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Abstract: Adipose-derived stem cells (ADSCs) as part of autologous fat grafting have anti-fibrotic
and anti-inflammatory effects, but the exact mechanisms of action remain unknown. By simulating
the interaction of ADSCs with fibroblasts and endothelial cells (EC) from scleroderma (SSc) skin in
silico, we aim to unravel these mechanisms. Publicly available single-cell RNA sequencing data from
the stromal vascular fraction of 3 lean patients and biopsies from the skin of 10 control and 12 patients
with SSc were obtained from the GEO and analysed using R and Seurat. Differentially expressed
genes were used to compare the fibroblast and EC transcriptome between controls and SSc. GO and
KEGG functional enrichment was performed. Ligand–receptor interactions of ADSCs with fibroblasts
and ECs were explored with LIANA. Pro-inflammatory and extracellular matrix (ECM) interacting
fibroblasts were identified in SSc. Arterial, capillary, venous and lymphatic ECs showed a pro-fibrotic
and pro-inflammatory transcriptome. Most interactions with both cell types were based on ECM
proteins. Differential interactions identified included NTN1, VEGFD, MMP2, FGF2, and FNDC5.
The ADSC secretome may disrupt vascular and perivascular inflammation hubs in scleroderma
by promoting angiogenesis and especially lymphangiogenesis. Key phenomena observed after fat
grafting remain unexplained, including modulation of fibroblast behaviour.

Keywords: single-cell RNA sequencing; scleroderma; skin fibrosis; autologous fat grafting; adipose-
derived stem cells; ADSC; secretome; cellular therapies

1. Introduction

Scleroderma (systemic sclerosis, SSc) is a complex autoimmune connective tissue
disease characterised by extensive and progressive skin and internal organ fibrosis due
to excessive collagen deposition, microvascular damage, and a dysfunctional immune
response [1,2]. As a paradigm of fibrotic skin diseases, it is characterised by inflammation
driving the excessive accumulation of extracellular matrix (ECM) components in the skin,
which leads to thickening and stiffening, decreased skin elasticity, loss of function, and
an altered appearance. The initial and significant manifestations of SSc usually involve
vascular malfunctions and abnormalities. The microvascular dysfunction can lead to
discolouration, skin ulceration, and Raynaud’s phenomenon [1,2]. Structures such as
sweat glands and hair are lost, as well as the underlying adipose tissue, due to chronic
inflammation [3]. In scleroderma, hardening and thickening of the skin especially affect the
face and extremities [1,2]. Symptoms such as microstomia significantly reduce the quality
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of life [4]. Patients report that the impact of the disease on face and hands ranked higher
than cardiac, renal, and lung, and were the most impacting on their quality of life [4].

Fibroblasts play a critical role in scleroderma and the pathophysiology of other fibrotic
skin diseases [5]. Dysregulated fibroblast activation leads to the excessive secretion of
ECM components such as collagen and fibronectin. Targeting these cells was proposed
as a therapeutic strategy for treating fibrotic diseases. The advances in next-generation
sequencing granted new means of exploring complex biological systems [6]. Single-cell
RNA sequencing (scRNA-seq) enables the discovery of disease-driving cell subpopulations,
tracking the trajectory of cell lineage as well as analysing underlying pathways and regula-
tory relationships [6]. This led to the discovery of functionally and anatomically distinct
fibroblast subpopulations in normal skin [7]. In scleroderma, dermal fibroblast populations
were compared between SSc and healthy skin, demonstrating transcriptomic changes and
how SSc dermal myofibroblasts could arise from a specific progenitor fibroblast popu-
lation [8]. Naturally, much effort was recently invested into exploring disease-driving
fibroblast subpopulations in various chronic inflammatory and fibrotic diseases, as this
could possibly lead to the discovery of targeted therapies. A scRNA-seq study recently
provided evidence that there may be a shared pro-inflammatory fibroblast phenotype
across conditions rather than tissue and disease-specific fibroblasts [9,10].

Vascular involvement may be a crucial and fundamental process in the development
of scleroderma, which is strongly supported by clinical and pathologic observations of early
vascular damage and endothelial activation [11]. The vascular alterations observed in SSc
are more in line with vasculopathy than vasculitic processes, primarily due to the limited
presence of inflammation in the vessel wall but extensive systemic intimal proliferation
with luminal obstruction and lymphocyte infiltration [12]. Vessels exhibit signs of vascular
dysfunction, including impaired tone, vascular permeability, and vasospasms. Further,
although plasma levels of pro-angiogenic growth factors are elevated, angiogenesis is
defective and marked by a loss of capillaries and small vessels [13]. Single-cell analysis of
endothelial cells in scleroderma demonstrated upregulation in pathways associated with
extracellular matrix generation and negative regulation of angiogenesis [14].

Immunosuppressive strategies, including autologous haematopoietic stem cell trans-
plantation, appear beneficial in treating scleroderma, but a high unmet need remains,
especially for therapies that can attenuate fibrosis. However, autologous fat grafting (AFG)
shows great promise in treating a variety of fibrotic skin conditions, including sclero-
derma [15–18]. It is a commonly used reconstructive technique for correcting volumetric
tissue deformities and histologically led to the reduction, remodelling, and realignment of
collagen fibres, increased vascularisation, and reduction in α-SMA, dermal thickness, and
fibrotic defect size [19]. It also enhanced aesthetic appearance with less discolouration and
reduced painfulness [20,21]. The exact mechanism by which AFG improves fibrosis remains
unknown. Fat tissue mainly consists of adipocytes, but a variety of other cells are also
present that are collectively named stromal vascular cells. The stromal vascular fraction
(SVF) consists of a mix of cell types, including a variety of immune cells, endothelial cells,
smooth muscle cells, and adipose-derived stem cells (ADSCs) [22]. ADSCs are stem cells of
mesenchymal origin and are believed to be of central importance in the AFG’s anti-fibrotic
and anti-inflammatory effects [19,21]. Their potential as a treatment for skin fibrosis is
due to their ability to differentiate into multiple cell types and modulate the immune
system [23,24]. Further, ADSCs were shown to reduce ECM accumulation, inhibit fibroblast
activation, and promote revascularisation. Their paracrine signalling is hypothesised to
be the paramount mechanism by which they counteract inflammation and skin fibrosis
and promote tissue repair. For example, indirect co-culture of ADSCs with fibroblasts from
scleroderma led to a decrease in the secretion of transforming growth factor (TGF-β1) and
connective tissue growth factor (CTGF) [16].

