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A B S T R A C T   

In this study the effect of merging correlated energy dispersive X-ray (EDS) spectra and electron diffraction data 
on unsupervised machine learning (clustering) is explored. The combination of data allows second phase 
coherent precipitates to be identified, that could not be determined from either the individual EDS or diffraction 
data alone. In order to successfully combine these two distinct data types we leveraged a data fusion method 
where both data sets were normalised and combined using a robust scaler followed by variance equalisation. A 
machine learning pipeline was implemented which performs dimensional reduction with PCA and followed by 
fuzzy C-means clustering, as this allows signals from overlapping regions of the microstructure to be partitioned 
between different clusters. User control of this partition is used to confirm a change in the stoichiometry of the 
embedded second phase regions.   

1. Introduction 

There is currently a drive towards greater automation of materials 
characterisation in transmission electron microscopy (TEM). Faster de-
tectors, more stable electron optics and computer control all allow for 
the analysis of larger areas, greater numbers of regions of interest and 
increased modality. One potential bottleneck in these approaches is the 
ability to automate data analysis, particularly the identification of fea-
tures requiring additional scrutiny. Such computer vision (CV) methods 
can be used to reduce the burden on human analysts and to detect trends 
that may not be immediately obvious to even a trained user. 

There are several possible approaches that can be adopted for such 
CV, these broadly fall into supervised and unsupervised machine 
learning categories. The most common supervised approach is the use of 
artificial neural networks for deep learning [1]. Such deep learning 
approaches have showed value for a range of automated data processing 
and data segmentation cases. One powerful example is the denoising 
capability, here extremely low dose annular dark-field scanning trans-
mission electron microscopy (ADF STEM) images can be recorded, that 
would under normal circumstance be impossible to interpret, either 

through sparse scan patterns or through extremely low dose, but 
through deep learning analysis the lattice image can be recovered [234]. 
A further stage to this is training the network to recognise particular 
features in the image, making for automatic segmentation and hence the 
ability to explore a range of micro- and nanoscale features such as 
atomic defects [5–6] and dislocations or grain boundaries[7]. 

Unsupervised methods offer a slightly different approach, where 
instead of looking to directly label the data, these are often used to 
identify trends or features within the data [8 9 10] or to model the data 
in a more tractable form [1112]. Since there is typically no formal 
training of the algorithm using pre-labelled datasets, these trends arise 
from the statistical variance the different features introduce into the 
overall data, making it an attractive alternate option in STEM experi-
ments where there are typically many more experimental measurements 
than unique components of the microstructure in question. This is also 
significant for systems where there is uncertainty about the nature of the 
microstructure and hence the end goal is not segmentation per se but the 
discovery of microstructural features present. This latter method will be 
explored in depth in this article. 

Machine learning methods that focus on dimension reduction [13], 
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notably principal component analysis (PCA) use explained variance as a 
proxy for labelled (or pre-categorized) information within a set of 
measurements while maintaining the global structure of the data. So 
experiments should be designed to maximise how category information 
(specific to individual microstructure elements) affects the variance 
present in the measurement. One approach to do this is to record mul-
tiple signals at each point in the STEM scan. Certain signals detected in 
the STEM can be considered as independent (or orthogonal) since the 
physical mechanisms producing the signals are sufficiently different, an 
example might be grain that exhibits a small change in orientation 
(bending), leading to a change in Bragg diffraction, while exhibiting 
unchanged EDS since the stoichiometry of the grain should be inde-
pendent of orientation. Hence any covariance in these signals is not 
attributed to some common underlying dependence of the physical 
mechanisms producing the signals but it is instead an indication of 
related changes in the sample. Using the same example as before, a 
change in orientation changes the Bragg diffraction but if there is a 
corresponding change in EDS (stoichiometry) then this might not be the 
same grain, there may be an additional microstructural component 
(defect, inclusion, etc.) affecting the measurement. 

Hence, when combined, the covariance between the different signals 
is expected to improve the cohesion and separation of clusters of data 
points, thus improving the ability of clustering algorithms to segregate 
features within a microstructure [14]. It is this concept and the experi-
mental design to achieve this that will be explored in this article. 

