

Chemical Engineering & Technology

LES of bubble column bubbly flows accounting SGS turbulent dispersion and added mass stress effects

Journal:	Chemical Engineering & Technology
Manuscript ID	ceat.202300142.R1
Wiley - Manuscript type:	Research Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Long, Shanshan; University of Nottingham Ningbo China, Mechanical, Materials and Manufacturing Engineering Yang, Xiaogang; Univ Nottingham Ningbo China, Mechanical, Materials and Manufacturing Engineering Yang, Jie; University of Hull, School of Natural Sciences Sommerfeld, Martin; Otto von Guericke Universitat Magdeburg, Fakultät für Verfahrens- und Systemtechnik Xue, Chenyang; University of Nottingham Ningbo China
Keywords:	Added Mass Stress, Bubble Column, LES Simulation, Mass transfer, Turbulent Dispersion

1 2		
3		Shanshan Long ¹
4 5		Xiaogang Yang ^{1,*}
6 7		Jie Yang ²
8		Martin Sommerfeld ³
9 10 11 12		Chenyang Xue ¹
13		LES of bubble column bubbly flow considering SGS turbulent diffusion effect and bubble oscillation
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29		The present study will demonstrate through Euler/Euler LES modelling that turbulent dispersion of bubbles can effectively indicate the impact of turbulent eddies on bubble dynamics, i.e. the bubble oscillation behavior. This finding builds on previous work using Euler/Lagrange LES modelling approach and leads to a significant improvement in predicting bubble lateral dispersion. Spatially filtered terms were proposed for the SGS turbulent dispersion and added mass stress force models, with a modification made to the SGS eddy viscosity to reflect bubble turbulent dispersion and oscillations. The proposed model substantially improves the prediction of bubble volume fraction distribution, bubble and liquid phase velocity profiles, turbulent kinetic energy spectrum, and mass transfer. Keywords: Added Mass Stress, Bubble Column, LES Simulation, Mass Transfer, Turbulent Dispersion ¹ Department of Mechanical, Materials and Manufacturing Engineering, The University of Nottingham Ningbo China, University Park, Ningbo 315100, PR China ² School of Natural Sciences, University of Hull, Hull, Hull, TUK
29 30 31 32	1	² School of Natural Sciences, University of Hull, Hull HU6 7RX, UK ³ Faculty of Process and Systems Engineering, Otto-von-Guericke-Universität Magdeburg, Zeppelinstraße 1, 06130 Halle, Magdeburg, Germany
33 34	2	*Corresponding author: Professor Xiaogang Yang Email: Xiaogang.Yang@nottingham.edu.cn
35 36 27	3	
37 38	4	1. Introduction
39 40	5	
41	6	When applying two-fluid model Euler/Euler large eddy simulation, the filtering process involves the use
42 43	7	of phasic 'function of presence' approach to the momentum equation by accounting for co-sharing of a
44 45	8	control volume by different phases. As a result, this leads to the terms denoting interfacial momentum
46	9	forces, contributed by the dot product of total stress term and gradient of 'function of presence' term,
47 48	10	and indicates the forces induced by the local flow perturbations at the interface of the second phase
49 50	11	(bubbles). The subsequent averaging (ensemble averaging for RANS turbulence or spatial filtering for LES
51	12	model) to the momentum equation and the interfacial momentum terms leads to the additional terms
52 53	13	that can be attributed to the drag and other parts that can be modelled as non-drag forces such as lift
54 55	14	force, added mass force and turbulent dispersion force (SGS-TDE) together with the added mass stress
56 57 58 59		1

force (SGS-AMS). In case of conducting two-phase LES, these interfacial momentum exchange terms need to be modelled in terms of the resolved quantities of the flow or filtered variables while taking into account the effect of unresolved fluctuating on sub-grid scale. It should be mentioned that most of the previously reported work on two-phase or three-phase LES has overlooked or neglected the unresolved sub-grid scale contributions. Several previous studies have also indicated the important role played by the turbulence terms of the interfacial momentum transfer on the bubble dynamics, in particular related to the added mass stress force which has proved to be effective in improving the phase distribution prediction, e.g. bubbly mixing layer [1], air-lift [2], and vertical liquid-liquid pipe flows [3].

Due to the bubble's dynamic response to the surrounding carrier phase, the bubble mass centre changes with its entrainment, which leads to bubble oscillations and tumbling motion [4]. To consider the bubble dynamic motion using Euler/Euler LES modelling approach, one may interpret that the interactions between bubble and the surrounding turbulent eddies give rise to the bubble deformation in case of no bubble coalescence or break-up taking place as shown in Figure 1. Thus, the interphase forces acting on the dispersed phase are strongly affected by interactions between the bubbles and the turbulent shear caused by nearby turbulent eddies, and these interfacial momentum transfer must be properly implemented in the sub-grid scale LES [5-9].

