
Evaluating the pre-treatment
protocol required to produce an
effective carbonized waste
adsorbent for organic pollution
control

Priyanka1,2, Devika Vashisht1, Martin J. Taylor2* and
Surinder K. Mehta1,3*
1Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh,
India, 2School of Engineering, Chemical Engineering, University of Hull, Hull, United Kingdom,
3Department of Chemistry, University of Ladakh, Kargil, India

With the goal of fostering the circular economy, the present work was devised to
minimize andmanage agricultural waste by transforming it into biochar; a versatile dye
removal adsorbent. Waterways across the globe are frequently fouled and
contaminated with organic materials, especially via unregulated industrial effluents,
producing toxic water supplies. Rhodamine B (RhB) and Methylene blue (MB) dyes
were used as model organic pollutants in water. The contaminants were then readily
extracted fromenvironmental samples using sustainablewheat strawderived biochars.
These materials were utilized in an effort to link the circular economy directly to
environmental protection, reducing organic contamination by using a low carbon
solution. Herein, two methods were adopted to refine a low temperature carbonized
material, dependent on initial pre-treatment; leaching followed by milling (method-I)
and milling followed by leaching (method-II). Scanning Electron Microscopy (SEM),
nitrogen physisorption, proximate and ultimate analysis and Attenuated Total
Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR) were used to
examine the properties of the synthesized materials. It was found that by altering
the process of initial waste pre-treatment, an increase in available surface area
(6.284m2g−1–20.754m2g−1) and pore structure can be found post feedstock
pyrolysis. Additionally, FTIR of the biochar post extraction supported the adsorption
process of both dyes, demonstrating a change in dye-adsorbent bonding, depending
on the initial waste pre-treatment for the biochar. In batch mode, several operating
parameters including pH, concentration, duration, and dose were optimized. Kinetics
and adsorption isotherm studies for biochar synthesized by method-II pre-treatment
(BC-II) revealed that the system follows Pseudo-first-order kinetics and Freundlich
adsorption isotherm model with the relative R2 of 0.9989 and 0.9880 for RhB,
comparing with 0.9933 and 0.9932 for MB. The optimal produced biochar, BC-II
effectively removed 91.06% of RhB from solution at pH 4 and 92.43% for MB at pH 8.
This study brings forth a solution to enhancewastemanagement by creating a circular
scenario and alleviate environmental contamination by utilizing wheat straw as a
biochar adsorbent, produced under controlled and low temperature conditions.
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GRAPHICAL ABSTRACT

1 Introduction

The backbone of a strong economy is a reliable supply of clean
drinking water, but this issue is chronically underemphasized,
globally. Concern over having clean drinking water is increasing
among a section of the global population (Jury and Vaux, 2005).
Water supplies are becoming rapidly contaminated as a result of
anthropogenic activity and the rapidly expanding population
(Palansooriya et al, 2020). “Clean Water and Sanitation” is the
sixth Sustainable Development Goal (SDG), however, according to
the World Health Organization (WHO), 2.1 billion people still lack
access to properly regulated drinking water. In 2017, statistics from
the WHO and the United Nations International Children’s
Emergency Fund (UNICEF) mention that surface water sources
for 159 million people still serve as the sole supply of drinking water
(Kumar et al, 2022). The arduous issue associated with it is that
surface water is contaminated with both inorganic and organic
pollutants, these include anionic, cationic, and azo dyes (Chen
et al, 2022). At an industrial scale across the planet, different
materials, including paper, leather, and textiles, are frequently
coloured with dyes, and these colours easily degrade in water
(Wang et al, 2016). Thus, more than 10%–15% of the
10,000 different types of hazardous organic dyes discharged into
aquatic systems come from industrial production processes (Anfar
et al, 2019). Thiazine dyes like Methylene Blue (MB) can cause
burns, eye damage, mental confusion, nausea and excessive
perspiration when it is present in wastewater (Moharm et al,
2022). Moreover, a xanthine dye such as Rhodamine B (RhB) is
known to be toxic, carcinogenic and found to have adverse
consequences on peoples’ health, especially when ingested (Li
et al, 2022).

A high-capacity approach must be utilized to effectively and
efficiently extract/decompose these dyes from wastewater

