo, respectively, and the surface tension of the interface is σ.

Hereafter, all the variables are made dimensionless with the characteristic length a,
velocity σ/µ0, time µoa/σ, and stress σ/a. The dimensionless, axisymmetric, incompress-
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Figure 1. Sketch of the fluid domain for Q > 0. The dashed line indicates the computational
domain.

ible Navier-Stokes equations for the velocity and pressure fields are

[ru(k)]r + rw(k)
z = 0, (2.2)

(λ2)δikRek[u
(k)
t + u(k)u(k)

r + w(k)u(k)
z ] = −p(k)r + λδik [u(k)

rr + (u(k)/r)r + u(k)
zz ], (2.3)

(λ2)δikRek[w
(k)
t + u(k)w(k)

r + w(k)w(k)
z ] = −p(k)z + λδik [w(k)

rr + w(k)
r /r + w(k)

zz ], (2.4)

where u(k) (w(k)) is the radial (axial) velocity component, p(k) is the pressure field,
Rek = ρkσa/µ

2
k is the Reynolds number (the inverse of the Ohnesorge number) of phase

k, λ = µi/µo is the viscosity ratio, and δij is the Kronecker delta. In the above equations
and henceforth, the subscripts and superscripts k = i and o refer to the inner and outer
phases, respectively, and the subscripts t, r, and z denote the partial derivatives with
respect to the corresponding variables. The action of the gravitational field has been
neglected due to the smallness of the fluid configuration.
The kinematic compatibility condition at the interface reads

Ft + Fzw
(i) − u(i) = Ft + Fzw

(o) − u(o) = 0, (2.5)

where F (z, t) is the distance of an interface element to the symmetry axis z. We consider
the continuity of the velocity field v(k)(r, z; t) and tangential stress at the interface, as
well as the normal stress jump due to the capillary pressure:

||v(k)|| = 0, ||τ (k)t || = 0, ||τ (k)n || = κ, (2.6)

where ||A(k)|| denotes the difference A(i)−A(o) between the values taken by the quantity

A on the two sides of the interface, τ
(k)
t and τ

(k)
n and represent the tangential and normal

stress, respectively, and κ is the local mean curvature.
The triple contact line anchorage condition, F = 1, is set at the capillary edge. We

impose the velocity field u(o) = −Cr/2 and w(o) = Cz [Eqs. (2.1)] at the two boundaries
of the computational domain indicated in Fig. 1, where C = Gaµo/σ is the capillary

number. The outflow boundary conditions Fz = u
(i)
z = w

(i)
z = 0 are prescribed in the jet

outlet cross-section, while the symmetry plane condition is considered on the left-hand
side of the outer computational domain.
For Q > 0, the parabolic velocity profile corresponding to the dimensionless flow rate

Q = Qi/(πa
2σ/µo) is imposed inside the feeding capillary at a distance L0 from its exit

(L0 = 5 in the simulations unless otherwise stated). The flow with Q = 0 is simulated
by extending the symmetry plane condition to the capillary exit (Fig. 2). This case
corresponds to a droplet submerged in an extensional flow with its equator pinned to an
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Figure 2. Sketch of the fluid domain for Q = 0. The dashed line indicates the computational
domain.

infinitely thin ring. If Q = 0, the droplet volume

V =
π

2

∫ Λ

0

F 2 dz (2.7)

is prescribed, where Λ is the droplet length (F (Λ) = 0).
For a fixed value of L0, the problem with Q > 0 is formulated in terms of the di-

mensionless numbers {λ, C, Rei, Reo, Q}, which reduce to {λ, C, Q} when inertia is
neglected. We will consider this approximation in most of our analysis. The viscosity
ratio and Reynolds numbers are defined in terms of material properties and the capillary
radius, which allows fixing their values in an experimental run in which the strain rate
(the capillary number) and injected flow rate are changed. These two variables are the
experimental operational parameters. For Q = 0, the problem is formulated in terms of
the dimensionless numbers {C, Rei, Reo, V }.

