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Functional genomics provide key insights 
to improve the diagnostic yield of hereditary 
ataxia
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Improvements in functional genomic annotation have led to a critical mass of neurogenetic discoveries. This is ex
emplified in hereditary ataxia, a heterogeneous group of disorders characterised by incoordination from cerebellar 
dysfunction. Associated pathogenic variants in more than 300 genes have been described, leading to a detailed gen
etic classification partitioned by age-of-onset. Despite these advances, up to 75% of patients with ataxia remain mo
lecularly undiagnosed even following whole genome sequencing, as exemplified in the 100 000 Genomes Project.
This study aimed to understand whether we can improve our knowledge of the genetic architecture of hereditary 
ataxia by leveraging functional genomic annotations, and as a result, generate insights and strategies that raise 
the diagnostic yield.
To achieve these aims, we used publicly-available multi-omics data to generate 294 genic features, capturing infor
mation relating to a gene’s structure, genetic variation, tissue-specific, cell-type-specific and temporal expression, as 
well as protein products of a gene. We studied these features across genes typically causing childhood-onset, adult- 
onset or both types of disease first individually, then collectively. This led to the generation of testable hypotheses 
which we investigated using whole genome sequencing data from up to 2182 individuals presenting with ataxia 
and 6658 non-neurological probands recruited in the 100 000 Genomes Project.
Using this approach, we demonstrated a high short tandem repeat (STR) density within childhood-onset genes sug
gesting that we may be missing pathogenic repeat expansions within this cohort. This was verified in both childhood- 
and adult-onset ataxia patients from the 100 000 Genomes Project who were unexpectedly found to have a trend for 
higher repeat sizes even at naturally-occurring STRs within known ataxia genes, implying a role for STRs in patho
genesis. Using unsupervised analysis, we found significant similarities in genomic annotation across the gene panels, 
which suggested adult- and childhood-onset patients should be screened using a common diagnostic gene set. We 
tested this within the 100 000 Genomes Project by assessing the burden of pathogenic variants among childhood-on
set genes in adult-onset patients and vice versa. This demonstrated a significantly higher burden of rare, potentially 
pathogenic variants in conventional childhood-onset genes among individuals with adult-onset ataxia.
Our analysis has implications for the current clinical practice in genetic testing for hereditary ataxia. We suggest that 
the diagnostic rate for hereditary ataxia could be increased by removing the age-of-onset partition, and through a 
modified screening for repeat expansions in naturally-occurring STRs within known ataxia-associated genes, in ef
fect treating these regions as candidate pathogenic loci.
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Introduction
Over the last two decades, there has been significant progress in the 
diagnosis of neurogenetic diseases.1–3 Despite this, approximately 
half of patients presenting with a probable genetic cause for a 
neurological disorder remain undiagnosed,1,4 with the most clinic
ally and genetically heterogeneous disorders presenting the great
est challenge.5,6 One such archetypal heterogeneous neurogenetic 
condition is hereditary ataxia. These are a group of neurodegenera
tive disorders characterized by the clinical syndrome of progressive 
incoordination due to cerebellar dysfunction7,8 with a prevalence of 
approximately 1.5 to 4.9 per 100 000 persons.9 To date, variants in 
more than 300 genes have been discovered to be associated with 
ataxia taking us away from Greenfield’s patho-anatomical and 
Harding’s clinico-genetic classifications.10 Despite this shift to
wards a detailed molecular classification, diagnostic rates remain 
relatively low.8,11,12 Even when using whole genome sequencing 
(WGS) in a highly-selective cohort in the Genomics England 100  
000 Genomes Project, the diagnostic yield for hereditary ataxia 
was only 21% among singletons and 32% in family trios.13 This 
could be explained both by the existence of as yet undiscovered 
causative genes and the incomplete screening of known genes in 
the appropriate patients.

The current genetic evaluation strategy in clinical practice for 
hereditary ataxia involves partitioning patients by age-of-onset; 
in the UK, this is employed by the 100 000 Genomes Project14 and 
NHS England National Genomic Test Directory (https://www. 
england.nhs.uk/publication/national-genomic-test-directories/). 

Diagnostic-grade panels of genes for ataxia are divided into 
childhood-onset, adult-onset and cerebellar hypoplasia categories.14

This is also reflected in the Childhood Ataxia and Cerebellar Group of 
the European Paediatric Neurology Society guidelines, which sug
gests a specific evaluation algorithm (including genetic testing) for 
early-onset ataxia.15 In practice, the existence of these separate pa
nels means that patients with adult-onset ataxia are seldom 
screened for genes typically associated with childhood-onset disor
ders such as Joubert syndrome and childhood-onset patients are 
rarely screened for adult-onset variants such as pathogenic repeat 
expansions typically associated with some late-onset spinocerebel
lar ataxia (SCA).16 It is difficult to assess with confidence whether 
this age-based classification is justified. Most genetic variants asso
ciated with ataxia have only recently been recognized and conse
quently reported in just a handful of cases.6 This makes it 
challenging to determine whether this age-of-onset division reflects 
the true biology of disease or arises from presentation bias.

With increasing quantities of publicly-available functional 
multi-omic annotations that assign biological meaning to genomic re
gions, this has become a tractable question.17 Through the application 
of multi-omics technologies and computational tools, it is possible to 
produce increasingly precise and granular annotations that operate at 
both a tissue- and cell-type-specific level, providing insights into the 
shared biology of disease-associated genes.18,19 This has been key 
for neurological diseases and importantly, advances in this field 
have already improved our interpretation of gene-phenotype associa
tions and driven genetic discovery.18,20 Therefore, we questioned 
whether the improvements in the breadth and depth of functional 
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multi-omic annotations would enable us to identify commonalities 
and hidden biological relationships among genes causing ataxia. 
Furthermore, we investigated whether this information could be 
used to improve our understanding of the underlying genetic archi
tecture of these diseases and potentially inform novel testing strat
egies that could increase diagnostic yield.

In this study, we leveraged the critical mass of genes discovered 
in ataxia together with a curated set of approximately 300 
multi-omic genic features to determine whether ataxia genes can 
be characterized on a genomic level to identify hidden patterns 
that explain their biology. We also used this analysis to determine 
whether the clinical division of ataxia by age-of-onset is reflected 
in genomic annotations with implications for the current diagnostic 
strategy. Finally, we assessed the potential of alternative testing 
strategies using WGS of 2182 probands presenting with ataxia re
cruited in the 100 000 Genomes Project. Using this approach, we 
gained further insight into the pathogenic mechanisms underlying 
hereditary ataxia and highlighted potential bottlenecks to diagnosis.

