
1.  Introduction
The Paris Agreement adopted by 196 Parties at COP21 in 2015 set a global warming goal, which is to keep global 
warming to well below 2°C, preferably to 1.5°C, relative to the pre-industrial period (IPCC, 2018). To achieve 
this goal, every participating country has proposed its emission reduction roadmap and made the corresponding 
policies. As the largest developing country and one of the most carbon emitters, China proposed its target in 
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2020, called the “30·60 Dual-Carbon Target,” that is, China will peak its carbon emissions by 2030 and neutralize 
carbon emissions by 2060 (You & Liu, 2022). This dual carbon target is essentially the same as the temperature 
control goals: endeavor to decrease global mean temperature and corresponding negative impacts.

With the intensification of global warming, it is recognized that the climate extremes in the aspect of duration, 
frequency and intensity are projected to increase and have profound impacts on the Earth system in the future 
(Shi et al., 2021). In general, extreme climate events have a deeper influence on human and natural systems than 
the climate mean state (Sun et al., 2016). Because climate changes have different impacts on geographically vary-
ing regions, changes in extreme events also show larger regional differences (Wang et al., 2013). With complex 
geographic patterns and various climatic characteristics, China is one of the most fragile countries to ongoing 
climate extremes. In the past several decades, enormous climate-related extreme events have led to tremendous 
losses of life and economy in China. For example, the most populous and economically-developed regions of 
China suffered from severe droughts in the summer of 2013 which resulted in tremendous economic losses 
and societal impacts (Zhou & Liu, 2018). In July 2021, Henan in China encountered a particularly severe flood 
event, causing 352 deaths and a cost of 16.5 billion $ (CRED, 2022). Therefore, robust and reliable information 
on future changes in temperature- or precipitation-dependent extremes is of paramount importance for making 
policy on climate change mitigation and adaptation.

Future information on climate change and related extremes can be projected by global climate models (GCMs). 
However, the spatial resolution of GCM is so imprecise that it is incapable to get detailed projections at the 
regional scale (Mishra et al., 2020), particularly for the areas with varied topography, and the simulated biases and 
uncertainties are larger in these models as well. Besides, due to the different resolutions, physical processes and 
forcing conditions, not all GCM models are equally plausible, in other words, there are more or few biases  among 
models. In that case, the spread of models could be large if unrealistic models are involved in an ensemble 
(Tokarska et al., 2020). Even though the multi-model ensemble (MME) method can reduce the uncertainties from 
a single model to some extent, it may still increase the weight of the models with larger biases but decrease the 
proportion of the models with smaller biases. Relative to previous CMIP, the latest CMIP6 has larger improve-
ments in spatial resolution, physical parameterizations and additional Earth system processes and components 
(Tian et al., 2021). Many studies in China have used the CMIP6 models to assess climate change and possible 
socio-economic impacts (Chen & Yuan, 2021; Guo et al., 2018; Su et al., 2021; Zhu et al., 2021).

To bridge the gap between the low-resolution GCM and the desire for detailed spatial projection at local regions, 
lots of dynamical and statistical downscaling methods are usually used to correct the biases of raw GCM. For 
dynamical methods, regional climate models (RCMs, i.e., WRF and RegCM, etc.) with physical mechanisms are 
developed to downscale the climatology in the local region (Li et al., 2021). However, one of the most shortcom-
ings of RCMs is the cost of computing, due to the high consumption of computing and storage resources to run 
the RCMs at higher spatiotemporal resolution. On the other hand, the statistical downscaling method can provide 
a fast and efficient way to correct the biases in the original GCM, by building the mathematical relationship 
between fine-resolution observations and coarse-resolution climate variables (Yang et al., 2018). In this field, 
prior studies have developed various statistical approaches in this way from simple additive (Yang et al., 2018), 
linear-scaling (Zhu et al., 2022) to more sophisticated quantile mapping (QM) technologies (Ayugi et al., 2020; 
Enayati et  al.,  2021). Especially for the latter, the QM method is based on the cumulative distribution func-
tion (CDF) of reference data to correct the distribution of simulations, besides conventional mean and variance 
corrections (Wang & Chen, 2014). Generally, the QM has a premise that the statistical relationship (i.e., CDF) 
between the observation and the simulation will remain stable in the future period (Yang et al., 2018). However, it 
ignores potential changes in the CDF of meteorological variables under the background of future climate change 
(Guo et al., 2020). Thus, improved QM methods have been emerging to remediate this issue in recent years. Li 
et al. (2010) took into account the changes in meteorological fields under the future period and developed the 
equidistant cumulative distribution function matching (EDCDF) approach. Due to its virtue, this method has been 
widely used in the bias correction of climate simulations and projections (Piao et al., 2022; Yang et al., 2018).

