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Abstract 11 

The idea of dispatching multiple unmanned surface vehicles (USVs) to undertake marine missions has ignited 12 

a burgeoning enthusiasm on a global scale. Embarking on a quest to facilitate inland water monitoring, this 13 

paper presents a systematical approach concerning global path planning and path following for heterogeneous 14 

USVs. Specifically, by capturing the heterogeneous nature, an extended multiple travelling salesman problem 15 

(EMTSP) model, which seamlessly bridges the gap between various disparate constraints and optimization 16 

objectives, is formulated for the first time. Then, a novel Greedy Partheno Genetic Algorithm (GPGA) is 17 

devised to consistently address the problem from two aspects: (1) Incorporating the greedy randomized 18 

initialization and local exploration strategy, GPGA merits strong global and local searching ability, providing 19 

high-quality solutions for EMTSP. (2) A novel mutation strategy which not only inherits all advantages of 20 

PGA but also maintains the best individual in the offspring is devised, contributing to the local escaping 21 

efficiently. Finally, to track the waypoint permutations generated by GPGA, control input is generated by the 22 

nonlinear model predictive controller (NMPC), ensuring the USV corresponds with the reference path and 23 

smoothen the motion under constrained dynamics. Simulations and comparisons in various scenarios 24 

demonstrated the effectiveness and superiority of the proposed scheme. 25 

 26 
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 28 

Note to practitioners: This paper is motivated by our ongoing experiments on the USV-assisted inland water 29 

monitoring missions, which collect monitoring data for a wide range of marine elements including water 30 

temperature, depth, salinity, biological indexes, and bathymetry. With the aid of the USVs, the collection of 31 

monitoring data benefits from a great loss of manpower and resources. However, the implementation of our 32 

approach has encountered a practical challenge due to the diverse sensors equipped on the USVs. This has 33 

resulted in certain areas being accessible only to specific USVs since they are equipped with the required 34 

sensors. For instance, the targets that required temperature or salinity data can only be visited by the USVs 35 

equipped with conductivity-temperature-depth profile collector. Unfortunately, existing literature on global 36 

path planning mainly focuses on homogeneous USVs, whereby the heterogeneous capabilities are omitted. 37 

More to the problem, after planning the target sequence, the USVs’ practical waypoint following is challenging. 38 

Traditional waypoint following methods such as LOS-based is impossible to theoretically impose any 39 

constraint on the existing LOS laws, neither on the control actions nor their increments. What’s more, they 40 

have also shown weak ability for disturbance rejection, which may hinder their practical applications. To 41 

address the abovementioned problems, we propose a novel systematic approach that combines global path 42 

planning and path following. Using the proposed scheme, global planning optimality under heterogeneous 43 

constraints and appropriately maneuvering the USV with a desired response within various physical 44 

constraints can be achieved simultaneously. We believe our work could benefit the readers who are currently 45 

conducting research in deploying multi-agent systems for real-world engineering problems. 46 

1. Introduction 47 

With artificial intelligence at the helm, the advancements of Unmanned Surface Vehicles (USVs) have been 48 

propelled to new heights, charting a course towards a brighter future of autonomous exploration and unlocking 49 

the secrets of aquatic world [1–5]. Specifically, much attention has been given to exploit USVs to perform 50 
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ocean and marine tasks in hostile or human-inaccessible areas, e.g., maritime patrolling, coastal guarding, and 51 

maritime search and rescue [6–8]. Moreover, USVs can be applied to measure the environment data of inland 52 

water, which is crucial for achieving environmental sustainability and securing water resources [9–16]. The 53 

water monitoring mission follows different purposes, such as radioactive material detection [17], measuring 54 

basic marine elements (currents, temperature, and salinity) [18,19], biological investigations [20], bathymetry 55 

surveying [21], as well as observing water columns or warming trend to reveal ocean carbon cycle [20,22,23]. 56 

In order to successfully complete missions for water monitoring, the planning and control algorithms of USVs 57 

have always been the keys to such problems [24]. On the one hand, the global planning algorithm aims to 58 

optimize the path sequence by assigning task points to multiple USVs in a manner that minimizes energy 59 

consumption and equalizes the workload distribution among USVs [25,26]. On the other hand, the waypoint 60 

following control method guides the USVs to successfully visit the task points [27,28]. Therefore, to ensure 61 

efficient and reliable operation for water monitoring, the global path planning and path following problem 62 

should be addressed properly.  63 

 64 

 65 
Fig. 1. Illustration of a typical monitoring mission 66 

 67 

Global path planning for USVs aims to compute the optimal routes based on the distribution of monitoring 68 

targets, requirements of the mission, and settings of environment surroundings [6], see Fig. 1. Prior research 69 

has traditionally equated global path planning problem with the classical traveling salesman problem (TSP), 70 

wherein a set of mission targets are equally prioritized for visitation and the objective is to determine the 71 

shortest possible sequence of waypoints [25,29]. The Multiple Traveling Salesmen Problem (MTSP), which 72 

can be defined as finding the shortest route for multiple USVs, is introduced when there are various USVs 73 

involved. TSP-variants are usually non-deterministic polynomial (NP-hard) problems [26,30]. These problems 74 

are for which, even in theory, no shortcut or algorithm is possible to lead to a fast and optimal solution. To 75 

obtain an optimal solution, an exhaustive analysis of all possible outcomes is required, which is 76 

computationally intensive. Consequently, heuristic approaches such as evolutionary algorithms (EA), ant 77 

colony optimization (ACO), and particle swarm optimization (PSO) are ideal for addressing these problems 78 

since they can provide satisfactory sub-optimal solutions with comparatively low computational burden 79 

[25,31].  80 

 81 

Presently, booming academic and technological advancements pertaining to the global path planning of USVs 82 

have emerged in the latest research works. Considering the distribution of the targets, [25] used an orientation 83 

angle-based grouping strategy to enhance PSO for water quality detection and sampling. Compensating for 84 

the inherent shortcomings of conventional GA including slow convergence and premature, [31] proposed the 85 

multiple offspring GA for the global path planning of unmanned surface vehicles. To navigate a USV in a real 86 



3 

 

maritime environment, a series of studies on the implementation of improved particle swarm optimization 87 

have been carried out by [30,32]. By minimizing the energy consumption per unit time in multiple task 88 

locations, a chaotic and sharing-learning particle swarm optimization (CSPSO) algorithm is proposed [33]. To 89 

solve the multiple-waypoint path planning for survey USVs, a discrete group teaching optimization algorithm 90 

(DGTOA) is devised by [34]. Enhancing the global search ability for unmanned surface vessel path planning, 91 

[26] devised an improved differential evolution particle swarm optimization algorithm (DePSO). In 92 

conjunction with self-organizing map (SOM), an improved genetic algorithm is studied by [35] to address the 93 

path-planning problems for a multiple unmanned surface vehicle (USVs) system. However, MTSP-variants 94 

are difficult to solve since they are non-convex [36]. Existing meta-heuristic methods feature low convergence 95 

speed and may also fall into local optimization easily. Thus, a more effective combinatorial optimization 96 

method should be devised for the path planning problem, with an emphasis on improving the global search 97 

capability through the integration of a convenient and effective mechanism [36]. 98 

 99 

Moreover, one crucial aspect that has rarely been addressed by current studies is the heterogenous nature 100 

pertaining to the USVs’ capabilities. In essence, the abovementioned MTSP-variant is an abstraction of the 101 

practical problems in which multiple executing individuals (homogeneous agents) are involved and share a 102 

common workspace (target points) [25,31,32,30,33,34]. However, individuals have the same workspace in 103 

real-world problems. In some cases, the targets of individual USVs are not the same but overlap with each 104 

other. Thus, each USV has to perform not only the common tasks that can be accessed by any of them but also 105 

complete the tasks that correspond to their exclusive capabilities. In water monitoring missions, since the 106 

USVs are equipped with different types of sensors, some areas should be only visited by one specific type of 107 

USV. For instance, the targets that require temperature or salinity data can only be visited by the USVs 108 

equipped with conductivity-temperature-depth profile collector. Such a problem is frequently encountered in 109 

real-world applications, yet there is quite limited research available on it. To the best of our knowledge, the 110 

global path planning problem of heterogeneous USVs is still an open and vital topic at the current stage.  111 

 112 

In addition to global path planning, a feasible waypoint tracking strategy ensures the USV to access the 113 

reference target sequence as precisely as possible, thereby contributing to successfully completing the 114 

missions [28,37]. Waypoint tracking is similar to the straight-line path following problem, there are three 115 

objectives: 1) minimizing the cross-tracking error along the reference path and real trajectory; 2) achieving 116 

smooth turns and avoiding drastic maneuvers; and 3) maintaining a constant surge speed [38,39]. Previous 117 

studies have divided the traditional path following methods into two separate modules in a cascade structure: 118 

the guidance module and a low-level controller [37,38]. On the one hand, the guidance module is in charge of 119 

producing the set points for the heading angle and forward speed along with their corresponding time 120 

dependencies, such that the USV should follow the desired path and adhere to the time restrictions for the 121 

desired forward speed. The low-level module, on the contrary, has a controller that works with the propellers 122 

to track the set points that the guidance layer provides. As a result, in the conventional path following problem, 123 

the low-level controller concentrates on the dynamics while the guidance module concentrates on the 124 

kinematics [27,37].  125 

 126 

In the literature, many different strategies have been proposed for the path following of USVs. For the 127 

guidance module, a well-known method for path following of straight lines is the line-of-sight (LOS) guidance, 128 

which is based on the approach of experienced helmsmen who steer the vessel toward a point lying at a 129 

constant distance ahead of the ship along the desired path. LOS has been enhanced over the years, including 130 

application to Dubins paths [40], compensating for the drift effect [41], rejection of severe ocean disturbances 131 

