Journal Pre-proof

Application of targeted maximum likelihood estimation in public health and epidemiological studies: a systematic review

Matthew J. Smith, Rachael V. Phillips, Miguel Angel Luque-Fernandez, Camille Maringe

PII: S1047-2797(23)00115-1

DOI: https://doi.org/10.1016/j.annepidem.2023.06.004

Reference: AEP9498

To appear in: *Annals of Epidemiology*

Received date: 3 March 2023 Revised date: 24 May 2023 Accepted date: 6 June 2023

Please cite this article as: Matthew J. Smith, Rachael V. Phillips, Miguel Angel Luque-Fernandez and Camille Maringe, Application of targeted maximum likelihood estimation in public health and epidemiological studies: a systematic review, *Annals of Epidemiology*, (2023) doi:https://doi.org/10.1016/j.annepidem.2023.06.004

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2023 Published by Elsevier.

ARTICLE TYPE

Application of targeted maximum likelihood estimation in public health and epidemiological studies: a systematic review

Matthew J. Smith^{*1} | Rachael V. Phillips² | Miguel Angel Luque-Fernandez^{$\pm 1,3$} | Camille Maringe^{± 1}

¹Inequalities in Cancer Outcomes Network, London School of Hygiene and Tropical Medicine, London, England, United Kingdom

²Division of Biostatistics, School of Public Health, University of California at Berkeley, California, United States of America

³Department of Statistics and Operations Research, University of Granada, Granada, Spain

Correspondence

*Matthew J. Smith. Email: matt.smith@lshtm.ac.uk

Present Address

London School of Hygiene and Tropical Medicine, Keppel Street, London, England, United Kingdom, WC1E 7HT

[±] Both authors contributed equally to this work.

Abstract

Background The Targeted Maximum Likelihood Estimation (TMLE) statistical data analysis framework integrates machine learning, statistical theory, and statistical inference to provide a least biased, efficient and robust strategy for estimation and inference of a variety of statistical and causal parameters. We describe and evaluate the epidemiological applications that have benefited from recent methodological developments.

Methods We conducted a systematic literature review in PubMed for articles that applied any form of TMLE in observational studies. We summarised the epidemiological discipline, geographical location, expertise of the authors, and TMLE methods over time. We used the Roadmap of Targeted Learning and Causal Inference to extract key methodological aspects of the publications. We showcase the contributions to the literature of these TMLE results.

Results Of the 89 publications included, 33% originated from the University of California at Berkeley, where the framework was first developed by Professor Mark van der Laan. By 2022, 59% of the publications originated from outside the United States and explored up to 7 different epidemiological disciplines in 2021-22. Double-robustness, bias reduction and model misspecification were the main motivations that drew researchers towards the TMLE framework. Through time, a wide variety of methodological, tutorial and software-specific articles were cited, owing to the constant growth of methodological developments around TMLE.

Conclusions There is a clear dissemination trend of the TMLE framework to various epidemiological disciplines and to increasing numbers of geographical areas. The availability of R packages, publication of tutorial papers, and involvement of methodological experts in applied publications have contributed to an exponential increase in the number of studies that understood the benefits, and adoption, of TMLE.

KEYWORDS:

Targeted Maximum Likelihood Estimation (TMLE), Epidemiology, Observational Studies, Causal Inference, Systematic Review

1 1 | BACKGROUND

Public health decisions across many clinical specialties are often informed by research exploring the relationship between exposures and patient health outcomes. These relationships are often susceptible to confounding bias, which requires sometimes 3 complex statistical methodology to minimize. Randomized controlled trials (RCT) are considered the gold standard because, through randomization of subjects to a treatment, they reduce the possibility of bias. Observational data offer invaluable opportunities to study relationships in contexts where clinical trials might prove infeasible or unethical, as well as for studying groups 6 of the population typically excluded from trials or beyond the initial target population. Under correct adjustment for selection 7 bias, missingness, interference, and confounding, observational data complement the evidence coming from RCTs. In both RCT and observational studies, the exposure-outcome relationship is of interest. Methodological statistical devel-10 opments for causal inference attempt to produce the least biased estimate of the relationship along with accurate inference. 11 G-computation, propensity score (PS), and inverse probability of treatment weighting (IPTW) estimators rely on parametric 12 modeling assumptions, which are susceptible to model misspecification. Double-robust methods, like augmented inverse 13 probability of treatment weighting (AIPTW) and targeted maximum likelihood estimation (TMLE), aim to minimize model 14

misspecification by requiring estimation of both the outcome and exposure mechanisms. They provide a consistent estimator
 as long as either the outcome or exposure model is correctly specified. Double-robust methods often outperform single-robust

¹⁷ methods in point and interval estimation.^{1,2}

18

TMLE, also known as targeted minimum loss-based estimation, was introduced by van der Laan and Rubin in 2006.³ In general, TMLE is a two-step process that involves (1) initial estimation of the outcome and intervention models, and then (2) in a "targeting" step, uses information from them to optimise the bias-variance trade-off for the target estimand (e.g., average treatment effect [ATE]), rather than the whole outcome probability distribution. Furthermore, to avoid model misspecification, ensemble machine learning algorithms are used to estimate the initial models. In particular, the Super Learner (SL) algorithm for stacked ensemble machine learning is most commonly used as it is theoretically grounded and proven to perform optimally in large samples.⁴

26

We lightly detail the technical steps involved in the TMLE of the ATE, i.e., the effect of a binary exposure A on a post-27 exposure outcome Y, adjusted by baseline covariates W^{5} . The prediction function for the mean outcome Y, given exposure 28 A and covariates W is estimated, most commonly, using SL. We could use this estimated prediction function, $\hat{E}[Y|A, W]$, to 29 arrive at an estimate of the ATE. Specifically, we would obtain predicted outcomes under a counterfactual scenario where all 30 subjects receive the exposure/treatment versus another scenario where no one receives it. The average difference between these 31 predicted counterfactual outcomes is an estimate of the ATE. However, formal statistical inference (i.e., confidence intervals 32 and p-values) cannot be obtained for this estimate and it is susceptible to residual confounding; the latter can be reduced by 33 using the information on how each individual was assigned or allocated to each level of the exposure. We, therefore, estimate 34 the function for predicting the probability of being exposed, given the covariates W, using SL (exposure model, i.e. propensity 35 score). These first steps are common to other double-robust estimators of the ATE, such as AIPTW. We then calculate the 36 so-called "clever covariate" for the ATE, which is the individual values of the binary exposure weighted by the predicted prob-37 abilities of the exposure, given W. This is similar to IPTW, except here we weight the predicted probability of each exposure 38 level instead of the outcome. The fluctuation parameter (ϵ) describes the difference between the observed outcome Y and the 39 initial predictions of the outcome from the outcome model. It is calculated through maximum likelihood estimation (MLE) by 40 regressing the clever covariate on the observed outcome. When the fluctuation parameter is estimated to be close to 0 there is 41 little difference between the observed and predicted outcomes; thus, the propensity score does not provide additional informa-42 tion for the initial estimate of the outcome model because it was correctly specified. If the fluctuation parameter is not close 43 to 0, then this indicates the presence of residual confounding in the initial estimate. The initial outcome model's predictions 44 for each level of the binary exposure are updated using the fluctuation parameter ϵ as a weight, and the final ATE estimate is 45 calculated from these updated estimates. The functional delta method based on the influence function can be used to derive the 46 standard error of the ATE and construct Wald-type confidence intervals. 47

Since 2006, the TMLE framework has experienced a growing number of theoretical and applied developments, and it has 49 expanded further after a book that shared the TMLE framework to the international community of applied researchers was 50 published in 2011.² Targeting specifically applied researchers, efforts were made to provide lay-language descriptions of the 51 framework and exemplify its applications.^{5–7} Furthermore, in 2018, a second book was published disseminating more advanced 52 applications of the TMLE framework to data scientists with a particular focus on longitudinal settings.⁸ TMLE is a robust 53 framework for statistical analysis in clinical, observational, and randomized studies. Since 2016, the American Causal Inference 54 Conference has hosted a data challenge in which teams compete to estimate a causal effect in simulated data sets based on 55 real-world data, such as from healthcare or education.⁹ The competition is a proving ground for cutting-edge causal inference 56 methods that have the potential to transform program evaluation. TMLE has consistently been a top-performing method.¹⁰ 57 5 2

The use of robust statistical methods is key to obtaining reliable results for public health and epidemiological research and maximising their benefit to society. Evidence shows that TMLE, by blending flexible machine learning methods and causal inference framework, is one such step towards robust causal claims that bear significant and practical effects. We reviewed the literature around public health and epidemiological applications of TMLE to date, alongside key TMLE developments over the last 20 years. We highlight the speed at which the field has developed and spread through the scientific community, and identify areas for further development to increase the utility of the TMLE framework in epidemiological and applied research.

65 2 | METHODS

66 Protocol registration and reporting standards

67

This study is reported using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline.

⁶⁹ We registered this systematic review with PROSPERO (ID: CRD42022328482).

70 Information sources

71

We searched the PubMed medical literature database for published epidemiological studies using TMLE in any epidemiolog-72 ical field (i.e., observational settings in biomedical sciences, including clinical epidemiology and public health). We searched 73 for publications from any time up to 31st December 2022, the date the search was executed. The search strategy comprised 74 two specific groups of search terms focusing on TMLE and epidemiology. Relevant Mesh headings were included along with 75 free-text terms, which were searched for in the title, abstract, and keyword fields. We used general and specific TMLE search 76 terms, such as "targeted maximum likelihood estimation," "targeted minimum loss-based estimation," and "targeted machine 77 learning". Epidemiological search terms included "epidemiology," "public health," "population," or "treatment". The two spe-78 cific groups of terms were combined with 'AND' to retrieve the final set of results. Search strategies were developed with an 79 information specialist (MALF). The full search strategy is shown in Table 1. 80

TABLE 1 Boolean search queries

Query	Boolean terms	Results
#1	(epidemiology OR (public AND health) OR population OR treat*)	11,459,953
#2	("targeted maximum likelihood estimation") OR ("targeted minimum loss based estimation") OR ("targeted minimum loss-based estimation") OR ("TMLE") OR ("targeted machine learning") OR ("targeted learning") OR ("targeted machine-learning")	315
#3	#1 AND #2	254

Eligibility criteria 81

82

85

We excluded studies that did not report the use of TMLE as a tool to explore their estimand of interest. We also excluded 83 experimental studies, such as RCTs (n=18, Appendix Table 1), 1^{1-28} because they are designed to minimize confounding bias 84 through randomization, which makes them fundamentally different from observational studies that heavily rely on the use of statistical methods to minimize confounding bias. By focusing on observational studies, we provide a more detailed and 86 nuanced understanding of how TMLE can be used to address confounding bias and to identify gaps in the existing literature on 87 TMLE in observational studies, which can help to guide future research. 88

89

We did not consider manuscripts that compared the performance of TMLE to other estimators when there was no new devel-90 opment proposed, even if there was an applied question of interest.²⁹⁻³¹ Studies were restricted to the English language and 01 primary research studies. Secondary research studies, such as reviews and comments of TMLE, conference abstracts and brief 92 reports, and preprints were not searched. We classified the retained manuscripts into observational, methodological, and tuto-69 rial articles. TMLE methodological development articles and tutorials were considered separately, even if they contained a 94 methodological development specifically designed to investigate an epidemiological question within the same article. We make Q F reference to these methodological articles throughout this review, as they underpin the applied publications. 96

Study selection, data extraction and management 97

98

All retrieved publications were imported into the Endnote reference software where they were checked for duplication. Two 99 of the three lead researchers (authors MJS, MALF and CM) were randomly allocated two-thirds of the 254 articles, to screen 1 00 titles and abstracts of each publication independently and classify them into (1) observational, (2) methodological develop-101 ments, (3) tutorial, (4) systematic review, (5) RCT, or (6) not relevant (Figure 1). Discordant classifications were discussed 1 0 2 and adjudicated by the third independent reviewer, where necessary. Two researchers (authors MJS and CM) independently 103 reviewed the full text of all eligible observational publications for data extraction. 1 04

1 0

FIGURE 1 Flow diagram of studies included in the systematic review

106 3 | RESULTS

We found 254 unique publications published prior to 31st December 2022 in PubMed (Figure 1). Of these, 102 articles were a 107 methodological development (including theoretical - or software-based), eight were tutorials, five were systematic reviews, and 1 08 18 were RCTs. Of the 32 articles that were not relevant, three mentioned "TMLE" only in the author fields, one was a discussion 1 0 9 of currently existing methods, some were assessments of *learning* (educational) programs that are *targeted* towards clinical 110 environments, and others were comparisons of machine learning algorithms to other prediction models. Overall, we focused on 111 89 observational studies in this systematic review for which full texts were available; six publications were not open-access and 112 full texts were obtained from the corresponding authors. For the interested reader, information extracted on RCTs is presented 113 in Appendix Table 1. 114

3.1 | Dissemination and uptake of the TMLE framework

There has been a growing uptake of the TMLE framework over time, with five or fewer applied publications per year until 2017, and up to 21 in 2021. The majority (66, 74%) of publications using TMLE were published in the last four years (2019-2022). Most studies (85, 95.5%) cited the authors of particular TMLE methods they apply, whereas four (4.5%) did not cite any TMLE references. The large majority of these first epidemiological studies benefitted from the expert knowledge of an author who is (or was) part of Professor Mark van der Laan's lab. (Table 2)

1 2 1

Of the 89 studies included, two-thirds were conducted in the United States of America (US) (58, 65.2%, Figure 2), $^{32-89}$ with 100% of articles before 2017 being published in the US, down to 41% of all 2022 articles. Publications from Europe (13, 14.6%), $^{90-102}$ Africa (4, 4.5%), $^{103-106}$ the Middle East (5, 5.6%), $^{107-111}$ and Oceania or Asia (8, 9.0%) $^{112-119}$ represent between 25% (in 2017) and 69% (in 2022) of all applied studies published in the last 6 years (Figure 2, Table 2). In the US, the majority of publications (29) were from California, including 20 from the University of California at Berkeley, where TMLE was first described.

128

In the early years, the first authors tended to be qualitative academic experts, but we saw more variety in 129 expertise and a larger number of practising clinicians leading observational studies in many epidemiological 1 30 and public health fields in recent publications. The most common epidemiological sub-discipline was non-1 31 communicable diseases (27, 30.3%). 36,47,51,52,54,56,58,67,72,75,80,82,83,85,87,90,95,96,98,100,102,106-110,115 followed by behavioral 1 3 2 epidemiology (17, 19.1%), ^{34,41,48,60,63–65,68,69,73,74,78,79,92,112,117,118} and then infectious disease epidemiology (13, 1 3 3 14.6%).^{37,44,66,70,71,94,99,101,104,105,111,116,120} Through time we see an uptake of TMLE in many more disciplines, such as 1 34 pharmaco-epidemiology, ^{46,81,97,103} policy, ^{43,45,50,61,76,84,86,119} biomarker epidemiology, ^{32,33,39,40,42,62,113,114} environmental epi-1 35 demiology, ^{35,49,55,59,77,88,89,91,93} occupational epidemiology, ^{38,53} and health economy. ⁵⁷ 130

1 37

We also studied the evolution of citations. When only methodological overviews of the TMLE framework were available,
 these were cited despite their heavy statistical requisite. Since 2016, tutorials were published and started to be cited alongside
 references for statistical packages.^{1,5-7,121-124}(Table 2)

141

Of the epidemiological study designs, a cohort study $^{33,34,37-39,45-47,50,52,53,56,58-61,63,66,69,70,72,75,78-81,83,85,87-89,94,95,98-101,103,105,106,112-119}$ was the most commonly used design (48, 53.9%), which was followed by cross-sectional (34, 38.2%) (Appendix Table 2). $^{32,35,36,41-44,48,49,51,54,55,57,62,64,65,67,68,71,73,74,76,82,86,90-93,96,97,102,104,107,109}$ Other types of commonly used epidemiological study designs included case-control 40,108,110,111,120 and ecological. 77,84

146

Many articles reported results from other statistical methods, in addition to reporting those obtained from TMLE. Over one-quarter of the studies used adjusted parametric regression (24, 27.0%), ^{35–37,43,46,51,53,56,58,62,64,70,75,92,93,96–98,105–107,111,115,120} one sixth (12, 13.5%) used IPTW, ^{34,37,49,54,63,73,74,77,79,81,103,104} one (1.1%) used AIPTW, ⁷⁶ three (3.4%) used non-parametric methods (e.g. Kaplan Meier), ^{37,53,75} and seven (7.9%) used unadjusted regression. ^{63,68,72,83,84} Some studies included more than one comparative method.

Smith ET AL.

7

The SuperLearner (SL) package provides a flexible machine learning approach to the estimation of the initial outcome and intervention models (such as the propensity score). Of the 89 articles, more than half (55, 61.8%) used the SL algorithm, ^{43,45,47,49–52,54,58,60–63,65–67,69–72,74–77,79,81–84,91,92,94,96,97,99,104,105,109–120 85–89,100–102} 18 (20.2%) used logistic regression, ^{32–38,41,46,48,53,55,56,64,73,103,108} and 16 (18.0%) did not specify the approach for the estimation of either the outcome or intervention model. ^{39,40,42,44,57,59,68,78,80,90,93,95,98,106,107} The average number of machine-learning algorithms considered by the SL was 6.3 (range 1 - 16), 19 different machine-learning algorithms were used across the articles (a machine-learning algorithm is a wrapper included within the SuperLearner² library in R software).

160

The variances (standard errors) of point estimates obtained from TMLE were estimated using differing approaches such as the influence function (n=21, 23.6%), $^{35-38,40,43,48,56,71,84,86,90,96,97,101,107-111,115}$ bootstrap (n=6, 6.7%), 33,34,46,49,54,73 and Wald tests (n=2, 2.2%), 41,45 while 60 (67.4\%) studies did not specify how standard errors were obtained. $^{32,39,42,44,47,51-53,55,57-70,72,74-83,85,87-89,91-95,98-100,102-106,112-114,116-120,125}$

165

The Causal Inference Roadmap¹²⁶ contains seven recommended criteria to define a causal effect: (i) specify the scientific 166 question, (ii) specify the causal model, (iii) define the target causal quantity, (iv) link the observed data to the causal model, 167 (v) assess identifiability assumptions, (vi) estimate the target statistical parameters, and (vii) interpretation of the results. On 168 average, 5.4 (SD 0.9) criteria were complete per article. We considered a version of the Targeted Learning Roadmap¹²⁷ that 1 6 9 contains five criteria: (i) specify the observed data and describe the data-generating experiment, (ii) specify a statistical model 170 representing a set of realistic assumptions about the underlying true probability distribution of the data, (iii) define a target 1 71 estimand of the data distribution that "best" approximates the answer to the scientific question of interest, (iv) given statistical 1 7 2 model and target estimand, construct an optimal plug-in estimator of the target estimand of the observed data distribution, 173 while respecting the model, and (v) construct a confidence interval by estimating the sampling distribution of the estimator. 1 74 When the scientific question of interest is causal, step (iii) of the Targeted Learning Roadmap incorporates steps (ii)–(v) of the 175 Causal Inference Roadmap.¹²⁷ On average, 3.4 (SD 0.9) criteria were complete per article. Most studies have room to state the 176 necessary content for at least one more criteria. 177

178

Most publications (85, 95.5%) used R software to perform TMLE, $^{34-41,43-54,56-69,71,72,74-78,83-92,94-105,107-114,118-120}$ except four that used STATA. 82,93,106,115 Nonetheless, ten articles reported using another software tool (i.e., Stata/SAS/SPSS/Python) alongside R for TMLE. 34,51,57,65,83,97,100,103,105,110 The most commonly used R software packages were *tmle* ¹²⁸ (41, 46.1%) and *ltmle* ¹²⁹ (18, 20.2%).

3.2 | Showcase of the TMLE framework

3.2.1 | Showcase by motivations

In all disciplines and applications, applying the TMLE framework to their specific research question encouraged authors to review the strengths and limitations of their data and carefully consider how their data and setting might violate identifiability assumptions, which are assumptions necessary for causal inference but not TMLE. If, and only if, the identifiability assumptions are assumed to hold, the estimated effect is a causal effect. However, for observational studies, it cannot be known whether identifiability assumptions hold. Therefore, if an estimate is interpreted as a causal effect, then this interpretation should be accompanied by a discussion of the plausibility of identifiability assumptions. All disciplines and disease areas highlight issues with missing data and measurement errors and incorporate subject-matter knowledge (Appendix Table 2). We review in turn each characteristic, highlighted by authors, that motivated their use of TMLE.