By taking both phase velocity fluctuations and bubble volume fraction fluctuations into account, the spatial filtering of the drag force and added mass force terms will give rise to the extra terms proportional to the area density and slip velocity correlation i.e., turbulent dispersion, and the correlation of bubble volume fraction and gradient of SGS stress. Based on the SGS eddy diffusivity hypothesis, the SGS-TDF and SGS-AMS will be used to mimic the turbulent dispersion effect in the framework of Euler/Euler two-fluid model approach, revealing the bubble dynamics in the bubble column in the present study. The modified SGS eddy viscosity v_T accounting for the bubble dynamic response to the turbulent eddies induced shear will be implemented in modelling the SGS-TDF and SGS-AMS terms [10].

2. Mathematical modelling and numerical methods

2.1 Governing equations

The two-fluid model based LES modelling has been adopted in the present study. By applying the phase-weighted filtering to mass and momentum conservation equations, the governing equations can be written as

$$\frac{\partial}{\partial t}(\rho_k \alpha_k) + \nabla \cdot (\alpha_k \rho_k \boldsymbol{u}_k) = 0 \tag{1}$$

 $\frac{\partial}{\partial t}(\alpha_k \rho_k \boldsymbol{u}_k) + \nabla \cdot (\alpha_k \rho_k \boldsymbol{u}_k \boldsymbol{u}_k) = -\nabla \cdot (\alpha_k \boldsymbol{\tau}_k) - \alpha_k \nabla p + \alpha_k \rho_k g + \boldsymbol{M}_{F,k}.$ (2)

where u_k is the filtered velocity vector for phase k in grid-scale, given as $\tilde{u}_k = u_k + u'_k$ while \tilde{u}_k is the instantaneous velocity and u'_k stands for the sub-grid scale (SGS) fluctuation, which needs to be modelled. The terms on the right-hand side of Equation (2) respectively represent the stress, the pressure gradient, gravity and the filtered interphase momentum exchange, which arises from the actions of the interphase forces. The stress term is given by

> $\tau_k = -\mu_{eff} \Big(\nabla \boldsymbol{u}_k + (\nabla \boldsymbol{u}_k)^T - \frac{2}{3} I (\nabla \cdot \boldsymbol{u}_k) \Big)$ (3)

where μ_{eff} is the effective viscosity of the liquid phase, which may be assumed to be composed of the contributions from the molecular viscosity, the turbulent eddy viscosity and the bubble induced turbulence, i.e.

$$\mu_{eff} = \mu_{L,L} + \mu_{T,L} + \mu_{BI,L} \,. \tag{4}$$

The extra viscosity due to the bubble-induced turbulence is now usually modelled based on Sato's model, given by

$$\mu_{BI,L} = \rho_L C_{\mu,BI} \alpha_G d \quad {}_B |\boldsymbol{u}_G - \boldsymbol{u}_L| \,. \tag{5}$$

However, as will be discussed later in this section, this viscosity due to the bubble-induced turbulence may also be contributed by the relative bubble dynamic response to those turbulent eddies that have equivalent or slightly larger length scale and entrapped the bubbles [11, 12]. The filtered momentum exchange term can be classified as different contributions from the interphase forces, defined by

$$\boldsymbol{M}_{F,L} = -\boldsymbol{M}_{F,G} = \boldsymbol{M}_{D,L} + \boldsymbol{M}_{L,L} + \boldsymbol{M}_{AM,L} + \boldsymbol{M}_{TD,L} + \boldsymbol{M}_{AMS,L}$$
(6)

where the terms on the right-hand side of Equation (6) are interphase forces acting on the bubbles that

are caused by the filtered drag, lift and added mass plus turbulence dispersion and so-called added mass stress. The formulations of the filtered drag, lift and added mass forces employed in the Euler/Euler LES modelling are summarised in Table 1.