It should be noted that phase identification can be achieved manu-
ally (indeed it is currently what researchers do through intensive study) 
for example by inserting apertures (either physically in the microscope 
or virtually in the case of recorded diffraction data) to look for micro-
structure [1516], however this is time-intensive and is not compatible 
with the move to automated and high-throughput analysis. It is also 
possible for even experienced users to misinterpret or miss minor fea-
tures that may be significant to the microstructure, lending further 
weight to the use of CV as a means to improve data analysis. 

The test sample used was a Heusler alloy, Co2FeSi (CFS), known to 
exhibit a range of coherent ordered structures (A2, B2, L21, D03 [17]). 
This particular system offers the challenge of completely common sub-
lattice reflections in their diffraction patterns (common with the disor-
dered A2 structure), which makes identification of phases from lattice 
imaging difficult since many of the detectable spatial frequencies in an 
atomic STEM image are the same in all phases. The phases also have 
near-identical composition making elemental mapping uninformative. 
Furthermore, two of the phases exhibit common superlattice reflections 
arising from ordering of the cobalt sublattice, which is present in both 
B2 and L21 (note the L21 structure has an additional ordering of the iron 
and silicon sublattices). As such this is the sort of material that requires a 
highly experienced analyst to study in detail and so represents the type 
of challenge that a CV approach must be able to tackle. The material is 
representative of the sort of advanced functional materials that high- 
throughput multiscale TEM characterisation would be used for. 

2. Materials and methods 

STEM experiments were performed on a Thermo Fisher Talos F200X 
TEM operated at 200 kV. During STEM scan both EDS spectra and 
convergent beam electron diffraction (CBED) patterns were recorded 
simultaneously using the STEM software trigger signal to coordinate 
both acquisitions. The electron beam convergence angle was 1.5 mrad, 
achieved using 10 μ C2 aperture. EDS was recorded using an Thermo 
Fisher Super-X SDD detector with 0.9 srad collection angle. Electron 
diffraction patterns were recorded using a Quantum Detectors Merlin 
Quad detector with 512x512 pixels. For the scans used in this study a 
dwell time of 2–25 ms was used to scan regions with a step-size of 1–2 
nm. Additionally conventional ADF STEM images were recorded for 
each scan area. 

Unsupervised clustering was performed using a probabilistic fuzzy C- 

means implementation [818] applied to a reduced dimensional trans-
form of the original data using PCA. Cluster centres were iteratively 
updated to minimise the sum of 1st membership values for all mea-
surements. Additionally, the Gustafsson-Kessel approach was used to 
allow elliptical rather than spherical clusters. [19]. 

The sample used was a CFS Heusler alloy thin film on a Si substrate, 
grown via molecular beam epitaxy (MBE). The MBE growth was ach-
ieved using two k-cell effusion evaporators for co-effusion of Fe and Co 
along with a Silicon Sublimation Source. TEM specimens were prepared 
via Focused Ion Beam (FIB) on an FEI Nova NanoLab 200 after coating 
with carbon and an 80:20Pt/Pd alloy. The FIB lamella, cut along the 
[110] direction of CFS, was then polished in a Gatan Precision Ion Pol-
ishing System II with a 0.1 kV argon beam. 

3. Results and discussion 

3.1. ADF analysis 

An initial examination of the materials was performed to provide an 
overview of the sample structure and to determine if microstructure was 
readily discernable. An ADF image of the first sample is shown in Fig. 1a 
and for comparison a virtual ADF aperture was constructed (shown on 
the position averaged CBED (PACBED) pattern in Fig. 1b) resulting in 
the virtual ADF image of the sample shown in Fig. 1c. 

From each of the STEM images the general arrangement of the 
different layers in the sample is evident, more importantly there is no 
discernable microstructure visible in the CFS layer, which is expected 
given the reasons outlined in the introduction. Initial scrutiny of the 
PACBED pattern suggests that beyond the [110] zone axis reflections 
from the silicon substrate and the [110] reflections of the CFS A2 sub-
lattice there is little distinctive structure signal to focus on. 

