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Survival Extrapolation Incorporating General
Population Mortality Using Excess Hazard
and Cure Models: A Tutorial

Michael J. Sweeting , Mark J. Rutherford, Dan Jackson, Sangyu Lee,

Nicholas R. Latimer, Robert Hettle, and Paul C. Lambert

Background. Different parametric survival models can lead to widely discordant extrapolations and decision uncer-

tainty in cost-effectiveness analyses. The use of excess hazard (EH) methods, which incorporate general population

mortality data, has the potential to reduce model uncertainty. This review highlights key practical considerations of

EH methods for estimating long-term survival. Methods. Demonstration of methods used a case study of 686

patients from the German Breast Cancer Study Group, followed for a maximum of 7.3 y and divided into low (1/2)

and high (3) grade cancers. Seven standard parametric survival models were fit to each group separately. The same 7

distributions were then used in an EH framework, which incorporated general population mortality rates, and fitted

both with and without a cure parameter. Survival extrapolations, restricted mean survival time (RMST), and differ-

ence in RMST between high and low grades were compared up to 30 years along with Akaike information criterion

goodness-of-fit and cure fraction estimates. The sensitivity of the EH models to lifetable misspecification was investi-

gated. Results. In our case study, variability in survival extrapolations was extensive across the standard models, with

30-y RMST ranging from 7.5 to 14.3 y. Incorporation of general population mortality rates using EH cure methods

substantially reduced model uncertainty, whereas EH models without cure had less of an effect. Long-term treatment

effects approached the null for most models but at varying rates. Lifetable misspecification had minimal effect on

RMST differences. Conclusions. EH methods may be useful for survival extrapolation, and in cancer, EHs may

decrease over time and be easier to extrapolate than all-cause hazards. EH cure models may be helpful when cure is

plausible and likely to result in less extrapolation variability.

Highlights

� In health economic modeling, to help anchor long-term survival extrapolation, it has been recommended

that survival models incorporate background mortality rates using excess hazard (EH) methods.
� We present a thorough description of EH methods with and without the assumption of cure and

demonstrate user-friendly software to aid researchers wishing to use these methods.
� EH models are applied to a case study, and we demonstrate that EHs are easier to extrapolate and that the

use of the EH cure model, when cure is plausible, can reduce extrapolation variability.
� EH methods are relatively robust to lifetable misspecification.
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Estimates of long-term survival are frequently required in

cost-effectiveness analyses of new treatments.1,2 Such

analyses play an important role in reimbursement decisions

for new interventions and rely on estimates of lifetime

benefits and costs. In oncology, the limited follow-up of

clinical trials usually necessitates extrapolation of survival

beyond the trial period.3 However, cost-effectiveness

estimates can be highly sensitive to the extrapolation

method used.4 A review of National Institute for Health

and Care Excellence (NICE) cancer Technology Appraisals

has identified a variety of extrapolation approaches that

have previously been used, often employing parametric

survival models.5 To help avoid extremely implausible

projections, it has been recommended that standard

parametric models incorporate background mortality rates

and/or other relevant external information.6

Incorporation of general population mortality (GPM)

rates into survival extrapolation has the potential to pre-

vent implausible projections by using GPM rates as an

anchor for long-term hazards. Previously, Technology

Appraisals have used GPMs outside of the model-fitting

process to switch from the parametric model projections

to the GPM rates when the projected rates hit the GPM

rates.7,8 This causes a discontinuity in the all-cause

hazard function at the time the parametric rates drop

below the GPM rates. Furthermore, parametric models

may project mortality rates that remain implausibly

higher than GPM rates into the future. A more statisti-

cally coherent approach to incorporating GPM rates

directly into the modeling process is to use an excess

hazard (EH) model.9,10 A EH model will ensure that all-

cause hazards are at least as large as the GPM rates and

may be larger if the model estimates nonzero excess mor-

tality. The EH approach therefore deals with one of the

issues with survival extrapolation, namely, preventing

projected mortality rates dropping below GPM rates.

