
This is a repository copy of Improved decoding of circuit noise and fragile boundaries of 
tailored surface codes.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/201726/

Version: Published Version

Article:

Higgott, O., Bohdanowicz, T.C., Kubica, A. et al. (2 more authors) (2023) Improved 
decoding of circuit noise and fragile boundaries of tailored surface codes. Physical Review
X, 13. 031007. ISSN 2160-3308 

https://doi.org/10.1103/PhysRevX.13.031007

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Improved Decoding of Circuit Noise and Fragile Boundaries of Tailored Surface Codes

Oscar Higgott ,
1,2,*

Thomas C. Bohdanowicz,
3,4

Aleksander Kubica,
4,5

Steven T. Flammia,
4,5

and Earl T. Campbell
2,6,7

1
Department of Physics and Astronomy, University College London,

Gower Street, London WC1E 6BT, United Kingdom
2
AWS Center for Quantum Computing, Cambridge CB1 2GA, United Kingdom

3
Goldman, Sachs & Co., New York, New York 10282, USA

4
AWS Center for Quantum Computing, Pasadena, California 91106, USA
5
California Institute of Technology, Pasadena, California 91125, USA

6
Riverlane, Cambridge CB2 3BZ, United Kingdom

7
Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom

(Received 8 June 2022; revised 5 June 2023; accepted 12 June 2023; published 19 July 2023)

Realizing the full potential of quantum computation requires quantum error correction (QEC), with most

recent breakthrough demonstrations of QEC using the surface code. QEC codes use multiple noisy physical

qubits to encode information in fewer logical qubits, enabling the identification of errors through a

decoding process. This process increases the logical fidelity (or accuracy) making the computation more

reliable. However, most fast (efficient run-time) decoders neglect important noise characteristics, thereby

reducing their accuracy. In this work, we introduce decoders that are both fast and accurate, and can be used

with a wide class of QEC codes including the surface code. Our decoders, named belief-matching and

belief-find, exploit all noise information and thereby unlock higher accuracy demonstrations of QEC.

Using the surface code threshold as a performance metric, we observe a threshold at 0.94% error

probability for our decoders, outperforming the 0.82% threshold for a standard minimum-weight perfect

matching decoder. We also test our belief-matching decoders in a theoretical case study of codes tailored to

a biased noise model. We find that the decoders lead to a much higher threshold and lower qubit overhead

in the tailored surface code with respect to the standard, square surface code. Surprisingly, in the well-

below-threshold regime, the rectangular surface code becomes more resource efficient than the tailored

surface code due to a previously unnoticed phenomenon that we call “fragile boundaries.” Our decoders

outperform all other fast decoders in terms of threshold and accuracy, enabling better results in current

quantum-error-correction experiments and opening up new areas for theoretical case studies.

DOI: 10.1103/PhysRevX.13.031007 Subject Areas: Quantum Physics, Quantum Information

I. INTRODUCTION

Quantum error correction (QEC) is an essential ingre-
dient for building a useful quantum computer. Using QEC,
we can exponentially reduce the probability of a computa-
tional failure to any desired level by increasing the number
of qubits used. We can use QEC whenever the probability
of failure (p) for each quantum logic gate is below some
value known as the “threshold” (pth). The most widely
studied QEC code is the surface code, which has a high
threshold and uses gates performed between nearest-
neighbor qubits arranged in a two-dimensional grid
[1,2]. Consequently, the surface code is particularly

amenable to experimental implementations, as highlighted
by recent demonstrations [3,4].
QEC codes require decoders, which are algorithms

running on a classical computer that determine where
errors occurred. The accuracy of a decoder quantifies
how good it is at correctly determining where errors
occurred. A more accurate decoder can increase the value
of the threshold for a QEC code, as well as reduce the
number of physical qubits required to achieve a desired
logical fidelity below threshold. Improving the accuracy of
decoders can therefore lead to less demanding hardware
requirements. Speed is also an important decoder metric.
Ideally, a decoder will have an expected running time that
scales linearly or almost linearly with the size of the
problem, since the decoder must keep up with the quantum
hardware to prevent an exponentially growing decoding
backlog [5,6]. We informally call these fast decoders.
Previous decoders have either been highly accurate [7–9]
or fast [1,10–15] but not both. Here, we propose decoders
that are both fast and accurate.

*
oscar.higgott.18@ucl.ac.uk

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW X 13, 031007 (2023)

2160-3308=23=13(3)=031007(20) 031007-1 Published by the American Physical Society



Fast decoders for the surface code, including minimum-
weight perfect matching (MWPM) [1,10,13,14] and union-
find (UF) [11,12], use a coarse approximation of the noise
model, ignoring important error mechanisms that are
ubiquitous in experiments. For example, both UF and
MWPM ignore the possibility of Y errors that introduce
correlations between the X and Z decoding problems. As
shown in Fig. 1, either an X or Z error leads to at most a
pair of error-detection events, enabling them to be
interpreted as edges in a graph called the matching graph.
In contrast, Y errors lead to four error-detection events
(Fig. 1) and cannot be represented in a matching graph.
For this reason, the matching graph is only an approxi-
mation of the full error model, and as a result, MWPM
and UF do not have very high accuracy compared to some
other (slow) decoders [7–9]. On the other hand, previ-
ously proposed decoders that have high accuracy are slow
(with exponentially scaling running time) and already
impractical for modest-size QEC codes.
In this work, we introduce fast (computationally effi-

cient) and accurate decoders applicable to surface codes.
An important subroutine of our decoders is the belief-
propagation (BP) algorithm that updates prior beliefs about
where errors are most likely to have occurred via an easily
parallelizable message-passing protocol. Crucially, our use
of BP enables us to exploit all the information present in
circuit-level noise models more effectively, handling cor-
relations between the X and Z decoding problems, and
thereby achieving higher accuracy than MWPM or UF.
While BP is powerful at exploiting the full noise

information, by itself, BP often fails to converge to a valid
solution. We show that by marrying BP with MWPM or
weighted UF, we both ensure convergence and make full
use of all noise information, thereby boosting accuracy.
More precisely, whenever BP fails to converge, we use

the updated beliefs output by BP to determine the edge
weights in a matching graph. We then decode this
reweighted matching graph either using MWPM, in which
case we refer to the overall decoder as belief-matching, or
instead, using weighted union-find, in which case we name
the decoder belief-find. Belief-matching has conceptual
similarities to the decoder proposed by Criger and
Ashraf [16], which considered a toy noise model with
perfect measurement results. A key difference of our
approach is the applicability to real experimental data
and circuit-level noise simulations of experiments. We
show that belief-matching and belief-find are the most
accurate of all known computationally efficient decoders,
and belief-find even has an almost-linear (worst-case)
running time. Our numerical simulations show that the
high accuracy of our decoders leads to an increase in the
surface code threshold with circuit-level noise from 0.82%
(for MWPM) to 0.94% (for belief-matching and belief-
find). After our work was posted as a preprint, the high
accuracy of our decoder for real devices was confirmed by
the Google team. In their recent landmark QEC experiment
showing logical error suppression [4], the Google team
tested many decoders and our belief-matching decoder was
the only efficient decoder that was accurate enough to
observe the desired logical-error-suppression effect.

FIG. 1. The MWPM decoding problem for a distance-5 surface code. Left: The X-error matching graph, where we associate a node
with each stabilizer and an edge ðu; vÞ with each X error, where u and v are the stabilizers that the error anticommutes with. If an x
error anticommutes with a single stabilizer u, we represent it with an edge ðu; bÞ between u and a boundary node (each a square node
in the diagram). Middle: The Z-error matching graph is defined similarly, but with an edge for each Z error. Right: A Y error
anticommutes with four stabilizers, so would need to be represented by a hyperedge, and induces correlations between the X and Z
matching graphs.

OSCAR HIGGOTT et al. PHYS. REV. X 13, 031007 (2023)

031007-2



Our decoders can be directly used for any QEC code for
which the MWPM decoder is applicable, which includes
the standard and XY (or tailored) surface codes [1,17] as
well as other two-dimensional subspace and subsystem
codes [18–29]. As a case study, we use our decoders to
tackle the open problem of determining the optimal variant
of the surface code in the presence of biased noise that
favors phase errors over bit flips [30–33]. Since other fast
decoders do not fully exploit the information in a biased
noise setting, this case study illustrates new avenues of
research opened by our decoders. We assess these codes by
optimizing for the fewest physical resources required to
achieve a desired logical failure rate. We assume qubits
are constrained to a square lattice geometry with boun-
daries. Several methods have been proposed for exploiting
this noise bias information through modifications to the
choice of code (see Fig. 2), with the aim of increasing
thresholds or reducing the qubit overhead below threshold
[17,23,24,34–36]. The codes we consider are square and
rectangular surface codes [1] [referred to as Calderbank-
Shor-Steane (CSS) surface codes] and a modified surface
code for which Z stabilizers are replaced with Y stabilizers
[17] that is called the XY surface code. No previous work
has performed a fair comparison of these code families.
In our case study, we use our new belief-matching

algorithm to decode biased circuit-level noise in the XY
surface code. We find that it significantly outperforms
MWPM alone, and we observe a threshold of 0.841(6)%
controlled-NOT (CNOT) infidelity for biased circuit-
level noise. This constitutes a 1.69× relative improvement
on the 0.498(2)% threshold observed using MWPM.
Unfortunately, we discover that the high tolerance of
the XY surface code to Z errors is extremely fragile.

This fragility occurs wherever the space-time picture of the
XY surface code has a boundary. Consequently, for CNOT

infidelities below around 0.4%, we find the surprising
result that rectangular CSS surface codes outperform the
XY surface codes, owing to the reduction in qubit overhead
achieved by optimizing the aspect ratio of the lattice for the
CSS surface code.
At the spatial boundary of an XY surface code, we find

failure mechanisms that require only Oð ffiffiffi

n
p Þ Z errors and

a single X or Y error. We refer to these as fragile spatial
boundary errors. Using belief-matching, we present
numerical results consistent with the conclusion that these
failure mechanisms dominate at lower error rates and
finite bias. The temporal boundaries correspond to logical
state preparation (the earliest time boundary) and logical
measurement (the latest time boundary). We also find
stringlike Z errors that can occur on these temporal
boundaries even at infinite bias. These occur because
during logical measurement, we measure only half the
code stabilizers (just X type or just Y type) which reduces
the protection from errors. Logical state preparation is the
mirror image of logical measurement and similarly sus-
ceptible to such failure mechanisms. Temporal boundaries
also arise during lattice surgery [37–40], and so these
operations are also vulnerable. We refer to this family of
errors as fragile temporal boundary errors. None of the
prior art reviewed above [17,35] considered the below-
threshold error scaling at finite bias with open-boundary
conditions, or the error scaling of logical state preparation
and measurement errors. Consequently, our case study is
the first to observe the dominant error mechanisms
reported here, providing new insight into how to best
design QEC codes for biased noise.

FIG. 2. The three code families compared in this work. The square, CSS surface code is the most commonly encountered surface
code, without any tuning for the noise bias. We denote the lattice size by L, and here the square CSS and XY surface codes
both have L ¼ 5.