(Veeramalai et al, 2022). Numerous techniques have been
documented for the removal of dyes from water supplies.
Cationic dyes such as MB, RhB, and Rhodamine 6G (RB6G)
have been found to rapidly adsorb to dodecahydro-closo-
dodecaborate anion organic polymers (Zhao et al., 2018). On
irradiating with UV light, Somashekharappa et al, synthesized
nanoparticles and nanotubes by using potassium hexatitanate via a
hydrothermal method that was found to directly decompose MB
and RhB (Kenchappa Somashekharappa and Lokesh, 2021). When
subjected to a 125 W highly pressurized mercury lamp (365 nm,
20 mW/cm2) and a tungsten silicic acid/zeolite composite, methyl
orange has been found to photodegrade (Leal Marchena et al,
2016). Organic dyes can also be eliminated via nanofiber aminated
polyacrylonitrile membranes (Zhao et al, 2022). Additionally,
methyl orange has been found to be broken down by a C60/
SiO2 composite when exposed to visible light (Wakimoto et al,
2015). For the removal of organic dyes from water bodies, filter
papers treated with carboxymethyl have also been employed to
remove both the soluble dye and inorganic sediment (Xiao et al,
2021). Sustainable derived dye removal technologies are not new,
many others have been reported in the literature such as Egbosiuba
et al created biochar from empty fruit bunches (Egbosiuba et al,
2020). Adekola et al produced a plantain peel biochar at 500°C,
with a removal efficiency of 54.78% for RhB that was adsorbable at
pH 7 (Adekola et al, 2019). In another study by Yu et al, biomass
produced from baker’s yeast was used as an adsorbent for the
removal of RhB and MB dyes, this was also found to be
regeneratable using acidic TiO2 hydrosol (xia et al, 2009). In a
study by Tehrani et al, MB and RhB, both of which are thought to
be toxic and possibly carcinogenic, were removed simultaneously
from an aqueous solution using the metal organic framework MIL-
68, which has metal sites for aluminium ions [i.e., MIL-68(Al)]
(Saghanejhad Tehrani and Zare-Dorabei, 2016). Toledo and
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co-workers studied Tryptophan (Trp) decorated hydroxypropyl
methylcellulose (HPMC) cryogels and their influence on the
adsorption of MB and RhB (Toledo et al, 2020). Onu and
others synthesize green nickel oxide nanoparticles using fresh
guava leaves for the adsorption of MB dye and Pb (II) ions
(Chukwu Onu et al, 2023). However, a study into the
methodology behind biochar development, specifically initial
waste pre-treatment procedure is missing from the literature.
Additionally, although low temperature pyrolysis routes have
been followed, there is limited information pertaining to the use
of materials being used at the onset of pyrolysis, leading to the
production energy efficient lignin-based materials.

As an effective and popular adsorbent, carbonaceous materials
in the form of activated carbons have been developed and applied
(Greenwald et al, 2015; Yin et al, 2022). However, the expense of
utilizing activated carbons to remove dyes impede their widespread
application in the treatment of textile effluents (Wang et al, 2016).
To effectively eliminate dyes from contaminated water, a low-cost,
sustainable and energy efficient solution must be developed to allow
for large scale remediation activities.

India is a world leader in agriculture for crops, second only to
China (Singh, 2016). Over 500 million tons of agricultural waste is
produced each year as a result of such farming activities, according
to the Ministry of New and Renewable Energy (MNRE). One of
India’s major crops is wheat straw, the conventional method of
handling wheat straw waste, after processing involves burning it in
the field which has significantly tainted the air (Li et al, 2007). Many
strategies have been developed to recycle waste, such as wheat straw
by creating biochars, these entities have the potential to be used to
treat wastewater, sequester carbon dioxide, and remediate soil
because of their often high surface area and micro porosity
(Manyà, 2012; Wang et al, 2015). Biochar is produced from
lignocellulosic biomass waste as the major product from slow
pyrolysis (Yaashikaa et al, 2020a; Eltaweil et al, 2022). In
addition to having a high carbon content and high cation
exchange capacity, biochar can also possesses an alkaline nature,
depending on its parent feedstock (Rizwan et al, 2016). Various
forms of biomass, industrial waste, and agricultural wastes such as
coconut husks, rice straw and corncobs are routinely pyrolysed
slowly to produce biochar for commercial applications such as
domestic water filters (Ahmed et al, 2016). The type of biomass,

heating rate, pyrolysis process, and residence time all have a
substantial impact on the characteristics of the produced solid
material (Zhang et al, 2017).

In the current work, two materials were created and denoted as
BC-I and BC-II, their naming is based around two pre-treatment
regimes investigated: (I) leaching in deionised water, drying
followed by milling (physicochemical-physical) and (II) milling
followed by leaching in deionised water, and then drying
(physical-physicochemical) (Taylor et al, 2019). The feedstocks
were then carbonised at the lower end of the pyrolysis
temperature range (400°C). The resulting chars once cleaned
where characterised using nitrogen physisorption (surface area
and porosity measurements), Attenuated Total Reflectance-
Fourier Transform Infrared Spectroscopy (ATR-FTIR),
thermogravimetric analysis, elemental analysis (CHN), and
Scanning Electron Microscopy. Rhodamine B (RhB) and
Methylene Blue (MB) have been chosen to serve as model dyes
and Table 1 lists their characteristics. These dyes were chosen due to
their inability to naturally degrade in water, interacting with
biodiversity and damaging aquatic ecosystems (Waghchaure et al,
2022). For the adsorption of RhB and MB by BC-I and BC-II, the
effects of pH, duration studies, amount of adsorbent, concentration
studies, adsorption kinetics, and adsorption isotherms were
examined in this study. The innovative aspect of the research is
to convert waste materials into efficient and ecologically friendly
adsorbent materials from a more environmentally favorable and
carbon neutral source, wheat straw.

2 Experimental section

2.1 Reagents

Locally sourced wheat straw from the Mansa district of Punjab,
India was collected. Sodium hydroxide pellets (minimum assay
97.0%) were purchased from Thermo Fisher Scientific India Pvt.
Ltd. and hydrochloric acid (extrapure) was from FINAR. Ethanol
(absolute) and acetone (99.8%) were from Changshu Hongsheng
Fine Chemical Co., Ltd. Rhodamine B (≥95%) was purchased from
Sigma Aldrich, India. Methylene Blue (>90%) was purchased from
CDH (Central Drug House). In this experiment, all solutions were

TABLE 1 Physical and chemical properties of RhB and MB dyes.