Materials and methods
Defining a list of genes associated with hereditary 
ataxia

To identify genes known to be associated with hereditary ataxia 
across all ages, we used three resources: (i) Genomics England 
PanelApp, a publicly-available crowdsourced tool to standardise 
gene panels14; (ii) Hereditary Ataxia GeneReviews, a regularly up
dated international point-of-care resource on inherited medical 
conditions7; and (iii) the Online Mendelian Inheritance in Man 
(OMIM) database.21 We extracted ‘green’, diagnostic-grade genes 
from PanelApp considering the four gene panels of cerebellar hypo
plasia (v.1.41), adult-onset ataxia (v.2.8), childhood-onset ataxia 
(v.6.22) and hereditary ataxia (v.1.2.05). By combining PanelApp, 
GeneReviews and OMIM resources, we identified a total of 318 un
ique genes (workflow shown in Fig. 1). We noted that there were 
discrepancies between the resources in the expected age-of-onset. 
For example, SCYL1 was classified in PanelApp as adult-onset but 
has been described as a childhood-onset disorder in OMIM (spino
cerebellar ataxia autosomal recessive 21. MIM:616719).21 Thus, to 
standardize information for genes of interest, we extracted typical 
age-of-onset data in an automated manner from OMIM ‘Text’ sec
tion (http://api.omim.org),21 and also manually curated informa
tion from OMIM ‘Clinical Synopsis’ that reviews reported cases. 
Thus, the 318 genes identified were classified into: (i) adult-onset 
(n = 23, typical age-of-onset ≥18 years); (ii) childhood-onset (n =  
213, typical age-of-onset <18 years); and (iii) overlap-onset genes 
(n = 82, causing both childhood- and adult-onset disease) 
(Supplementary Table 1). Given that we sought to differentiate be
tween genes associated with ataxia and genes not known to cause 
ataxia, we defined the set of remaining protein-coding genes as 
controls (n = 17,323, Ensembl v.72).22

Extracting clinical phenotype information

To capture genic information about the clinically-heterogeneous 
phenotypes associated with hereditary ataxia genes, we used 
data provided within the OMIM catalogue (http://api.omim.org)21

and the Human Phenotype Ontology (HPO) database (https://hpo. 
jax.org/app/Build 1271)23 as the latter also incorporated additional 
information from Orphanet.24 We extracted HPO and OMIM terms 
associated with each gene.

Genic feature generation

We curated a total of 294 genic features leveraging publicly- 
available multi-omics datasets capable of providing genome-wide 
information. The genic features captured information in four 
main categories relating to: (i) gene structure and complexity; (ii) 
genetic variation including evolutionary features; (iii) gene expres
sion and co-expression; and (iv) protein product of a gene. A full list 
of genic features with their corresponding source is provided in 
Supplementary Table 2.

Gene structure and complexity

We extracted information relating to gene structure from Ensembl 
v.72.25 This included: gene length; number of unique transcripts with
in a gene; number of exon-exon junctions and the gene’s GC content 
among others. Specific to the pathogenic mechanisms of ataxia, we 
used resources generated through application of Tandem Repeats 
Finder26 to the human reference genome (GRCh38)27 in HipSTR 
(https://github.com/HipSTR-Tool/HipSTR-references) to create a 
gene-based metric of short tandem repeat (STR) density, size, number 
of nucleotides within each STR, and location of STRs as annotated by 
Ensembl v.72 across the entire genome.22 This was complemented by 
extraction of information on all STRs genome-wide associated with 
expression of nearby genes (eSTRs).28 We generated additional anno
tations to reflect the presence of other repetitive elements using the 
RepeatMasker (http://www.repeatmasker.org) reference panel,29,30

including short interspersed nuclear (SINE)/Alu elements, retropo
son/SVAs, and long interspersed nuclear (LINE)/L1 elements (full list 
in Supplementary Table 2).

Genetic variation including evolutionary information

Measures of genetic variation were collated from existing large 
population databases and the related resources.31 We used 
LoFTool (gene intolerance score based on loss-of-function (LoF) var
iants),32 EvoTol (measures a gene’s intolerance to mutation using 
evolutionary conservation of protein sequences),33 RVIS (intolerance 
scoring system of a gene’s functional variation),34 gnomadpLI (LoF 
score from gnomAD such that a pLI closer to 1 indicates that the 
gene or transcript cannot tolerate protein-truncating variation)31

among other metrics. We also derived features to capture evolution
ary information about a gene. Using the phastCons20 score, a 
measure of inter-species conservation between primates35 together 
with context dependent tolerance score (CDTS), a measure of 
intra-species constraint,36 we generated the genic density of con
strained, non-conserved genomic regions (CNCRs), which represent 
human-lineage-specific element annotation.37

Gene expression and co-expression

We leveraged publicly-available transcriptomic data to 
capture information on tissue-specific, cell-type-specific and 
temporally-relevant expression. Using temporal expression data 
generated from RNA-sequencing of human organ development 
over 23 time-points from 4 weeks post-conception to the sixth 
decade of life, we obtained a measure of developmental gene ex
pression (developmentally-dynamic expression pleiotropy index 
(0–1) with a value of 1 indicating the most dynamically-repressed 
expression).38 Tissue-specific gene expression and co-expression 
features were extracted and downloaded from G2PML (https:// 
github.com/juanbot/G2PML), a machine learning tool for predict
ing disease-associated genes based on genic features.25 For tissue- 
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specific expression, using already-processed Reads Per Kilobase 
Million (RPKM) data from 47 Genotype-Tissue Expression Project 
(GTEx)39 tissues, gene expression data were filtered for genes 
with RPKM >0.1 and corrected for batch effects, age, sex and 
RNA integrity number using ComBat40 as employed by G2PML.25

Residuals of these linear regression models were used to calculate 
tissue-specific expression and to construct gene co-expression 
networks (WGCNA)41 for each tissue.25 A gene was defined as hav
ing tissue-specific expression if expression in that tissue was five- 
fold higher than the mean across all tissues. For each gene in a 
network, the Module Membership (MM) for a gene was defined 
as the correlation of its residual gene expression and the eigen
gene of the module to which it belonged.25 A gene was defined 

as having tissue-specific MM at 3.5-fold higher than across all 
other GTEx tissues.25 For cell-type-specific expression, we used 
single cell RNA-sequencing data from mice.42 We generated fea
tures incorporating information from specificity matrices of ex
pression data.43 We used all level 2 and level 3 cell types within 
and outside the CNS. We then focused on cerebellar-specific ex
pression (CNS superset level 2).42

