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Abstract

Predicting phenotypes from genotypes is a fundamental task in quantitative genetics. With

technological advances, it is now possible to measure multiple phenotypes in large samples.

Multiple phenotypes can share their genetic component; therefore, modeling these pheno-

types jointly may improve prediction accuracy by leveraging effects that are shared across

phenotypes. However, effects can be shared across phenotypes in a variety of ways, so

computationally efficient statistical methods are needed that can accurately and flexibly cap-

ture patterns of effect sharing. Here, we describe new Bayesian multivariate, multiple

regression methods that, by using flexible priors, are able to model and adapt to different

patterns of effect sharing and specificity across phenotypes. Simulation results show that

these new methods are fast and improve prediction accuracy compared with existing meth-

ods in a wide range of settings where effects are shared. Further, in settings where effects

are not shared, our methods still perform competitively with state-of-the-art methods. In real

data analyses of expression data in the Genotype Tissue Expression (GTEx) project, our

methods improve prediction performance on average for all tissues, with the greatest gains

in tissues where effects are strongly shared, and in the tissues with smaller sample sizes.

While we use gene expression prediction to illustrate our methods, the methods are gener-

ally applicable to any multi-phenotype applications, including prediction of polygenic scores

and breeding values. Thus, our methods have the potential to provide improvements across

fields and organisms.
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Author summary

Predicting phenotypes from genotypes is a fundamental problem in quantitative genetics.

Thanks to recent advances, it is increasingly feasible to collect data on many phenotypes

and genome-wide genotypes in large samples. Here, we tackle the problem of predicting

multiple phenotypes from genotypes using a new method based on a multivariate, multiple

linear regression model. Although the use of a multivariate, multiple linear regression

model is not new, in this paper we introduce a flexible and computationally efficient

empirical Bayes approach based on this model. This approach uses a prior that captures

how the effects of genotypes on phenotypes are shared across the different phenotypes,

and then the prior is adapted to the data in order to capture the most prominent sharing

patterns present in the data. We assess the benefits of this flexible Bayesian approach in

simulated genetic data sets, and we illustrate its application in predicting gene expression

measured in multiple human tissues. We show that our methods can outperform compet-

ing methods in terms of prediction accuracy, and the computations involved in fitting the

model and making the predictions scale well to large data sets.

Introduction

Multiple regression has been an important tool in genetics for different tasks relating geno-

types and phenotypes, including discovery, inference, and prediction. For discovery, multiple

regression has been used to fine-map genetic variants discovered by Genome-Wide Associa-

tion Study (GWAS) [1, 2]. For inference, multiple regression has been used to estimate the

proportion of phenotypic variance explained by genetic variants—i.e., “genomic heritability”

or “SNP heritability” [3–5]. For prediction, multiple regression has been used extensively to

predict yet-to-be-observed phenotypes from genotypes. This task is relevant to the prediction

of breeding values for selection purposes in agriculture [6, 7], the prediction of “polygenic

scores” for disease risk and medically relevant phenotypes in human genetics [8–10], and the

prediction of gene expression as an intermediate step in transcriptome-wide association stud-

ies (TWAS) [11, 12]. Traditionally, frequentist multiple regression methods such as penalized

regression and linear mixed models [13–16] have been used for these tasks. However, Bayesian

methods have received particular attention in genetic applications because they provide a nat-

ural way to incorporate prior information about and cope with different genetic architectures.

This attractive feature has spurred the development and application of many Bayesian meth-

ods that differ in their prior distribution on the effect sizes and their approach to computing

posterior distributions [6, 10, 17–27].

Most multiple regression methods in widespread use are “univariate” in that they model

only one outcome (phenotype). However, many studies involve multiple outcomes that may

share genetic effects [28]. Examples of this include organism-level phenotypes measured in

multiple environments or populations, such as those available in UK Biobank [29] or BioBank

Japan [30], and multiple molecular phenotypes such as the expression levels of multiple genes

in multiple tissues available in reference data sets such as the Genotype Tissue Expression

(GTEx) project [31]. In such cases, joint (“multivariate”) modeling of multiple phenotypes can

improve performance over separate univariate analyses that consider one phenotype at a time.

Indeed, multivariate analysis can improve performance even when phenotypes are not geneti-

cally correlated provided that phenotypes are phenotypically correlated [32]. Multivariate anal-

ysis of multiple phenotypes has been shown to improve power to discover associations [33–36]

and accuracy of phenotype prediction [37–40].
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However, currently available multivariate multiple regression methods have important lim-

itations. The multivariate versions of popular penalized regression methods (e.g., ridge regres-

sion, the Elastic Net, the Lasso implemented in the popular R package glmnet [41]) do not

allow for missing phenotype values and, more importantly, do not exploit patterns of effect

sharing. Urbut et al [35] showed the benefits of multivariate methods that learn effect sharing

from the data. Multivariate linear mixed models (MLMM) [42] can also learn effect sharing

from the data, but they lack flexibility—these models make the “infinitesimal architecture”

assumption that every variant has an effect on all phenotypes which is not appropriate for phe-

notypes with sparse architectures [43]. Bayesian methods are a natural way to achieve flexibil-

ity in terms of sparsity of the signal and can learn patterns of effect sharing from the data.

