
  2023 European Conference on Computing in Construction 
40th International CIB W78 Conference 

 

Heraklion, Crete, Greece 
July 10-12, 2023 

 

 

AUTOMATED GENERATION OF SPARQL QUERIES FROM SEMANTIC MARK-UP 
 

Nicholas Nisbet1 2, Zijing Zhang1, Ling Ma1  
1University College London, London, UK,  

2AEC3  
 

 

Abstract 

Regulations and requirement documents contain 
normative knowledge that needs to be compared against 
actual and proposed built assets, if safety and social 
expectations are to be met. Previous work has shown that 
semantic mark-up of normative documents can be 
consumed directly by a rule-engine or can be 
automatically transformed to a number of existing rule 
representations. This work investigates the feasibility of 
automatically transforming examples of normative 
documents into SPARQL and testing the result against 
typical building information models. The desirability of 
using SPARQL is discussed. 

Introduction 

Regulations and requirement documents contain 
normative knowledge that needs to be compared against 
actual and proposed built assets, if safety and social 
expectations are to be met. Requirements, Applications, 
Selections and Exceptions (RASE) (Nisbet et al., 2008) is 
a method of semantic markup up of plain text based on the 
identification on the semantic and logical roles of phrases 
and sections, from which operable knowledge can then be 
deduced. It was initially developed to support knowledge 
capture for normative compliance checking.  

The RASE method addresses three kinds of knowledge. 
The initial motivation for its development has been to 
capture normative content, as found in laws, regulations 
and requirement documents. Subsequently it has also been 
used to capture definitive knowledge as found in 
dictionaries, classifications and formulae. A third area of 
application is to capture the knowledge found in 
descriptive and narrative content as found in written and 
database representations of the built environment. In some 
cases, this content may be ‘fictitious’ when it describes a 
plausible future state of the built environment. For 
normative knowledge, each objective and metric are typed 
as one of four types: Requirement, Applicability, 
Selection or Exception. Instead of Requirement metrics, 
declarative knowledge uses Register metrics and 
descriptive/narrative knowledge uses Reported metrics. 
(Nisbet et al., 2022b). A semantic dictionary can be used 
to map between normative terminology and the 
descriptive/narrative terminology. This ensures that there 
is no requirement for BIM content to be restructured to 

reflect the regulatory content nor for the regulatory 
content to be expressed in the vocabulary of a Building 
Information Model (BIM), as proposed by Soliman-
Junior et al. (2022).  

The RASE mark-up is applied to text and tables in 
documents using four colours which highlight four 
distinct roles for phrases and sections. The four roles are 
Requirements/registers/reports, Applications, Selections 
and Exceptions. This identifies the RASE knowledge 
ontology as a recursive tree structure of objectives and 
metrics, where objectives contain metrics and other 
objectives. Metrics are simple atomic queries that can be 
evaluated, by domain experts or by enquiring of a target 
domain model. The method is able to capture the logical 
meaning of an entire document, section, paragraph or 
clause, not just individual sentences. This makes RASE 
mark-up particularly relevant to automated code 
compliance checking, where regulations are tested against 
BIM information to detect non-compliant aspects. 
SPARQL is a query language that can be used to retrieve 
information from semantic web resources, such as graph-
based BIM models. By automatically converting 
regulatory clauses from normative documents into 
SPARQL queries, graph-based BIM models can be 
validated for compliance checking. This approach can 
help ensure that BIM models are compliant with relevant 
regulations and standards, and can ultimately improve the 
quality of the models and ultimately of the built 
environment. Semantic mark-up is being deployed in a 
wide range of research and industry scenarios. “AEC3 
Require1” consumes semantic mark-up directly, without 
the use of any intermediary rule language (Nisbet et al., 
2022b). In the UK, ‘RegBIM’ (Beach et al., 2013) and the 
Digital Compliance ‘DCOM’ project (DCOM, 2023), 
semantic mark-up was added by regulatory domain 
subject matter experts. The semantic markup was then 
transformed into Java Drools, compiled and evaluated 
against a substantial building information model 
representing a 300-pupil secondary school.  