IMPROVED DECODING OF CIRCUIT NOISE AND FRAGILE … PHYS. REV. X 13, 031007 (2023)

031007-3



The structure of our paper is as follows. We introduce
some relevant background theory and notation in Sec. II. In
Sec. III, we introduce our belief-matching and belief-find
decoders for circuit-level noise and also review the tensor
network approach to maximum-likelihood decoding.
Section III also presents numerical results for circuit-level
depolarizing noise. In Sec. IV, we present our case study
results, explaining how fragile boundary errors inhibit the
performance of the XY surface code. Finally, in Sec. V, we
conclude by summarizing our key findings and discussing
possible future work.

II. PRELIMINARIES

The Pauli group Pn is the set of all n-qubit Pauli
operators P ¼ αP1 ⊗ … ⊗ Pn, where α ∈ f�1;�ig and
Pi ∈ fI; X; Y; Zg. The weight of a Pauli operator is the
number of qubits that it acts on nontrivially. Here, X, Y, Z
are Pauli operators and I is the identity. Avery broad family
of quantum-error-correcting codes are stabilizer codes. A
stabilizer code is defined as the joint þ1-eigenspace of a
stabilizer group S, which is an Abelian subgroup of Pn that
does not contain −I [41]. We can define a stabilizer code
using a set of independent generators of its stabilizer group
S ¼ hg1; g2;…; gri. A stabilizer code is a CSS code if its
stabilizer group admits a set of generators g1; g2;…; gr
such that each generator is either X type or Z type, gi ∈

fI; Xg⊗n ∪ fI; Zg⊗n [42,43]. The centralizer CðSÞ of a
stabilizer code is the set of Pauli operators that commute
with every element of S. The elements of CðSÞnS are
undetectable logical errors, and the distance of a stabilizer
code is the minimumweight of any element of CðSÞnS. We
use the phrase Z distance when considering only Z errors,
and similar for the X distance. The generators of the CSS
surface code are shown in Fig. 2. The CSS surface code is
particularly amenable to being realized experimentally, in
part because its stabilizer generators are low weight (at
most four) and geometrically local on a 2D Euclidean
surface, such as a quantum computer chip.
Suppose a Pauli error E ∈ Pn occurs, which must either

commute or anticommute with a given generator gi of S.
Measuring each stabilizer generator, we obtain a syndrome
σðEÞ, which is a list of the measured eigenvalues of the
generators of S (each gi has eigenvalue −1 or 1). A
generator gi will then measure 1 if it commutes with E
and measure −1 if it anticommutes. Given the syndrome
and a known noise model, a decoder makes a prediction
C ∈ Pn of which error occurred. If EC ∈ S then the
decoder has succeeded in correcting the error, whereas if
EC ∉ S then a logical error has occurred. See Fig. 1 for
examples of some single-qubit errors in the surface code.
In practice, the stabilizer generators of the code are

measured using a syndrome extraction circuit, and the gates
and measurements in this circuit can themselves be faulty.
Allowing for errors to occur anywhere in a syndrome
extraction circuit is called circuit-level noise. To handle

faulty measurements in the surface code, we repeat each
cycle of stabilizer measurements OðdÞ times (where here d
is the code distance) to ensure the stabilizer outcomes can
be inferred reliably [1]. The syndrome input to the decoder
is now determined from detector measurements. A detector
is defined to be a linear combination of measurement
outcomes in a circuit that would have a deterministic
outcome if no noise was present [44]. A detector is also
referred to as an error-sensitive event in the literature [45].
In this example of the surface code, the linear combination
of each pair of consecutive stabilizer ancilla measurements
is taken to define a detector. We say that a detector has
flipped if its binary value differs from the value it would
take in an error-free syndrome extraction circuit, and the
syndrome σ is the set detectors that have flipped.

III. DECODING CIRCUIT-LEVEL NOISE

Conventional decoders for the CSS surface code treat
X-type and Z-type errors as two independent decoding
problems. If we first assume perfect syndrome measure-
ments, we note that X and Z errors each anticommute with
two stabilizers in the bulk, and can be represented as edges
in a matching graph, where the nodes correspond to
stabilizer measurements (see Fig. 1) [1,10]. We refer to
error mechanisms that flip one or two stabilizers (or
detectors) as “graphlike” since a pair of detectors can be
associated with an edge in a graph. This matching graph,
along with the syndrome, can be used to decode efficiently
using a MWPM decoder (which finds the most probable
physical graphlike error) or union-find decoder (an
approximation of MWPM with improved worst-case run-
ning time) [1,10–12,46,47]. On the other hand, Y errors
anticommute with four stabilizers in the bulk. Therefore,
there is no edge (no pair of detectors) corresponding to Y
errors, and we instead represent these by a hyperedge. In
graph theory, a hyperedge connects more than a pair of
vertices. However, hyperedges are not supported by
MWPM or UF, and so the correlations that Y errors induce
between the X and Z decoding problems are not exploited,
leading to performance that is far from optimal. These
observations also carry over to the setting of decoding
circuit-level noise occurring during syndrome extraction
circuits, for which the matching graph is three dimensional
(with time being the third dimension).
Several different approaches have been proposed for

handling hyperedge error mechanisms more effectively
than MWPM or UF [7,16,35,48–53]. In Ref. [7], a ten-
sor network decoder was introduced that approximates
maximum-likelihood decoding for surface codes. However,
this approach has high computational complexity and
assumes error-free syndrome extraction circuits. Tuckett
et al. developed a decoder for the surface code tailored to
the case where hyperedge error mechanisms dominate over
graphlike error mechanisms, finding improved thresholds
in the XY surface code at finite and infinite Z bias relative

OSCAR HIGGOTT et al. PHYS. REV. X 13, 031007 (2023)

031007-4



to the MWPM decoder [35]. However, while the perfor-

mance of the decoder is promising for phenomenological

noise, it is not clear how well suited it is to other noise

models, such as depolarizing noise or general circuit-level

errors in syndrome extraction circuits. In Ref. [16], BP was

used, along with multipath summation, to choose edge

weights for a MWPM decoder, finding a threshold of

17.76% for the surface code with depolarizing noise and

perfect syndrome measurements. However, Ref. [16] did

not consider how to generalize the method to handle noisy

gates in the syndrome extraction circuit.
In this section, we first review the BP algorithm and then

discuss how it is combined with minimum-weight perfect

matching to exploit hyperedge error mechanisms when

decoding circuit-level noise.

A. Belief-matching and belief-find

Our belief-matching and belief-find decoders are given a

prior distribution of the error model (an assignment of an

independent error probability to each of the edge or

hyperedge error mechanisms), as well as the observed
syndrome from the implemented error-correction circuit.
Both decoders consist of two stages illustrated in Fig. 3
for the more simple case where syndrome measurements
are perfect.
In the first stage, we use the BP algorithm to estimate a

posterior distribution of the error model, given the observed
syndrome. More specifically, BP estimates the marginal
probability that each possible error mechanism in the noisy
syndrome extraction circuit has occurred (see Appendix A).
Unlike a conventional MWPM or UF decoder, this stage
uses knowledge of the full error model, including the
hyperedge error mechanisms. However, note that BP is
only able to approximate the posterior distribution and does
not have a threshold if used on its own, owing to the
presence of short loops in the Tanner graph and degeneracy
in the code [54].
In the second stage, we use the posterior marginal

probabilities estimated by BP to set the edge weights in
a matching graph. This contrasts a standard MWPM or UF
decoder, where the prior distribution is used to set edge

FIG. 3. Illustration of belief-matching and belief-find. Given an observed syndrome and an error model, belief propagation is used to
estimate the marginal probability that each error mechanism occurred. These updated error probabilities are used to set edge weights
(here, thicker edges correspond to higher edge weights) in the X and Z matching graphs, which are then decoded with MWPM (for
belief-matching) or weighted UF (for belief-find). In this figure, we consider the decoding problem for perfect syndrome measurements
for simplicity (as considered in Ref. [16]); however, belief-matching and belief-find can also handle more complicated error models
arising from measurements in the syndrome extraction circuit.

IMPROVED DECODING OF CIRCUIT NOISE AND FRAGILE … PHYS. REV. X 13, 031007 (2023)

031007-5



weights instead. For surface codes, we can always decom-
pose each hyperedge error mechanism ðt; u; v; wÞ into
existing edges ðt; uÞ and ðv; wÞ in the matching graph,
and the posterior marginal probability of each hyperedge is
added to the marginal probabilities of the edges in its
decomposition when setting edge weights. After updating
the edge weights, we decode the matching graph using
MWPM [1] (for belief-matching) or weighted UF [11,12]
(for belief-find). See Appendix C for a more detailed
description of belief-matching and belief-find.
We now consider the running time of belief-matching

and belief-find. The worst-case running time of belief-find
is almost linear in the number of error mechanisms, since
the weighted UF decoder has almost-linear worst-case
running time [11,12], and BP has linear running time.
Furthermore, both weighted UF and the min-sum approxi-
mation of BP are comparatively simple decoding algo-
rithms, which are amenable to implementation in hardware
[55,56]. For belief-matching, the worst-case running time is
instead dominated by the MWPM step, which has worst-

case running timeO(N3 logðNÞ), whereN is the number of
nodes in the matching graph [46]. However, the expected
running time of MWPM has been shown to scale approx-
imately linearly with the number of error-detection events
when below threshold [10,13,14], and we confirm empiri-
cally that the expected running time of belief-matching is
also approximately linear in this regime when using sparse
blossom for the MWPM subroutine [13]. Furthermore, our
numerical results demonstrate that the decoding perfor-
mance of belief-find is almost identical to that of belief-
matching, despite having significantly reduced worst-case
running time. The BP step, although linear time, can still be
quite computationally intensive, since the number of edges
in the circuit-level Tanner graph is a constant factor larger
than the number of edges in the corresponding matching
graph, and the running time does not depend strongly on
the weight of the syndrome (it is not necessarily faster at
low p, unlike MWPM or weighted UF). However, we
expect these challenges to be overcome since BP is highly
parallelizable, and very fast implementations are already
widely used for decoding classical low-density parity-
check (LDPC) codes [57–59].
Since the advantage that belief-matching and belief-find

offer over MWPM or weighted UF alone derives from their
use of hyperedges present in the circuit-level Tanner graph,
we expect them to outperform MWPM for most exper-
imentally relevant circuit-level noise models, for which the
characterization of hyperedge failure mechanisms is crucial
to obtain good decoding performance [45].

