
1

Lightweight Blockchain-empowered Secure and
Efficient Federated Edge Learning

Rui Jin, Jia Hu, Geyong Min, Jed Mills

Abstract—Federated Learning (FL) has emerged as a privacy-preserving distributed Machine Learning paradigm, which collaboratively
trains a shared global model across a number of end devices (clients) without exposing their raw data. However, FL typically assumes
that all clients are benign and trust the coordinating central server, which is unrealistic for many real-world scenarios. In practice,
clients can harm the FL process by sharing poisonous model updates while the server could malfunction or misbehave. Moreover,
the deployment of FL for real-world applications is hindered by the high communication overhead between the server and clients
that are often at the network edge with limited bandwidth. To address these key challenges, we propose a lightweight Blockchain-
Empowered secure and efficient Federated Learning (BEFL) system. BEFL is built by integrating a communication-efficient and mutual-
information guarded training scheme, a cost-effective Verifiable Random Function (VRF)-based consensus mechanism, and Inter-
Planetary File System (IPFS)-enabled scalable blockchain architecture. Extensive simulation experiments using two benchmark FL
datasets demonstrate that BEFL is resistant against byzantine clients launching data poisoning and model poisoning attacks, fault-
tolerant against colluded malicious blockchain nodes, scalable to a large number of blockchain nodes, and communication-efficient at
the network edge.

Index Terms—Blockchain, Federated learning, Mutual information, Edge computing

✦

1 INTRODUCTION

R ECENT years have witnessed the rapid development
of Deep Learning technology, which has achieved

groundbreaking success in a wide range of applications
such as robotics, autonomous vehicles, and healthcare. The
impressive performance of Deep Learning models relies
substantially on large-scale and high-quality data for model
training. Nowadays, networked edge devices, such as
smartphones, vehicles, and sensors contain large amounts of
valuable data [1]. However, collecting these raw data comes
with inevitable communication and security issues, as many
edge devices have limited bandwidth, and user-generated
data on devices often contains privacy information (e.g.,
locations and health records). To cope with these issues,
Federated Learning (FL) emerges as a promising solution
that enables multiple clients (data owners) to construct a
joint learning model (i.e., global model) without exposing
their private training data. Orchestrated by a central server,
clients periodically send their model updates to the server
and retrieve the aggregated global model for the next round
of training, until the global model converges.

However, the conventional FL process assumes that the
server and clients are benign and reliable, which is unre-
alistic for many real-world scenarios. In practice, malicious
clients may send poisonous model updates to the server. Re-
cent studies show that FL is prone to these poisoning attacks
[2]. Even one byzantine client can degrade the global model
significantly [3]. Moreover, the centralized orchestration and
aggregation of FL put the server at a dominant position, ren-
dering the whole learning process to be highly vulnerable to

• Rui Jin, Jia Hu, Geyong Min and Jed Mills are with the Department of
Computer Science, University of Exeter, Exeter EX4 4QJ, U.K. (e-mail:
{rj390; j.hu; g.min; jm729}@exeter.ac.uk)

• Corresponding authors: Jia Hu and Geyong Min.

malfunction or misbehaviour of the server. To mitigate these
two issues of malicious clients and server bottleneck, many
research endeavours toward robust and decentralized FL
have been carried out. Defence mechanisms such as Multi-
krum [2], Trimmed Mean (TM) [4], Coordinate-wise Median
(CM) [4], Bulyan [5], and Robust Federated Averaging (RFA)
[6] have been proposed to protect against malicious clients
in FL. To enable decentralized aggregation and eliminate
the single point of failure in FL, a promising approach is the
blockchain technology, which has attractive security features
including tamper-resistance, transparency, traceability, etc.

There have been a number of research works dedicated
to blockchain-based FL. For example, some papers proposed
blockchain-based FL systems using full-chain deployment
on client devices [7]–[11]. However, those systems are costly
in terms of communication and storage due to the large
block size (within the ever-growing blockchain) containing
local model updates and the global model. The work in [8]
alleviates this problem by allowing clients to delete histori-
cal blocks according to a local resource budget, but its cred-
ibility of security inevitably decreases due to the deletion of
blocks. Several other blockchain-based FL works proposed
to deploy blockchains to edge nodes with greater capacity
than client devices [12] [13]. However, the ChainsFL [12]
requires the sharing of a test dataset for local model up-
date validation, which is not compatible with the privacy-
preserving objective of FL, while [13] is vulnerable to the
single point of failure since the centralised aggregation is
carried out only by the task publisher. Another branch of
works uses a popular blockchain platform like Ethereum
with smart contracts [14] [15], however, they are costly to
operate, as every interaction with the blockchain consumes
a monetary gas fee. Thus, there is a lack of a cost-effective,
secure and reliable blockchain-based FL system that runs at

2

vulnerable network edge with resource-constrained client
devices.

To fill this gap, we propose a novel lightweight, secure
and efficient Blockchain-Empowered Federated Learning
(BEFL) system tailored for the wireless edge, which has
promising applications in areas such as connected and
autonomous vehicles, mobile crowdsourcing, and smart
healthcare. BEFL eliminates the role of the FL server, with a
group of edge nodes running and maintaining a blockchain
system for FL model aggregation and distribution. Con-
sidering the massive communication cost that arises from
clients iteratively sending model updates to the edge, we ex-
ploit a state-of-the-art compression mechanism PowerSGD
[16] to compress model updates into low-rank matrices
to reduce the communication overhead on the client side
with tolerable computation cost. To enable the byzantine ro-
bustness over compressed model updates which inevitably
entail biases compared to raw model updates, BEFL utilizes
the Mutual Information (MI) between clients’ models to
capture their inherent correlation and choose reliable up-
dates according to their MI values. BEFL also incorporates
Verifiable Random Function (VRF) and Inter-Planetary File
System (IPFS) to empower the lightweight blockchain sys-
tem, with a set of selected blockchain nodes (committee)
in charge of block generation to ensure the reliability of
global model. The major contributions of this paper are
summarized as follows:

• The proposed BEFL moves the model aggregation
work from the FL server to the blockchain nodes (i.e.,
edge servers), thus eliminating the single point of
failure in conventional FL. BEFL also utilises the IPFS
to store the global model with its address recorded
on the chain instead of the whole model, to reduce
the communication cost of block propagation and the
storage cost of the ever-growing blockchain.

• We propose a novel byzantine-resilient
communication-efficient training scheme leveraging
the MI between clients and the PowerSGD method,
to protect against malicious model updates whilst
reducing the communication overhead. This new
training scheme is embedded in the operating
process of the BEFL system.

• Instead of the conventional computation-intensive
Proof-of-Work (PoW) mechanisms to achieve the
consensus in the blockchain, we propose an energy-
efficient committee-based consensus protocol using
VRF. This new protocol selects committee members
with probabilities proportional to their stakes to
protect against malicious blockchain nodes and to
validate a candidate block that contains the IPFS
address of the global model.

• Extensive experiments were conducted with bench-
mark non-independent identically distributed (non-
i.i.d) datasets (FEMNIST and CIFAR10) for FL under
both honest and adversarial settings. Experimental
results show that BEFL is resistant to clients act-
ing maliciously and launching data poisoning and
model poisoning attacks. BEFL could also achieve
better performance than baselines under the be-
nign setting with reduced communication overhead.