Extreme climate events, though not frequent, often result in more severe ecologically and socioeconomically 
detrimental consequences (Ridder et al., 2020). Some extreme indices are used widely to represent the character-
istics (intensity, frequency and duration) of climate extreme events, such as the Expert Team on Climate Change 
Detection and Indices (ETCCDI) (de los Milagros Skansi et al., 2013; Kim et al., 2020; Zhu et al., 2021). The 
ETCCDI consists of several temperature and precipitation extreme indices, which are based on an absolute or 
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percentile threshold. Another extreme index is the Standardized Precipitation Index and it is often applied to 
characterize the climate drought or flood events at a spread of timescales (Liu et al., 2021; Sobral et al., 2019). For 
extreme temperature, some studies employed heat waves or cold waves indices to detect and describe the features 
of extreme-temperature anomalies (Morsy and El Afandi, 2021). On the other hand, when two or more extremes 
coincide, the resultant consequence would be even more harmful to human society and the natural environment 
(Xu & Luo, 2019). Thus, studies on the compound extremes which are a joint of multiple extreme climate events 
are also emerging and becoming a hotspot. For example, at a global scale, Meng et al. (2022) used the thresh-
old of the 25th/75th percentile of precipitation and temperature to define the compound dry-warm events and 
compound wet-warm events. Zhang et  al.  (2020) analyzed comprehensively the spatio-temporal evolution of 
short-term concurrent hot-dry events at global and basin scales, and the results indicated that hot-dry events were 
found mostly in Northern Hemisphere regions with less precipitation. In China, Yu and Zhai (2020) created the 
CDHEEs index based on both day and night temperature over 90 percentile thresholds to explore the possible 
changing features of the compound drought and hot extreme events in eastern China. Lu et al. (2018) investigated 
how Compound Extreme Hot and Dry days (CEHD days) changes in the past and the response to future climate 
warming, and analyzed the impact of the CEHD on crops in China.

In summary, extensive studies have investigated the changes in the past and future climatology, including the climatic  
mean state and extreme events under different global warming scenarios, particularly for the compound extremes, its  
characteristics of more serious consequences are destined to become one of research highlights. Through referring  
to the current studies, we found that though the definition of the extreme indices or concurrent extremes is various,  
they are basically based on a threshold of a preference period. The percentile threshold is one of most used in studies, 
such as exceeding the 90th percentile or less than the 10th percentile. To the best of our knowledge, the study on  
very extreme or ultra-extreme events, that is, the threshold which is 99.9% or 0.1% is very limited. Thus, in this study, we  
have developed a bias-corrected and high-resolution model ensemble based on the 12 CMIP6 models and analyzed 
the changes in the temperature- and precipitation-related ultra-extreme events in China at the two different global 
warming levels. In particular, the target of our study is mainly to address the following questions: (a) How will ultra 
extremes change in China under the different global warming levels and emission scenarios? (b) To what extent the 
impacts of ultra-extreme events in China could be avoided if global warming is limited to 1.5°C rather than 2°C?

2.  Data and Methods
2.1.  Data

Climate model data consist of original data and corresponding bias-corrected outputs of 12 CMIP6 models 
(Table 1) in the historical period of 1995–2014, and in the future period of 2015–2100 under SSP2-RCP4.5 

Table 1 
Timing of 1.5°C and 2°C Global Warming Above the Pre-Industrial Level (1850–1900) Under SSP245 and SSP585 
Scenarios

CMIP6

1.5°C 2.0°C

SSP245 SSP585 SSP245 SSP585

ACESS-CM2 2028(2019–2038) 2025(2016–2036) 2040(2031–2050) 2038(2029–2048)

ACCESS-ESM1-5 2029(2020–2039) 2027(2018–2037) 2045(2036–2055) 2039(2030–2049)

BCC-CSM2-MR 2035(2026–2045) 2030(2021–2040) 2057(2048–2067) 2043(2034–2053)

CCCma-CanESM5 2013(2004–2023) 2012(2003–2022) 2024(2015–2034) 2022(2013–2032)

CNRM2 2037(2028–2047) 2032(2023–2042) 2055(2046–2065) 2045(2036–2055)

HadGEM3-GC31-LL 2013(2004–2023) 2020(2011–2030) 2033(2024–2043) 2029(2020–2039)

INM-CM4-8 2035(2026–2045) 2030(2021–2040) 2063(2054–2073) 2046(2037–2056)

INM-CM5-0 2037(2028–2047) 2030(2021–2040) 2072(2063–2082) 2046(2037–2056)

IPSL-CM6A-LR 2018(2009–2028) 2018(2009–2028) 2033(2024–2043) 2034(2025–2044)

MIROC6 2046(2037–2056) 2040(2031–2050) 2073(2064–2083) 2053(2044–2063)

MPI-ESM1-2-HR 2037(2028–2047) 2033(2024–2043) 2063(2054–2073) 2049(2040–2059)

MRI-ESM2-0 2030(2021–2040) 2026(2017–2036) 2049(2040–2059) 2038(2029–2048)
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(SSP245) and SSP5-RCP8.5 (SSP585) emission scenarios. The observed daily maximum temperature, daily 
minimum temperature and daily precipitation in China are from a data set of CN05.1, which is developed by 
the China Meteorological Administration. This data set has a spatial resolution of 0.25° × 0.25° by interpolating 
above 2,400 weather stations in China. It has been widely used in various hydroclimatic applications (Jia & 
Xue-Jie, 2013; Ying-Xue et al., 2020). Here, we employ it to downscale the raw CMIP6 models and validate the 
performance after bias correction. In addition, the output of the MME mean is obtained by averaging meteorolog-
ical variable statistics calculated from different climate models with distinct periods and scenarios.