These methods include multivariate versions of of the “Bayesian alphabet” methods such as

BayesB, BayesCP, and the Bayesian Lasso [44, 45]. However, despite the added flexibility com-

pared to the MLMM model, the prior families used in existing multivariate Bayesian methods

make them relatively inflexible to cope with the complex distribution of effect sizes that many

complex traits have. In fact, most of those methods either have a single distribution or a

“spike-and-slab” type of prior, with only one non-point-mass (“slab”) component. In addition,

the use of computationally intensive Markov Chain Monte Carlo (MCMC) algorithms for

model fitting makes the multivariate Bayesian alphabet methods impractical in many

“genome-wide” settings, even with a moderate number of phenotypes.

To overcome these limitations, we introduce a new method, “Multiple Regression with

Multivariate Adaptive Shrinkage” or “mr.mash”. mr.mash is a Bayesian multivariate, multiple

regression method that is able to learn complex patterns of effect sharing from the data while

also being computationally efficient. We achieve this by combining three powerful ideas: (1)

flexible prior distributions that allow for complex patterns of effect sharing across phenotypes;

(2) empirical Bayes for adapting the priors to the data; and (3) variational inference for fast

Bayesian computations. In particular, this work integrates previous work by Urbut et al [35]

(ideas 1 and 2) with previous work by Carbonetto and Stephens [20] (idea 3) into a single

framework, and extends the methods of Kim et al [27] to the multivariate setting. We show via

extensive simulations of multi-tissue gene expression prediction from genotypes that mr.mash
can adapt to complex patterns of effect sharing and specificity, and outperforms competing

methods. These results are confirmed in analyses of real data from the Genotype Tissue

Expression (GTEx) project [31], demonstrating the potential for our method to more accu-

rately impute expression levels, as is required for TWAS [11, 12]. Although this work was pri-

marily motivated by our interest in improving predictions of gene expression, mr.mash can be

applied to other settings where predictions from multivariate multiple regression are desired,

such as computing polygenic scores or breeding values.

Description of the method

We consider the multivariate multiple regression model of outcomes Y on predictors X,

Y ¼ XBþ E

E � MNn�rð0; In;VÞ;
ð1Þ

where Y is an n × r matrix of r outcomes observed in n samples (possibly containing missing

values), X is an n × p matrix of p predictors observed in the same n samples, B is the p × r
matrix of effects, E is an n × r matrix of residuals, In is the n × n identity matrix, and MNn×r(M,

U, V) is the matrix normal distribution with mean M 2 Rn×r and covariance matrices

U 2 Rn�n
, V 2 Rr�r

[46, 47]. For example, in our application later we aim to predict gene

expression in multiple tissues from genetic variant genotypes, so yis is the observed gene
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expression in individual i and tissue s, and xij is the genotype of individual i at genetic variant j.
(In practice, an intercept b0 2 R

r
is included in the regression model, but we leave this detail

out here; full details of the model are given in the S1 Text.)

Let bj denote the jth row of B (as a column vector); thus, bj is an r-vector reflecting the

effects of variable j on the r outcomes. To capture the potential similarity of the effects among

the different outcomes, we use a mixture of multivariate normals prior on bj [35],

bj j w0;S 0 �
XK

k¼1

w0;kNrð0; S0;kÞ; ð2Þ

where Nr(μ, S) denotes the multivariate normal distribution on Rr with mean μ and covari-

ance S, w0 ≔ (w0,1, . . ., w0,K) is a set of mixture weights (non-negative and summing to one),

andS 0 ≔ fS0;1; . . . ; S0;Kg denotes a collection of r × r covariance matrices. Following [35], we

assume that the covariance matricesS 0 are pre-specified, and treat the mixture weights w0 as

parameters to be estimated from the data. The idea is that the collection of matricesS 0 should

be chosen to include a wide variety of potential effect sharing patterns; the estimated w0 should

then assign most weight to the sharing patterns that are present in the data and little or no

weight to patterns that are inconsistent with the data. We discuss selection of suitable covari-

ance matricesS 0 in S1 Text.

Since our approach combines the multiple regression model (1) with multivariate adaptive

shrinkage priors (2) from [35], we call our approach “mr.mash”, which is short for “Multiple
Regression with Multivariate Adaptive Shrinkage”.

Variational empirical Bayes for mr.mash
To fit the mr.mash model we use variational inference methods [48, 49] which have been suc-

cessfully applied to fit univariate multiple regressions [10, 20, 24, 25, 27, 50]. Variational infer-

ence recasts the posterior computation as an optimization problem. Specifically, we seek a

distribution q(B) which approximates the true posterior distribution, pðB j X;Y;V;w0;S 0Þ.

By imposing simple conditional independence assumptions on the approximate posterior dis-

tribution, q(B), the posterior computations and optimization of q(B) become tractable.

In addition to approximating the posterior distribution of B, the variational approach also

provides a way to estimate the model parameters, w0 and V, by maximizing an approximation

to the marginal likelihood, pðY j X;V;w0;S 0Þ, which is known as the “evidence lower

bound” (ELBO) [48]. This approach was called “variational empirical Bayes” in [51], although

this idea of fitting the model parameters by maximizing an approximate marginal likelihood

dates back to earlier work [52, 53].

