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Adjusting for publication bias is essential when drawing
meta-analytic inferences. However, most methods that adjust for
publication bias do not perform well across a range of research
conditions, such as the degree of heterogeneity in effect sizes
across studies. Sladekova et al. 2022 (Estimating the change in
meta-analytic effect size estimates after the application of
publication bias adjustment methods. Psychol. Methods) tried to
circumvent this complication by selecting the methods that are
most appropriate for a given set of conditions, and concluded
that publication bias on average causes only minimal over-
estimation of effect sizes in psychology. However, this approach
suffers from a ‘Catch-22’ problem—to know the underlying
research conditions, one needs to have adjusted for publication
bias correctly, but to correctly adjust for publication bias, one
needs to know the underlying research conditions. To alleviate
this problem, we conduct an alternative analysis, robust Bayesian
meta-analysis (RoBMA), which is not based on model-selection
but on model-averaging. In RoBMA, models that predict the
observed results better are given correspondingly larger weights.
A RoBMA reanalysis of Sladekova et al.’s dataset reveals that
more than 60% of meta-analyses in psychology notably
overestimate the evidence for the presence of the meta-analytic
effect and more than 50% overestimate its magnitude.
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1. Introduction
Meta-analysis is widely regarded as the best way to combine and summarize seemingly conflicting
evidence across a set of primary studies. However, publication bias—the preferential publishing of
statistically significant studies—often causes meta-analyses to overestimate mean effect sizes [1–3].
Therefore, a key question concerns the extent to which meta-analytic estimates represent reliable
indicators even when publication bias is left unaccounted for. To address this question, Sladekova,
Webb and Field (2022; henceforth SWF) compiled an extensive dataset of 433 meta-analyses from the
field of psychology and assessed the typical overestimation of effect sizes using methodologically
advanced techniques and a model-selection procedure recently developed by Carter et al. [4]. SWF
concluded that on average, effect size estimates were only marginally lower after accounting for
publication bias. The most aggressive average adjustment was provided by precision effect test (PET)
models, Δr =−0.032, 95% CI ½�0:055, �0:009�); moreover, meta-analyses comprising few studies often
exhibited an anomalous upward adjustment.

In their analyses, SWF specified four plausible data-generating processes and selected the best
estimator for each based on the findings of a simulation study by Carter et al. [4]. As different
publication bias adjustment methods are generally found to perform well under different conditions,
Carter et al. [4] provided code that allows researchers to select the most suitable publication bias
correction method based on specific assumed research conditions, such as the true degree of
heterogeneity in the effect sizes included in the meta-analysis. This approach presents a substantial
improvement over the common practice of applying bias correction methods with little regard to the
observed meta-analytic conditions. In theory, the meta-analytic conditions in terms of heterogeneity
and p-hacking could be derived from external sources or knowledge of the research area. However,
we believe that in empirical practice this is nigh impossible to execute as intended as it is difficult—
especially in the case of a meta-meta analysis—to accurately estimate the size of these characteristics
from external knowledge. This only leaves researchers with a second option: estimating them from the
data. Unfortunately, research characteristics (i.e. the true effect size and degree of heterogeneity, and
the degree and type of publication bias) cannot be accurately estimated unless one first adjusts for
publication bias. Alternatively, specifying multiple conditions might result in different estimates,
leaving the analyst with incompatible conclusions. Therefore, the approach by Carter et al. [4], as
employed by SWF, creates a Catch-22 problem [5]: to correctly adjust for publication bias, one needs
to know the underlying research conditions; however, in order to know the underlying research
conditions, one needs to have adjusted correctly for publication bias.1

A second challenge for the ‘select-the-best-estimator’ approach is that the Carter et al. [4] simulation is
based on specific assumptions about the data generating process. As with all simulations, the question
is how well the data generating process actually corresponds to publication bias as it operates in the real
world [8]. In their discussion, SWF point out that an alternative solution is provided by Bayesian model-
averaging [9,10]. Bayesian model-averaging [e.g. robust Bayesian meta-analysis or RoBMA; 11–13]
simultaneously considers an entire ensemble of models for publication selection and potential research
conditions. The data then guides the inference to be based most strongly on those models that best
predict the observed research results. In this way, Bayesian model-averaging of publication bias models
alleviates the Catch-22 problem outlined above. SWF discuss how RoBMA would be a good alternative
approach; here, we follow SWF’s suggestion and re-analyse their dataset with RoBMA. To preview, a
very different (and, we argue, more credible) conclusion emerges from this re-analysis.