Dye IUPAC name Chemical
formula

Chemical structure Mol. Wt.
(g mol−1)

Λmax
(nm)

RhB 9-(2-Carboxyphenyl)-6-(diethylamino)-N,N-diethyl-3H-
xanthen-3-iminium chloride

C28H31ClN2O3 479.02 554

MB [7-(dimethylamino) phenothiazin-3-ylidene]-
dimethylazanium; chloride

C6H18N3ClS 319.90 664
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made with deionized water. Without additional purification,
analytical-grade chemicals were employed.

2.2 Synthesis of biochar

The synthesis of the wheat straw adsorbent materials was
investigated using two methods, illustrated in Figure 1. The first
method involved the physical cutting of wheat straw to 1-2 cm
pieces. The cut staw was then leached in deionised water (10 g/L) for
24 h at room temperature. The leached wheat straw was then
separated using vacuum filtration and dried in Jupiter
Engineering Works Hot Air Oven for 24 h at 105°C. The dried
wheat straw was milled using a Retsch GM200 Grindomix knife mill
and was sieved through a 0.25 mm sieve using a Retsch
AS200 Vibratory Sieve Shaker.

The second protocol utilised the cut wheat straw waste in
method-I and milled it using a Retsch GM200 Grindomix knife
mill, followed by sieving (0.25 mm) using the same vibratory sieve
stack mentioned above. This fraction was subsequently leached and
separated using vacuum filtration and dried in the same manner as
in method-I. The leached wheat straw feedstocks obtained through
the two pre-treatment protocols were pyrolyzed in a Jupiter
Engineering Works single zone tube furnace under nitrogen
(99.99%) at 400°C, 10°C/min, holding for 10 min before cooling
to ambient temperature. The resultant carbonised straw was washed
with ethanol and acetone to remove bio-oil/tar residues liberated
under the pyrolysing environment (until the washings ran from

yellow to colourless), followed by drying at 105°C overnight. The
collected samples were designated as BC-I and BC-II.

2.3 Characterization of solid samples

Using a Perkin Elmer FTIR spectrometer, FTIR spectra of
samples between 400 cm−1 and 4,000 cm−1 were obtained.
Proximate analysis of the raw wheat straw feedstock was carried
out using a LECO 701 thermogravimetric analyzer at ~1.00 g scale
where moisture, devolatilization, and ash were measured.
Thermogravimetric analysis was carried out as follows: ambient
to 107°C at 3°C/min under nitrogen, holding for 15 min (moisture
phase) before heating from 107°C to 950°C at 5°C/min, holding for
7 min (volatile phase) before cooling to 600°C. This was followed
by an ashing phase in air from 600°C to 750°C at 3°C/min, before
cooling to ambient temperature. Fixed carbon was calculated by
subtracting the final ash mass from the sample mass before
combustion. Ultimate analysis of all feedstocks was acquired
using a LECO Truspec CHN Combustion analyzer using sample
sizes of 50.00–70.00 mg. Scanning Electron Microscopy (SEM)
images were collected via a Zeiss EVO 60 instrument at 10−2 Pa
and an electron acceleration voltage of 20 kV. Powders were
adhered to a coated conductive carbon tape and attached to the
specimen holder. Available surface area and porosity was
measured using a Micrometrics TriStar porosimeter, prior to
analysis samples were degassed for 3 h at 110°C under a
nitrogen capillary feed.

FIGURE 1
Schematic representation for the synthesis of BC-I and BC-II. BC-I originating from Method-I and BC-II deriving from Method-II.
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2.4 Characterization of liquid samples

On a Thermo scientific UV-Vis spectrophotometer, the
concentration of RhB in a solution was measured using the
characteristic peak at 554 nm using a 3.5 mL quartz cuvette with
a path length of 1 cm, over a course of seven concentrations.
Supplementary Figure S1 shows the calibration plot for RhB
concentration in a solution via UV detection, presenting a high
level of experimental accuracy (R2 = 0.99797). For the case of MB,
the concentration of the solution was measured using the
characteristic MB peak at 664 nm, over a series of dilution
factors resulting in a calibration plot where R2 = 0.99874,
Supplementary Figure S1.

2.5 Dye adsorption experiments

Experiments were ran at ambient temperature, where a 100 ppm
stock solution of RhB and MB were diluted to different
concentrations (5, 7.5, 10, 12.5, 15, and 17.5 ppm) in borosilicate
vials (30 mL). The pH of each solution was monitored and adjusted
for the following, 2, 4, 6, 8, 10, and 12 using 0.1 M NaOH and 0.1 M
HCl using a Metrohm Eco Titrator. To evaluate the dye adsorption
by the produced materials (BC-I and BC-II), the colour change of
RhB and MB dye solutions were monitored while they were
constantly agitated using magnetic stirring at 500 rpm. Aliqots
were removed periodically for kinetic studies, the BC-I or BC-II
materials were separated via microcentrifugation using an
Eppendorf Centrifuge 5,425 at 9,000 rpm for 5 min. After
analysis by UV-Vis, the liquid was added back into the reaction
along with the separated adsorbent.