Table 1

Forces	Expressions	
Drag	$\boldsymbol{M}_{D,L} = \frac{3}{4} \alpha_G \rho_L \frac{C_D}{d_B} \boldsymbol{u}_G - \boldsymbol{u}_L (\boldsymbol{u}_G - \boldsymbol{u}_L),$	
	$C_D = \frac{2}{3} E_O^{\frac{1}{2}}, E_0 = \frac{g \Delta \rho d_B^2}{\sigma}$	
Lift	$\boldsymbol{M}_{L,L} = \rho_L C_L (\boldsymbol{u}_B - \boldsymbol{u}_L) \times (\nabla \times \boldsymbol{u}_L),$	
	$(min[0.288tanh(0.121Re_B), f(E'_0)] = E'_0$	≤4
	$C_L = \left\{ \begin{array}{l} f(E'_O) & 4 < E'_O \end{array} \right.$	< 10
	$(-0.29$ E'_{0}	>10
	$E'_{O} = \frac{g(\rho_{l} - \rho_{g})d_{h}^{2}}{\sigma}, d_{h} = d(1 + 0.163E'_{O}^{0.757})^{1}$	/3
Added	$\boldsymbol{M}_{AML} = \alpha_{GOL} C_{AM} \left(\frac{D\boldsymbol{u}_{G}}{-} - \frac{D\boldsymbol{u}_{L}}{-} \right)$	
mass	-AM, L $-CFL-AM Dt Dt J$	

The turbulent dispersion term $M_{TD,L}$ can be obtained by phase-weighted filtering the instantaneous interphase drag force term, expressed by Equation (7) after taking a certain derivations and simplifications, given by

$$\boldsymbol{M}_{TD,L} = \frac{3}{4} \rho_G \frac{C_D}{d_G} |\boldsymbol{u}_G - \boldsymbol{u}_L| \left(\frac{\overline{\alpha'_G u'_G}}{\alpha_G} - \frac{\overline{\alpha'_L u'_L}}{\alpha_L} \right) = \frac{3}{4} \rho_G \frac{C_D}{d_G} |\boldsymbol{u}_G - \boldsymbol{u}_L| \frac{\nu_{SGS}}{\sigma_{SGS}} \left(\frac{\nabla \alpha_G}{\alpha_G} - \frac{\nabla \alpha_L}{\alpha_L} \right).$$
(7)

The bubble oscillation in the bubble column bubbly flow can be thought of as a result of the interactions between bubbles and the surrounding turbulent eddies in the frame of Eulerian-Eulerian modelling, leading to the deformation of the bubble shapes if bubbles are not subjected to coalescence and breakup. The liquid-phase turbulence eddy viscosity can be modified as the sum of the filtered turbulent shear and SGS eddy viscosities to reflect the modification due to bubble dynamic response to the turbulent eddies, i.e.

$$\mu_{T,L} = \rho_L (C_s \Delta)^2 |S| (1 + C_b \alpha_G \frac{\lambda}{d_B} \left(\frac{1}{1 + St_{SGS}}\right)^{\frac{3}{2}})$$
(8)

93 where λ represents the different turbulent length scales in the range between the integral and 94 Kolmogorov scales ($L > \lambda > \eta$), *Cs* is a model constant, *S* is the characteristic filtered rate of strain tensor and 95 St_{SGS} is the local Stokes number expressed as $St_{SGS} = \frac{\tau_{bubble}}{\tau_{L,SGS}}$. The bubble response time scale can be 96 estimated using $\tau_{bubble} = \frac{4(\rho_G + 0.5\rho_L)d_B^2}{3\mu_L C_D Re_B}$ while the characteristic time of turbulent eddies in sub-grid scale 97 can be estimated by $\tau_{L,SGS} = \frac{\Delta}{u'_{L,SGS}}$. Since $\alpha_L + \alpha_G = 1$ in two-phase flow system and $\nabla \alpha_L + \nabla \alpha_G = 0$, this 98 would yield Equation (9):

$$\boldsymbol{M}_{TD,L} = C_{TD} \frac{3}{4} \rho_G \alpha_G \frac{C_D}{d_G} |\boldsymbol{u}_G - \boldsymbol{u}_L| \frac{(C_s \Delta)^2 |S| \left(1 + C_b \alpha_G \frac{\Delta}{d_B} \left(\frac{1}{1 + St_{SGS}}\right)^{\frac{3}{2}}\right)}{\sigma_A} \left(\frac{1}{\alpha_L} + \frac{1}{\alpha_G}\right) \nabla \alpha_L$$
(9)