BEFL’s performance was unaffected with 1
3 malicious

blockchain nodes in the network. Furthermore, the
block generation and distribution time barely in-
creased when the network size scaled up from 100
to 800 nodes.

The rest of the paper is organized as follows. We describe
the related work in Section 2 and the preliminaries in
Section 3. We detail our system design in Section 4. The
implementation and evaluation of our system are presented
in Section 5. Finally, we conclude our work in Section 6.

2 RELATED WORK

The highly attractive privacy-preserving nature of FL has
resulted in intense research activity, but its centralized or-
chestration and lack of control of clients leave huge at-
tacking space to the server and clients. To tackle the threat
induced by malicious clients who launch poisoning attacks,
robust FL has been extensively explored. Blanchard et al.
[2] proposed Multi-krum, leveraging the Euclidean distance
between model update vectors to select updates ”close to
the barycenter” for the averaging aggregation step. Differ-
ent from Multi-krum, TM and CM perform element-wise
aggregation [4]. CM takes the coordinate median of each
parameter across all collected local model updates and TM
averages each coordinate parameters without the largest
and the smallest β fraction of values. Combining Multi-
krum and TM, Bulyan [5] was proposed to reduce the
leeway of byzantine clients. However, the effectiveness of
these works has only been demonstrated using i.i.d datasets,
which is not consistent with the non-i.i.d FL environment. In
this regard, Pillutla et al. [6] proposed RFA to approximate
the geometric median of model updates vectors as the global
model parameters and achieved byzantine robustness in the
non-i.i.d FL setting, but tripled the communication over-
head. These robust statistics-based guarding mechanisms,
however, fail to consider the situation when the server
malfunctions or misbehaves.

To handle the issue brought about by an unreliable
server, blockchain-based FL becomes a promising solution.
The peer-to-peer distributed nature of blockchain makes
the decentralized aggregation of global model available,
shedding new light on handling the single point of failure
in conventional FL. Research works [7]–[10], [12], [14], [17]–
[21] move the aggregation step from the server to the
blockchain nodes, while Qu et al. [22] and Mugunthan
et al. [15] eliminate the role of the aggregator by letting
clients themselves aggregate model updates obtained from
the blockchain network. To ensure the reliability of the
global model, most blockchained FL frameworks embed
local model update verification into their design. Under
different assumptions on blockchain nodes, the verification
methods vary. Several blockchain-integrated FL frameworks
assume that clients join the blockchain network and partic-
ipate in FL task simultaneously, so that their training data
could be used as the validation datasets [8], [9], [17], thus
the validation accuracy of local model updates (recorded in
the transaction) could be further utilized in the aggregation
process. Li et al. [8] introduced K-fold cross-validation where
K committee members test the model update on their
training data and take the median of the accuracy values

3

as the score of the update. Model updates with qualified
scores would be selected for global model aggregation. Lu
et al. [17] applied a similar strategy to select model updates
with accuracy lying within a certain range to update the
global model. This accuracy-based validation mechanism
has also been utilized in blockchain-based FL systems where
nodes have no access to the training data. Mugunthan et al.
[15] implemented smart contract with a cross-verification
procedure that clients cross-verify others’ model updates
by testing them over their local training datasets, and send
the accuracy values back for the calculation of contribution
scores, which would be used in the weighted aggregation
stage.

Instead of evaluating model updates with the help of
clients, which would inevitably increase the communication
burden and be restricted with clients’ active status, recent
blockchain-based FL frameworks reaped recent advances
in Robust FL to protect against malicious clients. Biscotti
[7], SPDL [11] and Omnilytics [14] applied the Multi-krum
as the validation mechanism and give passes to model
updates with closer Euclidean distances. Biscotti introduces
noiser, verifier and aggregator nodes, where noisers produce
differentially private (DP) Gaussian noise to be added to
the model updates, verifiers run Multi-krum to sign com-
mitments for passed updates, and aggregators aggregate
unmasked passed model updates via a secure protocol.
Similar to Biscotti, SPDL leverages DP Gaussian noise to
local model update and Multi-krum in model updates ag-
gregation to provide private and secure FL with theoretical
convergence guarantee. Omnilytics was implemented using
smart contract with incentives and punishments to honest
and malicious clients respectively. However, the proposed
designs have only been tested using i.i.d datasets, so their
performance under non-i.i.d FL setting has not been ex-
plored.

The deployments of proposed blockchain-based FL sys-
tems in the research community roughly fall into three
categories: to client devices [7]–[10], to edge nodes [12], [13],
[23], and to the existing blockchain platform Ethereum with
smart contracts [14], [15]. Considering the limited resources
of client devices, running and maintaining blockchain lo-
cally is costly in terms of communication and storage for the
large propagated block in the network and the ever-growing
blockchain. For PoW-based blockchain systems [10], the ad-
ditional computation cost of running the blockchain is also
non-negligible. The existing mature platform, Ethereum,
that enables smart applications running on the blockchain
provides secure execution of FL tasks but is monetary costly
in terms of the gas fee induced by every interaction with the
blockchain. The deployment to edge nodes is promising for
their broad capacity in terms of computation, communica-
tion and storage, but existing blockchain-based FL works
targeting this scenario fail to address the security issue
brought by malicious clients and an unreliable server, and
the high communication overhead for resource-constrained
clients concurrently. In this regard, we propose BEFL to
enable secure and efficient FL at wireless edge with practical
potential.

3 PRELIMINARIES

We will introduce the basics of blockchain, IPFS and VRF in
this section.

3.1 Blockchain
Since the inception of Bitcoin, the underlying blockchain
technology has received considerable attention from both
academia and industry for its peer-to-peer, transparent,
and immutable features. Popular blockchain systems (e.g.,
Bitcoin and Ethereum) enable a consensus among differ-
ent nodes via Proof-of-Work (PoW) where miners (nodes)
competitively solve a mathematical puzzle to grow the
blockchain, with the longest valid chain regarded as author-
itative. However, PoW allows the possibility of forks, where
two chains have the same length. It requires more blocks
to be appended to mitigate the forks, thus leading to long
transaction confirmation times. In this regard, consensus
mechanisms based on Byzantine Fault Tolerance (BFT) with
built-in block finalization have been proposed, such as the
protocols deployed in Algorand [24], Casper FFG [25], and
Hyperledger Fabric [26]. Taking advantage of the built-in
consensus finality, high transaction capacity, and great fit-
ness to permissioned blockchain of BFT protocols, we apply
a similar strategy with Algorand to reach the consensus
among blockchain nodes.

3.2 IPFS
Inter-Planetary File System is a peer-to-peer distributed file
system that provides a high throughput content-addressed
block storage model with content-addressed hyperlinks (the
unique hash values) [27]. Its Distributed Hash Table (DHT)
and Merkle Directed Acyclic Graph (DAG) make efficient
data storage and file retrieval. Any modification of a file
would result in a different hash value, thus the integrity of
the stored file is ensured. We use IPFS to store the global
model on the BEFL nodes, reducing the storage cost of the
blockchain and ensuring the integrity of the global model.

3.3 VRF
Verifiable Random Function [28] is a public-key pseudoran-
dom function that provides proof for its random outputs
with certain inputs. VRF provides blockchain nodes a non-
interactive way to independently determine if they were
chosen to be the committee members [24]. These unique
characteristics of VRF allow us to use it to allocate the
blockchain committee in BEFL.