The sematic web and in particular RDF/OWL has been 
labeled as the gold standard of ‘description logics’ 
(Crotts, 2022; Kostylev et al, 2015). It is increasingly 
popular for construction research, as existing building 
information models can be transformed using online tools 
implementing mixtures of ifcOWL (Pauwels et al, 2016) 



 

 

and other simplified ontologies such as BOT (Rasmussen 
et al, 2021). 

Simple Protocol and RDF Query Language (SPARQL, 
2023) was chosen in preference to other semantic query 
syntaxes for RDF/OWL such as Shape Expressions 
(SHEX, 2023) because SPARQL has support for logical 
operators. SPARQL can be embedded in Shapes 
Constraint Language (SHACL, 2023), effectively using a 
query to validate an information set.  

There has been previous work on automated generation of 
SPARQL queries. Some have been based on limited 
source domains using keywords (Im et al., 2014) or 
controlled templates (Shekarpour et al., 2013), both of 
which necessarily involve a degree of pre-structuring. 
Jung et al. (2020) has investigated the use of Natural 
Language Processing (NLP) analysis to generate queries 
but this approach has not generated the confidence in the 
results appropriate to regulatory or requirements 
enforcement tasks.   

This work is aimed at identifying the feasibility of the 
automated generation of SPARQL queries from semantic 
mark-up. It is a further exploration of the feasibility of 
representing potentially complex logical queries arising 
from semantic markup in another query language, without 
resorting to handcrafting of the query or of the target 
domain either of which may undermine the generality of 
the solution.  

Semantic web technologies including RDF/OWL 
(RDF/OWL, 2023) represent knowledge as triples, 
typically described as subject, predicate (relationship or 
property) and object, where both subject and object can be 
primitive values or references to other triples.  Hence 
RDF/OWL triples are in RASE terms a combination of an 
Application (the subject) and a Requirement (or Register 
or Report) in the predicate and object.  

Method 

The research objective is to explore whether SPARQL can 
be generated systematically from normative documents 
with the gain in accuracy and completeness. This research 
established specific criteria arising from the objective of 
creating such a transparent and fully automated process. 
The automated process is detailed below in the Artifact 
section. The mapping was refined repeatedly in the 
Experiments described below until the four criteria had 
been met. The criteria for a solution are: 

a. A SPARQL query should be generated in a 
layout that supports review and comment, even 
though RASE semantic mark-up is proposed as 
the primary format for review prior to the 
mapping to SPARQL. Clarity of the resulting 
SPARQL query is intended to encourage 
endorsement and improvement of the 
transformation process.  

b. The mapping of RASE to SPARQL should 
produce a result that be used directly without 

further editing or revision. This is necessary to 
meet the objective of ‘automation’ and to 
eliminate the deployment of tacit ‘craft’ 
knowledge as seen in exercises focused on a 
single regulation clause such as Pauwels et al’s 
(2015) investigation into an acoustic regulation.  

c. The rules within the mapping should be 
expressed explicitly so that refinements can be 
proposed and adopted. The mapping should, if 
possible, be executed using a single pass.  

d. The SPARQL query should be executed and give 
reviewable results. Beyond producing a result, 
execution performance was not a criterion.  

A valid SPARQL query must declare the target 
ontologies, narrow the target model, filter the selected 
objects and report them. The generated query is made of 
a WHERE statement to identify the relevant information, 
a BIND statement to generate a logical result and an 
optional FILTER statement to select only ‘True’ or 
‘False’ results. SPARQL therefore presents a number of 
challenges compared to the RASE knowledge ontology. 

Experiments 

Rasmussen et al (2021) developed a semantic BIM 
interface which is freely available for use (LD-BIM, 
2023). This accepts IFC and generates a simplified 
RDF/OWL representation. The visual interface displays 
the geometry of the objects found in the IFC. Objects 
identified by SPARQL queries can be highlighted 
alongside the tabulated results. The application offers a 
number of simple SPARQL queries but the interface also 
allows for any query to be composed or copy-and-pasted 
in, validated and executed.To explore the feasibility of a 
RASE to SPARQL mapping and to discover any 
limitations, two experiments were conducted. The first 
addressed a simple case to confirm the design principles 
around creating a generic transformation and the second 
then sought to scale the solution to considering a complete 
and complex regulatory clause, and assess whether a 
satisficing approach had been found. The second 
experiment includes combinations of many types of 
objectives and metrics, and a variety of measure types 
within the metrics, such as logical, textual and numeric 
tests.  