For simplicity, Equation (9) is referred to as the modified sub-grid turbulent dispersion force model (SGS-TDF) hereafter. As shown in Figure 1, the filtering of the instantaneous added mass force will also result in the mean and turbulent contributions in SGS scale when taking the filtering to the instantaneous added mass force, which can be expressed as:

$$\overline{\chi_{G}}\widetilde{\boldsymbol{M}}_{AM,L} = \chi_{G}\rho_{L}C_{AM}\left(\frac{D\boldsymbol{u}_{L}}{Dt} - \frac{D\boldsymbol{u}_{G}}{Dt}\right) = \alpha_{G}\rho_{L}C_{AM}\left(\frac{\partial\overline{\boldsymbol{u}}_{L}}{\partial t} + \overline{\boldsymbol{u}}_{L} \cdot \nabla\overline{\boldsymbol{u}}_{L} - \frac{\partial\overline{\boldsymbol{u}}_{G}}{\partial t} + \overline{\boldsymbol{u}}_{G} \cdot \nabla\overline{\boldsymbol{u}}_{G}\right) + \rho_{L}C_{AM}\left(\frac{\partial\overline{\boldsymbol{u}}_{L}}{\partial t} + \overline{\boldsymbol{u}}_{L} \cdot \nabla\overline{\boldsymbol{u}}_{L} + \overline{\boldsymbol{u}}_{L} \cdot \nabla\overline{\boldsymbol{u}}_{L}\right)$$

$$\left(\nabla \cdot \alpha_{G}\overline{\boldsymbol{u}_{L,i}'\boldsymbol{u}_{L,j}'} - \nabla \cdot \alpha_{G}\overline{\boldsymbol{u}_{G,i}'\boldsymbol{u}_{G,j}'}\right) + \alpha_{G}\rho_{L}C_{AM}\left(\frac{\partial\overline{\boldsymbol{u}}_{L}'}{\partial t} + \overline{\boldsymbol{u}}_{L} \cdot \nabla\overline{\boldsymbol{u}}_{L}' + \overline{\boldsymbol{u}}_{L}' \cdot \nabla\overline{\boldsymbol{u}}_{L}\right)$$

$$(10)$$

107 It should be noted that the consequence of applying spatial filtering to the added mass force would deal 108 with the correlations such as $\alpha_k \overline{u'_{k,i}u'_{k,j}}$ as indicated in the second and third parts of the right-side of 109 Equation (10), which functions like the Reynolds stress but also correlates with the local bubble volume 110 fractions. It is referred to as the SGS added mass stress (SGS-AMS). By employing the eddy diffusivity 111 hypothesis, the SGS added mass stress (SGS-AMS) can be written as

$$\mathbf{M}_{AMS} = \alpha_{G} \rho_{L} C_{AM} \left(\frac{\nabla \cdot (\alpha_{L} \mathbf{\tau}_{L})}{\alpha_{L} \rho_{L}} - \frac{\nabla \cdot (\alpha_{G} \mathbf{\tau}_{G})}{\alpha_{G} \rho_{G}} \right)$$

114
115
$$\left[\frac{1}{\alpha_{L}\rho_{L}} \nabla \cdot \left(\alpha_{L}\rho_{L}(1-\alpha_{G})(C_{S}\Delta)^{2} | S_{L} | S_{L} \left(1+C_{b}\alpha_{G}\frac{\lambda}{d_{B}} \left(\frac{1}{1+St_{SGS}} \right)^{\frac{3}{2}} \right) \right) - \frac{1}{\alpha_{G}\rho_{G}} \nabla \cdot \left(\alpha_{G}\rho_{L}(1-\alpha_{G})(C_{S}\Delta)^{2} \right)^{\frac{3}{2}} \right)$$
116 (18)

117 It would be expected that the SGS-AMS force will also have a significant impact on the bubble dynamics118 and interfacial mass transfer between the bubbles and liquid phase.

²⁸ 119 **2.2 Experimental and numerical modelling**

The proposed SGS turbulent dispersion and added mass stress models were tested by comparing the simulation results with the detailed experimental data as reported by Sommerfeld et al. [4] and the author's repeated experiment using the PIV. Both the modelled circular bubble column and the actual bubble column used in the experiments have an internal diameter of 140 mm, which was filled with a liquid level height of 0.65m. The experimental bubble column has a gas sparger that contains 50 evenly distributed capillaries at 0.4 mm in diameter, injecting the gas from the annular region within 100 mm in diameter. The gas flow rate was controlled by maintaining 160 L/H, corresponding to the averaged bubble volume fraction of 1.26% with the number-averaged bubble diameter of 2.55 mm. Both PIV (Dantec Dynamics) and a high-speed camera (Nikon AF-S 24mm f/1.8G ED) were used to obtain the bubble velocity and volume fraction distribution, as shown in Figure 2.