193

Three-quarters of the studies (n=68, 76.4%) provided at least one justification for using TMLE compared to another method 1 94 (Table 2). The targeting step of the TMLE, aimed to account for any residual confounding due to the model selection, leads 195 to bias reduction, that is, an estimated parameter closest to the true value of our quantity of interest. This feature of TMLE 196 was, by far, the most appealing to applied researchers in their observational analyses, with 41 articles (46.1%) mentioning bias 197 reduction. 34,35,39-42,44,46,50,56,58,64-68,90,91,95,96,112 25,73,74,77,80,97,103,104,110,111,114,117,119 43,54,106,107 Double-robustness, meaning that 198 only one of the initial outcome or exposure models needs to be correctly specified, was also a property that attracted authors, 199 cited by 27 articles (30.3%). ^{32,33,35,38,44,51,52,54,56,60,62,63,67,69,70,73,74,80,85,86,88,89,100,106-108} Model misspecification, which might 200 result from imposing constraints that are unrealistic or not informed by subject-matter knowledge, is reduced in TMLE thanks 201

to machine-learning algorithms used in modeling the outcome and the exposure. Reduced model misspecification was a highly
 specified driver for using the TMLE framework, cited by 17 articles (19.1%).^{48,57,62,72,74,79,81,82,84,88,99–101,109,115,117} Standard
 regression techniques in settings with low incidence, ^{44,101} rare outcomes, ¹⁰³ or low sample size^{73,92} may over-fit the data or
 not converge: careful SL specifications overcome these limitations.^{44,57} TMLE is also less sensitive than IPW to **positivity** violation, due to the use of machine learning.^{43,98,109} Efficiency, meaning that fewer observations may be required to achieve a
 given error performance, is a motivation cited in 14 articles (15.7%) across all disciplines.^{37,38,39,41,63,64,77,91,96,97,104,108,110}

3.2.2 | Showcase by disciplines

There was a range of disease areas covered in the 27 **noncommunicable disease epidemiology** studies. The appealing property 209 of TMLE was that it is a semiparametric estimator, allowing the use of machine learning algorithms to minimize model mis-210 specification. 54,67,80,82,85,98,106,109,115,115 Additionally, extensions of TMLE have developed ways to appropriately handle the dual 211 nature of time-varying confounding, which have been utilised in longitudinal studies analyzing data on depression,⁵² survival 212 from acute respiratory distress syndrome, ⁷⁵ caries arising from intake of soda, ⁵⁶ effects of smoking on rheumatoid arthritis, ⁵⁸ 213 effects of asthma medication on asthma symptoms,⁹⁵ and reduction of pain after knee replacement surgery.⁸⁵ Improved pre-214 dictive performance⁹⁰ and adjusting for informative censoring⁷⁵ were additional reasons for using TMLE. Furthermore, the 215 extension of TMLE to case-control studies, in which sampling is biased with respect to the disease status, provided a platform 216 for analyzing the causal effect of reproductive factors on breast cancer by using case-control weighted TMLE.¹¹⁰ Real-world 217 data overcome limitations of RCTs, such as under-power and evaluation of long-term interventions;⁸⁵ Recent applications 218 claimed their use of TMLE in real-world data provided results that were more generalizable than what RCTs would provide.¹⁰⁰ 219 220

In infectious disease epidemiology (IDE) articles, most were concerned with having a flexible modeling approach that does 221 not impose assumptions on the functional form of the exposure-outcome relationship.^{66,71,94,104,116,120} A key feature of the IDE 222 subdiscipline is that baseline confounders and exposures may change over time and can obscure the causal effect of interest.³⁷ 223 Standard survival modeling assumes that censoring and survival processes are independent, which is likely violated in this 224 setting, and it assumes there is no time-dependent confounding.³⁷ TMLEs with a working marginal structural model and for 225 time-to-event outcomes permit evaluation of the effect of an exposure at multiple time points, which is beneficial when the 226 interpretation of causal effects from hazard models is often difficult.¹³⁰ Other studies have overcome this issue by using TMLE 227 in a target trial framework or case-cohort studies.^{70,111} 228

229

In behavioral epidemiology manuscripts, the behavioral nature of the topics covered implied that RCTs are mostly unethical, 230 bear prohibitive costs or have very small sample sizes. There are several key challenges for using observational data to study the 231 causal effects of childhood adversities, 41,48 physical activity, 34,63,118 alcohol consumption 65 or supply 112 on various outcomes, 232 including fractures,³⁴ mental health,^{41,78,79} asthma,⁹² and pregnancy outcomes.^{63,64} They include a risk for reverse causa-233 tion;^{75,78,79} high dimensional data and in particular, multidimensional exposures;^{41,48} and measurement error resulting from 2 34 self-reported exposures or outcomes.^{64,79,117,118} Longitudinal relationships and time-varying confounding, where confounders 23 of the effect of an exposure on an outcome can themselves be affected by prior exposures, as well as sample attrition, ^{60,112,117,118} 236 are particular challenges faced by survey data that are collected in consecutive waves.^{60,74,79,112,117,118} TMLE adjusts for 237 time-varying confounders affected by prior exposure and employs a doubly robust estimation approach that allows for flexible model fitting. Additionally, as pointed out in 2016 by Ahern et al.,⁴¹ "TMLE with machine learning addresses the challenge of 239 a multidimensional exposure because it facilitates 'learning' from the data the strength of the relations between each adversity 240 [dimensions of the exposure] and outcome, incorporating any interactions or nonlinearity, specific to each [sub-group]." 241

242

The field of **biomarker epidemiology** is driven by the search for sets of candidate biomarkers that are important in determining given outcomes. Ranking the contributions of these candidate biomarkers is also of interest. Some studies used TMLE to measure variable importance in biomarker research^{32,40,114} and in other fields.⁹⁰ Dimension reduction for the estimation of causal effects is an aim in some biomarker examples.^{42,62,113} In the models presented in the publications, there are complex joint effects to consider in large correlated data, as well as longitudinal patterns and time-dependent confounding.^{42,62,113} Furthermore, two manuscripts present covariate selection algorithms ahead of causal effect estimation.^{113,114}

249

Research published in **environmental epidemiology** highlights challenges around the selection of key variables of interest, ^{86,93} clear definitions of exposure and outcomes, ³⁵ as there are likely many proxy and surrogate measures of exposure, ⁹¹ Smith ET AL.

coupled with potential exposure misclassification and measurement errors.^{35,55} Nonetheless, TMLE was successfully applied
 to determine either causal attributable risk,^{35,91} or risk differences.⁴⁹ Mediation effects were studied in Casey et al.⁵⁹ looking
 at adverse birth outcomes.

255

The only observational study of TMLE in **health economics** explored the relationship between financial resources leading to food insecurity and healthcare expenditure in a pay-to-access healthcare system. It uses ecological measures of exposure and outcome and leads to evidence for policy.⁵⁷

259

Two publications focused on **occupational epidemiology**.^{38,53} A key aspect of occupational epidemiology is accounting for the healthy worker survivor effect: a bias arising due to healthier workers accruing more exposure over time. These studies looked at exposure to particulate matter from aluminum or metalworking fluids in metal factory workers, which varied depending on the length of employment. Both studies benefited from TMLE's flexibility to allow for time-varying confounding of the exposure.

265

The field of **pharmacoepidemiology** is concerned with assessing treatment's efficacy in real-world settings and monitoring long-term side effects of treatments. Both objectives would be either impractical or too costly to study in RCTs, given the limited follow-up time available in clinical trials. TMLE has been used in this setting, as it provides a robust procedure for estimation. ^{46,81,97,103} In particular, the flexibility of TMLE, provided through the specification of a diverse and rich set of machine learning algorithms in the SL, is crucial for appropriately adjusting for confounding in observational studies. ¹³¹

Policy epidemiology assesses the effects of population programs or mandates. Lack of randomization, such as in studies 272 examining the association between specialty probation and public safety outcomes, ^{45,50} leads to an imbalance in the covariate 273 distribution by exposure levels. Studies of cost-effectiveness may involve dealing with outliers which can be addressed with 274 TMLE.^{50,76} Other challenges include zero-inflation, such as the assessment of the effect of primary care physician density on 275 arthroplasty outcomes, in which some areas had zero density.⁷⁶ This is dealt with by using a mixture of models to assess the 276 probability of non-exposure (i.e., very low density).⁷⁶ Other policy studies presented challenges around missing data,⁷⁶ reliance 277 on epidemic modeling assumptions,⁸⁴ target trial emulation,¹¹⁹ dimensionality reduction and spatial associations,⁸⁶ or infeasible 278 randomization process.⁶¹ 279

FIGURE 2 World map of publications using targeted maximum likelihood estimation by the geographical location of the first author (2006 to mid-2022). Colors represent the number of observational studies and the crosshatch pattern identifies where at least one methodological publication stem from.

TABLE 2 Distribution of observational papers	by year of publication and selected characteristic

													Y	ear of p	ıblica	ation													
		2009	2	010	2	2011		2012		2013	2	2014		2015		2016	2	2017		2018	2	019	2	020	2	021	2	022	Total
	Ν	(%)	Ν	(%)	N	(%)	Ν	(%)	Ν	(%)	N	(%)	Ν	(%)	Ν	(%)	Ν	(%)	Ν	(%)	N	(%)	Ν	(%)	N	(%)	N	(%)	Ν
Publications	2				1		1		1		2		1		5		4		6		12		16		21		17		89
TMLE expert (author) [±]	2	(100)			1	(100)	1	(100)	1	(100)	1	(50)	1	(100)	3	(60)	1	(25)	4	(67)	6	(50)	6	(38)	5	(24)	2	(12)	34
USA-based publication	2	(100)			1	(100)	1	(100)	C	7	2	(100)	1	(100)	5	(100)	3	(75)	6	(100)	9	(75)	10	(63)	11	(52)	7	(41)	58
Discipline																													
Behavioral Epi Biomarker	2	(100)			1	(100)									1 3	(20) (60)			1	(17)	2	(17)	6 1	(38) (6)	4 2	(19) (10)	2	(12)	17 8
Environmental epi							1	(100)									1	(25)	1	(17)	3	(25)			1	(5)	2	(12)	9
Health economy											1	(50)					1	(25)			1	(8)	4	(25)	2	(10)	4	(24)	1
Infectious aisease Non-Communicable Disease Occupational eni									1	(100)	1	(50) (50)	1	(100)			1	(25)	3	(50)	1 3 1	(8) (25) (8)	4	(25) (25)	2 9	(10) (43)	4 6	(24) (35)	13 27 2
Pharmaco-epi													1	(100)			1	(25)			1	(0)	1	(6)	2	(10)			4
Policy															1	(20)	1	(25)	1	(17)	1	(8)		(-)	1	(5)	2	(12)	7
Motivations [†]																													
Bias					1	(100)	1	(100)	1	(100)	1	(50)			5	(100)	3	(75)	1	(17)	4	(33)	10	(63)	9	(43)	5	(29)	41
Double-robust	2	(100)					1	(100)			1	(50)	1	(100)		(10)	1	(25)	2	(33)	4	(33)	5	(31)	5	(24)	5	(29)	27
Efficient					1	(100)					1	(50)	1	(100)	2	(40)	1	(25)			1	(8)	3	(19)	5	(24)	1	(6)	14
Finite sample Model misspecification					1	(100)													2	(33)	2	(17)	2	(0)	6	(20)	5	(0)	5 17
Positivity assumption															1	(20)			4	(33)	2	(17)	- 1	(15)	2	(10)	3	(29)	3
Time-varving confounding																							1	(0)			2	(12)	2
None specified																	1	(25)	1	(17)	4	(33)	2	(13)	4	(19)	4	(24)	16
Expertise first author																													
Biostatistician	1	(50)									1	(50)	1	(100)			1	(25)	2	(33)	2	(17)	2	(13)	4	(19)	5	(29)	19
Epidemiologist					1	(100)	1	(100)			1	(50)			3	(60)			1	(17)	4	(33)	6	(38)	7	(33)	4	(24)	28
MD															1	(20)	2	(50)			1	(8)	1	(6)	5	(24)	3	(18)	13
MD, MPH										(100)											1	(8)	1	(6)	•	(1.4)		(24)	2
MD, PhD									1	(100)											3	(25)	2	(13)	3	(14)	4	(24)	13
PhD	1	(50)															1	(25)	2	(33)			1	(15)	2	(10)			- 4
Not known	1	(50)													1	(20)	1	(23)	1	(17)	1	(8)	1	(6)			1	(6)	5
Citations 🖸																													
Overall TMLE method.	2	(100)			1	(50)	1	(100)			5	(56)	1	(33)	4	(33)	4	(50)	3	(33)	7	(21)	13	(41)	20	(38)	11	(26)	72
Specific TMLE method.					1	(50)			1	(100)	4	(44)	1	(33)	6	(50)	1	(13)	3	(33)	15	(45)	8	(25)	12	(23)	12	(28)	64
Tutorial																			1	(11)	7	(21)	7	(22)	15	(29)	11	(26)	41
R software													1	(33)	2	(17)	3	(38)	2	(22)	4	(12)	4	(13)	5	(10)	9	(21)	30

[±] TMLE expert is a current or past member of M.J. van der Laan's Lab.

[†] Proportions calculated over the number of publications within that year.

[©] Proportions calculated over the total number of citations within that year.

3.3 | Methodological developments and their implementation

Over the years since the TMLE framework was first laid out,³ many contributions have been made to expand the settings in which TMLE is used, provide tools for implementation in standard software, and describe the TMLE framework and application in lay language. Thanks to this, the community of public health researchers and epidemiologists have started implementing the TMLE framework and its latest developments to obtain double robust, least biased and efficient estimates and statistical inference from studies. The properties of TMLE, in contrast to other estimators commonly used for causal inference, include that it is loss-based, well-defined, unbiased, efficient and can be used as a substitution estimator.

288

Figure 3 shows schematically when and why extensions of TMLE have happened in the last 15 years, as well as extensions and uptake. The 89 applied epidemiological studies are classified by methodological development used during the study. In Appendix Table 3 the main methodological references are listed and grouped by methodological developments highlighted in Figure 3.

293

TMLE's superior efficiency and power are evidenced in small sample size settings where marginal effects from logistic regression models adjusted for (possibly many) covariates would not be recommended.¹³² The implementation of TMLE in complex causal effect estimation problems is discussed in many publications, such as in settings with multiple time point interventions, ^{133,134} longitudinal data, ^{135,136} post-intervention effect modifiers, ¹³⁷ dependence of the treatment assignment between units ¹³⁸ or censoring, ¹³⁹ causally connected units, ^{140,141} hierarchical data structures, ¹⁴² randomization at the cluster level, ¹⁴³ large electronic health record data, ¹⁴⁴ and in meta-analyses. ^{145,146}

300

The TMLE framework is extended and discussed in the setting of case-control studies. One study matched cases to controls, ¹⁴⁷ and another used two-stage sampling and nested case-control design. ¹⁴⁸ Other studies required the design to be adaptive to possibly invalid assumptions of independent units ¹⁴⁹ or if the sample population differs from the (possibly ill-defined) target population. ¹⁵⁰

305

The collaborative TMLE (C-TMLE), introduced in 2010,¹⁵¹ is an extension of TMLE, in which information on the causal parameter of interest is used when estimating and selecting the initial model(s). C-TMLE aims to improve the robustness and efficiency of the TMLE. Schnitzer *et al.*¹³⁹ highlight the pitfalls and the consequences of automated variable selection in causal inference, such as in the propensity score model, and how C-TMLE corrects for this. C-TMLE was later extended to measure variable importance¹⁵² and to longitudinal data settings.¹⁵³ Proposals to enhance the C-TMLE algorithm include ordering covariates to decrease C-TMLE time complexity,¹⁵⁴ using LASSO with C-TMLE for the estimation of the propensity scores,¹⁵⁵ and adaptive truncation of the propensity scores with C-TMLE to ensure positivity.¹⁵⁶

313

The pooled TMLE¹⁵⁷ was developed for the context of longitudinal data structures with baseline covariates, time-dependent intervention nodes, intermediate time-dependent covariates, and a possibly time-dependent outcome. Extensions include advice for the optimal discretization of time¹⁵⁸ and to the hazard function.¹⁵⁹

317

The one-step TMLE aims to preserve the performance of the original two-step TMLE, and achieves bias reduction in one step (i.e., without additional iterations of the TMLE update step and possible over-fitting in finite samples).¹⁶⁰ This one-step TMLE was later extended to counterfactual average survival curves¹⁶¹ and heterogeneous treatment effects.¹⁶²

321

Causal mediation analyses in the non-longitudinal and longitudinal settings have been developing fast since the end of the 90's. TMLE was used to propose estimators of natural direct effect, ¹⁶³ or in settings with time-varying mediators and exposures, ¹⁶⁴ estimates of the complier stochastic direct effect, ¹⁶⁵ transported interventional effects with multiple, high-dimensional mediators ¹⁶⁶ and stochastic (in)direct effects with intermediate confounders. ¹⁶⁷ Robust TMLE was proposed in 2017 for transporting intervention effects from one population to another. ¹⁶⁸

327

The cross-validated TMLE (CV-TMLE) provides asymptotic inference under minimal conditions (i.e., non-parametric smoothness¹⁶⁹) keeping the bounds of the parameter estimates. It is also used in the estimation of data-adaptive target parameters, like optimal treatment regimes. Recently, TMLE was shown to be useful in defining thresholds and marking specified

³³¹ levels of risks.¹⁷⁰

332

The set of observational articles that use TMLE in their main or sensitivity analyses shows that TMLE has successfully been used to examine associations, 32,34,40-42,44,46,48,49,51,52,54,55,57,59,60,62-64,66-68,71-74,76-83,90,97-99,103,104,107,109,113,116-118 causation, 33,35-39,43,45,53,56,58,65,69,70,75,84,91-93,95,96,105,106,108,110-112,114,115,119,125 and variable importance. 32,40,90,114 It has been used to analyze data with varying numbers of observations, from less than 100 to over hundreds of thousands, from clinical trials, cohort studies, 33,34,37-39,45,46,52,53,56,58-60,63,66,69,70,72,75,78-81,83,95,98,99,103,105,106,112-119 and observational studies.

FIGURE 3 Applied clinical and epidemiological research by year of publication and TMLE method implemented

338 4 | DISCUSSION

We aimed to investigate the use of the TMLE framework in epidemiology and public health research and to describe the 339 uptake of its methodological developments since its inception in 2006. We focused on TMLEs for point treatment, time-340 to-event/survival, and longitudinal exposure-outcome relationships. We found that the TMLE framework and its different 341 estimators were implemented in at least 89 epidemiological observational studies. The majority of these studies have come 342 from the US, many of which are from the University of California, Berkeley. Recently, the use of TMLE has spread across 343 the world. Until 2016, TMLE in observational studies was used by select groups of researchers, such as biostatisticians or 344 epidemiologists in academia exploring noncommunicable and infectious diseases, or behavioral epidemiology. From 2016 345 onward, there was a faster uptake among a wider range of researchers. There is potential for even wider dissemination and 346 acceptance, both geographically and in some specific disease areas or epidemiological disciplines. From the end of 2022 up to 347 the time of writing, and using the same Boolean search terms for 2023, we found a further 18 observational studies, 27,171-187 348 and 5 methodological studies, ^{188–192} that use some form of TMLE. We hope this review of explicit and applied examples will 349 contribute to enhancing the relevance of the TMLE framework and increasing its uptake and acceptance in settings where 350 challenges with regard to data, unrealistic assumptions, or subject-matter knowledge lend themselves to the framework. 351

Initially, causal inference methods and estimators relied on parametric modeling assumptions but, to quote Box (1976), 353 "all models are wrong but some are useful."¹⁹³ It highlights that model misspecification was and remains a challenge, even 354 with ever-growing data sets and computing power. Semi-parametric and non-parametric estimators, such as AIPTW, double-355 debiased, ¹⁹⁴ and TMLE³ aim to provide the least biased estimate of the effect of an exposure on an outcome.^{1,195} Maximum 356 Likelihood Estimation (MLE) based methods (stratification, propensity score and parametric regression adjustment) and other 357 estimating equations (AIPTW) do not have all of the properties of TMLE, and evidence shows that they under-perform in 358 comparison to TMLE in specific settings.^{1,3,5,148} Augmented inverse probability weighting (AIPW) is the closest equivalent 359 methodology to TMLE (e.g., both utilize the efficient influence function, are double robust for the ATE, and are asymptotically 360 unbiased). However, AIPW has different statistical properties. Notably, AIPW/IPW aim to solve an estimating equation, unlike 3.61 TMLE which uses the log-likelihood as a criterion. As discussed in van der Laan and Rose (2011), estimators based on estimat-362 ing equations might be non-unique due to the existence of multiple solutions, do not respect known statistical model constraints 363 (i.e., are not substitution estimators), and are sensitive to how the nuisance parameter is estimated.² These issues are not present 364 in TMLE and instead TMLE solves the efficient influence curve estimating equation but is not defined by it and is a substitution 365 estimator and thus respects the global constraints of the statistical model.² TMLE augments the initial estimates to obtain an 366 optimal bias-variance trade-off for the target estimand of interest and produces a well-defined, unbiased, efficient substitution 367 estimator. Furthermore, the targeting step (i.e., update of the initial estimate) may remove finite sample bias. Lastly, the TMLE 368 framework can be tailored to specific research questions that are difficult to answer using other causal inference methods, such 369 as rare diseases, ^{196,197} ordinal ¹⁹⁸ or continuous exposures, ¹⁹⁹ dynamic treatment regimes, ¹⁵⁷ and missing outcome data. ²⁰⁰ 370 These are the reasons why we focused on analyses of observational data that used TMLE and did not consider other estimators. 371 372

We argue that dissemination of any new statistical methodology relies on five key factors: (i) software availability, (ii) accessibility of available material (e.g., quality of software help files, language used in publications, etc.), (iii) number of experts in the area, (iv) teaching, and (v) collaborations. In the following, we discuss the dissemination of TMLE with regard to each of them.

377 (i) Software availability:

378

Various TMLEs have been developed for complex study designs, such as those with time-to-event outcomes, case-control 379 studies, hierarchical data structures (including cluster randomized trials), longitudinal data, and time-dependent confounding. 380 These methodological developments were accompanied by the release of R software packages, increasing the usability of 381 TMLE. Such software developments include the SuperLearner⁴ R package in 2007 and the tmle R package in 2012.^{3,201} 382 TMLE software for survival analysis (survtmle),^{202,203} longitudinal data (ltmle),^{129,204} double-robust confidence intervals 383 (drtmle),^{205,206} and estimation of the survival curve under static, dynamic and stochastic interventions (stremr)^{207,208} were 384 implemented in 2017. To match the expanding framework, further software developments occurred in the following years, 385 such as the *tlverse* suite of software packages for Targeted Learning (https://tlverse.org/tlverse-handbook/), which includes 386

Smith ET AL

R packages for cross-validation (*origami*), 209,210 highly adaptive lasso (HAL, *hal9001*), $^{211-213}$ super learning (*sl3*), 4,214 and TMLEs for a range of target estimands, such as effects under static interventions on an exposure (*tmle3*), 215 optimal dynamic treatment regimes for binary and categorical exposures (*tmle3mopttx*), 169,216 and stochastic treatment regimes that shift the treatment mechanism of a continuous exposure (*tmle3shift*). 217,218 Additional recently developed packages in R include *ctmle* for collaborative TMLE, 151,219 *haldensify* for conditional density estimation with HAL, 220,221 *txshift* for estimating causal effects of stochastic interventions, $^{222-224}$ and *lmtp* for longitudinal modified treatment policies. 199,225

393

Although the TMLE framework is well developed in the R software, applied epidemiological research is performed in several 304 other software languages, such as Stata, Python, and SAS. TMLE implementations for binary point exposure and outcome stud-395 ies are available in all of these languages. A SAS macro for the general implementation of TMLE was programmed in 2016.¹²¹ 396 TMLE has been developed for the Python software language in the library zEpid.²²⁶ The number of applied researchers in 397 epidemiological studies using Python is relatively low but is increasing; thus, this tool is not currently widely used among 398 applied health sciences researchers. Further development could improve on software packages in the widely used statistical 390 software in health sciences and econometrics, such as Stata.²²⁷ Nonetheless, the development version of the user-written Stata 4 00 command *eltmle* is currently available to Stata users.²²⁷ Not all features of TMLE are available in this Stata command, such as 4 01 longitudinal analysis and cross-validated TMLE. Additionally, *eltmle* provides ensemble learning capabilities by accessing the 4 0 2 SuperLearner R package. Lastly, any new software development needs to have a friendly user interface, together with standard 403 programming features to be easily disseminated and quickly adopted. 4 04

4 05

406 (ii) Accessibility of available material:

407

The TMLE framework is a series of potentially statistically-complex modeling approaches and computational algorithms, 4 08 grounded in statistical theory that requires a solid understanding of highly advanced statistics (i.e., theory for semi-parametric 409 estimation, asymptotics, efficiency, empirical processes, functional analyses, and statistical inference). Tutorials in a more 410 lay language targeting applied researchers and epidemiologists have become more common over the past five years and the 411 uptake of TMLE is expected to increase in the future because of them.^{1,5–7,121–124,131,148} Their beneficial impact is evident 412 from this review, as these articles are highly referenced in applied work, from the year of their publication, alongside more 413 methodologically heavy contributions to start with, and as sole references in later years. This shows evidence of the importance 414 of speaking the language of the target audience and disseminating advanced mathematical statistics and algorithms from an 415 applied perspective. 416

417

Additionally, the gradual dissemination of the TMLE framework was evident from our systematic review of the methods sections of the 89 selected manuscripts. We observed that papers published in the early years lay out their TMLE strategy and carefully describe each step in the methods section; whereas, more recently, publications of applied research have placed details of the methods in appendices (or supplementary material) and only cite tutorials and software packages. This shows that the community (e.g., authors, editors, reviewers, readers, etc.) is now aware of the TMLE framework, its utility, and its advantages. A wide range of journals have published the applied research articles studied here, from non-specific public health journals to statistical or disease-specific journals.