2.2.  Downscaling and Bias Correction

The overall procedure of downscaling and bias correction is divided into two parts:
First, for each month, the mean observed meteorological variables (i.e., daily maximum, minimum temperature 
and daily precipitation) in the historical period are interpolated at the same resolution with the CMIP6 model, 
respectively. Second, we calculate the differences between the interpolated observation and each GCM. Third, 
these anomaly fields are further interpolated to the original resolution and then add to the observed variables to 
generate the downscaled output for each GCM. All interpolation processes use a bilinear interpolating technology.
The EDCDF is used to correct the biases from the downscaled CMIP6 models. This method is an improved QM 
technology, which can adjust the CDF of a model simulation to match that of observed values instead of correct-
ing the mean and variance of model output (Wang & Chen, 2014). There is an underlying assumption that the 
discrepancies between the simulated values and the observation in the historical or baseline period are in line with 
those in the future period for a given percentile (Tian et al., 2021; Wei et al., 2022; Yang et al., 2022).

In this paper, the daily temperature and precipitation series are fitted based on the normal distribution and mixed 
gamma distribution. This approach is defined as follows:

𝑥̃𝑥𝑚𝑚−𝑝𝑝 = 𝑥𝑥𝑚𝑚−𝑝𝑝 + 𝐹𝐹 −1
𝑜𝑜−𝑐𝑐(𝐹𝐹𝑚𝑚−𝑝𝑝(𝑥𝑥𝑚𝑚−𝑝𝑝)) − 𝐹𝐹 −1

𝑚𝑚−𝑐𝑐(𝐹𝐹𝑚𝑚−𝑝𝑝(𝑥𝑥𝑚𝑚−𝑝𝑝))� (1)

where 𝐴𝐴 𝐴𝐴𝐴𝑚𝑚−𝑝𝑝 is corrected daily maximum and minimum temperature and daily precipitation from CMIP6 in the 
future period; 𝐴𝐴 𝐴𝐴𝑚𝑚−𝑝𝑝 is the projected raw climatic variables; 𝐴𝐴 𝐴𝐴𝑚𝑚−𝑝𝑝 refers to the CDF of the GCM projection in the 
future period; 𝐴𝐴 𝐴𝐴 −1

𝑜𝑜−𝑐𝑐 and 𝐴𝐴 𝐴𝐴 −1
𝑚𝑚−𝑐𝑐 are the distribution functions (inverse CDF) for observation and models in the refer-

ence period, respectively.

2.3.  Definition of Indices and Global Warming Levels

Following the method of a previous study (Vogel et al., 2020), we define the ultra-extreme events with a 1‰ 
likelihood of occurrence in the baseline period. In other words, the extreme event occurs when the climatology 
variable value is above or below a quantile-based threshold (99.9% or 0.1%). Four ultra-extreme indices are 
considered in this paper: hot extremes, cold extremes, wet extremes and dry extremes. Hot and cold extremes are 
calculated based on the daily maximum and minimum temperature. For each grid of model, the 99.9th (0.1th) 
percentile of maximum (minimum) temperature in the baseline period is computed first. Then the number of hot 
(cold) extreme events is tallied by counting the days of exceedances over/below the 99.9th (0.1th) threshold at 
different warming levels. On the other hand, the daily precipitation is aggregated through a running 5-day (run5) 
and 90-day (run90) window in the baseline and future periods, respectively. Then the 99.9th (0.1th) percentile 
of precipitation of run5 (run90) in the baseline period is determined. We define the wet (dry) extreme event as a 
day where precipitation is higher (lower) than the 99.9th (0.1th) percentile at different warming levels. Likewise, 
the number of wet and dry events is countered afterward. Through combination with each other, four types of 
concurrent extremes are defined, which are hot-wet, hot-dry, cold-wet and cold-dry extreme events, respectively. 
The probabilities of occurrence of these compound events are further analyzed in different time scales at each 
grid, that is, in the same month and year.

The arrival timing of 1.5°C and 2.0°C warming levels relative to the pre-industrial period (1850–1900) is deter-
mined for each member of CMIP6 under different SSP scenarios. First, the global mean surface temperature is 
averaged in a 20-year running window. Then, the threshold year is determined when the global mean temperature 
reaches 1.5°C or 2.0°C relative to the pre-industrial level (Kim & Bae, 2021; Tang et al., 2022; Zhao et al., 2021). 
Finally, a 20-year period extending from 9 years prior and 10 years after the threshold year is as the future projec-
tion period at different warming levels and scenarios (Table 1). Moreover, the period (1995–2014) with the same 
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20-year length is as the historical or reference period to validate the performance of each GCM and calculate 
the extreme indices in the future. The avoided impact of temperature and precipitation indices at an extra 0.5°C 
warming level is computed as follows (Li et al., 2018, 2021):

AI =
Δ𝑉𝑉2.0 − Δ𝑉𝑉1.5

Δ𝑉𝑉2.0

× 100%� (2)

Here, AI represents the avoided impact, 𝐴𝐴 Δ𝑉𝑉2.0 and 𝐴𝐴 Δ𝑉𝑉1.5 show the differences in temperature or precipitation indi-
ces between the 2.0°C and 1.5°C relative to the baseline simulation, respectively.