To determine the effect of adsorbent dosage, 15 mL of each dye
solution was treated with 2, 4, 6, 8, 10, 12, and 14 mg of RhB
adsorbent, whereas 2, 3, 5, 6, 7, 9, and10 mg for MB the same masses
were used, stopping at 10 mg as no further benefit was found by
using more adsorbent after 6 mg. The initial concentration of each
dye was set at 10 ppm where the solution was fixed to the ideal pH =
4 for RhB adsorption, 8 mg of BC-I and BC-II adsorbent were added,
and the reaction time range was set from 5 to 1,350 min for BC-I and
5–940 min for BC-II. In contrast, MB was adjusted to optimum
pH = 8, 6 mg of adsorbent (BC-I and BC-II) was added, the initial
concentration was 10 ppm and the reaction time range was set from
5 to 490 min for BC-I and 5–410 min for BC-II, respectively. Eq. 1
expresses the dye removal rate:

Dye removal rate � Co –Ce( )
Co

× 100% (1)

where Co denotes the initial dye concentration of the solution and Ce

denotes the dye concentration of the solution at adsorption
equilibrium.

3 Results and discussion

3.1 Feedstock and adsorbent
characterization

The surface area, pore volumes, and pore diameters of BC-I and
BC-II were obtained using the BET (Brunauer-Emmett-Teller)
method and the BJH (Barrett-Joyner-Halwnda) method,
respectively, as shown in Supplementary Figure S2; Table 2. The
isotherm stacked plots shown in Supplementary Figure S2 can be
categorized as Type IV. Mesoporous adsorbents exhibit type IV
isotherms and feature pores with a size range of 2–50 nm. The
surface areas of BC-I and BC-II determined using the BET method
were 6.284 m2/g and 20.754 m2/g, respectively. The inset image in
Supplementary Figure S2 shows the BJH plots for both BC-I and BC-
II, these clearly indicate that pores present are largely below 5 nm,
where the average pore sizes shown in Table 2 are 9.96 nm and
7.78 nm for BC-I and BC-II, respectively. This means that the pre-
treatment protocol has developed twomaterials of differing available
surface areas and porosities, as BC-II was found to have a pore
volume 3.5x higher than BC-I.

Table 3 presents the physical properties of the feedstocks and
adsorbent materials. The choice of an effective thermal conversion
method is significantly influenced by the moisture content. For a
process like a pyrolysis to function properly, the biomass moisture
content must not be more than 10%–14% (Danish et al, 2015). The
fact that the unleached and leached samples have a moisture content
ranging between 5% and 7% demonstrated the suitability of the raw
materials for the manufacture of biochar. The ash content of the
wheat straw was found to be naturally higher than other reports
(Arvelakis et al, 2001; Skoglund et al, 2013; Huang et al, 2017). This
value was substantially driven down by water washing (leaching), a
technique known for the extracting and solubilising water soluble
elements such as K, Na, Cl, Mg and to a lesser degree, Ca, S, and Si
which often require elevated temperatures for effective removal
(Taylor et al, 2019; Alabdrabalameer et al, 2020; Taylor et al,
2020). Table 3 shows that there is a slightly higher ash value for
the second pre-treatment protocol. However, this value could infact
be similar as the first pre-treatment protocol due to a large amount
of fixed carbon present in the leached (method-I) sample. The
purpose of removing the ash from the wheat straw was to
develop the surface area of the material for the pyrolysis step by
removing non-carbon entities which could promote or hinder
pyrolysis reactions. An example is that alkali metals have been
found to previously promote char degradation reactions at high
temperatures (Saddawi et al, 2012). Additionally, metal sites could
inhibit the adsorption of dye molecules or in contrast selectively
chelate with the organic molecules (Rana et al., 2018). Unless
impregnated directly with a known concentration of such a
metal, ash content would act as a rogue entity where adsorption

TABLE 2 BET surface area, pore diameter, and pore volume for BC-I and BC-II.

Sample BET surface area (m2/g) Pore diameter (nm) Pore volume (cm3)

BC-I 6.284 ± 0.037 9.961 0.010

BC-II 20.754 ± 0.193 7.783 0.035
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could not be effectively controlled. Interestingly, the leached
(method-I) sample that possessed a high fixed carbon content
(Table 3) was also the sample which, after pyrolysis exhibited a
diminished surface area and pore volume (Table 2). Table 3 also
shows the CHN values of all the materials, after the leaching process
there has been an increase in carbon due to a reduction in ash.
Interestingly, the carbon value for both leached materials is similar
to one and other, where the method-I material has a reduced
nitrogen content. Only BC-I shows a mild increase in carbon
content from its pre-pyrolyzed counterpart 44.9% and 51.4%,
respectively. Whereas the BC-II material has a very similar
carbon content to its parent feedstock, 43.3% and 44.1%,
respectively. With this in mind, due to the low energy thermal
processing method used (400°C), the BC-I and BC-II materials,

although lower in ash still contain a high oxygen content 43.80% and
53.00%, respectively. Typically, higher pyrolysis temperatures are
used to remove oxygen from lignocellulosic matter.