425

426 (iii) Experts:

427

⁴²⁸ Dissemination outside the US needs further work, as evidenced in our systematic review. We have shown that the TMLE frame-⁴²⁹ work appears to be well consolidated in the US, and adoption from Europe and other regions are lower in comparison. This ⁴³⁰ may be related to the delayed introduction of causal inference education outside the US. Fostering targeted local seminars and ⁴³¹ dedicated short courses for the interested applied audience could be a useful strategy to disseminate the framework. Disease- or ⁴³² discipline-specific experts would be useful for the wider distribution of the methods in specific areas that would benefit from ⁴³³ improved methodology.

4 34

TMLE remains dominant in non-communicable or infectious disease epidemiology compared to other disciplines, but it has high applicability in many disciplines and its use has increased in several of them. The slower uptake of the TMLE framework

in other disciplines might be due to a lack of empirical examples of how one performed and interpreted statistical analyses
using TMLE in a specific disease area. We aimed to provide such a showcase of the application of the methods in specific
settings, based on the available literature, and we demonstrated how the framework was successfully used to advance research
by providing robust results. We believe interested readers will find it useful to refer to the studies that faced similar challenges,
or were based in settings comparable to theirs.

442

443 (iv) Teaching:

444

There have been tremendous efforts of dissemination of causal inference methods across disciplines, with a particular emphasis 445 on epidemiology and econometrics sciences in the US during the last 20 years. Most graduate programs in epidemiology have 446 included the teaching of causal inference as a leading topic in the field. In Europe, the trends have not been as fast-paced and for 447 a long time, introductions to causal inference methods have mainly been provided through week-long intensive short courses 448 and at international conferences. These different approaches have major impacts on how quickly the methods are adopted by 440 the community of researchers, journal editors, public health groups, and regulatory agencies. In recent years, there has been a 450 development and acceptance of real-world evidence in various public-health fields, such as the Food and Drug Administration's 451 21st Century Cures Act of 2016 in the US, which specifically promotes the use of causal inference methodology and designs. 452 such as the emulated trial and TMLE frameworks. 228-230 453

4 5 4

455 (v) Collaborations:

456

The Center for Targeted Machine Learning and Causal Inference (CTML) is an interdisciplinary research center at the Uni-4 5 7 versity of California at Berkeley that is focused on applications of causal inference and targeted learning. The CTML mission 458 is to advance, implement and disseminate methodology to address problems arising in public health and clinical medicine 450 (https://ctml.berkeley.edu/home). CTML provides a great resource for courses, ongoing research, partners, collaborators, and 4 60 Berkeley faculty members involved in TMLE. CTML sponsors include the Danish multinational pharmaceutical company, 4 61 Novo Nordisk A/S, the Patient-Centered Outcomes Research Institute (pcori), Kaiser Permanente, the US National Institutes 4.62 of Health, and the Bill and Melinda Gates Foundation. Academic partners include the University of Washington, University of 463 Copenhagen, UCLA David Geffen School of Medicine, University of California at San Francisco, and Monash University. 4 64

465

466 Conclusions

Evidence shows that cross-validated, double-robust, efficient and unbiased estimators are at the forefront of causal inference 467 and statistics, as they aim to avoid model misspecification, bias and invalid inference. The TMLE framework for causal and 468 statistical inference was first developed in 2006 and its expansion in applied studies arose in 2018 via applied epidemiological 469 work, tutorials and user-friendly software. The theoretical properties and practical benefits of the TMLE framework have been 470 highlighted across different fields of applied research (such as various epidemiological, public health and clinical disciplines). 471 More can be done to reach a wider audience across varied disease areas and scientific fields (e.g., genomics, econometrics, 472 political and sociological sciences), including the development of software packages outside the R software, tutorial articles as 473 well as seminars and courses targeted to audiences in specific disciplines, lay-language demonstration, such as by example, of 4 74 the benefits of TMLE in improving epidemiological output, to name only a few ideas. Many recent TMLE developments answer a variety of methodological problems that expand across scientific disciplines and further efforts can be made to disseminate 476 the framework. This would facilitate the conscientious application of TMLE for causal inference and statistical data analyses, 477 so more researchers could use it in their applied work to minimize the risk of reporting misleading results that are biased due to 478 misspecification. 479

480 FUNDING

This work was supported by the Medical Research Council [grant number MR/W021021/1]. A CC BY or equivalent license is applied to the Author Accepted Manuscript (AAM) arising from this submission, in accordance with the grant's open access conditions. Camille Maringe is supported by a Cancer Research UK Population Research Committee Programme Award (C7923/A29018).

485 AUTHORS CONTRIBUTIONS

The article arose from the motivation to disseminate the principles of modern epidemiology among clinicians and applied researchers. All authors developed the concept and wrote the first draft of the article. MJS and CM reviewed the literature. MJS, RVP, MALF and CM drafted and revised the manuscript. RVP, SG and MJL provided comments on the draft manuscript. RVP contributed to drafting some sections. All authors read and approved the final version of the manuscript. CM is the guarantor of the article.

491 ACKNOWLEDGMENTS

The motivation and some parts of the manuscript come from MALF's work in a visiting academic position in the Division of Biostatistics at the Berkeley School of Public Health in 2019. We acknowledge Dr Susan Gruber for her careful read over one draft manuscript and Professor Mark J. van der Laan for his additional guidance.

4 95

For the purpose of open access, the authors have applied a Creative Commons Attribution (CC BY) license to any Author Accepted Manuscript version arising.

ournal

498 References

- Smith MJ, Mansournia MA, Maringe C, et al. Introduction to computational causal inference using reproducible Stata, R, and Python code: A tutorial. *Stat Med* 2022; 41(2): 407-432. doi: 10.1002/sim.9234
- ⁵⁰¹ 2. van der Laan MJ, Rose S. Targeted Learning. 2011. doi: 10.1007/978-1-4419-9782-1
- 3. van der Laan MJ, Rubin D. Targeted maximum likelihood learning. *The International Journal of Biostatistics* 2006; 2(1).
 doi: https://doi.org/10.2202/1557-4679.1043
- 4. van der Laan MJ, Polley EC, Hubbard AE. Super learner. *Statistical applications in genetics and molecular biology* 2007;
 6(1). doi: 10.2202/1544-6115.1309
- 5. Luque-Fernandez MA, Schomaker M, Rachet B, Schnitzer ME. Targeted maximum likelihood estimation for a binary
 treatment: A tutorial. *Stat Med* 2018; 37(16): 2530-2546. doi: 10.1002/sim.7628
- ⁵⁰⁸ 6. Gruber S. Targeted Learning in Healthcare Research. *Big Data* 2015; 3(4): 211-8. doi: 10.1089/big.2015.0025
- ⁵⁰⁹ 7. Schuler MS, Rose S. Targeted Maximum Likelihood Estimation for Causal Inference in Observational Studies. *Am J Epidemiol* 2017; 185(1): 65-73. doi: 10.1093/aje/kww165
- 8. van der Laan MJ, Rose S. Targeted learning in data science: causal inference for complex longitudinal studies. 2011. doi:
 10.1007/978-3-319-65304-4
- 9. UC Berkeley . American Causal Inference Conference (2022). https://ctml.berkeley.edu/american-causal-inference conference-2022; 2022
- 10. UC Berkeley . American Causal Inference Conference (2022): Results. https://acic2022.mathematica.org/results; 2022
- Arnold B, Arana B, Mäusezahl D, Hubbard A, Colford J. Evaluation of a pre-existing, 3-year household water treatment
 and handwashing intervention in rural Guatemala. *Int J Epidemiol* 2009; 38(6): 1651-61. doi: 10.1093/ije/dyp241
- Moore KL, Neugebauer R, Valappil T, Laan MJ. Robust extraction of covariate information to improve estimation
 efficiency in randomized trials. *Stat Med* 2011; 30(19): 2389-408. doi: 10.1002/sim.4301
- Hubbard A, Jamshidian F, Jewell N. Adjusting for perception and unmasking effects in longitudinal clinical trials. *Int J Biostat* 2012; 8(2): 7. doi: 10.2202/1557-4679.1376
- 14. Wester CW, Stitelman OM, deGruttola V, Bussmann H, Marlink RG, van der Laan MJ. Effect modification by sex and
 baseline CD4+ cell count among adults receiving combination antiretroviral therapy in Botswana: results from a clinical
 trial. *AIDS Res Hum Retroviruses* 2012; 28(9): 981-8. doi: 10.1089/aid.2011.0349
- 15. Decker AL, Hubbard A, Crespi CM, Seto EY, Wang MC. Semiparametric Estimation of the Impacts of Longitudinal Interventions on Adolescent Obesity using Targeted Maximum-Likelihood: Accessible Estimation with the Itmle Package. *J Causal Inference* 2014; 2(1): 95-108. doi: 10.1515/jci-2013-0025
- Balzer L, Staples P, Onnela JP, DeGruttola V. Using a network-based approach and targeted maximum likelihood estimation to evaluate the effect of adding pre-exposure prophylaxis to an ongoing test-and-treat trial. *Clin Trials* 2017; 14(2): 201-210. doi: 10.1177/1740774516679666
- 17. BL P, PB G, MJ t. Estimation of the optimal surrogate based on a randomized trial. *Biometrics* 2018; 74(4): 1271-1281.
- 18. Sridhar S, Luedtke A, Langevin E, et al. Effect of Dengue Serostatus on Dengue Vaccine Safety and Efficacy. N Engl J
 Med 2018; 379(4): 327-340. doi: 10.1056/NEJMoa1800820
- Havlir DV, Balzer LB, Charlebois ED, et al. HIV Testing and Treatment with the Use of a Community Health Approach
 in Rural Africa. *The New England journal of medicine* 2019; 381(3): 219. doi: 10.1056/NEJMOA1809866

- Nguyen M, Pirracchio R, Kornblith LZ, et al. Dynamic Impact of Transfusion Ratios on Outcomes in Severely Injured
 Patients: Targeted Machine Learning Analysis of the PROPPR Randomized Clinical Trial. *The journal of trauma and acute care surgery* 2020; 89(3): 505. doi: 10.1097/TA.00000000002819
- ⁵³⁹ 21. Dayan GH, Langevin E, Gilbert PB, et al. Assessment of the long-term efficacy of a dengue vaccine against symptomatic, virologically-confirmed dengue disease by baseline dengue serostatus. *Vaccine* 2020; 38(19): 3531-3536. doi: 10.1016/j.vaccine.2020.03.029
- ⁵⁴² 22. Potter K, Masteller B, Balzer LB. Examining Obedience Training as a Physical Activity Intervention for Dog Owners:
 ⁵⁴³ Findings from the Stealth Pet Obedience Training (SPOT) Pilot Study. *Int J Environ Res Public Health* 2021; 18(3). doi:
 ⁵⁴⁴ 10.3390/ijerph18030902
- 23. Nyabuti MN, Petersen ML, Bukusi EA, et al. Characteristics of HIV seroconverters in the setting of universal test
 and treat: Results from the SEARCH trial in rural Uganda and Kenya. *PLoS One* 2021; 16(2): e0243167. doi:
 10.1371/journal.pone.0243167
- Hickey MD, Ayieko J, Owaraganise A, et al. Effect of a patient-centered hypertension delivery strategy on all-cause mortality: Secondary analysis of SEARCH, a community-randomized trial in rural Kenya and Uganda. *PLoS Med* 2021; 18(9):
 e1003803. doi: 10.1371/journal.pmed.1003803
- ⁵⁵¹ 25. Amato HK, Hemlock C, Andrejko KL, et al. Biodigester Cookstove Interventions and Child Diarrhea in Semirural Nepal:
 ⁵⁵² A Causal Analysis of Daily Observations. *Environ Health Perspect* 2022; 130(1): 17002. doi: 10.1289/ehp9468
- Hickey MD, Owaraganise A, Sang N, et al. Effect of a one-time financial incentive on linkage to chronic hypertension care
 in Kenya and Uganda: A randomized controlled trial. *PLOS ONE* 2022; 17(11). doi: 10.1371/JOURNAL.PONE.0277312
- Marquez C, Chen Y, Atukunda M, et al. The Association Between Social Network Characteristics and Tuberculosis Infection Among Adults in 9 Rural Ugandan Communities. *Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America* 2023; 76(3): e902. doi: 10.1093/CID/CIAC669
- 28. Kahler CW, Janssen T, Gruber S, et al. Change talk subtypes as predictors of alcohol use following brief motivational intervention. *Psychology of addictive behaviors : journal of the Society of Psychologists in Addictive Behaviors* 2022. doi: 10.1037/ADB0000898
- ⁵⁶¹ 29. Luque-Fernandez MA, Belot A, Valeri L, Cerulli G, Maringe C, Rachet B. Data-Adaptive Estimation for Double Robust Methods in Population-Based Cancer Epidemiology: Risk Differences for Lung Cancer Mortality by Emergency
 ⁵⁶³ Presentation. *American Journal of Epidemiology* 2018; 187(4): 871–878. doi: 10.1093/AJE/KWX317
- 30. Nebel MB, Lidstone DE, Wang L, Benkeser D, Mostofsky SH, Risk BB. Accounting for motion in resting-state fMRI:
 What part of the spectrum are we characterizing in autism spectrum disorder?. *NeuroImage* 2022; 257: 119296. doi: 10.1016/J.NEUROIMAGE.2022.119296
- Sciannameo V, Fadini GP, Bottigliengo D, et al. Assessment of Glucose Lowering Medications' Effectiveness for Cardiovascular Clinical Risk Management of Real-World Patients with Type 2 Diabetes: Targeted Maximum Likelihood Estimation under Model Misspecification and Missing Outcomes. *International Journal of Environmental Research and Public Health* 2022; 19(22): 14825. doi: 10.3390/IJERPH192214825/S1
- Bembom O, Petersen ML, Rhee SY, et al. Biomarker discovery using targeted maximum-likelihood estimation: application
 to the treatment of antiretroviral-resistant HIV infection. *Stat Med* 2009; 28(1): 152-72. doi: 10.1002/sim.3414
- 33. Rosenblum M, Deeks SG, van der Laan MJ, Bangsberg DR. The risk of virologic failure decreases with duration
 of HIV suppression, at greater than 50% adherence to antiretroviral therapy. *PLoS One* 2009; 4(9): e7196. doi:
 10.1371/journal.pone.0007196
- 34. Mackey DC, Hubbard AE, Cawthon PM, Cauley JA, Cummings SR, Tager IB. Usual physical activity and hip fracture in older men: an application of semiparametric methods to observational data. *Am J Epidemiol* 2011; 173(5): 578-86. doi: 10.1093/aje/kwq405

- 35. Padula AM, Mortimer K, Hubbard A, Lurmann F, Jerrett M, Tager IB. Exposure to traffic-related air pollution during
 pregnancy and term low birth weight: estimation of causal associations in a semiparametric model. *Am J Epidemiol* 2012;
 176(9): 815-24. doi: 10.1093/aje/kws148
- 36. Leslie HH, Karasek DA, Harris LF, et al. Cervical cancer precursors and hormonal contraceptive use in HIV-positive women: application of a causal model and semi-parametric estimation methods. *PLoS One* 2014; 9(6): e101090. doi: 10.1371/journal.pone.0101090
- 37. Schnitzer ME, Moodie EE, van der Laan MJ, Platt RW, Klein MB. Modeling the impact of hepatitis C viral clearance
 on end-stage liver disease in an HIV co-infected cohort with targeted maximum likelihood estimation. *Biometrics* 2014;
 70(1): 144-52. doi: 10.1111/biom.12105
- 38. Brown DM, Petersen M, Costello S, et al. Occupational Exposure to PM2.5 and Incidence of Ischemic Heart
 Disease: Longitudinal Targeted Minimum Loss-based Estimation. *Epidemiology* 2015; 26(6): 806-14. doi:
 10.1097/ede.00000000000329
- 39. Gianfrancesco MA, Balzer L, Taylor KE, et al. Genetic risk and longitudinal disease activity in systemic lupus erythematosus using targeted maximum likelihood estimation. *Genes Immun* 2016; 17(6): 358-62. doi: 10.1038/gene.2016.33
- 40. Hsu LI, Briggs F, Shao X, et al. Pathway Analysis of Genome-wide Association Study in Childhood Leukemia among
 Hispanics. *Cancer Epidemiol Biomarkers Prev* 2016; 25(5): 815-22. doi: 10.1158/1055-9965.Epi-15-0528
- 41. Ahern J, Karasek D, Luedtke AR, Bruckner TA, van der Laan MJ. Racial/Ethnic Differences in the Role of Childhood
 Adversities for Mental Disorders Among a Nationally Representative Sample of Adolescents. *Epidemiology* 2016; 27(5):
 697-704. doi: 10.1097/ede.0000000000507
- 42. Salihu HM, Das R, Morton L, et al. Racial Differences in DNA-Methylation of CpG Sites Within Preterm-Promoting
 Genes and Gene Variants. *Matern Child Health J* 2016; 20(8): 1680-7. doi: 10.1007/s10995-016-1967-3
- 43. Tran L, Yiannoutsos CT, Musick BS, et al. Evaluating the Impact of a HIV Low-Risk Express Care Task-Shifting Program:
 A Case Study of the Targeted Learning Roadmap. *Epidemiol Methods* 2016; 5(1): 69-91. doi: 10.1515/em-2016-0004
- 44. Davis FM, Sutzko DC, Grey SF, et al. Predictors of surgical site infection after open lower extremity revascularization. J
 Vasc Surg 2017; 65(6): 1769-1778.e3. doi: 10.1016/j.jvs.2016.11.053
- 45. Skeem JL, Manchak S, Montoya L. Comparing Public Safety Outcomes for Traditional Probation vs Specialty Mental
 Health Probation. *JAMA Psychiatry* 2017; 74(9): 942-948. doi: 10.1001/jamapsychiatry.2017.1384
- 46. Sukul D, Seth M, Dixon SR, Khandelwal A, LaLonde TA, Gurm HS. Contemporary Trends and Outcomes Associated
 With the Preprocedural Use of Oral P2Y12 Inhibitors in Patients Undergoing Percutaneous Coronary Intervention: Insights
 From the Blue Cross Blue Shield of Michigan Cardiovascular Consortium (BMC2). J Invasive Cardiol 2017; 29(10):
 340-351.
- 47. Akosile M, Zhu H, Zhang S, Johnson NP, Lai D, Zhu H. Reassessing the Effectiveness of Right Heart Catheterization
 (RHC) in the Initial Care of Critically III Patients using Targeted Maximum Likelihood Estimation. *International Journal* of Clinical Biostatistics and Biometrics 2018; 4(1). doi: 10.23937/2469-5831/1510018
- 48. Platt JM, McLaughlin KA, Luedtke AR, Ahern J, Kaufman AS, Keyes KM. Targeted Estimation of the Relationship
 Between Childhood Adversity and Fluid Intelligence in a US Population Sample of Adolescents. *Am J Epidemiol* 2018;
 187(7): 1456-1466. doi: 10.1093/aje/kwy006
- 49. Pearl M, Ahern J, Hubbard A, et al. Life-course neighbourhood opportunity and racial-ethnic disparities in risk of preterm
 birth. *Paediatr Perinat Epidemiol* 2018; 32(5): 412-419. doi: 10.1111/ppe.12482
- 50. Skeem JL, Montoya L, Manchak SM. Comparing Costs of Traditional and Specialty Probation for People With Serious
 Mental Illness. *Psychiatr Serv* 2018; 69(8): 896-902. doi: 10.1176/appi.ps.201700498

- 51. Mosconi L, Rahman A, Diaz I, et al. Increased Alzheimer's risk during the menopause transition: A 3-year longitudinal
 brain imaging study. *PLoS One* 2018; 13(12): e0207885. doi: 10.1371/journal.pone.0207885
- 52. Torres JM, Rudolph KE, Sofrygin O, Glymour MM, Wong R. Longitudinal associations between having an adult child
 migrant and depressive symptoms among older adults in the Mexican Health and Aging Study. *Int J Epidemiol* 2018;
 47(5): 1432-1442. doi: 10.1093/ije/dyy112
- 53. Izano MA, Sofrygin OA, Picciotto S, Bradshaw PT, Eisen EA. Metalworking Fluids and Colon Cancer Risk: Longitudinal
 Targeted Minimum Loss-based Estimation. *Environ Epidemiol* 2019; 3(1): e035. doi: 10.1097/ee9.0000000000035
- 54. Yu YH, Bodnar LM, Brooks MM, Himes KP, Naimi AI. Comparison of Parametric and Nonparametric Estimators for the
 Association Between Incident Prepregnancy Obesity and Stillbirth in a Population-Based Cohort Study. *Am J Epidemiol* 2019; 188(7): 1328-1336. doi: 10.1093/aje/kwz081
- 55. Rudolph KE, Shev A, Paksarian D, et al. Environmental noise and sleep and mental health outcomes in a nationally
 representative sample of urban US adolescents. *Environ Epidemiol* 2019; 3(4): e056. doi: 10.1097/ee9.00000000000000056
- 56. Lim S, Tellez M, Ismail AI. Estimating a Dynamic Effect of Soda Intake on Pediatric Dental Caries Using Targeted
 Maximum Likelihood Estimation Method. *Caries Res* 2019; 53(5): 532-540. doi: 10.1159/000497359
- 57. Berkowitz SA, Basu S, Gundersen C, Seligman HK. State-Level and County-Level Estimates of Health Care Costs
 Associated with Food Insecurity. *Prev Chronic Dis* 2019; 16: E90. doi: 10.5888/pcd16.180549
- 58. Gianfrancesco MA, Trupin L, Shiboski S, et al. Smoking Is Associated with Higher Disease Activity in Rheumatoid
 Arthritis: A Longitudinal Study Controlling for Time-varying Covariates. *J Rheumatol* 2019; 46(4): 370-375. doi:
 10.3899/jrheum.180262
- 59. Casey JA, Goin DE, Rudolph KE, et al. Unconventional natural gas development and adverse birth outcomes in Penn sylvania: The potential mediating role of antenatal anxiety and depression. *Environ Res* 2019; 177: 108598. doi:
 10.1016/j.envres.2019.108598
- 60. Torres JM, Rudolph KE, Sofrygin O, Wong R, Walter LC, Glymour MM. Having an Adult Child in the United States,
 Physical Functioning, and Unmet Needs for Care Among Older Mexican Adults. *Epidemiology* 2019; 30(4): 553-560. doi:
 10.1097/ede.00000000001016
- 61. You Y, Doubova SV, Pinto-Masis D, Pérez-Cuevas R, Borja-Aburto VH, Hubbard A. Application of machine learning
 methodology to assess the performance of DIABETIMSS program for patients with type 2 diabetes in family medicine
 clinics in Mexico. *BMC Medical Informatics and Decision Making* 2019; 19(1). doi: 10.1186/S12911-019-0950-5
- 648 62. Izano MA, Cushing LJ, Lin J, et al. The association of maternal psychosocial stress with newborn telomere length. *PLoS* 649 One 2020; 15(12): e0242064. doi: 10.1371/journal.pone.0242064
- 63. Ehrlich SF, Neugebauer RS, Feng J, Hedderson MM, Ferrara A. Exercise During the First Trimester and Infant Size at Birth: Targeted Maximum Likelihood Estimation of the Causal Risk Difference. *Am J Epidemiol* 2020; 189(2): 133-145.
 652 doi: 10.1093/aje/kwz213
- 64. Bodnar LM, Cartus AR, Kirkpatrick SI, et al. Machine learning as a strategy to account for dietary synergy: an illustration based on dietary intake and adverse pregnancy outcomes. *Am J Clin Nutr* 2020; 111(6): 1235-1243. doi: 10.1093/ajcn/nqaa027
- 65. Kagawa RMC, Pear VA, Rudolph KE, Keyes KM, Cerdá M, Wintemute GJ. Distress level and daily functioning problems attributed to firearm victimization: sociodemographic-specific responses. *Ann Epidemiol* 2020; 41: 35-42.e3. doi: 10.1016/j.annepidem.2019.12.002
- 66. Kempker RR, Mikiashvili L, Zhao Y, et al. Clinical Outcomes Among Patients With Drug-resistant Tuberculosis Receiving
 Bedaquiline- or Delamanid-Containing Regimens. *Clin Infect Dis* 2020; 71(9): 2336-2344. doi: 10.1093/cid/ciz1107