In the simulation, the number weighted bubble size distribution (BSD) among the entire bulk phase obtained in the experiment was adopted to account for the actual bubble size change. Considering bubble volume fraction for the present study $\alpha_G < 0.04$, the bubble number density transport may be more appropriately used to describe the bubble size distribution if bubbles move with small collision, negligible breakup and coalescence rates, given by

39 138

 $\frac{\partial n}{\partial t} + \nabla \cdot (\boldsymbol{u}_G \mathbf{n}) = 0. \tag{11}$

139 The Sauter mean diameter can then be obtained by

$$d_{G,32} = \left(\frac{6\alpha_G}{\pi n}\right)^{1/3}.$$
 (12)

As the local bubble equivalent diameter is in the same order as the SGS grid scales, therefore, the bubble size can be characterised with the 0-th moment of the bubble size distribution i.e., only taking the local mean bubble diameter, i.e. specification of one equivalent bubble diameter rather than a range of bubble sizes. This MUSIG approach requires much less computational effort and offers a surprisingly good agreement with available experimental data [13]. For Euler/Euler LES modelling, the boundary conditions were specified as described below. At inlet, a mass flow rate was specified, corresponding to the experimental conditions used by Sommerfeld et al. [4] and the author's experiment. At the top surface of

the reactor, a pressure-constant boundary is specified. No-slip condition was applied to the inner wall of the bubble column. A central-differencing discretisation scheme was used for convective and diffusive terms in the momentum equations, while a second-order backward Euler scheme is employed for the transient term. The mesh set-up for the bubble column for the current LES modelling as shown in Figure 3 was satisfied the condition that the cell size of $\Delta z^{+}=100$ in the main flow direction and $\Delta r^{+}=5$ in the radial direction with a growth rate of 1.2 and total 95,400 cells. With caution and from the perspective of the computational cost, $\overline{d}_B/\Delta = 0.6375$ in the core-region was used in the LES modelling. This grid resolution adopted is considered to be reasonably close to Milelli's limit [14]. In the LES simulation, the time step δ t_E was chosen in terms of CFL criterion, min $(\frac{|u_L|\delta t_E}{\Delta}, \frac{|u_G - u_L|\delta t_E}{\Delta}) < 1.0$, varying from 0.0005 s to 0.001s for capturing the transient behaviour of turbulent eddy evolution in the bubble column. The simulations were run to last for 100 seconds while the instantaneous velocities at given positions were monitored and recorded during the calculation process. ╢╪┇╺┋╺┋

AMS models are also compared with those using Euler/Lagrange LES simulation [7] and experimental data as shown in Figure 4. The time-averaged bubble axial velocity profiles predicted by using the modified and standard turbulent dispersion force models at height z=0.325m are illustrated. Our Euler/Euler LES simulation has employed the forces that include the time averaged drag, lift, buoyancy, added mass forces together with the modified SGS-TDF and SGS-AMS (Cases 2: D+L+AM+SGS-TDF and Case 3: D+L+AM+SGS-TDF+SGS-AMS). It can be seen that the Euler/Euler LES by implementing either the modified SGS-TDF force or SGS-AMS models (Cases 2 and 3) performs better than the simple use of the momentum exchange terms, drag, lift and added mass forces (Cases 1), for prediction of the bubble velocity profiles.

Figure 4

The bubble axial velocity profile predicted by neglecting the SGS-TDF and SGS-AMS contributions shows an apparent difference from the experimental result with over-prediction of the bubble axial velocity in the central core region but under-prediction of its value nearing the bubble column wall. This clearly demonstrates that the inclusion of the modified SGS-TDF and SGS-AMS in the LES simulation has a remarkable influence on the bubble radial dispersion. It can be observed from Figure 4 that the predicted profiles by using the modified SGS-TDF model and the modified SGS-TDF and SGS-AMS are consistent with their predicted velocity profiles, especially in the case that the SGS-AMS model is implemented into the modelling. The fact that the results obtained by considering the fluctuating $\alpha'_k u'_k$ and $\nabla \cdot (\alpha_k u'_{k,i} u'_{k,i})$ with dynamic response to surrounding eddies are improved and are better consistent with the experimental results highlights the need for inclusion of the SGS-TDF and SGS-AMS for properly modelling bubble

dispersion especially bubble radial migration in the bubble column bubbly flow. Figure 5 shows the timeaveraged radial bubble volume fraction distribution obtained by using the standard SGS-TDF (Case 1), the
modified SGS-TDF (Case 2) and the modified SGS-TDF plus SGS-AMS models (Case 3), compared with the
Euler/Lagrange LES simulation results reported by Muniz and Sommerfeld [20]. This may be attributed to
the inclusion of the modified SGS-TDF and SGS-AMS models that can effectively modulate the bubble
lateral dispersion in the LES simulation.