In this study, we explore scRNA-seq data to gain further insight into the biological
niche of ADSCs and their transcriptome and functionalities. Subsequently, we analyse the
interactions between ADSCs and disease-driving fibroblast and endothelial cell subpopula-
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tions from the skin of patients with scleroderma. These interactions could underpin the
therapeutic effects of fat grafting in fibrotic skin diseases and further investigation may lead
to the development of new targeted treatments including pharmaceutical and cell-based
therapies.

2. Methods
2.1. Data Acquisition and Patient Characteristics

This study utilised publicly available RNA sequencing datasets. Single-cell data of
white adipose tissue (WAT) were taken from the gene expression omnibus (GEO) with
the accession GSE155960. The datasets of three lean patients (BMI < 25) without systemic
disease were accessed. All three lean donors were female with an average BMI of 20.73
and an average age of 38 years. The patient samples were processed to obtain the SVF
and purified using fluorescence-activated cell sorting (FACS). Additional information on
library preparation, sequencing, and alignment of the single-cell data can be found in
Hildreth, et al., 2021 [25]. Single-cell data from the skin of twelve patients affected by
scleroderma (SSc) and ten healthy control subjects were taken from the GEO with the
accession GSE138669. All samples were taken from dorsal mid-forearm biopsies. All
scleroderma patients had diffuse cutaneous disease with a variable disease duration of
0.48 to 6.48 years (mean = 2.42 years) and a modified Rodnan skin score (MRSS) of 12 to 43
(mean = 26.17). Additionally, gender (control = 5/10 female; SSc = 7/12 female) and age
(control mean age 51.9; SSc mean age = 54.7) were reported. Additional information on
data procurement can be found in Tabib et al., 2021 [8].

2.2. Pre-Processing and Preparation

The R package Seurat (v.4.3.0) was used for analysis [26]. After creating Seurat objects
from the raw count data matrices of the individual samples, cells were assessed for their
quality. Cells that expressed > 25% mitochondrial genes and had <500 gene transcripts
were filtered out as low-quality cells. Individual samples were processed with SCTrans-
form (v.0.3.5) using the glmGamPoi method (v.1.10.2) [27,28]. SCTransform removes the
influence of technical characteristics from downstream analyses while preserving biological
heterogeneity. Further, it omits the need for heuristic steps such as log transformation or
pseudocount addition. Individual samples of each dataset were integrated based on the
SCT assay slot [29], and 3000 features were selected to perform the integration.

2.3. Cell Clustering and Cell Type Annotation

After pre-processing and preparation, principal component analysis (PCA) was per-
formed on the variable genes. A total of 30 PCs were used for subsequent clustering
and uniform manifold approximation and projection (UMAP) dimensional reduction. To
identify clusters of cells, a shared nearest neighbour (SNN) modularity optimisation-based
clustering algorithm was applied [30]. The resolution to acquire the cell clusters varied
between datasets (WAT = 1.5; skin = 0.7). FindAllMarkers was used to calculate differently
expressed genes (DEGs) between clusters, and the resulting cluster markers were used
to manually annotate cell types. Manual cell type annotation was performed with the
human protein atlas and previous single-cell and transcriptomics data [7,31–37]. In the
WAT dataset, sub-clustering was performed with the FindSubCluster function (res = 1.0) to
divide the lymphoid cell subpopulations further. In the skin dataset, sub-clustering was
performed on fibroblasts (res = 0.2) and endothelial cells to first identify lymphatic endothe-
lial cells (res = 0.2) and then subsequently sub-cluster blood endothelial cells (res = 0.3).
Correlation matrices based on Pearson’s product-moment correlation coefficient (r) explor-
ing the overlap of highly variable genes between the clusters were used to confirm the
sub-grouping. For calculating the proportions of each cell type, the number of cells per
cluster was divided by the total number of cells per sample.
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2.4. Cellular State Plot

We explored the cellular states of the structural cells in the SVF by using Seurat’s
function AddModuleScore, which provides enrichment scores for a manually defined list
of genes [38]. Adipogenic differentiation markers chosen were apolipoprotein D (APOD),
insulin-like growth factor 1 (IGF1), and chemokine ligand 14 (CXCL14) [32,39]. Vasculogenic
differentiation markers chosen were CD105 (ENG) and CD31 (PECAM1) [32]. Myogenic
differentiation markers chosen were smooth muscle alpha (α)-2 actin (ACTA2), regulator of
G protein signalling 5 (RGS5), and transgelin (TAGLN) [32].

2.5. Gene Set Enrichment Analysis

Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) func-
tional enrichment (over-representation) was performed with the R package clusterPro-
filer [40–43]. The top 100 DEGs at an adjusted p-value lower than 0.05 were used as input
for each cluster.

2.6. Cell-Cell Ligand–Receptor Interaction Analysis

LIANA (v.0.1.8) was used to explore cell–cell ligand–receptor interactions between
ADSCs from WAT and fibroblast and endothelial cell subpopulations from scleroderma [44].
LIANA enables the analysis and integration of the results across multiple tools for analysing
cell interactions and provides a meta-analysis of the co-expression of ligand–receptor pairs.
Here, we used the Network Analysis Toolkit for Multicellular Interactions (NATMI; Hou,
et al., 2020), Connectome (Raredon, et al., 2022), iTALK (Wang, et al., 2019), SingleCellSig-
nalR (Cabello-Aguilar, et al., 2022), and CellphoneDB (Efremova, et al., 2020) to analyse
cell–cell ligand–receptor interactions of ADSCs with fibroblasts and endothelial cells. We
performed a unilateral analysis with ADSCs expressing the ligand and fibroblasts and
endothelial cells expressing the receptor. Results are ordered by aggregate rank and serve
as a consensus across a selected method based on the R package RobustRankAggreg. Fur-
ther, the specificity of interactions as defined by NATMI’s edge specificity weights and
expression magnitude based on SingleCellExperiment’s LRScore are reported. Specificity
ranges from 0 to 1, where 1 means both the ligand and receptor are uniquely expressed
in each pairing of cell types, while expression magnitude represents a regularised score
comparable between datasets.

2.7. Data Visualisation

Data visualisation of single cell results was performed using R (v.4.2.2) and Seu-
rat and the packages SCpubr (v.1.1.2), ggplot2 (v.3.4.0), cowplot (v.1.1.1), and pheatmap
(v.1.0.12) [45,46].