- 67. Yu YH, Bodnar LM, Himes KP, Brooks MM, Naimi AI. Association of Overweight and Obesity Development Between
 Pregnancies With Stillbirth and Infant Mortality in a Cohort of Multiparous Women. *Obstet Gynecol* 2020; 135(3): 634 643. doi: 10.1097/aog.00000000003677
- 68. Puryear SB, Balzer LB, Ayieko J, et al. Associations between alcohol use and HIV care cascade outcomes among adults undergoing population-based HIV testing in East Africa. *Aids* 2020; 34(3): 405-413. doi: 10.1097/qad.00000000002427
- 69. Torres JM, Sofrygin O, Rudolph KE, Haan MN, Wong R, Glymour MM. US Migration Status of Adult Children and Cognitive Decline Among Older Parents Who Remain in Mexico. *Am J Epidemiol* 2020; 189(8): 761-769. doi: 10.1093/aje/kwz277
- 70. Westling T, Cowden C, Mwananyanda L, et al. Impact of chlorhexidine baths on suspected sepsis and bloodstream infections in hospitalized neonates in Zambia. *Int J Infect Dis* 2020; 96: 54-60. doi: 10.1016/j.ijid.2020.03.043
- Aiemjoy K, Aragie S, Wittberg DM, et al. Seroprevalence of antibodies against Chlamydia trachomatis and
 enteropathogens and distance to the nearest water source among young children in the Amhara Region of Ethiopia. *PLoS Negl Trop Dis* 2020; 14(9): e0008647. doi: 10.1371/journal.pntd.0008647
- 72. Reilly ME, Conti MS, Day J, et al. Modified Lapidus vs Scarf Osteotomy Outcomes for Treatment of Hallux Valgus
 Deformity. *Foot Ankle Int* 2021; 42(11): 1454-1462. doi: 10.1177/10711007211013776
- 73. Kang L, Vij A, Hubbard A, Shaw D. The unintended impact of helmet use on bicyclists' risk-taking behaviors. J Safety
 Res 2021; 79: 135-147. doi: 10.1016/j.jsr.2021.08.014
- 74. Torres JM, Mitchell UA, Sofrygin O, et al. Associations between spousal caregiving and health among older adults in
 Mexico: A targeted estimation approach. *Int J Geriatr Psychiatry* 2021; 36(5): 775-783. doi: 10.1002/gps.5477
- 75. Torres LK, Hoffman KL, Oromendia C, et al. Attributable mortality of acute respiratory distress syndrome: a systematic review, meta-analysis and survival analysis using targeted minimum loss-based estimation. *Thorax* 2021; 76(12): 1176-1185. doi: 10.1136/thoraxjnl-2020-215950
- 76. Mehta B, Brantner C, Williams N, et al. Primary Care Provider Density and Elective Total Joint Replacement Outcomes.
 Arthroplast Today 2021; 10: 73-78. doi: 10.1016/j.artd.2021.05.010
- 77. Nardone A, Rudolph KE, Morello-Frosch R, Casey JA. Redlines and Greenspace: The Relationship between Histor ical Redlining and 2010 Greenspace across the United States. *Environ Health Perspect* 2021; 129(1): 17006. doi:
 10.1289/ehp7495
- ⁶⁸⁸ 78. Lee JO, Kapteyn A, Clomax A, Jin H. Estimating influences of unemployment and underemployment on mental health
 ⁶⁸⁹ during the COVID-19 pandemic: who suffers the most?. *Public Health* 2021; 201: 48-54. doi: 10.1016/j.puhe.2021.09.038
- ⁶⁹⁰ 79. Shiba K, Torres JM, Daoud A, et al. Estimating the Impact of Sustained Social Participation on Depressive Symptoms in
 ⁶⁹¹ Older Adults. *Epidemiology* 2021; 32(6): 886-895. doi: 10.1097/ede.00000000001395
- 80. Goel AR, Bruce HA, Williams N, Alexiades G. Long-Term Effects of Hearing Aids on Hearing Ability in Patients with
 Sensorineural Hearing Loss. *J Am Acad Audiol* 2021; 32(6): 374-378. doi: 10.1055/s-0041-1731592
- 81. Kahkoska AR, Abrahamsen TJ, Alexander GC, et al. Association Between Glucagon-Like Peptide 1 Receptor Agonist and
 Sodium-Glucose Cotransporter 2 Inhibitor Use and COVID-19 Outcomes. *Diabetes Care* 2021; 44(7): 1564-1572. doi:
 10.2337/dc21-0065
- 82. Beydoun HA, Beydoun MA, Huang S, Eid SM, Zonderman AB. Hospitalization outcomes among brain metastasis patients
 receiving radiation therapy with or without stereotactic radiosurgery from the 2005-2014 Nationwide Inpatient Sample.
 Sci Rep 2021; 11(1): 19209. doi: 10.1038/s41598-021-98563-y
- 83. Crowner JR, Marston WA, Freeman NLB, et al. The Society for Vascular Surgery Objective Performance Goals for Critical Limb Ischemia are attainable in select patients with ischemic wounds managed with wound care alone. *Ann Vasc Surg* 2022; 78: 28-35. doi: 10.1016/j.avsg.2021.06.034

Smith ET AL.

- 84. Wong AK, Balzer LB. State-Level Masking Mandates and COVID-19 Outcomes in the United States: A Demonstration of the Causal Roadmap. *Epidemiology* 2022; 33(2): 228-236. doi: 10.1097/ede.00000000001453
- ⁷⁰⁵ 85. Jafarzadeh SR, Neogi T, White DK, Felson DT. The Relationship of Pain Reduction With Prevention of Knee Replacement
 ⁷⁰⁶ Under Dynamic Intervention Strategies. *Arthritis & Rheumatology* 2022; 74(10): 1668–1675. doi: 10.1002/ART.42272
- ⁷⁰⁷ 86. Kagawa R, Calnin B, Smirniotis C, Cerdá M, Wintemute G, Rudolph KE. Effects of building demolitions on firearm
 ⁷⁰⁸ violence in Detroit, Michigan. *Preventive Medicine* 2022; 165: 107257. doi: 10.1016/J.YPMED.2022.107257
- Rajan L, Kim J, An T, et al. The influence of concomitant hammertoe correction on postoperative outcomes in patients
 undergoing hallux valgus correction. *Foot and Ankle Surgery* 2022; 28(7): 1100–1105. doi: 10.1016/J.FAS.2022.03.008
- 88. Shiba K, Daoud A, Hikichi H, et al. Uncovering Heterogeneous Associations Between Disaster-Related Trauma and Subsequent Functional Limitations: A Machine-Learning Approach. *American Journal of Epidemiology* 2023; 192(2): 217–229.
 doi: 10.1093/AJE/KWAC187
- 89. Shiba K, Hikichi H, Okuzono SS, et al. Long-Term Associations between Disaster-Related Home Loss and Health and
 Well-Being of Older Survivors: Nine Years after the 2011 Great East Japan Earthquake and Tsunami. *Environmental Health Perspectives* 2022; 130(7). doi: 10.1289/EHP10903
- 90. Legrand M, Pirracchio R, Rosa A, et al. Incidence, risk factors and prediction of post-operative acute kidney injury
 following cardiac surgery for active infective endocarditis: an observational study. *Crit Care* 2013; 17(5): R220. doi:
 10.1186/cc13041
- 91. Herrera R, Berger U, Ehrenstein vOS, et al. Estimating the Causal Impact of Proximity to Gold and Copper Mines on
 Respiratory Diseases in Children: An Application of Targeted Maximum Likelihood Estimation. *Int J Environ Res Public Health* 2017; 15(1). doi: 10.3390/ijerph15010039
- P23 92. Rodríguez-Molina D, Barth S, Herrera R, Rossmann C, Radon K, Karnowski V. An educational intervention to improve knowledge about prevention against occupational asthma and allergies using targeted maximum likelihood estimation. *Int Arch Occup Environ Health* 2019; 92(5): 629-638. doi: 10.1007/s00420-018-1397-1
- 93. Papadopoulou E, Haug LS, Sakhi AK, et al. Diet as a Source of Exposure to Environmental Contaminants for Pregnant Women and Children from Six European Countries. *Environ Health Perspect* 2019; 127(10): 107005. doi: 10.1289/ehp5324
- 94. Vauchel T, Pirracchio R, Chaussard M, et al. Impact of an Acinetobacter baumannii outbreak on kidney events in a burn unit: A targeted machine learning analysis. *American Journal of Infection Control* 2019; 47(4): 435–438. doi: 10.1016/j.ajic.2018.09.010
- 95. Veit C, Herrera R, Weinmayr G, et al. Long-term effects of asthma medication on asthma symptoms: an application of the targeted maximum likelihood estimation. *BMC Med Res Methodol* 2020; 20(1): 307. doi: 10.1186/s12874-020-01175-9
- 96. Decruyenaere A, Steen J, Colpaert K, Benoit DD, Decruyenaere J, Vansteelandt S. The obesity paradox in critically ill patients: a causal learning approach to a casual finding. *Crit Care* 2020; 24(1): 485. doi: 10.1186/s13054-020-03199-5
- 97. Rossides M, Kullberg S, Di Giuseppe D, et al. Infection risk in sarcoidosis patients treated with methotrexate compared to azathioprine: A retrospective 'target trial' emulated with Swedish real-world data. *Respirology* 2021; 26(5): 452-460.
 doi: 10.1111/resp.14001
- 739 98. Zou R, El Marroun H, Cecil C, et al. Maternal folate levels during pregnancy and offspring brain development in late
 r40 childhood. *Clin Nutr* 2021; 40(5): 3391-3400. doi: 10.1016/j.clnu.2020.11.025
- 99. Isfordink CJ, Smit C, Boyd A, et al. Low hepatitis C virus-viremia prevalence yet continued barriers to directacting antiviral treatment in people living with HIV in the Netherlands. *Aids* 2022; 36(6): 773-783. doi:
 10.1097/qad.00000000003159

- Bruun-Rasmussen P, Andersen PK, Banasik K, Brunak S, Johansson PI. Estimating the effect of donor sex on red blood
 cell transfused patient mortality: A retrospective cohort study using a targeted learning and emulated trials-based approach.
 eClinicalMedicine 2022; 51: 101628. doi: 10.1016/J.ECLINM.2022.101628
- 101. De La Court F, Boyd A, Davidovich U, et al. Eligibility criteria vs. need for pre-exposure prophylaxis: a reappraisal among men who have sex with men in Amsterdam, the Netherlands. *Epidemiology and Infection* 2022; 150. doi: 10.1017/S0950268822001741
- ⁷⁵⁰ 102. Møller AL, Rytgaard HCW, Mills EHA, et al. Hypothetical interventions on emergency ambulance and prehospital
 ⁷⁵¹ acetylsalicylic acid administration in myocardial infarction patients presenting without chest pain. *BMC Cardiovascular* ⁷⁵² *Disorders* 2022; 22(1). doi: 10.1186/S12872-022-03000-1
- 103. Bell-Gorrod H, Fox MP, Boulle A, et al. The Impact of Delayed Switch to Second-Line Antiretroviral Therapy on Mortality, Depending on Definition of Failure Time and CD4 Count at Failure. *Am J Epidemiol* 2020; 189(8): 811-819. doi: 10.1093/aje/kwaa049
- 104. Amusa L, Zewotir T, North D, Kharsany ABM, Lewis L. Association of medical male circumcision and sexually transmitted infections in a population-based study using targeted maximum likelihood estimation. *BMC Public Health* 2021; 21(1): 1642. doi: 10.1186/s12889-021-11705-9
- 105. Kerschberger B, Boulle A, Kuwengwa R, Ciglenecki I, Schomaker M. The Impact of Same-Day Antiretroviral Therapy Initiation Under the World Health Organization Treat-All Policy. *Am J Epidemiol* 2021; 190(8): 1519-1532. doi: 10.1093/aje/kwab032
- ⁷⁶² 106. Dadi AF, Miller ER, Woodman RJ, Azale T, Mwanri L. Effect of perinatal depression on risk of adverse infant health
 ⁷⁶³ outcomes in mother-infant dyads in Gondar town: a causal analysis. *BMC Pregnancy Childbirth* 2021; 21(1): 255. doi:
 ⁷⁶⁴ 10.1186/s12884-021-03733-5
- 107. Mozafar Saadati H, Mehrabi Y, Sabour S, Mansournia MA, Hashemi Nazari SS. Estimating the effects of body mass index
 and central obesity on stroke in diabetics and non-diabetics using targeted maximum likelihood estimation: Atherosclerosis
 Risk in Communities study. *Obes Sci Pract* 2020; 6(6): 628-637. doi: 10.1002/osp4.447
- 108. Abdollahpour I, Nedjat S, Almasi-Hashiani A, Nazemipour M, Mansournia MA, Luque-Fernandez MA. Estimating the Marginal Causal Effect and Potential Impact of Waterpipe Smoking on Risk of Multiple Sclerosis Using the Targeted Maximum Likelihood Estimation Method: A Large, Population-Based Incident Case-Control Study. *Am J Epidemiol* 2021; 190(7): 1332-1340. doi: 10.1093/aje/kwab036
- 109. Mozafar Saadati H, Sabour S, Mansournia MA, Mehrabi Y, Hashemi Nazari SS. Effect modification of general and central obesity by sex and age on cardiovascular outcomes: Targeted maximum likelihood estimation in the atherosclerosis risk in communities study. *Diabetes Metab Syndr* 2021; 15(2): 479-485. doi: 10.1016/j.dsx.2021.02.024
- Almasi-Hashiani A, Nedjat S, Ghiasvand R, et al. The causal effect and impact of reproductive factors on breast cancer
 using super learner and targeted maximum likelihood estimation: a case-control study in Fars Province, Iran. *BMC Public Health* 2021; 21(1): 1219. doi: 10.1186/s12889-021-11307-5
- 111. Akhtar S, El-Muzaini H, Alroughani R. Recombinant hepatitis B vaccine uptake and multiple sclerosis risk: A marginal
 structural modeling approach. *Mult Scler Relat Disord* 2022; 58: 103487. doi: 10.1016/j.msard.2022.103487
- 112. Clare PJ, Dobbins T, Bruno R, et al. The overall effect of parental supply of alcohol across adolescence on alcohol-related
 harms in early adulthood-a prospective cohort study. *Addiction* 2020; 115(10): 1833-1843. doi: 10.1111/add.15005
- ⁷⁸² 113. Wang L, Sun X, Jin C, Fan Y, Xue F. Identification of Tumor Microenvironment-Related Prognostic Biomarkers for Ovarian Serous Cancer 3-Year Mortality Using Targeted Maximum Likelihood Estimation: A TCGA Data Mining Study. *Front Genet* 2021; 12: 625145. doi: 10.3389/fgene.2021.625145
- ⁷⁸⁵ 114. Sun X, Wang L, Li H, et al. Identification of microenvironment related potential biomarkers of biochemical recurrence at 3 years after prostatectomy in prostate adenocarcinoma. *Aging (Albany NY)* 2021; 13(12): 16024-16042. doi: 10.18632/aging.203121

- 115. Chavda MP, Bihari S, Woodman RJ, Secombe P, Pilcher D. The impact of obesity on outcomes of patients admitted to intensive care after cardiac arrest. *J Crit Care* 2022; 69: 154025. doi: 10.1016/j.jcrc.2022.154025
- 116. Chen C, Chen X, Chen J, et al. Association between Preoperative hs-crp/Albumin Ratio and Postoperative sirs in Elderly
 Patients: A Retrospective Observational Cohort Study. *J Nutr Health Aging* 2022; 26(4): 352-359. doi: 10.1007/s12603-022-1761-4
- ⁷⁹³ 117. Ikeda T, Cooray U, Murakami M, Osaka K. Maintaining Moderate or Vigorous Exercise Reduces the Risk of Low Back
 ⁷⁹⁴ Pain at 4 Years of Follow-Up: Evidence From the English Longitudinal Study of Ageing. *J Pain* 2022; 23(3): 390-397.
 ⁷⁹⁵ doi: 10.1016/j.jpain.2021.08.008
- 118. Ikeda T, Tsuboya T. Effects of changes in depressive symptoms on handgrip strength in later life: A four-year longitudinal
 study in England. *J Affect Disord* 2022; 299: 67-72. doi: 10.1016/j.jad.2021.11.057
- ⁷⁹⁸ 119. Moreno-Betancur M, Lynch JW, Pilkington RM, et al. Emulating a target trial of intensive nurse home visiting in the
 ⁷⁹⁹ policy-relevant population using linked administrative data. *Int J Epidemiol* 2022. doi: 10.1093/je/dyac092
- Figueroa SC, Kennedy CJ, Wesseling C, Wiemels JM, Morimoto L, Mora AM. Early immune stimulation and childhood
 acute lymphoblastic leukemia in Costa Rica: A comparison of statistical approaches. *Environmental research* 2020; 182:
 109023. doi: 10.1016/J.ENVRES.2019.109023
- Pang M, Schuster T, Filion KB, Eberg M, Platt RW. Targeted Maximum Likelihood Estimation for Pharmacoepidemiologic
 Research. *Epidemiology* 2016; 27(4): 570-7. doi: 10.1097/ede.00000000000487
- Pearl M, Balzer L, Ahern J. Targeted Estimation of Marginal Absolute and Relative Associations in Case-Control Data:
 An Application in Social Epidemiology. *Epidemiology* 2016; 27(4): 512-7. doi: 10.1097/ede.00000000000476
- kreif N, Tran L, Grieve R, De Stavola B, Tasker RC, Petersen M. Estimating the Comparative Effectiveness of Feed ing Interventions in the Pediatric Intensive Care Unit: A Demonstration of Longitudinal Targeted Maximum Likelihood
 Estimation. *Am J Epidemiol* 2017; 186(12): 1370-1379. doi: 10.1093/aje/kwx213
- 124. Almasi-Hashiani A, Nedjat S, Mansournia MA. Causal Methods for Observational Research: A Primer. Arch Iran Med
 2018; 21(4): 164-169.
- 125. Skeem JL, Montoya L, Manchak SM. Comparing Costs of Traditional and Specialty Probation for People With Serious
 Mental Illness. *Psychiatric services (Washington, D.C.)* 2018; 69(8): 896–902. doi: 10.1176/APPI.PS.201700498
- 126. Saddiki H, Balzer LB. A Primer on Causality in Data Science. 2018. doi: 10.48550/arxiv.1809.02408
- 127. Coyle JR, Hejazi NS, Malenica I, et al. Targeting Learning: Robust Statistics for Reproducible Research. 2020. doi: 10.48550/arXiv.2006.07333
- 128. Gruber S, van der Laan MJ. tmle: An R Package for Targeted Maximum Likelihood Estimation. *Journal of Statistical Software* 2012; 51(13): 1–35. doi: https://doi.org/10.18637/jss.v051.i13
- 129. Lendle SD, Schwab J, Petersen ML, van der Laan MJ. ltmle: An R Package Implementing Targeted Minimum Loss-Based
 Estimation for Longitudinal Data. *Journal of Statistical Software* 2017; 81: 1–21. doi: 10.18637/JSS.V081.I01
- 130. Hernán MA. The Hazards of Hazard Ratios. *Epidemiology (Cambridge, Mass.)* 2010; 21(1): 13. doi:
 10.1097/EDE.0B013E3181C1EA43
- 131. Phillips RV, Laan v. dMJ, Lee H, Gruber S. Practical considerations for specifying a super learner. *arXiv* 2022. doi:
 doi.org/10.48550/arXiv.2204.06139
- 132. Moore KL, van der Laan MJ. Covariate adjustment in randomized trials with binary outcomes: targeted maximum
 likelihood estimation. *Stat Med* 2009; 28(1): 39-64. doi: 10.1002/sim.3445
- 133. van der Laan MJ. Targeted maximum likelihood based causal inference: Part I. Int J Biostat 2010; 6(2): Article 2. doi:
 10.2202/1557-4679.1211

16	
20	

829 830	134.	van der Laan MJ. Targeted maximum likelihood based causal inference: Part II. Int J Biostat 2010; 6(2): Article 3. doi: 10.2202/1557-4679.1241
831 832	135.	van der Laan MJ, Balzer LB, Petersen ML. Adaptive matching in randomized trials and observational studies. <i>J Stat Res</i> 2012; 46(2): 113-156.
833 834	136.	Schomaker M, Luque-Fernandez MA, Leroy V, Davies MA. Using longitudinal targeted maximum likelihood estimation in complex settings with dynamic interventions. <i>Stat Med</i> 2019; 38(24): 4888-4911. doi: 10.1002/sim.8340
835 836	137.	Zheng W, Luo Z, van der Laan MJ. Marginal Structural Models with Counterfactual Effect Modifiers. <i>Int J Biostat</i> 2018; 14(1). doi: 10.1515/ijb-2018-0039
837 838	138.	van der Laan MJ, Gruber S. Targeted minimum loss based estimation of causal effects of multiple time point interventions. Int J Biostat 2012; 8(1). doi: 10.1515/1557-4679.1370
839 840	139.	Schnitzer ME, Lok JJ, Bosch RJ. Double robust and efficient estimation of a prognostic model for events in the presence of dependent censoring. <i>Biostatistics</i> 2016; 17(1): 165-77. doi: 10.1093/biostatistics/kxv028
841 842	140.	van der Laan MJ. Causal Inference for a Population of Causally Connected Units. <i>J Causal Inference</i> 2014; 2(1): 13-74. doi: 10.1515/jci-2013-0002
843 844	141.	Sofrygin O, van der Laan MJ. Semi-Parametric Estimation and Inference for the Mean Outcome of the Single Time-Point Intervention in a Causally Connected Population. <i>J Causal Inference</i> 2017; 5(1). doi: 10.1515/jci-2016-0003
845 846 847	142.	Balzer LB, Zheng W, van der Laan MJ, Petersen ML. A new approach to hierarchical data analysis: Targeted maximum likelihood estimation for the causal effect of a cluster-level exposure. <i>Stat Methods Med Res</i> 2019; 28(6): 1761-1780. doi: 10.1177/0962280218774936
848 849	143.	Balzer LB, van der Laan M, Ayieko J, et al. Two-Stage TMLE to reduce bias and improve efficiency in cluster randomized trials. <i>Biostatistics</i> 2021. doi: 10.1093/biostatistics/kxab043
850 851	144.	Sofrygin O, Zhu Z, Schmittdiel JA, et al. Targeted learning with daily EHR data. <i>Stat Med</i> 2019; 38(16): 3073-3090. doi: 10.1002/sim.8164
852 853	145.	Gruber S, van der Laan MJ. An application of targeted maximum likelihood estimation to the meta-analysis of safety data. <i>Biometrics</i> 2013; 69(1): 254-62. doi: 10.1111/j.1541-0420.2012.01829.x
854 855	146.	Liu Y, Schnitzer ME, Wang G, et al. Modeling treatment effect modification in multidrug-resistant tuberculosis in an individual patientdata meta-analysis. <i>Stat Methods Med Res</i> 2022; 31(4): 689-705. doi: 10.1177/09622802211046383
856 857	147.	Rose S, Laan MJ. Why match? Investigating matched case-control study designs with causal effect estimation. <i>Int J Biostat</i> 2009; 5(1): Article 1. doi: 10.2202/1557-4679.1127
858 859	148.	Rose S, van der Laan MJ. A targeted maximum likelihood estimator for two-stage designs. <i>Int J Biostat</i> 2011; 7(1): 17. doi: 10.2202/1557-4679.1217
860 861	149.	Balzer LB, Petersen ML, van der Laan MJ. Adaptive pair-matching in randomized trials with unbiased and efficient effect estimation. <i>Stat Med</i> 2015; 34(6): 999-1011. doi: 10.1002/sim.6380
862 863	150.	Balzer LB, Petersen ML, van der Laan MJ. Targeted estimation and inference for the sample average treatment effect in trials with and without pair-matching. <i>Stat Med</i> 2016; 35(21): 3717-32. doi: 10.1002/sim.6965
864 865	151.	van der Laan MJ, Gruber S. Collaborative double robust targeted maximum likelihood estimation. <i>Int J Biostat</i> 2010; 6(1): Article 17. doi: 10.2202/1557-4679.1181
866 867 868	152.	Pirracchio R, Yue JK, Manley GT, van der Laan MJ, Hubbard AE. Collaborative targeted maximum likelihood estima- tion for variable importance measure: Illustration for functional outcome prediction in mild traumatic brain injuries. <i>Stat</i> <i>Methods Med Res</i> 2018; 27(1): 286-297. doi: 10.1177/0962280215627335