Curated data on the protein product of a gene and its 
function

The Gene Ontology (GO)44,45 and STRING databases were used to ob
tain information on the function of a gene’s protein product and the 

Figure 1 Overall workflow of study. Genic information is captured across categories of genetic variation, gene structure/complexity, gene expression 
and co-expression and protein-product of a gene, and compared across the four gene lists of: (i) adult-onset ataxia genes; (ii) childhood-onset ataxia 
genes; (iii) overlap-onset ataxia genes, defined as those associated with both childhood- and adult-onset, when mutated; (iv) other protein-coding 
genes not known to cause ataxia (control ‘not ataxia’ genes). The gene lists were extracted primarily from Genomics England PanelApp, but also 
GeneReviews and OMIM. The age-of-onset definition was derived primarily from OMIM to reduce bias. Genic features were first compared individually 
across the four gene lists then combined together through unsupervised clustering analysis. Individual genic features were also highlighted and put 
through further analyses including expression-weighted cell-type enrichment (EWCE) for cell-type-specific expression and functional gene ontology 
(GO) enrichment. Further verification of the results from functional genomic annotation were verified in whole genome sequencing data of patients 
with ataxia recruited to the 100 000 Genomes Project through rare variant burden analysis and short tandem repeat (STR) analysis.
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number of its protein-protein interactions.46 We used STRING para
meters with confidence of >500 and a maximum of eight interac
tions per gene.47 We used g:Profiler48 for GO enrichment analysis, 
with the g:SCS multiple testing correction method. In addition, 
we used the Full Spectrum of Intolerance to Loss-of-function 
(FUSIL) categorization of genes, which was based on both viability 
and phenotyping screens performed on knock-out mice, and essen
tiality screens carried out on human cell lines.49 This provided five 
gene categories relating to the essentiality of their function: cellu
larly lethal (CL); developmentally lethal (DL); subviable (SV); viable 
with significant phenotype/s (VP); or viable with no significant phe
notypes detected (VN).49

Statistical analysis

For each feature generated, we compared the feature across the 
four gene lists, namely adult-onset, childhood-onset, overlap-onset 
ataxia and control genes. For continuous variables, we used 
Wilcoxon rank sum test to compare the means of the metrics be
tween two groups, taking a two-tailed P-value < 0.05 as significant. 
For categorical variables, we used chi-squared tests to assess stat
istically significant (P < 0.05) differences between the distributions 
of two groups. We used pair-wise comparison P-values due to the 
imbalance in the sizes of the gene lists. However, we also provide 
false discovery rate (FDR) corrected P-values that account for all 
six comparisons between the gene lists. We have outlined statistic
al analyses of other methods within the relevant sections. All ana
lyses were carried out in R (v.4.0.5).

Expression-weighted cell-type enrichment

Expression-weighted cell-type enrichment (EWCE) was used to de
termine whether ataxia genes have higher expression within par
ticular cell types than would be expected by chance (https:// 
github.com/NathanSkene/EWCE).43 We used the adult-, 
childhood- and overlap-onset ataxia gene lists as input with spe
cificity matrices calculated for level 2/3 cell types,42 as well as level 
2 cell types from the superset containing cerebellar-specific cell 
types. We controlled for transcript length and GC-content in the 
bootstrap lists where EWCE was run with 10 000 bootstrap repli
cates. Genes without a 1:1 mouse:human ortholog were excluded. 
P-values for multiple testing were corrected using the Benjamini– 
Hochberg method over all cell types and the three gene sets. At 
the cerebellar-specific cell type level, P-values were only corrected 
for the number of gene sets given the granularity of cell-types at 
this level. To assess the contribution of specific genes to 
cell-type-specific expression, we obtained the mean expression 
for the gene of interest within the cell type divided by its expres
sion across all cell types.43

Unsupervised analysis of all features

In order to compare the utility of all features in classifying ataxia 
genes, first, we used recursive feature elimination (caret R package50) 
to remove redundant features, defined as those with Pearson’s cor
relation >0.9 between two features (visualized using corrplot pack
age51). This approach also helped to account for the imbalance in 
gene list sizes by taking a random sample (50%) of disease genes 
and an equal number of bootstrap-selected control genes from the 
larger control set. The recursive feature elimination then took a ran
dom subset of input features based on feature importance and as
sessed the number of features with the highest accuracy as 
defined by Cohen’s ĸ statistic. It then fitted a generalized linear 

model for the best set of features. The feature elimination operates 
in a k-fold cross-validation manner to improve the accuracy of the 
fit of the model for unseen samples. We extracted the minimum pro
portion of times that a feature was selected as most relevant out of 
the total number of iterations in the repeat variable (parameter r). 
In this case, we used features that had an r ≥ 0.8, indicating that 
they appeared more than 40 times out of the 50 repetitions per
formed. Taking these selected features, we used uniform manifold 
approximation and projection (UMAP) to investigate any hidden pat
terns within the data defined using these salient features.52

Validation within 100 000 Genomes Project 
participants

The 100 000 Genomes Project is a UK programme to assess the value 
of WGS in patients with rare diseases.13,16,53 Participants were iden
tified by healthcare professionals and researchers from 13 genomic 
medicine centres in England as having an undiagnosed rare disease 
and recruited with consent after approval from the national re
search ethics committee.13,16,53 WGS was carried out as per 
previously-described methods, with variant and sample quality 
control as outlined.13,16 The rare variant burden testing pipeline 
was also developed through the 100 000 Genomes Project diagnos
tics pipeline as previously described.13

Rare genetic variant burden testing

To test whether adult- and childhood-onset hereditary ataxia pa
tients should be screened for mutations using a common gene set, 
a case-control gene burden analysis was adapted from an analyt
ical framework used within the rare disease component of the 100  
000 Genomes Project.13,16,53 Cases were defined as all probands re
cruited under the clinical indications: ‘hereditary ataxia’, ‘cerebel
lar hypoplasia’ or ‘pontine tegmental cap dysplasia’. For the 
corresponding control group, we used all other probands aged 
≥40 years at recruitment excluding individuals recruited under 
relevant neurological or related disease categories (n = 6658) (ex
clusion criteria for controls in Supplementary Table 3). Cases 
were defined as childhood-onset (<18 years) (n = 306) and 
adult-onset (≥18 years) (n = 816). We used the recorded age-of-onset, 
where available, or age at recruitment as proxy. Using these defini
tions, four different combinations of rare genetic variant burden 
analyses were performed as summarized in Supplementary 
Table 4: (i) typically childhood-onset genes in adult-onset cases ver
sus in controls; (ii) adult-onset genes in childhood-onset cases ver
sus in controls; (iii) overlap-onset genes in adult-onset cases 
versus in controls; and (iv) overlap-onset genes in childhood-onset 
cases versus in controls, with the latter two analyses used for con
trolled comparison as we would expect the find overlap-onset var
iants in both childhood- and adult-onset cases. We defined 
controls as those over 40 years of age to ensure that any large repeat 
expansions in the control group are less likely to be pathogenic.