The variational empirical Bayes algorithm for mr.mash is outlined in Algorithm 1 of the S1

Text. (This algorithm also handles imputation of missing data which we explain in the next sec-

tion.) This algorithm has an inner loop over the variables (the genetic variants) j = 1, . . ., p,

which can be viewed as a coordinate ascent algorithm for fitting the approximate mr.mash poste-

rior, q(B), under the assumption that the bj’s are conditionally independent a posteriori (S1 Text).

The core of the algorithm’s inner loop is the “BMSR-mix” step. This computes the posterior

distribution of a mr.mash model containing just a single variable. (“BMSR-mix” is short for

“Bayesian multivariate simple regression with a mixture prior.”) The posterior distribution of

bj is a mixture of multivariate normals (S1 Text), so the posterior distribution is therefore fully

specified by the posterior mixture weights w1,k, the posterior means b1,k, and the posterior

covariances S1,k. The underlying BMSR-mix computations have closed-form expressions.

However, the computations can be expensive, particularly when r and/or K are large, so this

step represents the main computational bottleneck of mr.mash.
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Fig 1 summarizes the workflow for a typical mr.mash analysis. A key output of mr.mash is

the (approximate) posterior mean of the regression coefficients, B̂≔ EqðBÞ. This point esti-

mate can be used to predict unobserved outcomes for new samples from their predictor values.

Specifically, given predictor values stored as an nnew × p matrix Xnew, we can predict the out-

comes as

Ŷ new ≔ XnewB̂: ð3Þ

The variational empirical Bayes approach accomplishes the twin goals of (a) computing

posterior effect estimates and (b) adapting the priors to the data while making the underlying

computations fast and scalable to large data sets, especially compared with alternative strate-

gies like MCMC [20]. The trade-off is that the approximate posterior distribution obtained

with our variational methods will tend to overstate certainty compared with the true posterior

distribution [48], and so its use for inference (as opposed to prediction) requires particular

care [20]. In this regard, one might consider mr.mash more directly comparable to penalized

regression methods like the Elastic Net [15], which are also more naturally applied to predic-

tion than inference.

Fig 1. Overview of mr.mash for predicting multi-tissue gene expression. The data are the SNP genotypes X and expression levels Y measured in

multiple tissues for a selected set of genes (A). mr.mash also accepts expression data with missing measurements (depicted as white boxes in A). The

mr.mash prior (2) may include a mixture of “canonical” covariances (effect sharing patterns) as well as “data-driven” patterns that are learned from the

data (B). Once these covariances S0,k are determined, a mr.mash model (1–2) is fitted separately for each gene (C). The primary mr.mash result is a

matrix of coefficients B, but fitting a mr.mash model also typically involves estimating a residual variance-covariance matrix, V, and the weights w0,k
controlling the importance of the different covariances S0,k in the prior. The estimated coefficients are often sparse; that is, most of the SNPs have no

effect on expression (in C, white boxes depict zeros in B). The B estimated by mr.mash can then be used to predict gene expression from genotypes

(D); see also Eq 3. Note that while this diagram illustrates mr.mash for predicting multi-tissue gene expression, this analysis pipeline may be adapted to

other settings where multivariate, multiple linear regression is appropriate.

https://doi.org/10.1371/journal.pgen.1010539.g001
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Handling missing data

When analyzing multivariate data, it is common for a large fraction of the Y values to be

unavailable, or “missing.” For example, in the GTEx expression data [31] (see Applications),

the average missing rate is about 60% (after removing a few tissues that are mostly missing).

Thus, for broad applicability, it is important for multivariate methods to be able to cope with

missing values.

To deal with missing values, we extend the variational approximation to include the poste-

rior distribution of the missing entries (see the S1 Text for details). Computationally, this

extension adds a step to the iterative algorithm that “imputes” the missing values. Specifically,

denoting Yobs as the set of observed expression levels and Ymiss as the set of unobserved (miss-

ing) expression levels, the approach imputes the missing values Ymiss by computing an approx-

imate posterior distribution for Ymiss given Yobs and current estimates of the intercept b0,

effects B, and residual covariance V. A similar approach was implemented in [54].

Software availability

The methods introduced in this paper are implemented as an R package [55] which is available

for download at https://github.com/stephenslab/mr.mash.alpha.

Verification and comparison

Simulations using GTEx genotypes

We compared mr.mash and other methods based on the multivariate, multiple regression

model (1), in the task of predicting gene expression in multiple tissues from genetic variant

genotypes. To perform systematic evaluations of the methods in realistic settings, we simulated

gene expression data for 10 tissues using genotypes from the GTEx project [31]. Specifically,

we used the 838 genotype samples generated by whole-genome sequencing. (The GTEx project

also collected extensive gene expression data via RNA sequencing, but we did not use these

data in our simulations.) The simulated data sets varied considerably in number of genetic var-

iants, from 41 to 21,247 (S1 Text).

We performed simulations under several scenarios; the scenarios differed in the way the

effects of the causal variants were simulated. (We use “causal variant” as a shorthand for

“genetic variant j having a true non-zero effect in the linear regression for at least one tissue”;

that is, bj 6¼ 0.)

First, we considered three simple simulation scenarios intended to capture “extreme” set-

tings one might encounter in a multivariate analysis:

A. “Equal Effects,” in which each causal variant affects all tissues with the same effect in every
tissue.

B. “Independent Effects,” in which each causal variant affects all tissues and the effects are
independent across tissues (more precisely, the effects are independent conditioned on the

genetic variant being a causal variant).