Experiment 1 

A simple sentence “Doors should be at least 850mm 
wide” was given RASE semantic mark-up. Figures 1 and 
2 show the markup and an automatically derived concept 
graph.  

 
 

 
Figure 1 : Simple RASE semantic mark-up 

 



 

 

 
Figure 2: Automatically generated concept graph 

Previous mappings developed for concept graphs, 
predicate logic and other representations have used XSLT 
applied to the source HTML (Nisbet et al., 2022). In each 
case a recursive depth-first tree traversal algorithm is 
used. This algorithm generates and reacts to specific 
events such as ‘drop down a level of the tree hierarchy’ 
‘return up a level’ or ‘consider next item on this level’ as 
they are discovered within the semantic markup of the 
HTML. 

 
Figure 3: Automatically generated SPARQL query 

The varying part of the query template is highlighted in 
bold in Figure 3. The remainder of the text of the query is 
invariant.  This highlighting shows that there are two 
bodies of varying text, so it is necessary to make two 
passes through the normative source, the first to define the 
explicit variables and a second to generate the logical 
statement bound to the result. 

Several challenges arise in generating a SPARQL query. 
These issues are noted as comments such as ‘#1’ Each 
resolution was then included in an automated process.  

1. The appropriate header identifying the selected 
ontologies must be provided. The LD-BIM interface 
presents the necessary references and the transformation 
reproduces them directly.  

2. In order to associate any results with the 
graphical interface, the ‘this’ reference must be present in 
the results, as this is used by the RDF/OWL model, by any 
encasing SHACL statement and by the visual graphics.  

3. A decision must be made as to what other values 
are reported. Whilst further specific values, such as ‘type’ 
and ‘width’, can be reported during development, in the 
general case there could be a very large number of 
relevant properties. Once operational, there is no need to 
report any of these additional properties. So only ‘this’ 
and ‘result’ are included by default.  

4. Normative judgements are made against 
identifiable objects which may have a number of 

significant attributes.  Hence the target realm of ‘objects’ 
must be distinguished from other triples containing 
‘relationships’ or ‘property assignments’. This is achieved 
by selecting only the ‘bot:Element’ type.  

5. The connection must be made between terms in 
the normative metrics and terms in the descriptive model. 
RASE offers two means to achieve this: Any metric can 
have the determining property, comparator and target 
recorded explicitly or reference can be made to a semantic 
dictionary to obtain a mapping. In this case a proprietary 
attribute is used for ‘width’. The ifcOWL mapping has 
suppressed the standard IFC attribute ‘OverallWidth’, so 
a proprietary property name is used instead namely 
‘widthPSetRevitTypeDimensions’.  

6. Variables must be defined for any non-type 
attributes. This is done in the selection body because the 
syntax for the BIND structure does not support the 
naming of specific attributes. RASE markup provides a 
readily available identifier for the metric that can be 
expected to be unique. These values are marked as 
‘OPTIONAL’ so as to postpone any impacts of undefined 
properties on the handling of issues related to Closed or 
Open World Assumptions (CWA/OWA) until the 
evaluation of the result in the BIND statement. 

7. Type definition in RDF/OWL is a special 
property, often with multiple inheritance being 
represented in multiple values in the ‘type array’. This 
means that ‘type’ must be identified as a special case since 
it has a unique syntax. It is important not to assume that 
‘type’ is always present, and even if present it may be part 
of a selection of a number of different types. In this case 
the concept of ‘door’ exists in both the normative domain 
and in the descriptive domain. However, in the descriptive 
domain ‘doorness’ is a special attribute embedded in the 
type definition ‘IfcDoor’.   

8. The logical structure of the query must be 
represented. The logical structure of the sample regulation 
is derived from interpreting the semantic role for 
objectives and metrics, found as Requirement, 
Applicability, Selection and Exception, into the 
mathematical primitives AND ‘&&’, OR ‘||’, and NOT 
‘!’. This logical structure is assigned to a variable called 
‘result’ using the BIND construct. In a production 
environment this could be a more descriptive 
‘clause_X_result’, especially if the results are to be 
‘INSERT’ed or ‘CONSTRUCT’ed, giving the results 
persistence in the triple store.  