[42], combination with fuzzy logic system [43], and solving the large curvature path following [44]. As for 132 

the low-level control module, extensive research has taken place in the past using ideas from almost all 133 

branches of control engineering: robust control [38], sliding mode control [45], deep reinforcement learning 134 

and neural network [46–48], and backstepping control [49]. However, traditional control strategies are usually 135 

limited by the constraints on states as well as their increments in real mechanical system, and none of the 136 

above-mentioned works has considered the dynamic bounds explicitly. Moreover, since traditional path 137 

following schemes used to maneuver the USV along the prescribed path are designed separately, it is difficult 138 

to theoretically impose such dynamic limits on the traditional methods, neither on the control actions nor on 139 
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their derivatives [27,37].  140 

 141 

As observed from the foregoing works, domestic and foreign researchers undertook a series of studies on the 142 

global path planning of USVs and path follow problems. However, it should be noted that past research has 143 

certain shortcomings: (1) Since existing literature mainly focuses on the global path planning problem of 144 

homogeneous USVs, a general problem model for the heterogeneous USVs is urgently desirable; (2) We are 145 

of the opinion that there is still room for improvements in combinatorial optimization approaches to solve the 146 

non-convex problems such as MTSP-variants. A more effective combinatorial optimization method needs to 147 

be specifically designed to facilitate the solutions. (3) Traditional guidance and control schemes are separated 148 

dynamics, which is impossible to theoretically impose any constraint, neither on the input signals nor on their 149 

control increments. 150 

 151 

Motivated by the considerations mentioned above, this paper explores the global path planning for 152 

heterogeneous USVs, and their path follow problems in the context of the water monitoring mission. The main 153 

contributions are illustrated as follows: 154 

 A novel global path planning and waypoint following framework is proposed to formulate path-planning 155 

and path-tracking in an organically way. Augmented practicability has been achieved by extensive 156 

simulation and experimental evaluations under complex environments.  157 

 An extended multiple travelling salesmen problem (EMTSP) is established by bridging the heterogeneous 158 

nature and various disparate constraints jointly, providing a systematic model for the global path planning 159 

of multiple heterogeneous USVs. 160 

 Incorporating the greedy randomized initialization and local exploration, we propose the Greedy Partheno 161 

Genetic Algorithm (GPGA) to consistently address the global path planning. GPGA merits strong global 162 

searching ability and facilitates local escaping simultaneously. In such a case, the underlying optimization 163 

problem is fully exploited, and it converges quickly to generate optimal waypoint sequence. 164 

 With the aid of the proposed nonlinear model predictive controller, reference targets can be properly 165 

tracked by virtue of the NMPC strategy where robust maneuvering is ensured by respecting USV’s 166 

physical constraints and external disturbances, thereby contributing to the successful completion of water 167 

monitoring.   168 

 169 

The remaining sections of this article are organized as follows. The problem formulation is described in 170 

Section 2. Sections 3 presents the global path planning algorithm and NMPC design. The superiority and 171 

efficiency of the proposed framework is verified through illustrative simulations in Sections 4. Finally, the 172 

concluding remarks are given in Section 5. 173 

2. Problem formulation 174 

The overall framework of the problem consists of two modules, i.e., extended multiple travelling salesman 175 

problem (EMTSP) and path following problem. The first module aims to obtain a multi-target cruise 176 

permutation, which provides USVs with a sequence traversing all non-repeating targets. In this process, the 177 

heterogeneity of the targets and USVs is considered. Based on the planned target sequence, the second module 178 

guides the USVs traversing all target points through an ocean environment while keeping the tracking error 179 

as small as possible.  180 

2.1.Heterogeneous global path planning problem 181 

2.1.1. USV model 182 

Suppose the set of the USVs is denoted by 𝑈𝑘 = {𝑈1, 𝑈2, 𝑈3, … , 𝑈𝑁𝑈} , 𝑘 = 1, 2, 3, … ,𝑁𝑈 , and 𝑁𝑈  is the 183 

number of the USVs. Due to the various types of the equipment onboard, the first attribute lies on the 184 

functionality of the USVs. Suppose the USV has the attribute of the exclusive functional type, which is denoted 185 

by 𝐹𝑘 = {𝐹1, 𝐹2, … , 𝐹𝑁𝐹}, 𝑘 = 1, 2, 3, … , 𝑁𝑈, where 𝑁𝐹 is number of the types. It indicates that USV 𝑈𝑘 186 

possesses the unique capability of executing a specific type of task, e.g., the mapping mission must be 187 

performed by the USVs with surveying devices onboard while the attacking mission must be completed by 188 
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USVs with weapons. 189 

2.1.2. Task model 190 

Suppose the set of the tasks is denoted by 𝑇𝑖 = {𝑇1, 𝑇2, 𝑇3, … , 𝑇𝑁𝑇}, and 𝑁𝑇 is the number of the targets. To 191 

be in accordance with the USVs’ functions, the task set is divided into 𝑁𝐹 + 1 disjoint nonempty sets, i.e., 192 

tasks with common functional type 𝐹𝐶
′ and tasks with exclusive functional type 𝐹′, ∀𝐹′ ∈ {𝐹1

′, 𝐹2
′, … , 𝐹𝑁𝐹

′ }. 193 

The common tasks can be visited by any USVs while the exclusive tasks can be only accessed by specific 194 

USVs, and it is formulated as follows: 195 

𝐹𝑘 = 𝐹𝑖 ′ or 𝐹𝑘 = 𝐹𝑐
𝑖 ′, 𝑖 ∈ 1,2, … ,𝑁𝑇, 𝑘 = 1,2, … ,𝑁𝑈. (1) 

 196 

2.1.3. Problem statement 197 

To determine the task sequence, an extended multiple traveling salesman problem (EMTSP) is formulated, in 198 

which the heterogeneous nature is considered. Suppose the set of the USVs is denoted by 𝑈𝑘 =199 

{𝑈1, 𝑈2, 𝑈3, … , 𝑈𝑁𝑈} , and the target set is denoted as 𝑇𝑖 = {𝑇1, 𝑇2, 𝑇3, … , 𝑇𝑁𝑇} , where 𝑁𝑈 < 𝑁𝑇 . It can be 200 

formulated over a complete digraph 𝐺(ℌ, 𝐸), where vertex set ℌ = {0, 1, 2, … ,𝑁𝑇 − 1} numbers the tasks; 201 

and each edge in (𝑖, 𝑗) ∈ 𝐸, 𝑖 ≠ 𝑗, is associated with a weight 𝜔𝑖𝑗 representing a visit cost between two 202 

tasks 𝑖 and 𝑗. The binary variable 𝑥𝑖𝑗𝑘 = 1, 𝑖 ≠ 𝑗, 𝑖, 𝑗 ∈ ℌ, 𝑘 ∈ 𝑍, if the 𝑘th USV passes through edge 203 

(𝑖, 𝑗) ; and otherwise 𝑥𝑖𝑗𝑘 = 0 . Consequently, the tour cost 𝜔𝑖𝑗  is obtained by calculating the distance 204 

between tasks 𝑖 and 𝑗, which gives: 205 

𝜔𝑖,𝑗 = ‖𝑇𝑖 − 𝑇𝑗‖, (𝑖, 𝑗) ∈ 𝐸. (2) 

Then the total cost of the USV 𝑈𝑘 is: 206 

𝐷𝑘 = ∑ ∑ 𝜔𝑖,𝑗𝑥𝑖𝑗𝑘

𝑁𝑇−1

𝑗=0

𝑁𝑇−1

𝑖=0

, (3) 

Based on the aforementioned models, the formulated multi-objective problem is stated as follows: 207 

min𝐹 = 𝑓1 + 𝑓2  (4) 

𝑓1 = ∑ 𝐷𝑘
𝑁𝑈
𝑘=1   (5) 

𝑓2 = Max 𝐷𝑘⏟    
𝑘=1,2,…,𝑁𝑈

− Min 𝐷𝑙⏟  
𝑙=1,2,…,𝑁𝑈

  
(6) 

subject to the following constraints: 208 

𝜔𝑖,𝑗 = ‖𝑇𝑖 − 𝑇𝑗‖, (𝑖, 𝑗) ∈ 𝐸  (7) 

𝐷𝑘 = ∑ ∑ 𝜔𝑖,𝑗𝑥𝑖𝑗𝑘
𝑁𝑇−1
𝑗=0

𝑁𝑇−1
𝑖=0   (8) 

∑ 𝑥0𝑖𝑘
𝑁𝑇
𝑖=1 = 1, 𝑖 ∈ ℌ, 𝑘 = 1,2, … ,𝑁𝑈 (9) 

∑ 𝑥𝑗0𝑘
𝑁𝑇
𝑖=1 = 1, 𝑗 ∈ ℌ, 𝑘 = 1,2, … ,𝑁𝑈 (10) 

∑ ∑ 𝑥𝑖𝑗𝑘
𝑁𝑇−1
𝑖=0

𝑁𝑈
𝑘=1 = 1, 𝑖 ≠  𝑗, 𝑗 ∈ ℌ\{0}, 𝑘 = 1,2, … ,𝑁𝑈, if 𝛼 = 0 (11) 

𝐹𝑘 = 𝐹𝑖 ′ or 𝐹𝑘 = 𝐹𝑐
𝑖 ′, 𝑖 ∈ ℌ, 𝑘 = 1,2, … ,𝑁𝑈. (12) 