The EH approach partitions overall mortality rates into

expected rates determined from the GPM rates and

excess rates, estimated from the model, which describe

the additional hazard experienced in the study popula-

tion. The GPM rates are assumed fixed and known and

are usually taken from population lifetables, which are

matched to the study population by age, sex, and calen-

dar year. Once an EH model has been fitted, predictions

of excess mortality can be combined again with GPM

rates to give estimates of long-term all-cause survival.

This approach may be appealing given patterns of excess

mortality rates, and GPM rates are likely to be very dif-

ferent over time.6

As an example, Figure 1 shows the background GPM

hazard (red line) and the EH (blue line) in one arm of a

hypothesized randomised controlled trial (RCT). The

all-cause hazard (green line) is the sum of the GPM and

EHs. Due to trial inclusion/exclusion criteria, the all-

cause hazard rate may start out low before increasing

and then decreasing as the EH decreases. In the long

term, the all-cause hazard may start increasing again as

it starts to become dominated by the background GPM

rate (red line), which increases as the cohort ages. There-

fore, in this example, the all-cause hazard function has 2

turning points (at 3 and 11 y), whereas the EH function

has just 1 turning point (at 3 y) and so has a less complex

shape.

A class of models called EH cure models consider the

possibility of cure, which can lead to the excess mortality
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rates approaching zero over time. If the assumption of

cure is considered reasonable, the use of cure models may

be appealing and provide improved extrapolations.11

The focus of this article is on the demonstration of the

use of EH methods for extrapolation using a suite of

standard parametric models that have been recom-

mended for consideration in health economic modeling.2

We demonstrate the methods using data from the Ger-

man Breast Cancer Study Group (GBCS), which is freely

available and for which R code is provided in Appendix

3 and R and Stata code is online at https://github.com/

AstraZeneca/survextrap-excesshazards. Although we

make no firm recommendations on the use of EH meth-

ods for survival extrapolation, this tutorial provides a

hands-on demonstration for researchers wishing to use

EH methods and discusses the underlying assumptions,

robustness of the estimation to lifetable misspecification,

and how predictions of all-cause survival, hazard, and

restricted mean survival time (RMST) can be obtained.

Finally, we consider the plausibility of extrapolated long-

term treatment effects using fully stratified parametric

models that do not rely on strong proportional hazards

(PH) or constant acceleration factor (AF) assumptions.

Methods

EH/Relative Survival Framework

In an EH framework, the all-cause mortality rate for an

individual i in the study population, hi tð Þ, is broken into

2 constituent parts, the background mortality rate h
�
i
tð Þ

and the excess mortality rate li tð Þ, such that, based on an

additive hazards assumption,

hi tð Þ = h
�
i
tð Þ + li tð Þ:

In an EH model, the background mortality rate is

treated like an offset and is assumed fixed and known. It

is individual specific as it is usually based on a lifetable

matched by variables such as age, sex, and calendar year.

Using the transformation between the hazard and

survival scale, the all-cause survival Si tð Þ is a product of

the background (expected) survival S�
i
tð Þ and the relative

survival, Ri tð Þ:

Si tð Þ = S
�
i
tð ÞRi tð Þ:

Ri tð Þ is known as the relative survival function as it

describes the ratio of all-cause survival to background

survival.

GPM rates are commonly used for the background

mortality, whereas a parametric survival distribution can

be chosen to model the excess rate. A model that includes

covariates, for example, treatment, could then be defined

using a proportional (excess) hazards (PH) model

li tð Þ=l0 tð Þ exp bT
Xi

� �

or an accelerated failure time (AFT) model such that on

the relative survival scale

Ri tð Þ= R0 t exp �bT
Xi

� �� �

:

Alternatively, parametric models could be fitted to each

treatment arm separately. This approach relaxes the PH/

AFT assumption and places fewer constraints on how

the treatment effect varies over time.

In the short time frame of a typical RCT, the excess

mortality rate is often not too dissimilar to the all-cause

rate, as many deaths will be associated with the disease

under study. However, in the long term, the excess and

all-cause rates will start to diverge. In oncology, excess

rates will tend to decrease and may even approach zero

if cure is possible (see hypothesized example in Figure 1).