The weight loss and derivative weight loss curves
(Supplementary Figures S3, S4 respectively) show stacked plots
for both the leached materials. Here one can observe the subtle
differences between the wheat straw post leaching, using the two
protocols. Before carbonization, samples were dried, as a result the
samples presented a small weight loss during the moisture phase,
illustrated in Table 3. As the temperature increased, there was a
sharp weight loss between 215 to 360°C, this is the main volatile
region. The greatest mass loss happened at 215–360°C, with a loss of
53.55% and 53.18% for method-I and method-II, respectively as
shown in Supplementary Figures S3, S4.

TABLE 3 Proximate and ultimate analysis of raw and leached feedstocks, as well as biochar samples (BC-I and BC-II).

Samples Moisture (wt%) Volatiles (wt%) Fixed carbon (wt%) Ash (wt%) C (wt%) H (wt%) N (wt%) O (wt%)a

Raw wheat straw 6.71 81.51 0.17 11.63 39.70 5.21 0.36 43.10

Leached (method-I) 5.23 79.79 10.76 4.22 44.90 6.35 0.07 44.46

Leached (method-II) 6.46 88.45 0.00 5.27 43.30 5.68 0.32 45.43

BC-I — — — — 51.40 3.27 1.53 43.80

BC-II — — — — 44.10 1.69 1.21 53.00

aOxygen is calculated by the summation of ash, C, H and N followed by subtracting from 100.

FIGURE 2
SEM micrographs of Wheat straw (A,B) before leaching, (C,D) after leaching (BC-II), (E,F) BC-I after pyrolysis and (G,H) BC-II after pyrolysis.
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Figure 2 depicts the SEM images of the wheat straw feedstock
before leaching, after leaching and after pyrolysis. Electron
microscope reveals the surface structure of biochar and gives an
elaborate elucidation regarding the dispersion of mesopores in the
post pyrolysis materials (Yaashikaa et al, 2020b). The surface
topography between the raw and leached wheat straw (Figures
2A, B vs Figures 2C, D, respectively) show that the pre-treatment
has caused some mild disruption to the ordered structure by causing
some breakages and separation to the wheat straw. Meanwhile,
following thermal processing at 400°C, the temperature at which
indicated by thermogravimetric analysis that the major volatile
components should now be removed. The thermal processing has
resulted in a very distorted surface morphology for both BC-I and
BC-II, Figures 2E–H, respectively. Figure 2E shows how the ordered
structure presented in Figure 2B has been fractured, folded in on
itself (Figure 2F) and segments are seen to be separating from the
parent grain. Figure 2G also shows the end of a wheat straw grain
and its natural pore system (Figure 2H). The temperature used was
not high enough to cause dramatic alterations to the ends of the
straw sections, instead the low pyrolysis temperature appears to have
only impacted the outer surface of the straw, increasing the surface
area and porosity of both the carbonised materials, mildly
(Supplementary Figure S2; Table 2).

Fourier Transform Infrared Spectroscopy spectra of the raw,
leached (method-I), leached (method-II), BC-I and BC-II biomass
waste samples are shown in Figure 3. The spectra of the samples
disclosed several functional groups that may be in charge of the dye
adsorption process. The hydroxy (-OH) stretching vibrations,
characteristic of moisture is identified at 3,400 cm−1 (Chen and
Li, 2020). The peak at 1,616 cm−1 are known to be C=C and C=O
stretches (Zhao et al, 2021). Both raw and leached materials showed

significant absorbance peaks at 1,382 cm−1, which were are identified
as C-H bending vibrations (Mupa et al, 2016). At 2033 cm−1, there
was additional evidence of C-H stretch. Primary alcohol stretching
vibrations, present in the lignin sections of the sample are
responsible for the peak at 1,100 cm−1 (C-O). The peak at
613 cm−1 is characteristic of the silicate minerals (Si-O-Si) found
in biochar samples, specifically from the retained ash. Peaks before
and after leaching were nearly the same. Method-II material showed
an extra peak at about 1730 cm−1, which is identified as lignin and
C=O unconjugated hemicellulose stretching vibrations, the latter
present due to the low pyrolysis temperature used (Moharm et al,
2022). For BC-I, the O-H group from adsorbed water is still situated
at 3,415 cm−1, this region appears more intense than previous
samples due to the natural hygroscopic nature of biochars (Chen
and Li, 2020). The vibrations of C-O stretching in cellulose and
hemicellulose are visible in the band at 1,102 cm−1, again present due
to the low pyrolysis temperature used which infers that full
devolatilization has not taken place. The stretching vibration of
C=C of aromatic components and lignin in the BC-I and BC-II is
what created the peak at 1,624 cm−1 (Zhu et al, 2014; Li et al, 2016;
Janu et al, 2021). The peak of BC-II at 1733 cm−1 is also identified as
C=O (COOH) vibrations in lignin (El-Sayed, 2011).