4 BLOCKCHAIN-EMPOWERED SECURE AND EFFI-
CIENT FEDERATED LEARNING (BEFL)
We propose the BEFL system with the following goals:
1) prevent the single point failure and abnormal aggre-
gation operations, 2) reduce the communication cost of
clients without degrading the global model performance,
3) mitigate the influence of potential malicious clients, 4)
be effective under the realistic non-i.i.d FL setting, and 5) be
lightweight and able to scale to a large number of blockchain
nodes and complex FL tasks (i.e., large deep learning models
with millions of parameters).

4

Client 1 Client 2 Client �

...

Node Node Node Node

...

Blockchain Network

Task Publisher

Initial model

Unlabelled data

FL Task

FL Collaborative
Training

���� ∆�� ���� ∆�� ���� ∆��

����� ����� �����

Committee (VRF)

Aggregator
Candidate block

Verified block

⑦

①

②

③

④

⑤

⑥

① Publish FL task
③ Local training with private dataset
⑤ Aggregate local model updates via secure aggregation rule to generate candidate block
⑦ Miners add newly verified block to the local chain

BS BS BS BS

② Get the IPFS address of the global model
④ Send the compressed local model update to the nearest miner (blockchain node)
⑥ Committee members verify the candidate block to produce the confirmed verified block

Fig. 1. The system overview of BEFL

Design Overview: As shown in Fig. 1, we deploy our
blockchain system at the network edge due to the high
computation, communication, and storage capacity of edge
nodes (i.e., Base Stations (BSs)). We assume that the task
publisher has access to a set of unlabeled data containing
all the classes of training data on clients, with which we
calculate the MI between clients. This assumption is easily
satisfied, as in FL, the task publisher (or the server) usually
collects its own data for model validation, which contains
all the classes and is i.i.d, while collecting unlabeled data is
simpler than labeled ones [29].

The task publisher first publishes the FL task with un-
labeled data and the initial global model that stored in the
IPFS to the blockchain network (Step ①). The blockchain
nodes retrieve the task information from the network and
keep a replica of the unlabeled dataset. Clients then could
get the IPFS address of the global model via querying
the nearest active node (Step ②). Utilising the content-
addressed IPFS, the global model could be easily down-
loaded. Starting with this global model, clients run local
training steps using their private datasets. Once the local
training is complete, clients compress the model updates
and send the compressed gradients (Comp(∆w)) together
with their signatures as transactions to the nearest active
node (Step ③ and ④). Receiving a model update from a
client, the blockchain node first verifies whether it is issued
by the client via checking the signature and recovering the
compressed update to see if its shape is consistent with
the global model. If the two requirements are met, the
node disseminates this transaction to the network. Once
enough pending transactions (local model updates) are re-
ceived, nodes competitively calculate the global model for
next round following the secure aggregation protocol we

designed, generate the candidate block and send it to the
committee that was allocated with VRF (Step ⑤). Committee
members then verify if the global model is aggregated
correctly with their ”Yes” or ”No” votes. If the candidate
block receives more than 2

3 agreements from the committee,
it is regarded as a verified block and propagated to the
network. After receiving the newly verified block, nodes
check the signatures of the committee members and add
it to the local chain (Step ⑥).

4.1 Initialization
We assume that a trusted authority bootstraps the permis-
sioned blockchain system with eligible edge nodes (i.e., BSs).
Upon registration, blockchain nodes are allocated a VRF
key pair (SK, PK) for committee constitution, a signature
commitment key pair (sk, pk), and the default stake. The
genesis block of the blockchain is a fixed block containing
information about the system. The task publisher publishes
the FL task with the unlabeled data X , the IPFS address
G0

IPFS of the initial model W 0
g and the momentum m0

which is initialized with 0, and the hyperparameters of the
FL model.

4.2 Stake-based Committee Constitution
Using VRF, BEFL selects committee members in a private
and non-interactive manner. Based on VRF, we propose
a novel sortition algorithm for choosing a random subset
of nodes to constitute the committee. Each node runs the
sortition algorithm independently with a public seed (the
latest block of blockchain) as its input to see if itself is
selected as a candidate committee member. It is non-trivial
that the sortition selects nodes in proportion to their owned
stakes; otherwise, it would be vulnerable to Sybil attack [30],

5

Algorithm 1 Sortition
Input: the latest block seed, stake value of node i si, the

total stake of blockchain system S, hyperparameter α and
the committee size K .

Output: select, hash, proof
1: hash, proof ← V RFSKi(seed)
2: r = hash

2hashlen

3: if r
si

< αK
S then

4: select = true
5: else
6: select = false
7: end if

where a single faulty entity presents multiple entities, thus
controlling a substantial fraction of the system. As shown
in the Sortition algorithm, if the generated unique random
hash, determined by the secret key SKi and the input
seed, satisfies the condition, the node i becomes a candidate
committee member and sends the eligible information (hash
and proof) to the network. The r generated via VRF is a
unique uniform random value that lies within the range
of [0, 1], thus its probability density function is f(r) = 1.
The probability of blockchain node i being chosen to be a
committee member could be computed as follows:

pi = Pr(
r

si
<

αK

S
) = Pr(r <

αKsi
S

) =
αKsi
S

, (1)

it could be seen from the above equation that the more stake
the node owns, the higher probability of it being chosen
for the committee. The committee constitution phase ends
when the correct size of the committee is achieved, first
K committee members become the authoritative ones. Any
node could get the committee information from the network
and verify the identity of committee members using their
public keys of VRF, the latest block of the blockchain, and
the stakes they owned. The hyperparameter α controls the
expected number of nodes that could be chosen to become
the candidate committee members. As each node of being
a candidate committee member follows the Bernoulli distri-
bution, we let Xi denote the trial of node i, where Xi = 1
with probability pi denoting success trial, and Xi = 0
with probability 1 − pi indicating unsuccessful one, thus
the successful trials X =

∑n
i=1 Xi. The expectation of X is

computed as follows:

E(X) =

n∑
i=1

pi = αK. (2)

According to the Chernoff bound on the sum of indepen-
dent Bernoulli trials, we could get

Pr(X ≤ (1− δ)αK) ≤ e−αKδ2/2, (3)

for any 0 ≤ δ ≤ 1. Taking δ = α−1
α , where α lies within

(1, n
K], we obtain

Pr(X ≤ K) ≤ e−K(α−1)2/2α. (4)

To ensure enough candidate committee members exist in
each committee constitution phase, the probability equation
(4), indicating not having K +1 candidate committee mem-
bers should be small to 0. We discuss the choice of K and α
in the Performance Evaluation section.

4.3 Communication-efficient Distributed Training

Instead of obtaining global model from the server, BEFL
enables participating clients to get the latest global model
from the nearest active blockchain node through sending
their requests. The node then returns the IPFS address of
the latest global model with its recorded relative training
round, so that the client can check whether the global
model is the newly updated one. Taking advantage of the
content-addressed IPFS, clients can download the global
model efficiently as the file is provided by the available
nearest IPFS servers. Upon obtaining the global model W t

g ,
new local model wt is trained using conventional Stochastic
Gradient Descent (SGD) algorithm on the private training
data D.