C. “Mostly Null,” in which causal variants affect only the first tissue, and therefore the

remaining tissues are unaffected by genotype. This represents a scenario in which the

genetic effects on gene expression are tissue-specific. (To be clear, while the effects of

genotype on expression are tissue-specific, in these simulations the gene is still expressed
in all tissues. For example, this is not the same as a “specifically expressed gene” as defined

in [56].)
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In all these scenarios, the causal variants explained 20% of the variance of each tissue.

We also considered two more complex scenarios intended to capture a combination of fac-

tors that one might encounter in more realistic settings:

D. “Equal Effects + Null,” in which the effects on tissues 1 through 3 were equal and

explained 20% of the variance of each tissue, and there were no effects in tissues 4 through

10. This represents a scenario where effects are shared only within a subset of tissues.

E. “Shared Effects in Subgroups,” in which effects were drawn from a mixture of effect shar-

ing patterns: half of the time, the effects were shared (unequally) across tissues 1 through

3 and explained 20% of the variance of each tissue; otherwise, the effects were shared

(unequally) in tissues 4 through 10 and explained only 5% of the variance of each tissue.

This scenario was intended to reflect the patterns of effect sharing in the GTEx Project

data (see for example Fig. 3a in [35]).

In each Scenario A–E, we simulated 20 gene expression data sets for 20 randomly chosen

genes.

Separately for each tissue, we summarized the accuracy of predicted expression levels in test

set samples using the commonly used “root mean squared error” (RMSE) metric, defined as

RMSEðsÞ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ntest

Xntest

i¼1

ðyis � ŷisÞ
2

s

; ð4Þ

where yis is the true expression value of tissue s in the ith test sample, ŷis is the estimated

expression value, and ntest is the number of samples in the test set (which in these experiments

was always 168). To make the RMSE more comparable across tissues with different variances

we always standardized the RMSE by dividing it by the standard deviation of the true expres-

sion measurements in the test set.

See S1 Text for more details about the simulations.

Methods compared

We compared mr.mash with existing multivariate, multiple regression methods: the Group
Lasso [57] and the Sparse Multi-task Lasso [39, 58], both of which use penalties to stabilize and

improve accuracy of the fitted models; and a univariate, penalty-based method, the Elastic Net
[15], applied independently to each tissue. The Elastic Net was used in the original PrediXcan

method for gene expression prediction in TWAS [11], and therefore we view this approach as

a baseline univariate regression method for comparison with the multivariate methods. (We

note that recent univariate regression approaches with more flexible priors could yield better

predictions in this setting, e.g., [10, 25].) More recently, the Sparse Multi-task Lasso was used

in UTMOST, a method for cross-tissue expression prediction in TWAS [39]. (To be clear,

UTMOST uses the Sparse Multi-task Lasso, and not the Group Lasso. This was stated incor-

rectly in [59].) In the results, these three methods are labeled “g-lasso”,“smt-lasso” and “e-net”.

We also assessed the impact of the choice of prior covariance matrices on the performance

of mr.mash. To do so, we compared three variants of mr.mash: (1) mr.mash with only “canoni-

cal” prior covariance matrices; (2) mr.mash with only “data-driven” prior covariance matrices;

and (3) mr.mash with both types of prior covariance matrices. (See S1 Text for details on these

matrices.) We expected that the third variant would adapt well to the widest range of scenarios,

and therefore would be the most competitive method overall, with the disadvantage being that

it would require more computation. However, we found that mr.mash with only data-driven

matrices was competitive in terms of prediction accuracy in all the simulated scenarios and
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was also faster than the other two variants (S1 Text and S1 and S2 Figs). Therefore, in the com-

parisons with other methods, we ran mr.mash with the data-driven matrices only.

See S1 Text for more details on how the methods were applied to the simulated data sets.

Results with full data

We begin with the results on the simulations in the “Equal Effects,” “Independent Effects” and

“Mostly Null” scenarios. Although these scenarios are not the most realistic, they are simpler

to understand, and help clarify the behavior of different approaches.

In the Equal Effects scenario, mr.mash substantially outperformed the other methods (Fig

2A). In this scenario, the effects of each causal variant were the same in all tissues, and among

the methods compared mr.mash is unique in its ability to adapt to this scenario; in particular,

by adapting the prior to the data, mr.mash learned that most of the effects were shared equally

or nearly equally across tissues. To illustrate, in one simulation mr.mash assigned 81% of the

non-null prior weight to matrices capturing equal effects or very similar effects. By contrast,

the penalty terms in the penalty-based methods were not flexible enough to adapt to this sce-

nario. Unsurprisingly, the Elastic Net performed worst in this scenario because it implicitly

Fig 2. Prediction accuracy in simulations with full data. Each plot summarizes the accuracy of the test set predictions in 20 simulations. The thick,

black line in each box gives the median RMSE relative to the mr.mash RMSE. Since RMSE is a measure of prediction error, lower values indicate better

prediction accuracy. Note that the y-axis ranges vary among panels.

https://doi.org/10.1371/journal.pgen.1010539.g002
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assumes that the effects are independent, whereas in fact they are highly dependent. Also,

Group Lasso performed substantially better than the Sparse Multi-task Lasso in this scenario;

however, this may reflect differences in the way these methods were applied (see S1 Text),

rather than a fundamental advantage of the Group Lasso over the Sparse Multi-task Lasso.