B. ML decoding with tensor networks

We benchmark the performance of belief-matching
against a maximum-likelihood (ML) decoder for circuit-
level noise, which outputs a Pauli correction that
maximizes the probability that the combined error and

correction is in the stabilizer group. Our ML decoder will
use tensor network methods. We give the ML decoder the
problem of decoding L − 1 rounds of noisy stabilizer
measurements, followed by a round of perfect stabilizer
measurements. After obtaining a set of noisy syndromes
from the first L − 1 rounds, an n-qubit Pauli error E has
accumulated on the code block from the execution of the
measurement circuits. The final perfect round of syndrome
measurement extracts the true syndrome of the error E.
Let T be an n-qubit Pauli operator consistent with the true
syndrome. A circuit-level ML decoder finds a logical

operator L̄ ∈ CðSÞnS that maximizes Prð½TL̄�Þ, returning
TL̄ as the correction. Here, the centralizer CðSÞ is the set of
n-qubit Pauli operators that commute with all elements of
S, and the probability Prð½P�Þ of the equivalence class
½P� ≔ fPS∶S ∈ Sg is defined as Prð½P�Þ ≔

P

S∈S PrðPSÞ,
where PrðPÞ is the probability that the error P has
accumulated on the code block, given the full syndrome
and knowledge of the circuit-level noise model.
The ML decoder we implement is the tensor network

decoder described in Ref. [9], which can be seen as a
generalization of the Bravyi-Suchara-Vargo decoder [7] to
the setting of imperfect syndrome measurements and
circuit-level noise. The decoder is constructed by modeling
all of the individual fault locations of the syndrome
extraction circuit with individual tensors whose entries
are probabilities of different Pauli errors having occurred,
as defined in the circuit-level error model. By using the
mathematical structure of a subsystem code called the
circuit history code [8], which is determined by our
syndrome extraction circuit, these individual fault tensors
can be interconnected to a set of Kronecker delta tensors
resulting in a tensor network, which upon contraction
allows us to find out the solution to the maximum-
likelihood decoding problem. Exact tensor network con-
traction, as with any approach to exact ML decoding, is
computationally expensive and therefore slow. But the
tensor network approach to ML decoding offers the
advantage of being able to use numerical methods for
approximate tensor network contraction to lower the
complexity of the calculation while maintaining a high
degree of accuracy, which can be controlled.

C. Performance of belief-matching and belief-find

for depolarizing noise

We compare the performance of belief-matching and
belief-find to MWPM and union-find decoders through
numerical simulations for the CSS surface code, using a
standard circuit-level depolarizing noise model. The details
of the noise model are defined in Appendix D (for which we
set η ¼ 1 for depolarizing noise). We used STIM to construct
the detector error models, decompose hyperedges into edges,
and sample from the syndrome extraction circuits [44]. We
used PYMATCHING to decode with MWPM [46]. Throughout
this work, we estimate thresholds using the critical exponent

OSCAR HIGGOTT et al. PHYS. REV. X 13, 031007 (2023)

031007-6



method of Ref. [60], with 1σ uncertainties in the last digit
(estimated using jackknife sampling over lattice sizes) given
in parentheses.
In Fig. 4, we show the performance of belief-matching

for the square, CSS surface code for circuit-level depola-
rizing noise (η ¼ 1), and compare its performance to that of
an uncorrelated MWPM decoder. The MWPM decoder has
previously had the highest reported circuit-level threshold
for the surface code, which we find to be 0.817(5)% for
our noise model. We find that belief-matching increases
the threshold to 0.940(3)%, a 1.15× improvement. This
1.15× improvement can be attributed to belief-find taking
advantage of correlations between the X and Z matching
graphs due to Y errors. Fig. 5 shows thresholds for circuit-
level depolarizing noise using the weighted UF decoder, as
well as belief-find. We find that belief-find also outper-
forms MWPM, achieving a threshold of 0.937(2)%, despite

having a running time almost linear in N. We observe very
little difference in decoding performance between weighted
UF and MWPM alone, with weighted UF obtaining a
threshold of 0.795(1)% compared to a threshold of 0.817%
for MWPM. Furthermore, there is no statistically signifi-
cant difference between the 0.940(3)% threshold of belief-
matching (see Fig. 4) and the 0.937(2)% threshold of
belief-find.

IV. TAILORING CODES TO BIASED NOISE

Some physical systems can exhibit noise that is highly
biased toward Z errors [30–33], for which the square CSS
surface code is far from optimal. Several proposals have
been made for tailoring the surface code to these biased
noise models. One approach is to modify the basis of the
stabilizer measurements in the surface code, while retaining
the same square lattice layout. The XY surface code and
XZZX surface code both follow this approach, and have
been shown to have extremely high thresholds under
biased noise [17,23,34–36]. Another approach is to apply
schedule-induced gauge fixing to subsystem codes, which
was shown to achieve high thresholds for the subsystem
surface code in Ref. [24] for biased noise. Perhaps the
simplest method of all is to modify the lattice dimensions of
the CSS surface code, such that the X distance and Z
distance are optimized for the bias [23,33].
Using our decoders, we tackle the problem of choosing

an appropriate code in the presence of biased noise in
planar architectures. Inspired by the biased noise present in
some quantum devices [33], we consider a circuit-level
noise model containing two parameters: a noise strength p
and a bias η. The bias η is the quotient of the probability that
some Z-type error occurs, and the probability that any other
occurs (for P ∈ fX; Y; Zg, a P-type Pauli operator on n

qubits is an operator in the set fI; Pg⊗n). See Appendix D
for more noise model details. We are primarily interested in
an optimization with respect to the required qubit overhead
below threshold, in parameter regimes where useful fault-
tolerant quantum computation is feasible. However, we do
also compare the thresholds of the codes considered.
The variants of the surface code we study are the

standard CSS surface code, as well as the XY surface
code, which uses Y-type stabilizers in place of Z-type
stabilizers [17,34,35], both shown in Fig. 2. For the CSS
surface code, we allow the aspect ratio of the lattice to be
optimized to reduce the qubit overhead below threshold.
For example, the X distance can be reduced relative to the Z
distance for Z-biased noise (recall that the P distance of a
code is the minimum weight of a nontrivial P-type logical
operator). When the aspect ratio of a surface code is
optimized in this way, we refer to it as a rectangular
surface code. For the XY surface code, we consider only a
square lattice geometry, since the aspect ratio here deter-
mines the X and Y distance, which should be equal for
our chosen noise model in which X and Y errors are

FIG. 4. Threshold of the square, CSS surface code using
MWPM (left) and belief-matching (right) with η ¼ 1 depolariz-
ing noise. The logical failure rate is the probability that a logical

X̄ measurement outcome is flipped after preparing in an X̄
eigenstate followed by L rounds of stabilizer measurements.

FIG. 5. Threshold of the square CSS surface code using
weighted UF (left) and belief-find (right) for depolarizing noise
(η ¼ 1). The threshold value using MWPM for the same noise
model is shown by the vertical red dashed line for comparison.
The lattice size L for each line is given in the legend, and the
x axis gives the physical error rate p (equal to the CNOT infidelity
for η ¼ 1). We find a threshold of 0.795(1)% for weighted UF and
0.937(2)% for belief-find.

IMPROVED DECODING OF CIRCUIT NOISE AND FRAGILE … PHYS. REV. X 13, 031007 (2023)

031007-7



equiprobable. The XY surface code has so far been studied
only in an idealized setting of perfect syndrome measure-
ments or a phenomenological noise model [34,35]. To
assess the practicality of the XY surface code for fault-
tolerant quantum computing, it is important to study its
performance for biased circuit-level noise. Furthermore, it
is crucial to study how logical operations, such as logical
state preparation, measurement, lattice surgery, and magic
state distillation can be implemented with the XY surface
code, while still exploiting noise bias.
One reason the XY surface code is so promising for

biased noise is that the Z distance of the code is equal to

the number of data qubits n, improving on the Oð ffiffiffi

n
p Þ Z

distance scaling of the square CSS surface code.
Furthermore, it was shown that under pure Z noise, the
code is equivalent to the repetition code, and therefore has a
threshold of 50% [34]. However, as we now show, these
advantages of the XY surface code at infinite bias are
fragile, and can vanish at finite bias or at spatial or temporal
boundaries.

A. Fragility of the XY surface code

In this section, we show that the protection provided
by the XY surface code is fragile, meaning that there are
failure mechanisms in the XY surface code that require

only Oð ffiffiffi

n
p Þ Z errors during logical state preparation and

measurement, as well as during logical idling at finite bias.
An overview of all the errors discussed in this section is
presented in Fig. 6.
At finite bias, errors that consist of a mix of X, Y, and Z

Pauli operators are common. We give examples of logical

operators consisting of a single X or Y error and Oð ffiffiffi

n
p Þ Z

errors. An example of a logical Y error of this form is shown

in Fig. 7(a). A similar logical Y error can occur on the south
boundary, and likewise, logical X errors consisting of a

single X and Oð ffiffiffi

n
p Þ Z operators can occur on the east and

west boundaries. We refer to any of these error patterns as
fragile spatial boundary errors as they occur only at planar
code spatial boundaries and highlight the fragility of the
infinite bias limit. In Fig. 6, error 1 is such an error. At low
physical error rates and high bias, we would expect fragile
spatial boundary errors to be dominant failure mechanisms.
Furthermore, since these failure mechanisms occur on all
four boundaries, we expect a square aspect ratio to be
optimal (assuming X- and Y-error probabilities are similar).
The existence of fragile spatial boundary errors emerges
from the open-boundary conditions.
Another example of fragility occurs during logical state

preparation or measurement. In order to measure the logical
X operator fault tolerantly in the XY surface code, we
measure all data qubits in the X basis and infer both the X

FIG. 6. A space-time diagram for two XY surface code patches
being prepared and then undergoing lattice surgery merging
and splitting. We illustrate five different stringlike errors that can
lead to logical faults. Errors 1–4 are all purely boundary effects
constrained to either spatial (vertical) or temporal (horizontal)
boundaries and contain Oð ffiffiffi

n
p Þ Z errors and at most one X or Y

error. Error 5 is a sequence of measurement errors, and we
observe that these can also form strings between pairs of time
boundaries using τ measurement failures, where τ is the number
of stabilizer rounds used during lattice surgery.

FIG. 7. Two types of fragile boundary errors. (a) A fragile
spatial boundary error that can occur at finite bias, involving a
single Y error and Oð ffiffiffi

n
p Þ Z errors. (b) A fragile temporal

boundary error. It is a Z-type logical error with weight Oð ffiffiffi

n
p Þ

that can occur during a logical X measurement, when only X-type
stabilizers are being measured.

OSCAR HIGGOTT et al. PHYS. REV. X 13, 031007 (2023)

031007-8



logical operator and X stabilizers in postprocessing. Since
the X stabilizers are inferred from classical postprocessing
of data qubit measurements, rather than using an ancilla and
measurement circuit, the X stabilizers can be measured
perfectly in this final round (and data qubit measurement
errors can be interpreted as data qubit memory errors).
However, we cannot infer anything about the Y stabilizers
in this final round, since we measure the data qubits in theX
basis. Since we measure only half of all the stabilizers,
we no longer retain an OðnÞ Z distance at infinite bias. In
Fig. 6, error 4 is such an error. In Fig. 7(b), we show an

example of an undetectable Oð ffiffiffi

n
p Þ Z-type logical failure

mechanism that can occur just before (or during) a logical
X measurement, and which flips the outcome of the logical
X measurement. The same type of fault can also occur
during logical state preparation (e.g., when preparing a
logical X eigenstate, data qubits are initialized in jþi states,
and so only X stabilizers can be measured initially).
Similarly, logical measurement and preparation in the Y
bias faces the same fragility problem.
Fragility also impacts lattice surgery, which is a compu-

tational primitive enabling surface code computation in a
2D layout [37–40] through fault-tolerant measurements of
logical multiqubit Pauli operators. In particular, fragile
boundary errors can occur during the merge and split
operations in lattice surgery and are equivalent to a logical
idling error on some of the logical qubits. Additionally, a
string of measurement errors, which we refer to as temporal
bulk errors, can lead to an incorrect measurement of the
logical multiqubit Pauli operator. These stringlike failure
mechanisms are shown in Fig. 6, and we describe them in
more detail in Appendix E.