2.4.  Taylor Diagram and Skill Score

To quantify the agreement on the spatial pattern of the historical climate variables between observations and 
model simulations, the Taylor diagram (Taylor, 2001) is applied in this paper. Taylor diagram can provide three 
skill indicators: spatial correlation coefficient (R), centered pattern root-mean-square error (CRMSE), and the 
ratio of spatial standard deviation (RSD). There is a reference point (REF) in its axis as the observation. The 
angular axes of the diagram indicate spatial correlations between modeled and observed values. The value of 
radial axes shows spatial standard deviation. The closer to the REF arc the model point is, the higher reproduc-
ing the ratio spatial standard deviation of observation is. The distance between the model and the REF point 
represents the centered pattern root-mean-square error against the observations. A good simulation would be that 
both the spatial correlation and ratio of spatial standard deviations are close to 1 and the centered pattern-root 
mean-square error is equal to 0 (Jiang et al., 2015). Additionally, to evaluate comprehensively above three perfor-
mance skills from the Taylor diagram, a skill score is used (Chen & Frauenfeld, 2014; Hirota & Takayabu, 2013):

𝑆𝑆 =
(1 +𝑅𝑅)

4

4(RSD + 1∕RSD)
2

� (3)

where S is the Taylor skill score. The score is higher and the performance is better.

3.  Results
3.1.  Model Evaluation

In spatial distribution, the output from CMIP6 multi-model mean exhibits outstanding performance in repro-
ducing the historical climatology patterns over China (Figure 1). The major hot and cold centers in simulations 
compare well against CN05.1. The bias-corrected simulations are evidently better than the raw CMIP6 simula-
tions in capturing the maximum temperature in northwestern China. In addition, the spatial distribution in the 
minimum temperature of the CMIP6 ensemble after correction is in accordance with the observation relative to 
the raw models. For both CMIP6 simulations, the annual precipitation shows an apparent feature in the spatial 
pattern, which is higher in the south and lower in the northwest. However, it is noted that the annual precipitation 
simulated by the original CMIP6 seems to have an artificial precipitation center in the Tibet Plateau compared 
with the CN05.1.

We assessed the MME mean bias of the above climate variables from the 12 CMIP6 GCMs against the obser-
vation CN05.1 in spatial distribution (Figure 2). For the maximum temperature, the raw CMIP6 GCMs show 
a warm bias (∼4°C) in the northwest of China, while the southeast is underestimated by ∼–3°C. Through bias 
correction, these biases are substantially reduced during the historical period over China, with a bias ranging from 
−1–1°C. The original CMIP6 ensemble shows an obvious underestimation in simulating the minimum temper-
ature, especially for the west and eastward regions, where the simulated minimum temperature is totally lower 
(even exceeding 5%) than the observation. Although the corrected result still has a slight cold bias compared with 
the CN05.1, the improvement is enormous relative to the no-correction CMIP6 ensemble. Additional evidence 
of the necessity for bias correction is from the results of precipitation. The overall precipitation simulated by 
raw CMIP6 over China is overvalued completely, particularly for the west, even more than 80% relative to the 
CN05.1. These wet biases are reduced to ∼20% in the process of bias correction.

Figure 3 shows the Taylor diagrams for evaluating the ability of CMIP6 models in simulating the spatial pattern 
of three climate variables. Against the observations, the majority of raw CMIP6 models (red spots) have a 
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spatial correlation between 0.8 and 0.99 for annual maximum and minimum temperature, and about 0.6–0.9 
for annual precipitation, while the values (blue spots) are above 0.99 through bias correction, indicating the 
corrected-bias models have a reasonable spatial correction with observation. Additionally, more than half of raw 
models have a ratio of variance larger than 1.0 and even exceeding 1.5 in simulating the annual precipitation, 
suggesting that the spatial variation in simulation is larger than observation over China, while these biases are 
corrected in improved CMIP6 models. As for the centered normalized root mean square error, the value in simu-
lations from bias correction is below 0.25, which is smaller than the original models, even exceeding 0.75 for 
precipitation, indicating that the corrected models have a lower amplitude of biases. Moreover, the centralized 
distribution in the bias-corrected simulations for all variables indicates a smaller inter-model spread, while the 
much larger  inter-model range in the raw CMIP6 models is found owing to the loosely scattered distribution in 
the Taylor diagram, particularly for the annual precipitation. In other words, large uncertainties among CMIP6 
models are reduced during the procedure of bias correction.

To further provide an overall evaluation of the simulation skill from above Taylor diagram in each CMIP6 model 
before and after bias correction over China, the Taylor Score (TS) is employed in this study (Figure 4). It is clear 
that all the bias-corrected CMIP6 models show a good performance in simulating the spatial distribution of these 
variables with above 0.97 TS values. The scores of bias-corrected ensemble mean are raised to 0.993, 0.994, and 
0.996 from 0.872, 0.898, and 0.703 before correction for the maximum temperature, minimum temperature and 

Figure 1.  Spatial patterns for the climatological mean maximum temperature, minimum temperature and precipitation over China during 1995–2014. The rows from 
top to bottom indicate the results from the CN05.1, raw CMIP6, and bias-corrected CMIP6, respectively.
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precipitation, respectively. Especially for the annual precipitation, the improvement after bias correction is more 
obvious due to a large increase in TS values.