3.2 Quantification of SGS-turbulent dispersion force and added mass stress contributions and effect 195 on bubble dynamics

To characterise the effect of the contributions from SGS-TDF and SGS-AMS on turbulent dispersion, the ratios of cross-sectional averaged SGS-TDF and added mass stress force to the overall sum of drag, lift and added mass forces at different cross-sections along the height of the bubble column have been obtained. Figure 6(a) shows the quantification of the ratio of the cross-sectional averaged SGS-TDF to the sum of drag, lift and added mass forces along the bubble column height. By comparing the magnitude of the contribution from drag, lift and added mass forces, along the height, the ratio can reach around 12% but gradually decreases with the height. The decrease in the ratio of the SGS-turbulent dispersion force to the overall contribution from drag, lift and added mass forces along the column height reveals that the bubble lateral dispersion is highly affected by the turbulent dispersion force, implying that a stronger SGS-TDF may promote the bubble group oscillations [4]. In terms of the ratio of total added mass stress force to

of bubble column bubbly flow.

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00

0.12

0.10

0.08

0.06

0.04

0.02

0.00

0.1

0.2

 M_{AM+AMS}/M_{D+L+AM}

0.1

0.2

 M_{TD}/M_{D+L+AM}

the sum of the averaged drag, lift and added mass forces, the magnitude of the ratio can also reach 9% in

the lower part of the bubble column but follows the same trend as the ratio of SGS-TDF to the sum of

drag, lift and added mass forces as shown in Figure 6(b). Figure 7 shows the distribution of SGS-AMS and

SGS-TDF terms obtained from the LES at different height in the bubble column together with the bubble

volume fraction gradient and shear strain rate distribution from H=0.1-0.6m at t=100s. Thus, the present

study has highlighted the importance of the contributions of SGS-TDF and SGS-AMS in the LES modelling

D+L+AM+TD

AMS

0.4

0.4

Axial Position [m]

D+L+AM+TD

D+L+AM+SGS-

TDF+SGS-AMS

D+L+AM+SGS-TDF

Axial Position [m]

D+L+AM+SGS-TDF

D+L+AM+SGS-TDF+SG\$-

0.6

0.6

Figure 6

(13)

The parameters θ and p_0 are found to be equal to 5.2 and 2.0, respectively. The use of the modified SGS-TDF and SGS-AMS models gives a -5/3 scaling in smaller wave number zone while presents a -3 scaling law measured based on the wave number κ_1 larger than the typical wave number characterized by the equivalent bubble size, i.e. $\kappa_B = \frac{2\pi}{d_B} \approx 2464 \ m^{-1}$. It can be seen from Figure 9(c) that the transition for different scaling laws in $E_{11}(\kappa)$ takes place in the wave number at about $\kappa_1 \approx 2500 \text{ m}^{-1}$, where the left of the transition location shows the -5/3 slope while the right side of the transition gives rise to the -3 scaling, clearly indicating the feature of feeding of bubble induced turbulence to the turbulent kinetic energy. This -3 scaling were also demonstrated by the experimental work as well as DNS [17-19].

3.4 Spatial correlation between local bubble volume fraction and shear strain rate

In order to assess the effect of accounting the SGS-AMS on the evolution of bubble transport in the bubble
column, the correlation between the local bubble volume fraction fluctuation and the added mass stress
was assessed. The spatial correlation between the local bubble volume fraction and shear strain rate
fluctuation to characterise the interaction of bubbles with SGS turbulent eddies along the axial height of
the bubble column is proposed, defined by

$$R_{\alpha_{G}\overline{S}_{ij}}(\Delta h) = \frac{\alpha'_{G}(h_{0})|\overline{S}'_{ij}(h_{0} + \Delta h)|}{\sqrt{\alpha'_{G}^{2}(h_{0})}\sqrt{|\overline{S}'_{ij}^{2}(h_{0})|}}$$
(14)

Figure 9 presents the $R_{\alpha_G \overline{S}_{ij}}(\Delta h)$ variations along the centreline at different axial height from $\Delta h = 0$ to Δh = 0.325m of the bubble column. It can be seen from the figure that along the centreline, higher value of bubble volume fraction is always accompanied by larger variations in the correlation coefficient $R_{\alpha_G \overline{S}_{ij}}(\Delta h)$ along the height. The change of the turbulence induced shear strain rate strongly affect the entrainment of the bubbles, causing the local bubble volume fraction fluctuations as can be seen from Figure 10.