To calculate the linear global modes of the steady solution, we assume the temporal
dependence

U = U0 + δU e−iωt (|δU | ≪ |U |), (2.8)

where U represents any unknowns of the problem, and U0 and δU stand for the cor-
responding base flow (steady) solution and the spatial dependence of the eigenmode,
respectively. For Q > 0, we assume the temporal dependence for the interface location

F = F0 + δF e−iωt (|δF | ≪ F0), (2.9)

where F0 denotes the interface position in the base flow, and δF is the perturbation. For
Q = 0, the interface location is defined in terms of intrinsic coordinates. In this case, we
assume the temporal dependence

(rs, zs) = (rs0, zs0) + (δrs, δzs) e
−iωt (|δrs| ≪ rs0, |δzs| ≪ zs0), (2.10)

where (rs0, zs0) is the droplet shape in the base flow, and (δrs, δzs) is the perturbation. In
the above equations, ω = ωr + iωi is the eigenfrequency characterizing the perturbation
evolution. If the growth rate ω∗

i of the dominant mode (i.e., that with the largest ωi) is
positive, then the base flow is asymptotically unstable under small-amplitude perturba-
tions (Theofilis 2011).
We used a boundary-fitted spectral method (Herrada & Montanero 2016) to solve

the theoretical model described above. Here, we summarize the main characteristics of
this method. The inner and outer fluid domains are mapped onto two quadrangular
domains through non-singular mapping. A quasi-elliptic transformation (Dimakopou-
los & Tsamopoulos 2003) is applied in the outer bath. All the derivatives appearing
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 Figure 3. Half droplet shape at the end of a transient simulation for Rei =Reo = 0, λ = 0.0125,

and C = 0.26. The color scale indicates the magnitude of the interface velocity relative to the
magnitude of the imposed external flow at that point.

in the governing equations are expressed in terms of the spatial coordinates resulting
from the mapping. These equations are discretized in the (mapped) radial direction with
Chebyshev spectral collocation points (Khorrami et al. 1989). We use fourth-order finite
differences with equally spaced points to discretize the (mapped) axial direction.
We conduct transient numerical simulations for Q = 0. Second-order backward finite

differences are used to discretize the time domain. The time step is adapted in the course
of the simulation according to the formula ∆t = ∆t0/vtip, where ∆t0 is the time step at
the initial instant, and vtip is the droplet tip velocity. The time-dependent mapping of
the physical domain does not allow the algorithm to go beyond the interface pinch-off.
Therefore, the evolution of the emitted droplet cannot be analyzed using the present
code.

3. Results

3.1. The case Q = 0

Consider a droplet suspended in an extensional uniaxial flow, as shown schematically in
Fig. 2. The viscous force exerted by the outer fluid deforms the droplet, which adopts an
oblate shape. The magnitude of this deformation increases with the capillary number.
The droplet apex sharpens in the direction of the outer flow as λ decreases. The viscosity
force drives a steady recirculation flow inside the droplet. For sufficiently large values
of the capillary number, this flow becomes unstable at a saddle-node bifurcation, which
corresponds to a turning point when the droplet deformation D = (â − b̂)/(â + b̂) (â

and b̂ are the half-length and half-breadth of the cross-sectional shape, respectively) is
plotted against the capillary number (Taylor 1964; Acrivos & Lo 1978). Both the real
and imaginary parts of the critical eigenfrequency vanish at the bifurcation. The critical
non-oscillatory eigenmode leads to the so-called central pinching mode, producing the
thinning of the droplet equator until the interface pinches (Herrada et al. 2022) (Fig. 3).
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Figure 4. (a) Droplet deformation D and (b) growth rate of the dominant mode, ω∗
i , versus

the capillary number C. The results were calculated as a function of the capillary number C for
Rei =Reo = 0 and λ = 0.1. The circles (squares) correspond to the pinned (unpinned) droplet.
The dotted lines indicate the critical capillary numbers. The solid symbols show the crossover
of two modes.