In addition, the comparisons in extreme percentile thresholds between observation, raw model and bias-corrected 
model are analyzed (Figure S1 in Supporting Information S1), and the biases before and after correction are 
shown in Figure S2 in Supporting Information S1. Overall, the simulated percentile thresholds of four extreme 
indices in spatial distribution are consistent with observation, although the magnitude of bias varies before and 
after correction. The biases of simulations relative to the observation show that the superiority of bias correction 
is evident. The differences of original CMIP6 models with the CN05 observed values are larger for most indices. 
For raw models, most regions present a colder temperature than observation in calculating the percentile thresh-
old of extreme cold events, while these models overestimate the extreme wet threshold. After correction, the 
entire biases are remarkably reduced for both temperature and precipitation extreme thresholds.

The days of occurrence for four extreme indices over China in the baseline period are further calculated (Table S1 
in Supporting Information S1). Theoretically, the number of extreme events under the 0.1% or 99.9% threshold 
in the 20-year historical period will be about 7.3 days (365*20*0.001), which means the extreme events for each 
grid over China should be close to this desired value. It is noted that the number of extreme dry events could be 
more than above value due to the number of non-precipitation days. The results show that the simulated days 
of extreme hot, cold and wet in the baseline period are essentially in agreement with the observation, while the 
bias-corrected results have a smaller bias in calculating the days of extreme dry events.

3.2.  Projections at Specified Warming Levels

3.2.1.  Changes in Mean Climatology

Figures 5 and 6 depict the changes in annual maximum temperature, minimum temperature and precipitation 
over China at two global warming levels under SSP245 and SSP585 emission scenarios. Table  2 shows the 
corresponding results of the regional mean. Under SSP245, compared with the historical period, both annual 
maximum and minimum temperature will increase and the former exhibits a larger magnitude. On the whole of 
China, the maximum temperature is likely to increase by 1.43°C and 1.97°C, while the regional mean minimum 

Figure 2.  Multi-model ensemble mean bias in maximum temperature, minimum temperature and precipitation for the historical period (1995–2014). (a–c) Are biases 
before the bias correction, (d–f) are biases after bias correction.
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temperature is projected to rise by 1.02°C and 1.83°C at 1.5°C and 2.0°C global warming levels under SSP245 
scenario. However, the changes in spatial distribution are different between annual maximum and minimum 
temperature. Specifically, the changes in annual maximum temperature are larger in northwest Tibet, while the 
northeast and central China show a larger increasing trend than other regions. It is noted that the magnitude and 
spatial scope of the increase in annual minimum temperature with an additional 0.5°C warming are larger than 
the maximum temperature, even exceeding 1.5°C in some regions. Overall, compared to the baseline period of 
1995–2014, the annual precipitation over China will increase by 10.66% and 15.38% under 1.5°C and 2°C global 
warming under SSP245. In spatial distribution, except for the northwest, the magnitude of precipitation increase 
over western China will be larger than that in the south, particularly for the south of Xinjiang and the west of 
Tibet, even more than 20% compared with the baseline. The largest increase in annual precipitation with an extra 
0.5°C warming is largely focused over the southwest of Xinjiang, Beijing-Tianjin-Hebei and Shandong regions.

Compared to the baseline period, the changes in the spatial distribution of three climate variables under the 
SSP585 scenario are similar to those under SSP245 but with a larger increasing magnitude. Under an extra 0.5°C 
warming, the minimum temperature and precipitation are projected to have a smaller increase under SSP585 
than that under SSP245. For example, the area-averaged annual minimum temperature will increase by 0.8°C 

Figure 3.  Taylor diagrams of the annual maximum temperature, minimum temperature and precipitation between observation and 12 models and ensemble mean 
before (red) and after (blue) bias correction over China.
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from 1.5°C to 2.0°C under SSP245, while the value will be reduced to 0.61°C under SSP585. In other words, 
the increment of minimum temperature and precipitation with an extra 0.5°C under a high-emission scenario is 
smaller than that under a lower emission.

3.2.2.  Future Frequency of Extreme Events

The future frequency of four univariate extreme events at two global warming levels under different SSP scenar-
ios is presented in Figure 7. Under the 1.5°C and 2.0°C global warming levels, extreme hot events will be domi-
nated in most regions of China, where the frequency of occurring extreme hot weather will be above 50 days in 
some regions. A stronger increase is observed with increasing emissions and warming levels, even more than 
100  days under SSP585 scenario at the 2.0°C warming level. Theoretically, the expected univariate extreme 
temperature or precipitation events in the baseline period (1995–2014) are about 8 days (1‰*365*20). That 
means future extreme hot events at a higher warming level and emission scenario will increase by more than 10 
times compared with the baseline period. Owing to global warming, though future cold extremes can be expected 
to be found in China, its probability of occurrence is smaller than other indices. The north of China and Tibet 
region will experience about 8–10 days of extreme cold events in future global warming scenarios. However, the 
projected increase of extreme cold days will further shrink at a higher warming level, particularly in the north of 
China. Projected extreme dry events can reach about 20 days in total for most regions of China. The maximum 
occurrence frequency for dry extremes will be found in the west of Xinjiang, the southwest of Tibet and southern 
Sichuan. Most parts of China are likely to experience more extreme wet events with 30–40 days approximately. 
This probability of occurring the extreme wet events reaches 5 times larger compared to the reference period and 
is larger than that of dry events. In spatial distribution, the southeast of Xinjiang and northwest of Tibet are likely 
to occur more extreme wet events under 1.5°C and 2.0°C global warming.