A third challenge for the ‘select-the-best-estimator’ approach is that investigations based on empirical
data show that the specific correction methods employed by SWF do not adjust for publication bias
sufficiently. In particular, Kvarven et al. [14] compared estimates from publication bias-adjusted meta-
analyses to Registered Replication Reports on the same topic [15,16]. Registered Reports are a
publication format in which a submitted manuscript receives peer review and ‘in principle’ acceptance
based on the introduction and methods section alone. Hence the journal commits itself to publishing
the report independent of the outcome, as long as the data pass pre-specified outcome-neutral quality
checks. Therefore, Registered Reports are not affected by publication bias and can be considered the
‘gold standard’ of evidence. Consequently, a publication bias adjustment method that works well
ought to produce an effect size estimate that is similar to the one from a Registered Report on the
1The type and degree of publication bias as well as the true effect size is generally unknown, a problem which SWF sidestepped by
calculating four possible models of publication bias and effect size. Moreover, the random-effects heterogeneity estimates that are
required to select the best method depend on the degree and type of publication bias [6,7].
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same topic. By comparing Registered Reports to associated meta-analyses, Kvarven et al. [14] showed that
the publication bias correction methods employed in SWF lead to substantial overestimation of effect size
and underestimation of the required correction (but see [17] for a criticism of this approach, which argues
that the difference might partly be explained by genuine effect heterogeneity rather than publication
bias). By contrast, Bartoš et al. [11] demonstrated that RoBMA generates estimates that are less biased
and have considerably lower root mean square errors.

Finally, in their work SWF focus solely on the impact of publication bias adjustment on meta-analytic
effect size. In practice, researchers also wish to know whether there is a genuine effect in the first place
[18,19]. A Bayesian analysis allows us to quantify the evidence for a non-null effect and assess its
posterior probability, while circumventing problems of frequentist significance testing [e.g.20,21].

In sum, by applying multiple models to the data simultaneously, RoBMA avoids the Catch-22
problem that plagues the ‘select-the-best-estimator’ approach. Moreover, RoBMA does not underadjust
for publication bias [11], and offers a Bayesian way to quantify the extent to which publication bias
inflates the evidence for the presence of an overall effect.

In the next sections, we apply RoBMA to the meta-analysis dataset compiled by SWF. The RoBMA
re-analysis shows that many meta-analyses suffer from publication bias in the sense that both the
effect size and the evidence for the presence of the effect are substantially overestimated (52.7% and
60.8%, respectively).
i.10:230224
2. Method
2.1. The RoBMA model ensemble
Here, we describe how we employed the robust Bayesian model-averaging methodology. The remaining
publication bias adjustment methods used in SWF are explained in more detail therein and in Carter et al. [4].

The complete RoBMA-PSMA model ensemble (as implemented in [11]; simply referred to below as
RoBMA) employs models that can be categorized along three research dimensions: presence versus
absence of the effect, heterogeneity across reported effects, and publication selection bias. Each of
these hypotheses is assigned a prior model probability of 1/2, reflecting a position of equipoise. The
individual models specified within the RoBMA ensemble then represent a combination of these
research characteristics with prior model probabilities corresponding to the product of prior
probabilities of each corresponding hypothesis. For models representing the presence of publication
bias, the prior model probability is equally split among the various selection models and the PET and
precision-effect estimate with standard errors (PET-PEESE), and then further split equally among the
different selection models or between PET and PEESE. The complete RoBMA-PSMA ensemble consists
of 36 different models.