 209 

Remark. 1. The constraints are expounded as follows. Eq. (7)-(8) denote the expressions of the visit cost 𝜔𝑖,𝑗 210 

and total cost of a USV 𝐷𝑘. Eq. (9)-(10) indicate the every USV starts from and returns to the depot after the 211 

tour. Eq. (11) denotes each task except depot must be visited by a USV exactly once. Eq. (12) indicates that 212 

the USV must visit the its own exclusive task or a common task.  213 

 214 

2.2.Path following problem 215 

This section briefly describes the three-DOF maneuvering model for the motion of an USV moving in the 216 

horizontal plane and a basic statement of the path following problem. For more details, the reader is referred 217 

to [50]. 218 
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2.2.1. Basic assumptions 219 

The general model of a typical USV has six degree-of-freedom (DOF): surge, sway, yaw, heave, roll, and pitch. 220 

These can be simplified into a 3-DOF model with the following assumptions:  221 

 222 

Assumption 1: The motions that generated by wind, waves, and currents including heave, roll, and pitch are 223 

negligible.  224 

Assumption 2: The hydrodynamic damping is linear.  225 

Assumption 3: The control actions consist of surge force and yaw moment. 226 

Assumption 4: The inertia-related and damping-related matrices are diagonal [51]. 227 

 228 

Remark 2. Nonlinear damping is not considered, since it would increase the complexity of the controller 229 

without contributing to improving the result.  230 

 231 

2.2.2. Vessel model 232 

 233 
Fig. 2. Geometry of the coordinate system 234 

 235 

Based on the assumptions, the 3 DOF kinematic and dynamic model of a surface vessel in a horizontal plane 236 

(see Fig. 2) is: 237 

�̇� = 𝑹(𝜓)𝒗𝒓 
𝑴𝒗�̇� + 𝑪(𝒗�̇�)𝒗�̇� +𝑫𝒗𝒓 = 𝝉, 

(13) 

where 𝜼 = [𝑥, 𝑦, 𝜓]𝑇 denotes the position coordinates and heading angle in the earth-fixed inertial frame {n}, 238 

𝒗𝒓 = [𝑢𝑟 , 𝑣𝑟 , 𝑟]
𝑇 = 𝒗 − 𝒗𝒄  includes the relative velocities in the body-fixed frame {b}, 𝝉 = [𝜏𝑢, 0, 𝜏𝑟]

𝑇 239 

gathers the vector of control signals. It is worth to mention that the underactuated configuration is considered 240 

in this paper since the surge force and yaw moment are the only control forces. The rotation matrix 𝑹(𝜓) 241 

denotes the transformation between the body-fixed frame and the earth-fixed inertial frame: 242 

𝑹(𝜓) = [
𝑐𝑜𝑠 (𝜓) −𝑠𝑖𝑛 (𝜓) 0
𝑠𝑖𝑛 (𝜓) 𝑐𝑜𝑠 (𝜓) 0
0 0 1

], (14) 

 243 

The mass matrix 𝑴 = 𝑴𝑻 > 0 includes the inertial features of the USV and hydrodynamic added mass. The 244 

matrix 𝑫  includes the damping coefficients. The Coriolis matrix 𝑪 , which includes the Coriolis and 245 

centripetal effects, can be derived from 𝑴. According to the forementioned assumptions, the matrices 𝑴, 𝑪, 246 

and 𝑫 can be expressed as: 247 
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 248 

𝑴 = [

𝑚 − 𝑋�̇� 0 0
0 𝑚 − 𝑌�̇� 0
0 0 𝐼𝑧 −𝑁�̇�

] = [

𝑚11 0 0
0 𝑚22 0
0 0 𝑚33

] 

𝑪 = [

0 0 −(𝑚 − 𝑌�̇�)𝑣

0 0 (𝑚 − 𝑋�̇�)𝑢
(𝑚 − 𝑌�̇�)𝑣 −(𝑚 − 𝑋�̇�)𝑢 0

] = [
0 0 −𝑚22𝑣
0 0 𝑚11𝑢

𝑚22𝑣 −𝑚11𝑢 0
] 

𝑫 = [

𝑑11 0 0
0 𝑑22 0
0 0 𝑑33

], 

(15) 

where the parameters 𝑚11, 𝑚22, and 𝑚33 include the ship inertia including added mass effects, 𝑑11, 𝑑22, 249 

and 𝑑33 denote the damping-related coefficients, 𝑋�̇�, 𝑌�̇�, and 𝑁�̇� are the hydrodynamic coefficients, and 250 

𝑚 and 𝐼𝑧 denote the mass and rotational inertia of the underactuated marine vehicle, respectively. 251 

 252 

Assumption 5: The body-fixed coordinate frame {b} (body frame) is located at a point (𝑥𝑃
∗ , 0), at a distance 253 

𝑥𝑃
∗  from the vehicle’s center of gravity along the center line of the ship.  254 

 255 

Therefore, the 3-DOF model is expounded as: 256 

�̇� = 𝑢 cos𝜓 − 𝑣 sin𝜓 

�̇� = 𝑢 sin𝜓 + 𝑣 cos𝜓 

�̇� = 𝑟 

�̇� =
𝑚22

𝑚11
𝑣𝑟 −

𝑑11
𝑚11

𝑢 +
1

𝑚11
𝜏𝑢 

�̇� = −
𝑚11
𝑚22

𝑢𝑟 −
𝑑22
𝑚22

𝑣 

�̇� =
𝑚11 −𝑚22

𝑚33
𝑢𝑣 −

𝑑33
𝑚33

𝑟 +
1

𝑚33
𝜏𝑟 ,  

(16) 

where 257 

𝜏𝑢 = 𝑇𝑠 + 𝑇𝑝, 𝜏𝑟 = (𝑇𝑝 − 𝑇𝑠)𝐵/2. (17) 

𝑇𝑝, 𝑇𝑠, and 𝐵 refer to the control output of port propeller, starboard propeller, and beam length of the USV. 258 

 259 

Considering the input saturation, 𝝉 = [𝜏𝑢, 0, 𝜏𝑟]
𝑇 denotes the actual control signal produced by the propellers, 260 

and 𝝉 is written as 261 

𝑆𝑎𝑡∗(𝑥) = {

𝜏∗𝑚𝑎𝑥,                𝑥 > 𝜏∗𝑚𝑎𝑥
𝑥,      𝜏∗𝑚𝑖𝑛 ≤ 𝑥 ≤  𝜏∗𝑚𝑎𝑥
𝜏∗𝑚𝑖𝑛,                  𝑥 < 𝜏∗𝑚𝑖𝑛,

 (18) 

where 𝜏∗𝑚𝑎𝑥and 𝜏∗𝑚𝑖𝑛 denote the upper and lower bounds, respectively, where ∗=  𝑢, 𝑟. The desired control 262 

inputs should be 𝑥 and the actual control inputs should be 𝝉. 263 

 264 

2.2.3. Problem description 265 

Consider a global planner delivers the USV with a set of waypoint permutations or reference path. The USV 266 

should then properly navigate through the path that these waypoints have defined. Following a predetermined 267 

path without regard to time restrictions is referred to as path following [50]. An underactuated vessel could 268 

complete this mission with total velocity 𝑈𝑑 = √𝑢2 + 𝑣2 in the NED frame is tangential to the path. It is 269 

worth noted that the primary distinction between the trajectory tracking task and the path following task is 270 

that the path following task's path is elements that make up by a generic variable rather than time. This 271 
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indicates that the vehicle is not necessary to arrive at a precise place along the curve at a particular time, but 272 

rather it must converge to the path and proceed through it at a constant speed. 273 

 274 

To solve the aforementioned issue, a new reference frame is generated at the desired path 𝛾(𝑠) =275 
{(𝑥(𝑠), 𝑦(𝑠))|𝑠 ∈ ℝ}, where 𝑠 is a scalar parameter. and travel along the curve with a constant speed 𝑈 >276 

 0. According to the definition, let’s consider a virtual frame (VF) moves along 𝛾(𝑠). For a waypoint 𝒑 along 277 

the curve of the origin of VF, which we call 𝑥(𝑠), 𝑦(𝑠) is defined by the parameter 𝑠, and the path angle is 278 

𝜓(𝑠). Now, objectives of the path following problem can be illustrated as: 279 

lim
𝑡→∞

𝑥𝑒 = 0  

(19) 
lim
𝑡→∞

𝑦𝑒 = 0  

lim
𝑡→∞

𝜓𝑒 = 0,  

where  280 

[

𝑥𝑒
𝑦𝑒
𝜓𝑒
] = [

𝑐𝑜𝑠 (𝜓(𝑠)) −𝑠𝑖𝑛 (𝜓(𝑠)) 0

𝑠𝑖𝑛 (𝜓(𝑠)) 𝑐𝑜𝑠 (𝜓(𝑠)) 0
0 0 1

] [

𝑥 − 𝑥(𝑠)

𝑦 − 𝑦(𝑠)
𝜓 − 𝜓(𝑠)

], (20) 

where 𝑥𝑒, 𝑦𝑒, and 𝜓𝑒 represent the position and course angle error between the marine vehicle and the path.  281 

 282 

3. Methodology 283 

 284 
Fig. 3. Framework of the proposed method 285 

 286 

The general framework of the methodology is illustrated in Fig. 3.  287 

 288 

3.1.Greedy Partheno Genetic Algorithm 289 

In this section, we propose the Greedy Partheno Genetic Algorithm (GPGA) and introduce how it solves the 290 

proposed EMTSP efficiently. Partheno genetic algorithm (PGA) is a modified version of GA that produces 291 

offspring through parthenogenesis. In lieu of conventional GA's mutation and crossover operators, PGA 292 
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utilizes a series of operators on a single chromosome to produce offspring. Specifically, the crossover operator 293 

plays a crucial role in GA, whereas the mutation operator is typically regarded as an assisting operator. In 294 