B. Below-threshold scaling of the XY surface code

We expect fragile boundary errors to have a significant
impact on the performance of the XY code below threshold.
For simplicity, consider a noise model where the proba-
bility p of a single-qubit Z error is low; nevertheless, it is
substantially higher than the probability p=η of a single-
qubit X or Y error. Temporal boundary errors are equivalent
to the dominant failure mechanisms in the square CSS

surface code and decay as Oðp
ffiffi

n
p

=2Þ. We expect fragile

spatial boundary errors to decay asOðp
ffiffi

n
p

=2þOð1Þ=
ffiffiffi

η
p Þwith

minimum-weight decoding far below threshold. To under-
stand why this is the case, consider the most likely logical

operator Ed spanning the lattice that comprises Oð ffiffiffi

n
p Þ Z

errors and one X or Y errors. We can split Ed into two
operators Ea and Eb, where Ea comprises one X or Y error

and c Z errors and Eb comprises
ffiffiffi

n
p

− 1 − c Z errors,

where c ∈ ½0… ffiffiffi

n
p

− 1�. We choose c such that Ea and Eb

both occur with probability Oðp
ffiffi

n
p

=2þOð1Þ=
ffiffiffi

η
p Þ. Since Ea

and Eb cannot be simultaneously correctable, the logical
failure will be due to one of them occurring. In most
regimes of practical interest, we expect these stringlike

failure mechanisms to dominate over weight-n Z-type

logical errors, which decay as Oðpn=2Þ. In order for
weight-n Z-type logical errors to dominate, we expect

Oðpn=2Þ ≫ Oðp
ffiffi

n
p

=2þOð1Þ=
ffiffiffi

η
p Þ, which requires a bias

η ≫ O(ð1=pÞðn−
ffiffi

n
p Þ). However, the bias η is a constant

for any architecture, and so there will always be a value of n
above which stringlike errors dominate. As well as con-
sidering most-likely errors, it is important also to consider
entropic contributions to the logical error rate, which are
taken into account by our numerical simulations. In our
numerical simulations, we analyzed the decay in the logical
failure rate below threshold for a bias of η ¼ 100 (see
Appendix F 2). As expected from the arguments in this

section, we observe a decay of the form Oðp
ffiffi

n
p

=2=
ffiffiffi

η
p Þ,

instead of the Oðpn=2Þ scaling we might hope for at infinite
bias without state preparation and measurement (SPAM)
errors. In Appendix F 1, we also provide numerical
evidence that fragile temporal boundary errors lead to a
significantly higher rate of errors during logical state
preparation and measurement in the XY surface code.

C. Decoder performance for biased noise

In Fig. 8, we compare the logical error rate using the
belief-matching decoder with that of pure MWPM and our
circuit-level ML decoder for an L ¼ 5 XY surface code for
L rounds with perfect initialization and noisy syndrome
measurements, with a bias of η ¼ 100. At lower physical
error rates (e.g., p ¼ 0.27%), we find that the logical error
rate using belief-matching is around 7.8× lower than
MWPM alone, and 2.8× higher than ML decoding. The
ML decoder is implemented in JULIA using PASTAQ [61] to
approximately contract the tensor network as a matrix
product state, fixing a maximum bond dimension of χ ¼ 40

FIG. 8. Performance of the belief-matching decoder compared
to a circuit-level ML decoder for an L ¼ 5 XY surface code for L
rounds with perfect initialization and syndrome measurements.
We use the biased circuit-level noise model defined in

Appendix D with η ¼ 100. Here we characterize the noise

strength using the CNOT infidelity pCX ¼ ½1
5
þ ð4=5ηÞ�p.

IMPROVED DECODING OF CIRCUIT NOISE AND FRAGILE … PHYS. REV. X 13, 031007 (2023)

031007-9



throughout the contraction, as we observe no further gains
in accuracy by using a larger χ. These results show that
belief-matching offers good performance relative to ML
decoding for biased noise, despite having significantly
reduced computational complexity.
In Fig. 9, we compare the threshold of belief-matching

with that of MWPM for the XY surface code for η ¼ 100

biased circuit-level noise. We observe a threshold using
belief-matching at 0.841(6)% CNOT infidelity compared to
0.498(2)% for MWPM, a 1.69× relative improvement.

D. Resource requirements of tailored surface codes

Using our results for below-threshold scaling of the XY
code, and by carrying out a similar analysis for the square
and rectangular CSS surface codes, we compare the qubit

overhead of the XY surface code with that of the square
and rectangular CSS surface codes to achieve a target

logical error rate of 10−12 (the “teraquop regime” [62]).
Our results are shown in Fig. 10, and we give more details
on how we carried out this analysis in Appendix F.
We find that the XY surface code outperforms the square

CSS surface code in all regimes. However, at physical error
rates well below threshold, we find that the optimized
aspect ratio of the rectangular CSS surface code allows it to
outperform the XY surface code. For instance, at a CNOT

infidelity of 10−3, the XY surface code requires 1057
physical qubits per logical qubit, a substantial improvement
on the 1921 required by the square CSS surface code.
However, by using the rectangular CSS surface code
(optimizing the aspect ratio such that the X and Z logical
error rates are approximately equal), we can achieve even
better resource savings, requiring only 681 physical qubits
per logical qubit to achieve the same logical error rate.
Therefore, although the XY surface code does still have a
higher threshold and improves over a CSS surface code of
the same square aspect ratio, our results suggest that the
ability to optimize the aspect ratio can be crucial for taking
full advantage of the bias below threshold. Unfortunately,
we do not expect to be able to improve the performance
of the XY code by changing the aspect ratio, since the
failure mechanisms described in Sec. IVA can occur both
horizontally and vertically. However, we note that further
improvements to the syndrome extraction circuits and
decoding may lead to improved qubit overheads for the
XY surface code. Despite its good performance, we show
that belief-matching does not match the performance of the
computationally expensive maximum-likelihood decoder.
Therefore, future work could consider alternative decoders,
with the hope of finding an efficient decoder with improved
decoding performance that might lead to a more favorable
qubit overhead for the XY surface code below threshold.

V. CONCLUSION

In this work, we introduce new efficient decoders for the
surface code, belief-matching and belief-find, which we
show have improved accuracy for decoding circuit-level
noise. Our decoders use knowledge of the full circuit-level
noise model; i.e., they consider all possible error mecha-
nisms in the circuit along with their associated error
probabilities. By contrast, standard MWPM throws away
much of the information contained in the circuit-level
Tanner graph, since it considers only error mechanisms
that are graphlike (errors that flip one or two detectors). We
therefore expect that belief-matching and belief-find will
have good performance for a wide range experimentally
relevant noise models and can use noise models calibrated
from experimental data [45]. Indeed, after our preprint
was released, our belief-matching decoder was used to
experimentally demonstrate the suppression of quantum
errors by scaling a surface code logical qubit from distance

FIG. 9. Threshold of the XY surface code using MWPM (left)
and belief-matching (right) for η ¼ 100. The lattice size L for
each line is given in the legend.

FIG. 10. Qubit overhead of the XY and CSS (square and
rectangular) surface codes as a function of CNOT infidelity, for the
biased η ¼ 100 circuit-level noise model. Translucent, stepped
lines permit only odd-integer lattice sizes L, whereas smooth
solid lines interpolate and allow L to be any real positive number.
These overhead estimates are computed by solving the fitted
Ansätze in Eqs. (F1)–(F3) for the lattice dimensions, for a target

logical error rate of 10−12.

OSCAR HIGGOTT et al. PHYS. REV. X 13, 031007 (2023)

031007-10



3 to 5 [4]. In this surface code experiment, it was shown that
belief-matching outperformed both MWPM [1,10] and
the correlated MWPM decoder of [48] for experimental
noise [4]. The improved accuracy relative to the correlated
MWPMdecoder ofRef. [48] can be understood from the fact
that belief-matching considers the full circuit-level noise
model, whereas correlated MWPM considers each pair of
correlated edges in isolation and updates only edge weights
in close proximity to an initial (uncorrelated) MWPM
solution. Our belief-find decoder has an almost-linear
worst-case run-time while having very similar accuracy to
belief-matching. This worst-case run-time is a significant
improvement on the worst-case run times of MWPM and
belief-matching, although these matching decoders can still
have a linear expected run-time in practice at low error rates.
Futurework could explore implementations of belief-match-
ing and belief-find in hardware [55,56]. Belief-matching and
belief-find can be applied to any code for whichMWPM can
be used, which includes 2D surface codes [1,17,20,23,26],
subsystem surface codes [19,24], and Floquet codes [25],
among others [18,21,22]. Previous work developing decod-
ers that handle hyperedge error mechanisms in the surface
code have mostly assumed perfect syndrome measurements
or a phenomenological error model [16,63–68]. More gen-
erally, we demonstrate how high-performance decoders for
classical LDPC codes (such as BP) can be applied directly to
infer probable error locations in realistic circuit-level noise
models, and we expect that our work will inspire the
application of similar techniques to other quantum-error-
correction codes and protocols.
As an application of our decoders, we also investigate

the performance of the XY surface code for fault-tolerant
quantum computation in the presence of biased noise.
Although the XY surface code has a Z distance of n, we
identify stringlike failure mechanisms, which we refer to as
fragile boundary errors, that can occur at temporal bounda-
ries (during logical state preparation andmeasurement) or at
spatial boundaries at finite bias. These fragile boundary

errors consist ofOð ffiffiffi

n
p ÞZ errors andOð1ÞX orY errors, and

will likely dominate over errors due to the weight-n Z-type
logical in most realistic settings. We show that belief-
matching has good performance in handling biased cir-
cuit-level noise and use it to benchmark the performance of
the XY surface code compared to the CSS surface code, for
which the lattice dimensions can be tailored to the bias.
There are other proposals for handling biased noise

which we do not consider in this work. The XZZX surface
code is a promising candidate, which has been shown
to achieve very high thresholds in the presence of biased
noise [23,36]. However, optimizing the dimensions of the
XZZX surface code requires using an unrotated geometry,
which requires 2× more qubits than the CSS surface code
to achieve the same distance. Another option is to use the
subsystem surface code (SSC) [19] with schedule-induced
gauge fixing, which has also been shown to have high

thresholds for biased circuit-level noise [24]. The SSC uses
1.75×more qubits than the CSS surface code to achieve the
same distance (assuming one ancilla per gauge operator)
but may be easier to build, owing to its weight-three checks
and reduced connectivity requirements, which could reduce
crosstalk and frequency collisions [22]. Importantly, unlike
theXYsurface code, the aspect ratios of theCSS,XZZX, and
subsystem surface codes can all be optimized in the presence
of bias, which we show is highly desirable for reducing qubit
overheads. While the XZZX and subsystem surface codes
both offer improved performance compared to the CSS
surface code near threshold for biased circuit-level noise
[24,36], a more detailed analysis will be required to assess
whether this also translates into a reduced qubit overhead for
a noise regimeof practical interest below threshold.TheCSS,
XY, and XZZX surface codes all fall within the broader
family Clifford-deformed surface codes [26], and we even
propose a newClifford-deformed code inAppendixG.These
provide evenmore flexibility for tailoring the surface code to
the noise bias, and further work is required to investigate
these codes in a fault-tolerant setting, and our decoders
provide a powerful tool to enable this further research.
Finally, for architectures with improved qubit connectivity,
it is possible that bias-tailored quantum LDPC codes will
offer a further reduction in qubit overhead [69].