The hypothesis that the effect is absent is represented by a point prior distribution on the effect size at
μ = 0, and the hypothesis about the presence of the effect is represented by a standard normal prior
distribution on Cohen’s d effect size, μ∼Normal(0, 1), representing a plausible range of effect sizes
for psychology. We further offer an alternative analysis, which uses the Oosterwijk prior Student-t+
(μ = 0.35, σ = 0.10, ν = 3) on the effect size. This prior was elicited specifically for psychology and is not
centred at zero but at effect sizes typical for the field (d = 0.35) [22]. The hypothesis that heterogeneity
is absent is represented by a point prior distribution on the heterogeneity at 0, τ = 0, and the
hypothesis about the presence of heterogeneity is represented by an inverse-gamma distribution,
τ∼ Inverse-Gamma (1, 0.15) (with scale and shape parameterization; corresponding to Cohen’s d effect
sizes), based on empirical heterogeneity estimates from the field of psychology [23]. The hypothesis
that publication bias is absent is instantiated by not applying any publication bias corrections, and the
hypothesis about the presence of publication bias is instantiated by applying a set of six weight
functions [2,24,25], and both the PET and PEESE models [26] to adjust for publication bias. The
weight functions are specified as a combination of cut-offs on significant and marginally significant
p-values, and the direction of the effect. The cumulative unit Dirichlet prior distributions enforce
a decreasing relative prior probability with increasing p-values which further helps with the
performance of selection models. The PET and PEESE models are specified as meta-regressions of
the effect sizes on the standard errors or standard errors squared with truncated Cauchy distributions
on the PET and PEESE regression coefficients, PET∼Cauchy+(0, 1), PEESE∼Cauchy+(0, 5), which
enforce a positive relationship between standard errors and effect sizes. More details on the RoBMA
specification are presented in Bartoš et al. [11].
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The performance of RoBMA has been evaluated extensively in simulation studies as well as empirical
comparisons. In particular, Bartoš et al. [11] reanalysed a large simulation study by Hong and Reed [27],
which itself combined four different previous simulation environments comprising 1640 separate
experimental conditions [4,26,28,29]. In these simulations, RoBMA outperformed other methods for
publication bias correction in terms of bias and root mean squared error (RMSE). RoBMA was also
evaluated empirically by comparing meta-analyses that are linked to Registered Replication Reports in
Kvarven et al. [14]. As discussed above, comparing meta-analysis bias corrections to a ‘ground truth’
as revealed by Registered Reports allows us to evaluate whether a given correction sufficiently adjusts
for likely publication bias. In the Kvarven et al. [14] comparison of meta-analyses and Registered
Reports, RoBMA was shown to provide the best adjustment for publication bias when evaluated by
average bias and/or root mean square error by Bartoš et al. [11]. Nonetheless, RoBMA and Bayesian
model-averaging are only as good as the models incorporated in the ensemble. Since none of the
meta-analytic models employed in RoBMA directly adjusts for p-hacking, RoBMA can exhibit
downward bias in cases with strong p-hacking [11].

2.2. Dataset
This section gives a short summary of the dataset following Sladekova et al. [30]. Initially, a dataset comprising
a random sample of a total of 169meta-analyses published between 2008 and 2018was selected. A study from
this dataset was then included in the final dataset if (a) raw data were extractable, (b) the effect size was
reported as a correlation coefficient r or sufficient information to transform the effect size was given and (c)
information about the variance of primary studies’ estimates was included. Further, studies were excluded
if (a) the study was a meta-meta-analysis or a meta-analysis using internal databases or (b) the original
analyses failed to reproduce. Of the initial 169 articles, 52 were excluded because the data could not be
obtained, 7 because they used incompatible effect sizes, 3 because they were internal meta-analyses and 2
because they were meta-meta-analyses. Of the remaining articles a further 22 datasets were excluded
because the analyses failed to reproduce, 9 because the effect sizes could not be converted and 1 because it
was a methodological report. The final sample included 433 datasets from 90 articles. For more details
about the selection procedure, see [30, p. 6]. Here, we focus on the 406 estimates that SWF shared in their
public OSF repository.