9. The comparator operator found in any metric 
must be represented. The semantic dictionary can aid the 
mapping of phrases such as ‘at least’ to the equivalent 
mathematical symbol ‘>=’.  Since the units have been 
adjusted to SI in the target model, metrics based on 
millimetres need to be factored.  

10. A decision must be made as to whether the 
instances evaluating to ‘True’ or ‘False’ are to be returned 
for reporting.  In general, we expect normative evaluation 



 

 

to generate ‘true’ for passing and ‘false’ for failing, but 
the implications of ‘true’ or ‘false’ outcomes may be more 
subtle in an adversarial context such as a dispute between 
a ‘conservationist’ and a ‘developer’. The FILTER syntax 
is used to make the choice as explicit as possible. Here, 
the query is used to find the hopefully relatively small 
number of non-compliant elements.  

 
Figure 4: LD-BIM highlighting the four ‘non-compliant’ doors 

Figure 4 shows that the generated SPARQL query is valid, 
and has highlighted four ‘non-compliant’ doors. The 
query was then tested further in other cases including 
when information is unknown. Comparisons were made 
of the expected truth table and the outcomes reported by 
the LD-BIM interface in Table 1. 

Table 1: Expected and SPARQL results for nine test cases          
* indicates ‘Query returned no results’   

Case Is a Door Width > 
0.800m 

Expected 
Result 

Actual 
result 

1 True True True  True 

2 True Unknown Unknown * 

3 True False False False 

4 Unknown True True * 

5 Unknown Unknown Unknown * 

6 Unknown False Unknown * 

7 False True True True 

8 False Unknown True * 

9 False True True True 

 

Table 1 shows that in all straightforward cases (1,3,7 and 
9) the correct outcomes are obtained, using the default 
Duplex model as an example. By modifying the query or 
the model, scenarios were created and tested where one or 
other of the two metrics are ‘Unknown’. Misleading 
results are produced in these cases (2,4,5,6 and 8). Case 
‘8’ is of particular concern where a non-door should 
evaluate to ‘true’ even if its ‘width’ is unknown. This is 
an example where ‘short circuit ‘McCarthy’ execution’ is 
necessary, if descriptive models are not be overloaded 
with unnecessary and irrelevant attributes, purely to 
enable the execution algorithms within SPARQL. 

Experiment 2 

The semantic markup from a substantial clause of the UK 
Building Regulation Approved Document M (ADM, 
2023) was used. This includes several requirements and a 
table of expected widths.  Figure 5 shows the marked-up 
document. 
 

 
Figure 5: Regulatory clause with RASE semantic mark-up



 

 

The transformation scaled successfully to generate the 
query, shown abbreviated in Figure 6, using twenty-five 
metrics and thirty logical checks. 

Figure 6: SPARQL query (part) 

 

Figure 7: Office building concept (courtesy of Mace plc) 

A further issue arose in that the example regulation 
requires wider entrances in new-build buildings as against 
the refurbishment of existing buildings.  The ‘is new’ 

property is assigned to ‘true’ on the overall building 
‘IfcBuilding’ entity. This prevents the query which is 
focused on the door element from generating a result. 
Figure 7shows the test case where the main entrance of a 
proposed office building is too narrow, but the SPARQL 
query is unable to generate a result because the ‘is new’ 
property is unknown. This is discussed further below.  

Artifact 
The mapping rules using HTML/RASE, depth-first tree 
traversal events and SPARQL syntax were tabulated to 
explicitly capture the mapping process for review and to 
control the mapping process (Figure 8). Further columns 
(not shown) hold the further mappings for propositional 
logic, predicate logic, and other knowledge schemas.   
Green (with dotted underline) indicates tests for 
Application. In this case all cells containing Applications 
are ‘header’ or ‘sider’ cells. Blue (with solid underline) 
indicates defined output. Each pass is represented by a 
separate Requirement Section, indicated as a blue box (in 
solid line). 
 
An example rule extracted from the table might be that on 
a ‘main pass’, with ‘SPARQL’ expected and on 
encountering the event ‘before a subsequent exception’ 
the required output is ‘||’. SPARQL is exceptional in that 
its syntax treats tests about ‘type’ differently from all 
other property values, requiring additional rule rows in the 
table. Tests about ‘type’ are detected by examining a 
separate dictionary entry for the term ‘door’ where its 
representation in SPARQL is the type specification 
‘ifc:IfcDoor’. 