In the Independent Effects scenario (Fig 2B), performance was more similar among the

methods. In this scenario there is less to be gained from multivariate regression methods

because, once the causal variants are identified, knowing the effect size in one tissue does not

help with estimating the effect size in another tissue. Nonetheless, multivariate methods do

still have some benefits because they can more accurately identify the casual variants (that is,

the variants that have a non-zero effect on at least one tissue). Specifically, the effects for a

given genetic variant are either all zero or all non-zero, and all three multivariate methods we

consider (Group Lasso, Sparse Multi-task Lasso and mr.mash) can take advantage of this situa-

tion. Consequently, the qualitative differences between methods are somewhat similar to the

Equal Effects scenario, although the quantitative differences are smaller.

In the Mostly Null scenario (Fig 2C), there is much less benefit to multivariate methods

because tissues 2–10 are uncorrelated with the genotypes. In fact, all the methods performed

similarly in tissues 2–10. In tissue 1—the one tissue that is partly explained by genotype—the

Group Lasso and Sparse Multi-task Lasso methods performed worse than the Elastic Net. Con-

sider that the Group Lasso’s penalty is poorly suited to the Mostly Null setting—the penalty

effectively assumes that effects are either all zero or all non-zero—and because 9 out of the 10

tissues had no genetic effects, the Group Lasso penalty strongly encouraged the non-zero

effects in tissue 1 toward zero. More surprisingly, the Sparse Multi-task Lasso also did not

adapt to this scenario, despite having an additional penalty that in principle allows for sparsity

across tissues. In contrast to the Group Lasso and Sparse Multi-task Lasso, mr.mash’s prior

could adapt to this setting thanks to covariance matrices that allow for tissue-specific effects.

Although the prediction accuracy of mr.mash in tissue 1 was essentially the same as Elastic
Net’s, it is nonetheless reassuring that, in contrast to the other multivariate methods, mr.mash
was no worse than Elastic Net.

We now describe the results from the two more complex scenarios, “Equal Effects + Null”

and “Shared Effects in Subgroups.”

The Equal Effects + Null scenario is a hybrid of the Equal Effects and Mostly Null scenarios,

and so the results in Fig 2D reflect those in Panels A and C. As expected, all methods per-

formed similarly in tissues 4–10 (which were uncorrelated with the genotypes), whereas in tis-

sues 1–3 the performance differences were similar to those observed in the Equal Effects

scenario, although smaller because here these effects were shared across fewer tissues. As in the

Mostly Null scenario, the Group Lasso and Sparse Multi-task Lasso overshrank the effects in tis-

sues 1–3, whereas mr.mash learned to shrink the effects in tissues 1–3 differently from the

effects in tissues 4–10, thanks to prior covariance matrices that allowed for strong correlations

among tissues 1–3 only. For example, in one simulation mr.mash assigned 79% of the non-null

prior weight to matrices capturing equal effects or very similar effects in tissues 1–3 and no

effects or small effects in the remaining tissues.

The Shared Effects in Subgroups scenario (Fig 2E) is designed to be reflective of actual gene

expression studies, and is therefore the most complex of the simulation scenarios we consider.

Here all methods performed similarly in tissues 4–10, where the genetic effects explained only

a small proportion of phenotypic variance (5%). In tissues 1–3, this scenario includes shared

effects (explaining 20% of the phenotypic variance), but the sharing was not quite as strong as

in the Equal Effects simulations. As a result, performance gains from conducting a multivariate

analysis should be similar to, but not as strong as, the Equal Effects + Null scenario, and the

results confirm this. The benefit of mr.mash over the Elastic Net is more modest in this more
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complex scenario, possibly also reflecting the challenge of adapting mr.mash’s flexible prior to

the complex patterns of effect sharing. Like the Mostly Null and Equal Effects + Null scenarios,

the relatively inflexible penalty in the Group Lasso cannot capture the complex patterns of

sharing, and this explains its inferior performance in tissues 1–3.

We also compared the computational time of the different methods (Fig 3). The runtime of

mr.mash (with data-driven matrices only) was typically only slightly higher than Elastic Net or

Group Lasso, usually within a factor of 2. Although the Elastic Net and Group Lasso solved a

much simpler optimization problem, they required a more intensive cross-validation step to

tune the strength of the penalty term; in contrast, the analogous step in mr.mash involved tun-

ing the prior, and was achieved by an empirical Bayes approach that was integrated into the

model fitting procedure, thereby reducing the effort of model fitting. The Sparse Multi-task
Lasso took the longest to run in part because it tuned two parameters by cross-validation, in

contrast to the one parameter in the Elastic Net and Group Lasso. (A more efficient implemen-

tation of Sparse Multi-task Lasso from [59] performed similarly to the software used in these

experiments, but didn’t allow for missing data; see S5 and S6 Figs for a comparison of the two

Sparse Multi-task Lasso implementations, and see S1 Text for details.) A caveat of mr.mash is

that the dominant computational term scales, at best, quadratically or, at worst, cubically in

the number of tissues, r (S1 Text), so for much larger numbers of tissues mr.mash may be

much slower than the Elastic Net or Group Lasso which both scale linearly in r.