EH Cure Models

EH cure models take into account the possibility of cure,

which can lead to the EH tending toward zero over time,

which is not guaranteed for all EH models. There are 2

types of cure model: the mixture-cure and non–mixture-

cure model.12 Both have a long history, and their proper-

ties have been studied widely.13–15 In this tutorial, we

consider only the mixture-cure model, which expresses the

Figure 1 Hypothesised hazard functions in a cancer clinical

trial where cure is possible.

Sweeting et al. 3



relative survival as a mixture of 2 latent subpopulations,

one that is cured and never experiences mortality due to

the disease and an uncured subpopulation. The all-cause

survival probability for an individual i is written as

Si tð Þ = S
�
i
tð ÞRi tð Þ = S

�
i
tð Þ pi + 1� pið ÞSu, i tð Þð Þ ð1Þ

where pi is the probability that the individual will be

cured of their disease and Su, i tð Þ is a parametric survival

function for the uncured component of the mixture. The

EH cure model is expressed in the framework of an EH

model but with Ri tð Þ modeled as a mixture. If p is not a

function of covariates, then it can be interpreted as an

overall cure fraction (the proportion of the population

estimated to be eventually cured of their disease if other

causes of mortality were not acting on the population).

However, research has shown that the cure fraction

should be interpreted cautiously since it may be very sen-

sitive to model misspecification14 and can be unstable.15

In the special case where p= 0, mixture-cure models col-

lapse to standard EH models. For the purposes of extra-

polation in this tutorial, we consider the incorporation

of GPM rates for all applications of the cure model.

Obtaining Predictions from EH Models

EH models estimate parameters on the EH scale, includ-

ing EH ratios. To get predictions of all-cause survival and

all-cause hazard, we need to reincorporate the GPM rates.

The predicted all-cause survival for an individual i at time

t is the predicted relative survival (obtained from the EH

model) multiplied by their expected survival at time t:

Ŝi tð Þ= S
�
i
tð ÞR̂i tð Þ: ð2Þ

The prediction of all-cause survival is individual specific

even if no covariates are included in the EH model,

because the expected mortality rates will typically vary

by the age, sex, and calendar year of the individual. Usu-

ally, interest is in the marginal predicted all-cause sur-

vival. This is the survival distribution for the trial (or

trial arm) population, which is calculated via averaging

(standardizing) individual-level survival curves over a

suitable target population (e.g., the original study popu-

lation). Given N individuals in the target population, the

marginal all-cause survival at time t is predicted as

�S tð Þ =
X

N

i= 1

Ŝi tð Þ

N
ð3Þ

The hazard function for the marginal all-cause survival

at time t is a weighted average of the N individual

all-cause hazard functions, weighted by the probability

of survival by time t:

�h tð Þ =

P

N

i= 1
Ŝi tð Þĥi tð Þ

P

N

i= 1
Ŝi tð Þ

ð4Þ

where ĥi tð Þ = h
�
i
tð Þ + l̂i tð Þ is the predicted all-cause

hazard for individual i. When covariates are used in the

EH model, the same calculations can be performed,

resulting in marginal estimates of the all-cause survival

and hazard function, averaging over the covariate distri-

bution of the N individuals. If an indicator of treatment

(or exposure), Z, is included in the EH model, then a

counterfactual marginal contrast can be obtained, in

which a marginal estimate is calculated assuming all

patients had received the treatment (Z= 1) and con-

trasted against a marginal estimate assuming all patients

did not receive the treatment (Z= 0).