- 153. Schnitzer ME, Sango J, Ferreira Guerra S, van der Laan MJ. Data-adaptive longitudinal model selection in causal inference
 with collaborative targeted minimum loss-based estimation. *Biometrics* 2020; 76(1): 145-157. doi: 10.1111/biom.13135
- ⁸⁷¹ 154. Ju C, Gruber S, Lendle SD, et al. Scalable collaborative targeted learning for high-dimensional data. *Stat Methods Med* ⁸⁷² *Res* 2019; 28(2): 532-554. doi: 10.1177/0962280217729845
- In the second sec
- In the second structure of the second str
- Petersen M, Schwab J, Gruber S, Blaser N, Schomaker M, van der Laan MJ. Targeted Maximum Likelihood Estimation
 for Dynamic and Static Longitudinal Marginal Structural Working Models. *J Causal Inference* 2014; 2(2): 147-185. doi:
 10.1515/jci-2013-0007
- 158. Ferreira Guerra S, Schnitzer ME, Forget A, Blais L. Impact of discretization of the timeline for longitudinal causal inference
 methods. *Stat Med* 2020; 39(27): 4069-4085. doi: 10.1002/sim.8710
- ⁸⁸³ 159. Zheng W, Petersen M, van der Laan MJ. Doubly Robust and Efficient Estimation of Marginal Structural Models for the
 ⁸⁸⁴ Hazard Function. *Int J Biostat* 2016; 12(1): 233-52. doi: 10.1515/ijb-2015-0036
- 160. van der Laan M, Gruber S. One-Step Targeted Minimum Loss-based Estimation Based on Universal Least Favorable
 One-Dimensional Submodels. *International Journal of Biostatistics* 2016; 12(1): 351–378. doi: 10.1515/IJB-2015-0054
- 161. Cai W, van der Laan MJ. One-step targeted maximum likelihood estimation for time-to-event outcomes. *Biometrics* 2020;
 76(3): 722-733. doi: 10.1111/biom.13172
- 162. Zhu J, Gallego B. Targeted estimation of heterogeneous treatment effect in observational survival analysis. J Biomed
 Inform 2020; 107: 103474. doi: 10.1016/j.jbi.2020.103474
- 163. Zheng W, van der Laan MJ. Targeted maximum likelihood estimation of natural direct effects. *Int J Biostat* 2012; 8(1).
 doi: 10.2202/1557-4679.1361
- ⁸⁹³ 164. Zheng W, Laan Mvd. Longitudinal Mediation Analysis with Time-varying Mediators and Exposures, with Application to
 ⁸⁹⁴ Survival Outcomes. *Journal of causal inference* 2017; 5(2). doi: 10.1515/JCI-2016-0006
- Rudolph KE, Sofrygin O, Laan v. dMJ. Complier stochastic direct effects: identification and robust estimation. *Journal of the American Statistical Association* 2021; 116(535): 1254. doi: 10.1080/01621459.2019.1704292
- Rudolph KE, Díaz I. Efficiently transporting causal direct and indirect effects to new populations under intermediate confounding and with multiple mediators. *Biostatistics (Oxford, England)* 2022; 23(3): 789. doi: 10.1093/BIOSTATIS-TICS/KXAA057
- 167. Hejazi NS, Rudolph KE, Van Der Laan MJ, Díaz I. Nonparametric causal mediation analysis for stochastic interventional
 (in)direct effects. *Biostatistics* 2022. doi: 10.1093/BIOSTATISTICS/KXAC002
- ⁹⁰² 168. Rudolph KE, van der Laan MJ. Robust estimation of encouragement-design intervention effects transported across sites.
 ⁹⁰³ *J R Stat Soc Series B Stat Methodol* 2017; 79(5): 1509-1525. doi: 10.1111/rssb.12213
- ⁹⁰⁴ 169. van der Laan MJ, Luedtke AR. Targeted Learning of the Mean Outcome under an Optimal Dynamic Treatment Rule. J
 ⁹⁰⁵ Causal Inference 2015; 3(1): 61-95. doi: 10.1515/jci-2013-0022
- van der Laan L, Zhang W, Gilbert PB. Nonparametric estimation of the causal effect of a stochastic threshold-based
 intervention. *Biometrics* 2022. doi: 10.1111/biom.13690

908 909 910	171.	Lea AN, Leyden WA, Sofrygin O, et al. Human Immunodeficiency Virus Status, Tenofovir Exposure, and the Risk of Poor Coronavirus Disease 19 (COVID-19) Outcomes: Real-World Analysis From 6 United States Cohorts Before Vaccine Rollout. <i>Clinical Infectious Diseases</i> 2023. doi: 10.1093/CID/CIAD084								
911 912 913	172.	Okuzono SS, Wilkinson R, Shiba K, Yazawa A, VanderWeele T, Slopen N. Residential instability during adolescence and health and wellbeing in adulthood: A longitudinal outcome-wide study. <i>Health & Place</i> 2023; 80: 102991. doi: 10.1016/J.HEALTHPLACE.2023.102991								
914 915 916	173.	Rivera AS, Al-Heeti O, Petito LC, et al. Association of statin use with outcomes of patients admitted with COVID-19: an analysis of electronic health records using superlearner. <i>BMC infectious diseases</i> 2023; 23(1). doi: 10.1186/S12879-023-08026-0								
917 918 919 920	174.	Delli Carpini G, Giannella L, Carboni M, et al. Cervical pessary for preterm birth prevention after an episode of arrested preterm labor: a retrospective cohort study with targeted maximum likelihood estimation of the average treatment effect. <i>European review for medical and pharmacological sciences</i> 2023; 27(3): 1058–1068. doi: 10.26355/EUR-REV_202302_31202								
921 922	175.	Matsuyama Y. Time-varying exposure analysis of the relationship between sustained natural dentition and cognitive decline. <i>Journal of clinical periodontology</i> 2023; 50(6). doi: 10.1111/JCPE.13786								
923 924 925	176.	Dias A, Nunes HRdC, Ruiz-Frutos C, et al. The impact of disease changes and mental health illness on readapted return to work after repeated sick leaves among Brazilian public university employees. <i>Frontiers in Public Health</i> 2023; 10. doi: 10.3389/FPUBH.2022.1026053								
926 927 928	177.	Elduma AH, Holakouie-Naieni K, Almasi-Hashiani A, et al. The Targeted Maximum Likelihood estimation to estimate the causal effects of the previous tuberculosis treatment in Multidrug-resistant tuberculosis in Sudan. <i>PLOS ONE</i> 2023; 18(1). doi: 10.1371/JOURNAL.PONE.0279976								
929 930	178.	Nugent JR, Balzer LB. A Demonstration of Modified Treatment Policies to Evaluate Shifts in Mobility and COVID-19 Case Rates in US Counties. <i>American Journal of Epidemiology</i> 2023; 192(5): 762–771. doi: 10.1093/AJE/KWAD005								
931 932 933	179.	. Shiba K, Daoud A, Hikichi H, et al. Uncovering Heterogeneous Associations Between Disaster-Related Trauma and Subsequent Functional Limitations: A Machine-Learning Approach. <i>American Journal of Epidemiology</i> 2023; 192(2): 217–229. doi: 10.1093/AJE/KWAC187								
934 935	180.	Ellison JE, Kumar S, Steingrimsson JA, et al. Comparison of Low-Value Care Among Commercial and Medicaid Enrollees. <i>Journal of General Internal Medicine</i> 2023; 38(4): 954–960. doi: 10.1007/S11606-022-07823-8/METRICS								
936 937 938	181.	Moreno-Betancur M, Lynch JW, Pilkington RM, et al. Emulating a target trial of intensive nurse home visiting in the policy-relevant population using linked administrative data. <i>International Journal of Epidemiology</i> 2023; 52(1): 119. doi: 10.1093/IJE/DYAC092								
939 940 941	182.	Cooray U, Tsakos G, Heilmann A, et al. Impact of Teeth on Social Participa- tion: Modified Treatment Policy Approach. <i>Journal of Dental Research</i> 2023. doi: 10.1177/00220345231164106/ASSET/IMAGES/LARGE/10.1177_00220345231164106-FIG3.JPEG								
942 943 944	183.	Lee SY, Modzelewski KL, Law AC, Walkey AJ, Pearce EN, Bosch NA. Comparison of Propylthiouracil vs Methimazole for Thyroid Storm in Critically III Patients. <i>JAMA Network Open</i> 2023; 6(4): e238655. doi: 10.1001/JAMANET-WORKOPEN.2023.8655								
945 946	184.	Ackerman KS, Hoffman KL, Díaz I, et al. Effect of Sepsis on Death as Modified by Solid Organ Transplantation. <i>Open Forum Infectious Diseases</i> 2023; 10(4). doi: 10.1093/OFID/OFAD148								
947 948 949	185.	Bosch NA, Teja B, Law AC, Pang B, Jafarzadeh SR, Walkey AJ. Comparative Effectiveness of Fludrocortisone and Hydro- cortisone vs Hydrocortisone Alone Among Patients With Septic Shock. <i>JAMA Internal Medicine</i> 2023; 183(5): 451–459. doi: 10.1001/JAMAINTERNMED.2023.0258								

950 951 952	186.	Li Y, Yang Y, Zhao P, et al. Longitudinal associations between specific types/amounts social contact and cognitive function among middle-aged and elderly Chinese: A causal inference and longitudinal targeted maximum likelihood estimation analysis. <i>Journal of Affective Disorders</i> 2023; 331: 158–166. doi: 10.1016/J.JAD.2023.03.039
953 954 955	187.	Hatano Y, VanWagner LB, Carnethon MR, et al. Racial difference in the association between non-alcoholic fatty liver disease and incident type 2 diabetes: findings from the CARDIA study. <i>Diabetologia</i> 2023: 1–12. doi: 10.1007/S00125-023-05903-W/METRICS
956 957	188.	Rytgaard HCW, Eriksson F, Laan v. dM. Estimation of time-specific intervention effects on continuously distributed time-to-event outcomes by targeted maximum likelihood estimation. <i>Biometrics</i> 2023. doi: 10.1111/BIOM.13856
958 959 960	189.	Petersen JM, Naimi AI, Bodnar LM. Does heterogeneity underlie differences in treatment effects estimated from Super- Learner versus logistic regression? An application in nutritional epidemiology. <i>Annals of Epidemiology</i> 2023. doi: 10.1016/J.ANNEPIDEM.2023.04.017
961 962	190.	Balzer LB, Laan Mvd, Ayieko J, et al. Two-Stage TMLE to reduce bias and improve efficiency in cluster randomized trials. <i>Biostatistics (Oxford, England)</i> 2023; 24(2): 502. doi: 10.1093/BIOSTATISTICS/KXAB043
963 964	191.	Tackney MS, Morris T, White I, Leyrat C, Diaz-Ordaz K, Williamson E. A comparison of covariate adjustment approaches under model misspecification in individually randomized trials. <i>Trials</i> 2023; 24(1). doi: 10.1186/S13063-022-06967-6
965 966 967 968	192.	Ren J, Cislo P, Cappelleri JC, Hlavacek P, DiBonaventura M. Comparing g-computation, propensity score-based weight- ing, and targeted maximum likelihood estimation for analyzing externally controlled trials with both measured and unmeasured confounders: a simulation study. <i>BMC Medical Research Methodology</i> 2023; 23(1): 18. doi: 10.1186/S12874- 023-01835-6
969 970	193.	Box GE. Science and statistics. <i>Journal of the American Statistical Association</i> 1976; 71(356): 791–799. doi: 10.1080/01621459.1976.10480949
971 972	194.	Chernozhukov V, Chetverikov D, Demirer M, et al. Double/debiased machine learning for treatment and structural parameters. <i>The Econometrics Journal</i> 2018; 21(1): C1-C68. doi: 10.1111/ECTJ.12097
973 974	195.	Zivich PN, Breskin A. Machine Learning for Causal Inference: On the Use of Cross-fit Estimators. <i>Epidemiology</i> 2021; 32(3): 393-401. doi: 10.1097/ede.0000000001332
975 976	196.	Balzer L, Ahern J, Galea S, van der Laan M. Estimating Effects with Rare Outcomes and High Dimensional Covariates: Knowledge is Power. <i>Epidemiol Methods</i> 2016; 5(1): 1-18. doi: 10.1515/em-2014-0020
977 978	197.	Benkeser D, Carone M, Gilbert PB. Improved estimation of the cumulative incidence of rare outcomes. <i>Stat Med</i> 2018; 37(2): 280-293. doi: 10.1002/sim.7337
979 980	198.	Díaz I, Colantuoni E, Rosenblum M. Enhanced precision in the analysis of randomized trials with ordinal outcomes. <i>Biometrics</i> 2016; 72(2): 422-31. doi: 10.1111/biom.12450
981 982	199.	Díaz I, Williams N, Hoffman KL, Schenck EJ. Nonparametric Causal Effects Based on Longitudinal Modified Treatment Policies. <i>Journal of the American Statistical Association</i> 2021. doi: 10.1080/01621459.2021.1955691
983 984	200.	Díaz I, van der Laan MJ. Doubly robust inference for targeted minimum loss-based estimation in randomized trials with missing outcome data. <i>Stat Med</i> 2017; 36(24): 3807-3819. doi: 10.1002/sim.7389
985 986	201.	Gruber S, van der Laan MJ. tmle: An R Package for Targeted Maximum Likelihood Estimation. <i>Journal of Statistical Software</i> 2012; 51(13): 1–35.
987 988	202.	Benkeser DC, Carone M, Gilbert PB. Improved estimation of the cumulative incidence of rare outcomes. <i>Statistics in Medicine</i> 2017. doi: 10.1002/sim.7337
989 990	203.	Benkeser DC, Hejazi NS. survtmle: Targeted Minimum Loss-Based Estimation for Survival Analysis in R. 2017. doi: 10.5281/zenodo.835868

991 992 993	204.	Petersen M, Schwab J, Gruber S, Blaser N, Schomaker M, Laan Mvd. Targeted Maximum Likelihood Estimation for Dynamic and Static Longitudinal Marginal Structural Working Models. <i>Journal of causal inference</i> 2014; 2(2): 147. doi: 10.1515/JCI-2013-0007
994	205.	Benkeser D. drtmle: Doubly-Robust Nonparametric Estimation and Inference. 2017. doi: 10.5281/zenodo.844836
995 996	206.	Benkeser D, Carone M, Laan MJD, Gilbert PB. Doubly robust nonparametric inference on the average treatment } effect. <i>Biometrika</i> 2017; 104(4): 863–880. doi: 10.1093/BIOMET/ASX053
997 998	207.	Sofrygin O, van der Laan MJ, Neugebaueer R. stremr: Streamlined Estimation for Static, Dynamic and Stochastic Treatment Regimes in Longitudinal Data. <i>R package</i> 2017. doi: https://github.com/osofr/stremr
999 1000	208.	Luedtke AR, Sofrygin O, Laan v. dMJ, Carone M. Sequential Double Robustness in Right-Censored Longitudinal Models. 2017.
1001 1002	209.	Coyle JR, Hejazi NS. origami: A Generalized Framework for Cross-Validation in R. <i>The Journal of Open Source Software</i> 2018; 3(21). doi: 10.21105/joss.00512
1003 1004	210.	Zheng W, Laan Mvd. Asymptotic Theory for Cross-validated Targeted Maximum Likelihood Estimation. U.C. Berkeley Division of Biostatistics Working Paper Series 2010.
1005 1006	211.	Coyle JR, Hejazi NS, Phillips RV, van der Laan L, van der Laan MJ. hal9001: The scalable highly adaptive lasso. https://doi.org/10.5281/zenodo.3558313; 2022. R package version 0.4.2
1007 1008	212.	Hejazi NS, Coyle JR, van der Laan MJ. hal9001: Scalable highly adaptive lasso regression in R. <i>Journal of Open Source Software</i> 2020. doi: 10.21105/joss.02526
1009 1010	213.	Van Der Laan M. A Generally Efficient Targeted Minimum Loss Based Estimator based on the Highly Adaptive Lasso. International Journal of Biostatistics 2017; 13(2). doi: 10.1515/IJB-2015-0097/MACHINEREADABLECITATION/RIS
1011 1012	214.	Coyle JR, Hejazi NS, Malenica I, Phillips RV, Sofrygin O. sl3: Modern Pipelines for Machine Learning and Super Learning. https://github.com/tlverse/sl3; 2021. R package version 1.4.2
1013	215.	Coyle JR. tmle3: The Extensible TMLE Framework. 2021. doi: 10.5281/zenodo.4603358
1014 1015	216.	Malenica I, Coyle J, van der Laan MJ. tmle3mopttx: Targeted Learning and Variable Importance with Optimal Individu- alized Categorical Treatment. https://github.com/tlverse/tmle3mopttx; 2022. R package version 1.0.0
1016 1017	217.	Hejazi NS, Coyle JR, van der Laan MJ. tmle3shift: Targeted Learning of the Causal Effects of Stochastic Interventions. https://github.com/tlverse/tmle3shift; 2021. R package version 0.2.0
1018 1019	218.	Diaz I, van der Laan M. Population intervention causal effects based on stochastic interventions. <i>Biometrics</i> 2012; 68(2): 541-9. doi: 10.1111/j.1541-0420.2011.01685.x
1020 1021	219.	Ju C, Gruber S, Laan v. dM. ctmle: Collaborative Targeted Maximum Likelihood Estimation. 2017. doi: https://CRAN.R-project.org/package=ctmle
1022 1023	220.	Hejazi NS, van der Laan MJ, Benkeser D. haldensify: Highly adaptive lasso conditional density estimation in R. <i>Journal of Open Source Software</i> 2022; 7(77): 4522. doi: 10.21105/JOSS.04522
1024 1025	221.	Ertefaie A, Hejazi NS, van der Laan MJ. Nonparametric inverse probability weighted estimators based on the highly adaptive lasso. <i>Biometrics</i> 2022. doi: 10.1111/biom.13719
1026 1027 1028	222.	Hejazi NS, van der Laan MJ, Janes HE, Gilbert PB, Benkeser DC. Efficient nonparametric inference on the effects of stochastic interventions under two-phase sampling, with applications to vaccine efficacy trials. <i>Biometrics</i> 2020. doi: 10.1111/biom.13375
1029 1030	223.	Hejazi NS, Benkeser DC. txshift: Efficient estimation of the causal effects of stochastic interventions in R. <i>Journal of Open Source Software</i> 2020. doi: 10.21105/joss.02447

- ¹⁰³¹ 224. Hejazi NS, Benkeser DC. txshift: Efficient Estimation of the Causal Effects of Stochastic Interventions. *Journal of Open* ¹⁰³² Source Software 2022. doi: 10.5281/zenodo.4070042
- 225. Williams NT, Díaz I. *Imtp: Non-parametric Causal Effects of Feasible Interventions Based on Modified Treatment Policies*.
 ;: 2021. R package version 1.3.1
- ¹⁰³⁵ 226. Zivich P, Davidson-Pilon C, Diong J, Reger D, Badger TG. zEpid. https://github.com/pzivich/zepid; 2022. Python package version 0.9.1
- ¹⁰³⁷ 227. Luque-Fernandez MA. ELTMLE: Stata module to provide Ensemble Learning Targeted Maximum Likelihood Estimation.
 ¹⁰³⁸ Statistical Software Components 2021. doi: https://ideas.repec.org/c/boc/bocode/s458337.html
- ¹⁰³⁹ 228. Gruber S, Phillips RA, Lee H, Ho M, Concato J, van der Laan MJ. Targeted learning: Towards a future informed by ¹⁰⁴⁰ real-world evidence. *Arxiv* 2022. doi: arXiv:2205.08643
- 229. Sentinel Innovation Center . Sentinel Innovation Center Master Plan. 2021. doi: https://www.sentinelinitiative.org/news events/publications-presentations/innovation-center-ic-master-plan
- 230. Gruber S, Lee H, Phillips R, Ho M, Laan v. dM. Developing a Targeted Learning-Based Statistical Analysis Plan. *Statistics in Biopharmaceutical Research* 2022: 1–8. doi: https://doi.org/10.1080/19466315.2022.2116104

ound

Declaration of interests

☑ The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

□ The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

building

Smith	ΕT	AL.