Figure 5. Droplet shape in the base flow, (rs0, zs0) (shaded area), and interface displacement
due to the critical linear eigenmode, (rs, zs) = (rs0, zs0) + ϕ (Re[δrs],Re[δzs]) (dashed lines),
for λ = 0.1 and C = 0.17 (a), λ = 0.1 and C = 0.30 (b), λ = 0.0125 and C = 0.25 (c), and
λ = 0.0125 and C = 0.55 (d). The value of the arbitrary constant ϕ in the linear analysis has
been chosen to appreciate the interface deformation.

The simulations conducted in this work for Q = 0 correspond to the problem described
above except for a fundamental difference: the droplet equator is a triple contact line
pinned to the feeding capillary edge in the present study. This last condition suppresses
the central pinching mode described above, considerably increasing the critical capillary
number (Fig. 4). As in the unpinned droplet case, the pinned droplet reaches a saddle-
node bifurcation. However, the critical perturbation is localized in the droplet tip (Fig.
5), giving rise to microdripping (Fig. 6) instead of the central pinching mode.

The critical capillary number increases as λ decreases. Consequently, the droplet
stretches at the stability limit, the outer velocity around the droplet tip considerably
increases, and the tip curvature grows. For small values of λ, the microdripping mode
produces tiny droplets much smaller than the mother drop (Fig. 6). The effect of the con-
tact line pinning is somewhat similar to covering the droplet with a surfactant monolayer
(Eggleton et al. 2001; Herrada et al. 2022).
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λ=0.1 λ=0.0125

Figure 6. Droplet shape at the end of a transient simulation for Rei =Reo = 0. The images
correspond to λ = 0.1 (a) and λ = 0.0125 (b), and their respective critical capillary numbers
are C = 0.31 and 0.56. The color scale indicates the magnitude of the interface velocity relative
to the magnitude of the imposed external flow at that point. The triple contact line is pinned
to the feeding capillary edge.
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Figure 7. (a) Stability map for viscosity-dominated flow (Rei =Reo = 0). The symbols corre-
spond to marginally stable (ω∗

i = 0) microjetting realizations. (b) Fitting (3.1) to the simulation
results. The solid lines are splines through the simulation data, and the dashed lines correspond
to Eq. (3.1) with Q∗ = 0.0314, C∗ = 0.142, a1 = 6.71, λ∗ = 0.0161, and c3 = 0.015.

3.2. The case Q > 0

We now focus on the more interesting case Q > 0, where a fluid is injected at a constant
rate through the feeding capillary placed in the extensional flow. We first consider flows
dominated by viscosity (Rei =Reo = 0), characterized only by the viscosity ratio λ, the
capillary number C, and the injected flow rate Q. The effect of inertia will be analyzed
at the end of this section.
Figure 7a shows the stability map in the parameter plane (C,Q) for several values of

the viscosity ratio λ. We could not conduct simulations for Q ≲ 10−4 because of the
sharp increase in the computing time caused by the much smaller flow scales generated
as Q decreases. The symbols correspond to marginally stable cases for which ω∗

i = 0.
In all the cases, ω∗

r ̸= 0, which means that the flow becomes unstable due to an
oscillatory supercritical Hopf bifurcation linked to the presence of the jet. The jet convects
capillary modes, which translates into an oscillatory behavior in the Eulerian frame of
reference. In fact, this oscillatory instability has been observed in the microjetting mode
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of all the configurations analyzed so far (Montanero & Gañán-Calvo 2020). The growth
of the interface oscillation eventually produces the interface pinching, and the system
evolves from steady microjetting towards some type of dripping.
The results reveal an interesting dependence of the critical capillary number on λ for

a fixed flow rate. All the stability curves approximately intersect at Q = Q∗ ≃ 0.031 and
C = C∗ ≃ 0.15. For Q ≳ 0.031, the critical capillary number decreases as λ increases,
while the opposite occurs for Q ≲ 0.031. We conclude that the inner viscosity stabilizes
the flow for Q ≳ 0.031 but destabilizes it for sufficiently small flow rates.