2.3. Effect size transformation
In contrast to SWF, we analysed the effect sizes using the Fisher z scale (and subsequently transformed
the meta-analytic estimates back to the correlation scale for interpretation). We prefer the Fisher z-scale
for two reasons. First, it is unbounded (i.e. not restricted to the [−1, 1] interval) and the sampling
distribution is approximately normal, which corresponds to the likelihoods used by meta-analytic
models (this also prevents adjusted meta-analytic correlation estimates falling outside of [−1, 1],
which is anomalous).2 Second, the Fisher z-score and its standard error are by definition orthogonal,
which is an important assumption for models adjusting for the relationship between effect sizes and
standard errors such as PET-PEESE (this was not an issue in SWF as they used standard errors of
Fisher’s z alongside the correlation effect sizes).

The use of Fisher’s z-scale results in slight differences in (a) selected methods for each condition (as
the reduced range of correlation effect sizes limits the possible heterogeneity) and (b) effect size estimates
of those selected methods. These differences, however, do not change the qualitative conclusions.

2.4. Effects of publication bias on evidence and effect size
We extended the SWF results by first assessing the extent to which publication bias inflates the evidence
for the presence of an effect. Then, similarly to SWF, we also evaluated and compared the effect of
publication bias on the meta-analytic estimates of the effect size.
2Use of the Fisher z transformation did necessitate the removal of 51 reported correlation coefficients equal to 1 from 4 meta-analyses.
This procedure might lead to somewhat reduced estimates. However, these estimates would also pose challenges in the standard meta-
analytic framework as the associated standard errors would be 0. Further, as a perfectly proportional relationship between two
variables in psychology seems unlikely, these coefficients may have arisen from error in coding or in the primary study. Finally,
only a very small proportion of all estimates are affected by this removal. For these reasons, we do not regard overestimation due
to this removal as a practical concern.
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To evaluate the change in evidence for the presence of the effect, we compared the posterior
probability for the presence of the effect under RoBMA to the posterior probability for the presence of
the effect under RoBMA after excluding the models that adjust for publication bias. The publication
bias unadjusted version of RoBMA corresponds to a Bayesian model-averaged meta-analysis [BMA;
e.g. 22,31,32]. For both RoBMA and BMA, the prior model probability for the presence of the effect is
set to 1/2. Furthermore, we summarize the results as the change in the percentage of meta-analyses
that provide at least moderate or strong evidence for either the null or alternative hypothesis based on
the ‘rule of thumb’ Bayes factor categories that have been proposed to facilitate the interpretation of
Bayes factors [i.e. BF > 3 is moderate evidence, and BF > 10 is strong evidence; 18,33].

To evaluate the change in the meta-analytic estimate of effect size, we compared the model-averaged
posterior mean obtained from RoBMA to effect size estimates from two meta-analytic methods that do
not adjust for publication bias. The first comparison is to a random-effects meta-analysis (reMA) which is
regarded as the default meta-analytic method in behavioural research. The comparison of reMA and
RoBMA estimates therefore quantifies the reduction in effect size obtained when researchers use
RoBMA instead of the standard methodology. The second comparison is to a different version of
Bayesian model-averaged meta-analysis (BMA) [31,32,34] that is identical to RoBMA apart from the
fact that BMA lacks the models that adjust for publication bias; consequently, the comparison of BMA
and RoBMA estimates quantifies the reduction in effect size that can be attributed solely to
publication bias adjustment.