Software Implementation

All models were fitted using the flexsurv and flex-

survcure packages in R. Postestimation predictions of

all-cause survival, hazard, RMST, and EHs were calcu-

lated using the standsurv function within flexsurv,

which calculates marginal survival and hazard measures

set out in equation 3 and equation 4. Standard errors

and confidence intervals for these marginal effects are

calculated using the delta method. To calculate implied

hazard ratios and differences in RMST from models fitted

separately to each treatment (or exposure) group, we fit

fully stratified survival models where treatment (or expo-

sure) is included as a covariate that affects all parameters

in the model (e.g., both the shape and scale parameters

for a standard Weibull, or the mean, standard deviation

and cure parameters in a log-normal cure model). Fully

stratified survival models are equivalent to fitting models

to each treatment arm separately but have the additional

advantage of allowing contrasts and standard errors of

contrasts between treatment groups to be easily calculated

using existing software implementation. Example code

used to fit these models and to produce the predictions

are given in Appendix 3, with full code online at https://

github.com/AstraZeneca/survextrap-excesshazards.

Results

The German Breast Cancer Study (GBCS) group pro-

vides data on 686 primary node-positive breast cancer

patients diagnosed between 1984 and 1989. The median

age at diagnosis is 53 y (Q1–Q3; 46–61 y). The data

4 Medical Decision Making 00(0)



contain information on survival and recurrence times

together with their respective censoring indicators. The

data also contain a variety of patient characteristics,

including age and diagnosis date. For this demonstration,

cancer grade is used as a prognostic (exposure) variable,

collapsed into 2 levels: grades 1/2 and grade 3. The objec-

tive is to obtain extrapolated survival curves up to 30 y

after diagnosis and to compare the 2 prognostic groups.

Cancer grade was used for illustrative purposes because it

produced 2 distinct survival curves. There were 171 deaths

with a mean follow-up to death or censoring of 3.6 y

(2,480 person-years of follow-up) and maximum follow-

up of 7.3 y. A Kaplan-Meier plot of the data, stratified by

grade, is shown in Supplementary Figure 1. At 6-y follow-

up, survival was estimated to be 66% and 48% in the

grade 1/2 and grade 3 groups, respectively.

Model Fit for Cancer Grades 1 and 2

Seven standard parametric survival models were fitted to

the group with cancer grades 1/2 (Exponential, Weibull,

Log-logistic, Log-normal, Gompertz, Gamma, General-

ised Gamma). The Exponential distribution makes a very

strong assumption of a constant hazard over time. Three

other distributions have monotonic hazards (Weibull,

Gamma, Gompertz), whereas the remaining 3 distribu-

tions (Log-logistic, Log-normal, Generalized Gamma)

allow unimodal hazard functions with a single turning

point.

EH models with and without cure were fitted by

incorporating background mortality rates from (West)

German lifetables obtained from the Human Mortality

Database (https://www.mortality.org). These were

matched by age, sex, and calendar year to patients in the

breast cancer study. The lifetables used in this example

were from 1956 to 2020 and for ages 0 to 119 y. Pre-

dicted expected survival beyond the maximum age or

calendar year in the lifetable used the rate at the maxi-

mum for as many years as required.

AIC Statistics and Root Mean Squared Prediction Error

Goodness of fit of the 8 standard parametric models, as

assessed via the Akaike information criterion (AIC)

statistic, are shown in Table 1 (first column). The Log-

normal with the lowest AIC gives the best fit, whereas

the Exponential and Gompertz are shown to provide the

worst fit among the models considered. The Generalized

Gamma distribution is second best and has a similar

AIC to the Log-normal.

Most statistical software that fit EH models do not

use the full likelihood, and as such, AIC statistics

reported from EH models cannot be compared directly

with AIC statistics reported from standard parametric

models. Appendix 1 provides a more complete discussion

of this issue. Nevertheless, AIC statistics can be used to

compare between EH models with different distributions

and between EH cure models. In the EH models without

cure, the Generalized Gamma is the model that now

gives the best AIC, whereas the Exponential and

Gompertz continue to have a poor relative fit (Table 1,

second column).

When a cure assumption is imposed, the goodness of

fit improves for all parametric models, except the Expo-

nential and Generalized Gamma, in comparison with the

EH models without cure (Table 1, third column).

AIC goodness-of-fit statistics, along with visual fit to

the data, can be useful tools to rule out clearly ill-fitting

models. However, we warn against selecting a single

model based on AIC alone, as similar-fitting models can

lead to very different extrapolations.