Increasing the capillary number stabilizes the jet. In other words, there is a critical
curve C(Q,λ) at which the growth rate vanishes and the flow passes from unstable
to stable. As mentioned above, there is a critical flow rate Q∗ ≃ 0.031 for which the
critical number C∗ ≃ 0.15 is practically independent of λ. This suggests introducing the
parameters Q̄ = log10 Q − log10 Q

∗ and C̄ = log10 C − log10 C
∗. For a critical viscosity

ratio λ = λ∗, one expects ∂C̄/∂Q̄ = 0 at C̄ = Q̄ = 0. In addition, the curve C̄(Q̄) should
be invertible as λ−λ∗ passes from negative to positive values. This suggests a bifurcation
of the form

C̄ = a1(λ− λ∗)Q̄− c3Q̄
3. (3.1)

Fitting this expression to the numerical simulations leads to Q∗ = 0.0314, C∗ = 0.142,
a1 = 6.71, λ∗ = 0.0161, and c3 = 0.015 (Fig. 7b).

Two types of asymptotic behavior of the stability limit Q(C) can be observed in Fig.
7a as Q → 0. For λ ⩾ 0.02, Q ∼ Cα with α < 0, which implies that, for any value of
C, there is a finite value of Q below which the steady flow becomes unstable. This is the
expected behavior because it corresponds to what has been observed in all tip streaming
configurations (Montanero & Gañán-Calvo 2020). In contrast, Q(C) seems to approach a
vertical asymptote C = 0.131 for λ = 0.0125. This means that the flow remains stable for
infinitely small values of Q provided that C ⩾ 0.131. This result constitutes the central
finding of this work.
The above conclusion has obvious practical consequences. The jet diameter scales as

Q1/2 at a fixed distance from the feeding capillary, and hence fluid jets with vanishing
diameters can be steadily emitted as Q → 0. As the outer viscosity increases at a fixed
jet viscosity and outer flow intensity, λ decreases, and C increases. For λ < λ∗ and C
sufficiently large, one is in the stable regime of Fig. 7a, and arbitrarily thin jets can be
realized. We conclude that jets with vanishing diameters can be produced for a large
enough outer viscosity, independently of the jet viscosity and outer flow intensity. For
a fixed outer viscosity, infinitely thin jets can also be produced if the jet viscosity (the
viscosity ratio λ) is sufficiently small and the flow intensity (the capillary number C) is
large enough.
We now analyze the case λ = 0.0125 in more detail in Fig. 8. This figure compares the

critical capillary number Cc(Q) for microjetting with the value Cc0 obtained for a pinned
droplet (Q = 0) (see Sec. 3.1) with the same volume as that of the microjetting meniscus
(red circles in Fig. 8). The meniscus volume is calculated as that delimited by the end
of the feeding capillary and the stagnation point in front of the jet. This volume hardly
changes for λ = 0.0125 and Q < 0.05. For this reason, Cc0 is practically constant in all
the cases considered. As explained above, microjetting becomes unstable for C < Cc,
while the droplet becomes unstable for C > Cc0.
In all the cases considered in Fig. 8, Cc0 < Cc(Q). This can be interpreted as follows.

Consider a pinned drop of a given volume submerged in an extensional flow characterized
by the capillary number C. The drop stretches and approaches its stability limit as C
increases. At the critical capillary number C = Cc0, the drop tip destabilizes (Fig. 5)
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Figure 8. (Left) Critical capillary number Cc as a function of the flow rate Q for viscosity–
dominated flow (Rei =Reo = 0) and λ = 0.0125 (blue triangles). The red circles indicate the
critical capillary Cc0 for the onset of instability for a droplet with the same volume as that of
the meniscus of the corresponding microjetting realization, as indicated by the arrows. (Right)
Sketch of the microjetting mode and its closed-droplet counterpart.