Figure 9

1 2				
3	277	turbulen	t shear stresses	gradients in both phases has been proposed.
4 5	278			
6 7	279	Acknowl	edgements	
8	280	This wor	k was financial	ly supported by the National Natural Science Foundation of China (Grant Nos.
9 10	281	2176113	2026, 9153411	8).
11 12	282			
13	283	Symbols	used	
14		А	$[m^{-1}]$	Area density
16 17		C _D	[-]	Drag coefficient
18 10		C _{TD}	[-]	Turbulent dispersion coefficient
20		C_{L}	[-]	Lift coefficient
21 22		C _{AM}	[-]	Added mass coefficient
23 24		d	[m]	Bubble diameter
24		E ₀	[-]	Eötvös number
26 27		f	[Hz]	Frequency
28 20		M _D	[N/m ³]	Drag force
30		\mathbf{M}_{L}	[N/m ³]	Lift force
31 32		M _{AM}	[N/m ³]	Added mass force
33 34		M _{AMS}	[N/m ³]	Added mass stress force
35		\mathbf{M}_{TD}	[N/m ³]	Turbulent dispersion force
36 37		g	[m/s ²]	Gravity acceleration
38 39		Q	$[s^{-2}]$	Invariant Q-criterion
40		Re	[-]	Reynolds number
41 42		S	$[s^{-1}]$	Characteristic filtered rate of strain
43 44		Sh	[-]	Sherwood number
45		Sc	[-]	Schmidt number
46 47		u	[m/s]	Velocity vector
48 49		t	[s]	Time
50		ω	$[s^{-1}]$	Water vorticity
51 52			-	
53 54		Greek le	etters	
55		α	[-]	Phase volume fraction, gas holdup
50 57				
58 59				17
60				Wiley-VCH

2					
3 4	284	σ_{TD}	[-]	Turbulent Schmidt number of gas phase	
5	285	γ	[-]	Volume increment ratio	
6 7	286	v_t	[m²/s]	Turbulent kinematic viscosity	
8 9	287	ε	$[m^2/s^3]$	Turbulence dissipation rate	
10	288	λ	[m]	Characteristic length scale of eddy	
12	289	τ	[Pa]	Shear stress	
13 14	290	μ	[Pa·s]	Liquid dynamic viscosity	
15	291	μ_{eff}	[Pa·s]	Effective viscosity of the liquid phase	
16 17	292	Δ	[m]	LES delta	
18 19	293	κ	$[m^{-1}]$	Wave number	
20	294	γ	[-]	Volume increment ratio	
21 22	295	Subscri	pts		
23 24	296	В		Bubble	
25	297	G		Gas phase	
26 27 28 29	298	L		Liquid phase	
	299	max		Maximum	
30 21	300	SGS		Sub-grid scale	
32	301	i		i-th component	
33 34	302	j		j-th component	
35 36	303				
37	304				
39	205	Deferen			
40 41	305 306	[1] H. Ay	ed, J. Chahed, '	V. Roig, AIChE Journal, 2007 , 53 (11), 2742-2753. DOI: 10.1115/icone18-29517.	
42 43	307	[2] M.A. Atiya, A.M. Rahman, A. Abd Al-Jabbar, Al-Khwarizmi Engineering Journal, 2011 , 7 (4): 61-75.			
44	308	[3] M. Rezig, G. Bellakhal, J. Chahed, AIChE Journal, 2017 , 63(9), 4214-4223. DOI: 10.1002/aic.15736.			
45 46	309	[4] M. Sommerfeld, M. Muniz, T. Reichardt, Journal of Chemical Engineering of Japan, 2018, 51(4), 301-			
47 48	310	317.			
49 50	311	[5] N.G. Deen, T. Solberg, B.H. Hjertager, Chemical Engineering Science, 2001, 56(21-22), 6341–6349.			
51	312	[6] M. Sommerfeld, D. Broder, Industrial & Engineering Chemistry Research, 2009, 48(1), 330–340.			
52 53	313	[7] V.V. E	Buwa, V.V. Ran	ade, Chemical Engineering Science, 2002 , 57(22-23), 4715–4736.	
54 55	314	[8] R. Rze	ehak, M. Krauß	, P. Kováts, K. Zähringer, International Journal of Multiphase Flow, 2017 , 89, 299–	
56	315	312. DOI	: 10.1016/j.ijm	ultiphaseflow.2016.09.024	
57 58				18	
59 60				Wiley-VCH	
				-	