Example execution 

The input to the process is an HTML document with 
RASE markup highlighting a normative knowledge, 
along with the HTML document with RASE mark-up 
highlighting the mapping rules. Figure 1 shows a simple 
example with a single Application and a single 
Requirement. Performing the depth-first tree traversal 
detects 14 events in sequence in the HTML/RASE and 
responds to each of these with appropriate SPARQL 
output, as shown in Figure 9. Terms found in the 
normative document are translated using a separate 
definitive dictionary handling the English language 
context, the IFC context and the ifcOWL/BOT context. 
The resulting valid SPARQL output was already shown in 
Figure 4.

 
 

# Example 2: UK Government ENG  
# Approved Document M2 clause 2.13 (2015) 
PREFIX xsd:  <http://www.w3.org/2001/XMLSchema#>                 
PREFIX ifc:  
<http://ifcowl.openbimstandards.org/IFC2X3_Final#> 
PREFIX bot:  <https://w3id.org/bot#>  
PREFIX inst: <https://web-bim/resources/> 
 
SELECT DISTINCT ?this ?result  WHERE {                            
     ?this a bot:Element .                                        
OPTIONAL{ ?this 
inst:partOfAccessibleEntranceUKDoorcapture ?a01 }  . 
#    several further measures 
OPTIONAL{ ?this inst:clearWidthUKDoorcapture ?r09 }  . 
BIND ( (  
     ! ( EXISTS{ ?this a ifc:IfcDoor  } &&   ( ?a01 )) 
|| 
#    several further comparisons and logical tests 
     ( ?r09 >= '1.000'^^xsd:double )))))      
) AS ?result) .  
FILTER ( ?result != 'true'^^xsd:boolean) .                     
} 
ORDER BY ?this 
 



 

 

 
Figure 8: Definitive mapping knowledge

HTML/RASE event Tree traversal event SPARQL output 
<body> Pre-pass (start tree traversal) SELECT DISTINCT ?this  WHERE {  

?this a bot:Element .    
<span id="r1"  
data-raseProperty="width"> 

Property not about type            
(term is translated) 

OPTIONAL {?this 
inst:widthPSetRevitTypeDimensions ?r1 } 

</body> Pre-pass (end tree traversal)  
<body> Main pass (start tree traversal) BIND (( 
<div data-raseType 
="RequirementSection"> 

(start branch) ( 

 Before first Application !( 
<span  
data-raseProperty="door"> 

Property about type                    
(term is translated) 

EXISTS{ ?this a ifc:IfcDoor } 

 After last Application  ) 
 Between RASE groups || 
 Before first Requirement ( 
<span id="r1"  
data-raseComparator=">=" 
data-raseTarget="0.800"> 

Property not about type 
 

( ?r1 >= '0.800'^^xsd:double ) 

 After last Requirement ) 
</div> (end branch) ) 
</body>  (end tree traversal) ) AS ?result) .  

FILTER ( ?result != 'true'^^xsd:boolean) . 
} 
ORDER BY ?this 

  
Figure 9: Example execution steps. (Bold text is specific to the example.)



 

 

Analysis and Discussion 
 

RASE mark-up has been seen to be significantly more 
productive than conventional coding (Beach et al., 2013;
DCOM, 2023). Example 1 illustrates this using a simple 
case, with only one Application and one Requirement, and 
yet the syntax of the SPARQL query and in particular the 
BIND construct shows that its correctness is not obvious.   
Before SPARQL and RDF/OWL can be considered as a 
candidate method, it is necessary to demonstrate that the 
generality of regulations including both the variety of 
logic constructs and the variety of metric types can be 
mapped to SPARQL without for example anticipating the 
nature of the queries by configuring the target database. 
Example 2 was chosen as a substantial case. It includes 
metrics representing multiple Requirements, 
Applications, Selections and Exceptions with 
implications for the complexity of the BIND statement. It 
also uses a range of parameter types including 
ontological, text, logical and numeric constructs.  
 