Finally, we compare the effect size adjustments due to RoBMA against the adjustments due to the
methods presented by SWF. We employ the same Bayesian hierarchical models as SWF to estimate
the mean publication bias adjustment, for SWF’s model selection and RoBMA separately. SWF
estimated a hierarchical Bayesian model, where the effect sizes are nested within meta-analyses, which
are nested within published articles. This allowed them to take into account that (i) one article often
reported multiple meta-analyses and (ii) multiple estimates were generated from each meta-analysis
(depending on the different adjustment methods). The models were fitted using the brms package
with default weakly informative priors. In a next step, they specified four different model selection
approaches based on Carter et al. [4]. In short, ‘model 1’ specified the presence of moderate
publication bias and small effect sizes, ‘model 2’ specified the presence of high publication bias and
small effect sizes, ‘model 3’ specified the presence of moderate publication bias and large effect sizes
and ‘model 4’ specified the presence of high publication bias and large effect sizes. While effect size
and publication bias were fixed in the four models, heterogeneity was estimated empirically from
random-effects meta-analyses. SWF then selected the best-performing method in terms of RMSE and
ME (mean error) for the given effect size, heterogeneity and degree of publication bias based on the
results of the simulation study by Carter et al. [4]. For more details on their methodology, see [30,
p. 8]. When analysing results from SWF’s model selection, we only estimated fixed effects when a
method was selected at least 20 times. Further, we combined 3PSM and 4PSM into a single category
(PSM) in line with SWF.

We performed the analysis in R [35] using the RoBMA R package [36] and additional R functions
adopted from SWF and Carter et al. [4]. The analysis scripts and results are available at https://osf.
io/7yzut/.
3. Results
3.1. Evidence for the presence of the effect
First, we used RoBMA to evaluate inflation of the posterior probability of the presence of the effect.
Figure 1 shows the evidence for the presence of an effect before (x-axis) and after (y-axis) the
publication bias adjustment. The dotted diagonal line highlights the points of no change in posterior
probability of the alternative hypotheses due to publication bias. For many meta-analyses, the
evidence for the presence of an effect is considerably lower after adjusting for publication bias, which
is further exemplified by the marginal densities of the posterior probabilities on the right and top
sides of the figure. Across all meta-analyses, the median posterior probability drops from 0.97,
interquartile range (IRQ; 0.44, 1.00), to 0.53, IQR (0.26, 0.91), indicating considerable inflation of
evidence due to publication bias. Nevertheless, for 39.2% of the meta-analyses the posterior
probability for the presence of the effect did not change by more than 0.05, indicating that a notable
proportion of psychology meta-analyses are relatively robust to publication bias.

https://osf.io/7yzut/
https://osf.io/7yzut/
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Furthermore, the percentage of meta-analyses providing strong or at least moderate evidence for the
alternative hypothesis (i.e. BF10 > 10 and BF10 > 3) decreased from 55.7 to 24.9% and from 64.3 to 36.9%,
respectively. Interestingly, the proportion of meta-analyses providing strong or at least moderate
evidence for the null hypothesis (i.e. BF10 < 1/10 and BF10 < 1/3) increased only marginally, from 4.7
to 5.2% and from 18.5 to 23.9%, respectively.3 Most of the change in evidence was due to the increase
in the ‘undecided’ evidence category (i.e. 1/3 > BF10 > 3), from 17.2 to 39.2%.4

3.2. Effect size estimates
In addition to the impact on the posterior probability for the presence of the effect, we can also quantify
the degree to which publication bias impacts the effect size estimates. Figures 2 and 3 show the impact of
adjusting for publication bias on the meta-analytic estimates. The dotted diagonal lines in figure 2
highlight the points of no change in the effect size estimates due to publication bias. After adjusting
for publication bias, many estimates are considerably smaller. Specifically, the publication bias
unadjusted meta-analytic effect sizes corresponded mostly to small to medium-sized effects based on
random-effects meta-analyses r = 0.17, IQR (0.09, 0.30), and BMA r = 0.15, IQR (0.04, 0.28). However,
3This can be partly explained by the difficulty in finding evidence for the null using priors centred on zero as in RoBMA (and most
other applications of Bayesian testing). We still chose to use these priors for the main analysis, as they have other desirable properties
and they have been evaluated extensively in applied examples and simulation studies [11].
4While it is impossible to evaluate the change of evidence with the frequentist methods employed by SWF (as p-values are not a direct
measure of evidence), we summarize the change in statistical significance with α = 0.05, where out of the original 294 statistically
significant meta-analytic effect size estimates, 77.2, 62.2, 75.0 and 71.3% remained statistically significant for Models 1, 2, 3 and 4,
respectively.
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the publication bias adjustment provided by RoBMA reduced the estimates to predominantly small sized
effects (i.e. r = 0.07, IQR (0.01, 0.22)).