2.8. Statistical Analysis

For comparing proportions of cell types, statistical analysis was performed with
GraphPad Prism 9 (GraphPad Software, San Diego, CA, USA). Data in the results are
reported as means ± standard deviation and n represents the number of patients. A
Mann–Whitney U test was used to evaluate statistical differences.

3. Results
3.1. The Diverse Single-Cell Landscape of the Stromal Vascular Fraction

The quality-controlled single-cell atlas of the stromal vascular fraction (SVF) of white
adipose tissue (WAT) from three lean patients was composed of 38,391 cells. Analysis
of differential expression of marker genes and visualisation with a uniform manifold
approximation and projection (UMAP) plot revealed 18 distinct clusters: adipose-derived
stem cells (ADSC), adipocyte precursor cells (APC), endothelial cells (EC), smooth muscle
cells (SMC), B cells (BC), regulatory T cells (TREG), mucosal-associated invariant T cells
(MAIT), naïve CD4 T cells (nCD4 T), naïve CD8 T cells (nCD8 T), mature CD8 T cells (mCD8
T), natural killer-like cells (NK-like), mature natural killer cells (mNK), innate lymphoid
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cells (ILC), lymphoid-like cells (lymphoid-like), classical dendritic cells (cDC), non-classic
monocytes (ncMos), myeloid-like cells (myeloid-like), and macrophages (Mac) (Figure 1A).
The clusters labelled lymphoid-like and myeloid-like cells could not be defined further.
Marker genes corroborated from previous single-cell analyses [7,31–37] and DEG analysis
were used for cell type annotation (Figures 1B,C and S1). The missing expression of Leptin
(LEP) indicates the absence of adipocytes in the dataset. The SVF consists of a variety
of cell types, including a diverse system of immune cell lineages. This strengthens the
assumption of adipose tissue being an immunologically active organ and its ability to drive
systemic inflammation in obesity [47]. Some notable variability of cell type proportions
exists between the three donors (Figure 1D).
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Figure 1. The SVF consists of various cell types with distinct transcriptomic signatures. (A) UMAP
plot of 38,391 cells from the SVF of three healthy, non-obese patients (n = 3); 18 distinct clusters
were obtained: adipose-derived stem cells (ADSC), adipocyte precursor cells (APC), endothelial
cells (EC), smooth muscle cells (SMC), B cells (BC), regulatory T cells (TREG), mucosal-associated
invariant T cells (MAIT), naïve CD4 T cells (nCD4 T), naïve CD8 T cells (nCD8 T), mature CD8 T
cells (mCD8 T), natural killer-like cells (NK-like), mature natural killer cells (mNK), innate lymphoid
cells (ILC), lymphoid-like cells (lymphoid-like), classical dendritic cells (cDC), non-classic monocytes
(ncMos), myeloid-like cells (myeloid-like), and macrophages (Mac). (B) Feature plot of marker
genes for cell type identification. Leptin (LEP), peptidase inhibitor 16 (PI16), glypican 3 (GPC3),
claudin-5 (CLDN5), regulator of G-protein signalling 5 (RGS5), cluster of differentiation CD79A
(CD79A), protein tyrosine phosphatase receptor type C (PTPRC), cluster of differentiation CD8A
(CD8A), cluster of differentiation CD4 (CD4), cluster of differentiation CD1C (CD1C), formyl peptide
receptor 2 (FPR2), and complement C1q A chain (C1QA). Expression of the gene is plotted onto the
UMAP plot. The level of gene expression is indicated by colour intensity. (C) Dot plot of differentially
expressed marker genes for each cluster, supporting cell type annotations shown in Figure 1A. Colour
intensity implies the level of expression and dot size indicates the percentage of the cluster expressing
the gene. (D) Stacked bar charts showing the proportion of each cell type in the SVF combined (left)
and individually (right) for each patient.
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3.2. The Transcriptomic Profile and Functions of Adipose-Derived Stem Cells

Of the SVF 1285 cells were identified as ADSCs (Figure 2A). The IFATS recommends
CD73, CD90, CD34, CD44, CD29, and CD105 as cell surface markers to identify and charac-
terise ADSCs in cell culture [39]. Further, a systematic review suggested CD59 as positive
and CD56, CD62, and CD45 as negative markers [48]. Expression of CD73, CD90, and CD34
in ADSCs was high compared to the other structural cells (APC, EC, and SMC) (Figure 2B).
There was little to no expression of CD105; notably, here we explored ADSCs naïve to cell
culture. Additionally, among the structural cells of the SVF, CD26 showed specific expres-
sion in ADSCs. When computing a cell state plot based on adipogenic, vasculogenic, and
myogenic differentiation, ADSCs were located in the middle, indicating no commitment to
either of these lineages (Figure 2C).
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the SVF. (A) UMAP plot of 1285 cells identified as ADSCs from the SVF of three healthy, non-obese
patients (n = 3). (B) Violin plots of structural cells showing the cluster expression of commonly used
cell surface markers used to characterise ADSCs. (C) Cell state plot based on enrichment scores for
gene combinations indicating commitment to adipogenic (APOD, IGF1, and CXCL14), vasculogenic
(ENG, PECAM1), and myogenic (ACTA2, RGS5, and TAGLN) lineage. The more negative or more
positive the score, the higher the enrichment for genes associated with the distinct cell lineages.
(D) Results of pathway enrichment analysis for gene ontology (GO) and the Kyoto Encyclopaedia of
Genes and Genomes (KEGG) shown as dot plots. Red colour indicates higher significance. Larger
dot size indicates a higher gene ratio. (E) Heatmap of additional genes of interest identified through
differential gene expression analysis (DEG) and literature review. Red colour = high expression, and
blue colour = low expression.

To gain more insight into the diverse functions of ADSCs, enrichment for GO and
KEGG pathways was performed (Figure 2D). ADSCs were especially enriched for pathways
associated with the ECM, including extracellular matrix binding, fibronectin binding,
and ECM receptor interactions. These cells further showed enrichment for antioxidant
activity and cytokine binding. We wanted to investigate specific genes associated with anti-
fibrotic and anti-inflammatory effects of ADSCs from the literature. Genes were selected
from the literature and their expression was plotted (Figure 2E) [19–21]. For example,
we selected hepatocyte growth factor (HGF), which downregulates transforming growth
factor-β and promotes angiogenesis [49]. However, expression of HGF at the single-cell
level could not be confirmed. ADSCs expressed genes associated with ECM functions,
including cellular communication/matricellular factors (CCNs), collagen subtypes, MMPs,
TIMPs, and members of the disintegrin and metalloproteinase with thrombospondin motif
(ADAMTS) family. Single-cell ADSCs were further enriched for a variety of angiogenic
factors, including VEGFB, VEGFD, ANG, ANGPTL2, and ANGPTL5 (Figure 2E).