To save the communication cost of uploading the model
update ∆wt = wt − W t

g for global aggregation, we ap-
ply the state-of-the-art gradient compression mechanism
PowerSGD, which incorporates error-feedback [16], to com-
press the transmitted update. As shown in Algorithm 2,

Algorithm 2 Distributed model update with PowerSGD

1: The error e is initialized with 0 ∈ Rd, ∆w ∈ Rd. In the
compression phase, vector ∆w would be reshaped into
matrices. For each matrix M ∈ Rm×n, a corresponding
Q ∈ Rm×r is initialized from an i.i.d standard normal
distribution

2: Client execute:
3: at each training round r = 0, ... do
4: Compute a stochastic gradient gw
5: ∆w = gw + e
6: P̂,Q← COMPRESS(∆w)
7: e← ∆w −DECOMPRESS(P̂,Q)
8: upload P̂,Q
9:

10: function COMPRESS(∆w)
11: {M1,M2, ...MW } ← ∆w
12: for i = 1, 2, ..,W do
13: Pi ←MiQi

14: P̂i ← ORTHOGONALIZE(Pi)
15: Qi ←MT P̂i

16: end for
17: P̂ =

{
P̂1, P̂2, ..., P̂W

}
18: Q = {Q1, Q2, ..., QW }
19: return compressed representation (P̂,Q)
20: end function
21:
22: function DECOMPRESS(P̂,Q)
23: for P̂ in P̂, Q in Q do
24: M = P̂QT

25: ∆w∗ ←M
26: return ∆w∗

27: end function

the low-rank PowerSGD decomposes the gradient matrix
M ∈ Rn×m into P̂ ∈ Rn×r and Q ∈ Rm×r . Compared
to traditional FedAvg [31], the additional computation cost
brought by compression is relatively low, which involves
one left multiplication, one right multiplication, and an
orthogonalization (achieved by Gram-Schmidt procedure

6

Block Header

�����
���

������

�����

…

Verified Block

�����

�����

Block Header

�����_���������
���

������

����(∆��
�)

����

…

Candidate Block

����(∆��
�)

����

����(∆��
�)

����

Fig. 2. Block Structure

with O(mn2), where m and n are the dimensions of the
matrix) on each matrix in gradient vector ∆w.

4.4 Transaction and Block Design

A blockchain is a list of blocks linked with hash pointers.
Each block has a block header, consisting of the index of the
block, timestamp, and the hash string of previous block, and
a block body that contains transactions. As shown in Fig. 2,
each compressed model update with the signature signed by
the client forms the transaction. Model updates utilized for
global model aggregation together with the IPFS address of
the aggregated model W t+1

g and updated momentum mt+1

signed by the aggregator would be packed into the body of
the candidate block. Once the candidate block has been con-
firmed, local model updates contained in this block will be
removed for their uselessness to future rounds of learning
process and benefit of storage saving. Instead, signatures of
the block header and IPFS address of the confirmed global
model issued by committee members who vote ”Yes” to the
candidate block would be recorded.

4.5 Secure Aggregation Protocol

The privacy-preserving principle of FL makes it susceptible
to malicious clients who may send poisonous model up-
dates to corrupt the joint learning process. The low-rank
approximated model update inevitably introduces biases to
the raw model update, thus making the identification and
mitigation of potential malicious model updates more diffi-
cult. As shown in [32], the MI between honest clients shows
an increasing trend with training round, instead of the
Euclidean distance. We propose a novel robust aggregation
mechanism leveraging the underlying MI between clients
to capture the differences between honest and malicious
clients.

MI is a powerful statistic for measuring the degree of
dependence [33], it captures the amount of shared informa-
tion between two random variables. We treat the output of
client’s local model as a random vector due to the stochastic
property of SGD. We assume that the output Fi of local
model wi from client i and output Fj of local model wj from
client j follow Gaussian functions with respective variances
σ2
i and σ2

j . The MI between client i and j, denoted by MIi,j
could be calculated as [34]:

MIi,j = MI(Fi, Fj) = H(Fi) +H(Fj)−H(Fi, Fj), (5)

where H(Fi) is the entropy of Fi, H(Fj) is the entropy of
Fj , and H(Fi, Fj) is joint entropy of Fi and Fj , which are
defined as:

H (Fi) =
1
2 [1 + log

(
2πσ2

i

)
]

H (Fj) =
1
2 [1 + log

(
2πσ2

j

)
]

H (Fi, Fj) = 1 + log(2π) + 1
2 log[σ

2
i σ

2
j

(
1− ρ2ij

)
]

 . (6)

In Eq. (6) the correlation coefficient ρij is defined as:

ρij =
E[(Fi − E[Fi])]E[(Fj − E[Fj])]

σ2
i σ

2
j

, (7)

where E[·] denotes the mathematical expectation. From Eq.
(5) and (6), we could get

MIi,j = −
1

2
log(1− ρ2ij). (8)

It can be seen from Eq. (8) that, 1) when the outputs Fi

and Fj are highly correlated, the correlation coefficient ρij
is close to 1 and thus the MI value would be noticeably
large; 2) when Fi and Fj are barely correlated, the cor-
relation coefficient ρij is close to 0 and their MI becomes
very small. The outputs of clients’ local model are obtained
from decompressing their model updates and the unlabeled
dataset provided by the FL task publisher.

Algorithm 3 BEFL aggregation

The global model W t
g and momentum value mt

of last round, unlabeled dataset of FL task X ,
and the received valid model updates set S =
{Comp(∆w1), Comp(∆w2), . . . , Comp(∆wk)}
for each compressed model update Comp(∆wi) in S do
∆wi ← DECOMPRESS(Comp(∆wi))
wi = ∆wi +Wg

end for
for each wi do

Compute MIi,j , (j = (1, . . . , k), j ̸= i)
MIi = mean {MIi,j : j = (1, . . . , k), j ̸= i}

end for
MImad ←MAD(MI)
MImadn = MImad

0.6745
∆w← 0
for i = 1, . . . ,K do
ti =

MIi−Median(MI)
MImadn

count = 0
if ti ≤ 2 then
∆w = ∆w +∆wi

count++
end if

end for
mt+1 = βmt − η ∆w

count
W t+1

g = W t
g − βmt + (1 + β)mt+1

As shown in Algorithm 3, the MI values between differ-
ent clients calculated via Eq. (8) are leveraged to the secure
aggregation process. The correlation coefficient ρij is:

ρij =

∑N
q=1 (Fi (xq)− E [Fi (xq)]) (Fj (xq)− E [Fj (xq)])√∑N
q=1 (Fi (xq)− E [Fi (xq)])

2
(Fj (xq)− E [Fj (xq)])

2
,

(9)

7

where xq denotes the unlabeled data sample and N is the
number of data samples. To quantify the correlation of each
model update to others, the MI values between each other
model update are averaged to produce the MI score. Similar
to the Multi-krum [2] robust aggregation rule, our method
selects model updates ”close to the barycenter”. Model
updates with excessively low MI scores are suspected to
be malicious for the intrinsic large difference, while the one
with a very high score tends to increase the redundancy in
model aggregation which may slow down the convergence
speed. To capture the distance of each MI score to the
barycenter, we utilize the standard deviation (SD) robust
alternative, median absolute deviation about the median
(MAD) which is computed as:

MImad = MAD(MI) = Median(MI−Median(MI)),
(10)

where MI = {MI1,MI2, . . . ,MIk} and k is the number of
received valid pending transactions that contain the model
updates from clients. To make MAD comparable to SD, we
normalize the MAD as:

MImadn =
MImad

0.6745
, (11)

where 0.6745 is the MAD value of a standard normal dis-
tribution. To filter out potential malicious model updates as
well as less contributive ones, we use the standard heuristic
of taking all values lying within two SDs of the mean (95%
probability) as empirically useful. We replace mean and SD
here to median and normalized MAD (MADN) as robust
location and dispersion measures [9]. Model updates with
MI scores lie within the 95% confidence level are selected for
aggregation. The global model is updated with Nesterov’s
momentum using the selected gradients.