Whereas the distributions of the publication bias unadjusted and adjusted effect size estimates were
notably different, the distribution of differences between the estimates was highly skewed with many
meta-analyses undergoing only small publication bias adjustments (figure 3b). The median adjustment
from random-effect meta-analyses to RoBMA was r =−0.07, IQR (−0.11,−0.03), and the median
adjustment from BMA to RoBMA was r =−0.03, IQR (−0.07,−0.01). Interestingly, the comparison of
BMA and RoBMA, quantifying the adjustment attributable only to the publication bias adjustment
part, revealed that 47.3% of meta-analytic effect size estimates are adjusted by less than r = 0.03,5

again indicating that not all meta-analytic estimates are distorted by publication bias.
van Aert et al. [37] argue that meta-analyses with low heterogeneity show little evidence of

publication bias. To assess the impact of heterogeneity, we conducted an exploratory regression
5Other possible ‘thresholds’ would result in 24.1% with r = 0.01, 37.7% with r = 0.02, 54.4% with r = 0.04 and 63.5% with r = 0.05.
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analysis predicting the effect size adjustment attributable to publication bias from heterogeneity with
the unadjusted effect size estimate as a covariate (to account for the fact that meta-analyses with
larger effect sizes on average show larger absolute bias and larger τ). We found that publication bias
and heterogeneity were indeed associated, BF10 = 8.96 × 108, b =−0.20, 95% CI ½�0:26, �0:15�. Contrary
to the conclusions of van Aert et al. [37], we obtain moderate evidence in favour of effect size
overestimation even among homogeneous studies (i.e. no heterogeneity, tested via the coefficient for
intercept), BF10 = 8.66, Fisher’s z =−0.02, 95% CI ½�0:03, 0:00�. However, the effect size adjustment in
homogeneous meta-analyses is much smaller than the average effect size adjustment across all meta-
analyses (Fisher’s z =−0.06, 95% CI ½�0:07, �0:05�).6
3.3. Comparison to results from SWF
We compared the effect size adjustments based on RoBMA to those based on the model selected under
different assumptions about the incidence of publication bias and effect size called ‘model 1’ though
‘model 4’ by SWF. To reiterate, model 1 specified the presence of moderate publication bias and small
effect sizes, model 2 specified the presence of strong publication bias and small effect sizes, model 3
specified the presence of moderate publication bias and large effect sizes and model 4 specified the
presence of strong publication bias and large effect sizes. Figure 4 compares the effect size
adjustments in the individual studies by RoBMA and under the different models of SWF.