ACKNOWLEDGMENTS

This work was initiated when O. H., T. B., and E. T. C.
worked at Amazon Web Services. O. H. acknowledges
support from the Engineering and Physical Sciences
Research Council [Grant No. EP/L015242/1] and a
Google Ph.D. fellowship. O. H. would like to
thank Nikolas Breuckmann, Christopher Chamberland,
and Michael Newman for insightful discussions. We thank
Ben Brown, Neil Gillespie, and Luigi Martiradonna for
providing helpful feedback on the manuscript.

O. H. developed the belief-matching and belief-find algo-
rithms and ran most of the numerical simulations with
supervision fromE. T. C. T. C. B. performed theMLnumerics
with supervision from S. T. F. and A. K. O. H. and E. T. C.
identified the fragile boundary errors. O. H., E. T. C., A. K.,
and S. T. F. contributed to the analysis in Appendix G. All
authors contributed to writing the manuscript.

APPENDIX A: BP REVIEW

The BP algorithm, also known as the sum-product
algorithm, is an efficient iterative message-passing algo-
rithm with good performance for decoding classical LDPC
codes [57]. Consider a binary check matrix H defining a
linear code kerðHÞ. BP is most readily understood by
considering the Tanner graph T ðHÞ of the check matrix H.
The Tanner graph is a bipartite graph with a check node for
each parity check (row of H), and a variable node for each
bit (column of H), and graphically represents a

IMPROVED DECODING OF CIRCUIT NOISE AND FRAGILE … PHYS. REV. X 13, 031007 (2023)

031007-11



factorization of the joint probability distribution over the
bits. Each check node is connected by an edge to the
variable nodes corresponding to the bits it acts nontrivially
on. The BP algorithm takes as input the prior probabilities
that each bit is flipped, as well as the syndrome of each
parity check. Each iteration of BP consists of a horizontal
step and a vertical step. In the horizontal step, each check
node (a row of H) sends a message to its adjacent variable
nodes. In the vertical step, each variable node (a column of
H) sends a message to its adjacent check nodes, where each
message is essentially a local application of Bayes’s rule. In
each iteration, the latest check-to-variable messages can be
used, along with the priors, to compute the “pseudopos-
terior probabilities,” which approximate the marginal prob-
abilities that each bit has been flipped, given the priors and
the syndrome.
To improve the numerical stability and efficiency of BP,

we use log-likelihood ratios (LLRs) to represent proba-
bilities and compute messages, where the LLR of a binary
random variable U is defined as

LðUÞ ¼ log ½PrðU ¼ 0Þ=PrðU ¼ 1Þ�: ðA1Þ

We denote by qi the LLR of the pseudoposterior prob-
ability that bit iwas flipped and define a binary vector x of
hard decisions where element x½i� is set to 0 if qi > 0 and
is set to 1 if qi ≤ 0. In each iteration of BP, we compute
Hx and stop the algorithm and return x ifHx ¼ s, where s
is the syndrome. When this happens, we say that BP has
converged. If a maximum number of iterations miter is
reached without BP converging, then we record a heralded
failure (and we set miter ¼ 30 in this work). We refer the
reader to Refs. [58,59] for a more detailed overview of BP
and its variants.
While BP is an effective decoder for classical LDPC

codes, its application to quantum codes faces challenges.
Most notably, the marginals output by BP cannot be used to
distinguish between multiple equiprobable solutions to the
decoding problem that differ by stabilizers [54]. Several
modifications of BP have been used with the purpose of
fixing the problem that quantum degeneracy poses for
the BP decoder, most notably the use of ordered statistics
decoding postprocessing of the BP posterior marginal
probabilities [70], which was successfully used to decode
hypergraph product codes in Refs. [69,71,72].

APPENDIX B: THE CIRCUIT-LEVEL

TANNER GRAPH

We define a Tanner graph describing the circuit-level
noise model, which we call the circuit-level Tanner
graph T CL ¼ ðV;C; EÞ, where V is a set of variable nodes,
C is a set of check nodes, and E is the edge set. Recall
that a Tanner graph is a bipartite graph, so for each edge
ðv; cÞ ∈ E we have v ∈ V and c ∈ C. Each check node
c ∈ C corresponds to a detector [44], and each variable

node v ∈ V corresponds to an error mechanism that can
occur in the syndrome extraction circuit. There is an edge
ðv; cÞ ∈ E if and only if the error mechanism correspond-
ing to v ∈ V flips the detector corresponding to c ∈ C. If
multiple error mechanisms trigger the same set of detectors
(and are thus indistinguishable), then these error mecha-
nisms are merged into a single variable node which is
assigned a probability equal to the probability that an odd
number of the errors occurred. A variable node is said to
flip if the error mechanism it corresponds to occurs in the
circuit (or, if it corresponds to multiple equivalent error
mechanisms, then it flips if an odd number of these errors
occur). The set of prior probabilities pprior includes, for

each variable node v, the probability pv
prior that it would flip

under the noise model. A circuit-level Tanner graph is a
graphical representation of a detector error model in
STIM [44], but where equivalent variable nodes have been
merged as just described.
Fig. 12 shows a Tanner graph for a biased circuit-level

noise model restricted to the 15 nontrivial two-qubit Pauli
errors that can occur after a single CNOT gate in the parity-
check measurement schedule (it is a small subgraph of the
full circuit-level Tanner graph). ATanner graph describes a
factorization of a joint probability distribution in which
each bit (corresponding to a variable node) is flipped
independently with the assigned prior probability. Note
that, in the standard Pauli circuit noise models considered
in the literature and in this work, the probabilities of each
Pauli error that can occur after a gate are described as
probabilities of disjoint errors, rather than as independent
events. While some specific Pauli noise models, such as the
depolarizing noise model, can be described as an indepen-
dent distribution [73], this is not the case in general. When
computing priors and constructing the Tanner graph, we
make the approximation that each probability of a disjoint
error mechanism instead corresponds to the probability
of an independent error mechanism. This approximation
is correct to leading order in p, and therefore, a good
approximation for the physical error rates we consider.

APPENDIX C: THE BELIEF-MATCHING

AND BELIEF-FIND DECODERS

We can run BP directly on the circuit-level Tanner graph
in order to estimate the marginal probability that each error
mechanism occurs. However, due to low-weight degenerate
errors and loops in the Tanner graph, BP on its own is
known not to have a threshold for the surface code with
perfect syndrome measurements, and we confirm that this
is also the case with circuit-level noise. We instead use the
BP posteriors to choose edge weights for a matching graph
G, which we can decode using a toric code decoder that
handles weighted edges, such as MWPM or weighted
UF [11,12]. Each node in G either corresponds to a detector
or is a boundary node. There is an edge ðu; vÞ in G for each
variable node of degree one or two in the circuit-level

OSCAR HIGGOTT et al. PHYS. REV. X 13, 031007 (2023)

031007-12



Tanner graph. If a variable node m in T CL has degree two,
then u and v in the corresponding edge ðu; vÞ in G are the
two detectors thatm is adjacent to in T CL. If a variable node
m in T CL instead has degree one, then the corresponding
edge ðu; vÞ in G consists of the detector u thatm is adjacent
to in T CL, as well as a boundary node v. The circuit-level
Tanner graph for the XY (and CSS) surface code also
contains variable nodes with degree greater than two, which
would correspond to hyperedges in a decoder hypergraph
(the obvious generalization of a matching graph). However,
for the surface code, these hyperedges can always be
approximated by a sets of edges already present in the
matching graph [44]. For example, consider a weight-four
hyperedge h ≔ ðt; u; v; wÞ, and assume that the edges
e1 ≔ ðt; uÞ and e2 ≔ ðv; wÞ are already present in the
matching graph, we say that the hyperedge h can be
decomposed into the edges e1 and e2. Let pBPðvÞ be the
marginal posterior probability output by BP for variable
node v (an edge or hyperedge), and letDðeÞ be the set of all
hyperedges which have e in their decomposition. For each
edge, we define an adjusted probability

padjðeÞ ≔ pBPðeÞ þ
X

h∈DðeÞ
pBPðhÞ ðC1Þ

and set pwðeÞ ≔ min½padjðeÞ; 1�. [74] We then assign the

weight wðeÞ ≔ − log½pwðeÞ� to each edge in the matching
graph. [75] Note that we always ensure that each hyperedge
has a unique decomposition into edges (if there exists more
than one valid decomposition, then we pick one arbitrarily).
Once we use BP to construct the matching graph G, we

use either MWPM or weighted UF to decode it. When we
use MWPM as a subroutine, we refer to our decoder as
belief-matching, and when we instead use weighted UF
as a subroutine, we refer to it as belief-find. The MWPM
decoder finds a set of edges in G consistent with the
syndrome that have minimal total weight, and a standard
exact implementation of the algorithm has a worst-case

running time of O(N3 logðNÞ), where N is the number of
nodes inG [1,46,76]. In this work, we use the PYMATCHING

implementation of MWPM [46]. Weighted UF instead
finds a low-weight (but in general, not minimal weight)
solution, but has an almost-linear worst-case running time
of O(NαðNÞ), where α is the inverse of Ackermann’s
function, which grows very slowly [11,12]. While the
original UF algorithm did not use the weights of edges
in G [11], it was shown in Ref. [12] that using the edge
weights during the “cluster growth” stage (also called the
syndrome validation stage) led to significantly improved
decoding performance, while maintaining the same asymp-
totic running time (for edge weights of some fixed
precision). Our implementation of weighted UF is very
similar to the version used in Ref. [77]. As in Ref. [77], we
grow clusters on a split-edge graph H obtained from G by
adding a node in the middle of each edge. We find that this

modification significantly improves decoding performance.
Additionally, in each round of growth, we grow smaller odd
clusters before larger ones and fuse clusters at the end
points of an edge (and update their parity) as soon as the
edge becomes fully grown. This means we do not grow a
cluster if its parity has already changed from odd to even
earlier in the same round of growth (unlike in Algorithm 2
of Ref. [11]). Finally, we construct a spanning tree, not a
minimum-weight spanning tree, in the peeling decoder
stage of weighted UF (here we are consistent with Ref. [11]
but not Ref. [12]). None of these modifications affect the
asymptotic running time of the algorithm. In our imple-
mentation, we decode only the matching graph using
MWPM or weighted UF on instances where BP alone
does not converge (almost all failures for BP alone are due
to the algorithm not converging). Our belief-matching and
belief-find decoders are summarized in Algorithm 1.

APPENDIX D: NOISE MODEL USED

IN NUMERICAL SIMULATIONS

For our numerical simulations, we use the same biased
circuit-level noise model as in Ref. [40] that is captured by
two parameters p and η; there are, however, alternative
definitions [78]. Namely, each two-qubit gate is followed
by a two-qubit Pauli channel, for which ZZ, ZI, or IZ can
occur with probability p=15 each, and the remaining 12
nontrivial two-qubit Paulis can each occur with probability
p=15η. Each single-qubit gate location or single-qubit idle
location of the same duration (a single time step) is
followed by a Z error with probability p=3 or an X or Y
error each with probability p=3η. A jþi state is incorrectly
prepared as a j−i state with probability 2p=3, and a j0i state

Algorithm 1. Belief-matching/belief-find.