After the aggregation, the updated global model W t+1
g

and momentum mt+1 will be uploaded to the IPFS by
the aggregator, with a unique hash string denoting the
storage address returned back. The aggregator could then
generate the candidate block with obtained IPFS address
and pending transactions and send it to the committee for
verification.

4.6 Consensus Achievement

As the defining technology behind the security of
blockchain, the consensus protocol is of significant impor-
tance. The VRF-enabled committee constitution guarantees
resistance against Sybil attacks as no blockchain node could
predict the next generated block in advance, and there are
limited stakes that malicious nodes could hold. As shown
in Algorithm 4, when a new candidate block is distributed
to the network, committee members that are in charge
of verifying candidate blocks first check whether enough
pending transactions are collected for global model aggre-
gation and the signature of the IPFS address is issued by the
aggregator using its public key pkagg . If the aforementioned
condition is met, committee members calculate the global
model and momentum values following the Secure Aggre-
gation Protocol (see Section 4.5) and compare them with
the ones obtained from the IPFS. If the results are the same
as the aggregator’s, committee members vote ”Yes” to the
candidate block with their signatures regarding the block

header and the signed IPFS address. We use the Elliptic
Curve Digital Signature Algorithm (ECDSA) to make the
signature commitment which is utilized in Bitcoin. If more
than 2

3 agreements from committee members are received,
the candidate block is regarded as the valid verified block
with transactions replaced by signatures from supported
committee members. This 2

3 consensus threshold is based
on the concept of the Byzantine Fault Tolerance (BFT) [35].
In a distributed system like a blockchain, some of nodes (or
validators) may be faulty and behave maliciously or erro-
neously, leading to inconsistencies in the system. The BFT
consensus algorithm is designed to tolerate up to one-third
of the nodes being faulty. Setting the consensus threshold
to 2

3 ensures that BEFL can tolerate up to one-third of the
committee members being faulty (either due to malicious
intent or technical issues), while still achieving consensus
on the verified block. In BEFL, the voting process for each
candidate block occurs only for a specified duration. Any
candidate block that fails to receive enough agreements
during the time duration will be dropped and the committee
will verify the next candidate block. For the committee
constituted each time, BEFL specifies its maximum voting
step. If there is no candidate block being confirmed during
these voting rounds, a new committee will be constituted
for verifying new candidate block.

Once the block is confirmed, stake reward would be
distributed to both the committee members and the block
generator. Any transactions in the pending transaction pool
will be cleared: BEFL does not append stale updates to the
model.

Algorithm 4 Consensus
Candidate Block cBlock, maximum vote round
MaxStep, maximum voting time MaxV oteDuration.
step← 1
while step < MaxStep do

if voting time is within MaxV oteDuration then
votes, sigs←Committee members vote on cBlock
if ”Yes” votes are more than 2K

3 then
vBlock ← cBlock, sigs
return vBlock

else
step++; wait for new candidate block

end if
end if

end while
Committee reconstruction; wait for new candidate block.

5 PERFORMANCE EVALUATION

We implemented BEFL with Go 1.16 and Python 3.7. The
networking and distributed aspects of our design are built
using Go. We utilized PyTorch to train models and generate
SGD updates. BEFL interfaces Go and python via the go-
python3 library [36]. We used go-ipfs-api [37] to connect
with the IPFS. The cryptography part of our design is
implemented with Coniks [38] library which is used for
VRF implementation and built-in crypto package of Go that
contains ECDSA implementation.

8

TABLE 1
The default parameters of BEFL

Parameter Value
Committee size K 15

Control parameter α 3
Maximum voting round MaxV oteStep 5

Voting time out MaxV oteDuration 200 seconds
Number of blockchain nodes 100

Rank of FEMNIST SGD update 2
Rank of CIFAR10 SGD update 4

Beta β 0.9
Eta η 1

Learning rate of client’s SGD 0.1
Batch size of client’s model training 64
Local steps of client’s model training 5

Initial stake uniform, 1 each
Stake update linear, +1

We deployed BEFL to a machine with one NVIDIA
Getforce GTX 1080 Ti GPU, one Intel (R) Xeon (R) CPU E5-
2630 v3 @ 2.40GHz and 64GB of RAM. All experiments were
executed over non-i.i.d datasets: FEMNIST and CIFAR10.
FEMNIST was preprocessed using the Leaf federated bench-
mark tool [39] consisting of 62 different classes (numbers
and letters). We utilized the non-i.i.d CIFAR10 partition
constructed from LotteryFL [40] where clients can have
different classes of unbalanced data with different degrees.
We assigned each CIFAR10 client 10 classes of data with
the unbalanced degree of 0.75. All FL tasks were loaded
with 50 workers and 20 of them are selected randomly to
participate in each FL training round. The parameter values
of BEFL are presented in Table 1 unless stated otherwise.
To ensure enough candidate committee members exist in
each committee constitution phase, we set committee size K
and control parameter α with 15 and 3 respectively, so that
the probability of not having K + 1 candidate committee
members is smaller than 4.54 × 10−5 according to the
equation (4), indicating it would barely happen. We took
1000 random samples without their labels of test dataset
as the unlabeled dataset. We implemented a custom CNN
comprising: a convolutional layer with relu, a max-pooling
layer, a convolutional layer with relu, a max-pooling layer,
a fully connected layer with relu, and the output layer
with softmax, for the FEMNIST task, and a ResNet14 [41]
for CIFAR10. Each experiment was repeated 3 times, with
the mean and 95% confidence interval (CI) plotted in the
relevant figures.

We compare BEFL with FedAvg and Biscotti. We chose
Biscotti as the baseline as it shares the same objective of
defending against malicious clients and solving the cen-
tralized server bottleneck issue in federated learning using
blockchain technology.

5.1 Communication efficiency
In this section, we evaluate the communication cost of each
client for participating in a training round. The sizes of
transmitted model updates for both FEMNIST and CIFAR10
tasks are reduced significantly, from 3399.742kb to 50.727kb

0 100 200 300 400 500
Round

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

CIFAR10

FedAvg
Biscotti
BEFL

0 100 200 300 400 500
Round

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

FEMNIST

FedAvg
Biscotti
BEFL

Fig. 3. Test accuracy of FedAvg, Biscotti and BEFL over CIFAR10 and
FEMNIST datasets when there is no attack. Curves are averages over
3 random trials, shaded regions represent 95% CIs

in FEMNIST, and 764.602kb to 151.070kb in CIFAR10. By
compressing the model updates into low-rank matrices,
the uploading message became 67× smaller of FEMNIST
task and 5× smaller of CIFAR10 task. We calculate the
average Euclidean distance between the decompressed and
the original data (i.e., model updates) of clients of the two
FL tasks in which 500 training rounds have been performed
with 20 clients participating in each round. The average
Euclidean distance between the decompressed data and the
original data is 1.771 in FEMNIST and 1.496 in CIFAR10.
We also calculate the average absolute error per parame-
ter between the decompressed data and the original data,
which is 0.002 for FEMNIST and 0.001 for CIFAR10. From
the calculated numerical results, we could see that there is
not a big difference between the decompressed data and the
original data. As shown in Fig. 3, BEFL achieves equivalent
performance compared to conventional FedAvg [31] under
the honest setting. Due to non-i.i.d data, Biscotti filtered
out partial contributive model updates in terms of their
long Euclidean distances to others resulting in 3.55% and
3.92% accuracy dropping down for the FEMNIST and the
CIFAR10 task respectively. Moreover, BEFL converges faster
than traditional FedAvg and Biscotti due to the intrinsic
model update selection and momentum update of the global
model. Model updates with excessively high MI scores tend
to increase the redundancy in the aggregation process and
ones with very low MI scores are suspected to induce high
variance. Using momentum of SGD updates has proven
to accelerate the network training [42] and the oscillations
brought by compression could be dampened.