The most noticeable difference between the effect size adjustments is that RoBMA did not
correct any of the effect size estimates in the opposite direction. As reported before, the median
effect size adjustment of RoBMA, r =−0.07, IQR (−0.12,− 0.04), and r =−0.04, IQR (−0.08, −0.01),
when comparing to random-effects meta-analysis and BMA, was larger than adjustments of
the other methods, 0:00 IQR ð�0:04, 0:03Þ, 0:00 IQR ð�0:08, 0:05Þ, 0:00 IQR ð�0:04, 0:03Þ, and
0:00 IQR ð�0:06, 0:03Þ for models 1, 2, 3 and 4, respectively. The proportion of meta-analyses where
RoBMA (compared to BMA) adjusted by less than r = 0.03 (reported earlier, 47.3%) was higher than in
three out of four models; 44.8, 30.3, 50.0 and 41.9%, for models 1, 2, 3 and 4, respectively (but not for
6We calculated estimates and CIs using a standard linear model in R and corresponding Bayes factors using a normal approximation
[e.g. 38–40] specifying centred normal prior distributions with a standard deviation of 0.6. This prior corresponds to a standard
deviation of 0.3 on Cohen’s d scale, which tests for small effects.
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Figure 5. Comparison of the publication bias adjustment performed by RoBMA and the remaining methods under different models
of publication bias, as constructed by SWF. We only estimated fixed effects when a method was selected at least 20 times.
Specifically, WAAP-WLS was only selected for models 3 and 4 and PET only for model 2.
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adjustment from random-effects meta-analysis to RoBMA, 23.2%). Furthermore, if we account for the
direction of the effect size adjustment, SWF’s model selection procedure resulted in far fewer effect
size estimates corrected downwards by r more than 0.03; 27.5, 37.9, 26.9 and 33.7%, for models 1, 2, 3
and 4, respectively. In other words, while RoBMA, on average, adjusted effect sizes more aggressively
than other methods, it targeted the adjustment to a lower proportion of meta-analyses than the
remaining methods.

Finally, we estimated a three-level Bayesian model describing the effects of different publication
bias adjustments with the same specification as in Sladekova et al. [30] (combining the 3 and
4PSM category into PSM) for RoBMA and each model separately. This three level model estimates the
effect of publication bias adjustment by nesting the effect sizes within the meta-analyses (to account for
the fact that estimates from the same meta-analysis may be related) and nesting meta-analyses within
published articles (as published meta-analysis papers often report multiple meta-analyses). Figure 5
compares the fixed-effect estimates of the different methods under the different models. The fixed-effect
estimate of the RoBMA adjustment, βRoBMA =−0.04, 95% CI ½�0:05, �0:03�, is notably more negative
than the adjustments of the remaining methods under model 1: βPEESE =−0.01, 95% CI ½�0:03, 0:02�,
βPSM = 0.00, 95% CI ½�0:01, 0:01�, model 2: βPEESE = 0.00, 95% CI ½�0:05, 0:04�, βPET =−0.01,
95% CI ½�0:03, 0:02�, βPSM = 0.00, 95% CI ½�0:02, 0:02�, model 3: βPSM = 0.00, 95% CI ½�0:01, 0:01�,
βWAAP-WLS = 0.00, 95% CI ½�0:01, 0:01�, or model 4: βPEESE = 0.00, 95% CI ½�0:02, 0:01�, βPSM =−0.02,
95% CI ½�0:04, �0:01�, βWAAP-WLS = 0.00, 95% CI ½�0:01, 0:02�. Table 1 further shows a comparison of the
adjusted meta-analytic estimates between our study and SWF.
3.4. Sensitivity analysis for prior distribution
In addition to the normal (0,1) prior used in the main analyses, we also consider the Oosterwijk prior,
Student-t+(μ = 0.35, σ = 0.10, ν = 3). This prior was elicited from a social psychologist (Dr Oosterwijk)
to describe small effect sizes in psychology [41]. Because it is not centred at d = 0 but at d = 0.35, it
reduces shrinkage towards zero and increases the ability to find evidence for small effects. Table 2
shows the results of a reanalysis with this prior. We find that both the posterior probability of an
effect and the model-averaged effect size estimate is larger under the Oosterwijk prior. However,
this also applies to the unadjusted BMA and not only RoBMA. Overall, we find that the



Table 1. Mean and 95% central credible intervals for the adjusted effect size estimates (r) of SWF’s methods under models 1–4
and the RoBMA adjusted effect size estimate from a linear three-level model.

model selection (SWF)

model 1 model 2 model 3 model 4

PSM 0.235 (0.204, 0.265) 0.228 (0.193, 0.263) 0.229 (0.198, 0.258) 0.207 (0.174, 0.240)

PET 0.224 (0.188, 0.262)

PEESE 0.235 (0.199, 0.271) 0.232 (0.182, 0.283) 0.248 (0.206, 0.289) 0.225 (0.192, 0.258)