The sets of rare variants for the gene burden analyses were ob
tained running Exomiser54 on all probands’ WGS data to filter cod
ing variants that are rare (minor allele frequency < 0.1%, for 
dominant, and <1%, for recessive variants in gnomAD31 v2.1.1 
and v3.1.1 as well as within the local 100 000 Genomes Project co
hort and segregated with disease status (where family information 
was available). Gene-based enrichment of rare variants in cases 
was assessed using one-sided Fisher’s exact test under four scen
arios: (i) enrichment of rare, predicted LoF variants; (ii) enrichment 
of rare, predicted pathogenic variants (Exomiser variant score >0.8); 
(iii) enrichment of rare, predicted pathogenic variants in a 
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constrained coding region; and (iv) enrichment of rare, de novo var
iants. For the latter, only trios or larger families where de novo call
ing was possible were considered. To maintain statistical validity, 
the analysis was limited to those disease-gene associations where 
relevant variants were seen in at least four probands over the entire 
cohort of cases and controls. Benjamini–Hochberg method was 
used to correct for multiple testing; an overall FDR P-threshold of 
0.05 was used for claiming significant gene-disease associations ac
counting for the total number of case-control gene burden tests un
der all four scenarios, i.e. 360.

To support this, we then reviewed these patients with ataxia for 
apparent incongruities between the age of disease onset and typical 
age-of-onset category associated with the diagnostic pathogenic 
variant on the final formal genetic report issued.

Short tandem repeat sizes in participants with ataxia

We investigated whether naturally-occurring STRs within the 318 
known ataxia genes harboured differences in repeat size distribu
tions between individuals presenting with ataxia and controls 
recruited in the 100 000 Genomes Project. Ataxia cases were any 
probands presenting with ataxia, cerebellar hypoplasia or pontine 
tegmental cap dysplasia either within the enrolled disease 
group or as an HPO term (i.e. ataxia as a primary symptom or 
as part of a more complex syndrome) (adult-onset n = 1629, 
childhood-onset n = 553) and non-neurological controls aged ≥40 
years (n = 6078) from all recruited probands defined as per 
Supplementary Table 4. There were 580 fewer control samples 
used for this analysis compared to the burden analysis due to 
exclusion of the participants recruited into the pilot phase of 
the 100 000 Genomes Project. STR genotyping was performed 
using ExpansionHunter v.3.1.255 using methods as previously 
described16 at HipSTR reference loci for naturally-occurring trinu
cleotides, tetranucleotides, pentanucleotides and hexanucleotides 
located in the exons or 5′UTRs of the 318 genes across all cases and 
controls.27 Using this definition, we studied a total of 197 STRs 
across 107 unique genes with seven being known pathogenic re
peats. We then ranked the maximum repeat size for each STR 
and partitioned the repeat sizes into bins for controls and for 
cases. Taking the top 1% repeat sizes in controls and the top 1% 
in ataxia cases, partitioned by age-of-onset, we compared the 
mean differences in the repeat sizes. We applied the same testing 
strategy to STRs known to cause repeat expansion disorders, and 
which would be expected to have a higher repeat size in ataxia 
cases compared to controls.

Data availability

The authors confirm that the data supporting the findings of this 
study are available within the article and its Supplementary 
material. Sources for publicly-available data used for generating 
the genic features are shown in Supplementary Table 2. Code is 
available through https://github.com/ZhongboUCL/hereditary- 
ataxia-functional-genomics.

Results
Childhood- and adult-onset ataxia differ in 
pathogenic variant type and phenotypic 
presentations

We analysed 318 genes known to cause hereditary ataxia when mu
tated, classified as: (i) adult-onset (n = 23); (ii) childhood-onset (n =  

213); and (iii) overlap-onset genes (associated with either 
childhood- or adult-onset disease, n = 82). We confirmed that 
childhood-onset genes showed a higher proportion of biallelic 
autosomal inheritance compared with adult-onset (chi-squared 
P = 2.329 × 10−7) and overlap-onset genes (P = 6.094 × 10−7). In con
trast, a significantly higher proportion of pathogenic repeat expan
sions cause adult-onset (34.8%) compared with childhood-onset 
disease (0.5%) (chi-squared P = 3.205 × 10−14) (Supplementary 
Fig. 1). Using known phenotypic associations captured within 
OMIM and HPO23 showed that childhood-onset ataxia genes 
had the highest mean number of associated HPO terms per 
gene (Fig. 2A) and affected a significantly larger number of dis
tinct body systems compared with adult-onset (Wilcoxon rank 
sum P = 5.400 × 10−4) and overlap-onset genes (P = 1.800 × 10−4) 
(Fig. 2B and Supplementary Fig. 1C). In summary, we confirmed 
that childhood-onset ataxia genes were more likely to be auto
somal recessive, less likely to be associated with repeat expan
sion disorders and tended to manifest in multiple systems 
compared with adult-onset genes, in line with current clinical 
perception.

Ataxia genes contain an increased density of 
repetitive elements

We leveraged the increasing availability of functional genomic 
annotation to expand our understanding of genes associated 
with hereditary ataxia. This analysis was performed by compar
ing each individual genic feature from our collation of ∼300 func
tional multi-omic annotations across the four gene lists (results 
of all comparisons in Supplementary Table 5). We began by fo
cusing on measures of gene complexity and structure. Using 
this approach, we saw increased overall complexity amongst 
genes associated with ataxia compared to the control set. 
Ataxia genes harbour more transcripts and junctions per gene, 
suggesting that splicing variants could contribute to pathogen
esis (Fig. 2C and D). However, we noted that gene complexity 
was a feature of all disease gene sets and did not distinguish be
tween childhood-, adult- and overlap-onset ataxia genes 
(Supplementary Fig. 2).

