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Inspired by the swarming or flocking of animal systems we study groups of agents moving in unbounded
2D space. Individual trajectories derive from a “bottom-up” principle: individuals reorient to maximize
their future path entropy over environmental states. This can be seen as a proxy for keeping options open, a
principle that may confer evolutionary fitness in an uncertain world. We find an ordered (coaligned) state
naturally emerges, as well as disordered states or rotating clusters; similar phenotypes are observed in birds,
insects, and fish, respectively. The ordered state exhibits an order-disorder transition under two forms of
noise: (i) standard additive orientational noise, applied to the postdecision orientations and (ii) “cognitive”
noise, overlaid onto each individual’s model of the future paths of other agents. Unusually, the order
increases at low noise, before later decreasing through the order-disorder transition as the noise in-
creases further.
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Collective motion occurs in both living and synthetic
systems. In living systems this arises in a wide variety of
species over different length scales, e.g., micro-organisms,
cells, insects, fish, birds [1–6], and even dinosaurs [7].
Interest in the physics community often lies in developing
models of collective motion that are analogous to living
systems, many of which exhibit ordered (coaligned) motion
and support a noise-induced transition to disorder [8–15].
Long-ranged behavioral interactions may arise in nature,
and there have been some attempts to analyze such
interactions [13,16–20]. These can naturally be traced to
the nature of information transfer between agents [21,22],
noting that senses like vision are long ranged. Other models
of swarming behavior incorporate explicit alignment,
cohesion, and/or collision avoidance rules directly into
an agent-based model [13,17,23]. However, such models
cannot easily explain the underlying reason for the emer-
gence of properties like cohesion and coalignment as these
are essentially incorporated into the models at the outset.
One recent alternative approach is to utilize machine
learning based on using a simple form of perception to
maintain cohesion directly [24]. Another involves the study
of large deviations of nonaligning active particles that are

biased, e.g., by effective alignment of self-propulsion with
particle velocity [25–28]. While it is possible neural
circuitry of animals encodes an algorithm that directly
targets coalignment and cohesion in the same mathematical
manner as in these models, it seems much more likely that
some lower-level principle is involved. This principle,
almost certainly associated with evolutionary fitness in
some way, might then be the origin of cohesion and
coalignment. We argue that more satisfactory explanations
for the phenomenon of swarming may be offered by testing
candidates for this lower-level principle. In this Letter, we
analyze one such model.
There is a small but growing literature focusing on the

causal understanding of complex behavior, cast as an
entropy or state maximization approach. Here some mea-
sure of variation across future paths accessible from a
particular system configuration is computed, and an action
that maximizes this variation is selected, e.g., Refs. [29–
33]. It is argued that agents that can retain access to the
most varied future environments can better select from
these to satisfy any immediate requirements or objectives,
e.g., resource acquisition or predator evasion. For these
reasons such strategies are expected to generally confer
evolutionary fitness in an uncertain world. The present
work shares similar motivation to Ref. [32] but provides a
rigorous mathematical model based on path entropies and
focuses on the emergence of order. We believe that such
models offer clear advantages in terms of their conceptual
clarity and prospects for future development.
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To realize such a model here, agents are treated as
oriented unit disks that move in discrete time t, defining our
length and time units, respectively. The position of the ith
agent in the next time step is

xtþ1
i ¼ xt

i þ vtþ1
i : ð1Þ

At each discrete time step t agents choose from z ¼ 5
velocities: either to move along their current orientation
with one of three speeds, namely, nominal v0, fast v0 þ Δv,
or slow v0 − Δv; or to reorientate by an angle �Δθ while
moving at the nominal speed v0. Unless noted otherwise we
take v0 ¼ 10, Δv ¼ 2, and Δθ ¼ π=12 ¼ 15°. The agent’s
velocity is updated by an operator Aαti

acting on its previous
velocity vti:

vtþ1
i ¼ Aαti

½vti�: ð2Þ

Actions α change the velocity according to

Aα½v� ¼ vαRðθαÞv̂: ð3Þ

The index α ∈ ½1; z� labels possible actions, here with
indices dropped for clarity. Hat accents denote unit vectors
according to v̂ ¼ v=jvj throughout, with j · j the Euclidean
norm. The action chosen at each time step determines the
corresponding speed of the agent v1 ¼ v4 ¼ v5 ¼ v0,
v2 ¼ v0 þ Δv, v3 ¼ v0 − Δv in that time step, where R
generates a rotation