PGA, however, the crossover operator is eliminated, and the mutation operator is considered the main operator. 295 

Consequently, PGA is more straightforward than GA in genetic operations, and initial population diversity is 296 

optional. 297 

3.1.1. Dual-coded chromosome 298 

The existing single chromosome and break-point type chromosome coding schemes are not suitable for 299 

EMTSP due to its heterogenous feature. To this end, we propose a dual-coded chromosome type that is 300 

decimally coded, i.e., task and USV chromosomes with the individual length being 𝑁𝑇 − 1. The depot for all 301 

USVs is not coded in the chromosomes and is added to the final solution to meet the constraints. The first 302 

chromosome has a permutation of 𝑁𝑇 − 1 tasks while the second assigns a USV to each of the common and 303 

exclusive tasks in the corresponding position of the first, following the task-USV matching relationship 304 

represented by Eq. (12). 305 

 306 

A coding example of the chromosome with 𝑁𝑇  =  10 and 𝑁𝑈  =  3 is shown in Fig 4. Gene 1, 2, and 3 in 307 

the task chromosome are exclusive tasks for USV 1, gene 4 and 5 are exclusive for USV 2, gene 6 and 7 are 308 

exclusive for USV 3, respectively. It represents the task-USV matching relationship that must be met. The 309 

common tasks are genes 8-10 that can be accomplished by any USV. As denoted in the chromosome, task 2, 310 

10, 1, and 3 (in that sequence) are visited by USV 1. Similarly, task 9, 5, and 4 (in that sequence) are visited 311 

by USV 2, and task 8, 7, and 6 are visited by USV 3.  312 

 313 
Fig. 4. Chromosome representation 314 

 315 

3.1.2. Fitness function 316 

With GPGA, the roulette selection is no longer used, and the fitness value is now calculated as the sum of the 317 

total distance and the difference between the maximum and minimum distances., see Eq. (21). The smaller the 318 

fitness function is, the better the quality of the individual is. 319 

𝐹 = ∑𝐷𝑘

𝑁𝑈

𝑘=1

+ ( Max 𝐷𝑘⏟    
𝑘=1,2,…,𝑁𝑈

− Min 𝐷𝑙⏟  
𝑙=1,2,…,𝑁𝑈

). (21) 

 320 

3.1.3. Greedy randomized initialization 321 

The GPGA begins its search with an initial population 𝑃 of 𝑝 high-quality solutions, often known as elite 322 

solutions. To develop an initial population, we generate a feasible solution using a greedy randomized heuristic. 323 

The initialization is illustrated by the following steps: 1) Use the exclusive task set to construct a subtour for 324 

each USV; 2) distribute the common tasks among the 𝑁𝑈 subtours to get the solution. The pseudocode of the 325 

greedy randomized initialization is shown in Algorithm 1. 326 

 327 

Algorithm 1. Greedy randomized initialization 328 

Algorithm 1. Greedy randomized initialization 

1: Input: Exclusive task sets {𝐸1, 𝐸2, 𝐸3, … , 𝐸𝑁𝐹}, common task set 𝐶 

2: Output: 𝑝    % feasible solution 
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3: 𝑝 ← ∅  

4: % Build 𝑁𝐹 partial routes with exclusive tasks 

5: for 𝑘 = 1:𝑁𝐹  do 

6:   𝑟𝑘 ← {0}  % Initiate the route with task 0 

7:   while 𝐸𝑘 ≠ ∅ do 

8:     Randomly select task 𝑖 from 𝐸𝑘 

9:     Insert task 𝑖 into 𝑟𝑘 with minimal distance increase 

10:     Remove task 𝑖 from 𝐸𝑘 

11:   end while 

12:   𝑝 ← 𝑝 ∪ {𝑟𝑘} 
13: end for 

14: % Dispatch the common tasks 𝐶\{0} among 𝑁𝐹 partial routes 

15 𝐶′ ← 𝐶\{0}  

16: while 𝐶′ ≠ ∅ do 

17:   Randomly select task 𝑗 from 𝐶′ 
18:   Insert task 𝑗 into route 𝑝 with total minimal distance increase 

19:   Remove task 𝑗 from 𝐶′ 
20: end while 

21: return 𝑝 

 329 

Initiating the route with task 0 is the first step to create the 𝑘-th partial route 𝑟𝑘 (lines 5-13). Next, uniformly 330 

selected exclusive tasks from 𝐸𝑘 are introduced into 𝑟𝑘 each one at a time, with the purpose of maximizing 331 

the route distance reduction. The first step terminates when each salesman's exclusive cities is entered into the 332 

corresponding route, yielding a partial solution 𝑝 made up of 𝑁𝐹 partial routes. The second phase (lines 15-333 

20) involves uniformly processing the common tasks 𝑗 from 𝐶\{0} and inserting them, one at a time, into a 334 

route of the partial solution 𝑝 so as to minimize the increments of the distances of the solution. 335 

3.1.4. Local exploration 336 

When it comes to GPGA, local exploration is a crucial component that aids drive the discovery of solutions 337 

for quality improvement. GPGA uses a special method that clusters the tasks near to one other to examine 338 

local exploration and generate a better solution. The procedure is illustrated in Algorithm 2. 339 

 340 

By clustering the tasks adjacent to each other, the exploration procedure can locally improve the solution 341 

optimality. 𝑃𝐴 and 𝑃𝐵 represent two randomly selected chromosome and the new chromosome is produced 342 

in various exploration directions with respect to the 𝑓𝑙𝑎𝑔 value. Let us take 𝑃𝐴 (see Fig. 5) as the parent, 𝑘 343 

as 3, and 𝑓𝑙𝑎𝑔 as 1, the exploration starts from front to back, thereby result in the next nearby task to 𝑘, i.e., 344 

6. On the contrary, if we take 𝑓𝑙𝑎𝑔 as -1, the exploration starts from back to front in 𝑃𝐴, and the previous 345 

task adjacent to 𝑘 is found, i.e., 9. The same applies to 𝑃𝐵. An example is shown in Fig. 5, whereby the task 346 

1, 2, and 3 are exclusive for USV 1, 2, and 3, respectively. We take 𝑘 = 3  as the start and 𝑓𝑙𝑎𝑔 = 1 347 

(Suppose 𝑓𝑙𝑎𝑔 will not change in this case).  348 

 349 

Algorithm 2. Local exploration 350 

Algorithm 2. Local exploration 

1: Input: Two randomly selected chromosomes 𝑃𝐴, 𝑃𝐵 

2: Output: new chromosome 𝑃𝐶 

3: 𝐿 = 𝑃𝐴. 𝑙𝑒𝑛𝑔𝑡ℎ()  

4: 𝑓𝑙𝑎𝑔 = 𝑟𝑎𝑛𝑑{−1, 1}  

5: 𝑘 = 𝑟𝑎𝑛𝑑(1, 𝐿), 𝑘 ∈ 𝑍 

6: 𝑃𝐶 = [𝑘]  

7: while 𝐿 > 1 do 

8:   if 𝑓𝑙𝑎𝑔 == 1 then 

9: 𝑔𝐴 = 𝑃𝐴. 𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑡(𝑘, 1)   % 𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑡(𝑘, 1): front to back  
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10: 𝑔𝐵 = 𝑃𝐵. 𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑡(𝑘, 1)  

11:   else 

12: 𝑔𝐴 = 𝑃𝐴. 𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑡(𝑘, −1)   % 𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑡(𝑘, −1): back to front  

13: 𝑔𝐵 = 𝑃𝐵. 𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑡(𝑘, −1)  

14:   end if 

15:   𝑃𝐴. 𝑝𝑜𝑝(𝑘), 𝑃𝐵. 𝑝𝑜𝑝(𝑘), 𝑓𝑙𝑎𝑔 = 𝑟𝑎𝑛𝑑{−1, 1} 
16:   𝑑𝐴 = ‖𝑘, 𝑔𝐴‖ 

17:   𝑑𝐵 = ‖𝑘, 𝑔𝐵‖ 

18:   if 𝑑𝐴 < 𝑑𝐵 then 𝑘 = 𝑔𝐴 

19:     else 𝑘 = 𝑔𝐵 

20:   end if 

21:   𝑃𝐶 . 𝑝𝑢𝑠ℎ(𝑘) 
22:   𝐿 = 𝑃𝐴. 𝑙𝑒𝑛𝑔𝑡ℎ() 
23: end while 

24: return 𝑃𝐶 

 351 

The procedure of the local exploration is illustrated as follows: 352 

Step 1: Randomly choose two individuals 𝑃𝐴 and 𝑃𝐵. 353 

Step 2: Generate a chromosome based on Algorithm 2 and randomly choose a USV chromosome as the new 354 

USV chromosome. 355 

Step 3: Check if each exclusive task is assigned to a correct USV and correct the wrong assignments if any. 356 

Step 4: Rationalize the sequence and rank the genes by task order and category. 357 

 358 

 359 
Fig. 5. Example of local exploration 360 

 361 

3.1.5. Mutation operators 362 

In order to prevent the search process getting trapped in a local optimum, the mutation operator is implemented. 363 

In this study, we develop four alternative mutation operators to increase the number of chromosomal variant 364 

forms and permutations available to the search process, hence increasing the likelihood of it to escape the 365 

local optimum. If a mutation is being selected in the children's chromosome, each of the four could be selected. 366 
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 367 
Fig. 6. Mutation operators 368 

 369 

Swap mutation: Two tasks 𝑖  and 𝑗 , 𝑖 <  𝑗 , 𝑖, 𝑗 ∈ ℌ  on task chromosome are firstly randomly selected. 370 

Then, the two genes on the selected points are exchanged, as shown in Fig. 6 (a). 371 