3.2. Data clustering 

A significant part of the data clustering method is the correct pre- 
processing of the experimental data. The overall workflow is outlined 
in the left-hand side of Fig. 2. Individual steps in this process will be 
introduced in this section. 

3.2.1. Dimension reduction 
Data clustering first requires a reduction in the dimensionality of the 

problem, in the EDS measurements there are 1000 energy channels and 
in the CBED patterns there are 262,144 pixels, each of which is a 
dimension when considering the Euclidean distance (similarity) be-
tween two measurements. Not only does the high dimensionality risk the 
calculation of distance becoming a computational bottleneck, but it also 
leads to the so-called ‘curse of dimensionality’ where there is an expo-
nential increase in volume of data space with increasing dimensions that 
results in all observations appearing equally sparse and dissimilar, 
which is detrimental to clustering that utilizes distance-based metrics 
[20,21]. The dimensional reduction stage transforms the data to a lower 
dimensional space while retaining the information in each individual 
measurement [7], while potentially removing unwanted noise. 

For this step PCA was utilized as a linear dimension reduction 
technique. This technique attempts to capture the most variance with 
the least number of components by imposing a constraint such that 
every subsequent component must be uncorrelated to the prior 
component found. This constraint results in a decomposition that can 
capture the greatest variance using the least number of components. The 
PCA output models the data as a linear combination of the components, 
which are often referred to as latent variables (in this case a combined 
EDS spectrum and CBED pattern) that do not necessarily exist within the 
measurements. Each latent variable is weighted by a loading (that varies 
spatially) such that the weighted sum of the latent variables at each 
position in the scan recovers the original measurement as closely as 
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possible. 
This satisfies the dimension reduction step since each latent vari-

able/component is now a ‘dimension’ and the loading values associated 
to each spatial point for every latent variable indicate how well a 
particular latent variable describes the spatial point. Hence clustering 
can be performed to group measurements with similar combinations of 
loading values. 

The distribution of variance in the CBED pattern data as a function of 
component number (the scree plot) is shown in Fig. 2, along with a vi-
sual representation of the machine learning pipeline. 

Since the clustering efficiency is adversely affected by increasing 
dimensionality a cut-off in the amount of information that the reduced 
data can describe is needed. In this study, the authors selected a cut-off 
of 1% in the explained variance ratio, it was felt that increasing the total 
explained variance (or information described by the components) by less 
than 1% compared to the prior components was insufficient reward for 

the cost of an additional dimension to be included in the clustering 
calculation. The line in Fig. 2 suggested that the 10 most significant 
factors were to be included in the clustering step in this instance. For 
further clustering calculations a similar result was found and the 
dimensionality was kept to 10 to allow consistent comparison of the 
machine learning outputs (see SI for more information). 

3.2.2. Signal merging 
To concatenate the two signals, the 2D CBED patterns were unfolded 

to form a 1D array of spatially uncorrelated pixels, hence achieving the 
same dimensionality with EDS spectrums. Subsequently, a pre- 
processing step is needed to balance the contributed variance between 
the two sets of measurements (step 2 of the workflow presented in 
Fig. 2). Essentially the two need to be scaled such that the overall 
variance of the combined data is not dominated by the variance present 
in one or the other (which would return PCA components and hence 

Fig. 1. A) HAADF stem image of a typical region of the cfs sample, b) PACBED pattern from a 4d-stem scan overlaid are the limit of the virtual ADF (VADF) annulus 
used to produce c) the VADF image of the CFS layer (lower) and the edge of the silicon substrate (upper). 