APPENDIX

Junalprendiction

					6			
			TABLE 1 Ar	ticles on rai	ndomised control	trials		
Authors	Yoor Journal	Disease area	Posoarch question	TMLE	Challenges	Contribution to research	Development of unders	standing aide
Autions		Disease area	Research question	method	chanenges	contribution to research		
Arnold et a	al 2009 Int J Epidemiol	Diarrhoea, household water treatment, handwashing	Health effectiveness of behaviour-based water and hygiene interventions	TMLE	Residual confounding	Minimal sustained water treatment and handwashing behaviour, which consequently led to no impacts on acute gastrointestinal, respiratory or anthropometric measures.	Findings are consistent with efficacy trials of household water treatment that have found that health impacts are contingent on compliance.	Confirmed
	J.	Drug-to-drug interaction, al cause	- Evaluate safety based on mortality because of drug-		Efficiency in the estimation of marginal effects using logistic	Covariate adjustment for binary outcomes using logistic models canincrease the estimation efficiency (precision) for the marginal effect of treatment when the probabilityof receiving	The gain in efficiency can have real implications in phase III RCT as was demonstrated with the fact that the test for superiority would provide different conclusions using either the unadjusted or adjustedestimation	
Moore et a	al 2011 Stat Med	mortality.	to-drug interaction.	TMLE	regression models.	treatment is 50%.	approaches. The methods described here provide a methodology to use	New
Hubbard e	et al 2012 Int J Biostat	Gabapentin, painful neuropathy, diabetes	Effectiveness of gabapentin among Type I and Type II diabetic patients.	LTMLE	Time of onset of treatment related side effects	The treatment effect on average final pain scores was estimated to be reduced to 0.78 for a population where no unmasking occurred.	such data in estimating causal treatment effects that are not influenced by perception.	Expanded

						C .			
1									
2									
3									
4									
5									
6									
7								TMLE appears to be ap	
8								efficient technique that	
9								allows for the clinically	
10				Retrospectively evaluated				meaningful delineation	
11				the causal effect of	~			and interpretation of	
12				assigned NNRTI on time to				the causal effect of	
13			Antiretroviral	virologic failure or death				NNRTI treatment and	
14			therapy, CD4+	[intent-to-treat] and time to				effect modification by	
15			cell count,	minimum of virologic	TMLE with		EFV-treated women and NVP-	sex and baseline CD4+	
16	Wester at al	AIDS Res Hum	nevirapine,	failure, death, or treatment	effect	Effect modification	treated men had more favorable	cell count strata in this	Evenended
17	wester et al	2012 Retroviruses	eravirenz	mounying toxicity	mounication	Effect modification	CART outcomes.	study	expanded
18								Multivariable linear	
19			CD4+ cell					regression yielded	
20			count,	Assess if either gender or				inflated effect	
21			antiretroviral	baseline CD4 level modify				estimates compared to	
22			therapy,	the effect of two cART			Early, sustained intervention on	estimates based on	
23 24			nonnucleosid	of a virong (EEV) and			impact than a physical activity	likelihood estimation	Acknowledged
25			transcriptase	nevirapine (NVP), on the		Model	intervention or non-sustained	and data-adaptive	strengths of
26	Decker et al	2014 J Causal Inference	inhibitor	progression of HIV	LTMLE	misspecification	interventions.	super learning.	methodology
27									0,
28							Nesting a pre-exposure	Data-adaptively	
29							prophylaxis study within an	adjusting for baseline	
30				How to target pre-exposure			ongoing trial can lead to	covariates measured at	
31			lest-and-treat	prophylaxis to high-risk			combined intervention effects	both the individual and	
32			buman	maximize nower to detect			test-and-treat alone and can	latter consistently	
33			immuno-	the individual and		Limited to the size	provide information about the	leads to notable gains	
34			deficiency	combined effects of	TMLE, with	of the adjustment	efficacy of pre-exposure	in attained power,	
35			virus, pre-	universal test-and-treat and	and without	set due to few	prophylaxis in the presence of	while maintaining	
36			exposure	pre-exposure prophylaxis	pair	independent units	high coverage of treatment for	nominal confidence	
37	Balzer et al	2017 Clin Trials	prophylaxis	strategies?	matching	(i.e., villages)	HIV+ persons.	intervals.	Expanded
38									
39									
40									
41									
42									
43									
44 15									
40 46									
-0 47									
48									
-0									

Smith ET AL.

							C		
1									
2	1049								
4									
5									
6									
7					Drimany analysis associated			A third useful feature of the	
8					vaccine efficacy (VE) against			proposed approach is that the	
9					symptomatic, virologically			EOS-in being built by super-	
11 11				Vaccine	confirmed dengue (VCD)			learner followed by a TMLE	
12				efficacy,	occurring at least 28 days			update-contains all information	
13				tetravalent	after the third		Longitudinal	about the average clinical	
14		Price et al	2018 Biometrics	vaccine	the Month 25 visit.	TMLE	outcome	trial.	None specified
15									
16					Nowly developed dengue				
17					anti–nonstructural protein				
18					1 (NS1) IgG enzyme-linked				
19					immunosorbent assay				
20					(ELISA) to differentiate				
∠⊥ 22					between anti-NS1			CYD-IDV protected against	
23					type dengue infection and			for VCD for 5 years in persons	
24				Dengue	those induced by			who had exposure to dengue	
25				Serostatus,	vaccination to infer baseline			before vaccination, and there	
26				Dengue	dengue serostatus and			was evidence of a higher risk of	.
27				Vaccine Safety and	reanalyze vaccine safety			these outcomes in vaccinated	Results were consistent with studies of other
28		Sridhar et al	2018 N Engl J Med	Efficacy	serostatus.	TMLE	Case-cohort study	exposed to dengue.	analytical approaches. Confirmed
29				,			·····,	, provide the grad	
30 21					Test the hypothesis that				
32					and annual testing			Universal HIV treatment did not	
33				Human	delivered with a community	-		result in a significantly lower	
34				immunodefici	based, multidisease, patient			incidence of HIV infection than	
35				ency virus,	centered approach would			standard care, probably owing	
36				test-and-	result in a lower number of			to the availability of	
37				community	better community health		Cluster-	testing and the ranid expansion	
38				health	than the current standard		randomised trial,	of ART eligibility in the control	
39		Havlir et al	2019 N Engl J Med	approach	of care.	TMLE	pair matched	group	None specified
40									
42									
43									
44									
45									
46									
47									
48									
49									

3 1050	
4	
5	
6	
7 Transfusion ratios had no	0
8 Significant impact on mo	rtality
9 actual transfusion ratios in higher ratios of platelets	and
10 Severely specific intervals of time plasma relative to red ble	ood
11 injured and outcomes (mortality cells hastens hemostasis	in
12 patients, and hemostasis) at subjects who have yet to	1
13 J Trauma Acute transfusion different time-points during Residual achieve hemostasis withing	in 3
14 Nguyen et al 2020 Care Surg ratios the first 24 hours. TMLE confounding hours after hospital administration 15	ission. None specified
1 C CYD-TDV was shown to r	naintain
Assessment of the long-	natic
term efficacy of a dengue VCD in seropositive parti	cipants
1 9 vaccine against aged ≥9 years, up to six y	/ears
20 Dengue symptomatic, virologically- after the first dose. Persie	stence
21 vaccine, confirmed dengue disease of efficacy was also observation participants	rved in
22 Davan et al. 2020. Vaccine serostatus serostatus. TMLE Not known 6–8 years.	None specified
23	
24 Physical Examining Obedience	
25 activity Training as a Physical	
26 intervention, Activity Intervention for Attending a basic dog ob-	edience
27 dog owners, Dog Owners: Findings from training course may lead	dog d sit
28 Potter et al 2021 Public Health training Training (SPOT) Pilot Study TMLE Not known less.	None specified
29	
30	
31	
32	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
40	
10 47	
47	

1 2 3 4 5							50		
7 8 9 10 11 12 13 14 15 16 17 18 19 22				Human	Characterise	6		Some demographic groups such as young girls, alcohol users, mobile populations, men who engage in transactional sex as well as women in intergenerational sexual relationships continue to record high HIV incidence rates. Consequently, in order to achieve control of the HIV epidemic, there is need for expansion of existing preventive interventions like PrEP and development of other targeted	
20 21				immunodefici ency virus	seroconverters and risk			prevention interventions that	
22				seroconverter	where high levels of			unique needs of these	
23				s, test-and-	population level viral		Residual	populations but also to their	
24 25 26 27 28 29	Nyabuti et al	2021	PLoS One	treat	suppression were acheived	TMLE	confounding	contextual regional differences. Implementation of a patient- centered hypertension care model was associated with a 21% reduction in all-cause	None specified
30					Effoct of a nationt-contorod			mortality and a 22%	
31				Hypertension,	hypertension delivery		Clusters due to	control compared to standard	
32				all-cause	strategy on all-cause		community-level	care among adults with baseline	
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	Hickey et al	2021	PLoS Med	mortality	mortality	TMLE	randomisation	uncontrolled hypertension.	None specified

1 2 3							5			
5 6 7 8 9 10 11 12 13 14 15 16	Amato et al	2022	Environ Health Perspect	Diarrhoea, biodigester cookstove interventions	Effect of daily reported biogas cookstove use on incident diarrhea among children less than 5 years<5y old in the Kavrepalanchok District of Nepal	CV-TMLE	Address bias induced by the use of a proxy exposure variable, we employed doubly robust estimation methods with an additional layer of sample-splitting (cross-validation).	This analysis provides new evidence that child diarrhea may be an unintended health risk of biogas cookstove use.	Evidence that child diarrhea is an unintended health risk associated with biogas cookstove use in rural Nepal	New
17 18 19 20 21 22 23	Hickey et al	2022	PLoS One	Chronic hypertension care, one- time financial incentive	Effect of a one-time financial incentive on linkage to chronic hypertension care	TMLE	Imbalance of baseline confounders in the randomisation process.	One-time financial incentives and phone-based follow-up to ensure linkage are effective strategies for increasing linkage to hypertension care following community-based screening in rural East Africa.	None specified	
24 25 26 27 28 29 30		2	00	Social				Social networks with higher centrality, more men, contacts with HIV, and tuberculosis infection were positively associated with tuberculosis infection. Tuberculosis transmission within measurable	Utilising longitudinal TMLE allowed for	
31 32				network characteristics	Association between social network characteristics and			social networks may explain prevalent tuberculosis not	flexible nonparametric adjustment of	
33 34 35	Marquez et al	2022	Clin Infect Dis	, tuberculosis, rural locations	prevalent tuberculosis infection	Longitudinal TMLE	Cluster- randomised trial	associated with a household contact.	covariates that occur during the follow-up.	New
36 37 38 39										
40 41 42 43										
44 45 46 47										
10 1										

1 2 3 4 5 6 7 8					~	30	Alcohol counseling, clients'	
9 10					X		expressions of concern about taking certain steps or setting certain goals around their	
11 12					*		drinking—which could be considered arguments against	
13							behavior change—actually	
14 15				$\langle \rangle$			predicted better drinking outcomes. Thus, as long as a	
16			Alcohol use,	Examine relative important		Variable	client has an intention to change	
17 18			intervention,	subtypes as predictors of		analyses to rank	about what goals and steps they	
19	Kahler et al	Psychol Addict	behavioural intervention	alcohol use following	TMLE	order change	may or may not find acceptable	None specified
20 21	Kamer et a	2022 Dellav	intervention	- motivational interviewing		language subtypes	may facilitate behavior change.	None specified
22								
23								
24 25								
26								
27								
29								
30 31								
32								
33								
34								
36								
37 38								
39								
40 41								
42								
43 44								
44 45								
46								
47 48								
49								

TABLE 2 Articles by discipline 5 1054 6 Authors Year Journal Disease area **Research question** Challenges **Contribution to research** Development of understanding aided by TMLE? 7 Behavioural epidemiology 8 TMLE analyses, which [can be] regarded [as] the least 9 biased because the estimation procedure was doubly 10 robust, indicated little difference in hip fracture risk for Little difference in hin fracture risk for men with moderate or Healthy living Physical activity and hip high physical activity levels relative to those with low physical men with moderate or high physical activity levels relative. Acknowledge strengths of 11 Mackey DC et al. 2011 Am J Epidemiol Older age fracture activity level. to those with low physical activity level. methodology no RCTs 12 Childhood adversities play an important role in the burden of 13 mental disorders in adolescents, particularly for behavior 14 disorders and to some extent for distress and substance disorders. 15 16 However, despite the substantially higher burden of adversities Mental health experienced by black and Hispanic adolescents, they have a Findings that childhood adversities had the largest 17 minor role in the patterns of disparities between racial/ethnic Childhood population attributable risks differences for behavior hardship Childhood adversities and groups in mental disorders. Notably, fear disorders were the disorders and the smallest for fear disorders are 18 Adolescent health mental disorders in Multidimensional most common in all racial/ethnic groups, highest in black youth, consistent with analyses of these data combined across 19 Ahern J et al. 2016 Epidemiology and largely unrelated to childhood adversities Ethnicity adolescents racial/ethnic groups. Confirmed exposure 20 Using TMLE, we identified several significant relationships 21 between diverse forms of childhood adversity and lower Interventions attempting to support and improve cognition in levels of fluid intelligence. These were identified by 2.2 estimating differences in mean K-BIT scores in the Childhood Association between 11 individuals who report childhood adversity can be a useful 23 hardshin childhood adversities and Multidimensional complement to interventions for emotional and behavioral presence and absence of the adversities, as well as the 2018 Am J Epidemiol Platt JM et al. intelligence disturbances risk of low vs. average K-BIT score. Expanded IQ exposure 2.4 25 Findings suggest that our educational intervention improves the knowledge about preventivemeasures 26 Treatment effect against asthma and allergies in about 20% of young heterogeneity bias We found that using an instructional video as educational Bavarian farm apprentices, and that TMLE is an efficient 27 Rodríguez-Molina D et Int Arch Court 2019 Environ Health Occupational epi Improve knowldedge Low sample size intervention is an effective approach to improve knowledge double-robust and semi-parametric method able to 28 Respiratory about prevention against High prop missing about preventive measures against occupational asthma and provide causal effect estimates where traditional disease occupational asthma allergies in Bavarian farm apprentices. regression methods cannot Exnanded 29 values 30 Is family-member 31 migration associated with It may be that the long-term - but not short-term -- absence of 32 Migration unmet caregiving needs Longitudinal adult children had adverse consequences for women's physical This research extends the primarily cross-sectional or Older age functioning as they aged into older adulthood. short-term follow-up studies used in prior research to a among older adults who relationships 33 Care remain in low and middle- Sample attrition We also found entirely null associations between having an adult large cohort followed over an 11-year period [enabled 34 Torres JM et al. 2019 Epidemiology Deprivation income settings? Time-varying covariates child in the US and physical functioning for men. through use of TMLE]. Expanded 35 The present study is the first to report an association 36 Risk of small or large for between exercise performed during the first trimester In underweight and normal-weight women only, meeting the and infant size at birth, and to observe that meeting the Pregnancy / gestational age (S/LGA) 37 prenatal exposure according to exercise Discussion of lower exercise threshold recommended by the Physical Activity Physical Activity Guidelines for Americans during early Healthy living during 1st trimester of assumptions Guidelines for Americans also appears to increase the risk of SGA pregnancy increases the risk of SGA and decreases the risk 38 Ehrlich SF et al. 2020 Am J Epidemiol Birth outcomes Model mis-specification and decrease the risk of LGA of LGA in underweight and normal-weight women. New pregnancy 39 40 41

48 49

47

1 2

								<u> </u>		
1 2										
3	1055									
4										
5								<u>.</u>		
7							Dichotomisation of			
8							exposure Complex interactive		The differences in results between Super Learner with	
9						Associations between	effects between		TMLE and logistic regression suggest that dietary synergy,	
10						relative to total energy	Multidimensional	suggested protective associations for diets high in fruits and	which is accounted for in machine learning, may play a role in pregnancy outcomes. This innovative methodology	
11		Bodnar LM et al.	2020	Am J Clin Nutr	Nutritional epi Pregnancy	intake and adverse pregnancy outcomes	exposure Curse of dimensionality	vegetables relative to energy on risk of preterm birth, SGA birth, and pre-eclampsia.	for analyzing dietary data has the potential to advance the study of diet patterns.	Expanded
13						Effect of fire arm				
14						involvement during				
15						the level of distress				
16					Social epi	experienced and daily functioning within		Victimization with a firearm is more distressing than victimization with another weapon or no weapon and that this response is	Results are consistent with research supporting a specific	
17		Kagawa RMC et al.	2020	Ann Epidemiol	Deprivation Mental health	sociodemographic subgroups.	Missing data	almost universal across age, sex, race, and socioeconomic position.	association between exposure to firearm violence and negative mental health outcomes	Confirmed
18		U U		·		Assessing the effect of	Ū			
19						alcohol use across the			study entry (i.e. prior to the implementation of the	
20					HIV	entire cascade, from diagnosis to viral		Via the multiple steps of the cascade, HIV-positive drinkers had	studies in general populations in South Africa, Uganda,	
22		Puryear SB et al.	2020	AIDS	Alcohol	suppression.	Longitudinal effects	significantly worse viral suppression outcomes than non-drinkers.	and the United States.	Confirmed
23						Association between			This is the first study to have evaluated the relationship between adult child migration status and cognitive	
24					Migration	adult child US migration			decline. Departing from most prior studies of adult child	
25					Older age	cognitive performance			associations with a doubly robust estimation approach	
26		Torres JW et al.	2020	Am J Epidemioi	Physical activity	scores			that accounted for respondent attrition.	New
27 28								Further evidence that parental supply of alcohol in adolescence has effects on a number of negative outcomes in early		
29								adulthood, including binge drinking and alcohol-related harm, leading not only to increased risk of binge drinking and harm but		
30						Effect of parental supply	Time-yapying	also increased frequency of binge drinking and number of harms	Pohyst statistical techniques were used to account for the	
31					Alcohol	related outcomes in early	confounding	the magnitude of the effect of parental supply increased the	complex sources of bias that can be introduced by	Acknowledge strengths of
32		Clare PJ et al.	2020	Addiction	Adolescent health	adulthood	Causal effects	earlier that supply was initiated	longitudinal analysis of observational data.	methodology
33						Risk-taking behaviors	Self selection		Our analysis also demonstrates the significance of using Super Learner based approach to account for possible	
34					Helmet use of cyclists risk taking	under various urban-	Survey Heterogeneous effects	Based on 131 survey participants, a significant positive risk	model misspecification error. In our case, if we choose to	
36		Kang L et al.	2021	J Safety Res	behaviours	function of helmet use	Model mis-specification	estimator and the size of effect is estimated to be about 15.6%.	results would be obtained.	Expanded
37								Select evidence of adverse associations between spousal		
38					Older age	Evaluated the effect of spousal caregiving on	Reverse causality	caregiving and past-week depressive symptoms: These adverse associations are generally described as the result of the	While our analysis improves upon prior methods used to evaluate the health effects of spousal caregiving in	
39				Int J Geriatr	Caring responsibilities	multiple health outcomes in middle-aged and older	Survey waves Longitudinal data	emotional and physical burden of caregiving, which may have negative consequences for sleep, time for leisure and health	observational studies, we are not able to rule out residual unmeasured confounding; we therefore interpreted	
40		Torres JM et al.	2021	Psychiatry	Health outcomes	adults in Mexico.		promoting activities, and social isolation.	estimates as associations.	Expanded
41										
4∠ ⊿२										
44										
45										
46										
47										
48										
49										

1 2 3 4	1056							Ó		
5 6 7 8 9 10 11		Lee JO et al.	2021	Public Health	Employment Mental health Covid-19	Examined the association of employment insecurity with two mental health measures, depression and anxiety	Reverse causality Missing data Sample weights	Employment insecurity has threatened mental health in the United States during the pandemic, and mental health repercussions are not felt equally across the population.	Causal interpretation of the results from stratified analyses warrants particular caution because the smaller sample size may threaten the assumptions needed to interpret coefficients from TMLE as causal effects	Acknowledge strengths of methodology and highlight further sources of concern
12 13 14 15 16 17		Shiba K et al.	2021	Epidemiology	Older age Mental health	We present an analysis that estimates and compares prevalence of depressive symptoms under alternative hypothetical interventions in social participation. Examine the magnitude	Longitudinal data Survey waves Reverse causation Measurement bias/mis- classification	Past studies linking social participation and depressive symptoms in late life have not rigorously considered the time-varying nature of social participation. First study that explicitly estimated and compared the effects of alternative hypothetical interventions in social participation at two time points on subsequent depressive symptoms.	Past studies linking social participation and depressive symptoms in late life have not rigorously considered the time-varying nature of social participation applied an analytic approach that addressed time-dependent confounders and performed doubly robust estimation with a machine learning-based ensemble estimator	Expanded
18 19 20 21 22 23		lkeda T et al.	2022	J Affect Disord	Older age Mental health Strength	of the association between depressive symptoms over 2 years and weak handgrip strength among English people in 4 years of follow-up. We hypothesized that	Survey waves Sample attrition - selection bias Self reported exposure	The main finding of our study was that people who maintained non-depressive symptoms or improved depressive symptoms were less likely to have weak handgrip strength than those with persistent depressive symptoms.	We applied the TMLE model in which time-variant variables (i.e., exposure, covariates, and outcome) and time-invariant variables were concurrently taken into account to obtain a more robust estimation by contrast, we demonstrated the reverse, that is, worsening mental health led to poorer physical function.	Expanded
24 25 26 27 28 29	<u>-</u>	Ikeda T et al. Siomarker epidemiology	2022	J Pain	Older age Physical activity	older individuals who maintained physical activity over time tend to have a lower risk of low back pain, whereas those who discontinued activity were not.	Self reported exposure Small sample Sample attrition	Overall, the present study confirmed that maintaining physical activity reduced the risk of low back pain at the follow-up survey. Conversely, discontinuing activity (engaged only at the baseline survey) was not beneficial.	Discrepancies between studies can be explained by the differences in the method of analysis, that is, whether changes in physical activity or other time-varying covariates were taken into account. Thus, time-varying exposures are considered essential to avoid erroneous conclusions.	Expanded
30 31 32 33 34 35 36		Bembom O et al.	2009	Stat Med	Mutations Virology	Determine which of a set of candidate viral mutations affects clinical virologic response to the antiretroviral drug lopinavir + rank the importance of these mutations for drug- specific resistance	Identify subset of relevant biomarkers Biomarker importance	The subset of mutations identified by this approach as significant contributors to lopinavir resistance was in better agreement with the current knowledge than the subsets identified by an unadjusted analyses or the G-computation approach. In addition, the specific ranking provided by targeted VIM estimation also agreed better with the current understanding than did the rankings generated with alternative methods.	Our analysis suggests that targeted maximum-likelihood estimation of VIM represents a promising new approach for studying the effects of HIV mutations on clinical virologic response to antiretroviral therapy	Expanded
37 38 39 40 41 42		Rosenblum M et al.	2009	PLoS One	HIV Virology	Effect of adherence on viral load after different durations of viral suppression.	Selection bias Unmeasured confounding	These data suggest that for adherence proportions greater than 50%, the probability of virologic failure decreases with longer duration of viral suppression.	The estimation method we used relied on having included all confounders of adherence and virologic failure in our analyses, and on our marginal structural model and other models used being correctly specified. While we included many of the known predictors of adherence and virologic failure, unmeasured confounders may lead to bias in our estimates.	Acknowledge strengths of methodology and highlight further sources of concern
43 44 45 46 47 48										
49										

1								<u>k</u>		
1 2 3	1057							0		
4										
5										
7						Examine clinically	Little awareness of how			
8						important marginal	genetic profiles have an			
9						Score (GRS) composed of	activity		Using a robust method of statistical analysis, our findings	
10					Genetics	41 established genetic risk loci on systemic lupus	Longitudinal effects Time-dependent	Results from individual SNP analyses provide important insight to the overall GRS findings; specifically, evidence for significant	do not support a strong causal relationship between an overall GRS comprised of established SLE SNPs and	
11		Gianfrancesco MA et a	l. 2016	Genes Immun	Ethnicity Skin disease	erythematosus activity over a period of 9 years	confounding Sample attrition	associations between certain SNPs and SLAQ score at two time points during the longitudinal study was demonstrated.	disease activity as measured by the validated self- reported SLAQ	New
⊥∠ 12										
14						Identify a list of candidate				
15						significantly enriched			The results demonstrate that newly developed bioinformatics tools and causal informatics methods	
16						pathway in childhood Leukemia, while	Large, correlated data Data reduction	The results demonstrate that newly developed bioinformatics	[TMLE] may illuminate new and biologically relevant	
17				Cancer Epidemiol	Ethnicity Cancer	accounting in models, for the complex correlation	Gene selection Variable importance	tools and causal inference methods may illuminate new and biologically relevant pathways and genes to improve current	pathways and genes to improve current understanding of pathogenesis in childhood	
18		Hsu LI et al.	2016	Biomarkers Prev	Children health	between SNPs		understanding of pathogenesis in childhood leukemia.	leukemia.	Expanded
19										
20 21						Describe the methylation patterns of 20 candidate				
21						genes associated with preterm birth and		This study examined 42 CpG sites within 20 candidate genes	An additional strength is the robust methodology applied in our analysis. To avoid spurious associations, we	
23				Matorn Child Hoalth	Ethnicity	evaluate their role in		previously linked to preterm birth and identified three CpG sites	employed both ROC and TMLE to identify levels of	A alua and a data atomatika af
24		Salihu HM et al.	2016	J	outcomes	American women.	Residual confounding	methylated between black and nonblack newborns.	validated and replicated through bootstrapping.	methodology
25									Our flexible modeling approach, correction for multiple testing, and consideration of joint effects differ from	
26						Evaluate the relationship		We found that a greater proportion of Latina mothers reported	previous approaches, and may account for some	
27						telomere length and a		financial strain, food insecurity, and high job strain, while a	ensemble learners improved model fit and reduced bias	A des de la des administration de
28					Birth	comprenensive suite of chronic maternal		quality, experiencing stressful/traumatic life events, or having an	associations not observed with traditional regression	methodology
29		Izano MA et al.	2020	PLoS One	Mental health	stressors	Complex joint effects	unplanned pregnancy than other racial/ethnic groups.	approaches.	Expanded
30						Identify tumor microenvironment-				
32					Cansor	related genes to estimate	Variable colection	ARID3C, CROCC2, FREM2, and PTF1A were identified as	The prognostic biomarkers were driven from a causal	
33					Environmental	mortality of Ovarian	Complex joint effects	and PTF1A), alongside CROCC, were successfully validated in	methodologies can be used to better inform future clinical	Acknowledge strengths of
34		Wang L et al.	2021	Front Genet	epidemiology	cancer.	Model mis-specification	three GEO datasets.	therapy.	methodology
35									Using the traditional approaches, such as linear or logistic regression models, confounding factors and complex	
36									associations among covariates might bias the results and	
3./						Identify the potential			demonstrated to help reduce the risk of spurious findings	
20 20						prognostic genes in the prostate adenocarcinoma		Based on this strategy, we identified 14 genes involved in the prognosis of Prostate adenocarcinoma. The interaction between	[17]. Although TMLE optimizes the bias-variance trade off for the estimated causal effects, a rough trend could still	
40						microenvironment and estimate the causal	Causal effects	PRAD and TME might have serious effects on tumor evolution, further influencing tumor resistance, recurrence, and overall	be observed for the individual effects of patients. Based on this strategy, we identified 14 genes involved in the	Acknowledge strengths of methodology
41		Sun X et al.	2021	Aging (Albany NY)	Cancer	effects simultaneously.	Variable selection	prognosis.	prognosis of PRAD.	Expanded
42	-									
43	Env	vironmental epidemiology								
44										
45 16										
40 47										
48										
49										

Smith ET AL.