3.3. The Paradigm of Fibrotic Skin Diseases—Scleroderma

After quality control, we obtained 38,391 cells from the skin of ten control and twelve
scleroderma patients. Clustering revealed 13 clusters: fibroblasts (FB), basal keratinocytes
(BKC), differentiating keratinocytes (DKC), melanocytes (MEL), neural cells (NC), glan-
dular cells (GL), endothelial cells (EC), smooth muscle cells (SMC), pericytes (PC), T cells
(TC), dendritic cells (DC), macrophages (Mac), and mast cells (MC) (Figure 3A). Marker
genes were corroborated from the human protein atlas and previous single-cell analy-
ses [7,31–37] in combination with DEG analysis and were used for cell type annotation
(Figures 3B,C and S2A). Proportionally, there is a relative depletion of fibroblasts, endothe-
lial cells, and pericytes in scleroderma samples compared to control, while a relative
increase in keratinocytes can be observed (Figure 3D). However, the differences do not
reach significance following statistical analysis (Figure S2B).

3.4. Pro-Inflammatory and ECM-Interacting Fibroblasts in Scleroderma

Sub-clustering of 9192 cells identified as fibroblasts revealed six functionally distinct
clusters (Figure 4A). No significant changes in fibroblast subcluster proportions were
found between control and scleroderma; however, cluster FB5 was missing from both
control and scleroderma patients in some cases (Figures 4B and S3C). There is no universal
classification of fibroblast subtypes, and hence no generally accepted method for the
identification of subgroups at the single-cell level exists. Neither approach to classify them
anatomically nor functionally is generally accepted. However, Ascensión, et al. [7] recently
conducted a pooled analysis of various single-cell datasets of human dermal fibroblasts to
identify commonly shared clusters. Three major groups were identified: dermal cell and
ECM homeostasis (A), immune surveillance and pro-inflammatory (B), and a variety of
specialised subpopulations (C). After obtaining our subgroups from Seurat’s self-guided
clustering algorithm, we found that both control and scleroderma fibroblast subclusters fit
this classification system (Figure 4C). Clusters FB3 and FB4 were identified as dermal cell
and ECM homeostasis (A) subtypes, cluster FB1 was identified as an immune surveillance
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and pro-inflammatory subtype (B), and clusters FB2 and FB5 as specialised subpopulations
(C). Specialised subpopulations can be fibroblasts enriched in aged skin or located at
the dermal papillae or the dermo-hypodermal junction [7]. FB6 less clearly matched the
classification but showed the closest resemblance to the immune interacting group. Results
of DEG analysis and minimal overlap of highly variable genes between the clusters support
the subgrouping results (Figure S3).
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Figure 3. Differences in single-cell composition between healthy and scleroderma skin. (A) UMAP
plot of 37,958 cells from skin biopsies of ten control patients (n = 10) and twelve scleroderma patients
with diffuse cutaneous disease (n = 12). A total of 13 clusters were obtained: fibroblasts (FB), basal
keratinocytes (BKC), differentiating keratinocytes (DKC), endothelial cells (EC), smooth muscle cells
(SMC), T cells (TC), dendritic cells (DC), macrophages (Mac), and mast cells (MC). (B) Feature plot
of marker genes for cell type identification. Collagen type I alpha 1 chain (COL1A1), keratin 14
(KRT14), keratin 1 (KRT1), premelanosome protein (PMEL), myelin protein zero (MPZ), platelet and
endothelial cell adhesion molecule 1 (PECAM1), smooth muscle actin alpha 2 (ACTA2), desmin (DES),
tyrosine phosphatase receptor type C (PTPRC), tryptase alpha/beta 1 protein (TPSAB1), allograft
inflammatory factor 1 (AIF1), and mucin-like 1 protein (MUCL1). Expression of the gene is plotted
onto the UMAP plot. The level of gene expression is indicated by colour intensity. (C) Dot plot of
differentially expressed marker genes for each cluster, supporting cell type annotations shown in
Figure 3A. Colour intensity implies level of expression and dot size indicates the percentage of the
cluster expressing the gene. (D) Stacked bar charts showing the proportion of each cell type in control
versus scleroderma skin combined (left) and individually (right) for each patient.
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Figure 4. Dermal fibroblast subclusters exhibit distinct functionalities in control versus scleroderma.
(A) UMAP plot of 9192 cells identified as fibroblasts from skin biopsies of ten control patients (n = 10)
and twelve scleroderma patients with diffuse cutaneous disease (n = 12). Six subclusters were
obtained (FB1-FB6). (B) Stacked bar charts showing the proportion of each cell type in control versus
scleroderma skin combined (left) and individually (right) for each patient. (C) Dot plot of marker
genes for each cluster according to the classification system by Ascensión, et al. [7]. Colour intensity
implies level of expression and dot size indicates the percentage of the cluster expressing the gene
(blue = control; red = scleroderma). (D) Dot plot of differentially expressed marker genes for each
cluster when comparing between subclusters and between control and scleroderma. Colour intensity
implies level of expression and dot size indicates the percentage of the cluster expressing the gene
(blue = control; red = scleroderma). (E,F) Results of pathway enrichment analysis for gene ontology
(GO) and the Kyoto Encyclopaedia of Genes and Genomes (KEGG) shown as dot plots for control (E)
and scleroderma (F). Colour intensity indicates higher significance. Larger dot size indicates a higher
gene ratio. For FB6SSc, no KEGG pathways were enriched (F).
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Subsequently, we compared the transcriptomic profiles of the subclusters between
each other and between control and scleroderma (Figure 4D). Certain genes were highly
expressed in scleroderma while being absent in control fibroblasts and vice versa. FB1
expresses high levels of chemokine (C-C motif) ligand 19 (CCL19), phospholipase A2
(PLA2G2A), and metallothionein 2A (MT2A). CCL19 plays a crucial role in regulating
the induction of T-cell activation, immune tolerance, and inflammatory responses [50],
while PLA2G2A is associated with inflammation and both lung and cardiac fibrosis [51,52].
Adding to this, FB4 in scleroderma expressed higher levels of THY1 and fibroblast activa-
tion protein-α (FAP) (Figure 4D). FAP + THY+ fibroblasts were found to be responsible
for severe and persistent inflammation in arthritis [10]. In accordance with the disease
hallmarks, subtypes of collagen (COL1A1, COL6A1) were more highly expressed in scle-
roderma. Additionally, a variety of other genes associated with inflammatory as well as
malignant diseases were enriched in scleroderma fibroblasts (POSTN, PRSS23, TNC, and
SERPINE2). Analysis of enriched GO and KEGG pathways supports the functional classifi-
cation in immune and ECM subtypes (Figure 4E,F). Scleroderma fibroblasts display higher
enrichment scores for pathways regarding chemokine, cytokine, and immune receptor
activity. FB6SSc showed no enrichment for KEGG pathways (Figure 4F).