Fig 3. Runtimes in simulations with full data. Each plot summarizes the distribution of model fitting runtimes for the 20 simulations in that scenario.

The mr.mash runtimes do not include the initialization step which was performed using Group Lasso. Once model fitting was completed, computing

the predictions was very fast for all methods so we did not include the prediction step in these runtimes. See S1 Text for details on the computing

environment used to run the simulations. The thick, black line in each box gives the median runtime.

https://doi.org/10.1371/journal.pgen.1010539.g003
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Results with missing data

We also compared the methods in settings where some measurements were missing. We

repeated the simulations as described above, except that we randomly set 70% of the entries of

Y to missing before running the methods. For motivation, in the actual GTEx gene expression

data about 62% of the entries of Y are missing (they were not measured). Since the R package

glmnet implementing the Group Lasso does not allow for missing values, in these simulations

we compared mr.mash to the Elastic Net and the Sparse Multi-task Lasso only. Also, to demon-

strate the benefits of integrating data imputation with model fitting, we compared to a naive

imputation approach in which the missing values in each column of Y were imputed as the

mean for that column, then we ran mr.mash with this “mean-imputed” Y. This naive approach

is labeled “mr.mash + mean imputation” in the results.

As in the simulations without missing data, in most of the simulations with missing data

mr.mash outperformed both the Elastic Net, the Sparse Multi-task Lasso and mr.mash with the

naive imputation (Fig 4). Using the mr.mash model to impute missing values was most benefi-

cial in situations where the effects were larger or shared more consistently across tissues,

which were also the situations without missing data where mr.mash was most helpful for

improving accuracy.

Fig 4. Prediction accuracy in simulations with missing data. Each plot summarizes the accuracy of the test set predictions in 20 simulations. The

thick, black line in each box gives the median RMSE relative to the mr.mash RMSE. Since RMSE is a measure of prediction error, lower values are

better. Note that the y-axis range varies among panels.

https://doi.org/10.1371/journal.pgen.1010539.g004
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Comparing mr.mash to the Elastic Net and Sparse Multi-task Lasso, the greatest gains in

performance were in the Equal Effects and Independent Effects scenarios, and these gains

were greater than in the simulations without missing data (compare to Fig 2). We attribute

these greater gains to the fact that the effective sample sizes were smaller in these simulations,

and therefore there was more potential benefit to estimating effects jointly when the effects

were shared across tissues. Only in the Mostly Null scenario did mr.mash perform (slightly)

worse than Elastic Net. This is not unexpected because there was little benefit to analyzing the

tissues jointly in this scenario.

We found the Sparse Multi-task Lasso performed poorly in all simulations with missing

data, even in scenarios such as the Equal Effects and Independent Effects that favor multivari-

ate regression approaches. This was unexpected and suggests that the implementation of this

method for missing data may need improvement to be applied in practice.

The introduction of missingness into the simulations increased the differences in computa-

tion time; in particular, Elastic Net was faster than with full data, whereas mr.mash was slower

(Fig 5). This was because Elastic Net was applied to each tissue separately, and the missing data

simply reduced the size of the data sets, whereas mr.mash iteratively imputed the missing data,

so the expected computational effort was as if mr.mash were run on a full data set. mr.mash
with missing data typically took longer than running mr.mash on the mean-imputed data;

Fig 5. Runtimes in simulations with missing data. Each plot summarizes the distribution of model fitting runtimes for the 20 simulations in that

scenario. The mr.mash runtimes do not include the initialization step which was performed using the Elastic Net. Once the model fitting was

completed, computing the predictions was very fast for all methods, so we did not include the prediction step in these runtimes. See S1 Text for the

details on the computing environment used to run the simulations. The thick, black line in each box gives the median runtime.

https://doi.org/10.1371/journal.pgen.1010539.g005
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indeed, imputing the missing data typically increased the number of iterations needed for the

mr.mash algorithm to converge to a solution, thereby increasing the overall time involved in

model fitting. Like the full-data simulations, the Sparse Multi-task Lasso was much slower than

the other methods (cautioning again that the software used in these simulations was not as effi-

cient as other available software).

Applications

Case study: Predicting gene expression from GTEx data

Finally, we considered an application with real data: using genotypes to predict gene expres-

sion in 48 tissues, using data from the GTEx Project. The GTEx data includes post mortem
gene expression measurements obtained by RNA sequencing and genotypes obtained by

whole-genome sequencing for 838 human donors [31]. Since expression measurements were

not always available in all 48 tissues, it was important for the multivariate analysis to be able to

handle missing data. The tissues varied greatly in the number of available gene expression

measurements: among the 48 tissues, skeletal muscle had the most measurements available

(706), whereas substantia nigra had the least (114) (Fig 6).