Four compound variables, namely in the same month concurrent extreme hot-dry events, extreme hot-wet events, 
extreme cold-dry events, and extreme cold-wet events, are analyzed (Figure 8). Overall, the probability of concur-
rence of two extreme events is fairly smaller than that of single ones. Nevertheless, the results show that a great 
possibility for co-occurred extremes over China is the clustered extreme hot-wet events, particularly in the west 
of China, where monthly hot-wet events tend to experience above 6 under future global warming levels and 
emission scenarios. Additionally, a higher global warming level will result in a strong increasing magnitude. For 
example, the number of extreme hot-wet events with concurrence in the same month in northwest Tibet is likely 

Figure 4.  Taylor Score of the CMIP6 ensemble in simulating the spatial patterns of the maximum temperature, minimum temperature and precipitation during 
1995–2014.
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to be up to 10 months at the 2.0°C warming level under the SSP585. On the other hand, in the same month, the 
frequency of occurrence for other clustered extremes is small in most parts of China (about 0.1–0.2 months). For 
the hot-dry events, only a few regional hotspots in Xinjiang are projected to exceed 0.5 months. Likewise, the 
numbers of concurrence for the two minimum daily temperature-related compound events are quite small across 
the whole of China. The extreme cold-dry/wet events in the same month mainly are found in the southern and 
western margins of Tibet.

Figure 9 presents the concurrence of four joint extreme events in the same year at two warming levels under 
SSP emission scenarios. It is easy to understand that the probability of co-occurring compound extremes in the 
same year is larger than that in the same month. The results describe that the most compound extreme event that 
occurs in the same year is the hot and wet extremes, which is similar to the results from the same month. At a 

Figure 5.  Spatial patterns for the changes in maximum temperature, minimum temperature and precipitation in 1.5°C and 2°C global warming levels from the CMIP6 
models under SSP245 scenario (relative to the period of 1995–2014) over China. The right column shows the results due to an increase of 0.5°C. The light gray dot area 
indicates the statistical test with a Student-t statistical significance level of 5%.
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1.5°C warming, about 2–4 yearly clusters of extreme hot-wet events would 
occur over China, and up to 3–5 years with joint hot-dry extremes tend to be 
observed at the 2.0°C warming level. For joint extreme hot and dry events 
in the same year, the number of events is larger than that in the same month, 
suggesting that the extreme hot-dry events are likely to coincide within the 
same year but these events could hardly occur in the same month. The maxi-
mum number of extreme hot-dry events in the same year is around 3 in the 
future global warming period over the margin regions of western China. 
Compared with the hot-related compound indices, the probability of concur-
rence for cold-dry and cold-wet events in the same year is very limited, espe-
cially for the cold and dry extremes, the concurrent probability of the coldest 

Figure 6.  Spatial patterns for the changes in maximum temperature, minimum temperature and precipitation in 1.5°C and 2°C global warming levels from the CMIP6 
models under SSP585 scenario (relative to the period of 1995–2014) over China. The right column shows the results due toan increase of 0.5°C. The light gray dot area 
indicates the statistical test with a Student-t statistical significance level of 5%.

Table 2 
Regional Mean Changes in Maximum and Minimum Temperature and 
Precipitation Over China at Different Global Warming Levels Under 
SSP245 and SSP585 (in Brackets) Emission Scenarios

Warming levels TMAX (°C) TMIN (°C) PRE (%)

1.5°C 1.43 (1.56) 1.02 (1.44) 10.66 (13.27)

2.0°C 1.97 (2.12) 1.83 (2.06) 15.38 (16.48)

△0.5°C 0.54 (0.56) 0.80 (0.61) 3.71 (3.21)

Note. The changes are significant statistically at a confidence level of 0. 95.
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and driest extreme events could be marginal in both the same year and month. In the west of China, there is only 
1 year on average with cold-wet concurrent extreme events in the future.

3.2.3.  Avoided Impacts

The avoided impacts of the maximum temperature, minimum temperature, precipitation and the corresponding 
extreme indices in China from 2.0°C to 1.5°C warming levels are further analyzed (Figure 10 and Table 3). 
Overall, though there are differences among CMIP6 models, most models show that there are largely avoided 
impacts under both future emission scenarios. If global warming is kept at 1.5°C rather than 2°C, the avoided 
impacts of three climate variables will exceed 25%, except for the precipitation under SSP585 scenario (23.3%). 
For the univariate extreme events, the avoided impacts for extreme hot events and extreme wet events are also 
above 25%, particularly for the extreme hot events, the regional mean result is even more than 50%, with 54.26% 
and 50.18% under SSP245 and SSP585 scenarios, respectively. It means that the occurrence of extreme hot events 
over China would decrease more obviously compared with other univariate extremes when global warming is 
kept at 1.5°C. In other words, when global warming decreases by 25% (from 2.0°C to 1.5°C), the reduced extreme 
hot events will be far higher than this percentage. In the same month, the avoided impacts of wet-related extremes 
will be larger than those of dry-related compound extremes, while the concurrent cold-dry extreme events have 

Figure 7.  Occurrence of univariate extreme events at different warming levels under SSP245 (the first and second rows) and SSP585 (the third and fourth rows) 
scenarios. The columns from left to right are the extreme hot, extreme cold, extreme dry and extreme wet events, respectively.
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less influence (only 13.27% under SSP585) on the added 0.5°C warming. On the other hand, the avoided impact 
from 0.5°C less warming for the concurrence of hot-dry extremes in the same year is higher than other compound 
indices. Likewise, the avoided changes of concurrent cold-dry extreme events are smaller in the same year.