RðθÞ ¼
�

cos θ sin θ

− sin θ cos θ

�
; ð4Þ

with rotation angles θ1 ¼ θ2 ¼ θ3 ¼ 0, θ4 ¼ Δθ, and
θ5 ¼ −Δθ. The sequence of such actions realized by this
agent αti over time t completely determines the dynamics.
In order to select actions, i.e., compute hypothetical path
entropy over future states, this model requires that agents
model positions of themselves and other agents into the
future. Therefore we adopt the notation x̃t0

k , α̃
t0
k , vα̃t0k

, and

θα̃t0k
, involving a tilde accent, to indicate virtual positions,

actions, speeds, and rotation angles of all agents k at time t0.
Hence

x̃tþs
k ¼ xt

k þ
Xt−1þs

t0¼t

ṽα̃t0k

Yt0
t00¼t

Rðθα̃t00k Þv̂
t
k; ð5Þ

with 1 ≤ s ≤ τ reflecting the time horizon τ.
Equation (5) generates the hypothetical position of both

the k ¼ i (self) and k ¼ j ≠ i (other) agents. However,
we make a simplifying assumption for the motion of the
j ≠ i (other) agents. Here our default model corresponds to
“ballistic” translation of the j ≠ i agents in which vα̃t0j

¼ v0

and θα̃t0j
¼ 0, ∀ t0 ≥ t. The speeds and rotations depend

neither on the particle index j nor the future time index, and
so they can be stated in more condensed form simply as
ṽ ¼ v0 and θ̃ ¼ θα̃ ¼ 0. The ballistic assumption can often
be rather good, in the sense that the trajectories that are
realized can have a very high degree of orientational
order, and so the assumption is broadly self-consistent
[34]. Later in this article we consider models that gene-
rate different virtual actions for the j ≠ i agents that in-
corporate noise. See Fig. 1(b) for a sketch of this dynamical
scheme.
The environmental state of an agent is assumed to be

perceived using only vision; see Fig. 1(a). This state
encodes information on the relative positions of the other
agents in a manner that is broadly consistent with animal
vision, abstracted to d ¼ 2 dimensions: visual sensing
involves a radial projection of all other agents onto a
circular sensor array at each agent. Loosely speaking, the
radial projection registers 0 “white” along lines of sight not
intersecting agents, and 1 “black” along those that do. We
discretize this into an ns-dimensional visual state vector ψ i,
for angular subregions of size 2π=ns. This then resembles a
spin state, e.g., ð0; 1; 0; 0; 1 � � �Þ.
Mathematically we use two indicator functions, first

the distance of shortest approach along a line of sight
n̂i ¼ RðχÞv̂i originating from the ith agent,

Iij ¼ Θ½1 − jx̃ij × n̂iðχÞj�; ð6Þ

where the Heaviside function Θ½x� ¼ 1 for x ≥ 0 and 0
otherwise and x̃ij is the separation vector x̃j − x̃i, with j · j
the Euclidean norm. Equation (6) indicates an agent is
visible along this line of sight in either direction from the

FIG. 1. Snapshot of a system configuration and sketch explain-
ing our model. (a) N ¼ 50 agents that take actions to maximize a
future path entropy over environmental states (see text); axes
show x-y coordinates in units of the agent radius. Overlaid
(broken circle) is a representation of the visual state perceived by
the red individual. Obtained from a simulation with parameters
τ ¼ 6, Δθ ¼ π=12 ¼ 15°, v0 ¼ 10, and Δv ¼ 2 (see text for
details). (b) In red the tree of hypothetical future actions the agent
examines, starting from the present at the root on the far left.
Shown in blue and green (with dashed circles) are ballistic and
noisy motion assumptions of other agents.
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ith agent, i.e., along χ or χ þ π. We restrict to χ using the
second indicator