WAAP-WLS 0.233 (0.202, 0.265) 0.232 (0.198, 0.266)

model averaging

RoBMA 0.149 (0.121, 0.178)

Table 2. Sensitivity analysis of the main results to the specification of prior distribution on the presence of the effect.

normal (0, 1) student-t+ (0.35, 0.10, ν = 3)

posterior probability of the effect

BMA (median and IQR) 0.97 (0.44, 1.00) 0.99 (0.69, 1.00)

RoBMA (median and IQR) 0.53 (0.26, 0.91) 0.80 (0.39, 0.95)

adjustment (median and IQR) 0.09 (0.01, 0.30) 0.07 (0.02, 0.16)

adjustment lower than 0.05 39.2% 41.1%

model-averaged effect size estimate

BMA (median and IQR) 0.15 (0.04, 0.28) 0.16 (0.08, 0.24)

RoBMA (median and IQR) 0.07 (0.01, 0.22) 0.13 (0.05, 0.19)

adjustment (median and IQR) −0.03 (−0.07,−0.01) −0.02 (−0.05,−0.01)
adjustment lower than r = 0.03 47.3% 58.6%
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overestimation is somewhat weaker both in terms of evidence for the effect as well as the size of
the effect, though still considerable.
4. Concluding comments
It is widely accepted that different meta-analysis methods perform well under different conditions. Hence it
can be risky to employ a single method to estimate the extent to which meta-analyses in general over-
estimate effect sizes. SWF attempted to circumvent this complication by selecting different adjustment
methods for four plausible conditions based on heterogeneity estimates indicated by a naive random-
effect meta-analysis. Their article was a much needed contribution to the bias adjustment literature,
being the first comprehensive review that tried to select estimators appropriate for different data-
generating scenarios on an impressively large and representative dataset. Here, we outlined an
alternative approach based on Bayesian model-averaging. Rather than selecting a single model for each
case and assumed data generating process, our RoBMA simultaneously considers multiple models, with
their contribution to the meta-analytic inference determined by their predictive accuracy.

The difference is not a point of methodological pedantry but has a considerable impact on the
conclusions regarding the necessary degree of publication bias adjustment. Whereas SWF found little
overestimation of effect sizes due to publication bias, similarly to van Aert et al. [37], and for some
methods, even larger effects after adjustment, RoBMA often corrects more strongly and reveals the
presence of notable bias. In addition, RoBMA also allowed us to assess the amount of spurious
evidence, indicating that evidence for meta-analytic effect sizes is considerably weaker after
publication bias is accounted for.
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We point out that RoBMA has been shown to have a downward bias in the p-hacking simulations of
Carter et al. [12]. Further, the truncated prior distribution on the PET and PEESE coefficients, which
imposes a non-negative relationship between effect sizes and standard errors, could also reduce effect
size estimates. However, the difference between the effect size correction provided by RoBMA and the
remaining methods cannot be solely attributed to a downward bias of RoBMA. First, RoBMA did not
adjust effect sizes downward in many of the analysed meta-analyses. Second, in appendix E of Bartoš
et al. [11], we applied RoBMA to 28 meta-analyses from Many Labs 2 [42], a multi-laboratory
Registered Replication Report, where we know that publication bias is absent. Therefore, if a method
still detects publication bias or notably corrects the estimate downwards, this is likely indicative of
bias. When we applied RoBMA to the Many Labs 2 dataset we found no notable downward bias,
unlike other publication bias adjustment methods.

Our analysis shows that it is important to employ multi-model methods when adjusting for
publication bias, as model selection is problematic in the absence of strong knowledge about the data
generating process. Our extension of the SWF work suggests that the effects of publication bias are
more deleterious than previously estimated. However, it remains the case that for a sizeable
proportion of studies, the correction is relatively modest. The considerable overestimation of effect
sizes and evidence for the effect highlights the importance of using appropriate bias correction
methods and the imperative to adopt publishing formats that are robust to publication bias, such as
Registered Reports [15].
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