A further approach to understanding model fit is to

compare root mean squared prediction error (RMSPE)

between predicted marginal all-cause survival and the

Kaplan-Meier estimator. This metric allows direct assess-

ment of the marginal fit of the model and has the addi-

tional benefit of allowing us to compare between

different EH and non-EH models. Further details of the

RMSPE is given in Appendix 2. The RMSPE statistics

show improved fit using EH models for some parametric

distributions and worse fit for others (Supplementary

Table 1).

Table 1 AIC Statistics for 7 Parametric Survival Models and

the Extended Excess Hazard Models with and without Cure,

Fitted to the Grade 1/2 Group of the GBCS Data Seta

Distribution
Standard
Parametric

Excess Hazard
(No Cure)

Excess
Hazard (Cure)

Exponential 874.6 (7) 844.4 (7) 846.5 (7)
Weibull 843.2 (5) 815.7 (5) 812.3 (5)
Gompertz 858.1 (6) 829.3 (6) 825.7 (6)
Gamma 840.2 (3) 812.8 (3) 808.4 (3)
Log-logistic 840.3 (4) 813.2 (4) 809.6 (4)
Log-normal 835.4 (1) 806.6 (2) 804.9 (2)
Generalized
Gamma

837.3 (2) 801.4 (1) 803.4 (1)

AIC, Akaike information criterion; GBCS, German Breast Cancer

Study.
aRank order statistics are shown in parentheses. Note that AIC

statistics are not directly comparable between excess hazard and

standard parametric models.

Sweeting et al. 5



All-Cause Hazard Plots

All-cause hazard functions for the 3 approaches are

shown in Supplementary Figure 2, with a B-spline

smoothed empirical hazard function.16 The observed

hazard increases over the first 2 y, which then plateaus

and slightly rises again between years 5 and 6. Many of

the standard parametric and EH models without cure

have an increasing hazard that does not capture the pla-

teau. Only the Log-normal and Generalized Gamma

models show a plateauing of the hazard function. The

various EH cure models behave more similarly to each

other, and all the models except for the Exponential now

incorporate a turning point in the all-cause hazard

function but appear to underestimate the all-cause

hazard at 6 y.

Cure Fraction Estimates

Estimated cure fractions are between 58% and 67% for 5

of the 7 EH cure models (Supplementary Table 2). For

the Exponential (the worst-fitting model) and the Gener-

alized Gamma (the best-fitting model), the estimated cure

fraction is 0%. The Generalized Gamma has more flexi-

bility to model the EH function for the uncured subpopu-

lation and estimates a low (but nonzero) EH in the long

term for the uncured component. This effectively mimics

cure and discounts the need for a cure component in the

model.

Extrapolated Survival and Hazard for

Cancer Grades 1 and 2

All-cause survival extrapolations up to 30 y are extremely

variable for the 7 parametric models without background

mortality (Figure 2a). This is evidenced by the 30-y

RMST estimates, which range from 7.5 y under the

Gompertz model to 14.3 y under the Exponential model.

This variability remains when using EH models without

cure (Figure 2b) but decreases when using EH cure

models (Figure 2c). The 30-y RMST under the cure

models ranges from 13.5 y to 17.5 y.

To better understand each model, we need to study

the all-cause hazard functions over a 30-y period, as

plotted in Figure 3. The Weibull, Gompertz, and Gamma

distributions have unrealistic increasing hazards that go

beyond the range of the y-axis when applied both with-

out and with background mortality rates. The models

might be discounted due to lack of face validity, since the

hazards rise rapidly and are 2.9, 4.8, and 74.5 times the

average rate (estimated by the Exponential model) by

20 y, for the Gamma, Weibull, and Gompertz standard

parametric models, respectively. The Log-logistic, Log-

normal, and Generalized Gamma standard parametric

models all have a turning point and tend toward back-

ground mortality rates by 30-y, whereas the all-cause

hazard function stays consistently above background

rates when these models are applied in an EH (no cure)

setting. For 5 of the EH cure models, the EH rate

becomes negligibly small between 7 and 15 y, and hence,

the all-cause hazard reaches and follows the background

hazard. The plausibility of this assumption along with

the credibility of the long-term all-cause survival pre-

dicted by the cure models should be carefully considered

and justified if a cure model is to be used. The Exponen-

tial and Generalized Gamma EH cure models (the worst-

fitting and best-fitting model, respectively) predict an all-

cause hazard that remains above the background hazard

up to 30 y.