Next, we expanded our analysis to consider the impact of STRs 
on the complexity of ataxia gene structure. Although pathogenic 
STR expansions are already known to be an important disease- 
causing mechanism for adult-onset hereditary ataxia56

(Supplementary Fig. 1 and Fig. 3A), we questioned whether a higher 
genic density of non-pathogenic STRs could also be a distinguishing 
property of ataxia genes. Generating a genomic map of STR ele
ments,27 we found that the majority of intragenic STRs and eSTRs 
reside in the intron (95.13% and 94.43% respectively) (Fig. 3A). 
Furthermore, we noted the existence of 1143 naturally-occurring 
intragenic CAG repeats which could be considered candidate loci 
for further interrogation in an unsolved cohort (Fig. 3A). Focusing 
on ataxia genes, we found that this gene set harboured a higher 
number of STRs per gene (median 34.5 and 27 STRs per adult- 
and childhood-onset gene respectively) than control genes (me
dian 16 STRs per gene) (Fig. 3B). Surprisingly, this was evident 
when comparing childhood-onset genes to non-ataxia genes (P  
= 0.008), although only adult-onset genes had a significantly 
higher trinucleotide repeat density than controls (Fig. 3C). This 
trend extended to eSTRs, defined as STRs associated with vari
able expression of nearby genes proportional to their repeat 
length.28 We found that childhood-onset genes had a higher 
number of associated eSTRs compared to control genes (P =  

http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awad009#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awad009#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awad009#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awad009#supplementary-data
https://github.com/ZhongboUCL/hereditary-ataxia-functional-genomics
https://github.com/ZhongboUCL/hereditary-ataxia-functional-genomics
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awad009#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awad009#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awad009#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awad009#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awad009#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awad009#supplementary-data


Functional genomics of hereditary ataxia                                                                             BRAIN 2023: 146; 2869–2884 | 2875

7.300 × 10−4) (Fig. 3D), and that these eSTRs were detected in a 
higher number of tissues compared with control genes (P =  
4.900 × 10−5) (Fig. 3E).

Using RepeatMasker’s library of repetitive elements,29,30 we 
identified differences in the density of other interspersed repetitive 
elements between the gene lists. Interestingly, both adult- and 
childhood-onset genes had a higher number of LINE/L1 elements 
per gene than controls genes (Fig. 3F), as well as SINE/Alu elements 
among others (Supplementary Fig. 2). Thus, our findings demon
strated that ataxia genes are structurally more complex than other 
genes and this extended to STRs and other repetitive elements. 
Unexpectedly, these findings were relevant to genes causing 
childhood- as well as adult-onset ataxia.

Population-based genetic variation differentiates 
ataxia genes

We used population-based measures of genetic variation to analyse 
ataxia genes. As would be expected, the findings largely reflected 
known differences in inheritance patterns (Supplementary Fig. 3). 
For example, the probability of a gene being intolerant of homozy
gous and missense variants (gnomadpMiss), but not heterozygous 
LoF variants from gnomAD data (gnomadpRec),31 was significantly 
higher for childhood-onset genes compared to control genes 
(Supplementary Fig. 3). We also found that CNCR density, a meas
ure of the proportion of human-lineage-specific elements within 
a gene,37 was higher for both childhood- and overlap-onset 

Figure 2 Comparison of phenotypes associated with genes as annotated by HPO and OMIM and gene complexity features between different gene pa
nels. The number of known HPO terms associated with each gene is shown in A. The number of body systems affected associated with each gene as 
annotated by OMIM is shown in B. The number of transcripts of each known gene as annotated by Ensembl v.72 is shown in C. The number of annotated 
junctions within each gene as annotated by Ensembl v.72 is shown in D. Only significant Wilcoxon rank sum P-values (<0.05) are given for pairwise 
comparisons above the square brackets. The corresponding horizontal lines on the notched boxplots represents the lowest quartile, median, and upper 
quartile of the data. Further results are presented in Supplementary Table 5.
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Figure 3 Summary of gene features generated by leveraging information on genomic map of known STRs and eSTRs with examples of hereditary atax
ia associated with pathogenic STRs. (A) Top illustrates the location of repeat expansions within SCA and other ataxias: Fragile X-associated tremor- 
ataxia syndrome (FXTAS); neuronal intranuclear inclusion disease (NIID); dentatorubral-pallidoluysian atrophy (DRPLA); cerebellar ataxia, neuropathy 
and vestibular areflexia syndrome (CANVAS) and Friedreich’s ataxia (FRDA). Bottom shows locations of genomic STRs, number of genomic 
CAG-containing STRs are taken the HipSTR package.27 Number of genomic eSTRs are based on analyses from Fotsing et al.28 These eSTRs are taken 
from those within the top 28 375 eSTRs associated with a high CAVIAR (CAusal Variants Identification in Associated Regions) score for posterior prob
ability of causality when fine-mapped against top 100 nearby SNPs. *Number of eSTRs associated with expression in brain is also derived from this 
work.28 The total number of STRs/eSTRs is presented with the percentage of overall intragenic location for each STR in parentheses. (B) 
Comparison of the number of STRs within each gene (as defined within the HipSTR package) across the four gene lists. (C) Comparison of the number 
of trinucleotide STRs for each gene across the gene lists. (D) Comparison of the number of eSTRs per gene across the gene lists. (E) Comparison of the 
number of tissues in which eSTRs affect gene expression across the gene lists. (F) Comparison of the number of LINE/L1 elements per gene (as defined 
by RepeatMasker) across the gene lists. (G) Comparison of the density of CNCRs per gene across the gene lists. The CNCR density of a gene reflects the 
proportion of gene length that is covered by regions fulfilling criteria for constrained but not conserved sequences, such that a density of 1 signifies that 
the entire gene fulfils criteria for CNCRs. CNCRs are taken from Chen et al.37 and reflect the regions of the genome likely to be more 
human-lineage-specific. Only significant Wilcoxon rank sum P-values (<0.05) are given for pairwise comparisons above the square brackets. The num
bers below or within the boxes of the box and whisker plots represent the median values for that genic feature. The corresponding horizontal lines on 
the notched boxplots represents the lowest quartile, median and upper quartile of the data. Further results are presented in Supplementary Table 5.
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compared with non-ataxia genes (P = 0.024 and P = 0.018, respect
ively) suggesting a higher density of sequences important in 
human-specific evolution associated with known ataxia genes 
(Fig. 3G).

Transcriptomic signatures of ataxia genes

Given the phenotypic variability of hereditary ataxia, we explored 
the tissue- and cell type-specificity of disease genes, as well as their 
expression over time. The latter was performed using 
publicly-available temporal expression data generated by 
RNA-sequencing of human organ development.38 We found that 
there was a significantly higher developmentally-dynamic plei
otropy index representing genes with more repressed temporal ex
pression only within the cerebellum within childhood-onset ataxia 
genes compared to control genes (P = 0.042) suggesting timing in ex
pression in earlier development is important (Fig. 4A).