In view of uncertainties, the CMIP6 models show a larger spread in analyzing the avoided impacts for the 
temperature-related indices, such as extreme hot and extreme cold events. For the compound extreme indices, the 
uncertainties of avoided impacts among models in the same month are more than those in the same year, espe-
cially for the hot-dry and cold-wet extreme events.

3.2.4.  Comparison With Different Extreme Threshold

In this section, we analyzed and compared the results of extreme events defined by the thresholds 99% (1%) with 
very extreme or ultra-extreme events. The univariate and compound extreme indices in spatial under different 
emission scenarios and warming levels are shown in Figures S3–S5 (see the Supporting Information S1). Over-
all, the occurrence of univariate or compound extreme events defined with the 99% (1%) threshold in spatial 
distribution is similar with the ultra-extreme events. However, owing to more extreme thresholds, the possibility 
of occurrence for ultra-extreme events are smaller in terms of the number and regional scope of occurrence, 

Figure 8.  Concurrence of compound extreme events in the same month at different warming levels under SSP245 (the first and second rows) and SSP585 (the third 
and fourth rows) scenarios. The columns from left to right are the extreme hot and dry, extreme hot and wet, extreme cold and dry, and extreme cold and wet events, 
respectively.
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especially for the concurrence of compound extreme events in the same month or year. Specifically, compared 
with the ultra extremes, the hot-dry and cold-dry extreme events defined with the 99% (1%) threshold are likely 
to occur in a month or year more frequently in the southern regions of China, while these ultra-extreme events 
are mainly found in the northwest. On the other hand, most regions in China are expected to suffer more hot-wet 
extreme events defined with the 99% (1%) threshold in a month or year compared with ultra-extreme events.

The regional mean avoided impacts of the univariate and compound extreme indices are calculated for two 
different percentile thresholds (Table S1 in Supporting Information S1). The results show that most univariate 
ultra-extreme indices have larger avoided impacts, suggesting the risk resulting from very extreme events would 
be avoided if global warming is reduced from 2.0°C to 1.5°C. In other words, although the frequency of occur-
rence for ultra-extreme events is small, the avoided impacts are larger than the extremes defined with the 99% 
(1%) threshold. On the other hand, the avoided impacts of ultra-extreme events are mainly found in projections 
on the hot-related compound extreme indices, that is, the hot-dry and hot-wet extremes. With the 99% (1%) 
threshold, the impacts of extreme cold-dry compound extreme are smaller than the ultra-extreme events under an 
additional 0.5°C warming scenario.

Figure 9.  Concurrence of compound extreme events in the same year at different warming levels under SSP245 (the first and second rows) and SSP585 (the third 
and fourth rows) scenarios. The columns from left to right are the extreme hot and dry, extreme hot and wet, extreme cold and dry, and extreme cold and wet events, 
respectively.
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4.  Discussions and Conclusions
In this study, we use a downscaled and bias-corrected CMIP6 ensemble under two continuously-warming scenar-
ios (i.e., SSP245 and SSP585) to address how future global warming would affect the climate ultra-extreme 
conditions in China. In particular, we consider two global warming levels (1.5°C and 2.0°C) scenarios (SSP245 
and SSP585) in order to quantify the potential benefits of slowing down global warming in the context of China. 
The main conclusions can be summarized as follows:

The bias-corrected CMIP6 models exhibit an outstanding capability in reproducing the historical patterns of 
maximum, minimum temperature and precipitation over China. The bias-corrected outputs distinctly outperform 
the raw CMIP6 simulations in capturing the maximum temperature, particularly in northwestern China. The 
obviously underestimated minimum temperature in raw models across the west and eastward regions is corrected. 
Likewise, the overall precipitation simulated by raw CMIP6 over China is overvalued completely, and even there 

Figure 10.  The avoided impacts (unit: %) of the maximum temperature, minimum temperature, precipitation and the corresponding extreme indices from 0.5°C less 
warming over China under SSP245 and SSP585 scenarios. Box plots show the inter-model spread and the cross depicts the multi-model mean. The dotted line indicates 
25% changes from 2°C to 1.5°C in global mean temperature.

Table 3 
The Regional Mean Avoided Impacts of Maximum Temperature, Minimum Temperature, Precipitation and the Corresponding Extreme Indices

Days TMAX TMIN PRE Extreme hot Extreme cold Extreme dry Extreme wet

SSP245 29.83 40.82 29.14 54.26 18.25 21.17 33.18

SSP585 30.21 27.01 23.33 50.18 14.87 16.87 30.29

Months Extreme hot-dry Extreme hot-wet Extreme cold-dry Extreme cold-wet

SSP245 29.19 51.35 24.07 56.06

SSP585 41.33 43.17 13.27 33.04

Years Extreme hot-dry Extreme hot-wet Extreme cold-dry Extreme cold-wet

SSP245 30.52 41.59 15.63 26.78

SSP585 23.46 36.10 11.00 19.06

Note. (unit: %)
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is an artificial precipitation center in the Tibet Plateau before correction. These biases and uncertainties among 
models are reduced efficiently in the process of bias correction.