Three issues were encountered in these experiments. The 
first is the impact arising from the decisions that 
substantial parts of the IFC schema have been omitted 
from the published mappings of IFC to RDF/OWL. This 
omits the attributes containing the ‘Overall Width’ of door 
and window entities.  These choices can be remedied by 
revisiting the implemented mappings or falling back on 
non-standard and proprietary attributes handled in the 
semantic dictionary. 
 
The second is considered to be potentially more serious. 
Previous work such as a UK Digital Compliance project 
(DCOM, 2023) has indicated that there may well be 
several thousand metrics in the UK Approved Documents, 
representing Requirements, Applicability’s, Selections 
and Exceptions. It may be impractical to ensure that a 
descriptive model is complete before it is assessed. In this 
context, the ‘Closed World Assumption’ (Minker, 1982) 
can be summarized as ‘any information not known to be 
true is taken as being false’, essentially a two-value logic, 
whereas the Open World Assumption can be summarised 
as ‘any information not known to be true is taken as being 
unknown’, essentially a three-valued logic. The CWA 
embedded in the SPARQL language may be a hazard to 
the proper enforcement of legally prescribed minimum 
performance. No results are generated in five of the nine 
test cases examined in experiment 1. The CWA may be 
tilted onto the side of caution when considering 
requirements such as ‘minimum door width’ but is flawed 
when we consider that the larger part of normative text is 
made up of applicability’s such as ‘is a door’. In this case 
not knowing if an entity is considered to be a door leads 
to the width requirement not be tested.  
 
The third issue relates to the understanding of objects in 
context. Facilities are managed whenever possible 
through the introduction of intermediate specifications 
such as product and space types, or intermediate 

groupings such as zones and systems. Many attributes 
describing the context are assigned to these or to the 
overall site, building or project objects. It may be that 
SPARQL queries and the ‘path’ constructs can affect the 
arbitrary number of recursive steps from an element back 
to the higher levels to collect this information. It is not 
clear how such path syntax or any ‘semantic 
enhancement’ - effectively de-normalization - could know 
which properties should be disseminated downwards. The 
implication is that the appropriate search path for a 
particular attribute will have to be stored in the dictionary. 
Such search paths are only available in SPARQL v1.1 
onwards.  

Limitations 

The authors anticipate that the experiments can be 
extended and the solution further refined. For example, 
the work has been undertaken with no particular regard 
for the performance optimization of the combination of 
SPARQL queries, target ontologies, and the chosen 
demonstration platform. Pauwels et al (2016) indicates 
that without a process of refinement of the tools, schema 
and BIM model size, the performance of SW tools can be 
disappointing or prohibitive. Additionally, the examples 
have not considered the complexity of unit conversion and 
of predicate logic relationships, which is the subject of 
further work. 

Conclusions 

The process has successfully generated queries from 
textual and tabular regulations involving several dozen 
properties and logical relationships.  

SPARQL queries can be automatically generated from 
RASE semantic mark-up with correct syntax and content, 
and that this outcome is not dependent on the length or 
complexity of the source normative regulation.  

The mapping between knowledge representations can be 
held in a table which can itself be made machine operable 
with HTML/RASE semantic markup. This shows that the 
mapping can be exposed for discussion and that the craft 
skills around SPARQL development can be eliminated 
and the potential for error reduced. 

However, the first example has demonstrated that the 
execution of automated regulatory compliance checking 
should use rule-engines that handle logical (three-value) 
outcomes correctly. However, this issue cannot be solved 
when using SPARQL. 

 

   

 

  



 

 

References 
ADM: UK Building Regulations Approved Document M 

https://www.gov.uk/government/publications/access-
to-and-use-of-buildings-approved-document-m 
accessed Jan 2023 

Beach, T.H., Kasim, T., Li, H., Nisbet, N. and Rezgui, Y., 
2013, August. Towards automated compliance 
checking in the construction industry. In International 
Conference on Database and Expert Systems 
Applications (pp. 366-380). Springer, Berlin, 
Heidelberg. 

CSS: https://www.w3.org/Style/CSS/Overview.en.html 
Accessed Jan 2023 

Crotts, Larry Joshua., 2022, Construction and Evaluation 
of a Gold Standard Syntax for Formal Logic Formulas 
and Systems. The University of North Carolina at 
Greensboro ProQuest Dissertations Publishing, 
 2022. 29065468. 