Next, we used measures of tissue-specific expression and co- 
expression derived from bulk RNA-sequencing data from 47 human 
tissues included in GTEx25,39 and found significant differences in 
tissue-specific expression between the three ataxia gene lists 
(Supplementary Fig. 4). Cerebellar-specific expression appeared to 
be most associated with overlap-onset genes but was also an im
portant feature of childhood-onset ataxia, with no statistically sig
nificant difference in the proportion of genes with cerebellar 
tissue-specific expression between the two groups. Similarly, mea
sures of gene co-expression (module membership) highlighted 
brain-specific tissue co-expression but did not demonstrate signifi
cant differences between disease gene sets (Supplementary 
Table 5).

Using EWCE,43 together with data on single-cell gene expression 
profiling of both mouse CNS and non-CNS tissue,42 we studied the 
cell-type-specific expression of ataxia genes. Using all cell types, we 
demonstrated significant enrichment of CNS glia-specific expres
sion in childhood-onset genes (FDR P < 1 × 10−7) and CNS neuron- 
specific expression within overlap-onset genes (FDR P = 0.018) 
(Fig. 4B). Focusing specifically on cerebellar cell types, we found 
that childhood-onset genes exhibited cell-type-specific expression 
within molecular layer interneurons (FDR P = 0.036) and 
overlap-onset ataxia genes showed cell-type-specific expression 
within cerebellar Purkinje cells (FDR P = 0.018) (Fig. 4C). Of interest, 
childhood-onset genes with the highest cerebellar molecular layer 
interneuron cell-type expression were associated with ataxia syn
dromes manifesting partially or fully with seizures (e.g. KCNA1 
and RORA). In contrast, overlap-onset genes driving expression in 
Purkinje cells were associated with ataxia-predominant syndromes 
including ITPR1 and CACNA1G (Supplementary Fig. 5).

Childhood-onset ataxia genes generate protein 
products required for viability

Since gene expression levels are often poorly correlated with pro
tein abundance and need not reflect protein-protein interactions,57

we assessed all disease genes using the STRING and GO data
bases.45,46 Consistent with the association of childhood-onset 
genes with multi-system disorders, we saw a statistically signifi
cant enrichment of GO terms associated with glycosylation path
ways (e.g. GO:0009101 glycoprotein biosynthetic process) and cilia 
(GO:0005929 cilium) (Fig. 5A). In contrast, overlap-onset genes 
were enriched for nervous system-associated terms (e.g. 
GO:0043005 neuron projection) and ion channel biological pro
cesses (GO:0098662 inorganic cation transmembrane transport) 

(Fig. 5B). Adult-onset ataxia genes revealed no enriched GO terms, 
likely reflecting the small size of this gene list. Given that not all 
molecular and biological processes are captured by GO, we also 
analysed the number of protein-protein interactions per gene using 
data provided by the STRING database. This demonstrated a higher 
number of protein-protein interactions amongst genes in 
overlap-onset ataxia than those causing childhood-onset ataxia 
(P = 0.018).

We extended our analysis to consider functional assessments of 
gene-protein products by using FUSIL categorisation.49 FUSIL clas
sifies genes based on cross-species integrated measures of essenti
ality.49 When comparing childhood- with overlap-onset genes, we 
saw a significantly higher proportion of genes within the VP cat
egory (denoting genes where LoF mutations are viable, but with 
an abnormal phenotype in mice) in the overlap-onset group (P =  
0.024) (Fig. 5C). However, we noted a significantly higher proportion 
of CL genes, where LoF mutations cause cellular lethality; P =  
2.467 × 10−4, and DL genes, where LoF mutations cause develop
mental lethality; P = 1.896 × 10−17 amongst childhood-onset genes 
compared with non-ataxia genes. This reflects the developmental 
importance of childhood-onset genes.

A modified testing strategy for variants and STRs in 
known ataxia genes could improve diagnostic yield

Although we found significant differences in some genic properties 
across the ataxia gene sets, there were also surprising commonal
ities, as exemplified by the high density of non-pathogenic STRs 
in both childhood- and adult-onset genes. To summaries data 
across all 294 genic features analysed and account for redundancies 
in correlation between features (Supplementary Fig. 7), we used re
cursive feature elimination to identify the 84 most relevant annota
tions (Supplementary Table 6). Using these salient features, we 
found that while there were small clusters of childhood- and 
overlap-onset genes, most ataxia genes did not cluster and 
adult-onset genes showed no distinct classification on UMAP 
(Fig. 6A and Supplementary Fig. 6). This suggested that adult-onset 
genes are not easily distinguishable from childhood-onset genes 
using the genic features assessed, and that the age-of-onset div
ision does not appear to be reflected in functional genomic annota
tion. This finding has important implications for genetic testing 
strategies. More specifically, it would suggest that genes currently 
considered to cause childhood-onset ataxia could be expected to 
also cause adult-onset disease, and STR expansion may be a more 
common pathogenic mechanism than expected, potentially oper
ating in combination with known pathogenic variants.