Long-term Effects of Cancer Grade

The model-fitting process is repeated using all patients in

the GBCS data to investigate the long-term effect of can-

cer grades 1 and 2 versus grade 3, using cancer grade to

mimic the 2 arms of an RCT. It is common in health

technology assessment submissions to fit entirely sepa-

rate survival models to 2 treatment arms of a clinical

trial; this avoids assuming the treatment effect follows a

PH or constant AF assumption, which may be unrealistic

over a long time period. Conversely, however, the treat-

ment effect is now unrestricted and governed entirely by

the shape of the extrapolated hazards in the 2 arms. The

implied long-term treatment effect of fitting 2 separate

models to the treatment arms is often not fully investi-

gated. We assume the same underlying distributional

form for the 2 cancer grade groups; that is, if one group

is fitted using a Weibull distribution, then the other

group is also fitted using a Weibull. We return to this

issue of using the same ‘‘type’’ of model in the discussion.

The implied all-cause hazard ratio from fitting models

to each group separately is shown in Figure 4. In the

standard parametric models, there is considerable varia-

bility in the long-term all-cause hazard ratios with the

Gompertz hazard ratio going above 1 after 10 y and con-

tinuing to rise thereafter. The variability in the hazard

ratios is translated to large differences between the

groups in RMST at 30 y, ranging from a difference of

1.6 y (95% CI 20.5, 3.6) for the Gompertz model to

5.9 y (95% CI 3.4, 8.4) for the Exponential.

The EH models reduce this variability somewhat.

Most of the models predict an increasing all-cause hazard

ratio that tends to and approaches 1. The variability in

the RMST difference has reduced, although it is still

considerable.

6 Medical Decision Making 00(0)



In the EH cure models, the all-cause hazards in the 2

groups tend toward background hazards, albeit at possi-

bly different rates, and so the all-cause hazard ratio tends

towards 1 in the long-term (Figure 4c). For most of the

models, the all-cause hazard ratio reaches 1 between 10

and 25 y. The exception is the Exponential (a poor-fitting

model) and the Generalized Gamma, where the all-cause

hazard ratio gets close to but does not reach 1 by 30 y.

The variability in the RMST difference has reduced con-

siderably, with most models predicting a difference in

RMST of between 4 and 4.8 y. However, the confidence

intervals are quite variable between the models, with the

95% confidence intervals for the Log-normal being par-

ticularly wide.

Supplementary Figure 3 shows the all-cause hazard

functions for the 2 groups for the Generalized Gamma

and Log-normal distributions. The all-cause hazards for

the EH models for the 2 groups have similar shapes and

tend to converge after a period of time, tracking either

above the GPM rates (EH noncure models) or conver-

ging towards the GPM rates (EH cure models).

Sensitivity of Cure Models to Choice of External

Population Hazards

This section highlights the robustness (or otherwise) of

the EH models based on the choice of lifetable and how

variation in background mortality rates between a selec-

tion of different countries affects estimation of EH rates

and extrapolations. We consider 2 scenarios: first, where

an incorrect lifetable is used in both the estimation of the

EH model and in the prediction of all-cause survival, and

second, where an incorrect lifetable is used in the estima-

tion but a common lifetable is used for prediction. The

Figure 2 All-cause survival extrapolation of 7 parametric models for grades 1/2 breast cancer patients: (a) without external data,

(b) with background mortality rates incorporated using an excess hazards model, and (c) with background mortality rates

incorporated in a mixture-cure excess hazards model. The black dashed line shows the marginal background survival. The

vertical dashed line shows the end-of-study follow-up. The table shows the 30-y restricted mean survival times (RMST) with 95%

confidence intervals.
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latter scenario considers the same target estimand (coun-

try) but considers misspecification of the EHs estimated

from the EH model.