9

0 100 200 300 400 500
Round

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

CIAFR10, Label Flipping (LF) Attack

0 100 200 300 400 500
Round

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

CIAFR10, Bit Flipping (BF) Attack

0 100 200 300 400 500
Round

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

FEMNIST, Label Flipping (LF) Attack

0 100 200 300 400 500
Round

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

FEMNIST, Bit Flipping (BF) Attack

FedAvg
Biscotti
BEFL

Fig. 4. Test accuracy of FedAvg, Biscotti and BEFL over CIFAR10 and FEMNIST datasets when adversaries perform LF and BF attacks. Curves
are averages over 3 random trials, shaded regions represent 95% CIs

5.2 Resistance to poisoning attacks

In this section, we evaluate BEFL’s performance against
both data poisoning and model poisoning attacks. Data
poisoning happens during the data collection phase. Mali-
cious clients inject data samples into the training dataset.
One common data poisoning attack in the FL scenario
is the Label-Flipping (LF) [3] attack in which adversaries
replace the targeted label with the desired one. In model
poisoning attacks, adversaries adjust the training model
directly and tailor its output to have a similar distribution
with the correct model updates. Bit-Flipping (BF) attack [43]
(also known as sign-flipping) is one of the common model
poisoning attacks in which adversaries send the negative
of the gradients to the master. We launched LF and BF
attacks to both the CIFAR10 and FEMNIST tasks with 20%
clients being malicious in each training round. In particular,
malicious clients flipped the label lc to 9 − lc in CIFAR10
and lf to 61 − lf in FEMNIST for the LF attack and mul-
tiplied by −1 their gradients before compression in the BF
attack. Uncompressed model updates were uploaded when
performing FedAvg and Biscotti aggregation. As presented
in Fig. 4, BEFL is resilient to both LF and BF attacks as
conventional FedAvg struggles to converge. BEFL shows
superior performance than Biscotti in FEMNIST task under
both attacks. The accuracy achieved by BEFL is higher than
that of Biscotti. For CIFAR10 task, it also performed better
when adversaries launching LF attack. The performance of
BEFL and Biscotti under BF attack is comparable as they
achieved nearly the same accuracy.

5.3 Performance and scalability

In this section, we evaluate the overhead of each stage in
BEFL and investigate the effect of byzantine nodes in the
blockchain network. We also measure the performance of
BEFL when scaling up committee size and joining of more
nodes.

Overhead breakdown: To measure the overhead of each
main stage of our design, we simulated BEFL over a varying
number of blockchain nodes with varied committee sizes.
We captured the amount of time spent in major stages: 1)
committee constitution: blockchain nodes run the Sortition
algorithm to constitute the committee; 2) candidate block
generation: blockchain nodes (except committee members)
collect model updates and aggregate them following the
BEFL aggregation rule to generate a block; 3) voting: com-
mittee members vote for the candidate block and 4) verified
block propagation: the distribution of the verified block to
each node. As shown in Table 2, we deployed BEFL with
100 and 200 nodes with committee sizes of 15 and 30. When
K = 30, the probability of not having enough candidate
committee members is smaller than 2.07 × 10−9, according
to equation (4). The values recorded in the table are the
averaged time (seconds) of 50 training rounds. Voting takes
the longest time among the four stages and it doubles with
the committee size since there are twice as many ”yes” votes
required to confirm the legitimacy of candidate block. The
voting time needed in FEMNIST task is lower than that of
CIFAR10 task since the compressed model size of FEMNIST
update is smaller than CIFAR10’s, thus it takes less time
for transmitting candidate block to each committee member.
The time needed for committee constitution and verified

10

TABLE 2
Breakdown of time in different phases of BEFL under different settings when processing CIFAR10 and FEMNIST tasks

CIFAR10 FEMNIST
(”number of blockchain nodes”, ”committee size”) (100, 15) (100, 30) (200,15) (200,30) (100, 15) (100, 30) (200,15) (200,30)

committee constitution (second) 0.115 0.207 0.170 0.256 0.115 0.185 0.154 0.257
candidate block generation (second) 7.719 7.592 7.449 7.562 7.233 7.221 7.445 7.492

voting (second) 92.448 185.005 93.899 186.360 80.272 160.619 81.568 162.968
verified block propagation (second) 0.312 0.587 0.609 1.180 0.298 0.570 0.632 1.139

total time (second) 100.595 193.391 102.128 195.358 87.918 168.595 89.800 171.857

0 100 200 300 400 500
Round

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

BEFL with byzantine
BEFL without byzantine

Fig. 5. Test accuracy of BEFL under honest clients setting for CIFAR10
task

block propagation is almost the same in the two tasks, both
remain very low. The committee constitution time doubles
with the committee size, while propagation time doubles
with the number of blockchain nodes.

Security analysis: The safety of BEFL is guarded by
the committee-based consensus protocol, but proving this
experimentally requires testing all possible attack strategies
which is infeasible. We measure the resistance of BEFL to
byzantine blockchain nodes with the specified attacking
strategy: the malicious nodes actively participate in both
committee constitution and candidate block generation. If
the malicious node gets the chance to be a committee mem-
ber, it votes ”No” to the correct candidate block and votes
”Yes” to the incorrect one. For generating the candidate
block, instead of aggregating local model updates following
the secure aggregation protocol, malicious nodes perform
a Gaussian attack by setting random values following the
standard Gaussian distribution as global model parameters.
We assigned 1

3 (the maximum byzantine fault tolerance in a
distributed system) of blockchain nodes to be malicious and
colluded together to mislead the learning process. As shown
in Fig. 5 and 6, the performance of BEFL was unharmed by
these byzantine nodes, demonstrating that BEFL is robust to
this kind of attack scenario.