Fig. 2. Illustration of machine learning pipeline – a scree plot of explained variance was used to determine the optimal number of PCA components for the CBED data 
recorded from the region shown in Fig. 1. 
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clustering results that would be in essence identical to a single measured 
signal, not the combination of the two). In its raw data form, individual 
pixel intensities in a CBED pattern can range from zero to an order of 
magnitude of ten thousand, while the counts in this particular EDS 
dataset rarely exceed one order of magnitude. In addition, the main issue 
is the need to address the different structure of the data present in the 
two data. The EDS spectra are almost completely sparse with relative 
few delta-function-like emission lines. The CBED pattern is, despite first 
instinct, not sparse, with a significant background (thermal diffuse) over 
which there exist a relatively large number of significant discs of scat-
tered intensity. The intensity in these signals therefore have significantly 
different distributions, making the correct choice of normalisation 
important. In this case, a robust scaling step which involves subtracting 
the median value and dividing by the interquartile range of each signal 
(step 1 in the workflow in Fig. 2). This was followed by the scalar 
multiplication of the EDS signal values by the ratio of the individual 
variance of each scaled dataset. This effect can be seen in Fig. 3. 

This shows the output PCA components (vectorised CBED with EDS) 
both before and after robust scaling (Fig. 3a and 3b respectively). The 
information described by the PCA components is notably different, 
hence there will be a large change to the data space used for the sub-
sequent clustering. In particular, the variance associated with the direct 
beam seems to be less prominent in the components in Fig. 3b, sug-
gesting the components describe more of the Bragg scattering and less of 
the changes in and around the direct beam. Finally, a rescaling step is 
used to balance the total variance described by each of the CBED and 
EDS measurements. This was done to ensure that the components 
contain contributions from both the structural and chemical signals 
present in the data. This can be seen by the presence of spectral ‘lines’ 

appearing in the right-hand region of the PCA components in Fig. 3c, 
while they are absent in Fig. 3a and 3b. 

The specific methodology used here is not a generally applicable 
solution to pre-processing for all merged data situations. There are a 
range of normalisation and noise correcting possibilities that can be used 
is very broad and specific data types and quality of recorded data will 
determine which approach is best. Examples of using standard scaling 
(subtract mean and divide by standard deviation) or Poissonian noise 
correction are shown in SI with differing degrees of success. The point 
here is that a scaling step will almost always be necessary to ensure the 
merged data is not dominated by one of the component parts. 

3.2.3. Clustering studies of microstructure 
The output for 10 PCA components and 6 clusters are shown in Fig. 4, 

in these images each measurement (pixel) is assigned a colour based on 
the cluster it is most strongly attributed to and the brightness of the 
colour is proportional to the membership value of the cluster (i.e. how 
close the measurement lies to the cluster centre). The clustering on the 
EDS data alone (Fig. 4a) identifies the silicon substrate (at the top of the 

image), otherwise the CFS layer appears to be a seemingly random 
mixture of other clusters with generally quite low association to the 
different clusters. This suggests a poor clustering outcome, that can be 
attributed to the extremely low counts in the individual spectra (given 
the short dwell time and the relatively low fluence with the small 
condenser aperture). 

The clustering of the CBED data alone (Fig. 4b) provides slightly 
more insight with a range of clusters associated with the silicon substrate 
(likely arising from some small variations in thickness or orientation that 
give rise to distinctive changes in the diffraction patterns). Also, the 
interfaces between the CFS and the substrate/capping material are also 
identified, but within the bulk of the CFS little or no variation in 
structure is seen. The increased brightness of the colours does however 
suggest a reasonable partitioning of the data by the clustering process. 

The significant difference arises when the two signals (EDS and 
CBED) are merged into a single ‘measurement’. In this case the clus-
tering result (Fig. 4c) recovers the silicon substrate variations seen in 
Fig. 4b but also identifies two clusters within the CFS layer, a matrix 
phase (blue) with a second phase present (orange) that must exhibit 
sufficiently distinctive diffraction and EDS signals. 

Fig. 3. The first 5 PCA components for merged EDS and CBED data, a) without robust scaling, b) with robust scaling, and c) with robust and variance scaling.  

Fig. 4. Clustering results for STEM data comprising a) EDS measurements only, 
b) CBED measurements only and c) merged EDS and CBED measurements. 
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The choice of clustering algorithm was predicated on the likely na-
ture of the data (with multiple overlapping components making a hard 
cluster approach unlikely to return reliable results). As with the pre- 
processing in 3.2.2, alternate clustering approaches were attempted on 
this data and their results are discussed in SI. The selection process for 
the number of clusters is also shown in SI. 