3.5. Endothelial Cells in Scleroderma Promote Inflammation

Sub-clustering of 3282 cells identified as endothelial cells revealed four distinct clusters
(Figure 5A). Arterial endothelial cells (AEC), capillary endothelial cells (CEC), venous
endothelial cells (VEC), and lymphatic endothelial cells (LEC) were identified. Proportions
did not differ significantly between control and scleroderma (Figures 5C and S4C). He,
et al. [37] analysed the transcriptomic profile of dermal blood endothelial cells to enable
the identification of subclusters. We adapted their approach to our dataset and used
their marker array for the annotation of our clusters (Figure 5C). Additionally, LECs were
identified by expression of lymphatic vessel endothelial hyaluronan receptor 1 (LYVE1)
and podoplanin (PDPN) (Figure 5C).

Then, we compared the transcriptomic profiles of the subclusters between each other
and between control and scleroderma (Figure 4D). Von Willebrand factor (VWF) and Von
Willebrand factor A domain containing 1 (VWA1) are responsible for platelet adhesion
and clot formation and were more highly expressed in scleroderma compared to control,
indicating possible causes for microvascular damage. Genes associated with ECM compo-
nents, such as COL4A1, heparan sulfate proteoglycan 2 (HSPG2), and actin beta (ACTB), as
well as phospholipase C gamma 2 (PLCG2), fatty binding protein 4 (FABP4), and galectin 1
(LGALS1), also showed higher expression levels in scleroderma. Control endothelial cells
express higher levels of cytokines involved in immune cell recruitment and inflammation,
such as C-C motif chemokine ligand 2 (CCL2), interleukin 6 (IL6), and colony stimulating
factor 3 (CSF3). Analysis of GO pathways showed similar enrichment, but endothelial cells
from scleroderma showed higher enrichment scores for chemokine activity, platelet-derived
growth factor binding, and integrin binding (Figure 5E,F). While in control, endothelial
cell KEGG pathways were primarily enriched in CECs. In scleroderma, AECs showed the
most enriched KEGG pathways (Figure 5E,F). The IL17 signalling pathway was downregu-
lated in scleroderma, while leukocyte transendothelial migration, vascular smooth muscle
contraction, and the pro-inflammatory PPAR signalling pathway were upregulated. LECs
showed no enrichment for KEGG pathways in either control or scleroderma (Figure 5E,F).
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Figure 5. Dermal endothelial cell subclusters exhibit distinct functionalities in control versus sclero-
derma. (A) UMAP plot of 3282 cells identified as endothelial cells from skin biopsies of ten control
patients (n = 10) and twelve scleroderma patients with diffuse cutaneous disease (n = 12). Four sub-
clusters were obtained: arterial endothelial cells (AEC), capillary endothelial cells (CEC), venous
endothelial cells (VEC), and lymphatic endothelial cells (LEC). (B) Stacked bar charts showing the
proportion of each cell type in control versus scleroderma skin combined (left) and individually
(right) for each patient. (C) Dot plot of marker genes for each cluster according to the classification
system by He, et al. [37]. Colour intensity implies level of expression and dot size indicates the
percentage of the cluster expressing the gene (blue = control; red = scleroderma). (D) Dot plot of
differentially expressed marker genes for each cluster when comparing between subclusters and
between control and scleroderma. Colour intensity implies level of expression and dot size indicates
the percentage of the cluster expressing the gene (blue = control; red = scleroderma). (E,F) Results of
pathway enrichment analysis for gene ontology (GO) and the Kyoto Encyclopaedia of Genes and
Genomes (KEGG) shown as dot plots for control (E) and scleroderma (F). Colour intensity indicates
higher significance. Larger dot size indicates a higher gene ratio. For LEC, no KEGG pathways were
enriched in control (E) and scleroderma (F).
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3.6. Cellular Communication Networks after in silico ADSC Treatment

There are established cellular and molecular differences between healthy and sclero-
derma skin. To understand how ADSCs impact and possibly treat fibrotic skin in sclero-
derma patients, we analysed cellular communication networks through ligand–receptor
analysis using LIANA [44]. The interactions between ADSCs and cells from healthy skin
served as a control to understand physiologic and homeostatic communication and identify
differences in interactions with cells from scleroderma.