3.2 Adsorption studies

A series of dye adsorption tests were performed to assess the
viability of carbonized wheat straw materials for wastewater
treatment, specifically investigating the effect of solid pre-
treatment protocols on the produced material after thermal
processing. To mimic real world water ways and treatment

FIGURE 3
Attenuated Total Reflection Fourier transform infrared spectroscopy of Raw, method-I, method-II, BC-I and BC-II.
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facilities, the adsorbents were continuously stirred into the aqueous
RhB and MB solution at room temperature, opposed to a static
system. By agitating the suspension, diffusion of the dye molecule
into the bio renewable adsorbate as well as diffusion of the material
throughout the water sample can be achieved, preventing mass
transfer limitations. The mixtures were sampled periodically where
after centrifugation (9,000 rpm), the supernatant was utilized to
detect the absorbance at a maximum wavelength (λmax = 554 nm
and 664 nm) to determine the concentrations of RhB and MB dyes,
respectively. After analysis, the adsorbate and adsorbent were
returned to the stirred mixture.

3.2.1 Influence of pH on adsorption performance
The pH of the solution was found to have a profound effect on

the adsorption process. Figure 4 illustrates how pH in the solution
affects the removal of RhB and MB. Hence, pH correspondence was
studied for RhB and MB solutions between 2 to 12, regulating the
acidity of the solution with 0.1 M HCl or 0.1 M NaOH. In the batch
studies, dosage amounts of 8 mg of RhB at a concentration of
10 ppm and 6 mg of MB at a concentration of 10 ppm were used
to determine the optimum pH value. For RhB, the maximum

removal efficiency was achieved at pH 4, which was 90.44% for
BC-I and 91.38% for BC-II. At pH values lower than 4, RhB can be
detected as cationic and monomeric molecules. At pH > 4, RhB
(Zwitterionic form) in water may cluster to create a larger molecules
(dimers), as a result become too large to enter smaller pores in the
adsorbent. The attractive electrostatic contact among the carboxyl
and xanthene groups of the monomers accounts for the complex
accumulation of the zwitterionic form (Saddawi et al, 2012; Rana
et al., 2018).

For MB, optimal removal efficiency was achieved at pH 8,
which was 92.72% for BC-I and 92.52% for BC-II. At low pH, Poor
removal arises from the competition between H+ in the solution
and MB+, a cationic organic dye present in water. With an increase
in pH, the biochar surface starts deprotonated and accumulates
negative charges on the surface, which is beneficial for
electrostatically absorbing cationic MB dye. The electrostatic
contact between deprotonated hydroxyl (-O−) and deprotonated
carboxyl (-COO−) led to a reduction in adsorption capability in
highly alkaline solutions (pH > 8) (Aichour et al, 2018; Thabede
et al, 2020), according to a thorough analysis of the
aforementioned findings.

FIGURE 4
Influence of pH on the absorbance RhB and MB before and after adding BC-I (A,B) and BC-II (C,D).
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3.2.2 Influence of adsorbent dosage on adsorption
performance

Figure 5 exemplifies the impact of biochar dosage on the
efficiency of dye removal. The most significant variable
influencing the adsorption process is assumed to be the amount
of adsorbent present. Insufficient adsorbent dosage can result in poor
removal performance, whereas excessive adsorbent might result in
ineffective adsorption, leading to inefficient and non-sustainable
process. The dosage range trialed was from 2 to 14 mg in 15 mL
of RhB solution (10 ppm) at pH 4 (the optimized conditions shown
in Figure 4 and from 2 to 10 mg in 15 mL ofMB solution (10 ppm) at
pH 8. It was shown that increasing the dosage of the adsorbent to
8 mg for RhB dye and 6 mg for MB dye improved the rate of dye
removal, for both dyes. This is because as the dosage is increased, a
greater number of adsorption sites are made available for the dyes to
interact with improving the dye removal rate, without saturating the
mixture with idol adsorbent (Gad and El-Sayed, 2009; Gokulan et al,
2019; Sterenzon et al, 2022). This is seen as the dose amount
increased, leading to a static adsorption percentage for both dyes
(Figures 5A, B).

3.2.3 Influence of initial dye concentration on the
adsorption performance

For the batch sorption experiments, BC-I and BC-II were used,
with constant adsorbent dosages of 8 mg for RhB and 6 mg for MB.
The goal was to examine the dye removal concerning different initial
dye concentrations (5, 7.5, 10, 12.5, 15, and 17.5 ppm). According to
Figures 5C, D, when dye concentration rises, the rate removal rate
falls. At 7.5 ppm for RhB and MB dyes for BC-I, the removal
efficiency was observed to be 88% and 94.86%, respectively,
however at 17.5 ppm for the same dyes, 42.47% and 50%
elimination was observed.

Similarly, for BC-II, the removal effectiveness for RhB andMB dyes
was 86% and 84%, respectively at 7.5 ppm, but under comparable
circumstances, the dyes concentration of 17.5 ppm demonstrated 25%
and 55% elimination. At low concentrations, the adsorbent had
adequate active sites. These vacant active sites on the adsorbent were
filled with RhB and MB dyes, and saturation of the adsorbent surface
was feasible when the dye concentration was increased. This is the
reason for the high removal rate at low concentrations. The restricted
number of adsorbent surface sites causes saturation (Sara et al, 2016;

FIGURE 5
Influence of dose and initial dye concentration on removal rate by method-I (A,C), and method-II (B,D).
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Subratti et al, 2021). The removal efficiency will decline when there are
more RhB andMB dye species in the solution than there are active sites,
this alludes to a rise in dye concentration.