Identification of microstructural components in this way is not 
limited to this material. An example of clustering analysis on a different 
material with similar outcomes is presented in SI. 

3.3. Cluster centre analysis 

One advantage of the probabilistic fuzzy clustering method used in 
this study is that the cluster membership values for each measurement 
allow a weighted mean signal for each cluster to be determined from the 
original experimental data. This effectively becomes an ‘intelligent’ 
guided method to highlight unique features of that cluster and suppress 
features attributable to other clusters (something that would be impos-
sible with a hard clustering approach). An example is shown in Fig. 5. 
This shows the CFS clusters determined for data taken from a different 
FIB lamellae extracted from the same bulk sample as the sample shown 
in Fig. 4. The results in Fig. 5a-c shows the membership for the major 
component of the CFS layer (Fig. 5a), the cluster average diffraction 
(Fig. 5b) exhibits the 002 reflection (circled in red) associated with the 
B2 ordered structure. Alongside this the cluster average EDS signal 
(Fig. 5c) shows the Co Kα peak being considerably higher than the Fe Kα 

peak, which is expected for an overall composition of Co2FeSi. Absolute 
quantification of these spectra is likely to be unreliable since there is no 
internal standard that can be applied to results coming out of the clus-
tering. The fact that all measurements have a membership of all clusters 
leads to an inherent blending of features that makes absolute quantifi-
cation open to significant errors and artefacts. 

Fig. 5d-f shows the cluster attributed to the CFS second phase ma-
terial for this sample, here a completely different atomic ordering is 
determined from the CBED pattern with superlattice reflection appear-
ing at 1/3 〈442〉* and 1/3 〈224〉* type positions. For this phase the 
weighted EDS shows a much stronger Fe Kα peak than the Co Kα sug-
gesting a completely different stoichiometry attributed to the different 
structural ordering. Given the smaller number of measurements that 
were attributed to the cluster shown in Fig. 5f there is an associated 
increase in the noise in the representative cluster centre EDS spectrum 
(particularly compared to the matrix cluster in Fig. 5c). 

By comparison, Fig. 6a shows a second phase inclusion found in the 
CFS layer (albeit in a different region of the sample) where the diffrac-
tion pattern (Fig. 6a-b) has the same form as that seen in Fig. 5e but 
where the EDS spectrum appears similar to the bulk CFS with the Co Kα 

peak considerably higher than the Fe Kα. This apparently contradicts the 
results presented in Fig. 5d-f. 

The apparent inconsistency can be explained by considering how 
individual measurements are attributed to clusters and how this affects 
the mean signal. For Fig. 5, a representative cluster centre signal is 
determined from all measurements that have a membership value above 
0.5 for that cluster. This is the lowest threshold that defines a non- 
ambiguous membership (since for multiple clusters all with finite 
memberships there cannot be more than one cluster with a membership 
of 0.5 or greater). If the membership threshold is made more restrictive, 
then only those measurements that lie closer to the cluster centre will be 
included in the determination of the representative signal. This should 
cause the representative cluster centre results to better reflect the ‘true’ 

structure and composition since outlier measurements are not included, 
at the expense of potentially greater detector noise. Fig. 6 shows a 
comparison of the cluster memberships and representative EDS signal 
from a different scan region for threshold conditions of 0.5 (the minimal 
condition for cluster membership, in Fig. 6a and 6c) and 0.75 (a more 
limited condition shown in Fig. 6b and 6d). 

The insets in Fig. 6a and b show the representative cluster diffraction 

patterns, these exhibit the same geometry as Fig. 5e indicating the same 
structural ordering. What becomes immediately clear is that when the 
threshold value for inclusion is raised, the Co Kα peak reduces and the Fe 
Kα peak increases in the representative EDS spectra, so the overall form 
of the spectrum becomes closer to the result found in Fig. 5f with a more 
equal ratio of Co and Fe. The cost here is that fewer measurements are 
included (comparing Fig. 6a and 6b) resulting in more evidence of de-
tector noise in the representative spectra. 