and ejects a tiny droplet (Fig. 6). However, the capillary number is not large enough to
maintain the liquid ejection, and the steady microjetting mode is not established. If the
flow rate Q is appropriately selected, and the capillary number is further increased up
to C = Cc(Q), a marginally stable microjetting realization is produced with a meniscus
volume equal to that of the pinned drop. Therefore, each marginally stable pinned drop
has its marginally stable “microjetting counterpart”.
Neither the drop nor its microjetting counterpart is stable in the interval Cc0 < C <

Cc(Q). This interval is expected to correspond to some type of dripping. The interval
Cc0 < C < Cc(Q) decreases as Q decreases because the size of the critical cone-jet
transition region (the region marked with a circle in Fig. 8-right) decreases asQ decreases.
We calculated the oscillation frequency ω∗

r of the critical eigenmode for Q > 0 and
verified that ω∗

r → 0 for Q → 0. However, this oscillatory Hopf bifurcation becomes
a non-oscillatory saddle-node bifurcation (ω∗

r = 0) only at Q = 0 due to the system
“discontinuous” topological change from jetting to a closed-droplet at Q = 0.
As explained above, the viscosity ratio λ essentially determines the fate of the mi-

crojetting mode as the flow rate decreases. In the limit Q → 0, the microjetting mode
remains stable for sufficiently small values of λ and destabilizes otherwise. Figure 9 shows
how the tapering meniscus shape changes when the flow rate is reduced by a factor of
100. For λ = 0.1, the entire meniscus shrinks. Conversely, most part of the cone keeps
the same shape for λ = 0.0125. Only the cone-jet transition region collapses.
As explained above, for a fixed and sufficiently small flow rate, the critical capil-

lary number decreases as λ decreases (Fig. 7). Figure 10 shows the streamlines of the
marginally stable base flow for λ = 0.1 and 0.0125 and the same flow rate Q = 0.00126.
For λ = 0.1, the inner viscosity enhances the diffusion of axial momentum from the in-
terface toward the tapering meniscus, the inner fluid accelerates, the meniscus shrinks
and adopts a funnel-like shape, and the recirculation cells enter the feeding tube. For
λ = 0.0125, the tapering meniscus stretches and adopts a slender quasi-conical shape
predicted by the slender body theory. In this case, the recirculation cell hardly enters the
feeding tube.
Figure 11 shows the increase of the recirculation cell size as the injected flow rate

decreases. The recirculation cell size Sr is determined as the distance between the front
and rear stagnation points on the symmetry axis. In the two cases analyzed, Sr becomes
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Figure 9. (a) Meniscus shape for λ = 0.1, C = 0.425, and Q = 0.126 (blue lines) and
Q = 0.00126 (marginally stable flow) (red lines). (b) Meniscus shape for λ = 0.0125, C = 0.132,
and Q = 0.126 (blue lines) and Q = 0.00126 (marginally stable flow) (red lines). In all the
simulations, Rei =Reo = 0.

(a)

(b)

Figure 10. Streamlines of the marginally stable base flow for (λ = 0.1, C = 0.425, Q = 0.00126)
(a) and (λ = 0.0125, C = 0.130, Q = 0.00126) (b). In the two cases, Rei =Reo = 0. For
sufficiently small λ, the recirculating cells do not enter the feeding tube.
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Figure 11. Size of the recirculation cell, Sr, as a function of the flow rate Q for (λ = 0.1,
C = 0.425) (squares) and (λ = 0.0125, C = 0.130) (circles). In the two cases, Rei =Reo = 0.
The insets show the streamlines for the marginally stable cases (Fig. 7).