3.2.4 Influence of duration on adsorption
performance

Organic molecules in water can diffuse and adhere during the
contact duration, which is a critical component in adsorption studies.
For RhB dye, 10 ppm solutions regulated to pH 4 was introduced and
independently to BC-I and BC-II. The suspensions weremixed as before
and the time for maximum dye removal was assessed. Parallel to this,
10 ppm solutions regulated to pH 8 of MB were trialed using the same
rate of agitation (500 rpm). For RhB using the optimized extraction
conditions, BC-I was found to reach maximum uptake after 900 min
(88.00%) whereas the BC-II material, previously shown to have a higher
surface area and pore volume (Table 2), reachedmaximum extraction at
600 min (94.57%), 33% more efficient than BC-I. For the case of MB,
Figure 6 shows that removal of this dye is quicker and optimized at
higher pH than RhB. When introduced to the carbonized wheat straws
BC-I presented maximum extraction at 300 min (94.86%) vs. 170 min
for BC-II (92.77%). Once again, BC-II proved to be more efficient as an
adsorbate, reaching maximum dye removal in almost half the time as
BC-I. Dye extraction profiles are illustrated in Figure 6 where Figure 6A
are for BC-I and Figure 6B are for BC-II. The accessibility of more
surface adsorption sites for adsorption caused the dye capture rate to
increase over time. Dye adsorptive capacity decreased with time due to
low dye concentration in the solution and partially or entirely covered
adsorption sites of adsorbent (Devi and Saroha, 2017; Cheng et al, 2021).

3.3 Adsorption kinetics

The extraction of RhB and MB were investigated using two
alternative kinetic models: pseudo-first-order and pseudo-second-
order models. They were assessed for rate constants, adsorption
quantity, and correlation coefficient (Vahidhabanu et al, 2019). The

premise of the pseudo-first-order model is that the rate of change in
solute adsorption is proportional to the difference between saturation
concentration, and the volume of adsorptive material adsorbed over
time. According to the Pseudo-second-order kinetic theory, interactions
such as ion sharing and transferring among the adsorbent and
adsorbate control the adsorption rate. In general, the Pseudo-first-
order model demonstrates the presence of physical adsorption and the
Pseudo-second-order model demonstrates chemical adsorption.

Pseudo-first-order and pseudo-second-order models were
investigated using Eqs 2, 3, respectively, to comprehend the
adsorption phenomenon;

log Qe − Qt( ) � logQe − K1t

2.303
(2)

t
Qt

� 1
K2Q2

e

+ t

Qe
(3)

where, Qe and Qt represent the amount of dye adsorbed (mg/g) at
equilibrium and at a time, t (min.), respectively, K1 and K2 represent
the rate constant for pseudo-first-order (min−1) and pseudo-second-
order (g mg−1 min−1) adsorption, respectively (Xiao et al, 2018;
Ganguly et al, 2020).

The parameters found by fitting the experimental data to the
kinetic Eqs 2, 3 are reported in Table 4 along with the fitting
outcomes in Supplementary Figure S5. The correlation coefficient
value must be around 1, and the adsorption quantity (Qe) value
must be close to the experimental value, depending on whether the
adsorption is well suited for pseudo-first-order or pseudo-second-
order (Yaashikaa et al, 2020b). In contrast to the pseudo-first-order
equation, which offered excellent fits to the experimental data, the
pseudo-second-order model for BC-I and BC-II did not perform
well. For the Pseudo-first-order model, the theoretical adsorption
quantity is in good accordance with the experimental adsorption
quantity for both the dyes by BC-I and BC-II. For BC-I, the
correlation coefficient values for the Pseudo first-order model are
0.9545 for RhB and 0.9895 for MB. For BC-II, the correlation
coefficient values for the pseudo-first-order model are 0.9989 for

FIGURE 6
Influence of duration on removal rate by BC-I (A), and BC-II (B).
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RhB and 0.9933 for MB. As a consequence, the system adheres to a
pseudo-first-order kinetics model with high correlation coefficient
values and adsorption quantity for both RhB and MB by BC-I and
BC-II. This is due to the physical adsorption that takes place between
dyes and the carbonized wheat straw adsorbents in water.

3.4 Adsorption isotherm

An isotherm is a curve that correlates an adsorbate’s
equilibrium concentration with its capacity to adsorb at room
temperature, and it can be used to illustrate how adsorbate and
adsorbent interact.

Two isotherm models, including the Langmuir and Freundlich
models were experimentally analyzed. The Langmuir adsorption
isotherm describes homogenous adsorption which leads to a
monolayer covering the adsorbent surface with a limited number
of identical sites. The Langmuir equation is represented as follows:

Ce

Qe
� 1
KLQM

+ Ce

QM
(4)

Where Ce, Qe, QM, and KL stand for, in that order, the
adsorbate’s equilibrium concentrations (mg/L), the ratio of dye
adsorbed to adsorbent per gram at equilibrium (mg/g), the
highest possible monolayer coverage adsorption capacity (mg/g),
and the Langmuir constant (L/mg) (Fan et al, 2016).