On the whole of China, the maximum temperature is likely to rise by 1.43°C and 1.97°C, while the regional mean 
minimum temperature is tended to increase by 1.02°C and 1.83°C at 1.5°C and 2.0°C global warming levels 
under SSP245 scenario. The magnitude and spatial scope of the increase in minimum temperature with an addi-
tional 0.5°C warming are larger than the maximum temperature. The magnitude of precipitation increase over 
western China will be larger than that in the south, especially for the south of Xinjiang and the west of Tibet. The 
increment of minimum temperature and precipitation with an extra 0.5°C under SSP585 is smaller than SSP245.

Under the 1.5°C and 2.0°C warming levels, extreme hot conditions would become dominant in most regions of 
China and some regions are likely to experience over 50 extreme hot days in some regions at future warming 
levels. The frequency of extreme cold conditions is projected to be smaller than other indices. The utmost occur-
rent frequency for dry extremes is mainly concentrated over the west of Xinjiang, the southwest of Tibet and 
southern Sichuan. Future extreme wet events tend to occur in the southeast of Xinjiang and northwest of Tibet 
under 1.5°C and 2.0°C global warming. We also compared the projections of these ultra-extreme events between 
raw and bias-corrected results. Relative to the raw output of CMIP6 (Figure S6 in Supporting Information S1), the 
projected number of univariate ultra-extreme events over China under the different warming levels and scenarios 
is larger. However, there are some discrepancies between the before and after bias correction in the spatial distri-
butions. For ultra-extreme dry events, the raw GCMs show more frequent extremes would be found in the south 
of Xinjiang, and the extended region is larger than the results from bias correction.

We analyzed the future co-occurring frequency of four compound extreme indices in the same month and year. 
More frequent extreme hot-wet events with concurrence in the same month and year would be expected for China 
under the continuously-warming scenarios. This is particularly obvious for the west where more than 6 hot-wet 
months are likely to take place under future warming scenarios. This may imply that more extreme heat waves and 
flooding events would coincide in the same month or year in China in the future. The numbers of concurrence for 
the cold-dry and cold-wet compound events in the same month or year are quite small, while the extreme hot and 
dry events are likely to coincide within the same year across China. The differences between the bias-corrected 
and original output of CMIP6 in projections in concurrent ultra-extreme events in the same month and year are 
analyzed in Figures S7 and S8in Supporting Information S1. The results show that the northwest of China tends 
to have more extreme hot-dry events with concurrence in the same month in the future from the raw results. 
Although the compound hot and wet extremes are more frequent than other indices, the projected overall occur-
rence frequency is smaller than that in the bias correction. Additionally, two cold-related compound extremes are 
projected in the local areas (i.e., the western fringes of Tibet) for the bias-corrected results, which are not found 
in the raw CMIP6. Similar differences are also presented in the projection of the concurrent extreme events in 
the same year. For the results from bias correction, besides the overall more frequency of concurrence, the local 
regions are also projected to have more risk to occur these compound extreme events (i.e., cold and dry extremes).

The avoided impacts from 1.5°C to 2.0°C for extreme hot events and extreme wet events are above 25%, particu-
larly for the extreme hot events, the regional mean result is even more than 50%, with 54.26% and 50.18% under 
SSP245 and SSP585 scenarios. In the same month, the avoided impacts of wet-related extremes will be larger 
than those of dry-related compound extremes, while the concurrent cold-dry extreme events have less influence 
(only 13.27% under SSP585) on the added 0.5°C warming. The positive avoided impacts for all univariate and 
compound extremes suggest that the risk of extreme events over China would decrease robustly when global 
warming is kept to 1.5°C rather than 2°C under both SSP245 and SSP585. Therefore, it is imperative to keep a 
lower warming target and continued efforts will offer considerable benefits in terms of minimizing the extreme 
climate events and their associated socio-economic impacts across China.

Finally, it should be mentioned that there are some unavoidable uncertainties in the projection of future extreme 
events change. The bias correction approach in this study is one of the uncertainties. Although we have analyzed 
different probability functions to fit the daily temperature and precipitation distributions and selected the most 
suitable function to project the frequency of extreme events, the experiments are still limited and it is very 
necessary to explore the optimal statistical downscaling method in further study, including the other probability 
functions, improved QM approaches, etc (Guo et al., 2020; Zhu et al., 2022). On the other hand, the methods for 
defining different warming levels and the thresholds of very extreme or ultra-extreme events also are factors of 
uncertainty. The timing of reaching global warming levels between CMIP6 models is different, and it may also 
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be related to internal climate variability (Henley & King, 2017; Smith et al., 2018) and aerosol effects (Dittus 
et al., 2020) in models. Moreover, as the discussion above, different definitions of extreme percentile thresholds 
can perform various projections on extreme events in spatial distribution and frequencies of occurrence. Besides, 
more different climate models and RCP scenarios should be involved in further study to reduce the projection 
uncertainties.

Data Availability Statement
Data sets analyzed during the current study are available in the Earth System Grid Federation (ESGF) Peer-to-Peer 
(P2P) distributed data archive (https://aims2.llnl.gov/metagrid/search/?project=CMIP6).
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