Scalability analysis: To measure the scalability of BEFL,
we varied committee size with a fixed 100 blockchain nodes,
and varied the number of blockchain nodes with a fixed
committee size of 15. We reran CIFAR10 and FEMNIST tasks
under different BEFL system settings for 50 training rounds.
As shown in Fig. 7, the average total time per verified block
generation and distribution grows almost linearly with the
committee size as the dominant voting time increases. The

0 100 200 300 400 500
Round

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

BEFL with byzantine
BEFL without byzantine

Fig. 6. Test accuracy of BEFL under honest clients setting for FEMNIST
task

15 20 25 30
Committee size

0

50

100

150

200

To
ta

l t
im

e/
se

co
nd

s

CIFAR10
FEMNIST

Fig. 7. The averaged total time of per verified block generation and
distribution with varied committee size for CIFAR10 and FEMNIST tasks

100 200 400 800
Nodes

0

20

40

60

80

100

To
ta

l t
im

e/
se

co
nd

s

CIFAR10
FEMNIST

Fig. 8. The averaged total time of per verified block generation and dis-
tribution with varied blockchain network size for CIFAR10 and FEMNIST
tasks

11

overall time for generating and distributing a valid block
for the FEMNIST task is shorter than that of the CIFAR10
as the smaller transmitted model updates in the network.
Although the larger the committee size, the more certainty
of having enough candidate committee members in each
committee constitution phase, and the higher credibility
of the generated block as more agreements obtained, the
additional communication overhead for reaching consensus
on candidate block is non-negligible. Fig. 8 shows the per-
formance of BEFL as the network size grows. It could be
seen that the total time of block finalization and distribution
barely increases in CIFAR10 task and the increment is almost
negligible in FEMNIST task when the number of blockchain
nodes increases from 100 to 800. Instead of saving the full
shared global model and local model updates in a block,
the recorded IPFS address and the removal of unnecessary
stale model updates reduces the block size significantly, thus
enabling fast block transmission in the network.

Considering the wireless edge execution environment
of BEFL, we further monitored and calculated the resource
consumption when simulating BEFL. The block size of BEFL
is around 20KB for the integration of IPFS, making the block
transmission and storage cost stay at a very low level, e.g.,
1 million blocks would occupy 19.07 GB. The average peak
computing power used for each blockchain node is around
3.43 GigaFLOPS (Floating point operations per second) in
FEMNIST and 2.79 GigaFLOPS in CIFAR10. The bandwidth
usage is the same in the two tasks, 0.014 kbps for sending
and 0.012 kbps for receiving at each blockchain node. These
costs of 19.07 GB, 3.43 and 2.79 GigaFLOPS, 0.014 and 0.012
kbps could be easily satisfied by a typical edge server, e.g.,
one with 2.3 GHz quad-core Intel i5 CPU (the computing
performance is therefore 147.2 GigaFLOPS), 8 GB RAM, and
256GB storage [44], and the bandwidth is often above 1
Gb/s [45].

6 CONCLUSION

In this work, we proposed BEFL, a novel lightweight
blockchain system for secure, efficient and practical FL
at the wireless edge. To reduce the communication cost
for participating clients and defend against malicious ones
that send poisonous model updates, we proposed the
communication-efficient MI-guarded training scheme ex-
ploiting PowerSGD. The reliability of the global model is
ensured by a committee-based consensus protocol where
the aggregation execution is verified. To reduce the commu-
nication cost of block propagation, and the storage cost of
maintaining the blockchain, BEFL incorporates the IPFS to
store the global model with its address recorded in the block.
The performance results show that BEFL achieves commu-
nication efficiency with byzantine robustness, reliability of
global model provided by the blockchain system, and high
scalability enabled by VRF and IPFS.

ACKNOWLEDGMENT

This work was supported in part by EPSRC New Horizons
Grant No. EP/X019160/1, UKRI Grant No. EP/X038866/1,
and Horizon EU Grant No. 101086159. For the purpose

of open access, the author has applied a ‘Creative Com-
mons Attribution (CC BY) licence to any Author Accepted
Manuscript version arising.

REFERENCES

[1] J. Park, S. Samarakoon, M. Bennis, and M. Debbah, “Wireless
network intelligence at the edge,” Proceedings of the IEEE, vol. 107,
no. 11, pp. 2204–2239, 2019.

[2] P. Blanchard, E. M. El Mhamdi, R. Guerraoui, and J. Stainer,
“Machine learning with adversaries: Byzantine tolerant gradient
descent,” in Proceedings of the 31st International Conference on Neural
Information Processing Systems, 2017, pp. 118–128.

[3] C. Fung, C. J. Yoon, and I. Beschastnikh, “Mitigating sybils in
federated learning poisoning,” arXiv preprint arXiv:1808.04866,
2018.

[4] D. Yin, Y. Chen, R. Kannan, and P. Bartlett, “Byzantine-robust
distributed learning: Towards optimal statistical rates,” in Interna-
tional Conference on Machine Learning. PMLR, 2018, pp. 5650–5659.

[5] R. Guerraoui, S. Rouault et al., “The hidden vulnerability of
distributed learning in byzantium,” in International Conference on
Machine Learning. PMLR, 2018, pp. 3521–3530.

[6] K. Pillutla, S. M. Kakade, and Z. Harchaoui, “Robust aggregation
for federated learning,” arXiv preprint arXiv:1912.13445, 2019.

[7] M. Shayan, C. Fung, C. J. Yoon, and I. Beschastnikh, “Biscotti:
A blockchain system for private and secure federated learning,”
IEEE Transactions on Parallel and Distributed Systems, vol. 32, no. 7,
pp. 1513–1525, 2020.

[8] Y. Li, C. Chen, N. Liu, H. Huang, Z. Zheng, and Q. Yan,
“A blockchain-based decentralized federated learning framework
with committee consensus,” IEEE Network, vol. 35, no. 1, pp. 234–
241, 2020.

[9] H. Chen, S. A. Asif, J. Park, C.-C. Shen, and M. Bennis, “Robust
blockchained federated learning with model validation and proof-
of-stake inspired consensus,” arXiv preprint arXiv:2101.03300, 2021.

[10] Y. Qu, S. R. Pokhrel, S. Garg, L. Gao, and Y. Xiang, “A blockchained
federated learning framework for cognitive computing in industry
4.0 networks,” IEEE Transactions on Industrial Informatics, vol. 17,
no. 4, pp. 2964–2973, 2020.

[11] M. Xu, Z. Zou, Y. Cheng, Q. Hu, D. Yu, and X. Cheng, “Spdl: A
blockchain-enabled secure and privacy-preserving decentralized
learning system,” IEEE Transactions on Computers, 2022.

[12] S. Yuan, B. Cao, M. Peng, and Y. Sun, “Chainsfl: Blockchain-
driven federated learning from design to realization,” in 2021 IEEE
Wireless Communications and Networking Conference (WCNC). IEEE,
2021, pp. 1–6.

[13] J. Kang, Z. Xiong, D. Niyato, Y. Zou, Y. Zhang, and M. Guizani,
“Reliable federated learning for mobile networks,” IEEE Wireless
Communications, vol. 27, no. 2, pp. 72–80, 2020.

[14] J. Liang, S. Li, W. Jiang, B. Cao, and C. He, “Omnilytics: A
blockchain-based secure data market for decentralized machine
learning,” arXiv preprint arXiv:2107.05252, 2021.

[15] V. Mugunthan, R. Rahman, and L. Kagal, “Blockflow: An ac-
countable and privacy-preserving solution for federated learning,”
arXiv preprint arXiv:2007.03856, 2020.

[16] T. Vogels, S. P. Karimireddy, and M. Jaggi, “Powersgd: Practi-
cal low-rank gradient compression for distributed optimization,”
2019.

[17] Y. Lu, X. Huang, Y. Dai, S. Maharjan, and Y. Zhang, “Blockchain
and federated learning for privacy-preserved data sharing in
industrial iot,” IEEE Transactions on Industrial Informatics, vol. 16,
no. 6, pp. 4177–4186, 2019.