I0ij ¼ Θ½x̃ij · n̂iðχÞ�: ð7Þ

The nth component of the visual state vector ψ i is then

ψn
i ¼ Θ

�Z
σn

Θ
�X

j

IijðχÞI0ijðχÞ
�
dχ −

π

ns

�
; ð8Þ

where the nth sensor covers the angular domain
σn ¼ ½2πðn − 1Þ=ns; 2πn=ns�. The inner Heaviside func-
tion registers 1 (“black”) if at least one agent intersects the
line of sight χ; the integral then measures the coverage of σn
by “black” regions. The outermost Heaviside function is a
further threshold that at least half the sensor must be
“black” to activate the nth visual state component.
For a virtual action α̃ti the entropy of the state distribution

over (all nodes on) all virtual paths for the ith agent
following action α̃ti is

Sðα̃tiÞ ¼ −
X
ψ

piðα̃ti;ψÞ logpiðα̃ti;ψÞ; ð9Þ

where piðα̃ti;ψÞ is the count of occurrences of a state ψ on
these virtual paths, normalized by the count of states on all
branches. In this way each action branch α̃ti is associated
with an environmental path entropy Sðα̃tiÞ. The key step in
the decision making process is that each agent then
executes the action

αti ¼ arg max
α̃ti

Sðα̃tiÞ; ð10Þ

thereby choosing the branch that maximizes the entropy of
future visual states. This process is carried out simulta-
neously for each agent and repeated, from scratch, at each
time step. Degenerate options are selected at random, the
only randomness in the baseline algorithm that is otherwise
deterministic.
Our model supports various phenotypes. In Fig. 2 we

report on the effect of varying the turning rate Δθ, the
nominal speed v0, and its variation Δv. We find that a
highly ordered and cohesive phenotype is commonly
achieved when the agents move relatively fast with mod-
erate turning, resembling those seen in flocks of social birds
[37,38], noting that these birds also have relatively fast
speed, do not slow significantly, and have limited turning
ability relative to an insect. We also find cohesive disor-
dered groups, some showing circulation. The most impor-
tant conditions for the emergence of cohesive swarms are
(i) τ ≳ 3, (ii) 10≲ ns ≲ 100 to avoid the visual states
becoming largely degenerate (see the Supplemental
Material [39] for details).

We report the visual opacity as the average sensor
state Θ ¼ h1=ns

Pns
n¼1 ψ

n
i i, density ρ ¼ hNπr2=Ati with

the convex hull area At, and global order ϕ ¼
hj1=NP

N
i¼1 v̂

t
iji, and quantify rotation using a normalized

mean-squared vorticity ν2 ¼ hð1=NP
i r̂

t
i × v̂tiÞ2i, with

rti ¼ xti − hxtkik and vti the ith agent’s position relative to
the geometric center and velocity respectively. In each case
we average over agents i and times t. We also use a measure
of spatial clustering using DBScan [40] (see the
Supplemental Material [39], Sec. S2, for details) to both
detect fragmentations and measure the quantities above on
clusters. We denote the average fraction of agents in the
largest cluster as C, and by ϕC denote the order of the largest
cluster.
We have established the emergence of coaligned, cohe-

sive states under environmental path entropy maximizing
trajectories; see Fig. 2(a). It is therefore natural to ask about
the effect of noise on these dynamics. In this way we will
investigate to what extent this model supports an order-
disorder transition similar to those extensively studied in
other models of collective motion [8–15].
By “cognitive noise” we mean some imprecision in an

agent’s model of the others. We therefore define a stochas-
tic process for the virtual speeds ṽt

0 ¼ v0 þ μt
0
v and rota-

tions θ̃t
0 ¼ μt

0
θ of all j ≠ i agents. Here both μ variables

(subscript v, θ omitted for clarity) are drawn from zero
mean hμt0j i ¼ 0 Gaussian distributions that are uncorrelated

according to hμt0j μt00j0 i ¼ η2δjj0δt0t00 with j; j0 ≠ i here the
particle index of the (other) agents and t0; t00 ≥ t. The root-
mean-squared noise amplitude of the speed and orientation
are written, with subscripts restored, as ηv and ηθ respec-
tively. An example is shown in the sequence of positions
shown in green in Fig. 1(b). All else proceeds as before,
without any additional noise applied to realized agent
actions.