Fig 6. Accuracy of gene expression predictions in GTEx data. Relative RMSE differences between the Elastic Net predictions and the mr.mash
predictions in GTEx test samples are plotted along the y-axis as

RMSEðmr:mashÞ� RMSEðe-netÞ
RMSEðe-netÞ . Each box in the box plot summarizes the relative RMSE

differences from predictions for 1,000 genes. Since RMSE is a measure of prediction error, lower values are better. Below the boxes in the box plot, the

circles are linearly scaled in area by the number of available gene expression measurements in each tissue. Tissues mentioned in the text are highlighted

in bold.

https://doi.org/10.1371/journal.pgen.1010539.g006

PLOS GENETICS Flexible empirical Bayes approach to multivariate multiple regression

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010539 July 7, 2023 13 / 21

https://doi.org/10.1371/journal.pgen.1010539.g006
https://doi.org/10.1371/journal.pgen.1010539


Using these data, we compared mr.mash and the Elastic Net for predicting expression from

unseen (test) genotypes. (We also performed a more limited comparison with the Sparse
Multi-task Lasso; see below.) We analyzed 1,000 genes chosen at random, and for each gene we

used all genetic variants within 1 Mb of the gene’s transcription start site (also removing

genetic variants not satisfying certain criteria for inclusion; see S1 Text). To assess the predic-

tion accuracy of each method, we randomly split the 838 GTEx samples into 5 subsets and per-

formed 5-fold cross-validation; that is, we fit the model using a training set composed of 4 out

of 5 subsets, then we assessed prediction accuracy in the fifth subset. We repeated this 5 times

for each of the 5 splits and summarized prediction accuracy as the average RMSE in the 5 test

sets. Prediction accuracy varied considerably with gene and tissue because some genes in some

tissues were more strongly predicted by genetic variant genotypes. Therefore, to make results

more comparable across genes, we reported relative performance accuracy—specifically, the

relative difference in RMSE between the two methods, using the Elastic Net as a reference

point,
RMSEðmr:mashÞ� RMSEðe-netÞ

RMSEðe-netÞ .

These comparisons are summarized in Fig 6. Overall, mr.mash produced substantially

more accurate gene expression predictions, although the improvement varied considerably

from gene to gene and from tissue to tissue. Anecdotally, the improvements tended to be great-

est for tissues with more sharing of effects and/or for tissues with smaller sample sizes (Fig 6

and S3 Fig). In such tissues, the improvement in accuracy was more reflective of the Equal

Effects or Independent Effects simulations. For example, the substantia nigra brain tissue had

the fewest measurements and benefited from strong sharing of effects with other brain tissues.

This strong sharing among the brain tissues is illustrated by the top covariance matrix in the

mr.mash prior (Fig 7).

In contrast, tissues with the largest sample sizes and more tissue-specific eQTLs tended to

show less improvement with multivariate analysis. For example, testis, whole blood and skele-

tal muscle had weaker sharing of effects (Fig 7), consistent with earlier analyses [31, 35]. In

such tissues, there was still some benefit to mr.mash, but the gains were more reflective of the

Shared Effects in Subgroups or Mostly Null simulations.

We also compared mr.mash to the Sparse Multi-task Lasso. However, due to the very long

running time of the Sparse Multi-task Lasso software in these data sets, we performed a more

limited comparison on only 10 randomly chosen genes. We fit the Sparse Multi-task Lasso to

the training set, increasing the size of the grid of the two penalty parameters to 50 in an attempt

to improve its performance (in the simulations we used a smaller grid of 10 points to reduce

computation). The results of this comparison (S4 Fig) illustrate the tendency of the Sparse
Multi-task Lasso to overshrink effect size estimates, to the point that, in many cases, the scaled

RMSE was 1, implying that all the estimated coefficients were exactly zero. mr.mash achieved a

lower RMSE than the Sparse Multi-task Lasso in most cases.

Discussion

We have introduced mr.mash, a Bayesian multiple regression framework for modeling multi-

ple (e.g., several dozen) responses jointly, with accurate prediction being the main goal. A key

feature of our approach is that it can learn patterns of effect sharing across responses from the

data, then use the learned patterns to improve prediction accuracy. This feature makes our

method flexible and adaptive, which are advantages of particular importance for analyzing

large, complex data sets. Our method is also fast and computationally scalable thanks to the

use of variational inference (rather than MCMC) for model fitting.

Although we focussed on a specific application—predicting gene expression from geno-

types—mr.mash is a general method that could be applied to any problem calling for
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multivariate, multiple regression. This includes, for example, breeding value prediction for

multiple related phenotypes in agricultural settings and polygenic score computation for mul-

tiple populations in human genetics. Indeed, recent work, performed independently but using

a similar approach, showed improved accuracy in cross-ancestry prediction [26]. In these

applications, the number of causal variants is typically much larger than for gene expression

phenotypes, which could lead to larger improvements in prediction accuracy. While we expect

mr.mash to be slower in such whole-genome regression applications, it is scalable in that its

computational complexity (per iteration) is linear in the number of samples and in the number

of predictors (genetic variants).

Fig 7. Top pattern of eQTL sharing in GTEx data identified by mr.mash. This heatmap shows the prior covariance matrix S0,k that had the largest

total weight in the prior (that is, the total prior weight across the 1,000 genes). This covariance matrix was scaled to obtain the correlation matrix shown

above. Tissues mentioned in the text are highlighted in bold.

https://doi.org/10.1371/journal.pgen.1010539.g007
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To demonstrate that mr.mash can indeed reasonably scale to whole-genome data sets, we

ran mr.mash on a data set with 10 phenotypes, 4,901 individuals and 441,627 SNPs. (The phe-

notypes were simulated so that 1,000 randomly selected SNPs explained 50% of variance in

each phenotype. The genotypes were from the type 1 diabetes case-control cohort from [60].)