Between subclusters of healthy and scleroderma skin, 49.29% (35/71) of the interac-
tions were shared. Most of the top interactions between ADSCs and fibroblast subtypes
in both control and scleroderma are based on cellular communication network factors
(CCN) and integrins (Figures 6 and S5). Integrin subunit alpha V (ITGAV) and cave-
olin 1 (CAV1) interactions were specific to scleroderma fibroblasts (Figure 6C). Similarly,
thrombospondin 1 (THBS1) activates latent TGFβ, increasing collagen production, and
was exclusively present among the top interaction in the small FB6SSc cluster [53]. The
TNFSF9–HLA-DPA1 interaction is unique to the immune-interacting FB1SSc. Basic fibrob-
last growth factor (FGF2) interacted with FB2SSc and FB5Both. Parathyroid hormone-like
hormone (PTHLH) was expressed by ADSCs and interacted with almost all fibroblast
clusters via receptor activity-modifying protein 2 (RAMP2). C-X-C motif chemokine ligand
12 or stromal-derived factor 1 (CXCL12) was only among the top interactions with FB4SSc.
ADSCs also expressed fibronectin type III domain-containing protein 5 (FNDC5), which
interacted with ITGB5 and additionally with ITGAV in scleroderma on various subclusters.
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diagrams showing the top 50 bilateral cell–cell ligand–receptor interactions between all cell types
from control (B) and scleroderma patients (D) based on aggregate ranks.
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Most interactions between endothelial cells from both scleroderma and control skin
are based on interactions of extracellular matrix proteins expressed by ADSCs including
different collagen subtypes and proteoglycans (Figures 7 and S6). More interactions with
VECs, CECs, and LECs from scleroderma are based on the homing cell adhesion molecule
(H-CAM, CD44) expressed by endothelial cells (Figure 7), which is among the various
adhesion molecules upregulated in the serum of SSc patients [54]. In control skin, only AECs
interacted through CD44. Matrix metalloproteinase-2 (MMP2), highly expressed in ADSCs
(Figure 2E), interacts with endothelial cells from both datasets. Further, ADSCs interact
with all EC subtypes except for AECs in both control and SSc via vascular endothelial
growth factor D (VEGFD) to neuropilin 2 (NRP2). VEGF-D promotes both angiogenesis
and lymphangiogenesis [55]. Interactions of retinoic acid receptor responder protein
1 (RARRES1) and VEGFA with NRP2 were only among the top interactions in control
ECs. ADSCs possibly interact with the beta-2 adrenergic receptor (ADRB2) on AECs
and CECs from SSc to PTHLH. The interaction of tumour necrosis factor superfamily
member 4 (TNFSF4) with its receptor TNFRSF4 is unique to the AECs from SSc. TNFSF4
is overexpressed in the skin and serum of patients with SSc, particularly in patients with
diffuse cutaneous forms [56]. LECs from SSc are the only ECs to strongly interact with
ADSCs through vascular endothelial growth factor receptor 3 (FLT4).
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4. Discussion

Adipose-derived stem cells (ADSCs) and their secreted factors are believed to play a
pivotal role in the observed anti-fibrotic and immunomodulatory effects of autologous fat
grafting for treating fibrotic skin in scleroderma patients [16,57]. ADSCs are mesenchymal
stem cells that can be isolated from fat tissue by manual and enzymatic digestion. Their
paracrine signalling is believed to be the main mechanism of action by which they coun-
teract inflammation and fibrosis, rather than their direct cell-to-cell contact interactions
or regenerative, multilineage potential [19]. In vitro models with indirect co-culture of
ADSCs or the use of ADSC-conditioned media on cells from fibrotic tissue demonstrated
anti-inflammatory effects, reduced production of ECM components, inhibition of fibroblast
activation, and promotion of revascularisation [23,24]. Analysis of the ADSC transcriptomic
profile revealed enrichment, especially for genes associated with angiogenesis, as well as
pathways associated with remodelling of the ECM (Figure 2). For example, VEGFD and
VEFGB were almost exclusively expressed in ADSCs.

In our analysis of fibroblasts, FB1 was characterised as a pro-inflammatory or immune-
interacting subtype by APOE, CYGB, C7, and IFGBP7 and this subset showed higher levels
of CCL19 and PLA2G2A in scleroderma compared to the control (Figure 4) [7]. CCL19
along with CXCL10 positivity was also a distinctive marker of inflammatory fibroblasts
shared across various chronic inflammatory diseases investigated by Korsunsky, et al.,
including rheumatoid arthritis, ulcerative colitis, interstitial lung disease, and Sjögren’s
syndrome and afterwards confirmed in atopic dermatitis [9]. However, CXCL10 was not
highly expressed in FB1 (Figure S7). CCL19 plays a crucial role in the immune system’s
response to inflammation and infection. CCL19 acts as a chemoattractant for immune
cells such as T cells and dendritic cells, guiding them to sites of inflammation, and plays
a crucial role in regulating the induction of T-cell activation, immune tolerance, and in-
flammatory responses [50]. In scleroderma, expression of CCL19 correlates with vascular
inflammation of the skin [58]. Korsunsky, et al. [9], further found a SPARC+COL3A1+

vascular-interacting fibroblast, which primarily corresponds to our ECM-interacting clus-
ters FB3 and FB4 (Figures 4 and S7). SPARC+COL3A1+ fibroblasts colocalised with arterial
blood vessels and may play a role in vascular remodelling in inflammation [9]. Their
expansion preceded the growth of CCL19+ immune-interacting fibroblasts, suggesting
a two-stage mechanism for fibroblast-mediated regulation of inflammation, initiated by
vascular remodelling that enables greater leukocyte infiltration into the tissue [9]. Tabib,
et al. [8,59] also found that the fibroblast cluster expressing high levels of CCL19 localised
near the vasculature, as opposed to the control cluster, with low expression of CCL19. This
serves as further evidence that fibrosis in scleroderma develops in close proximity to the
vasculature [60]. It was also proposed that perivascular mesenchymal cells may serve as
precursors to profibrotic myofibroblasts [61–63]. Further, FB4 in scleroderma expressed
higher levels of THY1 and FAP (Figure 4D). FAP+THY+ fibroblasts were involved in severe
and persistent inflammation in arthritis [10]. We demonstrated that both inflammation-
driving subtypes, CCL19+ and SPARC+COL3A1+/FAP+THY+, are present in scleroderma,
possibly promoting inflammation through chemotaxis and enhanced leucocyte infiltration.
Our discovery provides additional evidence that inflammation-associated fibroblasts might
share activation states across chronic inflammatory diseases, leading to a common pheno-
type rather than being disease and tissue-specific. While the underlying activating factors
could vary depending on the disease and tissue, two fibroblast states might be universal to
inflammatory diseases across different tissues, as suggested by Korsunsky, et al. [9]. This
could lead to targeted therapies across different inflammatory and fibrotic diseases.

The interactome between ADSCs and fibroblast subtypes in both control and sclero-
derma shows top interactions mainly based on CCNs and integrins (Figure 6). In general,
CCN1 and CCN2 are believed to exert pro-fibrotic effects [64]. These effects depend on
the engaged integrin subunit. CCN1 promotes cell proliferation, survival, and angio-
genesis through ITGAV, while CAV1 regulates CCN1 secretion [65]. ITGAV and CAV1
interactions were only among the top interactions in scleroderma fibroblasts (Figure 6C).