We explicitly tested the first of these two hypotheses by meas
uring the burden of potentially pathogenic variants among 
childhood-onset genes in adult-onset ataxia patients recruited to 
the 100 000 Genomes Project and vice versa. The demographics of 
each of the groups assessed (childhood- and adult-onset ataxia 
cases and controls) are listed in Supplementary Table 7. 
Interestingly, this demonstrated a significantly higher burden of 
rare potentially pathogenic LoF variants in the typically 
childhood-onset ataxia genes SACS and POLR3A [both odds ratio 
(OR) 7.038, FDR P = 0.032, 95% CI:1.948–24.512] and rare, predicted 
potentially pathogenic variants (Exomiser score >0.8) in POLR3A 
(OR 3.461, FDR P = 0.018, 95% CI: 1.655–6.840) amongst individuals 
with adult-onset ataxia (Fig. 6B) (Supplementary Table 8). This 
was reflected on interrogation of the clinical records and the 
final diagnostic-grade genetic reports of ataxia patients within 
the 100 000 Genomes Project. We identified eight cases where 
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Figure 4 Comparison of markers of dynamic gene expression. (A) Comparison of dynamic specificity indices (where 1 represents repressed temporal 
expression) in the cerebellum across different gene sets. Only significant Wilcoxon rank sum P-values (<0.05) are given for pairwise comparisons above 
the square brackets. The numbers within the box of the box and whisker plots represent the median values for that genic feature. The corresponding 
horizontal lines on the boxplots represents the lowest quartile, median, and upper quartile of the data. Further results are presented in Supplementary 
Table 5. Expression-weighted cell-type enrichment results showing significantly-enriched cell-type-specific expression across two levels of cell infor
mation. (B) Enrichment of ataxia-associated genes (three sets of different ages of onset) in cell types from mouse single-cell RNA-sequencing data was 
determined using EWCE. Standard deviations (SD) from the mean indicate the distance of the mean expression of the target list from the mean expres
sion of the bootstrap replicates. Significance at P < 0.05 after correction for multiple testing with the Benjamini–Hochberg method over all cell types and 
the three gene panels was used. CNS refers to central nervous system and PNS refers to the peripheral nervous system. (C) Enrichment of 
ataxia-associated genes within cerebellar-specific cell types of the Karolinska dataset are shown with significant P-values noted by an asterisk and 
column outline.
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Figure 5 Enriched GO terms for childhood-onset hereditary ataxia genes (top 25 shown only) and for overlap-onset ataxia genes with associated g: 
SCS-corrected P-values from gene set analysis. (A) The source depicts the GO of the biological domain with respect to three aspects: biological process 
(BP), cellular component (CC) and molecular function (MF). (B) Bar plots of the number of genes across gene panels are shown for each FUSIL category49: 
CL, DL, SV, VP and VN. ‘Yes’ refers to genes that fulfil criteria for that particular FUSIL category. ‘No’ refers to genes that do not fulfil criteria for that 
particular FUSIL category.

Figure 6 UMAP of all ataxia genes partitioned by age-of-onset using 84 selected genic features from recursive feature elimination. (A) Results are for 
each of the three gene panels shown in Supplementary Fig. 6. (B) Volcano plot depicting results from rare variant burden analysis using 100 000 
Genomes Project participants. In this gene-based burden testing analysis, we assessed the number of adult-onset ataxia patients carrying variants 
in childhood-onset genes filtered for rare variants within constrained coding regions, or with an Exomiser score of >0.8 to indicate likely pathogenicity, 
or LoF variants. We also tested this burden of rare variants in overlap-onset ataxia genes which are expected to be significantly enriched within 
adult-onset patients. The OR is the odds of enrichment of a variant in cases over controls (defined in the ‘Materials and methods’ section). 
Benjamini–Hochberg method was used to correct for multiple testing; an overall FDR-adjusted P-value of 0.05 (horizontal dashed line) was used for 
claiming significant gene-disease associations taking into account the total number of case-control gene burden tests under all four scenarios ana
lysed. The vertical dashed line on the left of the plot represents an OR of 1.5 and the other dashed vertical line represents an OR of 3.
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despite the patient presenting with adult-onset disease (range 22 to 
47 years of age), diagnoses were made based on a pathogenic vari
ant typically associated with childhood-onset ataxia (in POLR3A, 
SACS, PMM2, WFS1) (Supplementary Table 9). This suggests that 
we may be missing diagnoses in adult patients by not screening 
for genes typically described to be associated with childhood-onset 
disorders. Furthermore, an a priori assumption of the age-of-onset 
of an associated gene may cause bias when assessing the variant 
pathogenicity, especially if the existing described cases are rare.

Furthermore, we assessed the potential importance of STR ex
pansion across a wider set of ataxia genes. More specifically, given 
the high STR density within ataxia genes (mean of 59.5 STRs per 
adult-onset gene and 55.8 STRs per childhood-onset gene), we in
vestigated whether ataxia genes not currently thought to cause dis
ease through repeat expansions had higher repeat sizes amongst 
individuals with ataxia. To assess this, we studied all 190 
naturally-occurring 5′UTR and exonic STRs located in 100 genes, 
of which 116 STRs were classified within genes of typical 
childhood-onset. We then compared the distribution of STR sizes 

in ataxia cases (either childhood- or adult-onset) and controls re
cruited in the 100 000 Genomes Project. We did not match the 
groups for sex or ethnicity (demographics reported in 
Supplementary Table 10) due to the large sample sizes needed to 
detect rare variants. Furthermore, there were no statistically sig
nificant differences between the estimated repeat sizes between fe
male and male participants (Wilcoxon P = 0.88) and amongst the 
different ethnicities (Kruskal–Wallis P = 0.15). Using this approach, 
we found a trend for a higher maximum number of repeats in the 
top 1% of repeat sizes in patients presenting with both childhood- 
and adult-onset ataxia compared with controls (Fig. 7). This 
demonstrated that expansions of apparently benign STRs are asso
ciated with disease as evidenced by the trend for higher repeat size 
in cases over controls even at naturally-occurring STRs. While this 
does not definitively demonstrate the pathogenicity of specific 
STRs, it suggests that these STRs could be contributing to disease 
susceptibility potentially by operating as modifiers of disease risk. 
Consequently, screening for expansions at naturally-occurring 
STR sites in established ataxia genes not known to cause disease 

Figure 7 Maximum allelic repeat sizes estimated using ExpansionHunter at STR loci annotated by HipSTR reference database in adult patients pre
senting with ataxia (n = 1629) and patients presenting with childhood-onset ataxia (n = 553) compared with controls (n = 6078) defined as unrelated 
non-neurological probands recruited under the Rare Disease arm of the 100 000 Genomes Project. The repeat sizes were estimated across STRs in 
which repeat expansions are known to cause ataxia (‘Known expansion’) and across naturally-occurring STRs, not currently known to be associated 
with disease. The corresponding horizontal lines on the boxplots represents the lowest quartile, median and upper quartile of the data.
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through repeat expansions should be prioritized in unsolved 
cohorts.

Discussion
In this study, we used 294 functional genomic annotations to study 
genes causally linked to hereditary ataxia, with the aim of identifying 
commonalities and differences in gene properties. We provide evi
dence to show that first, there is an unexpectedly high STR density 
within childhood-onset ataxia genes suggesting that we may be miss
ing pathogenic repeat expansions as a disease mechanism within 
this cohort. Secondly, adult-onset ataxia genes cannot easily be dis
tinguished from those causing childhood-onset disease when all 
genic features are considered, suggesting a common underlying biol
ogy. Thirdly and most importantly, diagnostic yield for hereditary 
ataxia could be improved by using a common screening gene panel 
and by analysing STRs in existing ataxia genes not known to harbour 
pathogenic expansions as demonstrated using WGS data from ∼2000 
individuals with ataxia in the 100 000 Genomes Project.