Input: The circuit-level Tanner graph T CL, the priors pprior, and
the syndrome σ

Output: A correction operator, given as a set of variable nodes
in T CL

1: Compute the marginal posterior probability pBPðvÞ for each
variable node v by running BP, which takes T CL, pprior, and σ

as input.
2: Find a tentative correction c0, which is the set of variable

nodes v for which pBPðvÞ > 0.5. We say that BP has
converged if c0 also has syndrome σ.

3: if BP has converged then

4: return The set of variable nodes c0

5: else

6: Distribute the posterior pBPðhÞ of each hyperedge h to the
edges in its decomposition and, using Eq. (C1), compute the
edge weights in the matching graph G.

7: Decode G with syndrome σ using MWPM (for belief-
matching) or weighted UF (for belief-find) to find a set of
edges E

8: returnThevariable nodes inT CL corresponding to the edgesE
9: end if

IMPROVED DECODING OF CIRCUIT NOISE AND FRAGILE … PHYS. REV. X 13, 031007 (2023)

031007-13



is incorrectly prepared as a j1i state with probability 2p=3η.
Each single-qubit X-basis measurement is flipped with
probability 2p=3, and each single-qubit Z-basis measure-
ment is flipped with probability 2p=3η. We use the CNOT

infidelity pCX when determining and comparing thresholds
since it is a useful measure of the noise strength; note that
the parameter p corresponds only to the CNOT infidelity for

η ¼ 1, since pCX ¼ ½1
5
þ ð4=5ηÞ�p. Each single-qubit gate

and two-qubit gate has a duration of a single time step,
whereas single-qubit state preparation and measurement are
each taken to have a duration of half a time step. For the XY
code measurement schedule that we use, X stabilizers are
measured using CNOT gates controlled on an ancilla
initialized in a jþi state, and Y stabilizers are measured
using controlled-Y (CY) gates, also controlled on a jþi
state. These two-qubit gates are applied in the order
indicated by the blue text in Fig. 12. For the CSS surface
code, we use the same schedule for measuring X stabilizers,
and Z stabilizers are measured using CNOT gates targeted on
an ancilla initialized in the j0i state and applied in the same
order as used for the CY gates in the XY surface code
schedule. We assume that CY gates can be implemented
natively, with the same noise model as CX gates. Other than
for Fig. 13, where we analyze the effect of fragile temporal
boundary errors, we assume perfect state preparation and
measurement for all other numerical simulations (a perfect
round of stabilizer measurements is inserted after perfect
initialization of data qubits, and before perfect logical
measurement of the data qubits). In general, we make
optimistic assumptions for our XY surface code simulations
(perfect logical initialization and measurement, native CY

gates) in order to understand if fragile spatial boundary errors
alone result in inferior performance relative to a rectangular
CSS surface code. Removing these optimistic assumptions
will only make performance of the XY surface code worse.

APPENDIX E: FRAGILITY OF LATTICE

SURGERY

Temporal boundaries arise not only during logical
state preparation and measurement, but also during lattice
surgery operations. Fig. 11 shows two XY surface code
patches being merged into a single patch, which is the first

step of lattice surgery for measuring a Ȳ ⊗ Ȳ logical

observable. Fig. 11 highlights an Oð ffiffiffi

n
p Þ Z error occurring

just before the merge that would go undetected and cause a
logical error. The preparation of physical qubits in the jþi
state in this time slice correspond to temporal boundaries in
the space-time picture of Fig. 6 where error 3 represents a
similar temporal boundary error. This is essentially the
same error mechanism as afflicts logical state preparation,
which can be seen from comparing errors 3 and 4 in Fig. 6.
Most fragile errors encountered have been constrained to

boundaries, either temporal or spatial. However, during
lattice surgery, a logical failure can also occur due to

stringlike errors propagating through the bulk as illustrated
by error 5 of Fig. 6. Since these errors terminate at temporal
boundaries but travel through the bulk, we refer to them as
temporal bulk errors. Note that a vertical error in the space-
time picture corresponds to a measurement failure of a
stabilizer measurement that occurs with some probability
pm. If we repeat these stabilizer measurements dm times
during lattice surgery, then error 5 of Fig. 6 represents dm
consecutive measurement faults and occurs with proba-

bility Oðpdm=2
m Þ. This fault results in the lattice surgery

operation giving an incorrect value of the measured logical
multiqubit Pauli operator.

A standard choice is to set dm ¼ ffiffiffi

n
p

, and if pm is similar
to the probability of a Z error, then the probability of each

such temporal bulk errors is comparable to an Oð ffiffiffi

n
p Þ Z

error. However, there are more possible temporal bulk errors
since there are more paths through the bulk than along the
boundaries. Of course, temporal bulk errors can be sup-
pressed by having more rounds of stabilizer measurements
during lattice surgery (e.g., setting dm ¼ n), but this results
in significantly slower quantum computation.

FIG. 11. We illustrate the merge step of lattice surgery perform-
ing logical Ȳ ⊗ Ȳ measurements between two square XY surface
code patches, including a possible fragile temporal boundary error.

Before themerge, thedataqubits betweenpatchesmustbeprepared
in the jþi state. We illustrate a possible fragile temporal boundary
error that occurs during or after the jþi state preparation but before
the merge stabilizers are measured. During the merge step, the
vertices highlighted white have random outcomes except that their

product gives the outcome of the logical Ȳ ⊗ Ȳ measurement.

OSCAR HIGGOTT et al. PHYS. REV. X 13, 031007 (2023)

031007-14



APPENDIX F: ADDITIONAL NUMERICAL

RESULTS FOR TAILORED SURFACE CODES

1. Impact of state preparation and measurement errors

In order to better understand the effect of the Oð ffiffiffi

n
p Þ

Z-type failure mechanisms present during logical SPAM
(fragile temporal boundary errors), we simulate the XY

surface code using perfect SPAM, as well as noisy SPAM.
For perfect SPAM, we use a round of perfect syndrome
extraction at the beginning and end of the computation.
For noisy SPAM, we initialize data qubits in the jþi state
before the first round, and measure data qubits in the X
basis at the end of the computation (with physical state
preparation and measurement errors occurring at the rate
given by the noise model), and all rounds of syndrome
extraction circuits are noisy. Using an L ¼ 7 XY surface
code with L rounds of noisy syndrome extraction, we then

calculate the ratio pSPAM
log =pmem

log , where pSPAM
log is the logical

error rate using noisy SPAM, and pmem
log is the logical error

rate using perfect SPAM. We also carry out the same
analysis for the square CSS surface code decoded using

MWPM. As shown in Fig. 13, the ratio pSPAM
log =pmem

log

increases significantly with bias for the XY surface code,
but remains small and approximately constant for the
square CSS surface code. This is consistent with the

Z⊗L errors that can occur during SPAM being more
probable than fragile spatial boundary errors. Note that

the ratio pSPAM
log =pmem

log will also depend on the lattice size

and the number of rounds, and we would expect the ratio to
decrease as the number of rounds is increased.

2. Below-threshold scaling of the XY surface code

Here we present our numerical analysis of the below-
threshold scaling of the XY surface code. Our results are
shown in Fig. 14, where we find that our data are a good fit
for an Ansatz of the form

plog ¼ atailoredðbtailoredpÞð
ffiffi

n
p þ1Þ=2 ðF1Þ

(a)

(b)

FIG. 12. (a) A layout and schedule for measuring the stabilizers
of an L ¼ 3 XY surface code. The stabilizers are numerically
labeled 1–8 at the corresponding ancilla vertex. We show the
controlled-NOT and controlled-Y gates used to measure these
stabilizers with numerical labels 0–3 indicating the time ordering
of these gates.We define a detectorDt

j as the parity of stabilizer j in

consecutive rounds t − 1 and t. (b) The circuit-level Tanner graph
corresponding to the circuit in (a). We show only a small subgraph
of the full Tanner graph, corresponding to the two-qubit Pauli errors
that can occur after the highlighted CNOT gate in round t in (a).
Below each variable node, we also show the LLRof its prior, aswell
as the LLR of the posterior probability estimate output by BP given
the syndrome inwhich the red check nodes are flipped. TheBPhard
decisions here would output ZZ as a correction.

FIG. 13. Effect of SPAM errors on the logical error rate of the
L ¼ 7 XY and CSS surface codes, for L rounds of noisy
syndrome extraction and p ¼ 0.015. The y axis shows the ratio

pSPAM
log =pmem

log where pSPAM
log is the logical error rate including

logical SPAM errors, and pmem
log is the logical error rate using

perfect logical state preparation and measurement.

IMPROVED DECODING OF CIRCUIT NOISE AND FRAGILE … PHYS. REV. X 13, 031007 (2023)

031007-15



for which we find atailored ¼ 0.0419ð6Þ and btailored ¼
24.76ð7Þ. Here, plog is the logical Y-error rate. Since there

is symmetry of the schedule in the bulk (a rotation and
reflection of the lattice followed by an exchange of X
and Y), we expect (and numerically verify) the logical
X-error rate to be almost identical to the logical Y-error rate
due to the X=Y symmetry of the noise model. The fit to this
Ansatz enables us to estimate the qubit overhead required
by the XY surface code to achieve a target logical error rate

of 10−12.

3. Below-threshold scaling of the rectangular

CSS surface code

In Fig. 15, we show the performance of the rectangular
CSS surface code below threshold for various code dis-
tances. This is a subset of a larger dataset that we use to fit
an Ansatz of the form

pX
log ¼

axrdZ

d2X
ðbxpÞðdXþ1Þ=2; ðF2Þ

pZ
log ¼

azrdX

d2Z
ðbzpÞðdZþ1Þ=2; ðF3Þ

where r is the number of rounds of syndrome extraction, dX
and dZ are the X and Z distances, and pX

log and pZ
log are the

X and Z logical error rates, respectively. For a bias
of η ¼ 100, we find fit parameters ax ¼ 0.1015ð9Þ,
bx ¼ 42.30ð7Þ, az ¼ 0.0527ð9Þ, and bz ¼ 1.69ð1Þ.
From these Ansätze, we find the optimal aspect ratios for

a target logical failure rate of plog ¼ 10−12, such that the X

and Z logical failure rates are equal. These optimal aspect
ratios are shown in Fig. 16, and are used to estimate the
qubit overhead of the CSS surface code in the main text.

APPENDIX G: MITIGATING FRAGILE ERRORS

In this section, we present a modification to the XY
surface code that partially mitigates fragile spatial boun-
dary errors at finite bias. Recall that the XY surface code is
prone to fragile spatial boundary errors composed of a

single X or Y error and
ffiffiffi

n
p

− 1 Z errors running along the
lattice boundary. We can apply single-qubit Clifford oper-
ators along some qubits on the boundary as in Fig. 17 so

that this boundary error has approximately
ffiffiffi

n
p

=2 Y (or X)
errors. More specifically, we apply the Hadamard gateH to
one of the two qubits in the support of each Y boundary
stabilizer, and the A ≔ HSH gate, where S is the phase
gate, to one of the two qubits in the support of each X
boundary stabilizer. We refer to this code as the XY surface
code with deformed boundaries. Note that it is not
important which of the two qubits the Clifford operator
is applied to in each boundary stabilizer, since the two
choices are equivalent up to multiplication by the same
boundary stabilizer. In Fig. 17, we illustrate how a

FIG. 14. Logical error rate for an XY surface code with belief-
matching. The legend gives the noise rate p at η ¼ 100.