The Freundlich adsorption isotherm shows a multilayer
coverage because the adsorbates are heterogeneously adsorbing at
the surface of the adsorbents. The Freundlich equation is
represented as follows:

logQe � logKF + 1
n
logCe (5)

Where Ce, Qe, and KF stand for, respectively, the adsorbate’s
equilibrium concentration (mg/L), the ratio of dye adsorbed to

adsorbent per gram at equilibrium (mg/g), the adsorption
intensity, and the Freundlich constant (mg1−1/n L1/n g−1) (El-
Hosiny et al, 2018; Maruthapandi et al, 2018).

In addition to the model fits of the isotherm Eqs 4, 5 for RhB and
MB by BC-I and BC-II, the parameters derived by employing these
equations are shown in Table 5. The R2 value of the Langmuir and
Freundlich model is close to 1 as shown in Table 5. The experimental
data matches the Freundlich model more closely than the Langmuir
model, as shown by the correlation coefficients (R2, Table 5) along
with the fitting model as shown in Supplementary Figure S6. These
findings disclosed that RhB and MB were adsorbed onto the BC-I
and BC-II in a heterogeneous manner, ensuring the multilayer
coating of dye molecules on the biochar outer surface.
Adsorption is facilitated as values of “n” are greater than unity.
The adsorption capacity would be impacted by the carboxyl group
because it belongs to the class of functional groups in biochar
(Figure 4). The cationic dyes RhB and MB may be adsorbed due
to the involvement of the carboxyl group, which has a net negative
charge and is possibly the major functional group.

4 FTIR of biochar after dye extraction

Figure 7 displays the ATR-FTIR spectra of BC-I and BC-II on
their own as benchmark spectra, followed by the materials after
maximum extraction of each dye, using their optimized
pH conditions (pH 4 for RhB and pH 8 for MB).

Additionally, the peaks that correspond to the dyes (RhB and
MB) will occur when mixing BC-I and BC-II with dye molecules. As
a result, peaks were shown to disappear, reappear, and vary. After
adsorption, more peaks at 2,935 cm−1 and 2,911 cm−1 were found
due to C-H bond stretching in aliphatic formation, demonstrating
the presence of RhB and MB dye on the surface of BC-I (Reza et al,
2020). After adsorption, a modest intensity peak for RhB and MB

TABLE 4 Pseudo-first-order and pseudo-second-order model variables were fitted to experimental data for the adsorption of RhB andMB dyes onto BC-I and BC-II.

Adsorbent Dyes Pseudo-first-order Pseudo-second-order

K1 (min) Qe (mg/g) R2 K2 (g mg−1min−1) Qe (mg/g) R2

BC-I RhB 0.0017 9.74 0.9545 0.0016 12.43 0.9984

MB 0.0143 22.97 0.9895 0.0015 19.53 0.9981

BC-II RhB 0.0029 13.51 0.9989 0.0011 5.47 0.9912

MB 0.0219 21.28 0.9933 0.0018 27.12 0.9939

TABLE 5 Variables calculated from Langmuir and Freundlich Isotherm models for the RhB and MB onto BC-I and BC-II.

Adsorbent Dyes Experimental Langmuir isotherm Freundlich isotherm

QM (mg/g) QM (mg/g) KL (L/mg) R2 n KF (mg1−1/nL1/ng−1) R2

BC-I RhB 19.99 20.40 5.64 0.9789 4.15 16.48 0.9853

MB 11.05 11.16 2.57 0.9570 2.66 11.99 0.9986

BC-II RhB 13.87 13.99 17.48 0.9927 2.81 7.29 0.9880

MB 17.16 17.93 2.17 0.9994 1.15 5.57 0.9932
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was seen at 1708 cm−1. The signal at 1733 cm−1 for BC-II, which was
due to C=O group of unconjugated lignin and hemicellulose,
disappears after RhB and MB dye have been adsorbed (Moharm
et al, 2022).

5 Conclusion

The proposed work puts forward an efficacious synthesis of
wheat straw biochar serving as an effective RhB and MB adsorbent.
The BC-II synthesized after method-II exhibited better performance
as revealed by its adsorption activity towards both dyes, this was
corroborated by an increase in available surface area and pore
volume. pH studies disclosed that the maximum removal rate
was 91.06% for RhB at pH 4% and 92.43% for MB at pH 8. To
evaluate the kinetic data, two kinetics models—pseudo-first-order
and pseudo-second-order models were employed. The adsorption of
dyes onto biochar was deemed to be well averred by pseudo-first-
order kinetics, considering the close agreement between theoretical
Qe and experimental Qe values. It depicts the adsorption intake rate
of dyes with R2 = 0.9989 for RhB and R2 = 0.9933 for MB. To
evaluate the isotherm data, Langmuir and Freundlich’s isotherms
were employed and the R2 value is satisfactory to confidently fit with
the Freundlich model. Besides addressing environmental concerns,
using wheat straw as the starting base for the creation of an
adsorbent offers a sustainable method for creating a viable,
reasonably priced adsorbent for the elimination of dye from
wastewater. To enhance the adsorption capabilities of
biorenewable derived materials, further free and or post processing
will need to take place to activate the biochar. Chemical and or
physicochemical activation will develop a pore architecture that will
increase pore volumes and available surface area.
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