approximately constant as Q decreases for values of the injected flow rate much larger
than the critical one. This behavior differs substantially from that observed in other tip
streaming configurations, such as gaseous flow focusing, where Sr is a linear function of
Q below a threshold value of the flow rate (Herrada et al. 2008). For λ = 0.0125 and
C = 0.130, the recirculation cell remains practically at the same position as Q decreases,
while it slightly displaces backward for λ = 0.1 and C = 0.425. As shown below, the
penetration of the recirculating cell into the tube may be a destabilizing factor.
It has been hypothesized that the microjetting mode of configurations such as gaseous
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Figure 12. Streamlines of the marginally stable base flow for (λ = 0.1, Q = 0.00126, Rei = 0,
Reo = 0). The graph (a) corresponds to L0 = 5 and C = 0.42, and the graph (b) corresponds
to L0 = 0 and C = 0.38.

flow focusing (Gañán-Calvo 1998) becomes unstable at the minimum flow rate stability
limit because the recirculation cells enter the feeding tube, limiting the flow rate that
can recirculate in the tapering meniscus and, therefore, setting a minimum value for the
injected flow rate (Herrada et al. 2008). To investigate this possibility, we conducted
numerical simulations for L0 = 0, i.e., imposing the inlet boundary condition at the tube
exit to expel the recirculation cells. Figure 12 shows the streamlines of the marginally
stable flows for λ = 0.1 and L0 = 0 and 5 defined in Fig. 1.
For λ = 0.0125, the stability limit was practically the same, which indicates that

the penetration of the recirculation had a negligible effect on the microjetting stability.
This is consistent with the idea that the conditions at the cone-jet transition region
essentially determine the flow stability for λ = 0.0125. The same approximation has
been considered to predict the minimum flow rate stability limit of electrospray (Gañán-
Calvo et al. 2013). For λ = 0.1, expelling the recirculation cells from the tube displaces
the front stagnation point downstream and stabilizes the microjetting mode so that the
critical capillary number decreases from C = 0.42 to 0.38. It is worth mentioning that the
meniscus funnel-like shape for λ = 0.1 resembles that of gaseous flow focusing (Montanero
& Gañán-Calvo 2020).
The results discussed above indicate that the coupling between the recirculation and

the flow in the feeding capillary is a destabilizing factor. This coupling can be quantified
through the wall shear stress averaged over the capillary inner surface. We define τw
as that stress normalized with the value corresponding to the (unperturbed) Poiseuille
flow. The destabilizing interaction between the recirculation and the flow in the feeding
capillary is much more intense for λ = 0.1 (Fig. 13). In this case, the penetration of the
recirculation cells into the tube produces an increase in two orders of magnitude of the
friction with the wall. This increase is localized near the feeding capillary edge, where
the shear rate peaks. This effect is much less noticeable for λ = 0.0125.
The convective motion at the cone-jet transition region for small values of λ is expected

to stabilize the flow. This mechanism can be quantified by the ratio Ctip/C, where Ctip =

v
(o)
tipµo/σ is the capillary number at the tip, and v

(o)
tip is the uniaxial extensional flow

velocity at the front stagnation point. The ratio Ctip/C measures the increased strength
of the outer flow in the tip due to the meniscus stretching. Figure 14 shows the dependence
of Ctip/C and τw on the injected flow rate Q for fixed values of the capillary number.
For λ = 0.0125, the cone sharply stretches as the flow rate decreases and reaches an
approximately constant size for Q ≲ 10−1. This stabilizing effect is much less noticeable
in the case λ = 0.1.
The above results suggest that the flow in the cone-jet transition for λ = 0.0125 is

practically decoupled from that in the rest of the cone, while the flow in the tip of the
funnel-like meniscus for λ = 0.1 is affected by the inner fluid motion upstream. This is
consistent with the spatial dependence of the perturbation of the interface contour, δF ,
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Figure 13. τw as a function of the flow rate Q for (λ = 0.0125, C = 0.130) (open symbols)
and (λ = 0.1, C = 0.425) (solid symbols). In the two cases, Rei =Reo = 0.
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Figure 14. Ctip/C as a function of the flow rate Q for (λ = 0.0125, C = 0.130) (open
symbols) and (λ = 0.1, C = 0.425) (solid symbols). In the two cases, Rei =Reo = 0.
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Figure 15. Interface contour (red solid line) and magnitude of the interface perturbation, |δF |
(black dotted line), for (λ = 0.1, C = 0.425, Q = 0.00126) (a) and (λ = 0.0125, C = 0.130,
Q = 0.00126) (b). The magnitude of the interface perturbation has been normalized with its
maximum value |δF |max. In the two cases, Rei =Reo = 0.