 372 

Invert mutation: Two tasks 𝑖 and 𝑗, 𝑖 <  𝑗, 𝑖, 𝑗 ∈ ℌ on task chromosome are firstly randomly selected as 373 

the subtour. Then, the order of the subtour between 𝑖 and 𝑗 is inverted, see Fig. 6 (b). 374 

 375 

Scramble mutation: Two tasks 𝑖 and 𝑗, 𝑖 <  𝑗, 𝑖, 𝑗 ∈ ℌ on task chromosome are firstly randomly selected 376 

as the subtour. Then, the order of the subtour between 𝑖 and 𝑗 is scrambled, see Fig. 6 (c). 377 

 378 

Insert mutation: One task 𝑖 , 𝑖 ∈ ℌ  on task chromosome is randomly selected, removes it from the 379 

chromosome, and inserts it in a randomly selected place, see Fig. 6 (d). 380 

 381 

The process of mutation of the GPGA are described as follows: 382 

Step 1: Select five members randomly from the current population who have not already been chosen before. 383 

Step 2: Find the one has the best fitness value in the 5 members. 384 

Step 3: Generating a temporary population that consists of 5 members. Each of the individual is assigned to 385 

the value of the individual selected in step 2. 386 

Step 4: Generate 2 random points 𝑖 and 𝑗, or the insertion location 𝑖. 387 

Step 5: Mutate each individual in the test group created in step 3 in the following procedures: 388 

(1) The first one will stay the same. 389 

(2) The second one will mutate by swapping. 390 

(3) The third one will mutate by inverting. 391 

(4) The fourth one will mutate by scrambling. 392 

(5) The last one will mutate by inserting. 393 

(6) Check if each exclusive task is assigned to a correct USV and correct the wrong assignments if any. 394 

Step 6: Merge the generated population into the original. 395 

Step 7: If all individuals in the current population have been selected, then move on; otherwise, return to step 396 

1. 397 

 398 

Swap, Invert, Scramble, and Insert are all PGA mutation procedures that find their way into GPGA as well. 399 

Therefore, GPGA shares the same benefits as PGA. Additionally, step 5 ensures that the best individual 400 

identified in step 2 will be passed on to the next generation. New individuals will be generated by altering the 401 

finest possible one in several ways. Some of the new individuals are produced by changing the route of the 402 

best individual. Also, a few are made by adjusting the best individuals’ USV-task matching relationships. 403 

Others are produced by altering both produces. In this way, the mutation operation takes into account both the 404 
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route sequence and the matching relationship. Additionally, since the selected individual to be altered to 405 

generate children is a relatively decent individual, step 5 ensures that the algorithm will recognize the second-406 

best options in the iterative process. The foregoing suggests that GPGA outperforms over PGA in both global 407 

search capability and local escaping ability. Generally speaking, GPGA makes it simpler to arrive at the 408 

optimal potential solution. 409 

 410 

 411 
Fig. 7. Flowchart of GPGA 412 

 413 

3.1.6. Algorithm flow 414 

For an objective function 𝐹(𝑋), GPGA will find an 𝑋∗ such that ∀𝑋, 𝐹(𝑋∗) < 𝐹(𝑋). The proposed GPGA 415 

are illustrated as following, see Fig. 7: 416 

(1) Generate the initial population using the greedy randomized initialization. 417 

(2) Evaluate the fitness value of each individual 𝑋𝑖
𝑔

 (𝑔 is the number of current generations, 𝑖 is the 418 

index for individual) in the initial set. The scheme of elitism dictates that the one with the highest fitness 419 

will be replicated and labeled as 𝑋∗. 420 

(3) Implement mutation and local exploration using the strategies depicted in Section 3.1.4 and Section 421 

3.1.5 to produce offspring. 422 

(4) Evaluate the fitness value of 𝑋𝑖
𝑔+1

 in the new generation. If 𝐹(𝑋𝑖
𝑔+1
) ≤ 𝐹(𝑋∗), 𝑋𝑖

𝑔+1
 is replicated 423 

and labeled as 𝑋∗. 424 

(5) If the terminal condition holds, the best answer, 𝑋∗, should be exported or set 𝑔 =  𝑔 +  1, then turn 425 

to (3). 426 

 427 

3.2.Nonlinear model predictive control 428 

3.2.1. State space model 429 

Tracking error (𝑥𝑒, 𝑦𝑒) minimization is the primary goal of NMPC control during path-following. In addition, 430 

it is preferred that the USV's course angle corresponds to that of the path angle, guaranteeing that 𝜓𝑒 431 
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converge to zero. Hence, combining the error dynamics and USV dynamics, we introduce the following state 432 

space model: 433 

�̇�𝑒 = 𝑢 cos(𝜓 − 𝜓(𝑠)) − 𝑣 sin(𝜓 − 𝜓(𝑠))  

�̇�𝑒 = 𝑢 sin(𝜓 − 𝜓(𝑠)) + 𝑣 cos(𝜓 − 𝜓(𝑠))  

�̇�𝑒 = 𝑟  

�̇� = 𝑢 cos𝜓 − 𝑣 sin𝜓 

�̇� = 𝑢 sin𝜓 + 𝑣 cos𝜓 

�̇� =
𝑚22

𝑚11
𝑣𝑟 −

𝑑11
𝑚11

𝑢 + 𝑑1 

�̇� = −
𝑚11
𝑚22

𝑢𝑟 −
𝑑22
𝑚22

𝑣 + 𝑑2 

�̇� =
𝑚11 −𝑚22

𝑚33
𝑢𝑣 −

𝑑33
𝑚33

𝑟 + 𝑑3. 

(22) 

 434 

Therefore, the vessel model is written in a compact form as: 435 

�̇� = 𝑓(𝒙) + g1(𝒙)𝒖 + g2(𝒙)𝒘, (23) 

where 𝒙 = [𝑥𝑒 , 𝑦𝑒 , 𝜓𝑒 , 𝑥, 𝑦, 𝑢, 𝑣, 𝑟]
𝑇 is the state vector, 𝒖 = [𝜏𝑢, 𝜏𝑟]

𝑇 is the input vector of surge force and 436 

yaw moment, 𝒘 = [𝑑1, 𝑑2, 𝑑3]
𝑇  is the disturbance on surge, sway, and yaw, g1(𝒙)  and g2(𝒙)  are the 437 

control and disturbance configuration matrices, respectively, with the following structure: 438 

g1(𝒙) =

[
 
 
 0 0 0 0 0

1

𝑚11
0 0

0 0 0 0 0 0 0
1

𝑚33]
 
 
 
𝑇

 

g2(𝒙) = [
05×3

𝑀−1𝑅(𝜓)
] =

[
 
 
 
 
 
 0 0 0 0 0

cos𝜓

𝑚11

sin𝜓

𝑚22
0

0 0 0 0 0
sin𝜓

𝑚11

cos𝜓

𝑚22
0

0 0 0 0 0 0 0
1

𝑚33]
 
 
 
 
 
 
𝑇

, 

(24) 

 439 

As a result of the lack of a sway control force created by the actuators, the controller is unable to reject the 440 

disturbance in the sway direction for the undereducated configuration. By the definitions illustrated in [40], 441 

the heading angle 𝜓 in the state vector should be replaced by the course angle 𝜒, since in the presence of an 442 

external force in the sway direction, the vessel will not be able to attain zero tracking error for the heading 443 

angle. A nonzero sideslip angle will result regardless of the heading angle, but the resulting force component 444 

will counteract the sway disturbance that would have happened had the sideslip angle been zero. Based on 445 

that, the state vector is rewritten by 446 

𝒙 = [𝑥𝑒 , 𝑦𝑒 , 𝜒𝑒 , 𝑥, 𝑦, 𝑢, 𝑣, 𝑟]
𝑇 , (25) 

where 𝜒𝑒 = 𝜒 − 𝜒𝑟 is the tracking error which considers the sideslip angle.  447 

 448 

3.2.2. NMPC design 449 

By discretizing the continuous-time model in Eq. (23), we obtain the dynamic system under the control of the 450 

proposed NMPC. As a result, we may express the desired control system's discrete-time model as: 451 
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𝒙(𝑘 + 1) = 𝑓(𝒙(𝑘), 𝒖(𝑘),𝒘(𝑘)), (26) 

Here, the state 𝒙 is comprised by the error and vessel dynamics, and the input 𝒖 is the input vector. 452 

 453 

Moreover, in contrast to existing LOS-based guidance strategies, the NMPC framework presented in this paper 454 

is able to consider physical constraints of the mechanical system. We set low-level controller limitations on 455 

both velocity and the rate of change in surge and heading angle. Hence, the system should satisfy: 456 

 457 

𝒖(𝑘) ∈ 𝒰 = {[
0
−𝜋
] ≤ 𝒖 < [

𝑢𝑚𝑎𝑥
𝜋
]} 

∆𝒖 = 𝒖(𝑘) − 𝒖(𝑘 − 1) ∈ 𝒰𝑔 = {∆𝒖 ≤ [
𝜏𝑢_𝑚𝑎𝑥
𝜏𝑟_𝑚𝑎𝑥

]}. 
(27) 

 458 

Thus, nonlinear model predictive control (NMPC) is interpreted as the online acquisition of state feedback 459 

𝒖(𝑘) via a least-squares (LS) optimum control problem, whereby the objective function penalizes the amount 460 

by which the system's inputs and states deviate from their reference paths. It is expressed as: 461 

min
𝒙(𝑘),𝒖(𝑘)

𝑱𝑁(𝒙, 𝒖) = ∑ ℓ(𝒙(𝑘), 𝒖(𝑘))