The implication here is that the second phase in this final sample is a 
nanoscale inclusion embedded within the bulk CFS matrix. The indi-
vidual measurements (both EDS and CBED) involve the electron beam 
traversing these overlapping phases and so information about all of the 
different phases present is encoded into the data. By setting a higher 
threshold for inclusion the contribution of the measurements at the 
boundaries of the cluster are removed, or in other words there is a 
reduction in the influence of the signal from regions where there is more 
matrix overlap and less second phase contribution. 

4. Conclusions 

This article introduces a workflow for incorporating truly correlative 
analysis into CV for studying microstructure. In its simplest form the 
increased information in a merger of structural and chemical signals 
(CBED and EDS) improves the chance of automatic identification of 
microstructural features that might be missed from the analysis of either 
signal independently. Allowing in-depth study of secondary phases that 
occur in the sample. 

This is made all the more remarkable given that the individual EDS 
spectra are almost unusable in their raw form, with insufficient SNR to 
make conventional analysis possible. The effect of combining this with 
CBED makes this seemingly useless data a powerful additional 
constraint on the identification of features worthy of further analysis. 
This raises the possibility of exploiting such covariance between the 
myriad combinations of signals that can be accessed in the modern TEM 
and SEM and in the wider field of materials characterisation. 

The CV method used was chosen to reflect the complexity of over-
lapping coherent microstructure features in this sample, even though 
this approach embeds a computational cost compared to simpler hard 
clustering methods (as highlighted in SI). This approach was chosen 
because it allowed the fundamental nature of the overlapping phases in 
the CFS layer to be identified through the change in composition vari-
ations with cluster membership threshold. For studies with different 
arrangements of features other clustering approaches may be more ad-
vantageous. Density-based clustering methods (such as DBSCAN) can 
provide a powerful method for segmenting data, although there remains 
an issue around the definition of ‘density’ in the clustering. For the data 
presented here, the high degree of coherency means that even in low- 
dimension latent space, the measurements can appear nearly contin-
uous in one or more dimensions and so density may not be the best 
means of grouping data. While it is known that certain dimension 
reduction approaches work better with density-based clustering algo-
rithms (e.g. UMAP outputs are routinely used for HDBSCAN), we were 
not able to explore every possible combination in our workflow. Given 
the wide range of clustering methods available [22] there is likely to be a 
clustering approach suited to the needs of any individual experiment. 
Typical issues that might need to be considered are the number, size and 
uniformity of measurements in the low-dimension space, which can 
represent the number, size and character of different features in a 
microstructure. 

Likewise, the choice of pre-processing steps is not universally 
applicable. Ultimately the success of the approach relies on the pre- 
processing of the data, and from this study we have found that neces-
sary consideration must be given to dimension reduction, normalisation 
and scaling of the two sets of measurements before they can be merged. 
The specific steps taken in this study have worked in the examples used 
in this study, however they may not be applicable to all experiments, but 
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Fig. 5. Cluster analysis for a, b,c) CFS matrix and d, e, f) CFS second phases. For each cluster there is (a,d) membership map, (b,e) representative cluster centre 
diffraction pattern and (c,f) representative cluster centre EDS spectrum shown. 
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the authors believe that these are the key steps in successfully combining 
correlated data for such analysis. 

This creates the obvious limitation that there aren’t, as yet robust 
workflows that can be applied in a general way to any experimental 
data. The onus is still on the researcher to have some understanding of 
the specific challenges of their data and to explore the range of options 
for the pre-processing as well as the clustering steps, especially as there 
are some processing approaches that could adversely affect the analysis. 
Given the breadth of approaches this could be a daunting prospect, 
however this application is still in relative infancy and the authors 
envisage that, in time, these sorts of approaches will become more 
routine and more generally applicable. When these general approaches 
are realised, it is the view of the authors that multi-dimensional data 
such as that presented in this work will be extremely valuable as input. 
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references to colour in this figure legend, the reader is referred to the web version of this article.) 
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