FIG. 2. Agents that maximize environmental path entropy
naturally adopt different dynamical modes, or “phenotypes.”
Each panel shows the agent’s trajectories, together with the time-
averaged mean order ϕ, root-mean-squared vorticity ν, density ρ,
and opacity Θ (see text): (a) the ordered, dense (“bird”)
phenotype and (b) translation combined with significant rotation
(similar to “fish” or “insects”). Averages computed over ten
replicates.
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The most striking feature from Fig. 3(a) is that the order
initially increases with the addition of small levels of noise,
before later decreasing again. An upper tailed t-test (with
unequal variances) on the difference of the mean order in
the noise-free case (ηθ ¼ 0) and the mean of simulations
with nonzero noise 0 < η ≤ 10° rejects the null hypothesis
that the mean order ϕ is the same at the level of p < 10−13.
The same t-test for ϕC, the order computed only for agents
that are members of the largest cluster, is rejected
at p < 10−50.
To understand why a small amount of noise might

actually increase order we compare the noise level at
which the order is maximal, roughly ηθ ¼ 5–7°, to intrinsic
variation in the realized dynamics in a low noise state
ϕ ≈ 0.98. There are several ways to achieve this: (i) approxi-
mating the order as the mean component of the normalized
velocities of the agents along the average direction of
motion, ϕ ¼ hcos δθi ≈ 1 − 1

2
hδθ2i, leading to δθrms ¼ 11°;

(ii) crudely assuming moves are uncorrelated extending for
τ steps into the future and asking what angular noise
amplitude per time step, analogous to ηθ would be required
to give the realized order ϕ at the end of this sequence,
leading to 11°=

ffiffiffi
τ

p ¼ 4.7°; and (iii) using the velocity
autocorrelation function CvvðtÞ ¼ hv̂t0i · v̂t

0þt
i i (see the

Supplemental Material, [39], Fig. 4) and extracting an
angular noise per time step by either writing Vvvð1Þ ¼
0.987 ¼ hcos δθi or using VvvðτÞ ≈ 0.968 leading to δθ ≈
9° and 6° respectively. All are similar to the observed value
of ηθ at which order is maximal. Thus the realized order is
maximal at a value of cognitive noise ηθ that is self-
consistent with the variation in the realized trajectories that
arises in the dynamics. We argue that this is the noise level
at which the predictive model of the trajectories of other
agents will be more accurate, at least in a statistical sense.
We propose that this represents the fundamental reason for
the increase of order at small noise levels.
To apply postdecision noise, the rotation associated with

each action that appears in Eq. (3) is modified to include
noise according to θ1 ¼ θ2 ¼ θ3 ¼ ζti, θ4 ¼ Δθ þ ζti, and
θ5 ¼ −Δθ þ ζti with the random rotation angle ζti drawn
from a zero mean hζtii ¼ 0 Gaussian distribution satisfying
hζtiζt0j i ¼ η2δijδtt0 . This noise can be interpreted as arising
from imperfect implementation of the target velocity, ubi-
quitous in physical or living systems.
Figure 3(b) shows the effect of this postdecision orienta-

tional noise. At large noise amplitude η the order
approaches a value ∼1=

ffiffiffiffi
N

p
, expected for N randomly

orientated agents. This corresponds to a complete loss of
orientational order. We find the order-disorder transition
occurs around η ¼ 12°. This is a significantly smaller
noise level than for the case of cognitive noise [see
Figs. 3(a1)–3(a3)], where the transition occurs around
ηθ ¼ 45°. This indicates that cognitive noise has a much
weaker disordering effect than postdecision noise and could
even be seen as providing robustness, by anticipating the
possibility of varied trajectories in the future. In contrast,
postdecision noise plays no such role.
A one-tailed t-test, to test whether the order at nonzero