𝑁−1

𝑘=0

+ 𝐹(𝒙(𝑁)), (28) 

s.t. 462 

𝒙(𝑘 + 1) = 𝑓(𝒙(𝑘), 𝒖(𝑘),𝒘(𝑘))  

(29) 

𝒖(𝑘) ∈ 𝒰  

∆𝒖 ∈ 𝒰𝑔  

𝑇𝑝𝑚𝑖𝑛 ≤ 𝑇𝑝 ≤ 𝑇𝑝𝑚𝑎𝑥  

𝑇𝑠𝑚𝑖𝑛 ≤ 𝑇𝑠 ≤ 𝑇𝑠𝑚𝑎𝑥   

ℓ(𝒙(𝑘), 𝒖(𝑘)) > 0, ∀𝒙(𝑘), 𝒖(𝑘),  

where ℓ(𝒙(𝑘), 𝒖(𝑘)) is the stage cost function and 𝐹(𝒙(𝑁)) is the terminal cost function, 𝑁 > 0 is the 463 

length of both the prediction and control horizons. The stage and terminal cost are defined as: 464 

ℓ(𝒙(𝑘), 𝒖(𝑘)) = ‖𝒙(𝑘) − 𝒙𝒓(𝑘)‖𝑸 + ‖𝒖(𝑘)‖𝑹 (30) 

𝐹(𝒙(𝑁)) = ‖𝒙(𝑁) − 𝒙𝒓(𝑁)‖𝑷.  (31) 

Here 𝑱𝑁  is designed cost function, consists of the stage cost ℓ  and the terminal cost 𝐹 , the predictive 465 

horizon is denoted as 𝑁, 𝒙𝒓(𝑘) and 𝒙𝒓(𝑁) are the reference states of the path and predicted reference states, 466 

𝑸 , 𝑹 , and 𝑷  are positive semidefinite weighing matrices. Control actions are penalized in order to 467 

discourage the application of high-energy, which could cause the system to be unstable.  468 

 469 

3.2.3. Solver 470 

This paper uses the CasADi software to solve the NMPC problem (28) subject to the restrictions given by 471 

(29). CasADi is a C++ program that can model and solve optimization problems with a great deal of flexibility, 472 

all while generating extremely efficient C++ code for real-time implementation and MATLAB executable 473 

(mex) files, used for simulation with MATLAB. It finds widespread use in fields like industrial control and 474 

robotics. In particular, nonlinear programming (NLP) solvers take a shooting-based approach to dynamic 475 

optimization. We use the direct single-shooting method since our investigations showed that the solution speed 476 

of the direct single-shooting approach is greater than that of the multi-shooting method when the number of 477 

prediction horizon steps is less than 30. 478 

 479 

The solving process is illustrated as follows: 480 
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Step 1: Set number of sampling instants in the time prediction horizon 𝑁, and the sampling time 𝑇. 481 

Step 2: Set weight matrices 𝑸, 𝑹, 𝑷. 482 

Step 3: Set model constraints. 483 

Step 4: Set state references 𝒙𝒓(𝑘), 𝒙𝒓(𝑁). 484 

Step 5: Get the current value 𝒙. 485 

Step 6: Solve the NLP problem Eq. (28), and take the optimal control input vector [𝒖0, 𝒖1, 𝒖2, … , 𝒖𝑁−1] and 486 

the predicted states [𝒙0, 𝒙1, 𝒙2, … , 𝒙𝑁−1]. 487 

Step 7: Apply the first element 𝒖0, and go to Step 5. 488 

 489 

3.2.4. Stability 490 

Despite numerous studies on the asymptotic stability of the NMPC problem, creating acceptable conditions 491 

remains an unresolved challenge that may make online optimizations more complex and time expensive to 492 

accomplish. Hence, we only discuss the stability concerning our model. According to a series of studies in 493 

[52–54], stability can be ensured for finite horizon problems under several conditions. They are presented as 494 

following: 495 

 496 

1. 𝒖 is compact, and 𝒙 is connected and contains the origin in the interior of 𝒖 × 𝒙.  497 

2. ∃𝒖 ∈ 𝒰 which makes 𝑓(𝒙𝒓, 𝒖) = 𝒙𝒓. 498 

3. Objective function 𝑱 should satisfy 𝑱(𝒙𝒓, 𝒖) = 0, from 𝒖 ∈ 𝒰 obtained from the second assumption. 499 

 500 

Because there are no further limitations on the states in our problem, we may assume that the feasible set 501 

always has the origin in the interior via simple axis transformation. Typically, linear inequalities are chosen as 502 

control constraints, so 𝒖 is a compact set. For the second assumption, it is easily checked by observing the 503 

USV system. The third assumption will be satisfied as long as the cost function 𝑱 is the quadratic, as Eq. (30). 504 

 505 

4. Results and discussion 506 

To evaluate the proposed strategy, several illustrative simulations are conducted progressively by global path 507 

planning, waypoint following, and the combination of the two modules. They are performed via MATLAB 508 

R2021a environment with a PC that is configured with a 2.10-GHz Intel(R) Core (TM) i7-1260P processor 509 

and 16.0-GB RAM.  510 

4.1.Simulation: global task planning 511 

4.1.1. Convergence test 512 

In this subsection, simulation studies and comprehensive comparisons are provided to validate the 513 

convergence characteristic and solution quality of GPGA in solving the global path planning problem. In order 514 

to facilitate simulations, we conduct the performance evaluation using classical instances from TSPLIB, see 515 

Table 1. To show the improvement effect of the novel strategies, methods from existing references, including 516 

IPGA [55] and MOGA [56], are applied to solve the problem. For fair comparison, we run 30 times on each 517 

instance and perform statistical analysis regarding time cost and solution optimality. It is worth to note that 518 

since we only need to test the convergence characteristic, heterogeneity is not considered. Therefore, the 519 

process of checking the USV-task matching relationship is skipped.  520 

The parameters are set as follows, the population number and iteration are set as the same while other 521 

parameters are set by the best value according to [55,56]: 522 

• GPGA: 𝑀 = 100, 𝑇𝑚 = 4000, mutation = 0.3, 𝑃𝑙𝑒 = 0.7 (probability of local exploration). 523 

• IPGA: 𝑀 = 100, 𝑇𝑚 = 4000, mutation = 0.01. 524 

• MOGA: 𝑀 = 100, 𝑇𝑚 = 4000, mutation = 0.3, the crossover probability is adaptive.  525 

 526 

Table 1 Setting of test instances 527 
Instance Number of tasks Number of salesmen 
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Eil51 51 3 

Berlin52 52 4 

Eil76 76 4 

Pr76 76 5 

Rat99 99 6 

Rat99 99 7 

 528 

Table 2 Comparison of time cost 529 
Instance GPGA IPGA MOGA 

Eil51(3) 7.33 8.62 10.79 

Berlin52(4) 7.47 8.69 10.63 

Eil76(4) 8.21 9.74 10.55 

Pr76(5) 8.10 9.52 11.07 

Rat99(6) 10.23 12.21 13.79 

Rat99(7) 10.17 12.45 13.92 

 530 

 531 
Fig. 8. Box-whisker plot of time cost 532 

 533 

Computational results of GPGA and reference algorithms on the convergence efficiency are shown in Fig. 8 534 

and Table 2. As denoted in Table 2, GPGA can solve the general MTSPs more quickly than the existing 535 

algorithms. With approximately 10% and 20% lower time cost compared to IPGA and MOGA, GPGA has 536 

shown its low computational burden in the algorithm process. Compared to the MOGA, GPGA and IPGA are 537 

generally more computational efficiency because the complex crossover procedure and roulette wheel 538 

selection are not performed, which significantly decreases the complexity. Moreover, compared to IPGA, our 539 

algorithm is superior since the mutation operation is much simpler but remains a high-level searching ability. 540 

As shown in Fig. 8, the IQR (range of the box) of GPGA is smaller than the reference algorithms in most cases 541 

(except for berlin52). The results indicate that the proposed method can achieve satisfactory computational 542 

stability results.  543 

 544 

Table 3 Comparison of the solution quality 545 
 GPGA IPGA MOGA 

Eil51 

Avg (m) 468.87 Avg (m) 520.36 Avg (m) 500.07 

Best (m) 446.37 Best (m) 462.95 Best (m) 452.96 

SD (m) 16.04 SD (m) 27.73 SD (m) 29.11 

Berlin52 Avg (m) 8778.31 Avg (m) 9811.12 Avg (m) 9295.84 
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Best (m) 7874.43 Best (m) 8609.51 Best (m) 8447.83 

SD (m) 583.04 SD (m) 615.22 SD (m) 505.17 

Eil76 

Avg (m) 669.06 Avg (m) 806.02 Avg (m) 738.17 

Best (m) 625.37 Best (m) 717.20 Best (m) 642.34 

SD (m) 29.00 SD (m) 38.48 SD (m) 42.62 

Pr76 

Avg (m) 131362 Avg (m) 140870 Avg (m) 137452 

Best (m) 118854 Best (m) 126273 Best (m) 123974 

SD (m) 8293.41 SD (m) 7142.23 SD (m) 7093.82 

Rat99 

Avg (m) 1399.21 Avg (m) 1579.21 Avg (m) 1524.20 

Best (m) 1292.83 Best (m) 1398.24 Best (m) 1367.24 

SD (m) 48.27 SD (m) 64.38 SD (m) 63.66 

Rat99 

Avg (m) 1445.21 Avg (m) 1604.12 Avg (m) 1553.50 

Best (m) 1344.34 Best (m) 1510.63 Best (m) 1408.62 

SD (m) 51.54 SD (m) 51.51 SD (m) 64.31 

 546 

 547 
Fig. 9. Box-whisker plot of total distance 548 

 549 

Table 3 presents the results of the compared algorithms on the six instances in terms of their solution optimality. 550 