With K = 250 mixture components in the prior, mr.mash took about 50 hours to converge to a

solution within the chosen tolerance (a change in ELBO less than 0.01) using 4 CPUs on a

machine equipped with dual-core Intel Xeon Gold 6348 CPUs. On a machine with Apple M1

Ultra CPUs, the model fitting algorithm took roughly 24 hours to converge. Clearly, applying

mr.mash to much larger multi-trait data sets, and in particular for data sets with hundreds of

thousands of individuals and millions of genetic variants (“biobank-scale” data sets), will

require some additional innovation. One possible approach would be to adapt mr.mash to

work with “summary data” [25, 61, 62].

A limitation of mr.mash is that it is not ideally suited for selecting among highly correlated

variables (which has, for example, been the emphasis of statistical fine-mapping methods [1, 2,

24, 62, 63]). This is because the variational approximation used in mr.mash cannot capture the

strong dependence in the posterior distribution for the effects of highly correlated variables.

Indeed, if two variables are perfectly correlated, and one is causal, mr.mash will select one at

random and exclude the other [20]. (This behavior is also displayed by the Lasso [41].) There-

fore, in settings where variable selection is the main goal, alternative approaches (e.g., [24])

may be preferred. On the other hand, since selecting randomly among correlated variables

does not diminish prediction accuracy [20], mr.mash can perform well for prediction prob-

lems even when highly correlated variables are present.

Supporting information

S1 Fig. Prediction accuracy of mr.mash variants in simulations with full data. Each plot

summarizes the accuracy of the test set predictions in the 20 simulations for that scenario. The

three methods compared were: (1) mr.mash with only “canonical” prior covariance matrices;

(2) mr.mash with only “data-driven” prior covariance matrices; and (3) mr.mash with both

types of prior covariance matrices. The thick, black line in each box gives the median RMSE

relative to the “data-driven” mr.mash RMSE. Since RMSE is a measure of prediction error,

lower values are better. Note that the y-axis range varies among panels.

(PDF)

S2 Fig. Runtimes for mr.mash variants in simulations with full data. Each plot summarizes

the distribution of model-fitting runtimes for the 20 simulations in that scenario. Note the

runtimes did not include the initialization step, which was implemented by running the Group
Lasso on the same data set. Once the model fitting was completed, computing the predictions

was very fast, so we did not include the prediction step in these runtimes. See S1 Text for the

details on the computing environment used to run the simulations. Note that the y-axis range

varies among panels.

(PDF)

S3 Fig. Relationship between improvement in prediction accuracy and GTEx tissue sample

size. Tissues are plotted along the x-axis by the number of available gene expression measure-

ments and along the y-axis by the improvement in RMSE relative to the Elastic Net; that is,

(RMSE(mr.mash) − RMSE(e-net))/RMSE(e-net).

(PDF)

S4 Fig. Comparison of mr.mash vs. Sparse Multi-task Lasso for 10 randomly chosen genes

in GTEx data. Each plot compares the accuracy of the mr.mash and Sparse Multi-task Lasso
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gene expression predictions in test samples for a single gene, separately for each tissue. The

prediction accuracy is summarized as the RMSE relative to the RMSE that would be obtained

by the “naive” predictor in which the genotype has no effect on expression (the naive predictor

is therefore simply the mean of the expression measurements in the training data); that is, the

x-axis shows RMSE(smt-lasso)/RMSE(naive) and the y-axis shows RMSE(mr.mash)/RMSE

(naive). Note that some genes are not expressed in all tissues and so some plots have fewer

than 48 points.

(PDF)

S5 Fig. Prediction performance comparison of Sparse Multi-task Lasso implementations in

simulations with full data. Each plot summarizes the accuracy of the test set predictions in

20 simulations for that scenario. Accuracy was quantified by the (standardized) RMSE so

that lower RMSE means better accuracy. The two implementations compared are the

mtlasso Python software (https://github.com/aksarkar/mtlasso) and the R and C++ imple-

mentation used in [59] (this was labeled multi tissue twas sim in the figure because it was

downloaded from a git repository with this name, https://github.com/RitchieLab/multi_

tissue_twas_sim). Note that the data sets used in this comparison were not the same as the

ones used in the main full-data simulations; for this comparison, the data sets were simulated

the exact same way except that synthetic genotypes were used instead of the genotypes from

the GTEx Project. For more details on this comparison, see [64], in particular the file

mrmash_vs_mtlasso_vs_utmost.html.

(PDF)

S6 Fig. Runtimes comparison of Sparse Multi-task Lasso implementations in simulations

with full data. Each plot summarizes the distribution of model-fitting runtimes for the 20 sim-

ulations in that scenario. For details on the methods compared, see the caption for S5 Fig. See

also S1 Text for the details on the computing environment used to run the simulations.

(PDF)

S1 Text. Detailed methods. Detailed description of the methods, including: preparation of

GTEx data; simulations with GTEx genotypes; methods compared in the simulations; deriva-

tions of mr.mash algorithms with full data; and derivations of mr.mash algorithms with miss-

ing data.

(PDF)
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