GPMs were obtained from the Human Mortality

Database17 for 6 countries (West Germany, Hungary,

Chile, United States, Sweden, Japan). There is reason-

able variation in the GPM rates from these countries

(Supplementary Table 3). The Log-normal EH models

with and without cure were refitted using background

mortality rates from each of these 6 countries in turn. In

scenario 1, predictions were then made for the country

whose lifetable was used for estimation, whereas in sce-

nario 2, predictions were made for a West German popu-

lation (the target population) using the estimated EH

models.

Changing the lifetable in the estimation of the EHs

and then applying the same background rates to predict

all-cause survival has very little effect on predictions if an

EH model without cure is fitted (Figure 5a). However,

using an EH cure model results in much wider variabil-

ity, which is a consequence of different background rates

dominating the long-term predictions (Figure 5b).

In scenario 2, there is very little variability in the pre-

dicted all-cause survival for a West German population

using an EH noncure model dependent on the lifetable

used in the estimation of the excess rates, whereas there is

slightly more variability using an EH cure model (Supple-

mentary Figure 4). The difference in RMST at 30 y is rel-

atively robust to the choice of lifetable, although there are

clear differences between the noncure and cure models.

In conclusion, based on these limited investigations,

results are generally robust to lifetable misspecification.

This finding is supported by previous research that inves-

tigated the use of different projected general population

rates in calculating life expectancy in colon cancer

patients.18

The implications of this finding are that it may be

plausible to fit a single EH (cure) model utilising the

Figure 3 Extrapolation of all-cause hazards estimated from 7 parametric models for grades 1/2 breast cancer patients: (a)

without external data, (b) with background mortality rates incorporated using an excess hazards model, and (c) with background

mortality rates incorporated in a mixture-cure excess hazards model. The black dashed line shows the marginal background

hazard. The vertical dashed line shows end of study follow-up.
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lifetable information that best matches the study popula-

tion. Health economic evaluations in different countries

could then use these excess mortality/relative survival

estimates and combine with background mortality rates/

expected survival from the country of interest using

equation 2 to predict all-cause survival in that jurisdic-

tion. This approach makes the stronger assumption that

excess mortality rates are commutable between countries

whereas other-cause rates vary.

Discussion

This tutorial demonstrates the potential that EH models

with and without cure have for improving the practice of

survival extrapolation in Technology Appraisals, when

long-term extrapolation is required. EH cure models are

likely to result in less extrapolation variability due to the

use of GPM data and the cure assumption they make but

should be considered only if cure is deemed plausible. If

Figure 4 All-cause hazard ratios derived from 7 parametric models fitted separately to the 2 cancer grade groups: (a) without

external data, (b) with background mortality rates incorporated using an excess hazards model, and (c) with background

mortality rates incorporated in a mixture-cure excess hazards model. The table shows the difference in 30-y restricted mean

survival times (RMST) with 95% confidence intervals.
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cure is not plausible, then cure models can result in large

bias, as shown previously in simulation studies.6 In can-

cer studies, extrapolation based on the EH function is

more stable and reliable, as it is likely to have a simpler

long-term shape than the all-cause hazard and in cancer

is likely to decrease over time.19 Hence, standard para-

metric functions with at most 1 turning point in the

hazard function may be more suitable when applied to

the EH compared with the all-cause hazard. Further-

more, EH cure models typically force a turning point in

the all-cause hazard function as the hazard returns

toward the background hazard in the long term, even if

simpler monotonic hazard functions are used for the

uncured subpopulation. The EH models use background

mortality rates, which typically dominate the long-term

extrapolation reflecting the aging cohort. None of the

standard parametric models incorporate this external

information. Although EH models were applied in this

tutorial to a breast cancer population, the model frame-

work can also be used for extrapolating survival in other

cancers and to nonmalignant diseases in which GPM

rates are relevant and a dominating factor for informing

long-term rates.