[18] L. Feng, Y. Zhao, S. Guo, X. Qiu, W. Li, and P. Yu, “Blockchain-
based asynchronous federated learning for internet of things,”
IEEE Transactions on Computers, 2021.

[19] Y. Zhao, J. Zhao, L. Jiang, R. Tan, D. Niyato, Z. Li, L. Lyu, and
Y. Liu, “Privacy-preserving blockchain-based federated learning
for iot devices,” IEEE Internet of Things Journal, vol. 8, no. 3, pp.
1817–1829, 2020.

[20] J. Weng, J. Weng, J. Zhang, M. Li, Y. Zhang, and W. Luo,
“Deepchain: Auditable and privacy-preserving deep learning with
blockchain-based incentive,” IEEE Transactions on Dependable and
Secure Computing, 2019.

[21] L. Feng, Y. Zhao, S. Guo, X. Qiu, W. Li, and P. Yu, “Bafl: A
blockchain-based asynchronous federated learning framework,”
IEEE Transactions on Computers, vol. 71, no. 5, pp. 1092–1103, 2021.

12

[22] Y. Qu, L. Gao, T. H. Luan, Y. Xiang, S. Yu, B. Li, and G. Zheng,
“Decentralized privacy using blockchain-enabled federated learn-
ing in fog computing,” IEEE Internet of Things Journal, vol. 7, no. 6,
pp. 5171–5183, 2020.

[23] S. Guo, K. Zhang, B. Gong, L. Chen, Y. Ren, F. Qi, and X. Qiu,
“Sandbox computing: A data privacy trusted sharing paradigm
via blockchain and federated learning,” IEEE Transactions on Com-
puters, 2022.

[24] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich,
“Algorand: Scaling byzantine agreements for cryptocurrencies,”
in Proceedings of the 26th symposium on operating systems principles,
2017, pp. 51–68.

[25] V. Buterin and V. Griffith, “Casper the friendly finality gadget,”
arXiv preprint arXiv:1710.09437, 2017.

[26] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,
A. De Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich
et al., “Hyperledger fabric: a distributed operating system for
permissioned blockchains,” in Proceedings of the thirteenth EuroSys
conference, 2018, pp. 1–15.

[27] J. Benet, “Ipfs-content addressed, versioned, p2p file system,”
arXiv preprint arXiv:1407.3561, 2014.

[28] S. Micali, M. Rabin, and S. Vadhan, “Verifiable random functions,”
in 40th annual symposium on foundations of computer science (cat. No.
99CB37039). IEEE, 1999, pp. 120–130.

[29] H.-Y. Chen and W.-L. Chao, “Fedbe: Making bayesian model
ensemble applicable to federated learning,” arXiv preprint
arXiv:2009.01974, 2020.

[30] J. R. Douceur, “The sybil attack,” in International workshop on peer-
to-peer systems. Springer, 2002, pp. 251–260.

[31] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Ar-
cas, “Communication-efficient learning of deep networks from
decentralized data,” in Artificial intelligence and statistics. PMLR,
2017, pp. 1273–1282.

[32] P. Xiao, S. Cheng, V. Stankovic, and D. Vukobratovic, “Averaging
is probably not the optimum way of aggregating parameters in
federated learning,” Entropy, vol. 22, no. 3, p. 314, 2020.

[33] T. M. Cover and J. A. Thomas, Elements of Information Theory. USA:
Wiley-Interscience, 2006.

[34] M. P. Uddin, Y. Xiang, X. Lu, J. Yearwood, and L. Gao, “Mutual in-
formation driven federated learning,” IEEE Transactions on Parallel
and Distributed Systems, vol. 32, no. 7, pp. 1526–1538, 2020.

[35] L. LAMPORT, R. SHOSTAK, and M. PEASE, “The byzantine
generals problem,” ACM Transactions on Programming Languages
and Systems, vol. 4, no. 3, pp. 382–401, 1982.

[36] DataDog, “Datadog/go-python3: Go bindings to the cpython-
3 api.” [Online]. Available: https://github.com/DataDog/go-
python3

[37] Ipfs, “Ipfs/go-ipfs-api: The go interface to ipfs’s http api.”
[Online]. Available: https://github.com/ipfs/go-ipfs-api

[38] Coniks-Sys, “Coniks-sys/coniks-go: A coniks implementation
in golang.” [Online]. Available: https://github.com/coniks-
sys/coniks-go

[39] S. Caldas, S. M. K. Duddu, P. Wu, T. Li, J. Konečnỳ, H. B.
McMahan, V. Smith, and A. Talwalkar, “Leaf: A benchmark for
federated settings,” arXiv preprint arXiv:1812.01097, 2018.

[40] A. Li, J. Sun, B. Wang, L. Duan, S. Li, Y. Chen, and H. Li,
“Lotteryfl: Personalized and communication-efficient federated
learning with lottery ticket hypothesis on non-iid datasets,” arXiv
preprint arXiv:2008.03371, 2020.

[41] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 770–778.

[42] T.-M. H. Hsu, H. Qi, and M. Brown, “Measuring the effects of
non-identical data distribution for federated visual classification,”
arXiv preprint arXiv:1909.06335, 2019.

[43] S. P. Karimireddy, L. He, and M. Jaggi, “Learning from history
for byzantine robust optimization,” in International Conference on
Machine Learning. PMLR, 2021, pp. 5311–5319.

[44] R. Ullah, D. Wu, P. Harvey, P. Kilpatrick, I. Spence, and B. Vargh-
ese, “Fedfly: Toward migration in edge-based distributed feder-
ated learning,” IEEE Communications Magazine, vol. 60, no. 11, pp.
42–48, 2022.

[45] D. Kimovski, R. Mathá, J. Hammer, N. Mehran, H. Hellwagner,
and R. Prodan, “Cloud, fog, or edge: Where to compute?” IEEE
Internet Computing, vol. 25, no. 4, pp. 30–36, 2021.

Rui Jin received the BEng degree in information
security from University of Science and Tech-
nology Beijing (USTB), China in 2019. She is
currently working toward the PhD degree in com-
puter science at the University of Exeter. Her re-
search interests include federated learning, ap-
plied machine learning, blockchain, and mobile
edge computing.

Jia Hu received the BEng and MEng degrees
in electronic engineering from the Huazhong
University of Science and Technology, China,
in 2006 and 2004, respectively, and the PhD
degree in computer science from the University
of Bradford, UK, in 2010. He is a senior lecturer
of computer science at the University of Exeter.
His research interests include edge-cloud com-
puting, resource optimization, applied machine
learning, and network security.

Geyong Min received the BSc degree in com-
puter science from the Huazhong University of
Science and Technology, China, in 1995, and
the PhD degree in computing science from the
University of Glasgow, United Kingdom, in 2003.
He is a professor of high performance computing
and networking with the Department of Com-
puter Science within the College of Engineering,
Mathematics and Physical Sciences at the Uni-
versity of Exeter, United Kingdom. His research
interests include computer networks, wireless

communications, parallel and distributed computing, ubiquitous comput-
ing, multimedia systems, modeling and performance engineering.

Jed Mills is a Computer Science Ph.D. student
in the Department of Computer Science at the
University of Exeter, UK. He received a B.Sc.
in Natural Science from the University of Exeter
in 2018. His research interests include machine
learning, federated learning, and mobile edge
computing.