							C.		
1									
∠ 3	1058								
4									
5									
б 7					Ectimate at the	Clear definitions of	The coults did not show a clear experies response relation		
8					population level, the	+ Previous inconsistent	across the quartiles of traffic density; however, there was a		
9					predicted probability of term LBW had everyone	findings Measurement error	significant difference in the predicted probability of LBW between the highest and lowest quartiles of exposure, showing		
10		Padula AM et al.	2012 Am J Epider	Prenatal exposur niol Birth outcomes	 been exposed to each quartile of traffic density. 	Misclassification of exposure	that higher traffic density is associated with increased probability of LBW.	None specified	
11						Assumptions			
⊥∠ 13					Quantify the causal attributable risk of living	discussed/checked Proxy measures of	Results indicated that a hypothetical intervention intending to		
14				Respiratory	close to the mines on asthma or allergic	exposure	increase the distance from children's home to the mines could result in a reduction of chinoconjunctivitis prevalence in the	Our method estimates the public health impact of such an	
15		Herrera R et al	Int J Enviror	n Res conditions	rhinoconjunctivitis risk	Small sample size	studied population by up to 4.7 percentage points (95% CI:	intervention, which could not be done using the standard statistical approaches (e.g., Ingistic regression estimates)	Expanded
16					burden in eineren				capanaca
19									
$10 \\ 19$					combined relations of	1			
20					neighbourhood opportunity in early-life				
21					and adulthood with pre- term birth risk in black,				
22					white and Latina women + assess the contribution				
23 24				Life course epidemiology	of neighbourhood opportunity to racial-		Our results do not point to a common susceptible period across racial/ethnic groups, possibly reflecting unmeasured	Models account for time-dependent confounding often overlooked in life-course studies of birth outcomes.	
25		Pearl M et al	Paediatr Per 2018 Enidemiol	rinat Pregnancy	ethnic disparities in risk o	f Longitudinal	heterogeneity of experiences represented by the poverty measured co-factors	and the targeted estimation may reduce bias in outcome regression models	Acknowledge strengths of methodology
26				outcomes		Missing data - Multiple			incaroaology
27						Sampling weights			
28						matching	We found that living in a community where average day-night		
30					Examine the relation	exposure	associated with approximately 30–40 minute later bedtimes.		
31					between environmental noise and adolescent	Unmeasured confounding /	Associations with DSM-IV mental disorders were mixed, generally with wide CIs, and not robust across sensitivity		
32		Rudolph KE et al.	2019 Environ Epi	demiol Adolescent healt	h health in the US	measurement error	analyses.	None specified	
33					Do lower SES pregnant	Mediation analysis,	Our findings revealed an association between living in the highest quartile of a cumulative metric of UNGD activity during		
34 35					women have a heightened response to	missing data - Multiple imputation	pregnancy and increased risk of antenatal anxiety or depression. This increased risk, however, did not appear to mediate the		
36					UNGD activity due to	Exposure and outcome measure	observed association between UNGD activity and preterm birth or reduced term birth weight, as we found no relationship		
37		Casey IA et al	2019 Environ Res	Prenatal exposu	environmental and social	Assumptions discussed/checked	between antenatal anxiety or depression and these outcomes in our sample	None specified	
38		cuscy so et al.	2019 Environ Res			uiscussed/encekeu	ou sumpe.	None speaned	
39									
40 41									
42									
43									
44									
45 ⊿6									
47									
48									
49									

1								<u>s</u>		
1 2 3	1059							0		
4 5										
6										
7								We estimated that adherence to the dietary recommendations		
8						Study the association between diet and		(pregnant women: ≤3 servings=week, children ≤2 servings=week) for fish intake would result in lower exposure to PFASs, As, and		
9						measured blood and		Hg compared with those exceeding these recommendation. Fruit		
10						environmental		metabolites concentrations in both pregnant women and		
10				Environ Health	Prenatal exposure	contaminants in mother-child pairs from		children. Using TMLE analysis, we found that consuming more than 2 fruits could increase the exposure of pregnant women to		
⊥∠ 1 2		Papadopoulou E et al.	2019	Perspect	Biomarkers	six European birth cohorts	Variable selection	OPs, compared with lower fruit intake.	None specified	Expanded
14						Assess the association between HOLC grade and				
16						difference vegetation		We found evidence of an association between worse historical		
17		Nardone A et al.	2021	Environ Health Perspect	Historical epi	index (NDVI), a measure of overall greenness.		HOLC grade and less 2010 greenspace using data from 102 U.S. urban metropolitan areas.	None specified	
1 A				·						
19						disaster-related trauma		loss on increased functional limitations across all indicators 2.5	Our finding for the population average effects of home	
20						and functional limitations in a cohort of older		years and 5.5 years after the disaster. There was evidence of heterogeneity in the associations between home loss and	loss on increased functional limitations is consistent with what has been reported previously. Our inductive	
21						survivors of the 2011	Heterogeneous effects	functional limitation. There were patterns in pre-disaster	approach for assessing effect heterogeneity provided	
22		Shiba et al. (2022)	2022	Am J Epidemiol	Physical health	Great East Japan Earthquake and Tsunami.	of home loss on functional limitations.	impairment following home loss.	a deductive approach.	Expanded
23								Home loss was consistently associated with persistent mental		
24								health problems; there was robust evidence for increased PTSS,	This analytic approach was used because we conditioned	
25						Longitudinal associations		and somewhat more modest evidence for increased depressive symptoms and risk of hopelessness at the 9-y follow-up point	on many covariates, and a conventional estimation approach using parametric outcome regression	
26						between disaster-related		after the disaster. Home loss was associated with broader indices	would be prone to model misspecification.	
27					Physical health	comprehensive array of		examined. There was modest evidence linking home loss with	natural experiment design and adjusted for a	
28		Shiba et al. (2022)	2022	Environ Health Perspect	Health and well- being	subsequent health and well-being outcomes	Model misspecification	increased chronic conditions, higher BMI, and decreased happiness.	comprehensive set of pre-disaster characteristics, including preexposure outcome levels.	Expanded
29					U			. FF		
30	<u>-</u>	Health Economy								
31					Financial	Estimate the association	Unreliable assumptions	Adults who were food insecure had annual health care		
32					resources and	between state- and	in GLMs	than adults who were food secure ($P < .001$). In children, the		
33					food insecurity, healthcare	county-level health care expenditures and food	Ecological measures of exposure and outcome	model-based estimate for health care costs associated with food insecurity was \$80 annually, but this finding was not significant (P		
34		Berkowitz S et al.	2019	Prev Chronic Dis	expenditure	insecurity.	estimated	= 0.53, 95% Cl, -\$171 to \$329).	None specified	
35	 	Non-Communicable Disease Epidemiology								
37										
38						To determine the risk		Post-onerative AKI following cardionulmonary hypass for IF		
39						acute kidney injury in	Multifactorial reasons	results from additive hits to the kidney. We identified several	despite the SuperLearner procedure, which is intended to	Acknowledge strengths of
40		Legrand M et al.	2013	Crit Care	Post-operative, surgery, kidney	patients operated on for inefective endocarditis.	for the exposure- outcome association	potentially modifiable risk factors such as treatment with vancomycin or aminoglycosides or pre-operative anemia.	optimize the prediction, our predictive performance was in fact limited.	methodology and highlight other sources of concern
41 40								,		
4∠ ⁄\ว										
د د ۵۵										
14 / E										
45 46										
47										
48										
49										

Smith ET AL.

								C .		
1										
2	1060									
3	1000									
4										
5										
6										
7						To determine whether				
8						as hormonal				
9						contraception are true				
10						amongst human	Timing and duration of	Although selected results suggest an increased prevalence of		
					Hormonal contrception,	immunodeficiency virus- positive women in	the exposure, type and measurement of the	cervical intraepithelial neoplasia 2 or greater (CIN2+) associated with combined oral contraceptive (COC), evidence is insufficient		
⊥∠ 1 ⊃		Leslie HH et al.	2014	PLoS One	cervical cancer	developing countries.	outcome.	to conclude causality.	None specified	
1J										
15						Examines the impact of the menopausal transition	Alzheimer's disease is			
16					Menopause,	on Alzheimer's disease	progressive and cross-	The optimal window of opportunity for therapeutic intervention		
17					alzheimer's disease, cognitive	cognitive performance in	sectional studies does not capture the ongoing	to prevent or delay progression of Alzheimer's disease endophenotype in women is early in the endocrine aging		
18		Mosconi L et al.	2018	PLoS One	performance	midlife	AD process	process.	None specified	
19										
20							A doubly robust, semiparametric			
21						Mar	estimation strategy that			
22						associations between	correct specification of	adjusted baseline prevalence of elevated depressive symptoms	The present study utilized longitudinal targeted maximum	
23						having an adult child	multiple parametric	(RD: 0.063, 95% CI: 0.035, 0.091) compared to women with no	likelihood estimation to robustly estimate the associations	
24					•	health, for middle-aged	models.	Mexican city at all three study waves had a lower adjusted	symptoms over an 11-year period for a national sample of	
25					Adult child migrant, mental	and older Mexican adults accounting for complex	Adjust for time-varying confounders affected	prevalence of elevated de- pressive symptoms at 11-year follow- up (RD: 0.042, 95% CI: 0.082, 0.003) compared to those with no	older adults in Mexico. In the overall sample, there was limited evidence of meaningful associations between	Acknowledge strengths of
26		Torres JM et al.	2018	Int J Epidemiol	health	time-varying confounding.	by prior exposure	internal migrant children over those waves.	having an adult migrant child and depressive symptoms.	methodology
27										
28							Time of onset of			
29		<u></u>					obesity is unknown,			
30							unclear whether estimated associations			
31							are driven largely by			
32							standing obesity,			
33							recently developed obesity, or combination		In this study, we showed that when strong relationships between confounders and exposures exist, nonparametric	
34							of both.		TMLE can yield highly volatile estimates. In our study,	
35						between incident obesity	Cause-effect		strongly associated with obesity in the pregnancy of	
36						and stillbirth in a cohort	interpretations rely		interest. These strong associations resulted in positivity violations that were not apparent when examining the	
う/ つつ						birth and death records in	if exposure cannot be	We found positive associations of incident pre-pregnancy obesity	distribution of stabilized inverse probability weights, a	Highlight sources of
38		Yu YH et al.	2019	Am J Epidemiol	Obesity, stillbirth	Pennsylvania (2003–2013)	randomised	with stillbirth	commonly used diagnostic strategy The traditional regression analyses showed a positive	concern
29 40					Carda in tales	Effect of soda intake on	In a standing Lating		association between soda intake and dental caries, but	
ч 0 Д1		Lim S et al.	2019	Caries Res	pediatric caries	children (birth to 5 years).	varying data	additional caries tooth surface.	were significant]	Expanded
±⊥ 42										
יב 4२										
44										
45										
46										
47										
48										
49										

Smith ET AL.

							C.		
1									
2									
- 1061 3									
4									
5									
5							<u>s</u>		
3 7						Hataragapagus studu		Our findings show that interpretations surrounding the	
8						designs, measurement		differ dramatically depending on the type of statistical	
9				Smoking, rheumatoid	Examined the association	error in key variables, biases in statistical		analysis conducted. We found current smoking status to	
10	Gianfrancesco MA et al.	2019	J Rheumatol	arthritis	rheumatoid arthritis (RA).	anaylsis	Smoking is associated with higher levels of disease activity in RA.	measured by PtGA score and SJC using LTMLE.	Expanded
11								With respect to the effects in males females and all	
12					Compared the effects of			participants, the results of the TMLE method (the fourth	
13					body mass index and central obesity on stroke	Model misspecification, different distributions		model) were more precise than those based on conventional models and showed that the strongest effect	
14				BMI, obesity,	in diabetics and non-	of the exposure	Among diabetics, body shape index and waist-to-hip ratio indices	was related to BSI and BMI for all participants: WC, BSI	
15	Mozafar Saadati H et al.	2020	Obes Sci Pract	stroke, diabetics	diabetics.	between covariates	were associated with a higher incidence of stroke.	and WHR for males and BSI and BRI for females.	Expanded
16				<u>_</u>				By using a Marginal Structural Models approach, we could	
17					Calculate the long-term risk of reporting asthma			account for time-varying treatment and confounding. While we could confirm the targeted maximum likelihood	
19					symptoms in relation to			estimation to be a usable and robust statistical tool, from	A days to be a strength of the
10			BMC Med Res	Asthma, control	a real-life setting from	RCT may not represent	We did not observe a beneficial effect of asthma control	a clinical perspectice we did not observe the desired beneficial effect of asthma control medication on asthma	methodology
20	Veit C et al.	2020	Methodol	medication	childhood to adulthood.	the general population	medication on asthma symptoms.	symptoms.	Expanded
20									
21					Identify the association of				
22 22				Newly overweight	prepregnancy overweight	Time-varying effects of	Transitioning from normal weight to overweight or obese		
23	Vu VH et al	2020	Obstat Gynacol	and obesity,	and obesity with stillbirth	covariates, timing of	between pregnancies was associated with an increased risk of	None specified	
24 25	ru metal.	2020	Obstet Gynecol	SUIIDILUI	and infant mortality.	exposure	stilbitti and neonatal mortanty.	None specified	
25				Obesity survival	Association between	Failure to account for confounding and	TMLE mitigates the obesity paradox observed in critically ill	The robust approach that combined targeted learning with multiple imputation to deal with both types of biases	Acknowledge strengths of
20				of critically ill	survival among critically ill	collider stratification	patients, whereas a traditional approach results in even more	yielded an ATU of - 0.59% (95% Cl - 2.77 to 1.60%, P	methodology
27	Decruyenaere A et al.	2020	Crit Care	patients	patients.	bias	paradoxical findings	= 0.599) and thereby mitigated the obesity paradox.	Expanded
28									
29				Waterpipe smoke (vape), multiple	Role of lifetime waterpipe smoking in the etiology of	Estimate marginal	These results suggest that waterpipe use, or strongly related but		
5U 21	Abdollahpour I et al.	2021	Am J Epidemiol	scelrosis	multiple sclerosis (MS).	effects	undetermined factors, increases the risk of multiple sclerosis.	None specified	
3⊥ 20					To compare clinical and				
3 <u>4</u> 22				Symptomatic	radiographic outcomes				
22 21				clinical and	symptomatic hallux				
34 25				radiographic	valgus treated with the	Positivity violations if	Although the modified Lapidus procedure led to a higher		
33				procedure vs scarf	procedure versus scarf	not appropriately	procedures yielded similar improvements in 1-year patient-		
30	Reilly ME et al.	2021	Foot Ankle Int	osteotomy	osteotomy.	accounted for	reported outcome measures	None specified	
3/ 20									
38 20				acute respiratory	To estimate the	Adequately adjusted for confounders, and			
39				distress	attributable mortality, if	utilisation of statistical			
40	Torres LK et al.	2021	Thorax	syndrome, mortality	any, of acute respiratory distress syndrome (ARDS)	methodology to estimate causal effects	Acute respiratory distress syndrome has a direct causal link with mortality.	None specified	
4⊥ 4 0				//					
42									
43									
44									
45									
46									
4'/									
48									

				Weakness and			
		al actua	To elucidate the effect modification of general	statistcal models.			
	Diabetes Metab	cardiovascular	and age on the risk of	Mediator effect of	with a higher risk of coronary heart disease and heart failure		
Mozafar Saadati H et al. 202	1 Synar	disease	cardiovascular events.	some biologic factors.	while body mass index was so for females and age>54.		
			o estimate the causal effect of reproductive	Misspecification of regression models may		The contradiction of our study findings with other studies may be justified by different confounders adjusted for in	
		reproductive factors, breast	factors on breast cancer risk in a case-control	cause ex- treme bias in treatment effect	Postmenopausal women, and women with a higher age at first marriage, shorter duration of breastfeeding, and history of oral	analysis and statistical methods used; IMLE method, along with the super learner approach, have been	Acknowledge strengths of methodology
Almasi-Hashiani A et al. 202	21 BMC Public Health	cancer	study.	estimates.	contraceptive use are at the higher risk of breat cancer	identified more efficient for controlling confounding	Expanded
		2	To estimate associations	Differences in findings might potentially be due to bias as a result of unobserved confounding, which cannot be overcome using standard regression techniques			
		perinatal depression, infant	between perinatal depression and infant	Failure to account for unobserved			
Dadi AF et al. 202	BMC Pregnancy 21 Childbirth	diarrhea, acute respiratory infection, malnutrition	diarnea, Acute Respiratory Infection (ARI), and malnutrition in Gondar Town, Ethiopia. To estimate the association between prenatal exposure to folate and brain development	confounding can weaken the quality of evidence derived from such studies	There was no evidence for an association between perinatal depression and the risk of infant diarrhea, acute respiratory infection, and malnutrition amongst women in Gondar Town.	None specified	
		maternal folate levels, pregnancy,	(neuropsychiatric disorders) in late		Low maternal folate levels during pregnancy are associated with		
Zou R et al. 202	21 Clin Nutr	neuropsychiatic disorders,	childhood has been rarely investigated.	Appropriately control for confounding	altered offspring brain development in childhood, suggesting the importance of essential folate concentrations in early pregnancy.	None specified	
Goel AR et al. 202	1 J Am Acad Audiol	hearing aids, audiometric outcomes	To examine how hearing aids affect standard audiometric outcomes over long-term periods of follow-up.	Reduce bias due to study designs that have found differing evidence	Our analysis revealed discernible effects of 5 years of hearing aid use on hearing ability, specifically as measured by the PTA3-Freq, novel PTAExt, and WRS, suggesting a greater decline in hearing ability in patients using hearing aids	None specified	

1062

Smith ET AL.