1 2					
3	316	[9] A. Kulkarni, K. Ekambara, J. Joshi, Chemical Engineering Science, 2007, 62(4), 1049–1072.			
4 5 6 7 8 9	317	[10] S. Long, J. Yang, X. Huang, G. Li, W. Shi, M. Sommerfeld, X. Yang, International Journal of Heat and			
	318	Mass Transfer, 2020 , 161, 120240. DOI: 10.1016/j.ijheatmasstransfer.2020.120240			
	319	[11] D.A. Drew, S.L. Passman, Theory of multicomponent fluids, Springer Science & Business Media, 2006.			
10	320	[12] M. Bhole, J. Joshi, D. Ramkrishna, Chemical Engineering Science, 2008, 63(8), 2267–2282. DOI:			
11 12	321	10.1016/j.ces.2008.01.013			
13 14	322	[13] Z. Huang, D.D. McClure, G.W. Barton, D.F. Fletcher, J.M. Kavanagh, Chemical Engineering Science,			
15	323	2018, 186, 88–101. DOI: 10.1016/j.ces.2018.04.025			
16 17	324	[14] M. Milelli, A numerical analysis of confined turbulent bubble plumes, Ph.D. Thesis, ETH Zurich, 2002.			
 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 	325	[15] M. Muniz, M. Sommerfeld, International Journal of Multiphase Flow, 2020, 128, 103256. DOI:			
	326	10.1016/j.ijmultiphaseflow.2020.103256			
	327	[16] S.B. Pope, <i>Turbulent flows</i> , IOP Publishing, 2001 .			
	328	[17] V.N. Prakash, J.M. Mercado, L. van Wijngaarden, E. Mancilla, Y. Tagawa, D. Lohse, C. Sun, Journal of			
	329	Fluid Mechanics, 2016 , 791, 174–190. DOI: 10.1017/jfm.2016.49			
	330	[18] J.M. Mercado, D.C. Gomez, D. Van Gils, C. Sun, D. Lohse, <i>Journal of Fluid Mechanics</i> , 2010 , 650, 287–			
	331	306. DOI: 10.1017/s0022112009993570			
	332	[19] G. Riboux, D. Legendre, F. Risso, Journal of Fluid Mechanics, 2013 , 719, 362–387. DOI:			
	333	10.1017/jfm.2013.12.			
	334				
	335				
	336				
38 39	337				
40 41	338				
42	339				
43 44	340				
45 46	341				
47	342				
48 49	343				
50 51	344				
52	345				
55 54	346				
55 56	347				
57 58					
59		19 Wiley-VCH			
00		They ren			

1 ว							
2 3	348	Figure 1. Schematic of contribution from SGS-TDF and SGS-AMS in bubbly flow.					
4 5 6 7	349	Figure 2. Schematic of a bubble column with imaging system and data acquisition.					
	350	Figure 3. Schematic of mesh set-up in the bubble column for LES modelling.					
8	351	Figure 4. Comparison of time-averaged bubble axial velocity distribution at z=325mm by using three					
9 10	352	models with experimental and numerical data obtained from Sommerfeld et al. (Dot: experimental					
11 12	353	data[4]; Dash: E-L simulation data [4].					
13 14	354	Figure 5. Comparison of time-averaged normalized bubble volume fraction distribution at z=325mm by					
15	355	using three models with experimental and numerical data obtained from Sommerfeld et al. [15]					
16 17	356	Figure 6. Quantification of (a) SGS turbulent dispersion force (TDF) contribution: and (b) total added mass					
18 10	357	force (AM) contribution: cross-sectional averaged AM over the sum of drag, lift and added mass force					
20	358	ratio along the bubble column height H=0.1-0.6m.					
21 22	359	Figure 7. Distribution of (a) SGS-TDF; (b) SGS-AMS; (c) bubble volume fraction gradient; (d) liquid phase					
23 24	360	shear strain rate at different height from H=0.1-0.6m at t=100s in Case 3.					
25	361	Figure 8. Predicted turbulent kinetic energy spectrum of liquid axial velocity at middle point at z=325mm					
26 27	362	by using (a) case 1: D+L+AM+TD; (b) case 2: D+L+AM+SGS-TDF; (c) case 2: D+L+AM+SGS-TDF+SGS-AMS.					
28 29	363	Figure 9. Spatial correlation coefficient R_($\alpha_G S$ ij) (Δh) along the height of the bubble column from z=0					
30	364	to z=325mm. The background was superimposed with the contours of instantaneous liquid phase shear					
32	365	strain rate at X=0, YZ-Plane.					
33 34	366	Figure 10. Iso-surfaces of (a) bubble volume fraction $\alpha_B = 0.016$ colored by local water shear strain rate					
35 36	367	and (b) water shear strain rate $S_{ij,L} = 10~s^{-1}$, colored by local bubble volume fraction at t =100s.					
37	368						
38 39	369	Table 1. Interphase force closure.					
40 41	370						
42	371	CEAT Graphic Abstract					
43 44	372						
45 46	373	Spatial filtered u'					
47	374	=small eddies					
48 49	275	Spatial Additional stress filtering Surface on av					
50 51	3/5	renewal					
52	376						
55 54	377	Modified					
55 56	378	SGS-1DF & SGS-AMS					
57 58							
59							
60		WIEY-VCH					