As denoted by the best value (in bold), GPGA can optimally solve the MTSPs in the simulations. Compared 551 

to IPGA and MOGA, the proposed method yielded better results on the average and minimum distance. This 552 

indicates that GPGA merits strong global searching ability while preventing the local optimum effectively. 553 

This is contributed by the local exploration and mutation strategy. On the one hand, local exploration generates 554 

better offspring than the parents by gathering the nearby tasks, which improves the population quality. On the 555 

other hand, the various mutation strategies can help the algorithm jump out of the local optimum, thereby 556 

contributing to the global searching ability. In terms of stability, GPGA has also shown better results in most 557 

cases (except for pr76), see Fig. 9. Note that the results of IPGA are somewhat inconsistent (eil51 and pr76, 558 

the bound is large). We assume it is because the algorithm has fallen into numerous local optimums and yielded 559 

diverse results.  560 

 561 

4.1.2. Heterogeneous task planning 562 

In this subsection, to demonstrate the effects of the heterogeneity of USVs, four cases of experiments for the 563 

comprehensive analysis are designed. All four EMTSPs are assigned in turn with task sizes 40, 50, 60, and 70, 564 

and the common tasks and exclusive tasks are grouped according to Table. 4. It is worth to note that all the 565 

tasks are randomly distributed in the 2-D workspace (100*100 m) where the simulations are carried out. Each 566 
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USV departs from its base station and returns after completing the assigned tasks. The parameter setting is the 567 

same as in Section 4.1.1.  568 

 569 

The four EMTSPs are depicted in Fig. 10. As denoted in the figure, the common tasks, exclusive tasks for 570 

USV1, exclusive tasks for USV2, and exclusive tasks for USV3 and USV4 are marked with black circles, blue 571 

triangles, magenta pentagram, red squares, and green pentagram, respectively. 572 

 573 

Table 4 Design of EMTSPs 574 
Case Tasks count USV count Common tasks Exclusive tasks 

1 40 3 25 5 for each 

2 50 4 30 5 for each 

3 60 3 39 7 for each 

4 60 4 40 5 for each 

 575 

 576 
Fig. 10. Task distribution (a) Case 1; (b) Case 2; (c) Case 3; (d) Case 4 577 

 578 

The convergence history of the four cases is shown in Fig. 11. As denoted by the convergence curve and time 579 

cost measurements, the computational cost slightly increased compared to the previous results. This is caused 580 

by the checking and correction procedure. Nevertheless, the proposed algorithm can still find the optimal 581 

solution without sacrificing computational efficiency. As indicated by Fig. 12, all the USVs with exclusive 582 

functional types have successfully completed their corresponding tasks. The checking and correcting of the 583 

USV-task matching relationship are performed after each genetic operation is completed, thereby ensuring no 584 

violation of the matching requirements. This indicates that our proposed model can perfectly handle 585 

heterogeneous path planning. 586 
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 587 
Fig. 11. Convergence history: the time costs for Case 1-4 are 8.82 s, 9.77 s, 11.02 s, and 11.34 s, respectively 588 

 589 

 590 
Fig. 12. Planning results 591 
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4.2.Simulation: waypoint following 592 

In this section, simulation results are presented to demonstrate the validity and assess the performance of the 593 

proposed NMPC for waypoint tracking of an unmanned surface vehicle. In order to show the advantage of the 594 

efficiency of our model, comparative studies are also conducted with the well-known path following method 595 

Integral line of sight (ILOS) [41] and the adaptive LOS (ALOS) guidance [40]. The three methods are applied 596 

to the Otter surface vehicle, see Fig. 13. The Otter unmanned surface vehicle is a 2-[m]-long and 1.08-[m]-597 

wide robotic platform developed by MARINE ROBOTICS (www.marinerobotics.com). The particulars and 598 

mechanical properties are shown in Table 5 and Table 6, respectively, and for more detailed information on 599 

the USV model, the readers are referred to the MSS toolbox (https://github.com/cybergalactic/MSS).  600 

 601 

Table 5 Parameters of the Otter 602 

Parameters Explanations Values Units 

𝑀 Mass 65 kg 

𝐿 Length 2 m 

𝐵 Beam 1.08 m 

𝑁𝑝 number of propellers 2 - 

 603 

Table 6 Maneuvering derivatives of the USV model 604 

Inertial related Value  Damping related Value 

𝑚11 85.28  𝑑11 -77.55 

𝑚22 162.50  𝑑22 -0.02 

𝑚33 41.45  𝑑33 -41.45 

 605 

 606 
Fig. 13. USV Otter 607 

 608 

The parameters settings are expounded and explained here. The prediction horizon length is selected to be 30 609 

s, the control horizon is set as 2 s, and the sampling time is 0.1 s. 𝑢𝑚𝑖𝑛 = −3 𝑚/𝑠, 𝑢𝑚𝑎𝑥 = 3 𝑚/𝑠, 𝑟𝑚𝑖𝑛 =610 

−0.1 𝑟𝑎𝑑/𝑠 , 𝑟𝑚𝑎𝑥 = 0.1 𝑟𝑎𝑑/𝑠 , 𝑇𝑝𝑚𝑎𝑥 = 𝑇𝑠𝑚𝑎𝑥 = 119.7 𝑁 , 𝑇𝑝𝑚𝑖𝑛 = 𝑇𝑠𝑚𝑖𝑛 = −66.7 𝑁 , 𝑢𝑑 = 1.9 𝑚/𝑠 . 611 

The weight matrices were selected based on a series of simulation tests: 𝑸 =612 

𝑑𝑖𝑎𝑔([0.5, 0.5, 2, 0, 0, 30, 0, 0.1]) , 𝑷 = 𝑑𝑖𝑎𝑔([1, 1, 4, 0, 0, 30, 0, 0.2]) , 𝑹 = 𝑑𝑖𝑎𝑔([0.001, 0.001]) . The 613 

weights on matrix 𝑸 and 𝑷 were meant to penalize deviation from the path and course angle, and failure to 614 

maintain the required speed. Similarly, the weights on 𝑹 penalizes aggressive changes in the control signals, 615 

to achieve a smooth thruster signal.  616 

 617 

As denoted in Section 3.2, the disturbances affecting the system can be due to different external sources, such 618 

as wind, waves, and currents. In order to study the performance of NMPC under specific environment 619 

disturbances, time-varying environmental disturbances are employed on surge (𝑑1 ), sway (𝑑2 ), and yaw 620 

components (𝑑3), see the following equation and Fig. 14: 621 

http://www.marinerobotics.com/
https://github.com/cybergalactic/MSS
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𝑑1 = 1.5 sin 𝑡 + cos 0.7𝑡 

𝑑2 = 1.7 sin 1.3𝑡 + 0.8 cos 0.8𝑡 

𝑑3 = 1.2 sin 0.5𝑡 + 1.3 cos 1.2𝑡. 

(26) 

 622 

 623 
Fig. 14. Tracking results 624 

4.2.1. Test 1: Simulation under different model uncertainties 625 

In this subsection, we will test the robustness of the NMPC with respect to the different level of model 626 

uncertainties. The test cases are threefold: (1) nominal model without disturbances and model uncertainty; (2) 627 

model with disturbances and 10% model uncertainty; (3) model with disturbances and 20% model uncertainty. 628 

The model uncertainties of the Otter vehicle are 𝛥𝑴  and 𝛥𝑫 , which is randomly generated at each time 629 

within the uncertainty boundary. Therefore, the inertial matrix value and damping matrix value would vary 630 

according to the following equation at each time step: 631 

𝑴 = 𝑴± 𝜟𝑴 

𝑫 = 𝑫± 𝜟𝑫. 
(27) 

In this simulation, we assume the boundary of the model uncertainties are 𝛥𝑴 ∈ (0, 0.1𝑴)  and 𝛥𝑫 ∈632 

(0, 0.1𝑫)  for the 10% case, while 𝑴 ∈ (0, 0.2𝑴)  and 𝛥𝑫 ∈ (0, 0.2𝑫)  for the 20% case. The reference 633 

path is designed as: 634 

𝑥𝑑 = 6.25𝜔 + 50 sin(2𝜋𝜔/40) 

𝑦𝑑 = 8.75𝜔 − 0.05𝜔
2, 

(28) 

where 𝜔 is the path parameter that is independent of time. The USV is originally positioned at 𝑥 =  0 𝑚, 635 

𝑦 =  0 𝑚, while the initial point of the path is assumed to be 𝜔 = 0 and it ends at 𝜔 = 50.   636 

 637 

To analyze the results in more details, IAE (integrated absolute errors) is employed to compare the steady-638 

state and the transient response performance quantitatively. IAE of longitudinal and lateral position can be 639 

defined as: 640 
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𝐼𝐴𝐸𝑥 = ∫ |𝑥𝑒(𝜔)|𝑑𝜔
𝑡

0

 

𝐼𝐴𝐸𝑦 = ∫ |𝑦𝑒(𝜔)|𝑑𝜔
𝑡

0

, 

(29) 

where 𝑥𝑒 and 𝑦𝑒 is the tracking error in the longitude and lateral direction, respectively.  641 

 642 

 643 
Fig. 15. Path tracking under different model uncertainties 644 

 645 

The results are presented in Fig. 15, wherein the reference path is depicted in blue, the trajectory of the nominal 646 

model is illustrated in black, the model with 10% model uncertainty and disturbances is shown in red, and the 647 

green line indicates the model with 20% model uncertainty and disturbances. The effectiveness of the proposed 648 

algorithm in handling model uncertainty below 20% is evident from Fig. 15 and Fig. 16, where the USV 649 

successfully tracked the reference path with satisfactory results. The statistical analysis in Table 7 further 650 

confirms the performance of the algorithm, as evidenced by the integrated absolute error of (104.542, 102.218), 651 