Cells 2023, 12, 1784 15 of 23

Other ligands, such as tenascin XB (TNXB), PTHLH, and CXCL12, were shown to activate
latent TGF-β, cause epithelial-to-mesenchymal transition (EMT), and increase fibroblast
survival [66–69]. ADSCs also expressed FNDC5, a fibronectin, which interacted with
ITGB5 and additionally with ITGAV in scleroderma. FNDC5 is associated with anti-
inflammatory and anti-oxidative effects [70]. The TNFSF9–HLA-DPA1 interaction is unique
to the immune-interacting FB1SSc; however, little is known about its effect. TNFSF9 is
involved in the antigen presentation process and generation of cytotoxic T cells, possibly
leading to increased inflammation [71]. Basic fibroblast growth factor (FGF2) is one of
the major mechanisms described in the literature by which ADSCs modulate fibroblast
activity [19]. Studies suggest it inhibits fibroblast-to-myofibroblast transition, causes my-
ofibroblast apoptosis, and hence decreases the production of collagen by fibroblasts [19].
We found signalling from ADSCs via FGF2 to SDC1 on FB5 in both datasets and FB2 in
scleroderma. However, neither of these subclusters are involved in inflammation nor
primarily responsible for ECM production. Further, although SDC1 is a transmembrane
heparan sulphate proteoglycan and possesses affinity to FGF2, the downstream effect of this
interaction for fibroblast behaviour is unclear. Usually, FGF2 exerts its effects by binding to
fibroblast growth factor receptors (FGFRs) [72]. It is possible that FGF2 does interact with
other fibroblast subclusters, but those interactions were not highly specific or significant
in our analysis. FG2 and HGF are believed to be part of an antifibrotic bFGF-JNK-HGF
pathway [73]. HGF is proposed to be responsible for a variety of anti-fibrotic effects of
ADSCs [19]; however, according to our scRNA-seq data, HGF is not strongly expressed
by any cell type in the SVF (Figure 2). This suggests that either ADSCs start to express
and produce HGF during in vitro culture, but not in their natural tissue environment, or
they only start producing it in response to fibroblasts during co-culture. Notably, our
study findings align with previous research that demonstrates significant alterations in the
MSC phenotype in vitro, with a gain of CD105 and loss of CD34 expression (Figure 2B),
which may explain the missing expression of effector molecules from the literature, such as
HGF [74]. CD34 expression is highly dependent on cell culture conditions, with decreased
expression after prolonged in vitro cell culture [39]. ADSCs in the scRNA are naïve to
cell culture, which could explain the difference when compared to commonly observed
markers of cultured ADSCs [48]. It is also possible that in vitro cultures from the literature
contained a mixed cell population, and other cell types besides ADSCs may be responsible
for the measured HGF expression. In summary, ADSCs interact distinctly with fibroblasts
from scleroderma. While certain interactions are specific to subsets, the possible derived
effect remains unclear. FNDC5 and FGF2 could be responsible for observed effects from
in vitro and in vivo studies; however, FGF2 was only found amongst the top interactions
with FB2 and FB5, which are neither proinflammatory nor ECM-interacting. Most sig-
nificant interactions are based on ECM components such as CCNs, collagens, tenascins,
and fibronectin. Rather than directly acting upon fibroblasts via these molecules, ADSCs
might change the composition of the ECM and reinstate tissue homeostasis [21,75]. Conse-
quently, the altered ECM can influence the behaviour of fibroblasts through molecular and
mechanotransduction processes.

While studies on fibroblast heterogeneity increasingly focus on functional states rather
than anatomical location, it is logical to classify endothelial cells according to the vessel. We
used the markers proposed by He, et al. [37]; however, we aimed for a broader anatomical
classification to not overcomplicate the analysis and therefore divided ECs into arterial, cap-
illary, venous, and lymphatic. Endothelial dysfunction is a hallmark feature of scleroderma
and is characterised by reduced vasodilation, increased vasoconstriction, and impaired
angiogenesis. Endothelial damage can lead to increased expression of adhesion molecules,
which promote the migration and activation of immune cells into the tissue, further escalat-
ing the inflammatory response [11,12]. Further, although plasma levels of pro-angiogenic
growth factors are elevated, angiogenesis is defective and marked by a loss of capillaries
and small vessels [13]. As previously stated, fibrosis in scleroderma develops near the
vasculature, and perivascular mesenchymal cells may serve as precursors to profibrotic
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myofibroblasts [60–62]. A single-cell analysis of endothelial cells in scleroderma found
upregulation in pathways associated with ECM generation, negative regulation of angio-
genesis, and epithelial-to-mesenchymal transition (EMT). Perlecan (HSPG2) was elevated
in scleroderma ECs compared to the controls and the perivascular regions stained robustly
for HSPG2 [14]. HSPG2 is a main component of the blood vessel basement membrane and
is implicated in a variety of fibrotic diseases, including liver fibrosis [76]. It was found
to be a fibrogenic mediator produced by SSc endothelial cells undergoing apoptosis and
induced resistance to apoptosis in fibroblasts, and was found to cause myofibroblast differ-
entiation. Apoptosis of endothelial cells is considered a key disease-driving mechanism in
scleroderma [77]. While Apostolidis, et al. [14] compared endothelial cells as a whole, we
found HSPG2 to be upregulated especially in AECs and VECs (Figure 5). PLCG2, FABP4,
and LGALS1, which are involved in inflammatory pathways as well as pathways regarding
leukocyte transendothelial migration, vascular smooth muscle contraction, and the pro-
inflammatory PPAR signalling pathways that were upregulated were also upregulated in
scleroderma ECs (Figure 5) [78–80]. These findings underline the importance of vascular
dysfunction and the vascular and perivascular niche for the pathogenesis of scleroderma.