FIG. 15. Below-threshold scaling of the rectangular CSS sur-
face code. Using an X distance of 7 (x axis specifies Z distance),
and maxðdX; dZÞ rounds of stabilizer measurements. The legend
gives the noise rate p.

FIG. 16. Optimal aspect ratio for the rectangular CSS surface
code as a function of CNOT infidelity for η ¼ 100 and a target

logical failure rate of plog ¼ 10−12. For the translucent line, code

distances are restricted to odd integers. These aspect ratios are

calculated by setting pX
log ¼ pZ

log ¼ plog=2 for the fitted Ansätze

in Eqs. (F2) and (F3).

OSCAR HIGGOTT et al. PHYS. REV. X 13, 031007 (2023)

031007-16



deformed boundary requires more X and Y errors to
realize a logical X or Y, and therefore partially mitigates
the fragility of spatial boundaries. However, there is a

trade-off. After deforming boundaries, a Z̄ can be realized
using fewer than n Z errors. As such, boundary defor-
mation will impair performance at infinite bias when only
Z errors occur, while providing a performance boost at
modest bias. We promise only partial progress, since our
boundary deformation mitigates fragility of spatial boun-
daries, but it leaves open whether one can also mitigate
against fragile temporal boundaries during SPAM oper-
ations and lattice surgery.
To better quantify the effects of boundary deformation,

we next consider how the weight of Z-type logical errors
scale with the code size. With infinite Z bias, we need
consider only the X or Y components of each stabilizer, and
whether or not a stabilizer is X type or Y type has no impact
on its syndrome. We can therefore construct a binary linear
code, where the X or Y component of each stabilizer
corresponds to the nonzero elements of a parity check, each
a row in a check matrix H. If a binary vector v is in the

kernel kerðHÞ of H, then the Z-type Pauli operator ⊗n−1
i¼0

Zv½i� is either a Z-type stabilizer or Z-type logical operator
(here, Z type refers to a Pauli operator in fI; Zg⊗n). We can
also easily check whether an element in kerðHÞ is a
stabilizer or nontrivial logical operator by determining if
it commutes with the logical X and Y operators of the code.
Using this approach, we compute all Z-type logical
operators and stabilizers of the XY surface code with
deformed boundaries for all odd L < 100. We denote by dZ
the Z distance.
We find that the deformed boundaries degrade the Z

distance by only a constant factor, so that it still scales
as ΩðnÞ. In Fig. 18, we show the ratio dZ=n for all
odd L < 100. For large L, dZ=n converges to 5=9 if
L mod 6 ¼ 1, 5, and converges to 1=3 if L mod 6 ¼ 3.
This can be understood by considering the structure of the

Z-type logical operators, as shown for codes with L ¼ 15,
17, 19 in Fig. 19. For L ¼ 15, the Z-type logical forms a
square wave that traverses the lattice. Considering a 3 × 3

unit cell in the bulk of the lattice, we see that the logical

FIG. 17. Deforming the boundary of the XY surface code by applying single-qubit Clifford operators H and A, which swap X↔ Z

and Y ↔ Z operators, respectively. On the left, we show the XY surface code and a representative of a logical Ȳ prior to the deformation.
After the deformation, any logical operator on the boundary comprises at least three Pauli X or Y operators, making the XY surface code

with deformed boundary more robust. At the same time, a Z-type logical operator can be realized with fewer than n Pauli Z operators,
as illustrated in the rightmost example.

FIG. 18. The Z distance dZ as a fraction of the number of qubits

n ¼ L2 for the XY surface code with deformed boundaries. The
horizontal dotted lines are at 5=9 and 1=3.

(a) (b) (c)

FIG. 19. The Z-type logicals of the XY surface code with
deformed boundaries for (a) L ¼ 15, (b) L ¼ 17, and (c) L ¼ 19.
Each blue marker denotes a Z operator. Stabilizers are on faces
and are of the same form as in Fig. 17. For the codes in (b) and
(c) the Z-type logical is unique and there are no Z-type stabilizers.
For the code in (a), there is also a Z-type stabilizer which,
multiplied by the Z logical in (a) gives another Z logical of the
same form but rotated 90°.

IMPROVED DECODING OF CIRCUIT NOISE AND FRAGILE … PHYS. REV. X 13, 031007 (2023)

031007-17



operator has support on one third of the qubits. There is an
equivalent Z-type logical operator obtained by a 90°
rotation, related by a Z-type stabilizer. There are no other
Z-type stabilizers or logical operators for this code [the
dimension of kerðHÞ is 2]. Both the L ¼ 17 and L ¼ 19

codes are tiled by a 3 × 3 unit cell with the same structure,
but with different boundaries for the two codes. Within a
3 × 3 unit cell of these two codes, the Z-type logical
operator has nontrivial support on 5=9 qubits. For both
L ¼ 17 and L ¼ 19, there is only one Z-type logical
operator (which is symmetric under 90° rotations) and
no Z-type stabilizers. For all three of these codes, the
structure of the Z-type logical operator and the code itself
are periodic, both horizontally and vertically, with a period
of six. Therefore, adding six columns (or rows) to the
lattice leaves the structure of the Z-type logical operator
unchanged. As a result, the Z-type logical operators for
L ¼ 15, L ¼ 17, and L ¼ 19 generalize for all L > 6. This
structure and periodicity of the Z-type logical operators
explains the data in Fig. 18, and the convergence of dZ=n to
5=9 and 1=3. Therefore, at infinite bias, deforming the
boundaries degrades performance relative to the XY sur-
face code (reducing dZ from n to 5n=9 or n=3); however,
we expect performance to improve substantially for noise
with (even very large) finite bias.
As we discuss in Sec. IV B, we expect the logical failure

rate associated with the fragile spatial boundary errors of

the XY surface code to decay as Oðp
ffiffi

n
p

=2þOð1Þ=
ffiffiffi

η
p Þ far

below threshold. By deforming the boundaries, we expect
stringlike errors along the spatial boundaries to occur

with probability Oðp
ffiffi

n
p

=2
η
−

ffiffi

n
p

=4Þ. On the other hand, by
deforming the boundaries we now have pure Z-type errors

occurring with probability Oðpcn=2Þ, where here, cn ¼
dZ ≥ n=3 is the weight of the Z-type logical operator; see

Fig. 18. This Oðpcn=2Þ scaling is worse than the Oðpn=2Þ
scaling of Z-type logical failures in the XY surface code
(with undeformed boundaries); however, for the pure
Z-type errors to dominate, we would require extremely
high biases for any reasonable choice of p and n. Note that
this analysis has considered only a few specific failure
mechanisms, and a more detailed analysis of other failure
mechanisms (as well as a consideration of entropic con-
tributions to the error rate and circuit-level simulations) will
be crucial to better understand and quantify the potential
improvement.

[1] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, Topo-
logical Quantum Memory, J. Math. Phys. 43, 4452 (2002).

[2] A. Y. Kitaev, Fault-Tolerant Quantum Computation by

Anyons, Ann. Phys. (Amsterdam) 303, 2 (2003).
[3] S. Krinner, N. Lacroix, A. Remm, A. Di Paolo, E. Genois,

C. Leroux, C. Hellings, S. Lazar, F. Swiadek, J. Herrmann
et al., Realizing Repeated Quantum Error Correction in a

Distance-Three Surface Code, Nature (London) 605, 669

(2022).
[4] G. Q. AI, Suppressing Quantum Errors by Scaling a Sur-

face Code Logical Qubit, Nature (London) 614, 676 (2023).
[5] B. M. Terhal, Quantum Error Correction for Quantum

Memories, Rev. Mod. Phys. 87, 307 (2015).
[6] L. Skoric, D. E. Browne, K. M. Barnes, N. I. Gillespie, and

E. T. Campbell, Parallel Window Decoding Enables Scal-

able Fault Tolerant Quantum Computation, arXiv:2209

.08552.
[7] S. Bravyi, M. Suchara, and A. Vargo, Efficient Algorithms

for Maximum Likelihood Decoding in the Surface Code,

Phys. Rev. A 90, 032326 (2014).
[8] D. Bacon, S. T. Flammia, A. W. Harrow, and J. Shi, Sparse

Quantum Codes from Quantum Circuits, IEEE Trans. Inf.

Theory 63, 2464 (2017).
[9] T. C. Bohdanowicz, Quantum Constructions on Hamilto-

nians, Codes, and Circuits, Ph.D. dissertation, California

Institute of Technology, 2021.
[10] A. G. Fowler, Minimum Weight Perfect Matching of

Fault-Tolerant Topological Quantum Error Correction in

Average Oð1Þ Parallel Time, Quantum Inf. Comput. 15,

0145 (2015).
[11] N. Delfosse and N. H. Nickerson, Almost-Linear Time

Decoding Algorithm for Topological Codes, Quantum 5,

595 (2021).

[12] S. Huang, M. Newman, and K. R. Brown, Fault-Tolerant

Weighted Union-Find Decoding on the Toric Code, Phys.

Rev. A 102, 012419 (2020).
[13] O. Higgott and C. Gidney, Sparse Blossom: Correcting a

Million Errors per Core Second with Minimum-Weight

Matching, arXiv:2303.15933.
[14] Y. Wu and L. Zhong, Fusion Blossom: Fast MWPM

Decoders for QEC, arXiv:2305.08307.
[15] N. Liyanage, Y. Wu, A. Deters, and L. Zhong, Scalable

Quantum Error Correction for Surface Codes Using FPGA,

arXiv:2301.08419.
[16] B. Criger and I. Ashraf, Multi-Path Summation for Decod-

ing 2D Topological Codes, Quantum 2, 102 (2018).
[17] D. K. Tuckett, S. D. Bartlett, and S. T. Flammia, Ultrahigh

Error Threshold for Surface Codes with Biased Noise,

Phys. Rev. Lett. 120, 050505 (2018).
[18] D. Bacon, Operator Quantum Error-Correcting Subsystems

for Self-Correcting Quantum Memories, Phys. Rev. A 73,

012340 (2006).
[19] S. Bravyi, G. Duclos-Cianci, D. Poulin, and M. Suchara,

Subsystem Surface Codes with Three-Qubit Check Oper-

ators, Quantum Inf. Comput. 13, 0963 (2013).
[20] N. P. Breuckmann and B. M. Terhal, Constructions and

Noise Threshold of Hyperbolic Surface Codes, IEEE Trans.

Inf. Theory 62, 3731 (2016).
[21] M. Li, D. Miller, M. Newman, Y. Wu, and K. R. Brown, 2D

Compass Codes, Phys. Rev. X 9, 021041 (2019).
[22] C. Chamberland, G. Zhu, T. J. Yoder, J. B. Hertzberg, and

A.W. Cross, Topological and Subsystem Codes on Low-

Degree Graphs with Flag Qubits, Phys. Rev. X 10, 011022

(2020).
[23] J. P. Bonilla Ataides, D. K. Tuckett, S. D. Bartlett, S. T.

Flammia, and B. J. Brown, The XZZX Surface Code, Nat.

Commun. 12, 2172 (2021).