(554.233, 369.489), and (803.098, 755.854) for nominal, 10%, and 20% models, respectively. Although some 652 

fluctuations are observed for relatively large model uncertainty, the USV demonstrates satisfactory 653 

performance in tracking the desired path, highlighting the robustness of the proposed algorithm. 654 

 655 
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 656 
Fig. 16. Angle and velocity profile (a) Nominal model; (b) 10% model uncertainty and disturbances; (c) 657 

20% model uncertainty and disturbances 658 

 659 

Table 7. Evaluation indexes of control performance of NMPC 660 

Case 𝐼𝐴𝐸𝑥 (m) 𝐼𝐴𝐸𝑦 (m) 

Nominal 104.542 102.218 

10% model uncertainty+disturb 554.233 369.489 

20% model uncertainty+disturb 803.098 755.854 

Note: for convenience, we recorded the error with the sampling frequency of 1 Hz.  661 

 662 

4.2.2. Test 2: Comparative study with other methods 663 

The Integral line of sight (ILOS) [41] and the adaptive LOS (ALOS) guidance [40] are implemented in 664 

combination with the standard proven-in-use PID controllers: the Otter vehicle employs a PID heading 665 

autopilot. The determination of the coefficients is set according to [50]: 𝐾𝑃 = 53.42 , 𝐾𝐷 = 14.84 , 𝐾𝐼 =666 

14.84, 𝐾𝐹𝐹 = 74.2, where 𝐾𝐹𝐹 is the acceleration feed forward coefficient. The parameters and disturbances 667 

are set as the same in Section 4.2.1. Moreover, we choose the 10% model uncertainty in the comparative study. 668 

The reference path is designed as: 669 

𝑥𝑑 = 6.25𝜔 + 250 cos(1.5𝜋𝜔/40) − 0.05𝜔
2 

𝑦𝑑 = 8.75𝜔 − 0.05𝜔
2, 

(30) 

where 𝜔 is the path parameter that is independent of time. The USV is originally positioned at 𝑥 =  0 𝑚, 670 

𝑦 =  0 𝑚, while the initial point of the path is assumed to be 𝜔 = 0 and it ends at 𝜔 = 50. 671 

 672 
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 673 
Fig. 17. Tracking results 674 

 675 

Table 8 Evaluation indexes of control performance  676 

Case 𝐼𝐴𝐸𝑥 (E+03 m) 𝐼𝐴𝐸𝑦 (E+03 m) 

NMPC+10% uncertainty+disturb 1.7478 1.8453 

ALOS+disturb 2.4022 2.2544 

ILOS+disturb  2.7021 3.0882 

Note: for convenience, we recorded the error with the sampling frequency of 1 Hz.  677 

 678 

A comparative simulation between the proposed NMPC and the other references is shown in Fig. 17 and Table 679 

8. The reference path is denoted by the blue dashed line, the trajectory of the NMPC is the solid black line, 680 

and ALOS and ILOS are represented by the red and green line, respectively. As shown in Fig. 17, It can be 681 

observed that the NMPC-based controller approaches the path and tracks the path more directly, incurring 682 

smaller tracking errors. However, it should be noted that the ALOS and ILOS methods exhibit a larger 683 

deviation from the reference path. This observation may be attributed to their comparatively weaker ability to 684 

reject external disturbances. Moreover, it cannot be overlooked that the suboptimal performance of the PID 685 

controller in the proposed framework, which may potentially result from inappropriate parameter tuning, could 686 

also have contributed to the observed discrepancies in tracking accuracy. 687 

 688 

Observing the signal curves in Fig. 18 shows that the true course angle corresponds well with the reference 689 

signal in the case of NMPC. The other methods have shown relatively large deviations, especially for ILOS. 690 

As to the speed, time history curves are based on a constant design speed. It can be observed from the speed 691 

profile that NMPC yielded relatively stable velocity during the tracking, resulting in a smoother tracking 692 
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performance. However, the speed profile demonstrates that the vehicle experiences a reduction in speed 693 

whenever it comes into contact with significant frequent deflections as a result of disturbances. 694 

 695 

 696 
Fig. 18. Angle and velocity profile (a) NMPC; (b) ALOS; (c) ILOS 697 

 698 

4.3.Simulation verification of the framework 699 

In this section, the combination of the two modules is finally verified in a systematic way. The simulation is 700 

conducted under the context of a real-world water monitoring mission. We adopted the artificial lake at 701 

Zhejiang University's Zijingang Campus as the simulation site, see Fig. 19. We present the results with the 702 

local map, which has the origin of (120.076395°E, 30.299465°N) according to the satellite data. The local 703 

map has a maximum length and breadth of 501.6 m and 254.8 m, respectively. 704 

 705 

As for the task distribution, 30 tasks are randomly distributed in the water environment, see Fig. 19. We assume 706 

the two USVs are the same but equipped with different sensors, e.g., USV1 is equipped with a conductive 707 

temperature depth (CTD) collector while USV2 carry the water collector, and these can be regarded exclusive 708 

tasks for the USVs. The common tasks are normal patrol missions that can be completed by both of the USVs. 709 

As denoted in Fig. 19, the common patrol tasks, CTD tasks for USV1, and water sampling tasks for USV2 are 710 

marked with black circles, red triangles, and green pentagrams, respectively. Each USV departs from its own 711 

base station and returns after completing the assigned tasks. The parameters of GPGA, NMPC, and the USV 712 

system are the same as in the previous sections.  713 
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 714 
Fig. 19. Environment set 715 

 716 

The ability of the proposed framework to consistently address the EMTSP and path following problem is 717 

eventually evaluated by conducting simulations under real-world geographies. In general, the proposed GPGA 718 

can optimally address the EMTSP with comparatively quick convergence performance. Fig. 20 presents the 719 

results of global path planning. As is shown in the figure, all the USVs with exclusive functional types have 720 

been successfully assigned their corresponding tasks. This is directly in line with our previous findings.  721 

 722 

Fig. 21 shows the trajectories of the two USVs. It can be seen from the figure that the USVs have successfully 723 

completed the missions. With the aid of NMPC, the vehicles can autonomously reach all the planned points 724 

with satisfactory tracking performance. This indicates that the proposed framework can assist USV in 725 

performing water monitoring missions. Moreover, environmental loads and quick turns cause the vehicle's 726 

real trajectories to deviate slightly from the planned straight lines.  727 
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 728 
Fig. 20. Results of the global planning: (a) Path generation; (b) Path planned in the local frame; (c) 729 

Convergence history (time cost: 6.32 s) 730 
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 731 
Fig. 21. Results of the waypoint following: (a) USV trajectories in satellite map; (b) Tracking results of 732 

USV1; (c) Tracking results of USV2 733 

 734 

As to the tracking performance from the perspective of control, the USVs have shown rather satisfactory 735 

results in the path following mission. It is clear from comparing the two signal curves in Fig. 22 that the true 736 

heading angle matches well with the reference signal. However, a relatively large deviation exists when the 737 

vehicle passes through the point where the course changes significantly (around 30 s in Fig. 22. (a)). This is 738 

due to the sharp turnings. For the speed profile, time history curves are based on a constant design speed. 739 

Upon approaching the sharp turns, the surge speed was inconsistent. In spite of this, it remained close to the 740 

desired speed while following the course. Variations in the thruster signals reflected the vessel’s speed and 741 

direction as it turned. 742 
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 743 
Fig. 22. Results of the tracking process: (a) Course angle and speed of USV1; (b) Thrust forces of USV1; (c) 744 

Couse angle and speed of USV2; (d) Thrust forces of USV2 745 

 746 

5. Conclusion 747 

The work in this paper presents an insightful study that focuses on path planning and path following for USVs 748 

in water monitoring missions. The particular class of global path planning consisted of problems where it is 749 

necessary to consider the heterogeneity of the USVs/tasks to complete the mission. Moreover, the inherent 750 

USV physical constraints pose a great challenge in achieving robust path following. This article creates a 751 

systematical approach against global path planning and path following with characteristics such as global 752 

optimality, rapid convergence rate, and robust control performance. From the corresponding results, it allows 753 

the following conclusions to be drawn: 754 

 755 

 The presented results indicate the proposed EMTSP in combination with GPGA can consistently address 756 

the heterogeneous task planning of multiple USVs, thereby contributing to the water monitoring missions 757 

with specific needs.  758 

 By utilizing the local exploration and greedy initialization, GPGA merits strong global searching ability 759 

and rapid convergence simultaneously. GPGA outperforms currently available combinatorial optimization 760 

approaches and provides improved solutions in all the problem variants.  761 

 Finally, reference targets can be properly tracked by virtue of the NMPC strategy, ensuring smooth 762 

maneuvering by respecting USV physical constraints.  763 

 764 

Some limitations of the current study need to be addressed in future work.  765 

 Obstacles and unexpected invaders might threaten USV safety and potentially cause mission failure. This 766 

paper only deals with path planning in an obstacle-free area. In the future, efficient strategies can be 767 
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applied to achieve obstacle avoidance. 768 

 The presented NMPC solves a highly nonlinear optimization problem at each sample period, necessitating 769 

a significant processing and time capacity. Utilizing a more practical technique that can build a simpler 770 

version of the model permits the application of quadratic programming algorithms, resulting in a quicker 771 

implementation. 772 

 The collision between the USVs is not considered. The authors are planning to design appropriate control 773 

strategies that could achieve coordination between the USVs.  774 

 Moreover, the algorithm will be implemented in ROS systems and applied to actual USVs in a real-world 775 

water monitoring case.  776 
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