Consideration should be given to whether GPM rates

are suitable as long-term estimates of background mor-

tality. It may be plausible that hazards remain above

population mortality rates even in the long term, in

which case background rates from other data sources

(such as cancer registries with long-term follow-up)

could be used within an EH modeling framework.

Figure 5 All-cause survival extrapolation of the stratified Log-normal excess hazard models with and without cure, where

background mortality rates used for model fitting are taken from 1 of 6 countries and predictions are made for the country used

in the estimation. The table shows the difference in 30-y restricted mean survival time (RMST) with 95% confidence intervals. (a)

Scenario 1: Excess hazard model without cure (same lifetable for estimation and prediction), (b) Scenario 1: Excess hazard model

with cure (same lifetable for estimation and prediction).
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This tutorial does not discuss the use of flexible para-

metric models (FPMs) that use splines to model hazard

functions since the purpose of the tutorial was to demon-

strate EH methods using the standard suite of parametric

models commonly used in Technology Appraisals. Nev-

ertheless, FPMs are becoming increasingly popular as

they can more accurately capture changes in the hazard

function over follow-up and hence overcome some of the

limitations of using standard parametric models.6,19–21

FPMs are more explicit in the assumption they make

about the shape of the hazard after the end of follow-up.

For example, the Royston-Parmar FPM on the log

cumulative EH scale assumes linearity after the last

knot,20,22 whereas an FPM cure model assumes zero EH

after the last knot.23 The utility of these models may

therefore lie in the ability to explicitly place the last knot

at a location where these assumptions may be deemed

reasonable. Meanwhile, the extrapolated (excess) hazard

from standard parametric models is not made explicit in

the model formulation, and we recommend plotting the

long-term estimated (excess) hazard function to assess if

it is deemed plausible.

Cure models are increasingly seen as an important

tool for survival extrapolation. However, in some set-

tings where cure is not reasonable, cure models can give

very poor extrapolation performance.6 The parametric

cure models discussed in this tutorial allow EH rates to

approach (asymptote) zero over time, which in our appli-

cation can be interpreted as patients eventually being free

from breast cancer–related deaths. However, within the

study follow-up, there may be no evidence of ‘‘cure.’’

Whether the assumption of long-term cure beyond the

range of the data is reasonable or not is an untestable

assumption (with the study data to hand) and so relies

on arguments around biological plausibility, pharmaco-

logic mechanisms, clinical opinion, and other external

evidence.21 Care should be given not to overinterpret the

estimated cure fraction in a model since EHs may tend

to zero even when the cure fraction is zero. This was

demonstrated in our case study, in which a Generalized

Gamma EH model was flexible enough to capture a low

long-term EH, negating the need for a mixture-cure

model (and hence estimating a cure fraction of zero).

The choice of model used for extrapolation should not

be based entirely on within-sample goodness-of-fit. As

previously demonstrated,11,24 models with near-identical

within-trial fit can provide qualitatively discrepant extra-

polations. Therefore, within-trial goodness-of-fit should

be used in conjunction with objective assessment of the

credibility of extrapolations. This approach naturally

leads to the consideration of external data sources such

as other trials with longer-term follow-up, disease

registries, and expert elicitation, and Bayesian approaches

lend themselves naturally to the formal incorporation of

external information.25–27

In the evaluation of relative treatment efficacy, a fully

stratified parametric model does not rely on strong PH or

constant AF assumptions. However, this approach does

assume the same ‘‘type’’ of model is applied to both arms

(e.g., a Weibull), as recommended in the NICE Technical

Support Document 14.2 A yet more assumption-free

approach could be to allow the parametric distribution as

well as the parameters of the model to vary by treatment

group. This may provide a wider range of possible treat-

ment effects and is an avenue for further exploration.

In conclusion, this tutorial has demonstrated how EH

methods can help reduce model variability through the

incorporation of population mortality rates and can

make explicit assumptions regarding long-term cure. We

suggest these methods should be considered when con-

ducting extrapolation of all-cause survival.
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