DCOM: https://www.dcom.org.uk/wp-
content/uploads/2022/03/The-Digital-Compliance-
Ecosystem_260222.pdf   accessed Jan 2023 

HTML5: https://www.w3.org/TR/2008/WD-html5-
20080122/ Accessed Jan 2023 

Im, S., Sohn, M. , Jeong, S. and Lee, H. J. , 2014, 
"Keyword-Based SPARQL Query Generation System 
to Improve Semantic Tractability on LOD 
Cloud," 2014 Eighth International Conference on 
Innovative Mobile and Internet Services in Ubiquitous 
Computing, Birmingham, UK, pp. 102-109, doi: 
10.1109/IMIS.2014.95. 

 

Jung, H., Kim, W. Automated conversion from natural 
language query to SPARQL query. J Intell Inf Syst 55, 
501–520 (2020). https://doi.org/10.1007/s10844-019-
00589-2 

Kostylev, E.V., Reutter, J.L., Romero, M. and Vrgoč, D., 
2015. SPARQL with property paths. In The Semantic 
Web-ISWC 2015: 14th International Semantic Web 
Conference, Bethlehem, PA, USA, October 11-15, 
2015, Proceedings, Part I 14 (pp. 3-18). Springer 
International Publishing. 

LD-BIM: https://ld-bim.web.app/   Accessed Jan 2023 

Minker, J., 1982. On indefinite databases and the closed 
world assumption. In 6th Conference on Automated 
Deduction: New York, USA, June 7–9, 1982 6 (pp. 
292-308). Springer Berlin Heidelberg. 

Nisbet, N. and Ma, L., 2022a. Nisbet, N. and Ma, L., 2022, 
July. Presentations of rase knowledge mark-up. In EC3 
Conference 2022 (Vol. 3). University of Turin.  

Nisbet, N., Ma, L. 2022. Using RASE to represent 
normative, definitive and descriptive knowledge. 

eWork and eBusiness in Architecture, Engineering and 
Construction: ECPPM 2022 Editors: Eilif Hjelseth, 
Sujesh F. Sujan & Raimar Scherer. Publisher: CRC 
Press. 

Nisbet N, Wix J and Conover D. 2008. "The future of 
virtual construction and regulation checking”, in 
Brandon, P., Kocaturk, T. (Eds), Virtual Futures for 
Design, Construction and Procurement, Blackwell, 
Oxfordshire. doi: 10.1002/9781444302349.ch17.  

Pauwels, P., Van Deursen, D., Verstraeten, R., De Roo, 
J., De Meyer, R., Van de Walle, R. and Van 
Campenhout, J., 2011. A semantic rule checking 
environment for building performance checking. 
Automation in construction, 20(5), pp.506-518.  

Pauwels, P. and Terkaj, W., 2016. EXPRESS to OWL 
for construction industry: Towards a recommendable 
and usable ifcOWL ontology. Automation in 
construction, 63, pp.100-133.  

Rasmussen, M.H., Lefrançois, M., Schneider, G.F. and 
Pauwels, P., 2021. BOT: The building topology 
ontology of the W3C linked building data group. 
Semantic Web, 12(1), pp.143-161.  

RDF/OWL: https://www.w3.org/OWL/  . Accessed Jan 
2023 

Shekarpour, S., Auer, S., Ngonga Ngomo, A.C., Gerber, 
D., Hellmann, S. and Stadler, C., 2013. Generating 
SPARQL queries using templates. Web Intelligence 
and Agent Systems: An International Journal, 11(3), 
pp.283-295. 

SHEX: https://shex.io/ Accessed Jan 2023 

SHACL: https://www.w3.org/TR/shacl/ Accessed Jan 
2023 

Soliman-Junior, J., Tzortzopoulos, P., and Kagioglou, M. 
(2022). "Designers’ perspective on the use of 
automation to support regulatory compliance in 
healthcare building projects." Construction 
Management and Economics, 40(2), 123-141. 

SPARQL: https://www.w3.org/TR/rdf-sparql-query/  . 
Accessed Jan 2023 

Zhang, Z., Nisbet, N., Ma, L. and Broyd, T., 2022, 
October. A multi-representation method of building 
rules for automatic code compliance checking. In: 
Proceedings of the European Conference on Product 
and Process Modeling 2022. Trondheim, Norway. 

 