1								K		
2	1063									
3										
4										
5										
6										
7									To our knowledge, this study is the first to apply Super	
8						To compare			Learner algorithms while estimating ATE using TMLE among hospitalized US patients who underwent SRS	
9						hospitalization outcomes			and/or non-SRS therapies for brain metastases. It has	
10						among US inpatients with brain metastases who			already been established that SRS is two to sixfold more expensive than non-SRS therapies. However, additional	
11						received stereotactic			research is needed to elucidate shorter hospital stays and	
12						non-SRS radiation		SRS therapies may reduce the risks of prolonged hospitalization	underwent SRS with or without non-SRS therapies,	
13					brain metastases,	therapies without		and non-routine discharge among hospitalized US patients with	although fewer neurological complications may be partly	Acknowledge strengths of
14		Beydoun HA et al.	2021	Sci Rep	radiosurgery,	intervention	Model misspecification	neurosurgical intervention.	individuals treated with SRS.	Expanded
15						To estimate the				
16						conditional and causal				
17						effects of obesity on mortality in cardiac arrest				
18						patients using the				
19						Australian and New Zealand Intensive Care	Methodological issues	After adjustment, there was no association between obesity and	Recently, using TMLE approach has alleviated finding of the obesity paradox in critically ill patients which was	Acknowledge strengths of
20					obesity, mortality,	Society (ANZICS) Adult	leading to conflicting	outcomes in cardiac arrest patients admitted to intensive care	present with traditional regression analysis, however, this	methodology
21		Chavda MP et al.	2022	J Crit Care	cardiac arrest	Patient Database (APD).	results.	unit.	trial did not examine cardiac arrest patients.	Confirmed
22										
23						To assess whether chronic limb threatening ischemia				
24						(CLTI) objective				
25					chronic limb	could be attained with				
26					threatening	nonoperative		A comprehensive set treatment goals and expected amputation		
27					nonoperative	amongst patients with		assure that appropriate outcomes are achieved for patients		
28		Crowner JR et al.	2022	Ann Vasc Surg	management	CLTI.		treated without revascularization.	None specified	
29										
30						Investigated differences				
31						in survival among patients				
32						heart catheterisation			to confirm that patients with RHC had a significantly	
33						using data from the Study		Critically ill patients who received a right heart catheterisation	decreased 30-day and 60-day survival in comparison to	
34					survival, right	and Preferences for	Existence of unadjusted	had a significantly decreased 30-day and 60-day survival	advance the understanding of TMLE for analysis of	Acknowledge strengths of
35		Akosile M et al	2018	Int I Clin Biostat Biom	heart catheterisation	Outcomes and Risks and Treatments (SUPPORT)	bias in the original analysis	compared to patients who did not receive one after adjusting for a variety of notential con-founder selection strategies	observational stud- ies, and promote the application of TMLE in the critical care studies	methodology Confirmed
36			2010							
37										
38										
39										
40										
41										
42										
43										
44										
45										
46										
47										
48										

1								<u>k</u>		
2 3	1064									
4 5 6								. O`.		
7								Treating male patients with RBC units exclusively from male donors increases the 28-day survival compared with the current		
8 9								practice. Further, transfusing female patients with RBC units exclusively from donors of either sex increases patient survival		
10								compared with the current practice where patients can receive a mix of female and male donated RBC units. If a sex-matched		
						Determining the causal effect of donor sex on the		transfusion policy was implemented across all blood banks in Denmark, where ≈40.000 patients are transfused annually, our		
13						risk of death after red blood cell transfusion in	Model misspecification, time-varying	, estimates suggest that, annually, 732 (95% CI: 668-800) males and 248 (196-300) females could be saved within 28-days of the	The findings from previous observational studies have been conflicting. Our findings suggest beneficial effects of	
14		Bruun-Rasmussen et al. (2022)	2022	EClinicalMedicine	Transfusion	male and female patients.	confounding,	first transfusion	a sex-matched transfusion policy.	Expanded
15							*			
16							Time-dependent			
17							selection bias due to			
19							informative censoring because of loss to			
20						Examine whether a strategy that reduced	follow-up or death in the Osteoarthritis	The absolute long-term risk of a KR decreased from 6.3% to≥5.8% when pain interventions that actually reduced pain wereapplied		
21						pain when the knee painof participants	Initiative cohort. Time- dependent confounding	as knee pain reached≥5 on the WOMAC pain subscale(translating g into 6 KRs avoided per 1,000 painful knees). Developinglong-term	Our findings suggest that treatments with even modest reductions in pain commensurate with current treatments	
22						reached a certain threshold could reduce	adjustment avoided the bias of adjusting for	intervention strategies to successfully address chronicknee pain will have significant but modest public health and eco-nomic	would substantially decrease Knee Replacement rates. These data provide additional strong evidence that	
23		Jafarzadeh et al. (2022)	2022	Arthritis Rheumatol	Osteoarthritis	the riskof a KR	intermediate factors.	benefits.	effective treatments for OA are critically needed.	Confirmed
24 25										
26						MI patients without chest		hypothetically increasing chance of receiving emergency	on the probability of receiving an emergency ambulance	
27						pain could be expected to benefit from increased	Causal framework	ambulance dispatch to all non-chest pain MI patients. Increasing prehospital administration of ASA to emergency ambulance	did not change the risk of 30-day mortality and 1-year combined outcome. We found a relatively large reduction	
28					Miocardial	emergency ambulance dispatch and prehospital	required for a policy intervention for	transported non-chest pain MI patients was found to reduce 30- day mortality by 3.3% CI 95%[1.4%;5.2%] to 5.3% CI	in the risk of 30-day mortality among non-chest pain MI patients when hypothetically increasing prehospital ASA	
29		Møller et al. (2022)	2022	BMC Cardiovasc Disord	Infarction	ASA treatment	myocardial infarction.	95%[1.7%;9%] depending on the intervention.	assignment.	Expanded
30								Patients in both cohorts demonstrated significant improvements		
32						Association between		in physical function, pain interference, pain intensity, and global		
33						correction and surgical		underwent hallux valges correction with concomitant	In cases where hallux valgus patients exhibit risk factors	
34						rection using validated		the pain interference and pain intensity domains, along with	hammertoe formation, our findings can aid surgeons in	
35		Rajan et al. (2022)	2022	Foot Ankle Surg	Foot surgery	patient-reported outcome measures		overall higher postoperative pain interference scores, indicating less improvement in pain-related outcomes.	counseling patients on surgical outcomes if they proceed to develop this lesser toe pathology	Expanded
37		Infectious Disease								
38		Epidemiology								
39										
40										
4⊥ 42										
43										
44										
45										
46										
47 48										
49										

Smith ET AL.

							C .		
1									
2	1065								
3									
4									
5									
6 7									
/ Q									
o Q					Despite modern effective	identifying and			
10					virus (HCV) co-infection is	adjusting for variables			
11					associated with a high risk of progression to end-	(baseline or time- varying) that affect		A protective effect of HCV clearance on ESLD is consistent	
12					stage liver disease (ESLD)	both HCV clearance and		with studies that have shown curative HCV therapy	
13				Hepatitis C virus,	primary cause of death in	ESLD	effect of the clearance of hepatitis C virus on end-stage liver	decompensation, transplantation, hospitalisation and	
14		Schnitzer ME et al.	2014 Biometrics	liver disease	this population	Missing data	disease, adjusting for time in the model.	death.	Confirmed
15					Surgical site infection	structural or process-of-			
16				Surgical site	extremity bypass, leading	care character- istics of the hospitals where the			
17		Davis FM et al	2017 I Vasc Surg	infection, graft failure	to increased rate of graft failure	procedures were	Surgical site infection after lower extremity bypass is associated with an increase in rate of amoutation and reoperation	None specified	
18		Davis i Wiet al.	2017 J Vasc Suig	Tallure	Tallule	performed	with an increase in rate of amputation and reoperation	None specifieu	
19				Imipenem- resistant	To explore the impact of			both the pathophysiological background of kidney toxicity of colistin and the robust statistical analysis, using	
20				acinetobacter	an outbreak of imipenem-		The enicode of iminenem registerst Asinetehacter haumannii (IR	machine learning, strongly suggest that such a causal	Asknowledge strengths of
21				AB), renal	baumannii (IR-AB) on		AB) outbreak was associated with an increased risk of kidney	between the 2 periods. Finally, performing a randomized	methodology
22		Vauchel T et al.	2019 Am J Infect Control	outcomes	renal outcomes.		events, which appears to be driven by the use of colistin.	controlled trial in this setting is not feasible.	Expanded
23					Bedaquiline and				
24					delamanid are newly available drugs for	limited data on the			
25 26					treating multidrug- resistant tuberculosis	clinical outcomes of patients treated with	Among patients with multidrug-resistant tuberculosis.	In the absence of existing data from randomized con-	
20 27				Drugs for	(MDR-TB); however, there	bedaquiline and	bedaquiline-based regimens were associated with higher rates of	trolled trials of bedaquiline versus delamanid, the results	
28				resistant	their use and no	programmatic	sputum culture conversion, more favorable outcomes, and a lower rate of acquired drug resistance versus delamanid-based	tuberculosis programs on the relative efficacy of	
29		Kempker RR et al.	2020 Clin Infect Dis	tuberculosis	comparison studies.	conditions,	regimens.	bedaquiline versus delamanid.	Expanded
30									
31					Assess the impact of bathing of neonates with				
32				Sepsis, aqueous	2% chlorhexidine solution				
33				(CHG) used to	infecitons, suspected	Causal effects from			
34				reduce risk of bloodstream	sepsis, and mortality in a low-income country	observational data ncluding time-varying	Aqueous chlorhexidine bathing at admission was associated with a reduced risk of bloodstream infections due to a pathogenic		
35		Westling T et al.	2020 Int J Infect Dis	infections (BSI)	neonatal care unit.	confounders	organism after adjusting for potential confounding.	None specified	
36									
37					Children living further from a water source				
38				Distance from	would have higher	Flexible modelling			
39				water source, chlamydia	Trachomatis and enteric	approach to capture the relationship	lence of S. enterica and G. intestinalis indicating that improving		
40		Aiemiov K et al	2020 PLoS Negl Trop Dis	trachomatis, antibody reponses	pathogens as determined	between seronrevalence and age	access to water in the Ethio- pia's Amhara region may reduce	None specified	
41		Alchijov k et al.	2020 1 105 Negi 1105 Dis	antibody reponse.	by anabody responses.	scroprevalence and age	exposure to these enteropathogens in young enterent.	None specificu	
42									
43 11									
44 45									
45 46									
47									
48									
49									

Smith ET AL.

1 2 3	1066						Ó		
4 5									
6							<u>.</u>		
7					we utilized targeted				
8					machine learning and				
9					methods to investigate				
10					the association of multiple measures of			These null findings from CCLS are somewhat consistent	
11				Immune	early immune stimulation	complex biological	Exposure to pets and farm animals was inversely associated with	with ours, suggesting that these specific characteristics	
12				lymphoblastic	leukemia (ALL) in Costa	immune dysregulation	than one week (a putative proxy of severe infection) was	surrogate measures of early immune stimulation in	
13		Figueroa S et al.	2020 Environ Res	leukemia male	Rican children.	and leukemogenesis	associated with an increased risk	Hispanic children. Specifically, we found that MMC has a protective	Confirmed
14				circumcision,	Protective effect of male		We present further evidence of a protective association of	association with HIV and HSV-2. Though the utilization of	
15				sexually transmitted	circumcision against some sexually transmitted		medical male circumcision against human immunodeficiency virus and herpes simplex virus type-2 in this hyperendemic South	TMLE did not indicate a null effect nor alter the direction of the association, we found evidence of more precise	
10 10		Amusa L et al.	2021 BMC Public Health	infections anti-retroviral	infections (STIs)	Mimic an RCT	African setting.	effects.	Expanded
17				therapy,	Same-day ART, effect on		There was a reduced risk of composite unfavourable income	A strength of this study is that we applied different	
10 10		Kerschberger B et al.	2021 Am J Epidemiol	unfavourable health outcome	composite unfavourable treatment outcome	Assess real-world effectiveness	amongst those with early anti-retroviral therapy initiation comapred to same-day anti-retroviral therapy.	analytical approaches, including state-of-the-art methods (e.g., TMLE), all of which concurred in their main findings.	Confirmed
20								The effect actimates from these three analyses showed a	
21								consistent direction of the relationship as a significant	
22								nonspecific protective effect of HBV vaccination against MS risk. However, the doubly robust estimates obtained	
23				hepatitis B		the state of the s	-	by TMLE were the least biased compared with the	Acknowledge strengths of
24		Akhtar S et al.	2022 Mult Scler Relat Disc	vaccine, multiple ord sclerosis	sclerosis risk	over a population	recombinant Hepatitis B vaccine against multiple sclerosis risk.	analysis and conditional logistic regression methods.	Confirmed
25				nreoperative hs-					
26				crp/Albumin ratio	preoperative hs-		Preoperative hs-CRP/albumin ratio (CAR) was significantly		
27		Chen C et al.	2022 J Nutr Health Aging	and postoperative SIRS	CRP/albumin ratio and SIRS	Interactions and stratified analysis	associated with increased risk of postoperative SIRS in elderly patients.	None specified	
28				Provalence	Provalence of HCV-	inference to settings			
29				hepatitis C virus-	viremia. Clinical	with prolonged	Prevalence of hepatitis C virus-viremic amongst people with HIV		
30		Isfordink CJ et al.	2022 AIDS	viremia, direct- acting antivirals	determinants to lack of direct-acting antivirals	unrestricted access to treatment	is low in the Netherlands, coinciding with widespread DAA- uptake.	None specified	
31									
32									
33						These methods in			
34						addition to the use of			
35						anal STI as HIV proxy, addresses some of the			
36						methodological			
3/					To reappraise pre-	HIV studies with low			
38 20				Preexposure	exposure prophylaxis (PrEP) eligibility criteria	HIV incidence, allowing for more informative			
ود 40				prophylaxis eligibility criteria	towards the men who	conclusions. Lastly, PAF	Including chemsex as an additional PrEP eligibility criterion	Addition of chemsex to the PrEP eligibility criteria in the	
ч 0 41		de la Court et al. (2022)	2022 Epidemiol Infect	risk of HIV	with highest HIV-risk	addition to TMLE.	HIV prevention outcomes.	seems warranted.	Confirmed
42		Occupational Epidemiology							
43									
44									
45									
46									
47									
48									
49									

							<u>c</u>		
1 2									
3	1067								
4 5									
6					incidence of ischemic			The TMLE estimate of the risk ratio returned smaller	
7					heart dis- ease (IHD) in relation to accumulated	Time-varying confounding, a		confidence intervals than those from the inverse- probability weighted estimate of the hazard ratio. In three	
8 9				Particulate matter heart	exposure to particulate matter (PM) in a cobort of	component of the	The accumulation of exposure to PM2.5 appears to result in higher risks of ischemic heart disease in both aluminum smelter.	of the four point estimates, we estimated larger effects	
10		Brown DM et al.	2015 Epidemiology	disease	aluminum workers.	effect	and fabrication work- ers.	unadjusted estimates.	Expanded
11					the relation between		*		
12					soluble, and synthetic			The reasons for the inconsistencies between our findings	
14				Mataluardian	of colon cancer in a	Time una time		suggest that our adjustment for time-vary- ing	A durant data atom at the of
15				fluids, colon	manufacturing industry	confounding affected	evidence for a causal effect of straight metalworking fluids	have allowed us to detect an effect otherwise hidden by	methodology
16		Izano MA et al.	2019 Environ Epidemiol	cancer	workers	by prior exposure	exposure on colon cancer risk	nealthy worker survivor blas	Expanded
17 19	•	Pharmacoepidemiology							
19				pre-procedural	Assess the association between pre-procedural		Decline in the rate of pre-procedural P2Y12 inhibitor		
20				percutaneous	administration and		administration.		
21		Sukul D et al.	2017 J Invasive Cardiol	intervention (PCI)	clinically important in- . hospital outcomes.		No significant differences in outcomes between patients treated with pre-procedural P2Y12 inhibitors and those that were not	None specified	
22				human immunodeficienc					
24				y virus–positive patients,	Assessed the impact of delayed switch from first-			Our marginal structural working models were more complex than the MSMs in these studies, which makes a	
25				mortality	line ART treatment to second-line ART			more refined interpretation of the dose-response relationship between delay in switching and mortality	
26					treatment on mortality in 9 South African treatment	Small patient numbers and limited follow-up		possible; however, both previous studies (13) and current research (23) suggest that it could be important to allow	Acknowledge strengths of methodology and highlight
28		Bell-Gorrod H et al.	2020 Am J Epidemiol		programs, a large cohort with long follow-up	times in previous studies	Early treatment switch is particularly important for patients with low CD4 counts at failure.	for even more flexible approaches to model specification and fitting than ours.	other sources of concern Expanded
29									
30					To estimate the relative			Regarding double robustness, we did not observe any advantage of TMLE as point estimates from TMLE and	
31					risk of infec- tious disease at 6 months associated			modified Poisson regression models were similar. An exception was the analysis with the lowest power where	
33					with the initiation of methotrexate compared			we restricted to infections resulting in hospitalizations in which TMLE indicated a somewhat larger association (RR:	
34				methotrexate or	to initiation of azathioprine in patients		Methotrexate appears to be associated with a lower risk of infection in sarcoidosis than azathio- prine, but randomized trials	0.80 vs 0.69). TMLE's efficiency manifested in all analyses where 95% CI were considerably narrower than those	Acknowledge strengths of methodology
35		Rossides M et al.	2021 Respirology	azathioprine.	with sarcoidosis.		should confirm this finding.	estimated using Poisson models.	Confirmed
36 37									
38									
39									
40									
4⊥ 42									
43									
44									
45 46									
47									
48									
49									

Smith ET AL.

							C .		
1									
2									
3	1068								
4									
5									
6									
7									
8									
9					Determine the respective				
10					associations of premorbid				
11					glucagon-like peptide-1 receptor agonist (GLP1-				
12					RA) and sodium-glucose				
14					(SGLT2i) use, compared				
14					with premorbid dipeptidyl peptidase 4 inhibitor				
15					(DPP4i) use, with severity				
17				treatment methods after	of outcomes in the setting of severe acute		Among SARS-CoV-2-positive adults, premorbid GLP1-RA and		
18				positive test of	respiratory syn- drome		SGLT2i use, compared with DPP4i use, was associated with lower		
19		Kahkoska AR et al.	2021 Diabetes Care	amongst adults.	2) infection.	Residual confounding	users were older and generally sicker.	None specified	
20		Policy							
21					Cationation that inint offerst				
22					of both time to				
23				Human	availability of a nurse- based triage system (low	Point effect of one or			
24				immunodefficienc	risk express care (LREC))	more longitudinal			
25				y virus, low-risk express care task-	and individual enrollment in the program among	exposures, or a series of sequential treatment	Small impact of both availability and enrollment in the low risk		
26		Tran L et al.	2016 Epidemiol Methods	shifting program	HIV patients in East Africa	decisions	express care program on incare survival.	None specified	
27				Traditional	probation yields better				
28				probation, specialty mental	public safety outcomes than traditional	Short follow-up, limited	Well-implemented specialty probation appears to be effective in		
29		Skeem JL et al.	2017 JAMA Psychiatry	health probation	probation.	covariate set	reducing general recidivism.	None specified	
30				Costs or	Specialty mental health				
31				traditional and specialty	probation reduces the likelihood of rearrest for		Well-implemented specialty probation yielded substantial savings—and should be considered in justice reform efforts for		
32		Skeem JL et al.	2018 Psychiatr Serv	probation	people with mental illness	Small sample size	people with mental illness.	None specified	
33									
34 วเ					assess the performance of				
25					a multidisciplinary-team	Not possible to		Though the estimates from standard regression were not	
טכ דר				type 2 diabetes,	diabetes care program called DIABETIMSS on	evaluate a new programme by design,		radically different from those based upon less biased, machine learning methods, they do show enough	Acknowledge strengths of
38		Ver Vet el	BMC Med Inform Decis	health	glycemic control of type 2	impractical to	DIABETIMSS program had a small, but significant increase in	difference to be important, mainly when the impacts	methodology
39		fou f et al.	2019 Mak	programme	diabetes (12D) patients	randomise the initiation	givernic control	apply to so many patients.	Commed
40				Primary care physicians (PCPs)	To examine the relationship of primary				
41				density and total	care provider density with				
42				knee and total hip arthroplasty	total knee arthroplasty and total hip arthroplasty	Missing data, zero	No statistically significant association between PCP density and		
43		Mehta B et al.	2021 Arthroplast Today	outcomes.	outcomes.	inflation	pain, function, or stiffness outcomes at baseline or 2 years.	None specified	
44									
45									
46									
47									
48									
49									

Smith ET AL.

1						<u>k</u>		
2 1069								
5 4								
6								
7 8				Evaluating the effect of delays in state-level				
9 10			Public masking	on the relative growth of COVID-19 cases and			Our results are also in line with a regression-based study by Krishnamachari et al., who found that longer delays	
11	Wong AK et al.	2022 Epidemiology	mandates, COVID 19 cases and deaths	 deaths in the 50 US states from 1 September to 31 October 2020. 	Relience on epidemic	Public masking mandates are associated with population-level reductions in COVID-19 spread	between the Centers of Disease Control and Prevention guidance and state-level masking mandates were associated with higher cumulative case rates.	Confirmed
12	C C			Evaluate effects on child			,	
14				developmental vulnerability after long-	Mixed evidence from RCTs, target trial to	Results did not provide robust evidence of meaningful beneficial		
15 16	Moreno-Betancur M et al.	2022 Int J Epidemiol	development	home visiting program. Estimate the short- and	evidence	or adverse effects of family nome visiting program on child development vulnerability.	None specified	
17				longer-term effects of demolitions that took	Time-dependent confounding that are	Demolition activities in Detroit in 2017 were not associated with the probability of subsequent violent or drug crimes in Census	Our results run counter to most previous research on this	
18 19				place in 2017 on the probability that Detroit	affected by previous treatment. Classical methods would be	blocks or block groups. At the block group level, demolition was associated with a higher probability of lower level crimes. Null results for drug grimes are similar to providus demolition studies.	topic, which tends to show a protective effect of demolition on violent crime. Understanding why our results differ may provide important incident into the	
20	Kagawa et al. (2022)	2022 Prev Med	Building demolitions	experienced serious violent crimes.	biased since there are mediators.	in Detroit, while the null results for violent crimes differ in many, but not all cases	types of demolition programs with the greatest potential to reduce violent crime.	Expanded
22								
23 24								
25								
26 27								
28								
29 30								
31								
32								
34 25								
36								
37 38								
39								
40 41								
42								
43 44								
45								
46 47								
48								
コフ								

TABLE 3 Articles by developments

Year of	Douolonmont	Publication's first	Polated developments
2006	Seminal paper (TMLF)	van der Laan MI	Related developments
	Small sample size	Moore KL	Gruber, 2010 (sparse data)
2009		Duri G	Rose S, 2011 (two-stage sampling, nested case- control) Balzer L, 2015 (adaptive case control design) Balzer L, 2016 (target population different from
	Case-control studies	Rose S	sample population)
2010	Collaborative TMLE (c-TMLE) Time to event data	van der Laan MJ	Pirracchio R, 2018 (variable importance) Ju C, 2019 (c-TMLE with ordering of the covariates to decrease time-complexity of the whole algorithm.) Ju C, 2019 (LASSO for estimation of PS) Ju C, 2019 (positivity-c-TMLE, truncation of PS) Schnitzer ME, 2020 (longitudinal extension of c- TMLE)
			van der Laan, 2012 (TMLE)
	Longitudinal data (LTMLE)	van der Laan MJ	Schomaker M, 2019 (~ tutorial, Itmle in complex and realistic settings)
	Sequential randomised trials	Chaffee PH	
2012	Mediation	Zheng W	 Lendle SD, 2013 (Natural direct effect among untreated) Zheng W, 2017 (time-varying exposure mediated by a time-varying intermediate variable) Zheng W, 2018 (Chapter in "Targeted Learning in Data Science") Rudolph KE, 2018 (TMLE for stochastic direct and indirect effect) Rudolph KE, 2020 (Estimators of the complier stochastic direct effect) Diaz I, 2021 (develop asymptotically optimal nonparametric estimators) Benkeser D, 2021 (case-cohort sampling designs) Rudolph KE, 2022 (nonparametric estimators of transported interventional (in)direct effects) Hejazi N, 2022 (causal mediation for stochastic interventional (in)direct effects)
2			van der Laan MJ, 2014 (non iid) Schnitzer M, 2016 (dependent censoring) Sofrygin O, 2017 (TMLE for connected units) Balzer L, 2019 (hierarchical/cluster data structure)
	non-independence	van der Laan MJ	Balzer L, 2021 (Two-stage TMLE)
2013	Meta-analysis / Safety outcomes	Gruber S	Liu Y, 2022 Ferreira Guerra S, 2020 (selecting a timeline discretization for use with pooled longitudinal targeted maximum likelihood estimation) Zheng W, 2016 (pooled TMLE for hazard
2014		Sann S	runcuUIISj
	Genetics	Wang H	Benkeser D, 2019 (vaccine sieve analysis: vaccine and genetic traits) Yang G, 2022 (vaccine sieve)

Smith	EТ	AL.

	PS	Lendle SD	
2015	Cross-validated TMLE		
	cv-TMLE	van der Laan MJ	
			Cai W, 2020 (one-step TMLE for counterfactual
			average survival curve)
2016			Zhu J, 2020 (one-step TMLE for heterogeneous
	One-step TMLE	van der Laan MJ	treatment effects)
	TMLE for ordinal outcomes	Díaz I	Delikesei D, 2010
	TMLE with missing outcome data	Díaz I	
2017	Robust TMLE	Rudolph KE	
	optimal treatment rule	Chambaz A	C
 2018	Projected TMLE	Zheng W	
 2019	TMLE for cluster-level exposure	Balzer LB	
 	Long-format TMLE	Sofrygin O	
	Highly-Adaptive least absolute		
2020	shrinkage and selection operator		
	(LASSO) Targeted Minimum Loss	0.114	
 2022	Estimator (HAL-IMLE) Threshold response function	Cai W van der Laan MI	
 LULL			