obtained in these two cases (Fig. 15). While |δF | ≃ 0 in the cone for λ = 0.0125, the
meniscus contour is perturbed in front of its tip for λ = 0.1.
All the previous results were obtained for Rei =Reo = 0. Figure 16 shows the effect

of the inner fluid inertia on the stability map. We did not study the influence of the
outer fluid inertia because the numerical method did not converge to the solution for
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Figure 17. Streamlines of the marginally stable base flow for (λ = 0.0125, C = 0.13,
Q = 0.00126, Rei = 160, Reo = 0). Graphs (a) and (b) correspond to L0 = 5 and 0, re-
spectively (for L = 0, the parabolic velocity profile is imposed at z = 0). The critical capillary
number is practically the same in the two cases.

large values of Reo. The behavior for Q → 0 is not significantly affected by inertia for
Rei = 80. However, the extrapolation of the stability curve for Rei = 160 indicates that,
for any capillary number, there is a minimum flow rate below which microjetting becomes
unstable, as occurs for larger values of λ and in the rest of the tip streaming configurations
(Montanero & Gañán-Calvo 2020). The inner fluid inertia makes the recirculation cells
enter the feeding capillary (Fig. 17). When the cells are expelled from the capillary, the
front stagnation point does not move, and the critical capillary number hardly changes,
which confirms that instability is linked to the flow in the tiny cone-jet transition region.

4. Conclusions

The simulations for zero injected flow rate show that a droplet attached to a feeding
capillary and submerged in a linear extensional flow produces microdripping. The size
of the ejected droplet becomes extremely small for low values of the viscosity ratio. This
occurs because the pinning of the triple contact line suppresses the central pinching mode,
enabling the stretching of the droplet and the increase of the droplet tip curvature at the
stability limit.
We have shown that the linear extensional flow can produce jets with arbitrarily small

diameters, provided that the viscosity of the outer fluid is sufficiently high. In this case, a
slender conical meniscus forms attached to the feeding capillary. The cone-jet transition
region becomes vanishingly small as the flow rate (the jet diameter) decreases. The
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disparity between the size of this region and that of the meniscus suggests that the
microjetting stability is determined by the flow in the cone-jet transition region.

Two mechanisms have been proposed to explain the effect of the viscosity ratio on the
flow stability: (i) the convective motion at the cone-jet transition region, which stabilizes
the flow for small values of λ, and (ii) the coupling between the recirculation and the flow
in the feeding capillary, which may destabilize the flow for sufficiently large values of λ.
Other destabilizing mechanisms linked to the recirculation have been proposed to explain
the instability of tip streaming in other configurations. Cabezas et al. (2021) hypothesized
that instability of liquid-liquid flow focusing may be caused by the displacement towards
the interface of the recirculation cell, which narrows the stream tube across which the
injected liquid leaves the meniscus. This and similar effects may also contribute to the
instability of the flow analyzed in the present work for sufficiently large values of λ.

The velocity of the imposed extensional flow along the symmetry axis increases with
the distance from the feeding capillary. This peculiarity seems to play a critical role in
the microjetting stability. For sufficiently small values of the viscosity ratio, the meniscus
stretches as the flow rate decreases. Therefore, the meniscus tip is exposed to larger outer
fluid velocities as the flow rate decreases. This seems to stabilize the flow in the cone-
jet transition region. We hope the present theoretical study will be a useful guide for
experimentalists in their search for new microjetting techniques.

Our study reveals the importance of conducting the stability analysis of the base
flow. In fact, our numerical method finds the solution to the steady governing equations
regardless of whether the flow is linearly stable or unstable, which typically occurs when
a Hopf bifurcation causes the instability.
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