OSCAR HIGGOTT et al. PHYS. REV. X 13, 031007 (2023)

031007-18



[24] O. Higgott and N. P. Breuckmann, Subsystem Codes with

High Thresholds by Gauge Fixing and Reduced Qubit

Overhead, Phys. Rev. X 11, 031039 (2021).
[25] M. B. Hastings and J. Haah, Dynamically Generated Log-

ical Qubits, Quantum 5, 564 (2021).
[26] A.Dua,A.Kubica,L. Jiang,S. T. Flammia, andM. J.Gullans,

Clifford-Deformed Surface Codes, arXiv:2201.07802.
[27] Q. Xu, N. Mannucci, A. Seif, A. Kubica, S. T. Flammia, and

L. Jiang, Tailored XZZX Codes for Biased Noise, Phys. Rev.

Res. 5, 013035 (2023).
[28] N. Delfosse, Decoding Color Codes by Projection onto

Surface Codes, Phys. Rev. A 89, 012317 (2014).
[29] A. Kubica and N. Delfosse, Efficient Color Code Decoders

in d ≥ 2 Dimensions from Toric Code Decoders, Quantum

7, 929 (2023).
[30] P. Aliferis and J. Preskill, Fault-Tolerant Quantum Com-

putation against Biased Noise, Phys. Rev. A 78, 052331

(2008).
[31] S. Puri, L. St-Jean, J. A. Gross, A. Grimm, N. E. Frattini,

P. S. Iyer, A. Krishna, S. Touzard, L. Jiang, A. Blais et al.,

Bias-Preserving Gates with Stabilized Cat Qubits, Sci. Adv.

6, eaay5901 (2020).
[32] J. Guillaud and M. Mirrahimi, Repetition Cat Qubits for

Fault-Tolerant Quantum Computation, Phys. Rev. X 9,

041053 (2019).
[33] C. Chamberland, K. Noh, P. Arrangoiz-Arriola, E. T.

Campbell, C. T. Hann, J. Iverson, H. Putterman, T. C.

Bohdanowicz, S. T. Flammia, A. Keller et al., Building a

Fault-Tolerant Quantum Computer Using Concatenated

Cat Codes, PRX Quantum 3, 010329 (2022).
[34] D. K. Tuckett, A. S. Darmawan, C. T. Chubb, S. Bravyi,

S. D. Bartlett, and S. T. Flammia, Tailoring Surface Codes

for Highly Biased Noise, Phys. Rev. X 9, 041031 (2019).
[35] D. K. Tuckett, S. D. Bartlett, S. T. Flammia, and B. J.

Brown, Fault-Tolerant Thresholds for the Surface Code

in Excess of 5% under Biased Noise, Phys. Rev. Lett. 124,

130501 (2020).
[36] A. S. Darmawan, B. J. Brown, A. L. Grimsmo, D. K.

Tuckett, and S. Puri, Practical Quantum Error Correction

with the XZZX Code and Kerr-Cat Qubits, PRX Quantum 2,

030345 (2021).
[37] C. Horsman, A. G. Fowler, S. Devitt, and R. Van Meter,

Surface Code Quantum Computing by Lattice Surgery,

New J. Phys. 14, 123011 (2012).
[38] D. Litinski and F. von Oppen, Lattice Surgery with a Twist:

Simplifying Clifford Gates of Surface Codes, Quantum 2, 62

(2018).
[39] D. Litinski, A Game of Surface Codes: Large-Scale Quan-

tum Computing with Lattice Surgery, Quantum 3, 128

(2019).
[40] C. Chamberland and E. T. Campbell, Universal Quantum

Computing with Twist-Free and Temporally Encoded Lat-

tice Surgery, PRX Quantum 3, 010331 (2022).
[41] D. Gottesman, Stabilizer Codes and Quantum Error

Correction (California Institute of Technology, Pasadena,

1997).
[42] A. R. Calderbank and P.W. Shor, Good Quantum Error-

Correcting Codes Exist, Phys. Rev. A 54, 1098 (1996).
[43] A. M. Steane, Error Correcting Codes in Quantum Theory,

Phys. Rev. Lett. 77, 793 (1996).

[44] C. Gidney, STIM: A Fast Stabilizer Circuit Simulator,

Quantum 5, 497 (2021).
[45] E. H. Chen, T. J. Yoder, Y. Kim, N. Sundaresan, S.

Srinivasan, M. Li, A. D. Córcoles, A. W. Cross, and M.

Takita, Calibrated Decoders for Experimental Quantum

Error Correction, Phys. Rev. Lett. 128, 110504 (2022).
[46] O. Higgott, PYMATCHING: A PYTHON Package for Decoding

Quantum Codes with Minimum-Weight Perfect Matching,

arXiv:2105.13082.
[47] Y. Wu, N. Liyanage, and L. Zhong, An Interpretation of

Union-Find Decoder on Weighted Graphs, arXiv:2211

.03288.
[48] A. G. Fowler,Optimal Complexity Correction of Correlated

Errors in the Surface Code, arXiv:1310.0863.
[49] N. Sundaresan, T. J. Yoder, Y. Kim, M. Li, E. H. Chen, G.

Harper, T. Thorbeck, A. W. Cross, A. D. Córcoles, and M.

Takita, Matching and Maximum Likelihood Decoding of a

Multi-Round Subsystem Quantum Error Correction Experi-

ment, arXiv:2203.07205.
[50] N. Delfosse and J.-P. Tillich, A Decoding Algorithm for CSS

Codes Using the X/Z Correlations, in Proceedings of the

2014 IEEE International Symposium on Information Theory

(IEEE, New York, 2014), pp. 1071–1075.
[51] P. Baireuther, T. E. O’Brien, B. Tarasinski, and C.W.

Beenakker, Machine-Learning-Assisted Correction of Cor-

related Qubit Errors in a Topological Code, Quantum 2, 48

(2018).
[52] G. Torlai and R. G. Melko, Neural Decoder for Topological

Codes, Phys. Rev. Lett. 119, 030501 (2017).
[53] K. Meinerz, C.-Y. Park, and S. Trebst, Scalable Neural

Decoder for Topological Surface Codes, Phys. Rev. Lett.

128, 080505 (2022).
[54] D. Poulin and Y. Chung,On the Iterative Decoding of Sparse

Quantum Codes, Quantum Inf. Comput. 8, 987 (2008).
[55] P. Das, C. A. Pattison, S. Manne, D. Carmean, K. Svore, M.

Qureshi, and N. Delfosse, A Scalable Decoder Micro-

Architecture for Fault-Tolerant Quantum Computing,

arXiv:2001.06598.
[56] J. Valls, F. Garcia-Herrero, N. Raveendran, and B. Vasić,

Syndrome-Based Min-Sum vs OSD-0 Decoders: FPGA

Implementation and Analysis for Quantum LDPC Codes,

IEEE Access 9, 138734 (2021).
[57] D. J. MacKay and R. M. Neal, Near Shannon Limit Per-

formance of Low Density Parity Check Codes, Electron.

Lett. 32, 1645 (1996).
[58] D. J. MacKay, Information Theory, Inference and Learning

Algorithms (Cambridge University Press, Cambridge,

England, 2003).
[59] J. Chen, A. Dholakia, E. Eleftheriou, M. P. Fossorier, and

X.-Y. Hu, Reduced-Complexity Decoding of LDPC Codes,

IEEE Trans. Commun. 53, 1288 (2005).
[60] C. Wang, J. Harrington, and J. Preskill, Confinement-Higgs

Transition in a Disordered Gauge Theory and the Accuracy

Threshold for Quantum Memory, Ann. Phys. (Amsterdam)

303, 31 (2003).
[61] G. Torlai and M. Fishman, PASTAQ: A Package for Simu-

lation, Tomography and Analysis of Quantum Computers

(2020), https://github.com/GTorlai/PastaQ.jl/.
[62] C. Gidney, M. Newman, A. Fowler, and M. Broughton, A

Fault-TolerantHoneycombMemory, Quantum 5, 605 (2021).

IMPROVED DECODING OF CIRCUIT NOISE AND FRAGILE … PHYS. REV. X 13, 031007 (2023)

031007-19



[63] G. Duclos-Cianci and D. Poulin, Fast Decoders for Topo-
logicalQuantumCodes, Phys. Rev. Lett. 104, 050504 (2010).

[64] G. Duclos-Cianci and D. Poulin, A Renormalization Group

Decoding Algorithm for Topological Quantum Codes, in
Proceedings of the 2010 IEEE Information Theory Work-

shop (IEEE, New York, 2010), pp. 1–5.
[65] G. Duclos-Cianci and D. Poulin, Fault-Tolerant Renorm-

alization Group Decoder for Abelian Topological Codes,
Quantum Inf. Comput. 14, 0721 (2014).

[66] J. R. Wootton and D. Loss, High Threshold Error Correction
for the Surface Code, Phys. Rev. Lett. 109, 160503 (2012).

[67] A. Hutter, J. R. Wootton, and D. Loss, Efficient Markov

Chain Monte Carlo Algorithm for the Surface Code, Phys.
Rev. A 89, 022326 (2014).

[68] H. Bombin, R. S. Andrist, M. Ohzeki, H. G. Katzgraber, and
M. A. Martin-Delgado, Strong Resilience of Topological

Codes to Depolarization, Phys. Rev. X 2, 021004 (2012).
[69] J. Roffe, L. Z. Cohen, A. O. Quintivalle, D. Chandra, and

E. T. Campbell, Bias-Tailored Quantum LDPC Codes,
Quantum 7, 1005 (2023).

[70] M. P. Fossorier, Iterative Reliability-Based Decoding of

Low-Density Parity Check Codes, IEEE J. Sel. Areas
Commun. 19, 908 (2001).

[71] P. Panteleev and G. Kalachev, Degenerate Quantum LDPC

Codes with Good Finite Length Performance, Quantum 5,
585 (2021).

[72] J. Roffe, D. R. White, S. Burton, and E. Campbell, Decod-
ing across the Quantum Low-Density Parity-Check Code

Landscape, Phys. Rev. Res. 2, 043423 (2020).

[73] R. Chao, M. E. Beverland, N. Delfosse, and J. Haah,
Optimization of the Surface Code Design for Majorana-

Dased Qubits, Quantum 4, 352 (2020).
[74] Alternatively, we can treat pBP as the probabilities

of independent events (even though they are not),
and take pwðeÞ to be the probability that an odd number
of faults in the set feg ∪ DðeÞ occurs under this
assumption. This alternative approach is consistent with
how edges and hyperedges are usually merged in match-
ing graphs.

[75] Another natural choice of edge weight is to use wðeÞ ≔
logf½1 − pwðeÞ�=pwðeÞg and then handle the negative
weights with MWPM or weighted UF using the method
in Ref. [46]. However, we find that our choice wðeÞ ≔
log½pwðeÞ� instead leads to slightly improved decoding
performance for both belief-matching and belief-find.

[76] J. Edmonds, Paths, Trees, and Flowers, Can. J. Math. 17,
449 (1965).

[77] C. A. Pattison, M. E. Beverland, M. P. da Silva, and N.
Delfosse, Improved Quantum Error Correction Using Soft

Information, arXiv:2107.13589.
[78] The parameters p and η describing the biased circuit-level

noise can be alternatively defined as follows: p is the
probability of any error at the given location, whereas η is
the ratio of the probabilities for Z errors and any other
errors. For instance, for single-qubit locations we have
p ¼ pX þ pY þ pZ and η ¼ pZ=ðp − pZÞ, where pP is the
probability of a single-qubit P error.

OSCAR HIGGOTT et al. PHYS. REV. X 13, 031007 (2023)

031007-20