noise values is significantly different from the zero noise
case, was performed for both ϕ and ϕC. The result being
significant for the mean order for agents in the largest
cluster ϕC (p < 10−6) but insignificant for the global order
ϕ (p ¼ 0.086). The difference between the two is likely due
to rare fragmentations, which we see in large groups ≳100,
noting also that ϕ is systematically lower than ϕC. The fact
that there is a significant increase in ϕC is perhaps even
more surprising than the similar effect apparent in
Fig. 3(a3). The magnitude of the increase in order ϕC
from ηθ ¼ 0 to ηθ ∼ 5° that is apparent in Fig. 3(a2) is about
1% (a relatively large difference: the misordering halves).
However, the corresponding increase in Fig. 3(b2) is nearly
an order of magnitude weaker and occurs at much smaller
noise η ∼ 0.5°. This signifies a different mechanism for the

FIG. 3. Ordering transitions in the presence of (a) cognitive
noise and (b) post-decision orientational noise. (a1)–(a3) Each
agent approximates the future trajectories of others in the
presence of cognitive noise as a sequence of random rotations
and speed changes from their current heading and speed v0. The
noise strengths ηθ and ηv characterize the magnitude of the
rotations (degrees) and speed changes (body radii per time step),
respectively. (a1) A transition from high order to a disordered
phase occurs with increasing cognitive rotational noise ηθ. Insets
(a2) and (a3) focus on small ηθ with ηv ¼ 0. They show the order
of the largest cluster ϕC and the overall system order ϕ,
respectively; note the maximum in order appears at nonzero
noise. The red horizontal line shows the order averaged over all
runs 0 < η ≤ 10°. In (a1)–(a3) the future time horizon is τ ¼ 6.
(b1) The effect of postdecision orientational noise on global order
ϕ. Here a random rotation with root-mean-squared angle η
(degrees) is applied directly to the velocity, before the movement
update. (b2) A statistically significant local maximum in ϕC for
nonzero noise η whereas (b3) now shows no significant maxi-
mum in ϕ. The red horizontal line shows the order averaged over
all runs 0 < η ≤ 1.5°. All systems contain N ¼ 250; all error bars
are 1 standard error in the mean; the dashed lines represent the
mean order ϕ ¼ 1=

ffiffiffiffi
N

p
of randomly orientated agents. In all

statistical tests additional repeats (n ¼ 16) were computed for the
zero noise case; see text for further details.
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much weaker increase in order that occurs under such
postdecision noise. We speculate that this might be due to
subtle changes in the swarm structure resulting from the
addition of noise, noting that the density is systematically
lower in the presence of weak postdecision noise (see the
Supplemental Material [39] for details). Such changes
could plausibly affect path-entropy maximizing trajectories
in such a way that they generate a higher order. Although
there is no obvious intuitive explanation for this it could be
related to the fact that the agents have more information on
the global organization at lower densities, where there are
fewer particle overlaps in the visual state.
To conclude, we analyze a simple model that could

underly evolutionary fitness and hence intelligent behavior.
This model involves agents that seek to maximize the path
entropy of their future trajectories, analogous to keeping
future options open. The entropy is here computed over
visual states, such as would be perceived by animals that
rely primarily on vision to sense and navigate the world
around them. Such path-entropy maximization strategies
could be of broader interest within biology, e.g., in the
biochemical state space accessible to micro-organisms or
cells. However, we believe that it will be easier to test these
ideas in higher animals that exhibit swarming motion where
the state space is lower dimensional and the dynamics of
inertial flying (or swimming) agents is much more simple
and well understood than the nonlinear chemical kinetics of
cellular biochemistry.
We find that the “bottom-up” principle of maximization

of path entropy is a promising candidate to understand the
emergence of properties like coalignment and cohesion
observed in typical swarming phenotypes. This principle
also leads to flocks with opacity values close to 0.5, in
agreement with observations on some bird flocks [19].
Although the algorithm is highly computationally

demanding it involves a simple mapping from an observed
visual state to an action. Heuristics that mimic this process
and that could operate under animal cognition in real time
are easy to develop. For example, an artificial neural
network could be trained on simulation data to choose
actions from sensory input. Similar algorithms could also
find use in novel forms of active, information-processing
(“intelligent”) matter that may soon form part of the
experimental landscape.
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