Similarly to what we observed for fibroblasts, most interactions between endothelial
cells from both scleroderma and control skin are based on interactions of extracellular
matrix proteins expressed by ADSCs including different collagen subtypes and proteogly-
cans (Figure 7). ECM proteins expressed by ADSCs interacted with homing cell adhesion
molecules (H-CAM, CD44) on VECs, CECs, and LECs from scleroderma (Figure 7). In
control skin, only AECs expressed CD44, which is among the various adhesion molecules
upregulated in the serum of SSc patients [54]. Through interactions with hyaluronic acid
and other ligands, CD44 promotes adhesion, migration, proliferation, and survival of
endothelial cells, resulting in increased angiogenesis [81]. Matrix metalloproteinase-2
(MMP-2), highly expressed in ADSCs (Figure 2E), interacts with endothelial cells from
both datasets. In general, MMPs can promote EC migration and tube formation [82]. Fur-
ther, ADSCs interact with all EC subtypes except for AECs in both control and SSc via
vascular endothelial growth factor D (VEGFD). VEGF-D promotes both angiogenesis and
lymphangiogenesis [55]. ADSCs further interacted with LECs via NTN1 to UNC5B. Netrin
1 (NTN1) is part of the laminin family and is involved in axonal growth and direction
during embryogenesis. It was further found to promote angiogenesis by blocking apoptosis
induced by UNC5B—the apoptosis of ECs being a key mechanism in scleroderma [77,83].
In SSc, the focus is traditionally on blood vessel dysfunction. However, affected SSc skin
also shows lymphatic abnormalities with reduced micro-lymphatic networks associated
with fingertip ulcers and disease progression [84–86]. Studies suggest that dermal lym-
phatic microangiopathy occurs due to blood capillary leaking leading to accumulation
of fluids, inflammation, and fibrotic processes, as well as exacerbating micro-lymphatic
damage [86]. This contributes to dystrophic changes and impaired tissue homeostasis in
SSc. Ahmadzadeh, et al. [87] previously showed the effectiveness of the ADSC secretome
for lymphangiogenesis in vitro. Other studies on fibrotic skin disease models found that
ADSCs decrease the expression of adhesion molecules in ECs, including ICAM-1 and
VCAM-1 [88], which facilitate the attachment of leukocytes and lead to their migration
across the endothelium [89]. Both of these molecules are elevated in scleroderma [90];
however, the top interactions in this study cannot explain this effect (Figure 7). ADSCs may
promote angiogenesis and especially lymphangiogenesis via VEGFD, MMP2, and Netrin 1,
leading to revascularisation and normalisation of the disturbed microvascular architecture
found in scleroderma.
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We created a tractable model to assess how factors from ADSCs could interact with
subtypes of fibroblasts and endothelial cells in scleroderma on the single-cell level. Under-
standing these interactions could generate a cell-free therapy by creating drugs to replicate
these interactions. The model is especially useful because not only does research show
a change in the ADSC phenotype in vitro, but also because in skin fibroblast cultures,
certain subtypes, specifically the ECM-interacting fibroblasts, were observed to outgrow
others [7,72]. Therefore, our in silico approach more closely mimics the interactions of
ADSCs with all fibroblast populations in vivo. However, in our model, we estimate the
effects of the secretome of ADSCs at the baseline level, unlike in vivo, where the secre-
tory behaviour may be altered according to stimuli from the surrounding tissue and cells.
It remains to be elucidated whether this alteration is essential for the anti-fibrotic and
anti-inflammatory effects observed in vivo and in co-culture models in vitro. Further, it
must be acknowledged that this analysis was conducted using two separate scRNA-seq
datasets. While the dataset of SVF pertains to patients without systemic disease, the skin
dataset comprises control and scleroderma patients. Unlike in a clinical scenario with
autologous fat grafting, there is a disparity regarding age, gender, and the presence of
SSc when simulating the interactions. This might affect the identified ligand/receptor
interactions. Hence, these findings should not be extrapolated beyond their current scope.
Apart from the direct effects on fibroblasts and ECs, the secretome of ADSCs possesses
antioxidative, and therefore general anti-inflammatory capacity as well as the ability to
restore the MMP/TIMP balance, which is deeply disturbed in scleroderma [91,92]. These
effects, however, cannot be depicted in the interactome analysis. This study further high-
lights the importance of the vascular and perivascular niche for the pathophysiology of
scleroderma. Vascular dysfunction with increased EC apoptosis and transendothelial
migration of inflammatory cells may initiate a two-step process of fibroblast activation
as proposed by Korsunsky, et al. [9]. ADSC secretome treatment may be able to disrupt
vascular and perivascular inflammation hubs by altering the ECM composition of the
perivascular niche and promoting effective angiogenesis through proangiogenic growth
factors and decreasing EC apoptosis. The normalisation of EC behaviour would decrease
chemotaxis and immune cell migration into the skin, while increased lymphangiogenesis
may lead to more effective removal of immune cells. Effective lymphangiogenesis is heavily
impaired in scleroderma [93,94]. However, this hypothesis needs further validation. Most
interactions between ADSCs and both fibroblasts and ECs were based on proteins that are
part of the ECM. The few effector molecules that were identified, including NTN1, VEGFD,
MMP2, FGF2, and FNDC5, provide evidence for the anti-fibrotic and anti-inflammatory
effects of the ADSC secretome (Figure 8); however, these few factors cannot explain all
observed effects on scleroderma skin after autologous fat grafting. Additional studies on
the single-cell level are needed to explore the interactions of ADSCs with other cell types in
scleroderma skin, such as immune cells and keratinocytes—a pathway by which ADSCs
could also indirectly affect fibroblast and EC behaviour. Further, we need to investigate
the interactions of other fat graft-inherent cells on fibrotic skin to better understand the
underlying mechanisms of autologous fat grafting as a treatment for scleroderma.
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Figure 8. Summary of possibly therapeutic interactions of ADSCs with fibroblasts and endothelial
cells from scleroderma. (A) Single-cell analyses of chronic inflammatory diseases [9] and sclero-
derma [8] identified a proinflammatory CCL19+ and a SPARC+/COL3A1+ fibroblast subset that
colocalises with the vasculature, highlighting the importance of the perivascular inflammation hub
for activation of fibroblasts in scleroderma. (B) Based on differences and commonalities in cell-to-
cell receptor–ligand interactions of ADSCs with fibroblasts and endothelial cells from healthy and
scleroderma skin, VEGFD, MMP2, NTN1, FNDC5, and FGF2 were identified as possible anti-fibrotic
effector molecules. Created with BioRender.com.

5. Conclusions

In conclusion, this study identified pro-inflammatory and ECM-interacting fibroblasts
in SSc, which were also present in other chronic inflammatory diseases, suggesting a shared
activation pathway. Various types of ECs presented a pro-fibrotic and pro-inflammatory
transcriptome. The interactions between ADSCs and these cell types were primarily based
on ECM proteins, and differential interactions with a potential therapeutic effect included
NTN1, VEGFD, MMP2, FGF2, and FNDC5. The ADSC secretome may have the potential to
disrupt perivascular inflammation hubs and promote angiogenesis and lymphangiogenesis
in scleroderma. Key clinically beneficial phenomena observed after fat grafting may act
through the ADSC secretome but remain unexplained. Though the elucidation of the
effector mechanism or mechanisms has significant clinical potential in this and other
fibrotic conditions.
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