By applying a systems biology approach without a priori as
sumptions, we found that genes associated with ataxia have 
many common characteristics. Genic features such as increased 
transcript count did not differentiate between childhood- and 
adult-onset ataxia, but rather distinguished between ataxia and 
control genes. Unexpectedly, even STR-based measures of genic 
complexity were unable to distinguish between adult- and 
childhood-onset ataxia, as evidenced by a higher STR density in 
genes that currently harbour no known pathogenic repeats, includ
ing in childhood-onset ataxia genes. Furthermore, the higher eSTR 
density within childhood-onset ataxia genes highlighted a poten
tial regulatory role for these elements in modulating gene expres
sion and disease severity. The high density of intronic STRs 
within ataxia genes may also be a source for potentially missed 
pathogenic loci. Thus, our analysis provides support for the utility 
of screening for pathogenic repeat expansions at all ages of onset. 
With this in mind, we noted that five previously-undiagnosed chil
dren presenting with ataxia in the 100 000 Genomes Project were 
found to have repeat expansion disorders typically associated 
with adult-onset disease, for which they had not been initially 
screened.16 Similarly, we provided data to suggest that even STRs 
not known to be associated with pathogenic repeat expansions 
tended to have higher repeat sizes in individuals with both 
adult- and childhood-onset ataxia as compared to controls. This 
highlights naturally-occurring STRs within known ataxia genes as 
candidates for screening in an unsolved cohort. Intriguingly, we 
also found a higher density of other repetitive elements such as 
LINE/L1 in both adult- and childhood-onset ataxia genes than con
trols. This finding is of interest in highlighting the potential role of 
LINE/L1 dysregulation in pathogenesis, in line with a recent 
RNA-sequencing study that demonstrated cerebellar LINE/L1 acti
vation in driving ataxia phenotype in mouse models.58

Our analyses highlighted not only the potential for common 
pathogenic mechanisms for disease across hereditary ataxia, but 
also common biology. We found no clear separation of genes caus
ing childhood- and adult-onset ataxia using UMAP to visualize 
genes based on a recursively-selected set of features. Most striking
ly, adult-onset ataxia genes were highly scattered suggesting that 
there is a spectrum of disease and that genes causing 
childhood-onset ataxia have the potential to cause adult-onset dis
ease. We found support for this hypothesis through the demonstra
tion of a significantly higher burden of rare potentially pathogenic 

variants in the conventionally childhood-onset genes defined with
in OMIM:21 SACS and POLR3A amongst individuals with adult-onset 
ataxia enrolled in the 100 000 Genomes Project. Furthermore, we 
recognize that for SACS, clinical reports exist of adult-onset disease 
presentations.59 On review of diagnostic genetic reports, we found 
eight patients who presented with adult-onset ataxia being diag
nosed with variants typically associated with childhood-onset dis
ease within the 100 000 Genomes Project. However, there has not 
been a systematic approach to gene screening, and these findings 
would suggest that we could be missing diagnoses in adult-onset 
patients by either not screening for, or not prioritizing pathogenic 
variants that have been typically described in children. This may 
be consistent with what many clinicians suspect, highlighting lim
itations that could potentially arise from the use of restricted gene 
panels in diagnostic screening.

While our study has largely uncovered significant commonalties 
across childhood- and adult-onset ataxia, there were also differ
ences. Given the cellular complexity of the cerebellum, a region 
that harbours more than half of all brain neurons,60 this is unsur
prising, and is already supported by evidence that different cerebel
lar cell types are affected in different forms of ataxia.61 Consistent 
with previous gene expression analyses62 and the cerebellum being 
the most frequent site of neurodegeneration on neuropathological 
examination of ataxia,61 we found that ataxia genes exhibited 
cerebellar-specific expression and co-expression. Interestingly, we 
demonstrated a preferential CNS glial enrichment within 
childhood-onset genes compared to a CNS neuronal enrichment 
within overlap-onset genes. We found that CNS glial enrichment 
was driven by ciliopathy genes, which are known to affect early 
brain development, mediated in part through radial glial progenitor 
cells.63 This finding was also reflected in glycosylation and cilia GO 
enrichment within childhood-onset genes. As would be expected, 
childhood-onset genes not only exhibited dynamically-repressed 
expression in the cerebellum when compared with control genes, 
but a higher proportion were also classified as cellularly or develop
mentally lethal. Genes causing both adult- and childhood-onset 
ataxia exhibited Purkinje cell-type-specific expression, driven by 
genes associated with ‘pure’ ataxia syndromes; a finding supported 
by previous analyses using mouse64 and human transcriptomics.62

The expression of childhood-onset ataxia genes was also enriched 
within inhibitory GABAergic molecular layer interneurons,65 driven 
by genes associated with ataxia-epilepsy syndromes. This supports 
possible additional function for these interneurons in epileptogen
esis, mirroring the role of dentate basket cells in temporal lobe 
epilepsy.66

Although this study highlighted key biological information, 
such as the contribution of particular cell types, and the potential 
importance of specific pathogenic processes such as STR expan
sions, our analyses were limited by the quality and availability of 
existing functional genomic annotation. For example, information 
regarding dynamic gene expression taken from human tissues38 is 
limited by the resolution of bulk RNA-sequencing data as not all 
genes are successfully sequenced at all timepoints, thus dynamic 
gene expression quantification is limited. Likewise, we are also lim
ited by the accuracy of input gene lists and age-of-onset classifica
tion which changes regularly with new cases of hereditary ataxia 
described. We attempted to overcome this problem by using a 
range of different resources across the four main gene feature cat
egories and disease gene panels. ExpansionHunter is limited in siz
ing repeats much larger than the read length,16 and thus our STR 
analysis may have missed large outliers of repeat sizes in the top 
percentiles. Despite this technical limitation, our results would 
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likely still stand given that the current trend for large repeat sizes 
may therefore be an underestimate of the true repeat size.

In summary, this study suggests that childhood- and 
adult-onset ataxia exist across a spectrum of disease rather than 
as distinct entities; a finding which would be hard to generate 
from clinical experience given that there are many hereditary atax
ia genes each accounting for a very small number of cases. This core 
observation has important clinical implications for the classifica
tion of hereditary ataxia by age-of-onset. But, most importantly, it 
suggests that the diagnostic rate for hereditary ataxia would be ex
pected to increase simply by removing the age-of-onset partition, 
and through modified screening for repeat expansions in 
naturally-occurring STRs within known ataxia genes, in effect 
treating these regions as candidate pathogenic loci.
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